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Abstract

We investigate statistical properties of a likelihood approach to nonparametric estimation
of a singular distribution using deep generative models. More specifically, a deep generative
model is used to model high-dimensional data that are assumed to concentrate around some
low-dimensional structure. Estimating the distribution supported on this low-dimensional
structure, such as a low-dimensional manifold, is challenging due to its singularity with
respect to the Lebesgue measure in the ambient space. In the considered model, a usual
likelihood approach can fail to estimate the target distribution consistently due to the
singularity. We prove that a novel and effective solution exists by perturbing the data
with an instance noise, which leads to consistent estimation of the underlying distribution
with desirable convergence rates. We also characterize the class of distributions that can
be efficiently estimated via deep generative models. This class is sufficiently general to
contain various structured distributions such as product distributions, classically smooth
distributions and distributions supported on a low-dimensional manifold. Our analysis
provides some insights on how deep generative models can avoid the curse of dimensionality
for nonparametric distribution estimation. We conduct a thorough simulation study and
real data analysis to empirically demonstrate that the proposed data perturbation technique
improves the estimation performance significantly.
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1. Introduction

Suppose that we have observations X1, . . . ,Xn which are i.i.d. copies of a D-dimensional
random vector X following the distribution P∗. Without any structural assumption, the
problem of estimating P∗ or related quantities (e.g. density, support, etc.) with large dimen-
sion D is prohibitively difficult, which is widely known as the curse of dimensionality. To
avoid the curse of dimensionality, it is natural to assume that the data locate around some
lower-dimensional structure which can be captured by the model X = Y + ε, where Y is
a random vector possessing a specific low-dimensional structure and ε is a full-dimensional
noise vector with small variance. As an example of low-dimensional structures, one may
assume that there exists a low-dimensional manifold on which the probability mass of Y is
concentrated. For this model, our primary interests are in estimating Q∗, the distribution
of Y, or related quantities. There is a large literature on estimating the support of Q∗,
i.e., manifold estimation, see, e.g., Ozakin and Gray (2009); Puchkin and Spokoiny (2022);
Genovese et al. (2012b,a) and references therein. The problem of estimating Q∗ on the other
hand is much less studied and in general a more challenging problem due to the singularity
of Q∗ with respect to the Lebesgue measure in the ambient space. Berenfeld and Hoffmann
(2019) and Ozakin and Gray (2009) considered kernel density estimators for estimating the
(Hausdorff) density of Q∗ when the data are assumed to be supported on the image of a
submanifold embedded in a higher dimensional space, thus no noise is considered.

In this paper, we consider a special form of X = Y+ε, so-called a probabilistic generative
model, which models the observation as X = f(Z) + ε, where Z and ε are independent
random vectors which are not directly observable. The latent variable Z is a d-dimensional
random vector drawn from some known distribution PZ , such as the standard normal or
uniform distributions supported on Z, an open subset of Rd, and f : Z → RD is an unknown
function which is often called the generator or generating function. The noise vector ε is
assumed to follow the normal distribution N (0D, σ

2ID), where 0D and ID denote the D-
dimensional zero vector and identity matrix, respectively. We consider the case of d < D,
in which the distribution of f(Z) is singular with respect to the Lebesgue measure on RD.

The model X = f(Z) + ε has been investigated in statistical literature with the name
of a nonlinear factor model (Yalcin and Amemiya, 2001). In this paper, we model f using
deep neural networks (DNNs), which are known to enjoy universal approximations results
(Cybenko, 1989; Hornik et al., 1989, 1990). Accordingly, we adopt the terminology of a
deep generative model. In a deep generative model, instead of directly estimating P∗ or Q∗,
one may first construct an estimator f̂ and the resulting distribution of f̂(Z) will serve as
an estimator of Q∗. Although this approach does not provide an explicit estimator of Q∗,
it is easy to draw samples from the estimated distribution.

In recent years, deep generative models have achieved tremendous success for modeling
high-dimensional data such as images and videos. Two popular approaches are used in prac-
tice to construct an estimator f̂ . The first one is likelihood-based. Variational approaches
(Kingma and Welling, 2014; Rezende et al., 2014) and EM-based algorithms (Burda et al.,
2016; Kim et al., 2020) are two most representative learning methods in this class. The
second approach uses the integral probability metrics (IPM; Müller, 1997), often called the
adversarial losses in deep learning communities, and constructs an estimator by minimiz-
ing these metrics. This approach is widely known as the generative adversarial networks
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(GAN), originally developed by Goodfellow et al. (2014) and then generalized in Mroueh
et al. (2017); Li et al. (2017) and Arjovsky et al. (2017), to name a few.

In this work, we focus on the likelihood-based approach and study statistical proper-
ties of a sieve maximum likelihood estimator (MLE) of deep generative models under the
assumption that P∗ is the distribution of X = f∗(Z) + ε∗ for some function f∗ : Z → RD
and ε∗ ∼ N (0, σ2∗ID), where σ∗ ≥ 0. The primary goal is to estimate Q∗, the distribution
of f∗(Z) induced from the distribution of Z via the true generator f∗. We obtain several
important results for this model.

Firstly, we derive a convergence rate of Q̂ = Qf̂ to Q∗ = Qf∗ in terms of the Wasserstein

metric (Villani, 2003), where f̂ is a sieve MLE of f∗ and Qf denotes the distribution of
f(Z), cf. Corollary 4 and Theorem 7. The convergence rate depends on the noise level σ∗,
intrinsic dimension and smoothness of f∗; see Section 3 for the definition. More interestingly,
Corollary 4 and Theorem 7 do not guarantee the consistency of a sieve MLE for very small
σ∗. To resolve this issue and improve the convergence rate, we propose a novel method to
perturb the data. That is, we obtain a sieve MLE of f∗ based on the perturbed observation
X̃i = Xi + ε̃i, where ε̃i is an artificial noise vector following the distribution N (0D, σ̃

2ID).
The perturbation level σ̃ will be chosen carefully to provide a desirable convergence rate.
Note that X̃i always possesses a Lebesgue density p̃∗ even when σ∗ = 0. Under general
conditions, we derive the convergence rate of a sieve MLE for estimating p̃∗ with respect
to the Hellinger metric, cf. Theorem 3 and Corollary 6. Then, we derive a Wasserstein
convergence rate of a sieve MLE of Q∗ based on perturbed observations, cf. Theorem 9.
Specifically, we attain the convergence rate ε̃n + σ̃∗ up to a logarithmic factor, where ε̃n
is the Hellinger convergence rate of the sieve MLE of p̃∗, and σ̃∗ = σ∗ + σ̃. Note that ε̃n
decreases as σ̃ increases because p̃∗ becomes smoother while σ̃∗ increases. Hence, the degree
of perturbation σ̃ can be determined by minimizing ε̃n + σ̃∗.

Recently, successful cases of data perturbation for learning deep generative models have
been reported in Song and Ermon (2019); Meng et al. (2021). However, theoretical un-
derstanding of the data perturbation is still lacking. Our results in this paper can provide
a theoretical justification for the success of various data perturbation procedures for deep
generative models. Note that most existing theories on deep generative models consider
GAN, for which additional noise does not help.

Main results concerning the convergence rates are stated non-asymptotically in the sense
that for any fixed n ≥ 1, we provide sufficient conditions under which certain probabilistic
inequalities hold. Besides the convergence rate of a sieve MLE, we characterize a class of
distributions that can be represented by f∗(Z) for some f∗. The class is large enough to
include various distributions such as product distributions, classically smooth distributions
and distributions supported on a low-dimensional manifold. As an illustrating example, a
class of product distributions has the intrinsic dimension 1, and corresponds to the general-
ized additive model in the regression setting. This kind of structure has not been studied in
an unsupervised learning framework. The regularity theory of the optimal transport plays
an important role for this characterization.

There are a lot of recent articles studying the statistical properties of the GAN estimator;
see Section 1.1 for review. It is a critical limitation of most theoretical studies that they
assumed the existence of the smooth Lebesgue density p∗ of the underlying distribution
P∗. They view the GAN in a nonparametric density estimation framework; the convergence
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rate directly depends on D and the smoothness level of p∗. Consequently, these results only
guarantee that GAN performs as good as classical nonparametric density estimators, and
cannot explain why and how it outperforms other methods. Some recent articles reviewed
in Section 1.1 go beyond the density estimation framework, but their theories are not
exhaustive and possess certain limitations. In this sense, our results about the convergence
rates of a sieve MLE with perturbed data are new and important contributions for deep
generative models. In contrast, the idea of using perturbed data with the GAN estimator
has been shown to be ineffective through numerical studies in Section 5, as demonstrated
by Figures 10 and 11.

Our convergence rate depends on not only the intrinsic dimension of the manifold f∗(Z),
which is much smaller than D, but also the degree of smoothness of f∗. Moreover, if f∗ has
a low-dimensional composite structure considered as in Horowitz and Mammen (2007), Ju-
ditsky et al. (2009), the convergence rate becomes faster. For supervised learning, many
studies have shown that DNN can avoid curse of dimensionality when the true regres-
sion function has a low-dimensional composite structure (Schmidt-Hieber, 2020; Bauer and
Kohler, 2019; Kohler and Langer, 2021) or the support of input variables or covariates
concentrate on a low-dimensional manifold (Chen et al., 2019a,b; Schmidt-Hieber, 2019;
Nakada and Imaizumi, 2020). Our results are among the first that have demonstrated that
these fine properties of DNN for supervised learning are also valid for unsupervised learning,
which is an important advantage of using deep generative models compared to the ones that
estimate Q∗ or P∗ directly.

The remainder of this paper is organized as follows. In Section 1.1, we review recently
developed theoretical results for GAN. Section 2 introduces a deep generative model. Our
main results concerning the convergence rate of a sieve MLE and data perturbation are
given in Section 3. Section 4 considers a class of true distributions that can be represented
as a true generator. Experimental results and concluding remarks follow in Sections 5 and
6, respectively.

1.1 Related Work

Most works for statistical properties for deep generative models focus on GAN type esti-
mators, which are briefly reviewed in this subsection. In a GAN framework, Arora et al.
(2017) firstly considered a neural network distance, a special case of IPMs, to measure the
discrepancy of an estimator from the true distribution. They noticed that a neural network
distance might be so weak that GAN may not consistently estimate the true distribution.
Further studies have been conducted by Zhang et al. (2018) and Bai et al. (2019), who pro-
vide sufficient conditions for a neural network distance to induce the same topology as the
Wasserstein metric and KL divergence. In particular, Zhang et al. (2018) obtained conver-
gence rates of GAN estimators with respect to the bounded Lipschitz metric, which however
seem to be much slower than the optimal rate. A similar, but slightly different approach in
studying a neural network distance is given in Liu et al. (2017). This work employs topolog-
ical properties of neural network distances, hence important structural assumptions such as
the smoothness of densities were not considered. Biau et al. (2020) studied asymptotic prop-
erties of the original GAN developed by Goodfellow et al. (2014). Rather than considering a
neural network distance, they investigated how the approximation of the discriminator can
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affect the estimation performance with respect to the Jensen–Shannon divergence. How-
ever, their analysis is based on the parametric assumption, that is, the number of network
parameters is fixed as the sample size tends to infinity.

There is a different line of works that study asymptotic properties of GAN from a
nonparametric density estimation point of view. For densities in a Sobolev space, Singh
et al. (2018); Liang (2021) derived minimax convergence rates with respect to the Sobolev
IPMs which include metrics used in Sobolev (Mroueh et al., 2017), MMD (maximum mean
discrepancy; Li et al., 2017) and Wasserstein (Arjovsky et al., 2017) GANs. These results
are generalized in Uppal et al. (2019) using Besov IPMs. We would also like to mention Chen
et al. (2020), who derived convergence rates with respect to the Hölder IPMs. Although their
convergence rate is strictly slower than the minimax rate in Uppal et al. (2019), their results
are directly applicable to GANs whose generator and discriminator network architectures
are explicitly given. However, all these works are limited to the classical paradigm where the
true distribution possesses a smooth Lebesgue density p∗ and the convergence rate depends
on the data dimension D, suffering from the curse of dimensionality.

There are some recent articles considering the convergence rate of GAN beyond the
density estimation framework. To the best of our knowledge, the set-up given in Luise et al.
(2020) is the closest to ours. In particular, they assumed that there exists a true generator
as in our paper and there is no noise, that is, P∗ = Q∗ = Qf∗ for some smooth function f∗.
Under this set-up they obtained a convergence rate of GAN for estimating Q∗ with respect
to the Sinkhorn divergence (Feydy et al., 2019). Note that although the Sinkhorn divergence
metrizes the weak convergence, it is not a standard metric for evaluating the performance
of distribution estimation and not comparable with the Wasserstein distance considered
in our paper. In particular, their convergence rate directly depends on the regularization
parameter defining the Sinkhorn divergence (ε in their notation), which makes it unclear
how tight their convergence rate is. Furthermore, their theory does not incorporate deep
neural network structures, hence cannot explain the benefit of deep generative models which
adapt to various structures such as the composite one. Also, the theory holds only when
the smoothness of the true generator exceeds a certain threshold proportional to d. For
these reasons, the theory in Luise et al. (2020) has certain limitations.

Schreuder et al. (2021) obtained convergence rates of GAN-based estimators under the
assumption that the data-generating distribution is the convolution of Q∗ = Qf∗ and a
general noise distribution, where f∗ : Rd → RD is a smooth function; hence the data are
concentrated around a small neighborhood of a manifold whose dimension is at most d.
Rather than assuming the existence of a true generator, Huang et al. (2021) assumed that
the support of P∗ is a certain low-dimensional set in RD and studied the convergence rate
of GAN. In both papers, the convergence rates depend on the intrinsic dimension of the
true distribution rather than on the dimension D of the observations. The proofs in these
papers rely on the adaptive property of the empirical measure to specific low-dimensional
structures, studied in Weed and Bach (2019) and Schreuder (2021). It should be noted that
the intrinsic dimension considered in our paper can be smaller compared to the dimensions
considered in Schreuder et al. (2021) and Huang et al. (2021).

The analysis of the vanilla GAN in Biau et al. (2020) has been extended to the Wasser-
stein GAN in Biau et al. (2021). In particular, they considered DNN architectures for
both the generator and discriminator classes and proved that the corresponding WGAN
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estimator can be arbitrarily close to the true distribution in Wasserstein distance with high
probability; see Theorem 21 therein. However, their results do not provide specific conver-
gence rate and do not incorporate approximation error of the generator class for specific
distribution families.

Finally, we would also like to mention the work by Tang and Yang (2022) who considered
the minimax convergence rate for nonparametric distribution estimation under the manifold
assumption. Although the structural assumption considered in Tang and Yang (2022) is
different from ours, they derived the minimax convergence rate for estimating a distribution
supported on a submanifold of RD with smooth density with respect to the Hausdorff
measure. In particular, they used a mixture of GAN estimators to achieve the minimax
convergence rate. However, it should be emphasized that GAN-based estimators considered
in this subsection, including the one in Tang and Yang (2022), is computationally much more
intractable than sieve MLEs considered in the present paper.

1.2 Notations and Definitions

For two real numbers a and b, let a ∧ b and a ∨ b be the minimum and maximum of a
and b, respectively. [a] is the largest integer less than or equal to a. The inequality a . b
means that a is less than b up to a constant multiplication. Also, denote a � b if a . b and
b . a. For a vector x, the `p-norm, 1 ≤ p ≤ ∞, and the number of nonzero elements are
represented as |x|p and |x|0, respectively. Let Bε(x) be the Euclidean open ball of radius ε
centered at x. For a vector-valued function f , let |f |p be the map x 7→ |f(x)|p. The Lp-norm
of a function is denoted ‖ · ‖p, where the domain of a function and dominating measure
will be clear in the context. The equality c = c(A1, . . . , Ak) means that c depends only
on A1, . . . , Ak. The uppercase letters, such as P and P̂ , refer to the probability measures
corresponding to the densities denoted by the lowercase letters p and p̂, respectively, and
vice versa. A positive real-valued function f is said to be bounded from above and below if
there exist positive constants c1 and c2 such that c1 ≤ f(x) ≤ c2 for every x.

For two probability densities p and q, let dH(p, q) and K(p, q) =
∫

log(p/q)dP be the
Hellinger distance and KL divergence, respectively. The Wasserstein distance of order
r ∈ [1,∞) between P and Q is denoted Wr(P,Q) (Villani, 2003). For a function space F ,
N(δ,F , d) and N[](δ,F , d) denote the covering and bracketing numbers with respect to the

(pseudo)-metric d. For β > 0, let HβM (A) be the class of every β-Hölder function f : A→ R
with β-Hölder norm bounded by M > 0. Let Hβ(A) = ∪M>0HβM (A) be the class of every

β-Hölder function. If there is no confusion, we simply denote them as HβM and Hβ. For a
vector-valued function, f ∈ Hβ refers that each component of f belongs to Hβ. We refer to
Giné and Nickl (2016); van der Vaart and Wellner (1996) for details about these definitions.

2. Deep Generative Models

In this section, we formally define the model X = f(Z) + ε using a DNN. Let Z be an open
subset of Rd and x 7→ φσ,d(x) be the density of d-fold product measure of the univariate
normal distribution N (0, σ2). We often denote φσ,d as φσ if there is no confusion. Let Pf ,σ

be the distribution of f(Z)+ε, where Z and ε are independent random vectors distributed as
PZ and N (0D, σ

2ID), respectively. Standard uniform or Gaussian distribution is a common
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choice for PZ , and some general sub-Gaussian distributions are considered in Luise et al.
(2020). For a class F of functions from Z to RD and two positive numbers σmin < σmax,
we consider a class of probability distributions

P =
{
Pf ,σ : f ∈ F , σ ∈ [σmin, σmax]

}
. (2.1)

Recall that Qf is the distribution of f(Z), which is often called the pushforward measure of
PZ by the map f : Z → RD. If σ > 0, Pf ,σ has the Lebesgue density

pf ,σ(x) =

∫
φσ
(
x− f(z)

)
dPZ(z) =

∫
φσ(x− u)dQf (u). (2.2)

The function class F is modeled via a DNN. We adopt the definitions and notations in
Schmidt-Hieber (2020). Let ρ(x) = x ∨ 0 be the ReLU activation function. For a vector
v = (v1, . . . , vr)

T ∈ Rr, define ρv : Rr → Rr as ρv(z) = (ρ(z1 − v1), . . . , ρ(zr − vr))T for
z = (z1, . . . , zr)

T . A neural network with network architecture (L,p) is any function of the
form

f : Rp0 → RpL+1 , z 7→ f(z) = WLρvLWL−1ρvL−1 · · ·W1ρv1W0z, (2.3)

where Wi ∈ Rpi+1×pi , vi ∈ Rpi and p = (p0, . . . , pL+1) ∈ NL+2. We will consider model
(2.1) with the class F = F(L,p, s,K), where F(L,p, s,K) is the collection f of the form
(2.3) satisfying

max
j=0,...,L

|Wj |∞ ∨ |vj |∞ ≤ 1,
L∑
j=1

|Wj |0 + |vj |0 ≤ s, ‖|f |∞‖∞ ≤ K,

p0 = d and pL+1 = D. Here, |Wj |∞ and |Wj |0 denote the maximum-entry norm and the
number of nonzero elements of the matrix Wj , respectively.

The statements of main theorems and corollaries in Section 3 are non-asymptotic; they
hold for any fixed n ≥ 1. However, it would be convenient to regard quantities (σmin, L,p, s)
as sequences depending on the sample size n, while (σmax,K) remain as fixed constants. In
this sense, it would be precise to denote (σmin, L,p, s) and (F ,P) as (σmin,n, Ln,pn, sn) and
(Fn,Pn), respectively. For simplicity, we suppress the subscript when the dependency on
n is obvious contextually. Throughout this paper, the model (2.1) with F = F(L,p, s,K)
will be called a deep generative model with ReLU activation function.

From another viewpoint, the density of the form (2.2) is a mixture of normal distribu-
tions. Note that mixtures of normal densities are frequently used in nonparametric statistics
to model smooth densities. In particular, an arbitrary smooth density can be approximated
by normal mixtures as shown in Ghosal and van der Vaart (2007); Shen et al. (2013). Based
on this, it can be shown that a Bayes estimator with a Dirichlet process prior and a sieve
MLE achieve the minimax optimal convergence rate up to a logarithmic factor when the
true density belongs to a Hölder class. However, the model complexity of normal mixtures
required to approximate an arbitrary smooth density, often expressed through the metric
entropy, grows rapidly as the dimension D increases which results in slow convergence rates.
This large complexity is mainly because the mixing distribution can be of any form. Hence,
such a large class of normal mixtures might not be useful for analyzing high-dimensional
data. Note that model (2.1) is parametrized by the generator f rather than a mixing dis-
tribution. Consequently, the complexity of the model (2.1) can be expressed through the
metric entropy of the generator class F , which is detailed in Lemma 1.
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3. Convergence Rate of a Sieve MLE

Our main theoretical results are given in this section. We first present assumptions on the
data-generating distribution P∗. Then, we derive the convergence rate of a sieve MLE for
p∗ with respect to the Hellinger distance in the deep generative model. We next obtain
the convergence rate of the corresponding sieve MLE of Q∗ under the Wasserstein distance.
Our strategy of deriving the convergence rate is as follows. We first derive a convergence
rate of a sieve MLE p̂ of p∗, the Lebesgue density of P∗, and then recover the corresponding
convergence rate of Q̂ to Q∗. However, this strategy only works when σ∗ is not too small.
If σ∗ is very small, technical difficulty arises because the density p∗ peaks around a small
neighborhood of f∗(Z), the likelihood therefore becomes picky and unstable, and a sieve
MLE is expected to behave badly. For this case, we propose a novel data perturbation
technique to derive the convergence rates for Q∗ under this small σ∗ regimes.

As mentioned earlier, our main theorems are non-asymptotic in the sense that they hold
for any fixed n ≥ 1. More specifically, Theorem 9 is stated with the form of

P∗
(
W1(Q̂,Q∗) > εn

)
≤ δn, n ≥ 1 (3.1)

for some sequences δn and εn with εn � δn. The interpretation of this statement is clear:
for any fixed n ≥ 1, once εn and δn are small enough, the Wasserstein distance between Q̂
and Q∗ will be small with high probability. Furthermore, since Q̂ and Q∗ are supported
on a bounded set, the probabilistic statement (3.1) implies that EW1(Q̂,Q∗) . εn ∨ δn for
every n ≥ 1. Similar interpretations also hold for assumptions of the Theorems on the noise
σ∗, that is, for every sample size, there is a sufficient condition on the noise σ∗ for which the
probabilistic bound (3.1) holds. Given the non-asymptotic nature of our results, the true
data-generating distribution can be interpreted in similar fashions. For any given sample
size n ≥ 1, the true data-generating distribution is given by a true P∗ induced from the true
generator f∗ and some true noise level σ∗ ∈ [σmin, σmax] with some appropriate assumptions
on σmin and σmax. The assumptions on σmin and σmax may vary with the sample size n.

Note that such non-asymptotic statements and interpretation can be frequently found in
modern statistical theory. For example, in a high-dimensional linear regression set-up, the
assumption on the dimension and/or the magnitude of the regression coefficients β∗ may
change with the sample size (Bühlmann and van de Geer, 2011; Wainwright, 2019). When
the sample size is large, for example, the absolute value of the first component of β∗ may
be assumed to be large. For any fixed n ≥ 1, however, there is one true data-generating
distribution with the true parameter satisfying the appropriate assumption. In this set-up,
many statistical theories take the form P∗(‖β̂ − β∗‖ > εn) ≤ δn, which is quite similar to
(3.1).

3.1 Assumption on the True Distribution

Since we consider a deep generative model (2.1), it is natural to assume that P∗ = Pf∗,σ∗

for some true generator f∗ and σ∗ ≥ 0, or more precisely, P∗ is the convolution of Q∗ =
Qf∗ and N (0D, σ

2
∗ID). In particular, we assume that f∗ is a structured function that can

be efficiently approximated by DNN functions (Yarotsky, 2017; Telgarsky, 2016; Petersen
and Voigtlaender, 2018; Ohn and Kim, 2019; Imaizumi and Fukumizu, 2019; Nakada and
Imaizumi, 2020). For example, f∗ can belong to a certain class F of smooth composite
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functions. In Section 4, we will show that the corresponding distribution class {Qf : f ∈ F}
is large enough to include the classical class of nonparametric smooth densities and densities
supported on a lower-dimensional smooth manifolds as special cases.

Note that the generator f∗ is not identifiable in general. For example, even for a linear
factor model where f∗(Z) = AZ for aD×dmatrix A, f̃(Z) = −AZ has the same distribution
as f∗(Z). However, the mixing distribution Q∗ is identifiable under mild assumptions, e.g.
Bruni and Koch (1985).

3.2 A Sieve MLE

Since the parameter space specifying the model (2.1) depends on the sample size n, the
model can be regarded as a sieve approximating the true distribution. Then, an estima-
tor can be obtained via a maximum likelihood principle. The corresponding estimator
is often called a sieve MLE (Geman and Hwang, 1982). To be specific, let `n(f , σ) =∑n

i=1 log pf ,σ(Xi) be the log-likelihood function. For a given sequence ηn ↓ 0, a sieve MLE

is any estimator (f̂ , σ̂) ∈ F × [σmin, σmax] satisfying

`n(f̂ , σ̂) ≥ sup
f∈F ,σ∈[σmin,σmax]

`n(f , σ)− ηn (3.2)

and let p̂ = pf̂ ,σ̂. We do not abbreviate the subscript n for the rate sequence such as ηn and
εn. The sequence ηn allows that strict maximization, which is infeasible in most applications
of deep learning, is not necessary. It would be more desirable to consider an estimator which
is obtained by a specific algorithm such as the gradient decent method. Unfortunately, it is
challenging to study statistical properties of an algorithm-specific estimator in deep learning.
To the best of our knowledge, the convergence rate of an algorithm-specific estimator have
not been studied in deep learning contexts. We also do not consider algorithmic issues in
this paper, and assume that a sieve MLE satisfying (3.2) is available. There are various
computational algorithms targeting a sieve MLE in deep generative models, e.g. Burda et al.
(2016); Kim et al. (2020).

3.3 Hellinger Convergence Rate of a Sieve MLE of p∗

Under general conditions, convergence rates of sieve MLEs with respect to the Hellinger
metric are well established in Wong and Shen (1995). The key technique to derive con-
vergence rates is to bound the Hellinger bracketing number of the density space for which
many techniques are known for various classes of regular functions, see van der Vaart and
Wellner (1996). Roughly, the convergence rate εn can be achieved if logN[](δ,P, dH) . nε2n.
Metric entropies of deep neural networks are also well-known in recent articles, see Lemma
5 of Schmidt-Hieber (2020). The following lemma provides a relation between the Hellinger
bracketing number of P and the metric entropy of F , which plays a crucial role in deriving
the convergence rate of a sieve MLE p̂. Below, we do not try to optimize constants which
are not essential for deriving convergence rates.

Lemma 1 Let F be a class of functions from Z to RD such that ‖|f |∞‖∞ ≤ K for every
f ∈ F . Let P = {Pf ,σ : f ∈ F , σ ∈ [σmin, σmax]} with σmin ≤ 1. Then, there exist constants

9
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c = c(D,K, σmax), c′ = c′(D,K, σmax) and δ∗ = δ∗(D) such that

logN[](δ,P, dH) ≤ logN
(
cσD+3

min δ
4,F , ‖| · |∞‖∞

)
+ log

(
c′

σD+2
min δ

4

)
(3.3)

for every δ ∈ (0, δ∗].

Remark 2 Note that for a class of general normal location mixtures
∫
φσ(x − z)dP (z)

parametrized by the mixing distribution P and scale parameter σ, the bracketing entropy
scales as a polynomial order in σ−1 as σ → 0. Specifically, Corollary B1 of Shen et al. (2013)
gives an upper bound for the δ-bracketing entropy of the class {x 7→

∫
φσ(x − z)dP (z) :

P ([−K,K]D) = 1}, which is at least of order O((σ−1∨ log δ−1)D). This bound would give a
nearly parametric convergence rate of a sieve MLE provided that the model is well-specified
and σmin is bounded away from zero. However, the entropy bound of Shen et al. (2013)
grows rapidly as σmin → 0, which is problematic since we are interested in the case that
σmin converges to 0. In contrast, the right hand side of (3.3) depends on σmin only through
a logarithmic function. Hence, the entropy bound (3.3) is much smaller than that of Shen
et al. (2013) when σmin is small, provided that N(δ,F , ‖| · |∞‖∞) is of a polynomial order
in δ. If F = F(L,p, s,∞) with ‖p‖∞ = O(na) for some constant a > 0 and L = O(log n),
for example, logN(δ,F , ‖| · |∞‖∞) is bounded by a multiple of s{(log n)2 + log δ−1}, as
shown in Lemma 5 of Schmidt-Hieber (2020). Consequently, logN[](δ,P, dH) is of order

s{(log n)2 + log δ−1 + log σ−1min}.

Utilizing Lemma 1, the next theorem provides convergence rates of a sieve MLE of p∗
with respect to the Hellinger metric in terms of the entropy bound and approximation error
δapp of the sieve F .

Theorem 3 Let F ,P and δ∗ = δ∗(D) be given as in Lemma 1, and n ≥ 1. Suppose that
logN(δ,F , ‖| · |∞‖∞) ≤ s{A + 1 ∨ log δ−1} for every δ > 0. Assume also that there exists
f ∈ F such that ‖|f − f∗|∞‖∞ ≤ δapp. Furthermore, suppose that s ≥ 1, A ≥ 1, σmin ≤ 1,
δapp ≤ 1 and σ∗ ∈ [σmin, σmax]. Then, a sieve MLE p̂ defined through (3.2) satisfies that

P∗

(
dH(p̂, p∗) > ε∗n

)
≤ 5e−C1nε∗2n +

C2

n
(3.4)

provided that ηn ≤ ε∗2n /6 and ε∗n ≤
√

2δ∗, where

ε∗n = C3

(√
s{A+ log(n/σmin)}

n
∨ δapp

σ∗

)
,

C1 is an absolute constant, C2 = C2(D) and C3 = C3(D,K, σmax).

Using Theorem 3, we can derive the convergence rate of a sieve MLE of deep generative
models for various f∗. As an illustrative example, suppose that f∗ ∈ HβK

(
(0, 1)d

)
for some

positive constants β and K. Since a smooth function can be efficiently approximated by
DNN, one can obtain a convergence rate as in the following corollary. We omit the proof
because it is a special case of Corollary 6 with q = 0 and d = d0 = t0.
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Corollary 4 Suppose that f∗ ∈ HβK
(
(0, 1)d

)
, σ∗ = n−α and σmin = n−γ for some β,K > 0

and 0 ≤ α ≤ γ. Then, there exists a network architecture F = F(L,p, s,K) (depending
only on (n, d, β,K)) such that a sieve MLE p̂ satisfies

P∗

(
dH(p̂, p∗) > ε∗n

)
≤ 5e−C1nε∗2n +

C2

n

provided that ηn ≤ ε∗2n /6 and ε∗n ≤
√

2δ∗, where C1, C2 = C2(D), δ∗ = δ∗(D) are constants
in Theorem 3 and ε∗n = Cn−(β−dα)/(2β+d)(log n)3/2 with C = C(α, β, γ, d,D,K, σmax).

The statement of Corollary 4 is overly simplified to illustrate the role of the dimension,
smoothness and noise level in the convergence rate. In particular, the rate gets faster as
the noise level increases. This seemingly paradoxical phenomenon occurs because p∗ gets
smoother as σ∗ increases. On the other hand, for a very small value of σ∗, for consistent
estimation of p∗ it is necessary to have very accurate approximation of f∗. For this purpose,
it is inevitable to increase the number of nonzero network parameters, which leads to an
increase in the estimation error. In the set-up of Corollary 4, the number of nonzero network
parameters s needed for a suitable degree of approximation is of order nd(2α+1)/(2β+d) up to
a logarithmic factor. Note that the condition β > dα is equivalent to that d(2α+1)/(2β+d)
is strictly smaller than 1. That is, when β ≤ dα, too many nonzero coefficients are needed
to ensure that the approximation error is sufficiently small. Consequently, Theorem 3 does
not even guarantee the consistency. The case for a very small σ∗ will be handled in Section
3.5 with a novel data perturbation technique. Before that, we assume that σ∗ is not too
small.

When f∗ has a low-dimensional structure, the convergence rate in Corollary 4 can be
significantly improved. We consider the composition structure with low-dimensional smooth
component functions as described in Section 3 of Schmidt-Hieber (2020). Specifically, we
consider a function f of the form

f = gq ◦ gq−1 ◦ · · · ◦ g1 ◦ g0 (3.5)

with gi : (ai, bi)
di → (ai+1, bi+1)

di+1 . Here, d0 = d and dq+1 = D. Denote by gi =
(gi1, . . . , gidi+1

)T the components of gi and let ti be the maximal number of variables on
which each of the gij depends. Let G(q,d, t,β,K) be the collection of functions of the

form (3.5) satisfying gij ∈ HβiK
(
(ai, bi)

ti
)

and |ai| ∨ |bi| ≤ K, where d = (d0, . . . , dq+1)
T ,

t = (t0, . . . , tq)
T and β = (β0, . . . , βq)

T . It would be convenient to regard quantities
(q,d, t,β,K) as constants. Let

β̃j = βj

q∏
l=j+1

(βl ∧ 1), j∗ = argmax
j∈{0,...,q}

tj

β̃j
, β∗ = β̃j∗ , t∗ = tj∗ .

We call t∗ and β∗ as the intrinsic dimension and smoothness of f (or of the function class
G(q,d, t,β,K)), respectively.

Any function f in G(q,d, t,β,K) can be efficiently approximated by a DNN as detailed in
Lemma 5. The proof can be easily deduced from the proof of Theorem 1 in Schmidt-Hieber
(2020). Then, Corollary 6 provides the convergence rates of p̂ when f∗ has the composition
structure.
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Lemma 5 Suppose that f∗ ∈ G(q,d, t,β,K). Then, for every δ ∈ (0, 1), there exists a
network F = F(L,p, s,K ∨ 1) with L ≤ c1 log δ−1, |p|∞ ≤ c2δ

−t∗/β∗, s ≤ c3δ
−t∗/β∗ log δ−1

satisfying ‖|f − f∗|∞‖∞ ≤ δ for some f ∈ F , where cj = cj(q,d, t,β,K) for j ∈ {1, 2, 3}.

Corollary 6 Suppose that f∗ ∈ G(q,d, t,β,K), σ∗ ∈ [σmin, σmax], σmin ≤ 1 and

δapp
def
=

(
σ2∗
n

) β∗
2β∗+t∗

≤ 1.

Let F = F(L,p, s,K ∨ 1) with L = [c1 log δ−1app], p0 = · · · = pL+1 = [c2δ
−t∗/β∗
app ], s =

[c3δ
−t∗/β∗
app log δ−1app] + 1, where cj = cj(q,d, t,β,K), j ≤ 3, are constants in Lemma 5.

Define δ∗ = δ∗(D) and ε∗n as in Theorem 3 with A = c4(log n)2, where c4 = c4(q,d, t,β,K)
as specified in the proof. If ηn ≤ ε∗2n /6 and ε∗n ≤

√
2δ∗, a sieve MLE p̂ satisfies (3.4).

In Corollary 6, the approximation error δapp is chosen so that

ε∗n �
√
s

n
� δapp

σ∗

up to a logarithmic factor. More precisely, if σ∗ = n−α and σmin = n−γ for some γ ≥ α ≥ 0,
we have

ε∗n = Cn
−β∗−t∗α

2β∗+t∗ (log n)3/2,

where C = C(q,d, t,β,K,D, σmax, α, γ). As one can see, the dimension d in the convergence
rate of Corollary 4 is replaced by the intrinsic dimension t∗. If t∗ is much smaller than d,
the improvement from the structural assumption would be significant.

3.4 Wasserstein Convergence Rate of a Sieve MLE of Q∗

Since we are primarily interested in estimating Q∗ = Qf∗ , in this section we consider the
problem of estimating Q∗ and utilize the L1-Wasserstein metric as an evaluation metric.
Given a sieve MLE (3.2), an estimator can be easily constructed as Q̂ = Qf̂ . Note that

obtaining an upper bound of W1(Q̂,Q∗) from dH(p∗, p̂) is a kind of deconvolution problem.
A sharp bound for this problem is established in Section 2.3 of Nguyen (2013) when σ∗
and σ̂ are bounded away from zero. For example, with the L2-Wasserstein metric, a sharp
bound W 2

2 (Q∗, Q̂) . {− log dH(p∗, p̂)}−1 is achievable, see Theorem 2 of Nguyen (2013).
Hence, even when dH(p∗, p̂) decays with a polynomial rate, one can only expect a very
slow convergence rate for W2(Q∗, Q̂); see also Fan (1991) and Meister (2009) for a more
formal statistical theory for the deconvolution. Such a logarithmic minimax rate can also
be found in a slightly different but closely related problem. More specifically, Genovese
et al. (2012a) considered the problem of estimating the support of the singular distribution
Q∗ and obtained a lower bound (log n)−1 for the minimax optimal rate under the Hausdorff
distance, see Theorem 8 therein. The slow minimax rates in the deconvolution and manifold
estimation problems are closely related to the super-smoothness of the normal density. Here,
a super-smoothness density roughly means that the tail of the Fourier transform of the
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density decays faster than any inverse polynomial, see Theorem 2 of Nguyen (2013). For a
small value of σ∗, however, a much faster convergence rate is achievable because φσ∗ is no
longer smooth.

Before studying the convergence rate, it would be worth addressing the identifiability
issue. Since p∗(x) =

∫
φσ(x−u)dQ∗(u), Q∗ can be understood as a mixing distribution for

the data distribution P∗ with the normal kernel. In this case, Q∗ is identifiable under very
mild conditions, see Bruni and Koch (1985). However, the identifiability does not guarantee
an efficient estimation of Q∗. In some identifiable mixture models, the minimax convergence
rate for estimating the mixing distribution can be very slow, see Wei and Nguyen (2022).
A stronger identifiability condition is often necessary for obtaining a fast convergence rate
of the mixing distribution.

In this subsection, we impose a strong identifiability condition through the reach of a
manifold, which is introduced by Federer (1959) and frequently used in manifold estimation
contexts. For a set M ⊂ RD and r > 0, let Mr = M⊕ Br(0D) be the r-enlargement
of M, where ⊕ stands for the Minkowski sum. The reach of a closed set M, denoted as
reach(M), is defined as the supremum of r with the property that any point in Mr has a
unique Euclidean projection onto M.

In forthcoming Theorem 7, we assume that reach(M∗) is bounded below by a positive
number, where M∗ is the closure of f∗(Z). This is one of the most important assumption
in manifold estimation literature (Aamari and Levrard, 2019; Divol, 2021; Puchkin and
Spokoiny, 2022; Tang and Yang, 2022). Note that even consistent estimation of Q∗ may
not be possible if reach(M∗) = 0, as shown in Berenfeld and Hoffmann (2019).

Theorem 7 Let M∗ be the closure of f∗(Z). Suppose that ‖|f∗|∞‖∞ ≤ K for a constant
K. Also, assume that M∗ does not have an interior point in RD, and reach(M∗) = r∗
for some constant r∗ > 0. Then, dH(pf ,σ, p∗) ≤ ε ≤ 1 and ‖|f |∞‖∞ ≤ K imply that

W1(Qf , Q∗) ≤ C(ε+ σ∗
√

log ε−1), where C = C(D,K, r∗).

Theorem 7 guarantees that W1(Q̂,Q∗) . dH(p̂, p∗) + σ∗ up to a logarithmic factor.
Since we have already obtained a rate for dH(p̂, p∗), it is possible to obtain a Wasserstein

convergence rate for estimating Q∗. For example, when f∗ ∈ HβK
(
(0, 1)d

)
, Corollary 4

together with Theorem 7 implies that there exists a sieve of deep generative models with
which the convergence rate of W1(Q̂,Q∗) is Op

(
n−(β−dα)/(2β+d)(log n)3/2 ∨ σ∗

√
log n

)
.

Remark 8 Note that Theorem 7 does not require f∗(Z) to be a topological or smooth man-
ifold. For example, f∗(Z) can be a union of two manifolds with different dimensions.

3.5 Data Perturbation

When σ∗ is too small, the convergence rates of dH(p̂, p∗) obtained in Corollaries 4 and 6
do not even converge to 0 as the sample size increases: in Corollary 6, for example, when
σ∗ � n−β∗/t∗ , with β∗ < t∗α. Under these regimes, p∗ peaks around a small neighborhood
of f∗(Z) and the singularity exacerbates, thus a sieve MLE does not behave well. In an
extreme case where σ∗ = 0, P∗ itself is a singular measure and likelihood approaches cannot
be justified via minimizing the Kullback–Leibler (KL) divergence.
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To overcome these difficulties, we consider the perturbed observations X̃i = Xi + ε̃i,
where ε̃i ∼ N (0D, σ̃

2ID) is an artificial noise vector. Note that X̃1, . . . , X̃n can be under-
stood as i.i.d. observations from the true distribution P̃∗ = Pf∗,σ̃∗ , where σ̃2∗ = σ2∗ + σ̃2. Let

(f̂per, σ̂per) be a sieve MLE based on the perturbed observation X̃1, . . . , X̃n. Also, define
P̂per = Pf̂per,σ̂per

and Q̂per = Qf̂per
accordingly.

Once we use Q̂per as an estimator for Q∗, we have W1(Q̂per, Q∗) . ε̃n + σ̃∗
√

log ε̃−1n
by Theorem 7, where ε̃n = dH(p̂per, p̃∗). As σ̃ increases, note that ε̃n decreases while σ̃∗
increases. Thus, the convergence rate for W1(Q̂per, Q∗) can be optimized by choosing σ̃
accordingly, which is summarized in the following theorem.

Theorem 9 Let n ≥ 1, f∗ ∈ G(q,d, t,β,K), σ∗ ∈ [σmin, σmax], σ∗ = n−α and σmin = n−γ

for some γ ≥ α ≥ 0. Assume that Q∗(M∗) = 1 and reach(M∗) ≥ r∗, where r∗ > 0 and M∗
is the closure of f∗(Z). Then, there exists a network architecture F = F(L,p, s,K) (de-
pending only on (n, q,d, t,β,K)) such that sieve MLEs p̂per and Q̂per based on the perturbed

observation X̃i = Xi + ε̃i, with ε̃i ∼ N (0D, n
−β∗/(β∗+t∗)ID), satisfies

P∗

(
W1(Q̂per, Q∗) > C3

(
ε∗n + σ∗

√
− log ε∗n

))
≤ 5e−C1nε∗2n +

C2

n
, (3.6)

where

ε∗n =

{
C4n

−β∗−t∗α
2β∗+t∗ (log n)3/2 if α < β∗/{2(β∗ + t∗)},

C5n
− β∗

2(β∗+t∗) (log n)3/2 otherwise,

C1 is an absolute constant, C2 = C2(D), C3 = C3(D,K, r∗), C4 and C5 depend only on
(q,d, t,β,K,D, σmax, α, γ).

To the best of our knowledge, our main result (Theorem 9) is the first theory considering
the Wasserstein convergence of Q̂ in a deep generative model with the intrinsic dimension
and smoothness of f∗. Most existing theories consider GAN type estimators and have
derived convergence rates that depend on either the intrinsic dimension alone or D.

If α < β∗/{2(β∗ + t∗)}, we have σ∗ � ε∗n so σ∗
√
− log ε∗n in the left hand side of (3.6) is

the dominating term. Therefore, regardless of α < β∗/{2(β∗ + t∗)}, we conclude that

W1(Q̂per, Q∗) . n
− β∗

2(β∗+t∗) (log n)3/2 + σ∗
√

log n (3.7)

with high probability. Since W1(Q̂per, Q∗) is a bounded random variable, its expectation
can also be easily bounded by a multiple of the right hand side of (3.7).

It can be easily deduced from the proof that the data perturbation improves the con-
vergence rate only when σ∗ . n−β∗/2(β∗+t∗). Note that the level of perturbation and the
network architecture in Theorem 9 depend on the unknown quantities (β∗, t∗, σ∗). In other
words, our results are non-adaptive to the unknown structure. Hence, the network architec-
tures and σ̃ are tuning parameters that should be carefully chosen. To obtain an estimator
adaptive to the unknown structure, two approaches are known in the literature for the deep
supervised learning. The first one is a penalized likelihood approach such as the lasso and
non-convex penalties as considered in Ohn and Kim (2022). Alternatively, Bayesian ap-
proaches can be utilized to obtain an adaptive estimator, see Polson and Ročková (2018);
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Ohn and Lin (2021). Although these papers studied nonparametric regression, it would
be possible to extend their approaches to deep generative models to obtain an adaptive
estimator. In practice, there are several heuristic methods to select network architectures
(Salimans et al., 2016; Arjovsky et al., 2017; Radford et al., 2016b). The variance σ̃2 of the
additional noise is 1-dimensional, hence it can also be tuned based on the validation error
without much difficulty; see Section 5 for details.

After the original version of this article was drafted, the first author investigated the
lower bound for the minimax optimal convergence rate with the structural assumption
considered in Theorem 9, which is now available in Chae (2022). Specifically, he obtained
a lower bound n−β∗/(2β∗+t∗−2) + σ∗/

√
n of the minimax optimal rate. In particular, he

provided some rationale for that the first term n−β∗/(2β∗+t∗−2) is sharp. Furthermore, he
constructed a GAN type estimator, which achieves the rate n−β∗/(2β∗+t∗) + σ∗. Therefore,
the rate given in Theorem 9 is not optimal. Nonetheless, the difference is not significant.
Also, the estimator in Chae (2022) is devised for theoretical purposes, and it is not clear
to us how to compute it in practice. We would like to emphasize that although likelihood-
based approaches are not theoretically optimal, they are popularly used in practice because
their computation is much easier than that of GAN.

It would also be important to study lower bounds specifically for likelihood approaches
considered in this paper. More specifically, one may try to obtain a sharp lower bound for
supQ∗ EW1(Q̂σ̃, Q∗), where Q̂σ̃ is a sieve MLE based on the perturbed data X̃i = Xi + ε̃i
with ε̃i ∼ N (0D, σ̃

2ID), and Q∗ ranges over structured distributions considered in Theorem
9. Ideally, we hope

inf
σ̃≥0

sup
Q∗

EW1(Q̂σ̃, Q∗) & n−β∗/2(β∗+t∗) + σ∗,

matching with the upper bound given in Theorem 9. To achieve this goal, we would need
two arguments. Each of them is challenging and of independent interest. Firstly, we would
need a sharp lower bound for the approximation error of deep neural networks. This would
be related to Park et al. (2021), but a far more thorough study is necessary. Another one
is regarding the identifiability issue; we would need ‖f − f∗‖ . W1(Qf , Qf∗) or a similar
inequality, the reverse of W1(Qf , Qf∗) . ‖f − f∗‖. Obtaining such a reverse inequality
is known to be challenging; see Nguyen (2013); Wei and Nguyen (2022). Due to these
difficulties, we do not consider this problem in this paper and leave it as future work.

3.6 Effect of σ∗ into the Convergence Rate

It is worthwhile to discuss the effect of the noise level σ∗ into the convergence rate (3.7).
Firstly, suppose that σ∗ is a fixed positive constant. Then, the rate (3.7) does not give
useful information because the right hand side is not small enough. In fact, estimating Q∗
under an additive noise is known as a deconvolution problem, for which extensive studies
have been done in the literature (Fan, 1991; Meister, 2009; Nguyen, 2013). The minimax
optimal rate for the Gaussian deconvolution with a fixed σ∗ is very slow, e.g. (log n)−1,
implying the intrinsic difficulty of the estimation problem. Such an intrinsic difficulty has
also been observed in Genovese et al. (2012a) who considered a slightly different problem.
Specifically, they obtained the minimax optimal rate for estimating the support of Q∗ under
the Hausdorff distance, see Theorem 8 therein. They assumed that Q∗ is supported on a
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low-dimensional manifold, but the intrinsic slow rate (log n)−1 was unavoidable. Although
their manifold estimation problem is slightly different from the deconvolution, they are
closely related to each other as discussed in Section 1.1 of Genovese et al. (2012a). Given
the inherent challenges of the deconvolution problem, it does not seem possible to achieve
a fast convergence rate in estimating Q∗ under fixed variance Gaussian noise. In this sense,
the constant variance set-up would not be appropriate for studying the amazing performance
of deep generative models theoretically.

The rate (3.7) gives meaningful results when σ∗ is small enough in the sense that σ∗
converges to zero with a suitable rate as the sample size increases. In this case, data are
concentrated in a small neighborhood of a certain low-dimensional structure; hence one
may utilize the structural benefit to estimate Q∗ efficiently. Note that although the set-up
is not exactly the same as ours and different estimation problems (such as the manifold
or regression function) are considered, there are many recent theoretical articles adopting
the regime in which data are concentrated around a very small neighborhood of a manifold
(Aamari and Levrard, 2018, 2019; Divol, 2021; Jiao et al., 2021; Puchkin and Spokoiny,
2022; Berenfeld et al., 2022); see also Remark 4 of Tang and Yang (2022). In these papers,
small neighborhoods depend on the sample size and shrink to a low-dimensional manifold.

Despite the above observation, we wish to emphasize that our results or the proba-
bility bounds are again non-asymptotic in nature. That is, for every n, our results hold
simultaneously for a range of σ∗’s with σ∗ ∈ [σmin, σmax].

4. Class of True Distributions

Asymptotic properties of a sieve MLE are investigated in the previous sections under the
assumption that P∗ = Pf∗,σ∗ for some f∗ and σ∗, that is, P∗ is the convolution of Qf∗

and N (0D, σ
2
∗ID). In this section we characterize the class of probability distributions of

the form Qf . In particular, we will show that the class {Qf : f ∈ F} is quite general to
include various structured distributions when f ranges over a certain class F of structured
functions. Specifically, we will show that various distributions can be represented as Qf

for some function f . Throughout this section, we assume that Z ∼ PZ and Y is a random
vector whose distribution Q satisfies that Q(Y) = 1 for Y ⊂ RD. A primary goal is to find a
map f : Z → RD satisfying Q = Qf . Lu and Lu (2020) considered a similar topic, but they
did not consider structures of f such as the smoothness, which are important for obtaining
a fast convergence rate.

4.1 Case D = d = 1: 1-dimensional Distributions or Smooth Densities

Suppose that both Y and Z are absolutely continuous real-valued random variables with
the cumulative distribution functions FY and FZ , respectively. Then, it is well-known that
F−1Y (FZ(Z)) is distributed as Q, where F−1Y (u) = inf{y ∈ R : FY (y) > u} is the generalized
inverse of FY . That is, Q = Qf , where f = F−1Y ◦FZ . Furthermore, it is known that the map
f is the unique optimal transport from PZ to Q with respect to the quadratic cost function,
see Section 2.2 of Villani (2003). If Z follows Uniform(0, 1), for example, the smoothness of
f is determined by the smoothness of F−1Y . Informally, if the pdf q is β-smooth and strictly
positive on Z, then F−1Y is (β+1)-smooth, see Lemma 10 for a formal statement. Note that
a smooth 1-dimensional function f can be approximated by DNN efficiently. Roughly, if
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f ∈ Hβ, then for any ε > 0, there exists fnn ∈ F(L,p, s,∞) with L � log ε−1, |p|∞ � ε−1/β
and s � ε−1/β log ε−1 such that ‖|f−fnn|∞‖∞ ≤ ε, see Theorem 5 of Schmidt-Hieber (2020).

4.2 Product Distributions

Assume that D = d and Y = (Y1, . . . , YD)T , where Y1, . . . , YD are independent random
variables. That is, Q is the product probability of Q1, . . . , QD, where Qj is the distribution
of Yj . If Z1, . . . , ZD are i.i.d. random variables, there exist univariate functions fj , j =
1, . . . , D, such that Qj is the distribution of fj(Zj), as argued in Section 4.1. Therefore, the
map f defined as f(z) = (f1(z1), . . . , fD(zD))T satisfies that Q = Qf . As before, if densities
q1, . . . , qD exist and sufficiently smooth, f can be choosen as a smooth function. Specifically,
if each qj ∈ Hβ for every j, one can find fnn ∈ F(L,p, s,∞) with L � log ε−1, |p|∞ � ε−1/β
and s � ε−1/β log ε−1 such that ‖|f − fnn|∞‖∞ ≤ ε. That is, we only need to approximate
D many 1-dimensional smooth functions.

4.3 Classical Smooth Densities

Suppose that D = d and Q has the Lebesgue density q. An open set Ω ⊂ Rr is said to be
uniformly convex if there exists a twice continuously differentiable function h : Rr → R and
a constant λ > 0 such that Ω = {x ∈ Rr : h(x) < 0} and ∇2h(x)− λIr is positive definite
for every x ∈ Rd, where ∇2h(x) is the Hessian matrix. Note that a uniformly convex set is
automatically bounded. The following lemma is a special case of Theorem 12.50 in Villani
(2008), originally proven by Caffarelli (1990) and Urbas (1988). As mentioned in Villani
(2003), techniques involved in Lemma 10 are really intricate. We refer to page 139 of Villani
(2003) for more references about this topic.

Lemma 10 Suppose that (i) Z and Y are uniformly convex, (ii) pZ and q are bounded from
above and below on Z and Y, respectively, and (iii) q ∈ Hβ(Y) and pZ ∈ Hβ(Z) for β > 0.
Then, there exists a function f = (f1, . . . , fd) : Z → Y such that Q = Qf and f ∈ Hβ+1.

The map f in Lemma 10 is the unique optimal transport from PZ to Q with respect to
the quadratic cost function. For statistical purpose, a map f needs not to be an optimal
transport, therefore, conditions on PZ and Q can be relaxed. For example, note that the
uniform distribution on the unit ball B(0d) has a density which is bounded from above and
below, and B(0d) is uniformly convex. Hence, if Q satisfies the condition in Lemma 10 and
there exists a map h : Z → B(0d) such that h(Z) ∼ Uniform(B(0d)), Lemma 10 guarantees
the existence of f satisfying Q = Qf . If PZ is the uniform distribution on the unit cube
(0, 1)d, which is a popular choice in practice, such h can be chosen as a smooth function,
see Harman and Lacko (2010). Conditions on Q, such as the uniform convexity of Y, can be
relaxed in a similar way. Finally, we note that if f ∈ Hβ+1, there exists fnn ∈ F(L,p, s,∞)
with L � log ε−1, |p|∞ � ε−d/(β+1) and s � ε−d/(β+1) log ε−1 such that ‖|f − fnn|∞‖∞ ≤ ε.

4.4 Distributions on a Manifold

We consider the case where Y ⊂ RD is a topological manifold with dimension d∗ ≤ d.
We start with the case that Y can be covered by a single chart, that is, there exists a
homeomorphism ϕ : B1(0d∗) → Y. We further assume that ϕ ∈ Hβ+1 for β > 0 as a map

17



Chae, Kim, Kim and Lin

from B1(0d∗) to RD, and that infx∈B1(0d∗ ) |Jϕ(x)| is bounded below by a positive constant,
where

|Jϕ(x)| =

√
det

(
∂ϕ

∂xT
∂ϕ

∂x

)
is the Jacobian determinant of ϕ. Note that a coordinate chart in a smooth manifold is
automatically smooth by the definition of a smooth map between manifolds, cf. Lee (2013).
Therefore, the ordinary differentiability ϕ ∈ Hβ+1 is an additional condition. This kind of
condition is frequently used in literature, see Schmidt-Hieber (2019); Nakada and Imaizumi
(2020).

Furthermore, we impose some smooth conditions on the distribution Q. Note that if D
is strictly larger than d∗, the distribution Q cannot possess a Lebesgue density because Y
is a null set. We instead consider a density with respect to the Hausdorff measure. Let Hd∗
be the d∗-dimensional Hausdorff measure in RD, which is normalized so that it is the same
as the Lebesgue measure if D = d∗. Suppose that Q allows the Radon–Nikodym derivative
q with respect to Hd∗ . We further assume that q is bounded from above and below, and
that q ◦ ϕ ∈ Hβ. Then, by the change of variable formula, the Lebesgue density of Q̃, the
distribution of ϕ−1(Y), is given as

q̃(x) = q
(
ϕ(x)

)
|Jϕ(x)|.

Since |Jϕ(x)| 6= 0 and ϕ ∈ Hβ+1, it is not difficult to see that |Jϕ(x)| is bounded from above
and below, and the map x 7→ |Jϕ(x)| belongs to Hβ. Hence, q̃ is bounded from above and
below, and belongs to Hβ(B1(0d∗)). By Lemma 10, under mild assumptions on PZ , there
exists g ∈ Hβ+1(Z) such that Q̃ = Qg. Thus, we have Q = Qf , where f = ϕ◦g ∈ Hβ+1 is a
map from Z to RD. As in Section 4.3, one can choose fnn ∈ F(L,p, s,∞) with L � log ε−1,
|p|∞ � ε−d∗/(β+1) and s � ε−d∗/(β+1) log ε−1 such that ‖|f − fnn|∞‖∞ ≤ ε.

Now, we illustrate the case of multiple charts. Suppose that a distributionQ is supported
on a d∗-dimensional manifold M that can be covered by J charts (Uj ,ϕj), j = 1 . . . , J ,
where J > 1. Here, Uj ⊂ Y are open sets, with homeomorphism ϕj : B1(0d∗) → Uj . As
before, we further assume that ϕj ∈ Hβ+1, infx∈B1(0d∗ ) |Jϕj (x)| is bounded below by a
positive constant, Q possesses a Hausdorff density that is bounded from above and below,
and that q ◦ ϕj ∈ Hβ. Let Qj(·) = Q(·)/Q(Uj) be the normalized measure of Q over
Uj and denote its corresponding Hausdorff density as qj . Note that for y ∈ Ui ∩ Uj , one
has qi(y)Q(Ui) = qj(y)Q(Uj) = q(y) because Q(Ui)Qi(·) and Q(Uj)Qj(·) agree with Q on
Ui ∩ Uj .

Next we will show that Q can be patched together from Qj via a partition of unity.
Note that a partition of unity of a topological space Y is a set of continuous functions
{τj : j ∈ J } from Y to the unit interval [0, 1] such that for every point, y ∈ Y, there is a
neighborhood U of y where all but a finite number of the functions are 0, and the sum of all
the function values at y is 1, i.e.,

∑
j∈J τj(y) = 1. A compact manifold M always admits

a finite partition of unity {τj : j = 1, . . . , J}, τj(·) :M→ [0, 1] such that
∑J

j=1 τj(y) = 1.
Furthermore, one can construct {τj : j = 1, . . . , J} so that each τj is sufficiently smooth
and τj(y) = 0 for y /∈ Uj , see Lemma 3 of Schmidt-Hieber (2019).
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Since q(y) = Q(Uj)qj(y) for each j and y ∈ Uj , one has q(y) =
∑J

j=1Q(Uj)τj(y)qj(y).

Let q̃j(y) = cjτj(y)qj(y), where cj = [
∫
τj(y)dQj(y)]−1 is the normalizing constant. Then,

q(y) =
∑J

j=1 πj q̃j(y), where πj = Q(Uj)/cj . That is, q is a mixture of q̃j ’s. Since q̃j is

sufficiently smooth, one can construct f̃j : Z̃ → Y such that Q̃j is the distribution of f̃j(Z̃)

as in the single chart case, where Z̃ is a uniformly convex subset of Rd∗ and Z̃ follows
the uniform distribution on Z̃. Let Z = (0, 1) × Z̃ and PZ be the product distribution
of Uniform(0, 1) and the distribution of Z̃. Let I1, . . . , IJ be disjoint consecutive intervals
with lengths π1, . . . , πJ partitioning (0, 1), that is, I1 = (0, π1) and Ij = [

∑j−1
i=1 πi,

∑j
i=1 πi)

for j = 2, . . . , J . Let hj be the indicator function for the interval Ij . Then, for a random
variable Z following Uniform(0, 1), we have PZ(hj(Z) = 1) = 1 − PZ(hj(Z) = 0) = πj .

For z = (z1, z2) ∈ Rd∗+1, define f(z) =
∑J

j=1 hj(z1)f̃j(z2). Then, it is not difficult to

see that Q = Qf . Note that each f̃j can be efficiently approximated by ReLU network
functions as the single chart case. Also, 1-dimensional indicator functions h1, . . . , hJ can
be approximated by piecewise linear functions. Therefore, it is easy to approximate them
by shallow ReLU network functions. Finally, the multiplication of hj and f̃j can also be
well-approximated by ReLU networks.

Remark 11 Strictly speaking, the regularity of the map f̃j is not guaranteed because τj is
not bounded from below. From the construction of τj in Schmidt-Hieber (2019), however, it
can be seen that τj vanishes only at the boundary of Uj (relative to M). Hence, one may

construct a sufficiently regular f̃j such that Q̃j ≈ Q
f̃j

. A more rigorous treatment of this

topic would be very technical, and we leave it as future work.

5. Numerical Experiments

In this section, we empirically demonstrate that the data perturbation method proposed
in Section 3.4 plays an important role to improve the performance of a sieve MLE of
deep generative models. In addition, we illustrate that deep generative models can detect
low-dimensional structures well. Numerical studies are carried out by analyzing various
synthetic and real data sets and comparisons are made between our estimators and others
such as the MLE of a linear factor model, GAN and Wasserstein GAN.

5.1 Synthetic and Real Data Sets

5.1.1 Synthetic Data

For simulation study, we firstly consider distributions on 1-dimensional manifolds. Specifi-
cally, we generate data from the model X = f∗(Z)+ε∗ with D = 2 and σ∗ = 0, where Z is a
univariate random variable following Uniform(0, 1). For the true generator f∗ = (f∗1, f∗2),
we consider the following three functions:

Case 1. f∗1(z) = 6(z − 0.5), f∗2(z) = 0.5(z − 2)z(z + 2)
Case 2. f∗1(z) = 2 cos (2πz), f∗2(z) = 2 sin (2πz)

Case 3.

{
f∗1(z) = 2 cos (2πz) + 1,
f∗1(z) = 2 cos (2πz)− 1,

f∗2(z) = 2 sin (2πz) + 0.4 if z > 0.5
f∗2(z) = 2 sin (2πz)− 0.4 otherwise.

(5.1)
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Figure 1: Supports of Q∗ for the three synthetic data sets in (5.1).

The supports of Q∗ for the three cases are depicted in Figure 1. The generator of Case 2
leads the uniform distribution on a circle. Note that a circle cannot be covered by a single
chart. Also, for Case 3, the true generator is discontinuous. In this case, the support of Q∗
is the union of two disjoint 1-dimensional manifolds.

We next consider two more distributions, a distribution on the Swiss roll (Marsland,
2015) and the uniform distribution on the sphere, which are supported on 2-dimensional
manifolds with the ambient space R3. The distribution on the Swiss roll is the distribution
of f∗(Z), where Z follows the uniform distribution on (0, 1)2 and the true generator f∗ =
(f∗1, f∗2, f∗3) : (0, 1)2 → R3 is defined as

t1 = 1.5π(1 + 2z1), t2 = 21z2,

f∗1(z1, z2) = t1 cos(t1), f∗2(z1, z2) = t2, f∗3(z1, z2) = t1 sin(t1).

Similar to the circle, the sphere cannot be covered by a single chart. In all the experiments,
the sample sizes of validation and test data are set to be 3,000, while the training sample
size varies.

5.1.2 Big Five Personality Traits Data Set

The big five personality traits data set (Big-five; Goldberg (1990)) consists of answers for
50 questions, with the five-level Likert scale (1 to 5) from 1,015,342 respondents. This data
set has been frequently analyzed in literature with linear factor models, see Ohn and Kim
(2021) and references therein. We only use the data of the 874,434 respondents who answer
to all questions completely. Each variable is rescaled to take values from −1 to 1. We
randomly draw 20,000 samples from the entire data, 10,000 of which are used as validation
data and the others as test data. The remains are used as training data.

5.1.3 MNIST and Omniglot Data Sets

We analyze two well-known image data sets, MNIST and Omniglot. MNIST data set
(LeCun et al., 1998) contains handwritten digit images of 28 × 28 pixel sizes and has a
training data set consisting of 60,000 images and a test data set of 10,000 images. We
randomly sample 10,000 images from the training data set and use them as validation data.

Omniglot (Lake et al., 2015) data set consists of various character images of 28 × 28
pixel sizes taken from 50 different alphabets. It has 24,345 training samples and 8,070 test
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samples. As before, we split the training data set into two subsets, each of which has 20,000
and 4,345 samples, respectively, and use one for training data and the other for validation
data.

5.2 Learning Algorithm to Obtain the MLE

Assume that the generator f = fθ is parametrized by θ. With a slight abuse of notation, let
pθ,σ = pfθ,σ, that is,

pθ,σ(x) =

∫
φσ (x− fθ(z)) dPZ(z).

Mostly, the log-likelihood is computationally intractable. Alternatively, one can maximize
a lower bound of the log-likelihood by use of a family of variational distributions using
methods of variational inference (Jordan et al., 1999). The most well-known algorithm is
the variational autoencoder (VAE; Kingma and Welling, 2014; Rezende et al., 2014) and
the lower bound used in VAE is often called the ELBO (evidence lower bound).

Various alternative lower bounds of the log-likelihood that are tighter than the ELBO
but still computationally tractable, have been proposed afterwards, see Burda et al. (2016);
Cremer et al. (2017); Kingma et al. (2016); Rezende and Mohamed (2015); Salimans et al.
(2015); Sønderby et al. (2016). Among these, the importance weighted autoencoders (IWAE,
Burda et al., 2016) is an important variant of the VAE. Recently, it is shown that IWAE
can be understood as an EM algorithm to obtain the MLE, see Dieng and Paisley (2019);
Kim et al. (2020). Thus, we use the IWAE algorithm to obtain a sieve MLE. Specifically,
let z 7→ qφ(z | x) be a variational density parametrized by φ. A popular choice for qφ(· | x)
is the density of N (µφ(x),Σφ(x)), where x 7→ µφ(x) and x 7→ Σφ(x) are DNN functions
with network parameters φ. For given i.i.d. samples Z1, . . . ,ZK from qφ(·|x), let

L̂IWAE(θ, φ, σ; x) := log

(
1

K

K∑
k=1

pθ,σ(x,Zk)

qφ(Zk|x)

)
,

where pθ,σ(x, z) = pZ(z)φσ(x − fθ(z)) and K is a given positive integer. Then, IWAE

simultaneously estimates θ, σ and φ by maximizing
∑n

i=1 L̂
IWAE(θ, φ, σ; Xi). We set K = 10

throughout our experiments.

5.3 Implementation Details

5.3.1 Data Perturbation

The model is trained after perturbing the training data by an artificial noise ε̃ ∼ N (0D, σ̃
2ID).

For each data set, we consider various values of σ̃.

5.3.2 Architectures

For analyzing five synthetic and Big-five data sets, we consider DNN architectures with the
leaky ReLU activation function (Xu et al., 2015). For the variational distribution qφ(· | x),
we use the multivariate normal distribution N (µφ(x),Σφ(x)), where Σφ(x) is a diagonal
matrix. Both the mean µφ and variance Σφ are modelled by DNNs. For synthetic data,
we set L = 2, d = 10, p = (d, 200, 200, D) for fθ, and L = 2, p = (D, 200, 200, d) for µφ
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and Σφ. For the Big-five data set, we set L = 3, d = 5, p = (d, 200, 200, 200, D) for fθ, and
L = 3, p = (D, 200, 200, 200, d) for µφ and Σφ.

For analyzing two image data, we use a deep convolutional neural network (Radford
et al., 2016a) with L = 6 and the ReLU activation function for modeling fθ. Also, convo-
lutional neural networks with L = 6 and the leaky ReLU activation function are used to
build model architectures for µφ and Σφ. For the both data sets, we set d = 40.

5.3.3 Optimization

We train deep generative models using the Adam optimization algorithm (Kingma and Ba,
2015) with a mini-batch size of 100. The learning rate is fixed as 10−3 for synthetic and
Big-five data, and 3× 10−4 for two image data.

5.3.4 Sparse Learning Framework

For learning sparse generative models, we adopt the pruning algorithm proposed by Han
et al. (2015). Firstly, a non-sparse model is trained with a pre-specified maximum number
of training epochs, 200 in our experiments, and then the number of training epochs which
minimizes the IWAE loss on the validation data is chosen. Next, the model is pruned by
zeroing out small weights. Specifically, 25% of small weights are replaced by zero. We then
re-train the model keeping the zero weights unchanged. This procedure is repeated one
more time to make 50% of the total weights become zero in the final model.

5.4 Performance Comparisons

The performance of a given estimator Q̂ is evaluated by the Wasserstein distance W1(Q̂,Q∗)
estimated on test data as follows. Let Q̂M be the empirical measure based on the M i.i.d.
samples from Q̂. Note that it is easy to generate samples from Q̂ via the estimated generator.
Similarly, let QM∗ be the empirical measure based on the M observations in test data. Then,
W1(Q̂,Q∗) can be estimated by W1(Q̂M ,QM∗). In general, W1(Q̂M ,QM∗) can be computed
via a linear programming. We use a more stable algorithm developed by Cuturi (2013). We
call W1(Q̂M ,QM∗) the estimated W1 distance.

5.4.1 Results for Synthetic Data

For the three 1-dimensional synthetic data sets, various training sample sizes ranging from
100 to 50,000 are considered . For each case, we obtain a sieve MLE for three times with
random initialization and report the average based on the three sieve MLEs. Firstly, we
trace the estimated variance σ̂2. Figure 2 draws the values of |σ̂− σ̃∗|/σ̃∗ as the sample size
increases, where σ̃2∗ = σ2∗ + σ̃2 = σ̃2. It seems that |σ̂− σ̃∗|/σ̃∗ → 0 as n increases regardless
of the value of σ̃2∗, which suggests that sieve MLEs perform reasonably well.

The estimated W1 distances for various training sample sizes are shown in Figure 3. It
is interesting to see that the estimated W1 distance of a sieve MLE does not converge to 0
when σ̃2 is either too small or too large, which well corresponds to Theorem 7. Figure 4
provides the curves of the estimated W1 distances over the degree of perturbation (i.e. σ̃)
with the training sample size being fixed at n = 50, 000. As can be seen, the estimated W1

distance is minimized at an intermediate value of σ̃ in all three cases, which again confirms
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Figure 2: Values of |σ̂ − σ̃∗|/σ̃∗ for various σ̃∗ and n for the three 1-dimensional synthetic
data sets.

Figure 3: The estimated W1 distance over the sample size with various values of σ̃ for the
three 1-dimensional synthetic data sets.

the validity of our theoretical results. Figure 5 presents generated samples from Q̂ estimated
with n = 50, 000 and the optimal choice of σ̃ that minimizes the estimated W1 distance.

Similar phenomena can be found for the Swiss roll and sphere models. That is, the
estimated W1 distance is minimized at an intermediate value of σ̃. Generated samples from
Q̂ with n = 50, 000 and the optimal choice of σ̃ are plotted over the support of Q∗ in Figure
6.

Figure 4: The estimated W1 distance over σ̃ with the training sample size being fixed at
n = 50, 000 for the three 1-dimensional synthetic data sets .
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Figure 5: Generated samples from Q̂ for the three 1-dimensional synthetic data sets.

Figure 6: Generated samples from Q̂ for the two 2-dimensional synthetic data sets.
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Figure 7: The estimated W1 distance over σ̃ for Big-five (left), MNIST (middle) and Om-
niglot (right) data.

Figure 8: The estimated W1 distance over the sample size for MNIST (lefg) and Omniglot
(right) data. An optimal σ̃ is chosen for sieve MLEs based on the validation errir,
and no data perturbation is applied for GAN and WGAN.

5.4.2 Results for Big-five Data Set

The Big-five data set is trained with various values of σ̃, and the estimated W1 distances
over various values of σ̃ are depicted in the left panel of Figure 7. Again, it is clear that
the estimated W1 distance is minimized at an intermediate value of σ̃. In addition, we
provide the results of the MLE of a sparse linear factor model for comparison, which has
been considered in literature for analysing the Big-five data set, see Ohn and Kim (2021).
A deep generative model is significantly better than a sparse linear factor model, which
indicates that nonlinear factor models are necessary for practical data analysis.

5.4.3 Results for MNIST and Omniglot Data Sets

The results about the estimated W1 distance for various σ̃ are shown in the middle and
right panels of Figure 7. Again, we observe that the estimated W1 distance is minimized
at an intermediate value of σ̃. On the other hand, the data perturbation does not work at
all for GAN and Wasserstein GAN. Moreover, a sieve MLE with proper data perturbation
outperforms GAN and Wasserstein GAN for the both image data sets, as detailed in Figure
8.

25



Chae, Kim, Kim and Lin

Figure 9: Randomly generated images from a sieve MLE Q̂ for MNIST (upper) and Om-
niglot (lower). We considered three values of σ̃, 0.0, 2.0 and 4.0 from left to
right.

Figure 9 presents randomly generated images from sieve MLEs Q̂ for MNIST and Om-
niglot data sets with three values of σ̃, 0.0, 2.0 and 4.0. It is obvious that σ̃ = 2.0 gives the
best results for the both data, which implies that the estimated W1 distance is positively
related to the cleanness of corresponding synthetic images. Randomly generated images of
GAN and Wasserstein GAN learned with data perturbation for MNIST and Omniglot are
given in Figures 10 and 11, respectively, which again confirms that data perturbation is not
helpful for GAN and Wasserstien GAN to generate synthetic images.

5.5 Meta-learning for Low-dimensional Composite Structures

In Section 3.2, we have proved that a sieve MLE of deep generative models can capture a
low-dimensional composition structure well. Using this flexibility of a sieve MLE, we can
learn a low-dimensional composite structure from a sieve MLE as follows. For example,
suppose that f∗ possesses a generalized additive model (GAM) structure such as

f∗j(z) = g∗j1(z1) + · · ·+ g∗jd(zd)

for j = 1, . . . , D. Then, we can estimate the component functions g∗jl, l = 1, . . . , d by
minimizing

N∑
i=1

(
f̂j(zi)− gj1(zi1) + · · ·+ gjd(zid)

)2
under certain regularity conditions, where zi’s are independently generated samples from
PZ .

26



A likelihood approach to deep generative models

Figure 10: Randomly generated images by GAN (upper) and WGAN (lower) estimators for
MNIST. We consider three values of σ̃, 0.0, 2.0 and 4.0 from left to right.

Figure 11: Randomly generated images by GAN (upper) and WGAN (lower) estimators for
Omniglot. We consider three values of σ̃, 0.0, 2.0 and 4.0 from left to right.

27



Chae, Kim, Kim and Lin

We investigate the above meta-modeling approach by simulation. We generate data of
size 50,000 from the following two generative models:

Model 1: GAM

z = (z1, z2, z3) ∼ N (0, I3)

f∗1(z) = −2.3 +
1

0.7 + exp(0.3− 2z1)
+ 0.3z22

f∗2(z) = 0.9 + 0.8z1 − 0.1z31 + log(z22 + 1.5)− 0.4z23

f∗3(z) = 1.8 +
3.5

2z22 + z2 + 4
− 0.2 exp(z3)

f∗4(z) = 1.2z1 − 0.1z32 + 0.05z43

f∗5(z) = 3 + 0.5 log(2.5 + exp(z1))− 0.2 exp(z3 + 0.2)

Model 2: Non-additive model

z = (z1, z2, z3) ∼ N (0, I3)

f∗1(z) =
5z3

3.7 + exp(−2z1 + 0.4z2)

f∗2(z) = 0.9− 0.1z1 − 0.2z1(z2 − 0.1)2 + 0.15z1z3

f∗3(z) = log(2 + (z1 − z2)2)− 0.2z1 exp(0.2 ∗ z3)
f∗4(z) = 1.5− 0.3z21 + 0.07z1z2z3

f∗5(z) =
3z1 − 1.2

z22 + 2z2 + 3.3
+ 0.5 log(1 + (z1 − 0.1)2 + z22z

2
3)

We estimated the components of the GAM from a sieve MLE of the deep generative
model by the proposed meta-modeling and compare the estimated W1 distances of the orig-
inal sieve MLE and the estimated GAM in Figure 12. The orginal sieve MLE outperforms
the GAM for the two simulation models but the difference of the estimated W1 distances is
smaller for the first model where the true model is a GAM than the second model, which
indicates that the sieve MLE captures the underlying low-dimensional composite structure
well.

For the Big-five data set, the upper left panel of Figure 13 compares the estimated W1

distances of three estimates, (sieve) MLEs of the linear and deep generative models and
the estimated GAM obtained by the meta-learning. The GAM improves over the linear
model but is slightly inferior to the deep generative model. The five estimated component
functions for f̂14, a randomly selected coordinate, are drawn in Figure 13. Some of them
clearly show non-linearity, which partly explains why the performance of the deep generative
model is much better than the linear factor model.

6. Discussion

In this work, we consider the estimation of a distribution of high-dimensional data based
on a deep generative model which includes the estimation of classical smooth densities and
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Figure 12: Estimated W1 distances of a sieve MLE and the estimated GAM for Model 1
(left) and Model 2 (right)

Figure 13: The estimated W1 distances of (sieve) MLEs of the linear model, deep generative
model and the estimated GAM (upper left) and the five estimated component
functions of a randomly selected corrdinate (i.e. f̂14) of the GAM for the Big-five
data set
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Manifold Noise level Upper bound Lower bound

G1 C2 |ε∗|∞ . 1 n−2/(2+d∗) n−2/(2+d∗)

G2 C2 ε∗ ∼ N(0D, ID) (log n)−1/2 (log n)−1

P C2 |ε∗|∞ ≤ σ∗ . n−2/(3d∗+8) n−2/d∗ ∨ (σ2
∗/n)2/(d∗+4) (σ2

∗/n)2/(d∗+4)

A Cα |ε∗|∞ ≤ σ∗ . n−1/d∗ n−α/d∗ ∨ σ∗ n−α/d∗ ∨ (σ∗/n)α/(d∗+α)

D C2 |ε∗|∞ . n−2/d∗ n−2/d∗ n−2/d∗

Table 1: Convergence rates of the manifold estimators with respect to the Hausdorff dis-
tance from existing papers: Genovese et al. (2012b) (G1), Genovese et al. (2012a)
(G2), Puchkin and Spokoiny (2022) (P), Aamari and Levrard (2019) (A), Divol
(2021) (D). Cα in the second column refers that M∗ is a differentiable manifold
of order α. For Genovese et al. (2012b) and Aamari and Levrard (2019), it is
assumed that ε∗ is perpendicular to the manifold, see Genovese et al. (2012b) for
details.

distributions supported on lower-dimensional manifolds as special cases. The case when Q∗
is supported on a smooth manifold M∗ with dim(M∗) = d∗, is the most interesting and
challenging case. For this model, one may be interested in estimating the manifold or the
support ofM∗ itself. One can easily construct an estimator forM∗ by M̂ = f̂(Z) based on
an estimator f̂ . The performance of M̂ might be evaluated through a convergence rate with
respect to the Hausdorff metric. Some existing results on convergence rates are summarized
in Table 1 with assumptions on the underlying manifold and noise level. All these papers
assume that the reach of the underlying manifold is bounded below by a positive constant.
Technical assumptions from different papers may vary, but none of these papers explicitly
consider the regularity of q∗, the density with respect to the volume measure. In particular,
Genovese et al. (2012b) assumed that the error vector is perpendicular to the manifold
which is somewhat a strong condition. In Genovese et al. (2012a), the perpendicular error
is replaced by standard Gaussian error leading to a slow convergence rate. This slow rate is
standard in a deconvolution problem with a supersmooth Gaussian kernel. The other three
papers considered bounded errors which decay to zero with suitable rates. If the noise level
is sufficiently small andM∗ ∈ C2, the minimax convergence rate would be n−2/d∗ . It would
be interesting to investigate whether an estimator M̂ constructed from a deep generative
model can achieve this rate. More generally, it would be worthwhile to study the manifold
estimation problem through the lens of deep generative models.

We have some interesting observations from the results of analysis of the two image
data sets in Section 5. While GAN and WGAN generate clearer images than a sieve MLE,
the performance of a sieve MLE in terms of the evaluation metric W1(Q̂M ,QM∗) is better
than both, if a suitable degree of perturbation is applied. Surprisingly, opposite results are
obtained if FID (Fréchet Inception distance; Heusel et al. (2017)) is used as a measure of
performance. Note that FID is an approximation of L2-Wasserstein distance in the feature
space of Inception model (Szegedy et al., 2016), and it is one of the most popularly used
performance measures in image generation problems. The obtained FID values are 2.76,
4.19 and 9.58 for GAN, WGAN and sieve MLE with the optimal σ̃, respectively. That is,
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both GAN and WGAN are significantly better than a sieve MLE in terms of FID. At this
point, we are not aware of any reason why two performance measures, W1(Q̂M ,QM∗) and
FID, yield opposite results, which we leave as a future work.
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Appendix A. Proofs

A.1 Proof of Lemma 1

For f1, f2 ∈ F with ‖|f1 − f2|∞‖∞ ≤ η1, we have that

pf1,σ(x)− pf2,σ(x) =

∫
φσ(x− f1(z))

{
1− φσ(x− f2(z))

φσ(x− f1(z))

}
dPZ(z)

=

∫
φσ(x− f1(z))

[
1− exp

{
|x− f1(z)|22 − |x− f2(z)|22

2σ2

}]
dPZ(z)

≤
∫
φσ(x− f1(z))

|x− f2(z)|22 − |x− f1(z)|22
2σ2

dPZ(z)

=

∫
φσ(x− f1(z))

|f2(z)|22 − |f1(z)|22 − 2xT (f2(z)− f1(z))

2σ2
dPZ(z)

≤
∫
φσ(x− f1(z))

KDη1 +
√
D|x|2η1

σ2
dPZ(z),

where the last inequality holds because ||f1(z)|22−|f2(z)|22| ≤ 2KDη1 and |xT (f1(z)−f2(z))| ≤√
D|x|2η1. Since |x|2 ≤ |x− f(z)|2 + |f(z)|2 ≤ 1+ |x− f(z)|22 +

√
DK and |x|22φσ(x)/(2σ2) ≤

(2πσ2)−D/2/e, the last display is further bounded by

η1

∫
φσ(x− f1(z))

(
2KD +

√
D

σ2
+

√
D|x− f1(z)|22

σ2

)
dPZ(z)

≤ η1
(
2πσ2

)−D/2(2KD +
√
D

σ2
+

2
√
D

e

)
.

(A.1)
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Also, for σ1, σ2 ∈ [σmin, σmax] with |σ1 − σ2| ≤ η2, it holds that |σ−21 − σ
−2
2 | ≤ σ

−2
1 σ−22 (σ1 +

σ2)η2 and | log(σ2/σ1)| ≤ η2/(σ1 ∧ σ2). Hence

pf ,σ1(x)− pf ,σ2(x)

=

∫
φσ1(x− f(z))

[
1−

(
σ1
σ2

)D
exp

{
|x− f(z)|22

2

(
1

σ21
− 1

σ22

)}]
dPZ(z)

≤
∫
φσ1(x− f(z))

{
|x− f(z)|22

2

(
1

σ22
− 1

σ21

)
−D log

σ1
σ2

}
dPZ(z)

≤ η2
∫
φσ1(x− f(z))

(
(σ1 + σ2)|x− f(z)|22

2σ21σ
2
2

+
D

σ1 ∧ σ2

)
dPZ(z)

≤ η2
(
2πσ21

)−D/2(σ1 + σ2
eσ22

+
D

σ1 ∧ σ2

)
.

(A.2)

Let ε > 0 be given. Let {f1, . . . , fN1} and {σ1, . . . , σN2} be η1-covering of F and
η2-covering of [σmin, σmax], respectively. By (A.1) and (A.2), there exist constants c1 =
c1(D,K) and c2 = c(D) such that η1 = c1σ

D+2
min ε and η2 = c2σ

D+1
min ε implies that {pfi,σj : i =

1, . . . , N1, j = 1, . . . , N2} forms an ε/2-covering of P with respect to ‖ · ‖∞. For each (i, j),
define lij and uij as

lij(x) = max{pfi,σj (x)− ε/2, 0} and uij(x) = min{pfi,σj (x) + ε/2, H(x)},

where H(x) = supp∈P p(x) is an envelop function of P. Note that

H(x) ≤
(
2πσ2min

)−D/2
sup
|y|∞≤K

exp

(
−|x− y|22

2σ2max

)
≤
(
2πσ2min

)−D/2
exp

(
−|x|

2
2 − 2K2D

4σ2max

)
= 2D/2

(
σmax

σmin

)D
eK

2D/2φ√2σmax
(x),

where the second inequality holds because |x− y|22 ≥ |x|22/2− |y|22 ≥ |x|22/2−K2D. Since∫
|x|∞>t φσ(x)dx ≤ De−t2/(2σ2), we have that

∫
|x|∞>BH(x)dx ≤ ε, where

B = 2σmax

(
log

1

ε
+D log

σmax

σmin
+
D

2
log 2 +

K2D

2
+ logD

)1/2

.

It follows that∫
{uij(x)− lij(x)}dx≤

∫
|x|∞≤B

ε dx +

∫
|x|∞>B

H(x)dx ≤
(
(2B)D + 1

)
ε
def
= δ2.

Since d2H(uij , lij) ≤ ‖uij − lij‖1, we have that

N[](δ,P, dH) ≤ N[](δ
2,P, ‖ · ‖1) ≤ N1N2 ≤

σmax − σmin

η2
N(η1,F , ‖| · |∞‖∞).

Since ε(log ε−1)D/2 ≤
√
ε for every small enough ε, once δ is small enough, say δ ≤ δ∗ for

some δ∗ = δ∗(D), it holds that ε ≥ c3δ
4{log(σmax/σmin)}−D, where c3 = c3(D,K, σmax).

Hence,

η1 ≥
c1c3σ

D+3
min δ

4

σmin{log(σmax/σmin)}D
.
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Since σmin ≤ 1, σmin{log(σmax/σmin)}D is bounded by a constant which depends only on
σmax and D, so η1 is bounded below by c4σ

D+3
min δ

4, where c4 = c4(D,K, σmax). A similar
lower bound can be obtained for η2, which completes the proof.

A.2 Proof of Theorem 3

We will apply Theorem 4 of Wong and Shen (1995) with α = 0+. Choose four absolute
constants c1, . . . , c4 as in their Theorem 1. These constants can be chosen so that c1 = 1/3
and c3 > 2. Define c and c′ as in the statement of Lemma 1.

For every δ ∈ (0, c3δ∗],

logN[](δ/c3,P, dH) ≤ 4(s+ 1) log δ−1 + sA+ (D + 3)(s+ 1) log σ−1min + c5s

by Lemma 1, where c5 = c5(c, c
′, c3). Hence,

∫ √2ε
ε2/28

√
logN[](δ/c3,P, dH) dδ

≤
√

2ε
√
sA+ (D + 3)(s+ 1) log σ−1min + c5s+

√
2ε
√

4(s+ 1)

√
log

28

ε2

for every ε ≤
√

2δ∗ ≤ c3δ∗/
√

2. For ε = εn = c6
√
n−1s{A+ log(n/σmin)} with a large

enough constant c6 = c6(c4, c5, D), the last display is bounded by c4n
1/2ε2n for every n, so

Eq. (3.1) of Wong and Shen (1995) is satisfied. Note that Eq. (3.1) of Wong and Shen
(1995) still holds if c6 is replaced by any constant larger than c6.

It is well-known (see Example B.12 of Ghosal and van der Vaart (2017)) that

K(p∗, pf ,σ∗)≤
∫
K
(
N
(
f∗(z), σ2∗

)
, N
(
f(z), σ2∗

))
dPZ(z)

=

∫
|f∗(z)− f(z)|22

2σ2∗
dPZ(z) ≤

Dδ2app
2σ2∗

def
= δn.

Also, it is easy to see that∫ (
log

φσ(x)

φσ(x− y)

)2

φσ(x)dx =

∫
|y|42 + 4|xTy|2

4σ2
φσ(x)dx ≤ |y|

4
2

4σ2
+ |y|22

∫
|x|22
σ2

φσ(x)dx.

Combining this with Example B.12, (B.17) and Exercise B.8 of Ghosal and van der Vaart
(2017), we have that∫ (

log
p∗(x)

pf ,σ∗(x)

)2

dP∗(x)

≤
∫∫ (

log
φσ(x− f∗(z))

φσ(x− f(z))

)2

φσ(x− f∗(z))dxdPZ(z) + 4K(p∗, pf ,σ∗)

≤
D2δ4app

4σ2∗
+Dδ2app

∫
|x|22
σ2∗

φσ∗(x)dx +
2Dδ2app
σ2∗

≤ c7
δ2app
σ2∗

def
= τn,
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where c7 = c7(D). (Note that both δn and τn need not depend on n. We use the notations
δn and τn for the notational consistency with Theorem 4 of Wong and Shen (1995)). Let
ε∗n = εn ∨

√
12δn. Then, Theorem 4 of Wong and Shen (1995) implies that

P∗

(
dH(p̂, p∗) > ε∗n

)
≤ 5e−c2nε

∗2
n +

12τn
nε∗2n

≤ 5e−c2nε
∗2
n +

τn
nδn

= 5e−c2nε
∗2
n +

2c27
Dn

By re-defining constants, the proof is complete.

A.3 Proof of Corollary 6

By Lemma 5 of Schmidt-Hieber (2020), we have

logN(δ,F , ‖| · |∞‖∞) ≤ s{c4(log n)2 + log δ−1}

for every δ > 0, where c4 = c4(q,d, t,β,K). By applying Lemma 5 and Theorem 3 with
A = c4(log n)2, we have the conclusion.

A.4 Proof of Theorem 7

For any constant c0 = c0(D,K, r∗), if ε+σ∗
√

log ε−1 ≥ c0, the assertion of Theorem 7 holds
trivially by taking a large enough constant C = C(D,K, r∗). Therefore, it suffices to prove
the assertion of Theorem 7 when ε and σ∗

√
log ε−1 are sufficiently small.

For given ε ∈ (0, 1], suppose that dH(pf ,σ, p∗) ≤ ε and ‖|f |∞‖∞ ≤ K. Throughout
this proof, Pf ,σ and Qf will be denoted as P and Q, respectively. Let Y,Y∗, ε, ε∗ be
independent random vectors, with the underlying probability ν such that Y ∼ Q, Y∗ ∼ Q∗,
ε ∼ N (0D, σ

2ID), ε∗ ∼ N (0D, σ
2
∗ID).

Since ∫
|x|2>t

φσ(x)dx ≤
∫
|x|∞>t/

√
D
φσ(x)dx ≤ De−t2/(2Dσ2)

for any t > 0, we have
∫
|x|2>t∗ φσ∗(x)dx ≤ ε with t∗ = (2Dσ2∗ log(D/ε))1/2. Hence,

1− P∗
(
Mt∗
∗
)

= ν
(
Y∗ + ε∗ /∈Mt∗

∗
)
≤ ν(|ε∗|2 > t∗) ≤ ε.

Since |P (B) − P∗(B)| ≤ dH(P, P∗) ≤ ε for every Borel set B, see Eq. (8) of Gibbs and Su
(2002), we have that P (Mt∗

∗ ) ≥ 1− 2ε.
We will next prove that σ ≤ 2t∗, which is the main part of the proof. For this, we

assume on the contrary that σ > 2t∗ which we will show lead to a contraction. Firstly, if
σ > r∗/2, then 1−P ([−K − t∗,K + t∗]

D) is bounded below by a constant that depends on
K,D and r∗, which contradicts to P (Mt∗

∗ ) ≥ 1− 2ε provided that t∗ and ε are smaller than
a certain threshold depending only on K,D and r∗. (Note that t∗ and ε are sufficiently
small as assumed at the beginning of the proof.) If σ ∈ [2t∗, r∗/2], then we claim that for
every x ∈ RD, there exists y ∈ RD such that |x − y|2 ≤ σ and Bσ/2(y) ∩Mt∗

∗ = ∅. Let
ρ(x,M∗) = inf{|x− x′|2 : x′ ∈M∗}. The proof of the claim is divided into three cases.

(Case 1) ρ(x,M∗) ≥ σ: Obviously, one can choose y = x.
(Case 2) ρ(x,M∗) ∈ (0, σ): Let x0 be the unique Euclidean projection of x ontoM∗, and

xt = x0+t(x−x0). Define two continuous functions d0(t) = |xt−x0|2 and d(t) = ρ(xt,M∗).
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Note that d0(t) = d(t) for all t ∈ [0, 1]. Otherwise, |xt − z|2 < |xt − x0|2 for some t ∈ [0, 1]
and z ∈M∗\x0. Since xt lies in the line segment with end points x and x0,

|x− x0|2 = |x− xt|2 + |xt − x0|2 > |x− xt|2 + |xt − z|2 ≥ |x− z|2,

and thus, x0 cannot be the unique projection of x onto M∗. Note also that d(t) = d0(t)
for all t ∈ [1, 1 + σ/|x − x0|2]. Otherwise, {t ∈ [1, 1 + σ/|x − x0|2] : d(t) < d0(t)} is a
non-empty set with the infimum t0, and it is not difficult to see that xt0 has at least two
Euclidean projection onto M∗. Let y = x1+σ/|x−x0|2 . Then, we have |y − x|2 = σ and
ρ(y,M∗) = |y − x0|2 = |x− x0|2 + σ. Since t∗ ≤ σ/2, we have Bσ/2(y) ∩Mt∗

∗ = ∅
(Case 3) ρ(x,M∗) = 0: Since Bδ(x) is not contained inM∗ for any δ > 0, one can choose

x′ ∈ Bδ(x)\M∗. If δ is small enough, by Case 2, there exists y′ such that |x′−y′|2 ≤ σ and
Bσ/2(y′)∩Mt∗

∗ = ∅. Note that |x− y′|2 ≤ |x− x′|2 + |x′ − y′|2 ≤ δ + σ. One can take y as
any limit point of y′ as δ → 0.

By the claim, we have

ν
(
Y + ε /∈Mt∗

∗ | Y = x
)
≥ ν

(
ε ∈ Bσ/2(y − x)

)
for every x ∈ RD. Since |y − x|2 ≤ σ, the right hand side is bounded below by a positive
constant, say c, that depends only on D. It follows that P (Mt∗

∗ ) = ν(Y +ε ∈Mt∗
∗ ) ≤ 1−c,

which contradicts P (Mt∗
∗ ) ≥ 1−2ε for small enough ε. This completes the proof of σ ≤ 2t∗.

Note that the `1-diameter of [−K,K]D is 2KD, W1 ≤ W2 and W1 is bounded by a
multiple of the total variation, see Theorem 4 of Gibbs and Su (2002). Also, it is easy to
see that W2(P∗, Q∗) ≤ σ∗ and W2(P,Q) ≤ σ. Hence,

W1(Q∗, Q) ≤W2(Q∗, P∗) +W1(P∗, P ) +W2(P,Q) ≤ σ∗ +KD‖p− p∗‖1 + σ.

Since ‖p− p∗‖1 ≤ 2dH(p, p∗) and σ ≤ 2t∗, the proof is complete.

A.5 Proof of Theorem 9

Let p̃∗ = pf∗,σ̃∗ , where σ̃∗ = σ∗ + n−β∗/{2(β∗+t∗)}. Also, let α̃ = − log σ̃∗/ log n, that is,
σ̃∗ = n−α̃. Then, by Corollary 6, (3.4) holds with

ε∗n = Cn
−β∗−t∗α̃

2β∗+t∗ (log n)3/2,

where C = C(q,d, t,β,K,D, σmax, γ).
Firstly, suppose that α < β∗/{2(β∗ + t∗)}. In this case, σ∗ < σ̃∗ ≤ 2σ∗, so

α− log 2

log n
≤ α̃ < α.

Hence, ε∗n can be re-written as

ε∗n = C ′n
−β∗−t∗α

2β∗+t∗ (log n)3/2

with an adjusted constant C ′ = C ′(q,d, t,β,K,D, σmax, α, γ) satisfying 2−t∗/(2β∗+t∗)C ≤
C ′ < C.
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Similarly, if α ≥ β∗/{2(β∗ + t∗)}, we have

β∗
2(β∗ + t∗)

− log 2

log n
≤ α̃ ≤ β∗

2(β∗ + t∗)
.

Hence, ε∗n can be re-written as

ε∗n = C ′′n
− β∗

2(β∗+t∗) (log n)3/2

with C ′′ = C ′′(q,d, t,β,K,D, σmax, α, γ).

Finally, Theorem 7 gives the desired result with re-defined constants.

References

Eddie Aamari and Clément Levrard. Stability and minimax optimality of tangential De-
launay complexes for manifold reconstruction. Discrete Comput. Geom., 59(4):923–971,
2018.

Eddie Aamari and Clément Levrard. Nonasymptotic rates for manifold, tangent space and
curvature estimation. Ann. Statist., 47(1):177–204, 2019.
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dexed by Hölder classes. Math. Methods Statist., 29:76–86, 2021.

Nicolas Schreuder, Victor-Emmanuel Brunel, and Arnak Dalalyan. Statistical guarantees
for generative models without domination. In Proc. Algorithmic Learning Theory, pages
1051–1071. PMLR, 2021.

Weining Shen, Surya T Tokdar, and Subhashis Ghosal. Adaptive Bayesian multivariate
density estimation with Dirichlet mixtures. Biometrika, 100(3):623–640, 2013.

Shashank Singh, Ananya Uppal, Boyue Li, Chun-Liang Li, Manzil Zaheer, and Barnabás
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