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Abstract

An analysis of high-dimensional data can offer a detailed description of a system but is of-
ten challenged by the curse of dimensionality. General dimensionality reduction techniques
can alleviate such difficulty by extracting a few important features, but they are limited
due to the lack of interpretability and connectivity to actual decision making associated
with each physical variable. Variable selection techniques, as an alternative, can maintain
the interpretability, but they often involve a greedy search that is susceptible to failure in
capturing important interactions or a metaheuristic search that requires extensive compu-
tations. This research proposes a novel method that identifies critical subspaces, reduced-
dimensional physical spaces, to achieve dimensionality reduction and variable selection. We
apply a randomized search for subspace exploration and leverage ensemble techniques to
enhance model performance. When applied to high-dimensional data collected from the
failure prediction of a composite/metal hybrid structure exhibiting complex progressive
damage failure under loading, the proposed method outperforms the existing and potential
alternatives in prediction and important variable selection.

Keywords: Subspace-based modeling, randomized algorithms, feature selection, hybrid
material analysis, damage tolerance modeling

1. Introduction

With the recent breakthrough in computing, a real-world data analysis tends to involve
voluminous high-dimensional data sets for modeling various systems with great complexity
(Reddy et al., 2020; Zhu et al., 2020). An increased dimensionality can provide more
information about an underlying system, but analyzing a high-dimensional data set is not

c©2023 Di Bo, Hoon Hwangbo, Vinit Sharma, Corey Arndt and Stephanie TerMaath.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v24/21-1046.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v24/21-1046.html


Bo, Hwangbo, Sharma, Arndt, and TerMaath

an easy task due to the curse of dimensionality (Liu, 2019; Zhu et al., 2021). That is, for a
fixed sample size, data tend to be sparser in space, so signals are much weaker but noises
have far greater impacts, leading to improper analysis outcomes. A common solution to
this problem is to evaluate a data-driven model in a meaningful low-dimensional space by
identifying a subset of features that can represent the entire data with a minimal loss of
information, e.g., through dimensionality reduction or variable selection (Liu, 2019).

Dimensionality reduction extracts inherent features from high-dimensional data and re-
locates the data in a low-dimensional space constructed by the extracted features, alleviating
the curse of dimensionality (Van Der Maaten et al., 2009). However, existing dimensionality
reduction techniques suffers from the lack of interpretability as the extracted features are
“artificial” having obscure connections to the original “physical” variables (Van Der Maaten
et al., 2009). In engineering applications, identifying important physical variables is crucial
for reducing the number of experimental runs required to optimize a system of interest. In
this context, the usage of dimensionality reduction is limited. As an alternative, variable
selection, also referred to as subset selection or feature selection, can distinguish important
physical variables by selecting a subset of the original variables that are significant (Wei
et al., 2015b). Finding an exact optimal subset is computationally intractable, so variable
selection typically involves a heuristic search (Fong et al., 2013). A simple heuristic such
as a greedy approach cannot ensure the quality of the final model, and a complex heuris-
tic such as genetic algorithm is computationally expensive. In addition, while applying a
heuristic search, important interactions between physical variables can easily be missed.

This paper develops a randomized subspace-based modeling for the purpose of alleviat-
ing the curse of dimensionality and providing valuable insight about an underlying system
for system optimization. To this end, we model a regression problem as an ensemble of mul-
tiple base learners where each base learner is defined over a lower-dimensional input space
only; we will refer to this reduced-dimensional physical space as a subspace. The subspace-
based modeling is similar to general variable selection approaches as it selects subsets of the
original variables to achieve dimensionality reduction. However, it differs from them as it
leverages multiple distinct subsets and accordingly multiple models to evaluate a function,
extending the idea of stepwise regression (Johnsson, 1992) and stacking (Yao et al., 2018).
To balance between model accuracy and computational complexity, we randomly generate
subspaces and selectively choose important subspaces. By construction, an important sub-
space informs that not only the variables therein but also the potential interactions between
them are significant. We prescribe the subspaces to be a fixed (low) dimension considering
that a high-order interaction exceeding a certain order is rarely significant in practice. By
keeping all subspaces at a low dimension, functional evaluation is always performed at a
low-dimensional space without a risk of suffering from the curse of dimensionality.

The potential of this method to significantly impact our characterization and under-
standing of advanced engineering systems is demonstrated using the challenging problem of
identifying the most influential material properties on damage tolerance for a layered hybrid
structure and formulating a reduced order model based on these most sensitive parameters.
This example was chosen due to the high dimensional parameter space and wide range of
parameter values. Additionally, the high fidelity model used to predict damage tolerance
requires a prohibitive amount of computational time to characterize just a small number of
parameters in a narrow subspace of the parameter value ranges. The approach presented
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herein enables a novel method to rapidly reduce and characterize this vast and complex
parameter space to solve a challenging physics-based structural mechanics problem.

The remainder of this article is organized as follows. Section 2 reviews relevant studies on
dimensionality reduction and important variable selection. Section 3 presents the proposed
subspace-based method by describing model structure, random generation and selective
extraction of subspaces, and overall learning process. Section 4 illustrates feature selection
and prediction capability of the subspace-based modeling by using popular toy problems
and a publicly available data set. Section 5 demonstrates the benefits of the proposed
method in comparison with others for modeling the damage tolerance of a hybrid material
and discusses its potential usages for structural design, analysis, and optimization. Section 6
concludes the paper and discusses future work.

2. Literature Review

In the past decades, dimensionality reduction has been common in many applications in-
volving a large number of variables, including digital photographs, speech recognition, fi-
nancial marketing and bioinformatics (Van Der Maaten et al., 2009; Zhu, 2020; Wei et al.,
2015a). Dimensionality reduction techniques transform high-dimensional data into a mean-
ingful reduced-dimensional representation, ideally close to its intrinsic dimensions (Van
Der Maaten et al., 2009). The intrinsic dimensions of data are the minimum features
needed to account for the observed properties of the data (Fukunaga, 2013).

Traditional dimensionality reduction techniques include principal component analysis
(PCA), independent component analysis (ICA), and multidimensional scaling (MDS). PCA
is one of the most popular linear reduction techniques and dates back to Karl Pearson in
1901 (Pearson, 1901). This technique tries to find orthogonal directions that account for as
much variance of data as possible. Due to its attractive advantages of minimal information
loss and generation of uncorrelated dimensions, PCA is still popular for use in a broad range
of application areas (Zou et al., 2006). For example, Li et al. (2016) applied PCA to evaluate
energy security of multiple East Asian countries with respect to vulnerability, efficiency, and
sustainability. Salo et al. (2019) proposed a network anomaly detection method based on
a reduced dimensionality achieved by combining information gain and PCA. On the other
hand, ICA tries to extract independent pieces of information from high-dimensional data,
mainly for the purpose of source blind separation that has been popular in signal processing
(Hastie et al., 2009). ICA can be useful in other areas of study; for example, Sompairac et al.
(2019) discussed the benefits of ICA to unravel the complexity of cancer biology, particularly
in analyzing different types of omics data sets. Different from PCA and ICA, MDS is a
nonlinear dimensionality reduction technique. It provides a useful graphical representation
of data based on the similarity information of individual data points. MDS is a common
technique for analyzing network-structured data as presented in Saeed et al. (2019) that
applied MDS to wireless networks localization.

Over the recent decades, many nonlinear or nonparametric dimensionality reduction
techniques have been proposed (Lee and Verleysen, 2007; Saul et al., 2006). Kernel PCA
is a reformulation of traditional linear PCA constructing feature space through a kernel
function (Schölkopf et al., 1998). Choi et al. (2005) found PCA was inefficient and prob-
lematic for modeling a nonlinear system but kernel PCA effectively captured nonlinearity
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while achieving dimensionality reduction. Xu et al. (2019) proposed a defect prediction
framework that combined kernel PCA and weighted extreme learning machine to extract
representative data features and learn an effective defect prediction model. Tenenbaum
et al. (2000) proposed an isometric feature mapping (Isomap) technique that was based
on classical MDS but sought to retain the intrinsic geometry of data sets as captured in
the geodesic manifold distances. It achieves the goal of nonlinear dimensionality reduction
by using easily measured local metric information to learn the underlying global geometry
of a data set. Hinton and Salakhutdinov (2006) suggested using deep autoencoder net-
works while transforming high-dimensional data into low-dimensional codes by training a
multilayer neural network with a small central layer. They presented that the deep autoen-
coder networks outperformed PCA with a proper selection of initial weights. Belkina et al.
(2019) introduced t-distributed stochastic neighbor embedding (t-SNE), and Gisbrecht et al.
(2015) presented kernel t-SNE as an extension of t-SNE to a parametric framework, which
enabled explicit out-of-sample extensions. They demonstrated that kernel t-SNE yielded
satisfactory results for large data sets. McInnes et al. (2018) proposed uniform manifold
approximation and projection (UMAP) constructed by a theoretical framework based on
Riemannian geometry and algebraic topology. Compared to t-SNE, UMAP arguably pre-
serves more of the global structure. Since UMAP does not have computational restrictions
on embedding dimension, it can be easily used for general dimensionality reduction.

Even with the theoretical and methodological advance of the dimensionality reduction
techniques, they cannot pinpoint which variables are important among the existing vari-
ables; instead, they extract inherent features that are artificial. Determining important
physical variables is a critical task in many experimental studies, including those for struc-
tural mechanics (TerMaath, 2018), environmental science, and bioinformatics (Wei et al.,
2015b). This is because the knowledge of important variables can suggest which variables
to test and optimize for subsequent experiments to reduce the number of experimental trials
and hence expedite the overall experimental procedure. In this context, variable selection
(or feature selection) that extracts a subset of existing variables can be a good alternative
to general dimensionality reduction since it is capable of maintaining the original variable
structure while reducing the dimensionality.

Feature selection methods are typically classified into three groups of filter methods,
wrapper methods, and embedded methods (Chandrashekar and Sahin, 2014; Dhyaram and
Vishnuvardhan, 2018). Filter methods evaluate each variable based on some ranking criteria,
such as Pearson correlation coefficient (Battiti, 1994) or mutual information (Torkkola,
2003). Wrapper methods, evaluating different subsets of variables by using a learning
algorithm, generally provide better performance compared to filter methods (Xue et al.,
2015). To explore potential subsets of variables, an exhaustive search requires considering
2p different feature combinations when there are p variables, which is impractical. Instead,
sequential forward selection (Whitney, 1971) and sequential backward selection (Marill and
Green, 1963) algorithms that apply greedy search have been used broadly. More recently,
sequential floating forward selection (Pudil et al., 1994) and adaptive sequential floating
forward selection (Somol et al., 1999) have been proposed to alleviate poor performance of
the greedy search. However, these sequential selection methods still suffer from a nesting
problem caused by the nature of the greedy search, so the selection outcome is generally far
from the optimum. To overcome the nesting problem, heuristic search methods, e.g., one
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based on genetic algorithm (Alexandridis et al., 2005), have been proposed. These wrapper
methods, however, require an extensive amount of computation and are prone to overfitting
(Chandrashekar and Sahin, 2014). Embedded methods aim to alleviate the computational
cost of wrapper methods by integrating feature selection and model learning into a single
process (Xue et al., 2015). In other words, some ranking criteria, including max-relevancy
min-redundancy (Peng et al., 2005) and the weights of a classifier (Mundra and Rajapakse,
2009), are used for the initial feature reduction, and then wrapper methods are applied for
the final feature selection.

These days, machine learning methods, such as random forest (RF) (Kursa, 2014; Chen
et al., 2020; Zhou and Hooker, 2021) and neural network (NN) (Olden et al., 2004) have
been used to measure variable importance and rank variables based on model’s prediction
accuracy, which can be easily extended for feature selection (Louppe et al., 2013; Degenhardt
et al., 2019). Gregorutti et al. (2017) explored the usage of RF in the presence of correlated
predictors. Their results motivated the use of the recursive feature elimination algorithm
that uses the permutation importance measure as a ranking criterion. Chen et al. (2020)
compared results from three popular data sets (bank marketing, car evaluation database,
human activity recognition using smartphones) with and without feature selection based on
multiple methods, including RF and recursive feature elimination. The experimental results
demonstrated that RF achieved the best performance in all experimental groups. Zhou and
Hooker (2021) considered split-improvement, a popular feature importance measure for tree-
based models, for an RF model to determine variable importance. As split-improvement
suffers from bias towards continuous features, they resolved this issue and demonstrated
the effectiveness of their solution approach both theoretically and empirically. On the
other hand, Olden et al. (2004) compared nine variants of artificial neural network (ANN)
for quantifying variable importance from simulated data. For this comparison, the true
importance of variables was known and used for verification. Their results showed the
connection weight approach provided the best accuracy and it was the only method that
correctly identified the rank of variable importance. Liu (2019) presented a deep Bayesian
rectified linear unit (ReLU) network for high-dimensional regression and variable selection.
The result showed their method outperformed existing classic and other NN-based variable
selection methods.

Although these variable selection methods provide an efficient tool to extract important
variables, they primarily focus on the importance of individual variables, with little con-
sideration for the importance of feature interactions. In a general experimental problem,
however, knowledge about the significance of feature interactions is a critical factor for de-
signing experiments. Instead of merely finding important individual variables, our approach
aims to identify critical subspaces, each of which presents which variable combination as a
whole (including interactions) is important. For the exploration of potentially important
subspaces, a randomized search is employed to improve model accuracy and computational
efficiency relative to a greedy search and a metaheuristic search, respectively. Furthermore,
our method leverages multiple subsets of variables (subspaces) for model construction in-
stead of relying on a single subset as the existing methods do, which can provide a more
flexible model. The details of the proposed method will be discussed in the subsequent
sections.
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3. Subspace-Based Modeling and Critical Subspaces

In this section, we develop subspace-based modeling for solving a general supervised learning
problem (in particular, a regression problem) and identifying critical variables and interac-
tions. The data set of interest contains data pairs of {xi, yi}ni=1 where xi is a p-dimensional
input vector and yi is the corresponding response. For subspace-based modeling, we form a
subspace, a space spanned by a subvector of input x, determine the significance of a subspace
for modeling response, and use such a critical subspace as a basic unit for model building.
A critical subspace implies that the variables forming the space and their interactions are
important altogether, so it naturally pinpoints important variables and interactions. In
what follows, we describe the proposed model structure, a randomized search for subspace
generation, a significance evaluation of a subspace, and the overall model learning process.

3.1 Subspace-based Model

Considering a multi-inputs, single output regression problem, we estimate a function f :
Rp → R that relates p-dimensional input x and output y as y = f(x) + ε where ε is an
additive noise. We model the unknown function f as an additive mixture of subfunctions
gj : Rk → R for j = 1, . . . , J defined in a lower dimensional space of dimension k � p:

y = f(x) + ε ≈ g1(z1) + g2(z2) + ...+ gJ(zJ) + ε, (1)

where zj is the jth subvector of x of size k. Each zj for j = 1, . . . , J takes different

components of x. For example, suppose k = 3 and x =
[
x1, x2, . . . , xp

]T
where p > 20.

Then, we may have z1 =
[
x3, x8, x12

]T
and z2 =

[
x7, x11, x20

]T
. We define a reduced-

dimensional space spanned by each subvector zj as a subspace, and gj estimates the response
y within a subspace formed by zj . As such, in Eq. (1), we model the function f as a mixture
of subspace-based models. This ensemble extends the idea of stepwise regression (Johnsson,
1992) and stacking (Yao et al., 2018) as different subsets of the features are used to build
distinct models (gj) predicting the response.

The advantage of the subspace-based modeling is obvious. By evaluating y in low-
dimensional subspaces, there is no risk of suffering from the curse of dimensionality, which
is not true when evaluating y in a single high-dimensional space. Different from general
dimensionality reduction methods, the subspace-based modeling does not require extract-
ing artificial dimensions, but the reduction of dimensionality is achieved by forming low-
dimensional physical spaces. One major shortcoming of the subspace-based modeling is its
incapability of modeling interactions of an order higher than k. However, in many real-
world problems, a high-order interaction is almost negligible in modeling response. From a
preliminary study, we found that k = 3, i.e., modeling up to 3-factor interactions, produced
decent predictions; see Appendix B for more details.

The key to the success in the subspace-based modeling lies in how to form the subspaces,
i.e., how to generate the subvectors of zj for j = 1, . . . , J . For an exhaustive search, if we
assume p = 41 and k = 3, the number of all subspace candidates is

(
41
3

)
= 10660. Evaluating

models for this many subspaces and determining whether to include each of them requires a
considerable amount of computation (still, much smaller compared to 241 for an exhaustive
search in the absence of the proposed model structure in Eq. (1)). This requires an efficient
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strategy for subspace exploration, and in the next section, we discuss how to generate
subspaces and how to determine critical subspaces.

3.2 Subspace Generation and Extraction

To explore a broad area covering potential subspace configurations, we generate subspaces
randomly. In particular, at each draw, we randomly choose k variables out of p available
and evaluate whether to include this randomly generated subspace into the model or not.
The sampling process is without replacement, but we allow duplicated selection of a single
variable at multiple draws. In other words, an input variable x1 could be a part of subspace
z1, and the variable can be chosen again at later draws for zj for j > 1. This is to ensure
that multiple interactions associated with a key variable are not lost.

We determine the significance of a randomly generated subspace by evaluating the per-
centage reduction in prediction error measured by root-mean-square error (RMSE). To
evaluate out-of-sample error and avoid possible overfitting, we apply 5-fold cross validation
(CV) for error estimation. This 5-fold CV is applied to the data set assigned for model
learning (excluding testing portion), and the data set is split into 5 small subsets of the
data. Each subset serves as a validation data set whereas the remaining four subsets are
collectively used to train a model. In this way, we generate 5 different train/validation data
sets, as shown in Fig. 1.

To test the significance, a temporary subspace-based model (gt) for a randomly generated
subspace (zt) will be added into the model, and the prediction error of this extended model
will be evaluated in terms of the out-of-sample RMSE. The temporary subspace-based
model, gt where t denotes the current iteration of the subspace generation, is learned for
each of the five different train data sets, and the prediction error of the extended model is

Validation

Training

𝑅𝑀𝑆𝐸𝑡,2

Training 

and 

validation 

data

Calculate the average prediction error (𝐶𝑉𝑡)
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Update the 

response 

and 𝐶𝑉∗

Figure 1: A flow chart describing the process of subspace generation and extraction
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calculated by using the corresponding five validation data sets. This will produce RMSEt,q
for q = 1, . . . , 5 for each train/validation split at iteration t. To be specific, the RMSE is
calculated as

RMSEt,q =

√√√√ 1

nvq

∑
{xi,yi}∈Vq

(yi − f̃t(xi))2, (2)

where Vq is the validation data set for the qth train/validation split and nvq is the number

of observations in the validation data set. f̃t(xi) =
∑

j∈J ∗ gj(zj) + gt(zt) where J ∗ is the
set of indices for the selected subspaces by the previous iteration, t − 1. The CV score is
then the average of the five prediction errors, i.e., CVt =

∑5
q=1RMSEt,q/5.

We use the percentage reduction of the prediction error for the selection of a critical
subspace and also for the termination of the iterative search for new subspaces. The per-
centage error reduction is defined as ∆e = (CV ∗ − CVt)/CV ∗ where CV ∗ is the minimum
(best) CV score obtained until the previous iteration. The initial value of CV ∗ is calculated
from a model that only includes a constant term (the average of the five sample means of
yi’s in each training data set). We consider a subspace significant if ∆e > η where η is a
preset selection threshold. This means that a subspace that reduces the prediction error
at least by a certain percentage will be included in the model; otherwise, this subspace is
disregarded. The search for a new subspace continues until the percentage reduction ∆e
becomes less than a termination threshold, τ . If none of the selection criterion and the
termination criterion are met, the iterative search continues for the next possible critical
subspace. Fig. 1 illustrates the overall process of the subspace generation and extraction.

3.3 Subspace Model Learning and Hyperparameter Selection

This section describes how to estimate each subspace-based model gt. For this estimation,
we use a randomly generated subvector, zt as predictors and the current residual calculated
before the iteration t as a response to estimate, i.e., using ỹt,i = yi −

∑
j∈J ∗ gj(zj,i) for

i = 1, . . . , n for response. In other words, we consider a regression problem written as

ỹt,i = gt(zt,i) + ε̃t,i, (3)

where zt,i is a subvector of xi, and ε̃t,i is a modified noise for i = 1, . . . , n.

To learn the function gt, we use support vector machine (SVM) as a base learner. For a
regression analysis, it is also known as support vector regression (SVR). To train a model
based on SVR, we use “ε-insensitive” loss function characterized by a flexible tube of ε
radius. Under this loss function, penalty is assigned only to the points outside the tube
and is proportional to the distance from the tube, but no penalty is applied to the points
within the tube (Awad and Khanna, 2015); see Eq. (5).

For SVR, the function gt can be expressed as a linear combination of basis functions,
hm for m = 1, . . . ,M , as

gt(zt) =

M∑
m=1

βmhm(zt) + β0, (4)
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where βm for m = 1, . . . ,M is a coefficient of each basis function and β0 is a constant. To
estimate gt, we minimize

H(β, β0) =
n∑
i=1

Vε(ỹt,i − ĝt(zt,i)) +
λ

2

M∑
m=1

β2m

where Vε(r) =

{
0, if |r| < ε,

|r| − ε, otherwise,

(5)

where β =
[
β1, . . . , βM

]T
is a coefficient vector, and λ is a regularization parameter. The

minimizer of Eq. (5) provides the estimate of gt in the form of

ĝt(z) =
n∑
i=1

αiKt(z, zt,i), (6)

where αi for i = 1, . . . , n is a Lagrangian dual variable for the Lagrangian primal shown in
Eq. (5), and Kt(·, ·) is a kernel function that represents the inner product of the unknown
basis functions, hm for m = 1, . . . ,M (Hastie et al., 2009).

To fully specify the estimate of gt, some hyperparameters need to be determined. This
includes the regularization parameter, λ (related to the cost parameter in a typical SVM),
the radius of the tube, ε, for the loss function, and some kernel related parameters. For this
hyperparameter learning, we apply grid search based on generalized cross validation (GCV)
criterion. The proposed method already employs 5-fold CV for the selection of critical
subspaces and the termination of the iterative search, so another layer of out-of-sample
prediction will complicate the data structure, and the training process may suffer from the
lack of usable data points. While measuring in-sample error based on training data only,
GCV provides a convenient approximation to the leave-one-out CV (Hastie et al., 2009), so
it is a proper criterion for the hyperparameter learning of the proposed method. In general,
GCV is calculated as

GCV (f̂) =
1

n

n∑
i=1

[ yi − f̂(xi)

1− trace(S)/n)

]2
, (7)

where S is an n × n hat matrix that performs a linear projection of y =
[
y1, . . . , yn

]T
to

achieve the estimate of y, i.e., ŷ = Sy. For the proposed subspace-based model in Eq. (1),
deriving this expression of linear projection is not straightforward. Theorem 1 shows a good
approximation of S that can be derived under the assumption of a squared loss function.

Theorem 1. Assuming a squared loss function, i.e., Vε(r) = r2, the estimate of the response
y can be expressed as ŷ = Sy = (

∑J
j=1 Sj)y where Sj = S′j(I −

∑j−1
l=0 Sl), S′j = (Kj +

λI)−1Kj, S0 = 0, I is an n × n identity matrix, and Kj is an n × n kernel matrix with
{Kj}i,i′ = Kj(zj,i, zj,i′) for i, i′ = 1, . . . , n.

Proof See Appendix A.

As implied in Theorem 1, we do not allow distinct hyperparameters for each gj estimation
as the GCV calculation is based on the full model. Instead, we assume the hyperparameters
to be the same across all gj for j = 1, . . . , J . We apply a grid search for the hyperparameter
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learning, which is to keep hyperparameters at certain levels, add critical subspaces based on
this hyperparameter setting, and evaluate the GCV value for the resulting full model (after
the termination of subspace search). The set of hyperparameters and the corresponding
subspace-based model that minimize the GCV criterion in Eq. (7) will be chosen as an
optimal model.

Because the GCV calculation based on the result of Theorem 1 is complicated due
to the recursive format, we also consider a simpler version of the trace calculation. For
approximation, we replace Sj by S′j . The following describes two alternatives we propose
for the GCV calculation:

A1. trace(S) =
∑J

j=1 trace(Sj) based on Theorem 1.

A2. trace(S) =
∑J

j=1 trace(S′j) for simplification.

The performance of the two alternatives will be compared and discussed in Section 5.

3.4 Overall Algorithm

For clear illustration of the entire learning process, Alg. 1 shows the step-by-step procedures
of the proposed subspace-based modeling. To build a model, we use a data set that is
dedicated to model learning; if testing is needed (as in Section 5), we split the original data
set into two distinct data sets, one for model learning and another for testing. From the
model learning data set, we apply 5-fold CV to split training data and validation data where
validation data are required to determine the significance of subspaces and the convergence
of the algorithm. After the data split, we produce a model that includes a single constant
term by using training data only and calculate the prediction error from the validation
sets to initialize CV ∗. Each hyperparameter setting will be evaluated once a full model is
established, i.e., once all critical subspaces are determined and added into the model. For
each fixed level set of hyperparameters, we generate a subspace randomly and build an SVR
model to estimate gt. The quality of a subspace is evaluated via a 5-fold CV error of CVt
and its percentage reduction ∆e. If a subspace passes the selection criterion, it will be added
into the model. This process of generating and evaluating a random subspace will continue
until the termination criterion is met. Once the algorithm terminates, the GCV value will
be computed according to Eq. (7). After completing all iterations for the grid search, we
find the optimal hyperparameter values and apply this optimal setting to the entire model
learning data set (training and validation) to build a final model. This final model will be
evaluated by a separate test set for comparison with other methods in Section 5. Please
note, this entire procedure can be easily adapted to a classification problem by choosing
proper loss functions and error measures that are suitable for classification.

4. Comparative Experiments

Prior to applying our method to the hybrid structure data set, in this section, we use three
other data sets to evaluate the performance of the proposed method in terms of prediction
and feature selection capability. For the first two data sets, the true importance of features
and interactions is known, so they are used to assess the feature selection capability. The
other data set involves a large-scale feature space where feature selection is essential for
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Algorithm 1: Learning process of the randomized subspace modeling

Input: D: data set available for model training and validation; k: predetermined
dimension of subspaces; η: selection threshold; τ : termination threshold

Output: Trained model with optimal hyperparameters
1 Apply 5-fold CV to split given data D into training (Tq) and validation data (Vq)

for q = 1, . . . , 5;
2 Build a constant model, i.e,. ŷ = ȳ, by using data in Tq and use this model to

predict responses in the corresponding Vq for q = 1, . . . , 5;
3 Initialize CV ∗ as the prediction error of the constant model (the average of 5

RMSEs obtained from Vq for q = 1, . . . , 5);
4 Create a grid for assessing different sets of hyperparameters;
5 for each level combination of hyperparameters do
6 t← 0; J ∗ ← ∅; Z ← ∅ ;
7 repeat
8 t← t+ 1;
9 Randomly draw a k-dimensional subspace, i.e., randomly sample k integers

from {1, . . . , p} and store the resulting k-tuple of indices in s;
10 By using the randomly drawn subspace, fit a model in Eq. (3) for each Tq

and accordingly, predict ỹt,i for each Vq for q = 1, . . . , 5;

11 Compute f̃t(xi) and calculate RMSEt,q and CVt;
12 if ∆e > η then
13 CV ∗ ← CVt;
14 J ∗ ← J ∗ ∪ {t};
15 Z ← Z ∪ {s};
16 end

17 until ∆e < τ ;
18 Use the entire model learning data (D) to build a full model as in Eq. (1) by

using the selected set of subspaces, zj for j ∈ J ∗ where zj ’s are constructed
based on the k-tuples in Z;

19 Calculate GCV (either A1 or A2) for the current hyperparameter setting by
using the full model;

20 end
21 Determine the optimal hyperparameters that minimize GCV;
22 Return the full model with the minimum GCV (this includes the information of J ∗

and Z);

predicting response; we investigate prediction accuracy and robustness through this data
set. To demonstrate the effectiveness of the proposed method, we compare its performance
with other possible alternatives. The methods subject to comparison include various wrap-
per methods and machine learning-based methods. Metaheuristic-based methods are not
considered here due to their high computational requirement.

11
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4.1 Data Description

The existing studies of feature selection typically concern classification problems and often
use the MONK’s problem (Dua and Graff, 2019) to assess algorithm performance (Thrun
et al., 1991). Three data sets are available for this problem, and for each, different feature
combinations are used to generate a response variable. Among the three, we use MONK 1
and MONK 3 data sets but not MONK 2. For MONK 2 data set, all features and 2-
factor interactions are designed to be relevant to the response, so the benefit of feature
selection achieving dimensionality reduction cannot be clearly shown with this data set.
Both MONK 1 and MONK 3 have 6 features and a single response, and they have 556
and 554 data points, respectively. One thing to note is these data sets were designed for
a classification problem and the response is a binary variable taking 0 or 1 for two class
labels; for the complete data generation process, please refer to Thrun et al. (1991).

Another data set we consider in this section is gene data from Golub et al. (1999). This
data set contains 7130 predictors with 72 data records, so it has vast feature space. Instead
of exploring over all predictors, we choose 30 predictors based on a relevancy measure to
keep the dimensionality manageable but still large enough. Specifically, we calculate the
correlation coefficient between each predictor and the response and select 10 predictors from
each of three groups of strong, medium, and low relevancy in terms of the linear relationship.
This problem is also for classification where the response is a categorical variable with three
class labels of 0, 1, and 2.

As we concern a regression problem, we apply variable transformation of the response
variable so that the data sets can be more suitable for a regression analysis. In particular,
we create a new response variable y from the original categorical response y′ as y = 10y′+v
where v is a normal random error with mean of 0 and standard deviation of 5. The same
treatment is applied to all three data sets we consider, including MONK1, MONK3, and
gene data. The scale of 10 and the standard deviation of 5 are chosen as this setting allows
non-separable data from the classification perspective and thereby prevents the regression
task being too trivial.

4.2 Implementation Detail

By design, the randomized subspace modeling includes a 5-fold CV for the selection of
critical subspaces. When comparing prediction performance with other methods, another
layer of a 5-fold CV is implemented to have separate test data sets. The similar treatment
is applied to other methods being compared. One layer of a 5-fold CV is used to split test
data sets, and another layer of a 5-fold CV is used to learn hyperparameters, if applicable.
The prediction error is measured by RMSE, and the average and standard deviation of
5 RMSE’s are compared. For MONK data sets, they are used to justify the selection of
significant features and interactions, there is no need for separate test data, so all data
points are used for model learning and feature selection. The other methods subject to
comparison include linear regression (LR), lasso regression (Lasso), ridge regression (Ridge),
principal component regression (PCR), partial least squares regression (PLS), RF, k-nearest
neighbors (k-NN), SVR, and NN to cover various linear and nonlinear modeling commonly
used for feature selection. Before applying any method, we normalize the data to prevent
any scale-relevant errors.
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To implement the randomized subspace modeling, we set the selection and termination
thresholds to η = 1% and τ = 0.001%, respectively, based on the results from preliminary
studies; see Appendix B. The dimension of subspaces, k, is set to either 2 or 3 depending
on the problem we consider. For the base learner of the subspace-based modeling (SVR),
a kernel needs to be chosen among multiple possible options, including linear, polynomial
(POLY), radial basis function (RBF), and sigmoid kernels. From preliminary experiments,
we found kernels capturing linearity, such as linear and POLY kernels, provided better
performance. In this regard, we choose POLY kernel, K(u,v) = (γuTv + δ)d where γ, δ,
and d, respectively, denote the scale, offset, and degree of polynomials, and set γ = 1/k,
δ = 0, and d = 1 (found optimal). Since γ had little impact on the final prediction error, we
use the default value of an R function for SVR fitting. Considering that we use normalized
data set, it is natural to have δ = 0 provide the optimal performance. Although d = 1 yields
the optimal result, the POLY kernel is chosen over the linear kernel as it is more flexible
and capable of modeling nonlinearity with different parameterization. On the other hand,
SVR learning itself involves some parameters, ε and C := 1/λ. We test three levels for each
parameter, i.e., ε = 0.01, 0.1, 0.5 and C = 1, 2, 5, and this generates nine distinct parameter
settings among which an optimal setting is determined. When applying a grid search for this
hyperparameter learning, if there exists a poor level combination, the designed termination
criterion may not work properly. To prevent iterating more than what is required for the
exhaustive search, we force the search process to stop after a certain number of iterations.
Assuming three-dimensional subspaces, for the MONK’s data sets involving 6 features, we
use 20 (

(
6
3

)
= 20) for the maximum number of iterations. Similarly, for the gene data, we

use 4060 (
(
30
3

)
= 4060) to limit the number of iterations.

Excluding NN and the proposed method, all methods are executed in R by using train()

function in the caret package. Chen et al. (2020) show varImp() function (with RF) is an
efficient tool for calculating variable importance, so we use the same function to measure
variable importance for other methods. NN is implemented in Python by using keras

package. To make the result comparable to the existing variable selection methods based on
NN (Olden et al., 2004; Liu, 2019), we test over multiple NN structures, one or two hidden
layer(s), and three activation functions of linear, sigmoid, and ReLU. We also evaluate
various hyperparameter options including the numbers of neurons, batch size, and epochs.
With all this variation, we pick an NN model with the lowest prediction error for the result
comparison. For NN, variable importance is calculated by the Connection Weight Approach,
referring to the experimental results in Olden et al. (2004). Since all these methods rely on
variable importance scores for feature selection, we list the first twenty variables with high
importance score for each 5-fold learning and find the common variables selected shown in
the 5 lists to report critical individual variables.

4.3 Experimental Results

From the MONK’s problem, we investigate if feature selection methods can accurately
identify important features (and interactions) and also compare the running time of feature
selection alternatives. Among 6 variables available in the MONK data sets, i.e., ai for
i = 1, . . . , 6, (a1, a2) and a5 are the significant features in MONK 1 where the parentheses
signify interactive features. In MONK 3, (a2, a5) and (a4, a5) are designed to be significant.
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Since there are three significant variables in MONK 1, we set the dimension of subspaces to
3, i.e., k = 3. MONK 3, on the other hand, includes two interactive features of dimension
of 2, so we set k = 2 for this data set.

The result of the feature selection and computing time is shown in Table 1. For MONK 1,
the critical subspace captured by our method is (a1, a2, a5). The ideal selection is to choose
(a1, a2) and a5 separately. The proposed method imposes a fixed dimension on subspaces,
and this limits its flexibility in selecting features. Still, the selected three-dimensional sub-
space involves all target features, including the interaction between a1 and a2. Among all
alternatives, only the proposed method and RF identify the correct variables for significant
features. Other methods miss one or two important variables. Please note, the other meth-
ods including the RF-based feature selection are not capable of specifying any significant
interaction. The presented results merely show their selection of individual variables. For
MONK 3, our method correctly selects the two sets of interactive features, i.e., (a2, a5) and
(a4, a5). In addition, the proposed method is the only method identifying all significant
variables while the others miss one important variable, a4.

As can be expected, linear models do not require a large amount of computation; running
each of them can be completed in 3 seconds for this particular analysis. Among nonlinear
models, k-NN and SVM with a polynomial kernel achieve comparable computational time
marking slightly greater than 3 seconds. The other nonlinear models require more compu-
tations in general. Our method’s running time is greater than RF’s but still comparable
in scale; also much less than NN’s computational time. Although the proposed method
requires more computations, it is worthwhile considering the feature selection results.

The comparison of prediction capability from the gene data is shown in Table 2. For
this particular data set, in general, nonlinear models perform slightly better than linear

MONK 1 MONK 3
Method Sig. features Time (s) Sig. features Time (s)

LR a5, a6 2.81 a2, a5 2.07
Lasso a5 2.36 a2, a5 2.37
Ridge a5, a6 2.31 a2, a5 2.39
PCR a5 2.96 a2, a5 2.18
PLS a5 2.28 a2, a5 2.3

RF a1, a2, a5 38.38 a2, a5 37.57
k-NN a5 3.30 a2, a5 2.33

SVM (RBF) a5 12.63 a2, a5 12.55
SVM (POLY) a5 4.07 a2, a5 4.06

NN a2, a5 720.00 a2, a5 840.00
Subspace-SVM (a1, a2, a5) 51.50 (a2, a5), (a4, a5) 60.72

Ground Truth (a1, a2), a5 (a2, a5), (a4, a5)

Table 1: Comparison of the feature selection results and running time for the MONK’s
Problem
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Method Average Std. dev.

LR 11.91 1.22
Lasso 9.92 1.54
Ridge 9.59 1.44
PCR 9.55 1.62
PLS 10.28 1.72

RF 9.43 1.75
k-NN 9.41 1.54

SVM (RBF) 9.5 1.38
SVM (POLY) 9.55 1.40

NN 10.87 1.69

Subspace-SVM 9.41 1.21

Table 2: Comparison of the average and standard deviation of RMSE’s from 5-fold CV
evaluation (gene data)

counterparts in terms of the average of 5 test errors calculated from the 5-fold CV. Although
NN has relatively poor accuracy, this can be attributed to the lack of data records; note,
there are only 72 observations in this data set. The standard deviations (calculated from
5 test errors) are similar between linear and nonlinear models. Among all the alternatives,
k-NN obtains the lowest average prediction error with relatively high standard deviation
while LR achieves the smallest standard deviation with the highest prediction error. On
the other hand, the proposed method attains not only the lowest prediction error but also
the lowest standard deviation. This shows that the proposed method not only has strength
in feature selection but also attains decent predictions.

5. Damage Tolerance Analysis of Hybrid Materials

Design and analysis of layered hybrid structure is challenged by the many possible choices of
materials and configurations. This vast parameter space is impractical to explore through
physical testing and is computationally prohibitive due to the analysis time required due
to the large number and ranges of input parameters. The proposed method is applied to
overcome this limitation and provides an efficient and accurate approach to computationally
characterize the parameter space and informs limited physical testing to define parameters.
The reduced order model can then be used to rapidly explore the parameter space to
customize and optimize layered designs. The specific problem of metal and composite
layered structures was chosen due to its complexity and fit for the demonstration objectives.

The major purpose of this section is to determine important variables for modeling the
damage tolerance of layered hybrid structure. In the absence of prior knowledge about
variable importance, we compare the selection outcome of the proposed method with those
of other alternatives. To ensure the quality of models used for feature selection, we compare
the prediction accuracy of the models in addition to variable selection results. For more
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effective comparison, 5-fold CV is used for this analysis. Since the other methods focus on
the importance of “individual” variables, we extract a common set of important variables
obtained from the 5-fold CV implementation for comparison purpose.

5.1 Finite Element Analysis

Numerical simulation using a validated finite element model (finite element analysis) is an
efficient method to design and predict the damage tolerance of a layered hybrid structure
for varying material properties. However, given the nearly unlimited choices of material
combinations and stacking sequences, it is not possible to explore every possible design and
optimize for all possible material and configuration parameters. Therefore, identification of
the most influential parameters is necessary to limit the design and optimization param-
eter space to obtain a computationally tractable solution. The case study layered hybrid
configuration is an aluminum plate with a co-cured bonded quasi-isotropic E-glass/epoxy
composite overlay. The composite overlay consists of 8 layers of multiple lamina types
(see Table 3) resulting in a high dimensional number of material parameters needed for
characterization and input into the finite element model.

This layered multi-material model was loaded under four point bending to engage pro-
gressive damage in the structure through multiple damage mechanisms. Damage tolerance
was evaluated by the total energy absorbed by the structure (an output parameter that
is calculated during analysis and readily extracted using an automated approach). This
model captures multiple, interacting damage mechanisms including the plastic deformation
in aluminum, shear plasticity in each lamina, the intralaminar fracture of each lamina,
delamination within the patch and disbond at the interface. Evaluation using this total
damage energy provides a distinct and measurable result for the development of a reduced
order predictive model and evaluation of influential parameters and their interactions.

A 3D high fidelity finite element model explicitly captures each layer in the hybrid
structure as well as the interfaces (Heng and TerMaath, 2018). Each fabric layer (lamina)
is explicitly modeled, and cohesive elements are included between each layer to capture
delamination between plies. Each lamina is individually modeled with continuum shell
elements (SC8R). A cohesive damage model is implemented for each lamina using a VUMAT
user subroutine. Cohesive elements with a triangular traction-separation law are used to

E-glass fabric Fabrication style

1 Hexcel 7781 0◦/90◦ Stain weave
2 Vectorply E-BX 1200 ± 45◦ Stitch
3 Vectorply E-LT 1800 0◦/90◦ Stitch
4 Vectorply E-BX 1200 ± 45◦ Stitch
5 Vectorply E-BX 1200 ± 45◦ Stitch
6 Vectorply E-LT 1800 0◦/90◦ Stitch
7 Vectorply E-BX 1200 ± 45◦ Stitch
8 Hexcel 7500 0◦/90◦ Plain weave

Table 3: Composite patch stacking sequence
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detect the interlaminar damage and are also included at the metal/composite interface to
capture disbond between the metal and resin. The aluminum substrate is modeled with
solid elements (C3D8R). Loading and support pins are modeled as rigid bodies to create the
boundary and loading conditions. The numerical simulations are executed in the FE code
ABAQUS. This physics-based model was validated under four point bend loading through
physical testing (Fig. 2) .

To predict the total energy absorption of the layered hybrid structure, the 41 parameters
characterizing the material properties needed for input into the finite element model for the
multiple layers are used as the predictors (see Table 4 for detail). Latin hypercube sampling
is applied to sample the parameter space based on the mean and standard deviation of the
parameter ranges. For this case study, completing a single analysis generating a single data
record takes an average of 3 hours depending on the parameter combination. Due to the
computational time required to analyze the finite element model, we conducted 200 analyses
producing a predictor matrix of size 200×41 and a response vector of size 200. With more
analyses, it is possible to generate a larger data set, and this can further improve the
prediction quality. However, from a practical perspective, we aim to develop a method that
works well even with a small data set, so we compare alternatives based on this small data
set.

5.2 Feature Selection Outcomes

In this section, we compare the proposed method with the same alternatives used in Sec-
tion 4 and apply the implementation settings discussed in Section 4.2. For this particular
data set, the proposed method creates and evaluates 3-dimensional subspaces, k = 3, and
limits the maximum number of iterations to 10000 (

(
41
3

)
= 10660). Among 9 different hy-

perparameter level settings, this hard threshold for termination becomes active only for
a single level combination, so the termination criterion described in Section 3.2 generally
works well (on average, having 3154 iterations). The optimal hyperparameter values of the
proposed method vary a little with each model learning set (five of such). Table 5 shows

Figure 2: Comparison of experimental (top) and numerical results (bottom) at failure under
four point bending
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Variable Corresponding parameter

x1 (σy) Yield Stress of Al-5456
x2 (n) Strain Hardening Exponent of Al-5456
x3 (σss) Nominal Stress First/Second Direction of Resin between Laminate plies
x4 (EAl) Young’s Modulus of Al-5456
x5 (P ) Power Term in Shear Hardening Equation for Laminates
x6 (σnn) Nominal Stress Normal-only Mode of Resin between Laminate plies
x7 (X7781) Tensile strength of the Laminae Reinforced with Hexcel 7781
x8 (G1200) Intralaminar Fracture Toughness of Laminae Reinforced with EBX 1200

x9 (εplmax) Maximum Shear Plastic Strain for Laminates
x10 (GII) Shear Mode Fracture Energy First/Second Direction of Resin between Laminate plies
x11 (α12) Shear Damage Parameter for Laminates
x12 (E1800) Young’s Modulus of Laminae Reinforced with ELT 1800
x13 (GI) Normal Mode Fracture Energy of Resin between Laminate plies
x14 (X7500) Tensile strength of the Laminae Reinforced with Hexcel 7500
x15 (σnni) Nominal Stress Normal-only Mode of Resin between metal/composite interface
x16 (vAl) Poisson’s Ratio of Al-5456
x17 (E7500) Young’s Modulus of Laminae Reinforced with Hexcel 7500
x18 (σssi) Nominal Stress First/Second Direction of Resin between metal/composite interface
x19 (X1800) Tensile strength of the Laminae Reinforced with ELT 1800
x20 (B −Ki) Mixed Mode Behavior for Benzeggagh-Kenane of Resin

between metal/composite interface
x21 (E1200) Young’s Modulus of Laminae Reinforced with EBX 1200
x22 (G1800) Intralaminar Fracture Toughness of Laminae Reinforced with ELT 1800
x23 (σ̃y) Effective Shear Yield Stress for Laminates
x24 (X12) Shear Strength of Resin for all Lamina
x25 (B) Strength Coefficient of Al-5456
x26 (v7500) Poisson Ratio of Laminae Reinforced with Hexcel 7500
x27 (X1200) Tensile strength of the Laminae Reinforced with EBX 1200
x28 (v1200) Poisson Ratio of Laminae Reinforced with EBX 1200
x29 (v1800) Poisson Ratio of Laminae Reinforced with ELT 1800
x30 (G7500) Intralaminar Fracture Toughness of Laminae Reinforced with Hexcel 7500
x31 (E7781) Young’s Modulus of Laminae Reinforced with Hexcel 7781
x32 (v7781) Poisson Ratio of Laminae Reinforced with Hexcel 7781
x33 (G7781) Intralaminar Fracture Toughness of Laminae Reinforced with Hexcel 7781
x34 (G12) Shear Modulus of Laminate for Laminates
x35 (dmax12 ) Maximum Shear Damage for Laminates
x36 (C) Coefficient in Shear Hardening Equation for Laminates
x37 (Enn) Elastic Modulus of Resin between Laminate plies
x38 (B −K) Mixed Mode Behavior for Benzeggagh-Kenane of Resin between Laminate plies
x39 (Enni) Elastic Modulus of Resin between metal/composite interface
x40 (GIi) Normal Mode Fracture Energy of Resin between metal/composite interface
x41 (GIIi) Shear Mode Fracture Energy First/Second Direction of

Resin between metal/composite interface

Table 4: Variables for modeling damage tolerance of a hybrid metal structure (the Resin in
this table is “Resin (M1002 with M2046 Hardener)”) (Heng and TerMaath, 2018)
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Learn/test 1 Learn/test 2 Learn/test 3 Learn/test 4 Learn/test 5

A1
ε 0.01 0.01 0.01 0.01 0.01
C 5 5 5 5 2

A2
ε 0.1 0.01 0.01 0.01 0.01
C 5 5 5 5 2

Table 5: Optimal parameters selected for each of the five model learning/test data split

the optimal values selected based on the two GCV criterion suggested in Section 3.3. From
the table, it is shown, in general, ε = 0.01 and C = 5 are found optimal.

The optimal models based on the result in Table 5 are compared with other alterna-
tives as shown in Table 6. It is noticed that, in general, linear models perform better than
nonlinear models for the material damage tolerance prediction. This applies to both the
average and standard deviation of the prediction errors. Among the linear methods, PLS
regression produces the lowest average prediction error while the regularized methods (lasso
and ridge) show comparably decent performance. Although LR attains the smallest stan-
dard deviation, its average prediction error is relatively higher than the other methods. For
nonlinear methods, only SVM with a polynomial kernel and NN provide an average RMSE
comparable to that of the linear counterpart. The two methods also show a similar level
of the robustness of the estimator (through standard deviation). The proposed subspace-
based method achieves the best performance among all the methods. The model based on
A1 GCV criterion is comparable to the best linear methods, and the model based on A2
outperforms all other methods with respect to the average and standard deviation of the

Method Average Std. dev.

LR 12.61 1.05
Lasso 12.02 1.45
Ridge 11.98 1.20
PCR 12.21 1.64
PLS 11.89 1.15

RF 14.70 3.00
k-NN 15.27 3.51

SVM (RBF) 17.49 3.77
SVM (POLY) 12.01 1.20

NN 12.45 1.13

Subspace-SVM (A1) 11.99 1.12
Subspace-SVM (A2) 11.64 0.94

Table 6: Comparison of the average and standard deviation of RMSE’s from 5-fold evalua-
tion
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RMSE’s. This indicates that the proposed methods provide a model that is not only more
accurate but also more robust and stable.

Although A1 applies the outcome of Theorem 1 exactly, it is based on the assumption of
a squared loss function. As such, A1 is also an approximation of the exact GCV criterion.
Since ε-insensitive loss function used in Eq. (5) penalizes errors out of the ε-tube propor-
tionally to the distance from the tube, the calculation based on a squared loss function
that more harshly penalizes larger errors may not guarantee the optimal performance. In
A2, simplifying the hat matrix, i.e., dropping the recursive term of (I−

∑j−1
l=0 Sl), removes

dependency on other Sj ’s. This can reduce the variance of the estimator producing better
results. In addition, from the computational perspective, A2 does not require storing and
adding all the previous Sj ’s but just requires calculating the trace of S′j for each subspace
model estimation, so it is computationally more efficient than A1.

By construction, the randomized subspace model extracts critical subspaces. However,
none of the other methods has this capability. To assess the variable selection capability
of the randomized subspace method, we instead compare which individual variables are
selected as an important predictor. As illustrated in Fig. 3, we first generate a set of all
individual variables included in the selected subspaces for each 5-fold evaluation (used at
the testing level), Xq for q = 1, . . . , 5. Then, we extract common variables included in all
five sets of important individual variables for comparison. Similarly, for all other methods,
we find a set of important individual variables from each 5-fold evaluation and select the
common variables from the sets, for the consistency of the comparison procedure.

The result of important individual variable selection is shown in Table 7. In the table,
certain variables are identified as important variables by all methods while some are selected
by only a few methods. For illustration purpose, we exclude all other variables that are
not selected by any of the methods. According to the variable selection result, PCR and
NN missed a variable (x8 and x3, respectively) that is chosen by all others. On the other
hand, our method captures all variables that are found important by all the other methods,

The entire data

𝕏𝕏 = {𝑥𝑥|𝑥𝑥𝑥𝑥𝒳𝒳1, 𝑥𝑥𝑥𝑥𝒳𝒳2, 𝑥𝑥𝑥𝑥𝒳𝒳3, 𝑥𝑥𝑥𝑥𝒳𝒳4, 𝑥𝑥𝑥𝑥𝒳𝒳5}

Important  variables

Select the 
common variables

Test

Training and 
validation

A set of individual variables 
forming critical subspaces
𝒳𝒳1 = {𝑙𝑙| 𝑙𝑙 𝑖𝑖𝑖𝑖 𝑠𝑠, 𝑠𝑠 ∈ 𝒵𝒵1}

A set of individual variables 
forming critical subspaces
𝒳𝒳2 = {𝑙𝑙| 𝑙𝑙 𝑖𝑖𝑖𝑖 𝑠𝑠, 𝑠𝑠 ∈ 𝒵𝒵2}

A set of individual variables 
forming critical subspaces
𝒳𝒳3 = {𝑙𝑙| 𝑙𝑙 𝑖𝑖𝑖𝑖 𝑠𝑠, 𝑠𝑠 ∈ 𝒵𝒵3}

A set of individual variables 
forming critical subspaces
𝒳𝒳4 = {𝑙𝑙| 𝑙𝑙 𝑖𝑖𝑖𝑖 𝑠𝑠, 𝑠𝑠 ∈ 𝒵𝒵4}

A set of individual variables 
forming critical subspaces
𝒳𝒳5 = {𝑙𝑙| 𝑙𝑙 𝑖𝑖𝑖𝑖 𝑠𝑠, 𝑠𝑠 ∈ 𝒵𝒵5}

Figure 3: A procedure of selecting important individual variables
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Method x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18

Linear X X X X X X X X X X
Lasso X X X X X X X X X X X
Ridge X X X X X X X X X X X
PCR X X X X X X X X X X
PLS X X X X X X X X X X
RF X X X X X X X X X X
k-NN X X X X X X X X X X X

SVM (RBF) X X X X X X X X X X X
SVM(POLY) X X X X X X X X X X X

NN X X X X X X X X
Our method X X X X X X X X X X

Table 7: Important variables selected by all alternatives; the alternatives with poor predic-
tion errors are dimmed with gray color.

such as x1, x2, x4 and x7 as well as x8 and x3. Variables identified by the majority of
the other methods (e.g., x5 and x12) are marked as important in our method. Certain
variables rarely identified by the others (e.g., x9 and x11) are not included in the set of
important variables from our method. In a few cases, our method selects a variable not
chosen by the majority (such as x6 and x10) and does not select a variable voted by the
majority (x13 and x14). Note here that, however, according to Table 6, the prediction
quality of RF, k-NN, and SVM with an RBF kernel is not quite acceptable. By excluding the
variable selection results from these methods, our method is, in fact, capable of determining
important and unimportant variables, of which result well aligns with the results of the
remaining methods. In summary, this comparison result demonstrates that our method
effectively extracts important variables.

With regard to the physical interpretation of these results, the total damage energy
can be described as the sum of the energies contributed by 5 specific damage mechanisms
(Arndt et al., 2022). Arndt et al. (2022) performed a comprehensive characterization and
evaluation of the total damage energy behavior as well as the individual damage mecha-
nisms. They determined that x1, x2, x3, and x4 were the most influential parameters by
a considerable margin. For the loading case investigated, plastic deformation of the metal
layer was significantly the largest contributor to the total energy with the corresponding
significant parameters of x1, x2, and x4 for this damage mechanism. Meanwhile, x3 was
a highly influential parameter for both the shear plasticity in the laminate and interlami-
nar fracture, which were the next two highest contributors to the total energy. Almost all
methods accurately identified these parameters as significant. The next two most influential
parameters from a physical perspective are x5 and x10 which some of the methods, including
ours, captured and others missed. x13 and x14 were not physically determined to contribute
to any of the individual damage mechanics, however, were determined as significant by
some of the other methods investigated. Our method correctly did not identify these two
parameters as influential.

Discussion of the other parameters determined as significant but of less influence be-
comes more complex and dependent on the sampling method. As determined by Arndt
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et al. (2022), not only does the total energy vary throughout the parameter space, but also
the contributions of the damage mechanisms. Therefore, the significance of some param-
eters varies depending on the location in the parameter space according to which damage
mechanisms govern at that location. For example, x11 is not one of the most significant
parameters, but is identified as influential in both interlaminar fracture and interlaminar
delamination and x9 is not one of the most significant parameters, but is identified as in-
fluential in both shear plasticity in the laminate and interface disbond. These parameters
could be significant to the total energy in local subspaces while not as influential globally.
Alternatively, x6 is not a significant parameter on its own from a physical perspective, but
may contribute through parameter interaction, an effect requiring future investigation.

Besides the popular machine learning methods, we also compare our variable selection
result with that of the elementary effects method (Heng and TerMaath, 2018) in Table 8.
The result of the elementary effects method was derived from a data set generated by one-
factor-at-a-time approach, and the method did not extract common variables from 5-fold CV
and did not record the top 20 important variables (instead, reported the top 10 important
variables). Albeit this is not a valid comparison as there are other aforementioned factors
affecting the variable selection, we aim to compare our finding to the existing variable
selection for this specific problem. In Table 8, there are four common variables selected
by our method and the elementary effects method. The elementary effects method does
not mark some variables found important by the majority of the machine learning-based
methods, including x2, x3, x7, and x8, and it identifies some variables that are never selected
by others, such as x24, x31, x33, and x41. Without knowing the true importance of the
variables, we cannot draw a solid conclusion, but our methods result well aligns with the
result of other alternatives whereas the existing selection from the elementary effects method
is a bit far from the majority vote. Our method adds x2, x3, x5, x6, x7, and x8 as important
variables and drops x11, x17, x24, x31, x33, and x41 to and from the existing variable selection.

5.3 Critical Subspace Analysis

One of the major novelty of the randomized subspace modeling is the capability of extracting
critical subspaces, equivalently, identifying important physical variables and interactions
among the variables. In Section 5.2, the comparison result demonstrates the quality of
the important variable selection of the proposed method. Note here that the result of the
important (individual) variable selection was derived from critical subspaces identified in
multiple model learning/testing data splits. This ensures the quality of the critical subspace
selection to some extent.

To determine critical subspaces for the given data set, we used the entire data for model
learning without leaving any separate data for testing. The final model is constructed by 11
distinct critical subspaces, as shown in Table 9. We observe that these subspaces contain

Method x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x17 x24 x31 x33 x41

Elementary effects method X X X X X X X X X X
Our method X X X X X X X X X X

Table 8: Important variables selected by elementary effects method and our method
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Critical subspace Important individual variables

1 x33, x4, x13 x4
2 x12, x19, x14 x12
3 x12, x1, x16 x1, x12
4 x8, x3, x15 x3, x8
5 x27, x7, x1 x1, x7
6 x28, x19, x18 /
7 x19, x29, x2 x2
8 x5, x14, x10 x5, x10
9 x34, x3, x11 x3
10 x23, x4, x15 x4
11 x9, x2, x3 x2, x3

Table 9: Critical subspace selected by our method

most of the important individual variables found in Table 7, except x6, while each subspace
excluding the sixth subspace includes at least one or two important individual variable(s).
Assuming that an interaction formed by individually important variables is more significant
than an interaction between others, we can argue that the interactions formed by (x1, x12),
(x3, x8), (x1, x7), (x5, x10), and (x2, x3) are significantly important.

There are some variables that are not identified as important individual variables but
included in the critical subspaces. These variables by themselves may not have significant
impact on the damage tolerance, but their interactions with others could influence the
response. In the current form of the proposed method, we cannot validate if any interaction
of variables in a subspace is significant. We will investigate this aspect as one of future
study. For a reference, if only one variable is added to the model at a time (k = 1),
the prediction error is 12.28 with the standard error of 0.84. By ignoring the interactions
formed by multiple variables, the prediction becomes worse. This supports, at least to
the minimum extent, that some of the interactions we modeled through subspaces improve
the prediction, and hence they are considered significant. Meanwhile, this determination
of critical interactions improves our understanding of the complex engineering problem
by identifying behaviors that may be outliers to our current level of understanding and
characterization.

6. Conclusion

In this paper, we propose the randomized subspace modeling to alleviate challenges in
high-dimensional data analysis and provide valuable insight about an underlying system by
identifying important physical variables and interactions. The proposed method leverages
an ensemble of multiple models derived from critical subspaces, reduced-dimensional phys-
ical spaces. The critical subspaces are generated by a randomized search and evaluated
by a cross-validated selection criterion. With this structure, the proposed method shows
its superiority over other alternatives in modeling a regression problem and identifying im-
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portant variables. Specifically, from the analysis of hybrid material’s damage tolerance, we
derive the following conclusions:

1. Compared to other methods commonly used for variable selection (e.g., RF, NN,
and Lasso), our method attains the lowest prediction error for this complex problem
both in mean and standard deviation, demonstrating its competitiveness in high-
dimensional prediction tasks.

2. The important variable selection result of the proposed method well aligns with the
majority of other alternatives, verifying its variable selection capability. More impor-
tantly, our method identifies critical subspaces capturing not only important physical
variables but also significant interactions, which is beneficial to experimental designs
for broad engineering problems.

In the future, we plan to improve the randomized search process. This includes a
weighted randomized search leveraging variable importance priors obtained from domain
knowledge and a multi-step search process that first learns the rankings of variable im-
portance and searches subspaces based on the rankings. Improving the randomized search
can avoid adding insignificant variables in the selected subspaces. However, the inherent
randomness can still let an insignificant variable involved in a subspace. This is mainly due
to the imposition of fixed dimensionality of random subspaces. As such, we will also study
how to identify and drop insignificant variables from the chosen subspaces allowing flexible
dimensionality of the subspaces.
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Appendix A. Proof of Theorem 1

Proof From Eq. (1), we define Sjy for j = 1, . . . , J to represent gj(zj,i) as a linear
combination of yi’s so that we have

ŷ = S1y + S2y + · · ·+ SJy. (8)

Since each gj estimates residuals from a model including up to the previous subspace-based
model (gj−1), we have ỹj,i = gj(zj,i) + ε̃j,i (as in Eq. (3)). For an SVR with a squared loss

function, the estimation can be expressed as ̂̃yj = S′jỹj = (Kj + λI)−1Kjỹj (see Hastie

et al. 2009) where ̂̃yj is the estimate of ỹj , a vector including ỹj,i for ∀i, and {Kj}i,i′ =
Kj(zj,i, zj,i′) for i, i′ = 1, . . . , n for a given kernel Kj . Since ỹj = y−S1y−S2y−· · ·−Sj−1y,

Sjy := ̂̃yj = S′jỹj = S′j(y−S1y−S2y−· · ·−Sj−1y) = S′j(I−
j−1∑
l=1

Sl)y = S′j(I−
j−1∑
l=0

Sl)y. (9)

Now, for j = 1, the response to estimate is ỹ1 = y, so we have

S1y := ̂̃y1 = S′1ỹj = S′1y = S′1(I− S0)y. (10)

where S0 is an n× n zero matrix. Therefore, the result holds for ∀j = 1, . . . , J .

Appendix B. Sensitivity Analysis

In this section, we show the sensitivity of the proposed method to some key parameters used
for model construction. As the method relies on random generations of subspaces, we test
the prediction capability with respect to multiple random seeds. In addition, we investigate
the impact of selection and termination thresholds, i.e., η and τ , that are used for subspace
selection and algorithm termination, respectively. Finally, we compare the goodness-of-fit
of the proposed model for different dimensionality of subspaces, k.

To test the randomness, another 10 random seeds with an increment of 25000 are used
to generate the randomized subspaces. The increment of 25000 is employed to avoid any
duplicated sequences of subspace generation and fully investigate the effect of randomness;
note, an exhaustive search requires evaluating

(
41
3

)
= 10660 subspaces for this data set.

The result is shown in the Table 10. The mean of average prediction errors is 11.95 (by
including the initial result) and the mean of standard deviations is 0.99 (by including the
initial result). Although the average prediction errors increase a little on average, their
mean is still better than other alternatives except PLS regression; please refer to Table 6.
This indicates that the proposed method provides decent prediction in general regardless
of the random seed. All individual prediction errors are comparable to those of the linear
models. In fact, there are 2 cases (Tests 4 and 7) producing lower prediction errors than
the one reported in Table 6 and another case (Test 3) that is comparable. The standard
deviations of RMSEs are also comparable to the result shown in Table 6. There are three
cases (Test 3, 7, and 8) achieving lower standard deviation.
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Test 1 2 3 4 5 6 7 8 9 10

Avg. 12.39 12.01 11.7 11.41 11.78 12.25 11.41 12.27 12.41 12.25
Std. dev. 0.98 0.99 0.83 1.04 0.94 1.45 0.78 0.85 1.11 1.08

Table 10: The average and standard deviation of RMSE’s from 5-fold evaluation using
different random seeds

The result of various choices of selection and termination thresholds is given in Table 11.
The proposed method is sensitive to the selection threshold η to some degree, and in the
worst case, the prediction accuracy is worse compared to some nonlinear methods. As
such, a careful selection of η is needed for a decent model. This also implies that the
selection threshold plays an important role in controlling the uncertainty caused by the
random generation of subspaces; without careful selection, the uncertainty can dominate the
benefit of the random search. Although the impact could be less significant, the termination
threshold τ plays a similar role. We recommend to start with some values between 1×10−4

and 1× 10−6 and adjust the value depending the characteristics of a given data set.

We also vary the subspace dimension, k, and assess the prediction of models formed
based on different dimensionality of subspaces. Table 12 shows the result. As the subspace
dimension increases, the average prediction error decreases up to k = 3 and then increases.
This clearly shows that the current selection of k = 3 provides the best prediction for this
data set. The change in the dimensionality seems to have less impact compared to other
parameters tested. However, please notice from Table 12, when k = 1, the method is

Selection Termination
η Average Std. dev. τ Average Std. dev.

0.001 12.03 1.28 0.000001 11.79 0.87
0.005 12.34 1.16 0.000005 12.34 1.65
0.01 11.64 0.94 0.000010 11.64 0.94
0.05 12.24 0.82 0.000050 12.48 1.38
0.1 12.96 1.26 0.000100 12.03 1.14

Table 11: Sensitivity of the selection and termination thresholds

Subspace dimension (k) Average Std. dev.

1 12.28 0.84
2 12.23 1.5
3 11.64 0.94
4 11.94 1.37
5 12.06 1.24

Table 12: Sensitivity of the subspace dimensions
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only capable of choosing individually important variables without any interaction between
features, and this leads to the worst performance among all dimensionality tested.
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