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Abstract

In this work we study statistical properties of graph-based algorithms for multi-manifold
clustering (MMC). In MMC the goal is to retrieve the multi-manifold structure underlying a
given Euclidean data set when this one is assumed to be obtained by sampling a distribution
on a union of manifolds M = M1 ∪ · · · ∪ MN that may intersect with each other and
that may have different dimensions. We investigate sufficient conditions that similarity
graphs on data sets must satisfy in order for their corresponding graph Laplacians to
capture the right geometric information to solve the MMC problem. Precisely, we provide
high probability error bounds for the spectral approximation of a tensorized Laplacian on
M with a suitable graph Laplacian built from the observations; the recovered tensorized
Laplacian contains all geometric information of all the individual underlying manifolds. We
provide an example of a family of similarity graphs, which we call annular proximity graphs
with angle constraints, satisfying these sufficient conditions. We contrast our family of
graphs with other constructions in the literature based on the alignment of tangent planes.
Extensive numerical experiments expand the insights that our theory provides on the MMC
problem.

Keywords: multi-manifold clustering, graph Laplacian, spectral convergence, manifold
learning, discrete to continuum limit.

1. Introduction

In this work we study the problem of multi-manifold clustering (MMC) from the perspective
of spectral geometry. Multi-manifold clustering is the task of identifying the structure of
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c©2023 Nicolás Garćıa Trillos, Pengfei He, and Chenghui Li.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v24/21-1254.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v24/21-1254.html
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multiple manifolds that underlie an observed data set X = {x1, . . . , xn}, its main challenge
being that in general the underlying manifolds may be non-linear, may intersect with each
other, and may have different dimensions (see Figures 1-3 and Figures 37-40 for some
illustrations). While spectral methods for learning have been analyzed by several authors
throughout the past two decades in settings as varied as unsupervised, semi-supervised,
and supervised learning, less is known about their theoretical guarantees for the specific
multi-manifold clustering problem. We analyze MMC algorithms that are based on the
construction of suitable similarity graph representations for the data and in turn on the
spectra of their associated graph Laplacians. We provide statistical error guarantees for
the identification of the underlying manifolds as well as for the recovery of their individual
geometry.

Figure 1 Figure 2 Figure 3

Figure 1 illustrates two intersecting ellipsoids (two dimensional). A good multi-manifold
clustering algorithm must identify the two underlying ellipsoids. Figure 2 and Figure 3
show the spectral clustering with k-NN graph and annular proximity graph with angle
constraint, respectively; see section 3.

As for most spectral approaches to clustering, we are interested in studying spectral
properties of graph Laplacian operators of the form

∆nu(xi) :=
∑

ωij(u(xi)− u(xj)), xi ∈ X. (1.1)

Here, the ωij are appropriately defined symmetric weights that in general depend on the
proximity of points xi, xj , and, importantly, on a mechanism that detects when points
belong to different manifolds even if lying close to each other. Once the graph Laplacian
is constructed, we follow the spectral clustering algorithm: the first N eigenvectors of ∆n

(denoted ψ1, . . . , ψN ) are used to build an embedding of the data set X into RN :

xi ∈ X 7−→

ψ1(xi)
...

ψN (xi)

 ∈ RN .

In turn, with the aid of a simple clustering algorithm such as k-means the embedded data
set is clustered. A successful algorithm will produce clusters that are in agreement with the
different manifolds underlying the data set.
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As can be imagined, the success of spectral clustering when applied to MMC problems
relies strongly on the specific similarity weights ωij that determine the graph Laplacian,
its eigenvectors, and ultimately the partitioning of the data. In the literature, authors
have considered different types of mechanisms to discriminate points that lie on different
manifolds. Some strategies include the use of local tangent planes from data Arias-Castro
et al. (2017); Goh and Vidal (2007); Elhamifar and Vidal (2011); Wang et al. (2011) (whose
angles are compared), and the construction of paths between different points (e.g. geodesics)
that are considered admissible if they do not exhibit sudden turns (effectively imposing a
curvature constraint) Babaeian et al. (2015). All these methods are inspired by heuristics
that are meaningful at the continuum level (i.e. the infinite data setting) and use second
order geometric information to detect the different intersecting manifolds. While these
heuristics provide practical insights, in general they do not guarantee the success of the
employed methodologies for MMC at the finite sample level. Part of the motivation for this
work is precisely to establish a more concrete and mathematically precise link between the
heuristic motivation at the continuum level and the actual methodologies that are used in
practice. It is worth highlighting that widely known graph constructions such as ε-proximity
graphs or k-NN graphs used for standard data clustering tasks (typically aimed at detecting
bottle-necks in data sets) are in general not suitable for MMC. To illustrate this, take for
example Figure 2. There, we have used a k-NN graph to build a graph Laplacian whose first
non-trivial eigenvector has been used to obtain the partition illustrated in the figure; as can
be observed, from the geometry induced by the k-NN graph we are unable to distinguish
the two underlying ellipsoids.

To start making the results presented in this paper more precise, let us suppose that
the data set X is obtained by sampling a distribution µ supported on a setM of the form

M =M1 ∪ · · · ∪MN , (1.2)

where the Ml are smooth compact connected manifolds with no boundary that for the
moment are assumed to have the same dimension m; the manifoldsMl may have nonempty
pairwise intersections, but these are assumed to have measure zero relative to the volume
forms of each of the manifolds involved. The distribution µ is assumed to be a mixture
model taking the form

dµ = w1ρ1dvolM1 + · · ·+ wNρNdvolMN
,

for smooth density functions ρl :Ml → R and positive weights wi that add to one; hence-
forth we use dvolMl

to denote integration with respect to the Riemannian volume form
associated to Ml. A tensorized Laplacian ∆M acting on functions f on M (which will be
written as f = (f1, . . . , fN ), where fl :Ml → R) can be defined according to

∆Mf := (w1∆M1f1, . . . , wN∆MN
fN ), (1.3)

where ∆Ml
is a Laplacian operator mapping regular enough functions fl : Ml → R into

functions ∆Mfl :Ml → R according to

∆Ml
fl = − 1

ρl
divMl

(
ρ2
l∇Ml

fl
)
.
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Garćıa Trillos, He and Li

In other words, the operator ∆M acts in a coordinatewise fashion, effectively treating each
manifold Mi independently. It is then straightforward to show that eigenfunctions of ∆M
are spanned by functions of the form

(0, . . . , fl, . . . , 0)

for some l, where fl is an eigenfunction of ∆Ml
. This means that the spectrum of ∆M splits

the geometries of theMl. In particular, the differentMl can be detected by retrieving the
eigenfunctions with zero eigenvalue.

Our first main results (Theorem 6 and Theorem 8) state that, provided that the
weights ωij defining the graph Laplacian operator ∆n in (1.1) satisfy two conditions referred
to as full inner connectivity and sparse outer connectivity, the eigenvalues (appropriately
scaled) and eigenvectors of ∆n approximate the eigenvalues and eigenfunctions of the ten-
sorized Laplacian ∆M; we obtain high probability quantitative bounds for the error of this
approximation. The bottom line is that our results imply that the spectral methods studied
here are guaranteed, at least for large enough n, to recover the underlying multi-manifold
structure of the data; see Figure 3 for an illustration. Our work extends the growing liter-
ature of works that study the connection between graph Laplacians on data sets and their
continuum analogues. This literature, which we review in section 1.1.1, has mostly focused
on the smooth setting where multiple intersecting manifolds are not allowed.

In our second main result (Theorem 10), we present some results for the case when the
dimensions of the manifolds Mi do not agree. In this more general setting, the spectrum
of the graph Laplacian ∆n does not recover the tensorized geometry captured by ∆M
as introduced earlier, but rather, only the tensorized geometry of the manifolds with the
largest dimension, effectively quotienting out the geometric information of manifolds with
dimension strictly smaller than the maximum dimension.

After presenting our general results, we move on to discussing specific examples of graph
constructions that satisfy the full inner connectivity and sparse outer connectivity condi-
tions. In particular, we discuss a family of annular proximity graphs with angle constraints
(see section 3) that we show satisfies the desired connectivity conditions. In the final section
of the paper, we present some insights into the behavior of this graph construction and its
ability to tackle the MMC problem in concrete numerical examples, as well as present a
performance comparison with other existing spectral-based MMC approaches.

1.1 Related work

In this section we provide an overview of some related works that study spectral clustering
and its connection with manifold learning, as well as other works that study the specific
multi-manifold clustering problem.

1.1.1 Spectral clustering and manifold learning

In the past two decades, several authors have attempted to establish precise connections
between operators such as graph Laplacians built from random data and analogous differ-
ential operators defined at the continuum level. To make this connection mathematically
precise, one can assume that the data are sampled from some distribution supported on a
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certain geometric object M. In the setting where M is a smooth compact manifold em-
bedded in Rd that has no boundary, several authors have studied the connection between
ε-graph-based Laplacians and weighted versions of Laplace Beltrami operators on M. For
pointwise consistency results we refer the reader to Singer (2006); Hein et al. (2005, 2007);
Belkin and Niyogi (2005); Ting et al. (2010); Giné and Koltchinskii (2006)). Regarding spec-
tral convergence of graph Laplacians, a notion of convergence that is relevant for spectral
clustering, the regime n→∞ and ε constant is studied in von Luxburg et al. (2008) and also
in Singer and Wu (2017). The latter analyzes connection Laplacians, which are operators
acting on vector fields as opposed to functions. Works that have studied regimes where ε
is allowed to decay to zero include Tao and Shi (2020); Burago et al. (2014); Garćıa Trillos
et al. (2019); Lu (2022); Calder and Garćıa Trillos (2022); Dunson et al. (2021); Wormell
and Reich (2021). The mathematical theory around graph Laplacians in the smooth man-
ifold setting has developed considerably and even regularity estimates of graph Laplacian
eigenvectors are now available (see Calder et al. (2022)).

In the setting of a smooth compact manifold M with boundary, graph Laplacians are
seen to behave differently around the manifold’s boundary than in their interior. This
has been observed in works like Vaughn et al. (2019); Wu and Wu (2018), which study this
setting and obtain expansions for graph Laplacians that hold all the way up to the boundary.
Earlier works such as Garćıa Trillos and Slepčev (2018) use variational methods to provide
spectral asymptotic consistency results in this setting but don’t obtain convergence rates
nor describe the behavior of graph Laplacians close to the boundary. The work Lu (2022)
provides rates for spectral convergence in the setting of manifolds with boundary and also
considers the case where M is of the form (1.2). However, in contrast to what we do here,
the aim in Lu (2022) is not to analyze graph constructions that guarantee the recovery of
the multi-manifold structure of the data, focusing instead on analyzing intrinsic proximity
graphs to the union of the intersecting manifolds. Our analysis shares aspects and ideas
with this and some of the other works previously mentioned, but to fulfill our goals we
must introduce new constructions and estimates not currently available. In addition, to
the best of our knowledge, we are the first to present an analysis of the full spectrum of
graph Laplacians when data points are supported on a union of intersecting manifolds that
have different dimensions. Previous work Arias-Castro (2011) had analyzed the null space
of a graph Laplacian when the generators (manifolds), although potentially of different
dimensions, were assumed to be separated from each other.

From a methodological perspective, it is also worth highlighting several other works
that have studied the use of metrics different from the Euclidean one to build proximity
graphs for clustering and other unsupervised learning tasks. The idea in those papers is to
use the modified metrics to improve the performance of spectral clustering when applied to
data sets with some special geometric structure. Examples include: Ahmed et al. (2015);
Rosenfeld and Pfaltz (1966); Normand et al. (2011); Fischer et al. (2001); Chang and Yeung
(2008); Little et al. (2020, 2022). In a sense, our approach in this paper is in line with the
general perspective taken in the previously mentioned works, only that in our case we have
a different geometric structure in mind, i.e., we consider multiple intersecting manifolds.
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1.1.2 Multi-manifold clustering

In contrast to the graph constructions which are analyzed in most of the works mentioned
in section 1.1.1 (i.e. standard ε-graphs and k-NN graphs), graph constructions for multi-
manifold clustering must incorporate a mechanism to discriminate between points that lie
on different manifolds. One such mechanism relies on the approximation of approximate
tangent planes around every point. Pairs of nearby points are then endowed high weights
whenever their corresponding tangent planes are aligned, as proposed in Arias-Castro et al.
(2017). The recovery of tangent planes from data is a problem that has been studied
theoretically in papers such as Aamari and Levrard (2018) (see also references within). The
methodology proposed in Singer and Wu (2017), which uses a connection Laplacian, can be
considered as a MMC algorithm since it also uses tangent plane information to inform the
affinity between points. The LLMC algorithm from Goh and Vidal (2007) is also based on
locally fitting planes to points and their nearest neighbors. Sparse Manifold Clustering and
Embedding(SMCE) in Elhamifar and Vidal (2011) implicitly attempts to recover tangent
planes too; a sparse representation of points in a neighborhood is sought via a local l1

optimization problem. Another work that considers affinities based on local tangent planes
is Wang et al. (2011). In section 3.2 we will discuss some properties of the tangent plane
based graphs and their effect on spectral clustering for MMC. Wang et al. (2014, 2015) also
consider estimating tangent planes to solve the MMC problem, but now in a generalized
setting where the ambient space is a curved manifold and not Rd.

At a high level, all multi-manifold clustering algorithms use curvature information to
detect pairs of points that, while close to each other, lie on different manifolds. Measuring
the difference of tangent planes is one way to capture curvature, but there are alternative
ways. For example, works like Chen and Lerman (2009b,a) use the notion of polar curvature
between collections of points to define an algorithm known as spectral curvature clustering
(SCC). In Chen and Lerman (2009a) the authors present some theoretical analysis of SCC
in the setting where the data are sampled from multiple flats with the same dimension. In
Arias-Castro et al. (2011), a localized spectral curvature clustering algorithm is proposed
to find local curvature information by constructing similarity graphs that are obtained by
aggregating certain alignment score for a collection of data tuples of high enough order.
This method is computationally too intensive given that it requires to consider tuples of
order larger than the dimension of the manifolds. Besides, from a theoretical perspective,
the method scales very poorly with the dimensionality of the underlying manifolds, and
the authors indicate that it can only solve the MMC problem in the setting of intersecting
curves, i.e. 1d manifolds.

Curvature can also be captured by measuring how quickly paths turn as proposed in
Babaeian et al. (2015). Our graph construction from section 3 is inspired by the one pro-
posed in Babaeian et al. (2015), but with some important differences that we will motivate
and explain throughout the paper. These differences, in particular, allow us to provide a
comprehensive theoretical analysis and provide theoretical guarantees for the success of our
algorithms.

To wrap up this brief literature review, it is worth mentioning a special setting where the
manifolds Ml are linear subspaces of the ambient space. In that case, the multi-manifold
clustering problem reduces to subspace clustering (SubC), a problem that has received
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considerable attention in the past decades due to its multiple applications in tasks such
as image segmentation, motion segmentation, and image representation (see Vidal (2011)).
Many algorithms in SubC rely strongly on the assumed global flat structure of the data and
on the fact that the origin is known to lie on the intersection of the spaces. Unfortunately,
these approaches can not be used directly for a general multi-manifold clustering task, so
we will not discuss them in more detail. Conversely, while it is possible to use general
MMC approaches to solve SubC problems, it is clear that the performance of general MMC
methods will in general be far from satisfactory when compared to the performance of
SubC approaches, which actively target the subspace structure of the manifolds. We refer
the reader interested in the SubC problem to the following list of papers and their references:
Boult and Brown (1991); Yan and Pollefeys (2006); Zhang et al. (2012); Park et al. (2014);
Vidal et al. (2005); Ying Wu et al. (2001); Vidal et al. (2005); Ying Wu et al. (2001);
Elhamifar and Vidal (2009, 2010); Oswal and Nowak (2018); Liu et al. (2010).

1.2 Contributions and outline

We summarize our contributions as follows:

• We analyze graph Laplacians on families of proximity graphs when the nodes of the
graphs are random data points that are supported on a union of unknown intersecting
manifolds. The manifolds may all have different dimensions.

• We introduce two sufficient conditions that similarity graphs must satisfy in order to
recover, from a graph Laplacian operator, the geometric information (as contained
in the spectrum of weighted Laplace-Beltrami operators) of the individual smooth
manifolds underlying the data set. These conditions are referred to as full inner
connectivity and sparse outer connectivity.

• We introduce and analyze annular proximity graphs and their effect on multi-manifold
clustering. These are simple extensions of ε-proximity graphs that nonetheless can
be shown to be, theoretically and numerically, better than the vanilla ε-graphs for
multi-manifold clustering.

• We analyze a family of annular proximity graphs with angle constraints. This family
is shown to satisfy the full inner connectivity and sparse outer connectivity conditions
when their parameters are tuned appropriately. We contrast this construction with
other constructions such as those based on local PCA, which in general do not satisfy
the full inner connectivity condition.

• Through numerical examples and some heuristic computations, we provide further
insights into the use of spectral methods for multi-manifold clustering.

The rest of the paper is organized as follows. Our theoretical framework is presented
in section 2, where we formalize the setting for the multi-manifold clustering problem,
introduce the definitions of sparsely outer connected and fully inner connected similarity
graphs, and state our main theoretical results. In our first results, the ones in section 2.3, we
assume that all underlying manifolds have the same dimension, and in section 2.4 we extend
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to settings where the dimensions of the underlying manifolds can be different. In section
3 we discuss an example of a graph construction that satisfies the full inner connectivity
and sparse outer connectivity conditions. In section 4 we present a series of numerical
experiments whose goal is to illustrate the theory developed throughout the paper and
highlight some drawbacks of the MMC methods discussed in the paper. In Appendix A we
present the proofs of all the results from sections 2.3 and 2.4.

2. Set up and main results

Let {Ml}Nl=1 be a collection of N smooth, compact manifolds without boundary embedded
in Rd. We denote by ml the dimension of manifold Ml and m = maxl=1,...,N{ml}. Let M
be the union:

M :=M1 ∪ · · · ∪MN .

Let X = {x1, . . . , xn} be i.i.d. samples from a distribution µ on M of the form:

dµ =

N∑
l=1

wlρl(x)dvolMl
(x), where wl > 0,

N∑
l=1

wl = 1. (2.1)

In the above, for each l, dvolMl
is used to denote integration with respect to the Riemannian

volume form associated to the manifold Ml, and the probability density ρl : Ml → R is
assumed to be C2(Ml) and satisfy

1

cρ
≤ ρl(x) ≤ cρ, ∀l = 1, . . . , N

for some positive constant cρ > 1. We use µl to denote the probability measure ρldvolMl
.

Notice that from (2.1) it follows that the number of data points nl in manifold Ml is with
very high probability within the interval [wln− t, wln+ t] for some tolerance level t at least
in the order of

√
n.

While we will not require the manifoldsMl to be separated from each other in a distance
sense (i.e., we allow manifolds to intersect with each other), we will assume that they are
sufficiently “well separated” in an angular sense that we specify below and that we illustrate
in Figure 4.

Assumption 1 For every l, k we assume:

1. The intersection Mlk := Ml ∩Mk is either the empty set or a smooth manifold of
dimension mkl satisfying 0 ≤ mkl < min{ml,mk}. In particular, Mlk is of measure
zero according to volMl

and volMk
.

2. For every point x in Ml ∩Mk we have:

sup
v∈TxM

⊥l
lk ,ṽ∈TxM

⊥k
lk

|∠(v, ṽ)− π

2
| ≤ β, (2.2)

for some fixed β strictly smaller than π
2 . In the above, ∠(v, ṽ) denotes the angle

between vectors v, ṽ (recall that all manifolds are embedded in the ambient space Rd),
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TMl

TMkl

TMk

TM⊥lkl

TM⊥kkl

Figure 4: TM⊥kkl is the orthogonal complement of TMkl in TMk. TM⊥lkl is defined
analogously. The second part in Assumption 1 is better satisfied when the angle between
these spaces is close to ninety degrees.

and TxM⊥llk denotes the orthogonal complement of TxMlk in TxMl, and TxM⊥klk is
defined analogously.

In the above, and in the remainder, we use TxMl to denote the tangent plane to Ml

at the point x ∈ Ml; also, we use TMl to denote the tangent bundle associated to Ml.
Notice that the second condition in Assumption 1 states that if two manifoldsMl andMk

do intersect, they do so in a non-tangential way; see Figure 4 below.

2.1 Fully inner connected, and sparsely outer connected graphs

We endow the data set X with a weighted graph structure (X,ω), where the weights ω are
specified by the data. In this section we present the definitions of fully inner connected
and sparsely outer connected graphs. The notion of full inner connectivity depends on a
prespecified family of base proximity graphs that we introduce next.

Definition 1 Given 0 ≤ ε− < ε+ and data points xi, xj, we define their ε+, ε−-weight as:

ω
ε+,ε−
ij :=

{
1 if ε− ≤ |xi − xj | ≤ ε+

0 otherwise.

We use ωεij as shorthand notation for ωε,0ij . Notice that with this definition we have the
identity:

ωε+,ε−yx = ωε+yx − ωε−yx .

Remark 2 The above definition extends the notion of ε-proximity graph and in principle
allows pairs of points that are too close to each other to have zero weight. While in the
literature this annular proximity graphs have not been given any attention, we will see later
on that this extended notion is convenient from qualitative and quantitative points of view
for the MMC problem; see the discussion surrounding Lemmas 19 and 20.
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Definition 3 (Fully inner Connected graphs) Let X = x1, . . . , xn be samples from µ
as defined in (2.1). A weighted graph (X,ω) is said to be fully inner connected relative to
the ε+, ε− weights as n → ∞, if with probability 1 − C1(n), where C1(n) → 0 as n → ∞,
for any pair of points xi, xj belonging to the same manifold Mk we have ωxi,xj = ω

ε+,ε−
xi,xj .

Remark 4 It is possible to generalize the definition of full inner connectivity considered
here and adapt it to other base proximity graph constructions like weighted proximity graphs.
Indeed, the essential requirement that the full inner connectivity condition imposes on (X,ω)
is that it should behave like a graph that can capture the underlying geometry of each in-
dividual manifold. We have chosen annular proximity graphs here because 1) they can be
used to capture the geometry of the underlying manifolds (as shown by our analysis: just
take Theorems 6 and 8 and consider the case where the number of manifolds is equal to
one), and 2) because they introduce an extra degree of flexibility that, as we show later on,
allows us to prove better recovery guarantees for MMC than what we can show for standard
ε-graphs; see Remark 2.

Next, we introduce the notion of spare outer connectivity.

Definition 5 (Sparsely Outer Connected graphs) Let X = x1, . . . , xn be samples from
µ as defined in (2.1), and let (X,ω) be a weighted graph. Let Nsl be the number of connec-
tions between xi ∈Ms and xj ∈Ml such that ωij > 0, and let

N0 := max
l 6=s
{Nls}.

The graph is said to be sparsely outer connected relative to ε+ and ε− converging to zero
as n → ∞ if with probability one N0

n2(εm+2
+ −εm+2

− )
→ 0 as n → ∞. We recall that m =

maxl=1,...,N ml.

The above notions will capture the intuitive desire of giving high weights to pairs of
points that are close to each other when they belong to the same manifold (full inner
connectivity condition) and to give low weights to pairs of points when they lie on different
manifolds (sparse outer connectivity condition). These notions are geometric adaptations to
the setting of interest of general notions explored in the literature to describe the feasibility
of a clustering problem. We elaborate on this next.

In the setting considered in Ng et al. (2001), for example, given a network (X,W ),
four conditions on the network (that depend on the Laplacian and degree function of the
network) are proposed to ensure that a certain spectral embedding constructed from (X,W )
maps the original set of nodes X to points that are close to a set of orthogonal vectors
in Euclidean space; notice that the conditions in Ng et al. (2001) do not rely on any
specific modelling assumption on the generative process that produces the data set X.
Works like Schiebinger et al. (2015) and Garćıa Trillos et al. (2021) have taken a different
perspective and introduced sufficient geometric conditions on certain families of generative
models that, at the “ground-truth” level, guarantee the feasibility of a certain ground-truth
level clustering problem. These works then show that, when their proposed modelling
assumptions hold, the conditions in Ng et al. (2001) are satisfied with high probability by
certain network constructions (X,W ), where X is a set of samples from the generative
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model, and W is a suitable weight matrix over X. The notions of inner connectivity and
outer connectivity considered here can be interpreted as conditions that a given weight
matrix W built over a data set X sampled from a model like (2.1) must satisfy in order for
the network (X,W ) to: 1) satisfy the conditions in Ng et al. (2001) and 2) have clusters
that are consistent with the underlying manifolds in the generative model (2.1). In this
sense, the results that we present in this paper are analogous to those in Schiebinger et al.
(2015); Garćıa Trillos et al. (2021), except that the geometric structure of the generative
models in our paper is substantially different from the ones in those works. Other works in
the literature such as Vu (2018) have considered other types of “clusterability” conditions,
requiring data points within each cluster to be close to each other and points from different
clusters to be far away from each other. These conditions are certainly not satisfied in this
paper, mainly because the separation between manifolds can in fact be equal to zero.

Before we finish this section, we remark that the discussion in the upcoming sections
2.2-2.4 will not be restricted to any particular graph construction. In the results presented
there, we quantify the error of approximation of the spectra of tensorized Laplacians at the
continuum level from the graph Laplacian associated to (X,ω). This approximation error
will naturally depend on the quantities C1(n) and N0 appearing in the definition of the
inner and outer connectivity conditions. In section 3, we provide one example of a family of
graphs that satisfies the inner and outer connectivity conditions. The graphs in that family
are obtained by pruning an ε+, ε− graph, removing edges between points for which there is
no almost straight path connecting them. In section 3.2, we discuss other popular choices
of weights ω that are based on the comparison of local tangent planes, but that, as we will
discuss, do not, in general, satisfy the full inner connectivity condition.

2.2 Basic properties of the spectrum of the operator ∆M

In order to state our main theoretical results in sections 2.3 and 2.4 we first discuss some
basic properties of the spectrum of the operator ∆M in (1.3) and its relation to the MMC
problem.

Let L2(µ) be the space of N tuples (f1, . . . , fN ) where each fl ∈ L2(µl). We endow the
space L2(µ) with the tensorized inner product:

〈f, g〉L2(µ) :=
N∑
l=1

wl〈fl, gl〉L2(µl) =
N∑
l=1

wl

ˆ
Ml

fl(x)gl(x)dµl(x),

where f = (f1, . . . , fN ) ∈ L2(µ) and g = (g1, . . . , gN ) ∈ L2(µ). A tensorized Sobolev space
H1(µ) is defined as the space of f = (f1, . . . , fN ) ∈ L2(µ) for which fl ∈ H1(Ml) for each
l = 1, . . . , N . In particular, for elements f ∈ H1(µ) the quantity

N∑
l=1

w2
l

ˆ
Ml

|∇fl(x)|2ρ2
l (x)dx

is finite. We then define the weighted Dirichlet energy:

D(f) :=

{∑N
l=1w

2
l

´
Ml
|∇fl(x)|2ρ2

l (x)dvolMl
(x), if f ∈ H1(µ),

+∞, if f ∈ L2(µ) \H1(µ).
(2.3)

11
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Now, notice that the operator ∆M is self-adjoint with respect to the inner product
〈·, ·〉L2(µ) simply because each of the operators ∆Ml

is self-adjoint w.r.t. 〈·, ·〉L2(µl) (e.g.
see Garćıa Trillos and Slepčev (2018)). Given that each L2(Ml, ρl) admits an orthonormal
basis {fkl }k∈N of eigenvectors of ∆Ml

, we can see that the set of fk ∈ L2(µ) of the form

fk = (0, . . . ,
1
√
wl
fkl , . . . , 0) (2.4)

for k ∈ N and l = 1, . . . , N is an orthonormal basis for L2(µ). In addition, for such fk we
have

∆Mf
k = (0, . . . ,

wl√
wl

∆Ml
fkl , . . . , 0) = wlλ(0, . . . ,

1
√
wl
fkl , . . . , 0) = wlλf

k

for some eigenvalue λ of ∆Ml
. In conclusion, we can build an orthonormal basis for L2(µ)

consisting of eigenfunctions of ∆M of the form (2.4). From the above we can also conclude
that the set of eigenvalues of ∆M is the set of numbers of the form wlλ for some l, where λ
is an eigenvalue of ∆Ml

. In terms of the Dirichlet energy defined in (2.3), the eigenvalues
of ∆M, arranged in increasing order according to multiplicity, can be written as

λl = min
S∈Sl

max
f∈S\{0}

D(f)

‖f‖2
L2(µ)

. (2.5)

where Sl denotes the set of all linear subspaces of L2(µ) of dimension l.
Regarding the zero eigenvalue of ∆M, notice that since the manifoldsMl were assumed

to be connected, the multiplicity of the zero eigenvalue for the operator ∆M is equal to
N . Moreover, an orthonormal basis for this eigenspace is the set of functions of the form
(0, . . . , cl1Ml

, . . . , 0) where cl is a normalization constant. This observation is the key
property that allows us to think of the multi-manifold clustering problem in terms of the
spectrum of the operator ∆M. However, it should be clear that the tensorized Laplacian
has much more information than that needed to solve the MMC problem.

For convenience, we also introduce Dirichlet energies associated to each manifold Ml:

Dl(fl) :=


´
Ml
|∇fl(x)|2ρ2

l (x)dvolMl
(x), if fl ∈ H1(µl),

+∞ iff ∈ L2(µl) \H1(µl).

(2.6)

2.3 Convergence results in the m1 = · · · = mN case

In this section we establish high probability error bounds between the spectrum of a rescaled
version of the graph Laplacian ∆n defined in (1.1) and the spectrum of ∆M under the ad-
ditional assumption that all manifoldsMk have the same dimension. The results presented
in this section apply to generic weighted graphs (X,ω), but the error estimates are only
meaningful when the quantities N0, C1(n) and ε+ from section 2.1 scale appropriately with
the number of data points. In section 3 we present a specific construction for (X,ω) where
we can make our error estimates concrete.

In what follows we make the following assumptions on the parameters ε+, ε−, δ̃, θ. Here
δ̃ and θ are small parameters that we use to tune the probabilities of some random events
defined in corollary 25.

12
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Assumption 2 We assume that the quantities ε+, ε−, δ̃, θ satisfy:

(1) ε+ ≤ min{1, R2 , CK
−1/2, i0}, where R,K are uniform upper bounds on the reach and on

the absolute values of the sectional curvatures for all the manifolds, i0 is a lower bound
on the injectivity radius of all manifolds, and C is a constant no larger than 1.

(2) ε− ≤ 1
4ε+; the 1

4 here is an arbitrary number smaller than 1.

(3) c
n1/m < δ̃

(4) C(δ̃ + θ) ≤ 1
2cρ

, where 1
cρ

is the lower bound of ρ .

With the above assumptions we can make sure that with the underlying ε+, ε−-weighted
graph we can approximate the operators ∆Mk

in each of theMk; this part does not rely on
the assumption that all manifolds have the same dimension, and only depends on the full
inner connectivity property. For the spectrum of the graph Laplacian associated to (X,ω)
to successfully recover the spectrum of ∆M we need (X,ω) to be fully inner connected and
sparsely outer connected as we will make explicit in our first theorem.

Theorem 6 (Convergence rate for eigenvalues) Let µ be a probability measure on M
as in (2.1). Suppose that the Mk forming the M satisfy Assumptions 1, and assume also
that m1 = · · · = mN . Let X = {x1, . . . , xn} be i.i.d. samples from µ. Let (X,ω) be a
symmetric weighted graph and let L be the rescaled graph Laplacian:

Lu(x) :=
1

n2(εm+2
+ − εm+2

− )

∑
y∈X

ωxy(u(x)− u(y)), x ∈ X,u : X → R. (2.7)

Suppose that the quantities δ̃, θ, ε+, ε− satisfy Assumptions 2. Let λ
ε+,ε−
k be the k-th eigen-

value of L and let λk be the k-th eigenvalue of ∆M, where ∆M is the tensorized Laplacian
from (1.3). Finally, let t := nωmin

2 . Then there exists a constant C (independent of k) such

that, with probability at least 1−
∑N

l=1(nwl + t) exp
(
−C(nwl − t)θ2δ̃m

)
− 2N exp

(
−2t2

n

)
−

C1(n), for every k ∈ N for which

Cδ̃
√
λk + C(θ + δ̃) <

1

k
,

we have: ∣∣λε+,ε−k − σηλk
∣∣ ≤ ek + C

(
ε+(
√
λk + 1) + θ +

δ̃

ε+

)
λk.

In the above, ek = CN0

n2(εm+2
+ −εm+2

− )

(
1 + C ′(λ

m/2+1
k + δ̃

√
λk + θ + δ̃)

)
, and C1(n) and N0 are

introduced in Definition 3 and Definition 5, respectively. The constant ση is given by:

ση :=

ˆ
Rm
|y1|2η(|y|)dy, (2.8)

where η = 1r≤1 and y1 is the first coordinate of y.

13
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Remark 7 1. In general, we should expect a trade-off between the quantities C1(n) and
N0. That is, in general, an attempt at making N0 smaller (i.e., erase connections
between different manifolds) will typically result in a smaller probability of having a
graph that is well connected within each manifold Ml.

2. The benefits that come from taking ε− > 0 for the MMC problem are not explicit
in the error bounds from Theorem 6. However, as we will see later on, by tuning
ε− appropriately, one can substantially eliminate connections between data points in
different manifolds when one considers ε− ∼ ε+. This means a substantial decrease
in N0. We explain this in Remark 17 for the specific annular graph construction with
angle constraints. The fact that we can improve the performance of MMC algorithms
by introducing ε+, ε−-graphs motivates the theoretical analysis that we present in the
Appendix.

3. The proof of the estimates in Theorem 6 relies on a variational approach that compares
Dirichlet energies at discrete and continuum levels. This approach has been used
before in Burago et al. (2014); Garćıa Trillos et al. (2019); Lu (2022). However, the
structure of the ε+, ε−-graph that we consider here forces us to modify the analysis
and present new proofs. Even for a single manifold M = M1, the analysis of graph
Laplacians on ε+, ε−-graphs is a technical contribution of this work. The actual proof
of Theorem 6 appears in section A.5 in the Appendix. Several technical preliminary
results are established in the preceding sections.

4. The scaling factor relating L and ∆n in (2.7) is irrelevant in practice because the
eigenvectors of ∆n are the same as those for L, and the ratio between eigenvalues of
∆n coincides with the ratio of eigenvalues of L. In other words, in practice we can
work directly with ∆n without having to compute the rescaling factor.

5. If we choose 1� ε+ �
(

log(n)
n

)1/m
, then, with high probability, the error of approxi-

mation of eigenvalues scales like:

N0

n2εm+2
+

+

(
log(n)
n

)1/m

ε+
+ ε+.

This result is analogous to results in Burago et al. (2014) and Garćıa Trillos et al.
(2019), except that now we have the extra N0

n2εm+2
+

term. In order for this error estimate

to converge to zero in the large data limit we thus need to require the graph to satisfy
the sparse outer connectivity condition.

Theorem 8 (Convergence rate for eigenvectors) Under the same setting and assump-
tions as in Theorem 6, for every k ∈ N there is a constant ck = ck(M) such that if

ek + C

(
ε+

√
λk + ε2

+ + θ +
δ̃

ε+

)
≤ ck,

14
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then, with probability at least 1−
∑N

l=1(nwl + t) exp
(
−C(nwl − t)θ2δ̃m

)
−2N exp

(
−2t2

n

)
−

C1(n), for every vk normalized eigenvector of L with eigenvalue λk, there is a normalized
eigenfunction fk of ∆M with eigenvalue λk such that

‖fk − vk‖L2(µn)≤

[
Cek + C

(
ε+

√
λk + ε2

+ + θ +
δ̃

ε+

)]1/2

+ CM,λδ̃,

where ek is the same as in Theorem 6.

The proof of this theorem is presented in section A.6 in the Appendix.

Remark 9 The sparse outer connectivity condition N0

n2(εm+2
+ −εm+2

− )
→ 0 is imposed to guar-

antee the recovery of the full spectrum of the tensorized Laplacian in the large data limit.
However, we highlight that our error estimates continue to be meaningful even if we only
impose N0

n2(εm+2
+ −εm+2

− )
to be asymptotically smaller than some small tolerance level c.

2.4 Mixed dimensions.

We generalize our results from section 2.3 to a setting where the manifolds Mk may have
different dimensions. For convenience, we introduce some notation first.

Without the loss of generality we can assume that the manifolds Mk are indexed in
decreasing order of dimension, i.e. m = m1 ≥ m2 ≥ · · · ≥ mN . We let Nmax be the number
of manifolds with the maximum dimension m, i.e. m1 = · · · = mNmax > mNmax+1. We set
Mmax :=M1 ∪ · · · ∪MNmax and write 〈f, g〉L2(Mmax) to represent:

〈f, g〉L2(Mmax) =

Nmax∑
i=1

wi〈fi, gi〉L2(µi) =

Nmax∑
i=1

wi

ˆ
Mi

fi(x)gi(x)dµi(x).

We also use ‖f‖2L2(Mmax) = 〈f, f〉L2(Mmax).

Notice that with the above inner product we can identify (isometrically) elements in
L2(Mmax) with elements in L2(µ) that are zero outside of Mmax; throughout section A.7
in the Appendix we may use this identification without any further explanation. Finally,
we use ∆Mmax to denote the tensorized Laplacian (1.3) for Mmax (i.e. just as in (1.3) but
with only the first Nmax coordinates); we use Dmax to denote the corresponding Dirichlet
energy defined for L2(Mmax) functions.

Theorem 10 Let µ be a probability measure on M as in (2.1). Suppose that the Mk

forming M satisfy Assumptions 1, and let Nmax,Mmax,∆Mmax be defined as before. Set
λ1, . . . , λN = 0 and let λN+1 ≤ λN+2 ≤ . . . be the list of non-zero eigenvalues of ∆Mmax

repeated according to multiplicity.
Let X = {x1, . . . , xn} be i.i.d. samples from µ, let (X,ω) be a symmetric weighted graph,

and let L be the rescaled graph Laplacian from (2.7). Finally, suppose that the quantities
δ̃, θ, ε+, ε− satisfy Assumptions 2.

Then, for some constant C = C(M, µ), with probability at least

1−
N∑
l=1

(nwl + t) exp
(
−C(nwl − t)θ2δ̃m

)
− 2N exp

(
−2t2

n

)
− C1(n),

15



Garćıa Trillos, He and Li

for every k ∈ N for which

Cδ̃
√
λk + C(θ + δ̃) <

1

k
,

we have: ∣∣λε+,ε−k − σηλk
∣∣ ≤ ek + C

(
ε+(
√
λk + 1) + θ +

δ̃

ε+

)
λk.

In the above, ek = CN0

n2(εm+2
+ −εm+2

− )

(
1 + C ′(λ

m/2+1
k + δ̃

√
λk + θ + δ̃)

)
, and C1(n) and N0 are

introduced in Definition 3 and Definition 5, respectively.

In addition, there is a constant ck = ck(M) such that if

ek + C

(
ε+

√
λk + ε2

+ + θ +
δ̃

ε+

)
≤ ck,

then, with probability at least 1−
∑N

l=1(nwl + t) exp
(
−C(nwl − t)θ2δ̃m

)
−2N exp

(
−2t2

n

)
−

C1(n), for every uk normalized eigenvector of L with eigenvalue λk, there is a normalized
eigenfunction fk of ∆Mmax with eigenvalue λk such that

‖fk − uk‖L2(µn)≤

[
Cek + C

(
ε+

√
λk + ε2

+ + θ +
δ̃

ε+

)]1/2

+ CM,λδ̃.

In the above, we interpret the functions f1, . . . , fN as an orthonormal basis for Span{1M1 , . . . ,1MN
}.

Remark 11 1. The proof of this theorem appears in section A.7 in the Appendix. We
remark that the proof of Theorem 10 is only based on Theorems 6 and 8 and on a few
associated preliminary results.

2. When manifolds have different dimensions, making sure that the sparse outer con-
nectivity condition is satisfied is more difficult because, in general, Nkl is much larger
when the dimensions of the manifoldsMk andMl are small than when they are large.
Indeed, since the number of points in each manifold is in the order of n, the number of
points in a neighborhood of size ε around a point on a manifold with small dimension
will be larger than when the manifold has larger dimension.

3. Notice that when manifolds do not intersect the outer sparse connectivity condition
is trivially satisfied. If in addition we assume the full inner connectivity condition,
then we can conclude that the eigenvectors of the graph Laplacian corresponding to
non-zero eigenvalues will only recover the spectra of the manifolds with dimension m.
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Ml

Mk

xi1

xi2

xi3

xi4
xi5

Figure 5: An example of an (α, r)-constrained path where xi1 and xi5 are on different
manifolds. To satisfy the constraints, the segments xijxij+1 and xi1xim must almost align.

3. Annular proximity graphs with angle constraints

In this section we introduce a graph construction that is both fully inner connected and
sparsely outer connected. We start with a definition.

Definition 12 Let α ∈ (0, π/2) and r > 0. We call an ordered sequence of data points

(xi1 , xi2 , ..., xim)

an (α, r)-constrained path between xi1 and xim if the following two conditions hold:

1. ∠(xim − xi1 , xij+1 − xij ) < α, ∀j = 1, 2, ...,m− 1.

2. |xij − xij+1 | < r,∀j = 1, 2, . . . ,m− 1.

The first condition in the definition of an (α, r)-constrained path requires the path to be
almost straight, while the second condition requires consecutive points in the path to be
close enough. The example in Figure 5 shows that it is possible to have two points x and
y on different manifolds for which there is an (α, r)-constrained path between them. The
intuition motivating this definition, however, is that the number of such pairs is small under
Assumption 1.

We now introduce the family of annular proximity graphs with angle constraints (X,ω)
that we study throughout the rest of this section.

Definition 13 (Annular proximity graphs with angle constraints) Suppose that xi, xj
are two data points such that |xi − xj | ≤ ε− or |xi − xj | ≥ ε+, then we set ωij = 0. If
ε− < |xi − xj | < ε+ and there is an (α, r)-constrained path between xi and xj, then we set
ωij = 1, otherwise we set ωij = 0. We refer to this type of graph as an annular proximity
graph with angle constraints.
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Algorithm 1 Annular proximity graph with angle constraints

Input: source nodes y1, y2; data points {yi}ñi=3 such that |yi − y1| ≤ ε+; parameters
ε+, ε−, r, α, where ε+ > ε− > r > 0.
Output: the shortest angle constrained path between y1 and y2.

if |y1 − y2| > ε+ or |y1 − y2| < ε− then
Output w = 0.

end if
Construct r-graph E on {yi}ñi=1, that is eij = 1|yi−yj |≤r.

for eij = 1 and
〈yj−yi,y2−y1〉
|yj−yi|·|y2−y1| < cosα do

Denote eij = 0.
end for
Apply Dijkstra algorithm to find the shortest path between y1 and y2 using E.

In section 3.3 we discuss the computational complexity of building annular graphs with
angle constraints. As discussed there, ω can be constructed following a simple modification
of the constrained Dijkstra’s algorithm from Babaeian et al. (2015); see Algorithm 1. On the
other hand, from a theoretical perspective, we show that with the right choice of parameters
(ε+, ε−, α, r), these graphs satisfy the full inner connectivity and sparse outer connectivity
conditions; the precise statements are contained in Theorem 14 and Theorem 15 below. In
particular, in Theorem 15 (see also Remark 17 and an illustration in Figure 10) we quantify
the benefits of considering annular graphs with ε− ∼ ε+. In section 4.2.1, we revisit the
benefits of considering annular graphs for MMC, this time from a numerical perspective.

Theorem 14 Let nk be the number of data points in X ∩ Mk, let α ∈ [0, π/4) and let
r ≤ Cε+. Then, with probability at least

1− Ckn
2ε+

r
exp

(
−Cknkrmk(tanα)mk−1

)
,

for any two points xi, xj ∈ Ml such that |xi − xj | < ε+, there exists an (α, r)-constrained
path between xi and xj. In the above, Ck is a constant that depends on Mk and ρk.

Theorem 15 Suppose that Assumption 1 and Assumption 2.1, 2.2 hold, and suppose that
Mkl =Mk ∩Ml 6= ∅.

(1) If α < arcsin(
Ck,lr
ε+

) , and r ≤ cε+, then, with probability no less than

1− Ck,ln exp(−Ck,lnmin{rmk−mkl , rml−mkl , εmk+ , εml+ }),

Nkl, the number of connections between points in X ∩Mk and X ∩Ml, satisfies

Nkl ≤ Ck,ln2 max{rmk−mklεml+ , rml−mklεmk+ }.

(2) If in (1) we further assume the lower bound ε− ≥ cε+, then, with probability no less
than

1− Ck,ln exp(−Ck,lnmin{( r
2

ε+
+rε+)mk−mkl , (

r2

ε+
+rε+)mk−mkl , εmk+ , εml+ }),
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we have

Nkl ≤ Ck,ln2 max{( r
2

ε+
+rε+)mk−mklεml+ , (

r2

ε+
+rε+)mk−mklεmk+ }.

Remark 16 To illustrate our results and obtain concrete error estimates in Theorem 6, for
example, consider the case where all manifolds have the same dimension m. Going back to
the last point in Remark 7, we need to tune the parameters r and α so that N0 � n2εm+2

+

and also, following Theorem 14, we should have nrm tan(α)m−1 � 1. Now, from Theorem

15 it follows that we need r � ε
3/2
+ (assuming the worst case scenario where the dimension

mkl = m−1, and assuming we impose the lower bound on ε−, i.e. we treat ε− ∼ ε+). On the
other hand, if we set sin(α) = C r

ε+
we see from Theorem 14 that we need r2m−1/εm−1

+ � 1
n

(omitting logarithmic terms). Thus, if we take r ∼ ε2
+ and we set ε+ = C

(
1
n

) 1
3m−1 for

large enough constants C we can satisfy all constraints and get from Remark 7 v) the rate
(omitting logarithmic terms):

O

(
1

n1/(3m−1)

)
for the convergence of the eigenvalues of the graph Laplacian on an annular path with angle
constraints towards the eigenvalues of the tensorized Laplacian on M. For comparison,
recall that the convergence rate obtained in Garćıa Trillos et al. (2019) for the regular

convergence of graph Laplacians was O
(

1
n1/(2m)

)
and the convergence rate in Calder and

Garćıa Trillos (2022) is O
(

1
n1/(m+4)

)
. The extra sample complexity in our setting is induced

by the additional mechanism that is needed to collect second order geometric information
around the data in order to separate the underlying manifolds.

Remark 17 From Theorem 15 we can see the quantitative effect of considering a non-zero
ε−. Indeed, when r is taken to be considerably smaller than ε+, the number of faulty con-
nections in the ε− ∼ ε+ setting is much smaller than when ε− = 0 because max{ rε+ , ε+} is
a small quantity. Intuitively, removing points from a base ε-proximity graph should always
reduce the number of faulty connections across different manifolds. However, what Theorem
15 states is that, when combined with the angle constraints , the ratio of faulty connections
erased by removing an inner ball with volume comparable to that of the outer ball is actu-
ally quite significant. This result motivates the theoretical analysis that we present in the
Appendix. In our numerical experiments we illustrate further the superior performance of
our MMC algorithm when we set ε− ∼ ε+. See an intuitive explanation in Figure 10.

Remark 18 It is not difficult to show that in general one can not relax the requirement
that sin(α) � 1 in order to get sparsely outer connected graphs. Indeed, take for example
two flats Mk and Ml with dimension 2 that meet perpendicularly at a straight line `. If
α ≥ c > 0 for constant c, it is straightforward to see that there is a small enough constant c1

(depending on the lower bound for α) such that for all pairs of points x ∈Mk and y ∈Ml

for which
dist(x,Mkl) ≤ c1ε+, dist(y,Mkl) ≤ c1ε+, |x− y| < ε+,
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and for which the angle between y−x and ` is smaller than c1, there is an (α, r) constrained
path between x and y. This situation is illustrated on the left panel of Figure 6. In turn, from
this one can see that the number of connections that a point x ∈ Mk with dist(x,Mkl) ≤
c1ε+ has with points in Ml is O(nε2

+) (i.e. the same order as with points in Mk). In that
case, N0 ∼ n2ε2+1

+ and thus N0/(n
2ε2+2

+ )→∞.

x

y

x

y

Figure 6: If α ≥ c > 0, the number of pairs of points in different manifolds that can be
connected by paths that are almost tangential to the intersection of the manifolds (as on
the left panel) is of the same order as the number of connections between pairs of points
on the same manifold that are within distance ε+ from the intersection of the manifolds.
Notice that this situation may arise as soon as m ≥ 2. For completeness, on the right panel
we illustrate the benign situation of a pair of points on different manifolds that are close
enough to each other and have no constrained path connecting them.

3.1 Proofs of Theorems 14 and 15

Proof [Proof of Theorem 14] Given that the manifold Mk is smooth and compact, and
given that we only consider connecting two points x, y ∈ X ∩Mk when they are within a
small distance ε+ from each other, we can (and will) assume for simplicity thatMk is a flat
of dimension mk. As will become clear from our argument, the reduction to the flat case is
sufficient as all curvature effects only introduce lower order corrections to our estimates.

Consider then the line segment connecting the points x and y and consider also the
cylinder inMk with axis given by the segment y−x and circular base of radius h1 centered
at x and orthogonal to the segment xy; see Figure 7. We split this bigger cylinder into l
parallel smaller cylinders with height h2. The smaller cylinders are labeled as C1, . . . , Cl.
By taking h2 = cr for small enough constant (1/4) > c > 0, h1 = c

2 tan(α)r, and assuming
that |x− y| > 4cr, we can guarantee that

1. l is an odd number.

2. 4h2
1 + 9h2

2 ≤ r2.

3. 2h1
h2
≤ tan(α).

With this construction it is clear that if X ∩Cs 6= ∅ for every even s, then we can construct
an (α, r)-constrained path between x and y; see Figure 7. Notice that if on the other hand
|x− y| ≤ 4cr ≤ r, then x and y can be connected directly.
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Figure 7: This is a valid path between x and y on the flat.

In the more interesting case ε+ ≥ |x − y| > 4cr, the probability that there is at least
one sample from the nk samples in Mk in all the cylinders Cs is no smaller than

1− Ckε+

r

(
1− Ckrmk(tanα)mk−1

)nk = 1− Ckε+

r
exp

(
−Cknkrmk(tanα)mk−1

)
.

By the discussion above, we conclude that the probability that there exists an (α, r)-
constrained path between x and y is no smaller than the above quantity.

To bound from below the probability that all pairs of points x, y ∈ X ∩Mk that are
within distance ε+ are connected by (α, r)-constrained paths it is sufficient to take a union
bound using the above estimates.

Next we study the outer connectivity condition for annular proximity graphs with angle
constraints. We start with a result that applies for all choices of ε− ∈ [0, 1

4ε+] and then
refine the estimates for the case ε− = cε+.

Lemma 19 Suppose that Ml ∩ Mk 6= ∅, and let x ∈ Ml and y ∈ Mk be such that
|x− y| < ε+. Assume that dist(y,Ml) ≥ dist(x,Mk) > r. If y is such that

Ck,ldist(y,Ml)

|x− y|
> sin(α),

then there is no (α, r)-constrained path between x and y; in the above, the constant Ck,l de-
pends on the manifoldsMk andMl through their curvature, the quantity β from Assumption
1, and the curvature of Mkl. In particular, if we set α to be such that sin(α) ≤ Ck,lr

ε+
, then

there is no (α, r)-constrained path between points x and y.

In addition, suppose that x, y are such that dist(y,Ml) ≥ r > dist(x,Mk), sin(α) ≤ Ck,lr
ε+

and |x − y| ≤ ε+. Then the first point of any (α, r)-constrained path connecting x and y
starting from x must belong to Mk.

Proof We denote the closest point in Mkl to y as Oy and the closest point in Mkl to x
as Ox, respectively; uniqueness of these closest points, provided that ε+ is small enough,
is guaranteed by the discussion in Chapter 6 in Lee (2003). Let TMl and TMk be the
tangent planes of Ml and Mk at Ox and Oy, respectively. Let x∗, y∗ be the closest points
from x ∈ Ml and y ∈ Mk to TMl and TMk, respectively. See an illustration in Figure
8. In the remainder of this proof, we assume for the sake of contradiction that there is an
(α, r)-constrained path between x and y.

21
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Figure 8: Illustration of proof for Lemma 19

We start by noticing that y∗ − x∗ can be decomposed as

y∗ − x∗ = y⊥l v
⊥
l + ylvl, (3.1)

for unit vectors v⊥l and vl, where v⊥l is vertical to TMl and vl is tangent to TMl; y
⊥
l and yl

are non-negative scalars. On the other hand, given the angle constraint between manifolds
in the second part of Assumption 1, it is straightforward to show that

|x−Ox| = dist(x,Mkl) ≤ Cdist(x,Mk), (3.2)

for a constant C that depends on β (this constant degenerates as β approaches π/2). A
similar relation holds for dist(y,Oy).

If there exists an (α, r)-constrained path connecting x ∈Ml and y ∈Mk, then the first
segment x̄ = x1−x in this constrained path is such that x1 ∈Ml, because dist(x,Mk) > r.
Denote the closest point to x1 on TMl as x∗1 and in turn define x̄∗ := x∗1 − x∗. Notice that
x̄ satisfies

x̄ = x̄∗ + sxvx, (3.3)

where vx is a unit norm vector vertical to TMl and the scalar sx satisfies

sx ≤ C|x̄| · |x−Ox|+ C|x̄|2 ≤ C|x̄| · dist(x,Mk) + C|x̄|2 (3.4)

because locally around the point Ox the manifold Ml can be represented by a quadratic
function as illustrated in Figure 9. On the other hand, we have

y − x = (y − y∗) + (y∗ − x∗) + (x∗ − x), (3.5)

where

|y − y∗| ≤ C|y −Oy|2 ≤ Cdist(y,Ml)
2. (3.6)
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z
Ox

∆z

Figure 9: A manifold is locally the graph of a function f which can be approximated by a
quadratic function aroundOx, thus we have |f(z)−f(z+∆z)| ≈ |(z−Ox)2−(z+∆z−Ox)2| ≤
C|z −Ox| · |∆z|+ C|∆z|2 . Here we have illustrated the case where f is a scalar function,
and the general case follows by using the scalar case componentwise.

Indeed, the first inequality follows from the quadratic approximation of the manifold around
Oy, the fact that Oy is the closest point to y in Mkl, and the angle constraint between
manifolds in Assumption 1, which allows us to bound dist(y,Mkl) by a constant times
dist(y,Ml). Notice that x∗ − x ⊥ x̄∗ and that |x − x∗| satisfies a similar relationship to
|y − y∗|, namely

|x− x∗| ≤ C|x−Ox|2 ≤ Cdist(x,Mk)
2. (3.7)

Now, since vx is vertical to TMl, we have

〈y − x∗, vx〉 = 〈y − y∗, vx〉+ 〈y∗ − x∗, vx〉 ≤ |y − y∗|+ y⊥l ≤ Cdist(y,Ml)
2 + y⊥l , (3.8)

after using (3.1), 〈vl, vx〉 = 0, and (3.6).

Since x̄ is a segment in the (α, r)-constrained path, we must have

cos(α) ≤ 〈y − x, x̄〉
|y − x| · |x̄|

=
〈y − x, x̄∗〉
|y − x| · |x̄|

+
〈y − x, sxvx〉
|y − x| · |x̄|

. (3.9)

Using the Cauchy-Schwartz inequality and combining (3.3), (3.5), and the fact that x̄ is a
segment in the (α, r)-constrained path, we deduce
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〈y − x, x̄∗〉
|y − x| · |x̄|

=
〈y − y∗ + (y∗ − x∗) + (x∗ − x), x̄∗〉

|y − x| · |x̄|

=
〈y − y∗, x̄∗〉
|y − x| · |x̄|

+
〈y∗ − x∗, x̄∗〉
|y − x| · |x̄|

=
〈y − y∗, x̄∗〉
|y − x| · |x̄|

+
〈ylvl, x̄∗〉
|y − x| · |x̄|

≤ Cdist(y,Ml)
2

|y − x|
+
〈ylvl, x̄∗〉
|y − x| · |x̄|

≤ Cdist(y,Ml)
2

|y − x|
+
|yl|
|y − x|

(3.10)

where the second equality is from 〈x∗ − x, x̄∗〉 = 0, the third equality is from 〈v⊥l , x̄∗〉 = 0,
and the inequalities are from |x̄∗| ≤ |x̄|, Cauchy-Schwartz inequality, and (3.6). On the
other hand, from Cauchy-Schwartz inequality,

〈y − x, sxvx〉
|y − x| · |x̄|

=
〈y − x∗, sxvx〉
|y − x| · |x̄|

+
〈x∗ − x, sxvx〉
|y − x| · |x̄|

≤
C
(
dist(y,Ml)

2 + y⊥l
)
· (dist(x,Mk) + |x|)

|y − x|
+
Cdist(y,Ml)

3

|x− y|

≤ Cdist(y,Ml)
3

|y − x|
+
Cy⊥l · dist(y,Ml)

|y − x|

(3.11)

where the first inequality is from (3.8), (3.7), the assumption dist(x,Mk) ≤ dist(y,Ml),
the fact that |x| ≤ r ≤ dist(y,Ml) , and (3.4); the second inequality is from dist(x,Mk) ≤
dist(y,Ml) and the fact that |x| ≤ r ≤ dist(y,Ml).

Therefore, combining (3.9), (3.10) and (3.11), we obtain

cos(α) ≤ |yl|
|y − x|

+
Cy⊥l
|y − x|

dist(y,Ml) +
Cdist(y,Ml)

2

|y − x|
. (3.12)

Notice that we have used the fact that dist(y,Ml)
2 dominates dist(y,Ml)

3. This is the
case because dist(y,Ml) ≤ ε+ � 1.

From the Pythagorean theorem we have y2
l + (y⊥l )2 = |x∗ − y∗|2. Therefore, we have

y2
l = |x∗ − y∗|2 − (y⊥l )2

≤ (|x− y|+ Cdist(y,Ml)
2)2 − (y⊥l )2

(3.13)

where the inequality is from (3.5), (3.6), (3.7), and the assumption that dist(y,Ml) ≥
dist(x,Mk). Also,

y⊥l = dist(y∗, TMl) ≥ dist(y, TMl)− |y − y∗|
≥ dist(y,Ml)− |y − y∗| − C|x− y|2

≥ dist(y,Ml)− C|x− y|2
(3.14)
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where the first inequality is from the triangle inequality; the third inequality is from (3.6);
the second inequality is obtained as follows: denote the closest point to y in TMl as
PTMl

(y), and let P−1
TMl

(PTMl
(y)) be the point in Ml such that the closest point to

P−1
TMl

(PTMl
(y)) in TMl is PTMl

(y); the existence of the point P−1
TMl

(PTMl
(y)) follows

from the local representation of Ml as a function of points in a neighborhood in TMl

around Ox. Then,

dist(y,Ml)− dist(y, TMl) ≤ |y − P−1
TMl

(PTMl
(y))| − |y − PTMl

(y)|
≤ |P−1

TMl
(PTMl

(y))− PTMl
(y)|

≤ C|PTMl
(y)−Ox|2

≤ C|PTMl
(y)− PTMl

(x)|2 + C|PTMl
(x)−Ox|2

≤ C|y − x|2 + C|x−Ox|2

≤ C|x− y|2.

(3.15)

Similarly, one can derive an upper bound for y⊥l of the form:

y⊥l ≤ dist(y,Ml) + C|x− y|2. (3.16)

Using the condition 1� ε+ ≥ dist(y,Ml) ≥ dist(x,Mk), we infer

sin2(α) ≥ 1−
(
|yl|
|y − x|

+
Cy⊥l
|y − x|

dist(y,Ml) +
Cdist(y,Ml)

2

|y − x|

)2

≥ 1−
y2
l

|y − x|2
−

Cyly
⊥
l

|y − x|2
dist(y,Ml)−

Cdist(y,Ml)
2

|y − x|

≥
(y⊥l )2

|x− y|2
−

Cyly
⊥
l

|y − x|2
dist(y,Ml)−

Cdist(y,Ml)
2

|y − x|

≥ Cdist(y,Ml)
2

|y − x|2
− C dist(y,Ml)

2

|y − x|
,

where the first inequality is from (3.12); we only keep the leading term in the second
inequality; in the third inequality we use (3.13) and dist(x,Mk) ≤ dist(y,Ml), and in
the last inequality we use (3.14), (3.16), and dist(y,Ml) ≤ |x − y| � 1. Noticing that
|y − x| ≤ ε+ � 1, we can further simplify the above inequality as

sin(α) ≥ Cdist(y,Ml)

|y − x|
.

As a consequence, if the above relationship is not satisfied, there can not exist an (α, r)-
constrained path between x and y. This completes the proof of the first part.

For the second part, we assume for the sake of contradiction that there is an (α, r)-
constrained path between x and y such that the first step (starting from x) in the path
belongs to Ml; we call this first step x1. Since the only condition used for dist(x,Mk) in
the first part is that dist(x,Mk) ≤ dist(y,Ml), and this also holds for dist(x,Mk) < r ≤
dist(y,Ml), we can then repeat the same argument as above with x′ = x1 − x to conclude

that if sin(α) < Cdist(y,Ml)
|y−x| , then we would reach a contradiction.
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x1

ϑ

y

x

Figure 10: When dist(x,Mk) ≤ dist(y,Ml) and the first step x1 of a constrained path is on
Mk, the angle ∠x1xy is larger than the angle ∠x1yx. This means that the value of ∠x1xy
dictates whether the path satisfies the angle constraints or not. In turn, we see that for
points x, y with a larger value of |x−y| this angle will be larger than when |x−y| is smaller,
making it easier for the angle condition to detect that x, y are in different manifolds when
their distance is larger.

The next lemma helps us justify why, for the multi-manifold clustering problem, choosing
ε− of the same order as ε+ is better than choosing ε− = 0 (or in general ε− much smaller
than ε+). Intuitively, as illustrated in Figure 10, by directly omitting connections between
points that are too close to each other we can remove edges between points on different
manifolds that the angle constraint condition may not be able to remove. We quantify the
gain of considering this step in the next lemma.

Lemma 20 Suppose that Ml ∩Mk 6= ∅ and let x ∈ Ml and y ∈ Mk be such that ε− <
|x− y| < ε+, where ε− = cε+. Let α > 0 be such that

sin(α) <
Cr

ε+
.

If dist(x,Mk) > C( r
2

ε+
+ rε+) and dist(y,Ml) > r, then there can not exist an (α, r)-

constrained path between x and y.

Proof If dist(x,Mk) > r, then by Lemma 19 there can not exist an (α, r)-constrained path
between x, y. Thus, without the loss of generality we can assume that dist(x,Mk) ≤ r.

Assume for the sake of contradiction that there is an (α, r)-constrained path between x
and y. Denote the closest point to x in Mkl as Ox, and let TMk be the tangent plane to
Mk at Ox (notice that this definition is different from the one in Lemma 19). Let y∗ be
the closest point to y in TMk, and let z be the closest point to x in TMk. Let t := |x− z|
and d := |y∗ − x|; see an illustration in Figure 11. Notice that we have

|y∗ − x| ≥ |y − x| − |y∗ − y| > ε− − Cε2
+ ≥ Cε+, (3.17)
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Figure 11: Illustration of proof for Lemma 20

due to the fact that

|y − y∗| ≤ C|y∗ −Ox|2 ≤ C|y∗ − z|2 + C|z −Ox|2

≤ C|x− y|2 + C|x−Ox|2

= C|x− y|2 + Cdist(x,Mkl)
2

≤ C|x− y|2 + Cdist(x,Mk)
2

≤ C|x− y|2 ≤ Cε2
+.

(3.18)

By the second part of Lemma 19 we know that the first step in the constrained path (starting
from x) must lie in Mk; we denote by x1 this first step and let x∗1 be the closest point to
x1 in TMk. We have

t = |x− z| = dist(x, TMk) ≤ |x− x∗1| ≤ |x− x1|+ |x1 − x∗1| ≤ r + Cr2 ≤ Cr. (3.19)

In fact, |x1 − x∗1| can be bounded by C|x1 − x|2, as it follows from the next computation:

|x1 − x∗1| ≤ C|x1 −Ox|2 ≤ C|x− x1|2 + C|x−Ox|2

= C|x− x1|2 + Cdist(x,Mkl)
2

≤ C|x− x1|2 + Cdist(x,Mk)
2

≤ C|x− x1|2.

(3.20)

In particular, we also have

|x1 − x∗1| ≤ Cr|x− x1|. (3.21)

We will also use the following inequality:

|x− x∗1|2 = |x∗1 − z|2 + |x− z|2 ≤ |x1 − z|2 + 2|x− x1|2 + 2|x1 − z|2

≤ 2|x− x1|2 + 3|x1 − x∗1|2 + 3|x∗1 − z|2 ≤ C|x− x1|2 + 3|x1 − x∗1|2

≤ C|x− x1|2 + C|x− x1|4 ≤ C|x− x1|2,
(3.22)
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where the second to last inequality follows from (3.19) and (3.20).
The angle condition for the constrained path then gives

cosα ≤ 〈y − x, x1 − x〉
|y − x| · |x1 − x|

=
〈y∗ − x, x∗1 − x〉
|y − x| · |x1 − x|

+
〈y − y∗, x∗1 − x〉
|y − x| · |x1 − x|

+
〈y∗ − x, x1 − x∗1〉
|y − x| · |x1 − x|

+
〈y − y∗, x1 − x∗1〉
|y − x| · |x1 − x|

≤ |y
∗ − x| · |x∗1 − x|
|y − x| · |x1 − x|

cosϑ+
〈y − y∗, z − x〉
|y − x| · |x1 − x|

+ Cr

≤ |y
∗ − x| · |x∗1 − x|
|y − x| · |x1 − x|

cosϑ+ C
|y − x|t
|x− x∗1|

+ Cr

≤ d

|y − x|
cosϑ+ C

|y − x|t
|x− x∗1|

+ Cr,

(3.23)

where ϑ is the angle between the vectors y∗− x and x∗1− x as illustrated in Figure 11. The
second inequality is from the fact that 〈z − x∗1, y − y∗〉 = 0, (3.18), and (3.21). The third
inequality is from (3.18) and (3.21); the last inequality is from the following:∣∣∣∣ |y∗ − x| · |x∗1 − x||y − x| · |x1 − x|

− d

|x− y|

∣∣∣∣ =

∣∣∣∣ |y∗ − x|(|x∗1 − x| − |x1 − x|)
|x− y| · |x1 − x|

∣∣∣∣
≤ |y

∗ − x| · |x1 − x∗1|
|x− y| · |x1 − x|

≤ (|y − x|+ |y − y∗|) |x1 − x∗1|
|x− y| · |x1 − x|

≤ C (|y − x|+ |y − y∗|) r
|x− y|

≤ Cr.

In turn, we have

d− |x− y| ≤ |z − y∗|+ |z − x| − |x− y| ≤ t. (3.24)

Combining (3.23) and (3.24), we conclude that

cosα ≤ cosϑ+
Ct

|y − x|
+ C
|y − x|t
|x− x∗1|

+ Cr.

This implies

sin2 α ≥ sin2 ϑ− Ct

|y − x|
− C |y − x|t
|x− x∗1|

− Cr, (3.25)

where we drop some lower order terms.
Since s− Cs3 ≤ sin(s) ≤ s when s ≥ 0 is small enough, we can write (3.25) as,

ϑ− Cϑ3 ≤

√
α2 +

Ct

|y − x|
+ C
|y − x|t
|x− x∗1|

+ Cr
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Let us denote
√
α2 + Ct

|y−x| + C |y−x|t|x−x∗1|
+ Cr by α0.

From a simple geometric observation (just consider the triangles 4xy∗z and 4x∗1xz),
we have

α0 + Cϑ3 > ϑ ≥ arccos
t

d
− arccos

t

|x− x∗1|
=: f(d, t).

When fixing |x−x∗1|, the function f(d, t) is strictly increasing in both coordinates because
∂df(d, t) = t

d2
· 1√

1− t2

d2

> 0 and ∂tf(d, t) = 1√
|x−x∗1|2−t2

− 1√
d2−t2 > 0. In particular,

f(d, t) ≥ f(Cε+, t) because of (3.17). We see that if t > t0, where

t0 :=
C|x− x∗1|ε+ sin(α0 + Cϑ3)√

(ε− − Cε2
+)2 − 2C|x− x∗1|ε+ cos(α0 + Cϑ3) + |x− x∗1|2

,

then
α0 + Cϑ3 ≥ f(d, t) ≥ f(Cε+, t) > f(Cε+, t0) = α0 + Cϑ3,

and thus we would reach a contradiction. A simpler upper bound for t0 is the following:

t0 <
C|x− x∗1|ε+ sin(α0)

ε+ cos(α0)− |x− x∗1|
≤ C|x− x∗1| sin(α0).

In particular, if t > C|x − x∗1| sin(α0), then there can not be an (α, r)-constrained path
between y and x. We can rewrite this condition as

t > C|x− x∗1|(
r

ε+
+

√
t√

|y − x|
+

√
|y − x|

√
t√

|x− x∗1|
+
√
r) (3.26)

where we have used the assumption sinα ≤ C r
ε+

. Notice that the right hand side of the

inequality is an increasing function with respect to |x− x∗1|, so we can replace |x− x∗1| with
the upper bound Cr as in (3.22). Also, using ε− ≤ |y − x| ≤ ε+ and ε− = cε+, we can
change (3.26) to

t > Cr(
r

ε+
+

√
t

√
ε+

+

√
tε+√
r

+
√
r). (3.27)

This in turn can be changed to

t > C(
r2

ε+
+ rε+), (3.28)

after using the fact that r2

ε+
+ rε+ ≥ 2r

√
r. In summary, what we have shown is that if

t = dist(x, TMk) > C( r
2

ε+
+ rε+), then there can not be a constrained path between x and

y.
To finalize the proof, we must now find a condition on dist(x,Mk) that implies (3.28).

For this purpose, we use notation analogous to the one in (3.15) and compute

dist(x,Mk)− dist(x, TMk) ≤ |x− P−1
TMk

(z)| − |x− z|
≤ |P−1

TMk
(z)− z| ≤ C|z −Ox|2 ≤ Cr2,
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where the last inequality is because |z −Ox| ≤ |x−Ox| ≤ Cdist(x,Mk) ≤ Cr. Given that
r2 � rε+, we conclude that

dist(x,Mk) > C(
r2

ε+
+ rε+)

implies (3.28), completing in this way the proof.

With Theorem 14 and Lemmas 19 and 20 in hand we can now prove the main result in
this section.
Proof [Proof Theorem 15]

1. For arbitrary ε− ≤ (1/4)ε+ we can use Lemma 19 and a standard concentration bound
to see that with probability no less than

1− Ck,ln exp(−Ck,lnmin{rmk−mkl , rml−mkl , εmk+ , εml+ },

Nkl, the number of connections between points in X ∩Mk and X ∩Ml, satisfies

Nkl ≤ Ck,ln2 max{rmk−mklεml+ , rml−mklεmk+ }.

2. When we have the lower bound ε− ≥ cε+ we can proceed as above but now using
Lemma 20.

Remark 21 According to Theorem 15, to satisfy the sparse outer connectivity when ε− =
cε+ one needs

n2 max{( r2ε+ + rε+)mk−mklεml+ , ( r
2

ε+
+ rε+)mk−mklεmk+ }

n2εm+2
+

→ 0. (3.29)

In the worst case for (3.29), one requires

r � min{εm+1−minlml
+ , ε

m+3−minl ml
2

+ }, (3.30)

which is a quite restrictive condition when there is a large discrepancy between the dimen-
sions of the manifolds, as one would require a very small value of r and in turn a very large
number of data points for condition (3.30) to be satisfied while simultaneously satisfying
the inner connectivity condition. The above estimate, however, is quite pessimistic, and in
particular assumes that all manifolds intersect with each other. In general, one can replace
minlml with the minimum dimension of manifolds that actually intersect the manifolds
with larger dimension. If the gap between m and this restricted minimum is not too large,
from moderate number of samples we would expect the spectral clustering algorithm with
path constraints to be able to separate the data coming from manifolds with larger dimen-
sion from the rest of the data set. At that stage, one can consider a new iteration of the
algorithm, this time with a data set with fewer points and with a smaller largest dimension.
The exploration of this iterative pruning strategy is beyond the scope of this work.
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3.2 A local PCA approach to MMC

An alternative spectral approach to the multimanifold clustering problem that is popular
in the literature (e.g. see Arias-Castro et al. (2017)) is based on building weights ωij that
depend on the level of alignment of local tangent planes around nearby data points. To
be precise, as in the path-construction from section 3 we only consider giving an edge to a
pair of data points xi, xj if ε− < |xi − xj | < ε+. If this condition is satisfied, we then set
ωxixj = 1 provided that the angle between T̂xi (a local tangent plane around xi) and T̂xj
is smaller than a certain threshold, and otherwise we set ωxixj = 0. These local “tangent”
planes can be constructed from the observed data using local PCA. Namely, the idea is
to run PCA with the data set X ∩ B(xi, r) for some small enough r in order to obtain a
collection of principal directions which are then used as generators for the plane T̂ (xi); see
Arias-Castro et al. (2017) for more details.

Using the estimates from Arias-Castro et al. (2017) (and some additional computations)
it is possible to show that the local PCA graph construction satisfies the sparse outer
connectivity condition (with very high probability), provided that the parameter r is tuned
appropriately. However, from a theoretical perspective, one should not expect that the
full inner connectivity holds with high probability. This is an observation already made in
Arias-Castro et al. (2017) (although not with the exact same words). Indeed, let xi be a
point in the manifoldMl that is close to the intersection ofMl andMk (closer than r). For
points xj ∈Ml within distance ε+ from xi and away enough from the intersectionMk∩Ml,
we expect their PCA-based tangent planes to resemble those of the actual manifold Ml at
those same points (if r has been chosen so that there is consistency in the approximation of
tangent planes). However, xi’s empirical tangent plane will be influenced by the presence of
the points inMk that belong to the ball B(xi, r) and thus one should not expect this plane
to be aligned with the planes of all the other points xj ∈Ml lying nearby. In contrast, the
full inner connectivity for the path-based graph construction from section 3 just depends
on the points on each single manifold: having additional points can only help with the full
inner connectivity (more points means more possible paths) but never tamper with it.

One of the implications of the above discussion is that the local PCA approach to MMC
may in principle produce more clusters than desirable, and for example groups of points that
lie close to the intersection of two manifolds may form their own clusters; see the discussion
in section 3 in Arias-Castro et al. (2017). It is thus possible that some of the manifolds
get split into different components and in particular one may not be able to recover the
multi-manifold structure underlying the data without information on the actual location of
the manifolds’ intersections.

3.3 Computational Complexity of Annular graphs with Angle Constraints

Here we discuss the theoretical computational complexity of building angle-constrained path
proximity graphs in their nearest neighbor version, where we can more directly quantify the
contributions of the different steps in the construction. In this version we substitute all
parameters that have a lengthscale interpretation with parameters that specify the number
of neighbors to a point. Precisely, instead of fixing the two length scales ε+, ε−, we can
alternatively fix two natural numbers k+ > k− and substitute the conditions |y1− y2| > ε+

and |y1 − y2| < ε− in Algorithm 1 with the conditions “neither y1 is one of the k+-nearest
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neighbors of y2, nor y2 is one of the k+-nearest neighbors of y1” and “y1 is one of the k−
nearest neighbors of y2 or viceversa”, respectively. Likewise, the lengthscale r is substituted
with a parameter κ ∈ N, and the second condition in (12) is changed to “xij is one of the
κ nearest neighbors of xij+1 or viceversa”.

Let |V | be the number of neighbors around a point in the base proximity graph, and
let |E| be the number of edges among these neighbors. The computational complexity
of Algorithm 1 is O((|V |+ |E|) log |V |), which is essentially the same as the complexity
of Dijkstra’s algorithm using the Fibonacci heap Fredman and Tarjan (1987). Therefore,
the total computational complexity of constructing k+, k−-graph with angle constraints is
O
(
n(k+ − k−)κk+ log(κk+) + n2 log k+

)
, where O(n2 log k+) is the computational cost of

constructing the k+, k−-nearest neighbor base graph. By using the adapted graph construc-
tion in section 4.2.3, it is possible to speed up the construction to Õ

(
nκk+ + n2 log k+

)
.

If the parameters are chosen as suggested in Remark 16 for the setting of manifolds with
the same dimension m, i.e. we use vmε

m
+ = k+, vmε

m
− = k−, and vmr

m = κ, then the
computational complexity of the adapted method and Algorithm 1 are, in terms of the

total number of data points, Õ
(
n

6m−3
3m−1 + n2

)
and Õ

(
n

8m−4
3m−1

)
, respectively. In contrast, the

computational complexity of building a vanilla k-nearest neighbor graph is O(n2 log k) by
using a priority queue structure. Therefore, by using the adapted structure for the angle-
constrained path construction, we can build graphs at the same computational complexity
as the one for vanilla k-nearest neighbor graphs. It is worth highlighting that once the
similarity matrix has been constructed, the computational complexity for the eigendecom-
position needed to run spectral clustering will typically depend on the level of sparsity of the
input weight matrix ω. In this regard, it is important to notice that the angle-constrained
graph will always be sparser than its base proximity graph. Finally, we remark that our
algorithm may not be as efficient in practice as the previous theoretical analysis would sug-
gest because, in general, we need to use denser graphs than if no curvature constraints were
imposed. In this regard, the use of landmark points in the algorithm by Babaeian et al.
(2015) is an alternative to speed up the computation, although at the expense of weaker
theoretical consistency guarantees.

4. Numerical experiments

The purpose of this section is twofold. On the one hand, we want to explore the limitations
and difficulties that may arise when using the MMC methodologies based on spectral clus-
tering with path-based graphs that we have introduced in section 3. On the other hand, we
want to provide further insights into the theoretical results that we have presented through-
out the paper. We present a series of numerical experiments aimed at achieving these two
goals. In addition, at the end of this section we compare the performance of spectral clus-
tering using path-based graphs with other spectral-based algorithms by testing them on
synthetic and real data sets.

In our experiments, we consider our graph construction directly as presented in section
3, or in its nearest neighbor version as discussed in section 3.3. Unless otherwise noted,
whenever we use the nearest neighbor version of our algorithm we will select k− = 2/3k+

and tune k+ in order to minimize the misclustering rate of the output clusters. In the toy
examples where we use the (ε+, ε−) version of our algorithm, we tune ε+ and ε− so that
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vmε
m
+ =: k+ ∈ N and vmε

m
− =: k− ∈ N, where vm is the volume of the unit ball in Rm. The

other parameters in the algorithm, α and κ (or r), are tuned to minimize the misclustering
rate. 1

4.1 Bottlenecks and multiple manifolds

Our theoretical results imply that the spectra of suitable graphs resemble the spectrum
of a tensorized Laplacian on the union of smooth manifolds underlying the data set. In
particular, when using spectral clustering on finite data sets with a multi-manifold structure,
it is possible to obtain a partition of the data into multiple smooth manifolds and/or into
regions that are separated by thin bottlenecks. In this section we explore numerically the
“confounding” role that bottlenecks may play in MMC.

First, let us consider the bottle and plane example illustrated in Figures 12, 13, and
14. There, data set X is sampled uniformly from the set M = M1 ∪M2, where M1 is a
plane and M2 is a 2-dimensional dumbbell with a bottleneck at its center. A graph (X,ω)
has been constructed as in section 3 for appropriate values of ε−, ε+, r, α. Intuitively, this
graph should help identify the two manifolds given that they meet perpendicularly (i.e., β
is zero in (2.2)). On the other hand, the same graph captures the internal geometry ofM2

and thus should also detect the bottleneck in M2. Figure 12 shows the sign of the first
non-trivial eigenvector of the graph Laplacian, which, as we can observe from the picture, is
able to detect the bottleneck. Figure 13 shows the sign of the second non-trivial eigenvector
(orthogonal to the first non-trivial eigenvector). In our experiments, our graph Laplacian’s
first two non-zero eigenvalues are close to zero, and their relative difference is quite small
compared to the relative difference between the second and third non-zero eigenvalues. The
partition illustrated in Figure 13 is not directly interpretable. However, when considering a
suitable linear combination of the first and second non-trivial eigenvectors, we recover the
partition illustrated in Figure 14 which correctly separates the two manifolds. This linear
combination is obtained by minimizing the Ratio cut functional (see Von Luxburg (2007)
for a definition) among all the partitions induced by norm one linear combination of the
first two non-trivial eigenvectors. In this case, it is a simple one-dimensional search.

This example illustrates that bottlenecks are indeed confounders for MMC when using
spectral methods. Still, even in the presence of competitor bottlenecks, we see that the graph
Laplacian’s spectrum possesses the information needed to recover the desired partition of
the data, and the combination of spectral clustering with Ratio cut minimization is shown
to help in the detection of the desired partition. Warm start initialization for balanced
cut minimization using spectral clustering has been considered in the literature before (e.g.
Bresson and Laurent (2012); Bresson et al. (2013a,b, 2012a,b)).

Another example where multiple manifolds and bottlenecks are present is the one illus-
trated in Figures 15 and 16 which we will refer to as the dollar sign example. We again
build the graph Laplacian as in section 3. Figure 15 shows the sign of the first non-trivial
eigenvector, which, as we can observe, can detect the “bottleneck” at the center of the dol-
lar sign shape. Figure 16 shows the sign of the second non-trivial eigenvector. Notice that
the multi-manifold structure is identified correctly using this eigenvector. In this exam-

1. The implementation of our algorithm can be found in github.com/chl781/manifold-clustering
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Figure 12: Ratio cut: 0.129 Figure 13: Ratio cut: 0.240 Figure 14: Ratio cut: 0.083

ple, the partition induced by the second non-trivial eigenvector is a minimizer of the Ratio
cut functional among partitions induced by linear combinations of the first two non-trivial
eigenvectors. For comparison, in Figures 17 and 18 we illustrate the partitions induced by
the first and second non-trivial eigenvectors of a graph Laplacian on a standard ε-graph
with no path constraints. We can see that with that graph construction we can not retrieve
the desired multimanifold structure.

Figure 15 Figure 16 Figure 17 Figure 18

In Figures 15 and 16 2nd and 3th eigenvectors from annular graph with angle constraints.
In Figures 17 and 18 2nd and 3th eigenvectors from standard ε-proximity graph.

Remark 22 When using ratio cut for MMC the important energy to consider is the cut
functional/total variation functional:

TVn(u) ∼ 1

n2εm+1
+

∑
i,j

ωij |u(xi)− u(xj)|.

Notice that the correct scaling factor 1
n2εm+1

+

for TVn is different from the one for the graph

Dirichlet energy which scales like 1
n2εm+2

+

(see (A.2) in the Appendix). In general, this

discrepancy in scaling factors explains the superior performance of Ratio cut over spectral
clustering on MMC problems. To see this, we return to the discussion in Remark 18,
and notice that in order to create a very cheap balanced cut that captures the multi-manifold
structure underlying the data it is sufficient to choose the angle α to be small enough without
making it arbitrarily small.

While in general ratio cut minimization is expected to be superior to spectral clustering
from a theoretical perspective, it is at the algorithmic level that ratio cut is less appealing.
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In general, using spectral clustering as a warm start for ratio cut minimization is a reason-
able strategy to consider as we have illustrated in the dumbbell-and-plane and dollar sign
examples.

4.2 Comparison of different proximity graphs

We consider the setting illustrated in Figures 19 and 20 where we have generated 6500 points
on the horizontal line and 2000 points on the vertical line, i.e., an uneven setting. We can
see that when we add angle constraints to a k+, k−-NN base graph, we do not recover the
two lines as we do when we use the ε+, ε−-graph setting. The outcomes illustrated here are
markedly different from the ones in the even case where the NN approach provides more
stable results, as is the case with vanilla spectral clustering using a standard k-NN graph.
The reason is that around the intersection of the two lines, a k-NN neighborhood of a point
in the vertical line mostly picks points in the horizontal line (since there is a higher density
of points there), which results in very few connections with other points on the vertical line.

In general, we expect the NN setting to struggle in settings where the densities of points
are different around the intersections of the manifolds, as illustrated by the “inclusion
problem” in the setting from Figures 21 and 22. In Figure 21 we illustrate the clusters
output by spectral clustering in the path constrained NN setting. We see that the part of
the plane contained inside the cone has been merged with the cone despite the fact that
a strong angle constraint was used. The points in the inner part of the plane around the
boundary have many more nearest neighbors in the cone than in the external portion of the
plane, thus effectively discarding connections that would otherwise keep the plane better
connected (as it is the case with the ε+, ε− construction as shown in Figure 22).

We remark that the effect of density in clustering can be reduced by considering suitable
normalized versions of proximity graphs as in Coifman and Lafon (2006), where in particular
one can take the random walk Laplacian associated to a new set of weights ωαij of the form:

ωαij =
ωij
dαi d

α
j

,

for some α ∈ (0, 1], where di and dj are the degrees of xi and xj relative to the original
weight matrix ω. It is possible to show that with the choice α = 1 one can effectively remove
the effect of density in clustering. We notice that in the multi-manifold clustering setting,
when manifolds have different dimensions, the role of density is more severe than when
manifolds have the same dimension. This is because we are assuming that the number
of points in each manifold is roughly the same, and so, densities on smaller dimensional
objects tend to be considerably larger than densities on larger dimensional objects. The
use of appropriate normalized Laplacians may thus help considerably with multi-manifold
clustering problems.

4.2.1 Role of ε− in annular graphs

Here we illustrate the effect of ε− in the performance of spectral clustering. We focus on
two possible choices: ε− = 0 Vs ε− ∼ ε+. We consider points uniformly sampled from two
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Figure 19: k+, k− NN with angle
constraint

Figure 20: ε+, ε− graph with angle
constraint

Figure 21: k+, k− NN setting with
angle constraint

Figure 22: ε+, ε− graph with angle
constraint

intersecting 2-dimensional spheres with radius 1 and distance between their centers equal
to 0.6 as illustrated in Figures 24 and 23. We can observe the discrepancy between the
clusters obtained in both settings and how when we set ε− ∼ ε+, the two manifolds are
correctly identified. ε+ is the same in both cases.

Notice that our theory shows that, in principle, any choice of ε− (not too close to ε+)
can provide correct identification of the manifolds as long as the number of samples is large
enough. On the other hand, our theory also suggests that a non-zero ε− can reduce the
error of approximation (see Remark 17) as more faulty connections can be removed between
points that are too close to the intersection. Our numerical experiments complement our
theoretical findings.

Figure 23: (k+, 0)-graph
with angle constraint

Figure 24: (k+,
2k+

3 )-graph
with angle constraint
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4.2.2 Path constraint graphs Vs other proximity graphs: self-intersections

In general, the use of fully inner connected and sparsely outer connected graphs on data
sets imposes a specific geometric structure on the set M that is not necessarily inherited
from the ambient space Rd. This is true in the multi-manifold setting or even in the case
of a single self-intersecting manifold (a setting not considered in our theoretical results).
Take for example the self-intersecting manifold illustrated in Figures 25-27. When running
spectral clustering with the annular graph with angle constraints, we get a partition of the
data corresponding to the one we would have obtained when clustering a one-dimensional
curve with no self-intersections. This is illustrated in Figure 25. Figures 26 and 27, on
the other hand, show the clusters obtained when running spectral clustering based on a
standard k-NN graph and a standard ε-proximity graph respectively. As can be observed,
these partitions are markedly different from the one in Figure 25. Notice that the MMC
method can detect the self-intersection point in the manifold from this example.

Figures 25-27 illustrate the effect of different graphs on the output clusters. Likewise, dif-
ferent graphs capture the underlying manifold differently when using higher eigenmodes to
summarize additional geometric content (a specific geometric content) of the self-intersecting
manifold.

Figure 25: ε+, ε−-graph
with angle constraint

Figure 26: standard k-NN Figure 27: standard ε-
neighbor

4.2.3 Other path algorithms

The path-based similarity weights we study in this paper are inspired by an algorithm
proposed in Babaeian et al. (2015). There, a less stringent notion of a “smooth” discrete
path is used to construct a proximity graph on the data set. In our construction, we force
discrete paths to satisfy that every line segment in the path must be aligned with the segment
connecting the first and last point in the path (i.e., essentially requiring a straight path). In
contrast, in Babaeian et al. (2015) the constraint is that any two consecutive segments in
the path must be aligned (i.e., a path that does not turn too quickly). It is straightforward
to see that when two manifolds with a dimension larger than two intersect, it is possible to
construct paths connecting points in the two manifolds that meet the criterion in Babaeian
et al. (2015) but not our criterion. In summary, the more stringent constraint we impose
helps remove more connections (faulty and correct). The removal of faulty connections
seems more significant, and overall, our path algorithm outperforms the one in Babaeian
et al. (2015).
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Another sensible path algorithm to build graphs for MMC is to directly find geodesic
paths along the graph using Dijkstra’s algorithm and then check whether they satisfy the
angle constraints or not. The theoretical analysis for this approach is more involved since one
needs to check that geodesics do satisfy the angle constraint in the cases where one expects
them to (i.e., when connecting two points on the same manifold). Still, in practice this graph
construction behaves comparably to the path algorithm we analyze mathematically. Our
path construction and the geodesic based one are two examples of a more general procedure
where one seeks a path that connects a pair of points satisfying the angle constraints and
whose length is no larger than a constant parameter times the geodesic distance along the
path between the two points. This construction can be analyzed by combining ideas similar
to the ones we have presented in section 3 with some analysis of the geodesic distance in a
proximity graph.

4.3 Sensitivity of theoretical assumptions

4.3.1 Angles

We test the performance of spectral clustering on an annular graph with angle constraints
when trying to separate manifolds as their angles of intersection decrease (i.e. β in (2.2)
grows). In our experiment, we consider the simple setting of two intersecting planes. We see

Figure 28: 75◦ Figure 29: 50◦ Figure 30: 30◦ Figure 31: 10◦

that in Figures 28-30 we recover the two planes, while in Figure 31 we do not. The results
here are reasonable because when the angle of intersection is too small, a much smaller
threshold value for the angle constraint is needed to discriminate different manifolds at the
expense of removing connections between points that should have been connected otherwise.
For these experiments we have used the NN version of our algorithm.

4.3.2 Orthogonal noise

In our theoretical results, we assumed data points to lie exactly on top of a set of the form
M = M1 ∪ · · · ∪ MK . However, a natural question is whether spectral clustering with
the similarity graph constructed with the path algorithm continues to perform well when
orthogonal noise is added to the data. Figures 32 and 33 show two examples of data sets
contaminated by orthogonal noise. In both cases, the multi-manifold structure is readily
apparent: three intersecting lines at a single point. However, in the setting depicted in
Figure 33, where the noise level is large, we see that the path algorithm does not recover the
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multi-manifold structure correctly. This suggests that the path algorithm is quite sensitive
to noise. For these experiments we have used the NN version of our algorithm.

We can use the number of connections to see how much the noise affects the algorithm.
For example, in Figure 33, where we exhibit the clean data, the total number of connections
between data points is 579208, while the number of faulty connections is 1126. When noise
is added, the number of total connections is 193426, while the number of faulty connections
is 5414. That is, in general, we expect noise to worsen both inner and outer connectivities.

A potential remedy is to pre-process the data set by running a denoiser. However,
some naive denoising methods, including the centering method or projected PCA, do not
improve the performance. In Figure 34 we illustrate the outcome of spectral clustering on an
annular proximity graph with angle constraints on the denoised data set. Specifically, using
the centering method, the total number of connections was 215260, and the number of faulty
connections was 5418. For the projected PCA method, the total number of connections is
271498, and the number of faulty connections is 6956. Roughly speaking, these methods can
improve the inner connectivity while worsening the outer connectivity. How to implement
a good denoising strategy in the MMC setting is an interesting direction to explore.

Figure 32: Small Perturba-
tion

Figure 33: Large Perturba-
tion

Figure 34: After denoising

4.3.3 Small Vs large number of data points

In this section, we consider data sets supported on the union of three intersecting planes as
illustrated in Figures 35 and 36. In both figures, the underlying planes are the same, and
the only thing that changes from one figure to the other is the sample size.

Figure 35: n data points Figure 36: 2n data points
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As can be observed, the three planes are not appropriately identified in the small sample
size regime from Figure 35. In contrast, when we duplicate the amount of data as in Figure
36 the three planes are identified correctly.

This simple example illustrates some crucial drawbacks of the MMC methods based on
spectral clustering discussed throughout the paper. In order to correctly construct local
paths (or local tangent planes) to, in turn, detect the underlying manifolds, one needs to
consider a large enough neighborhood around every point containing enough samples for
the variance of the estimation to be small at the expense of increasing the bias considerably.
Building MMC methods that can operate at smaller sample sizes is an interesting direction
to explore in future research. For example, one could attempt to design a hybrid method
that uses both path-based and local tangent plane information to make the method more
robust to lower sample size; this is motivated by the fact that local PCA approaches can
more accurately operate at smaller sample sizes when considering points that are far away
from the intersection of manifolds.

4.4 Different dimensions

In section 2.4 we presented a series of theoretical results for multi-manifold clustering when
M is the union of smooth manifolds with different dimensions. We now illustrate these
results with a few simple numerical examples.

4.4.1 Planes and lines

We consider a data set uniformly sampled from the union of two planes and two lines
that meet orthogonally, as illustrated in Figures 37-40. We run spectral clustering with
K = 2, 3, 4, 5 to understand how the geometries of the manifolds get captured.

Figure 37: 2 Clusters Figure 38: 3 Clusters Figure 39: 4 Clusters Figure 40: 5 Clusters

In Figure 37, when we consider K = 2, the whole data set splits into two parts: lines
and planes, indicating that manifolds with different dimensions are separated, and manifolds
with the same dimension are put into the same cluster. In Figure 38, when we try K = 3
clusters, the two planes get separated perfectly while the lines are clustered as one; this is
supported by our theory which indeed suggests that the geometry of the higher dimensional
objects is detected first. When K = 4, lines get separated as shown in Figure 39. The case
K = 5 illustrates the theory developed in this paper quite well. It shows how the internal
geometry of the higher dimensional manifolds (in this case, the planes) is detected because
the internal geometry of lines is more expensive than planes.
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Another illustration of the behavior of spectral clustering with constrained annular prox-
imity graphs is presented in Figures 41- 43. Here the data set is supported in the union of
a 2-dimensional sphere and three lines that connect at one point. The same observations
we made in the planes and lines example also apply to this setting.

Figure 41: 2 clusters Figure 42: 3 clusters Figure 43: 4 clusters

4.5 Comparison with other MMC approaches

In this section, we compare the performances of spectral clustering using annular proximity
graphs with angle constraints, SMCE (Sparse Manifold Clustering and Embedding) Elham-
ifar and Vidal (2011), and SC with local PCA Arias-Castro et al. (2017); both SMCE and
SC with local PCA have been designed for MMC tasks. For SMCE, we follow the param-
eter choices in Elhamifar and Vidal (2011) and grid search for optimal parameters. For
local PCA, we follow the parameter setting as in Arias-Castro et al. (2017) and tune the
radius parameter and dimension by running a grid search to get the lowest misclustering
rate. Since the algorithm in Arias-Castro et al. (2017) is a randomized algorithm, we run
the algorithm 100 times and report the average misclustering rate. We use both k-NN and
ε graphs in the setting of Arias-Castro et al. (2017) and report the results of the best per-
forming settings. For SC with the constrained path algorithm, we use its nearest neighbor
version as discussed at the beginning of section 4. We first compare all algorithms when we
run them on synthetic data sets and then conduct a comparison when running them on the
MNIST data set.

4.5.1 Synthetic data sets

We generate data points from five different settings of intersecting manifolds; see Table
1. We see that SC with the angle-constrained path algorithm achieves, overall, the lowest
misclustering rate, outperforming the competing algorithms. We can see that SC with
local PCA can work well for the settings of 2 spheres and 1 sphere with 1 plane; in those
settings, most misclustered points are points close to the intersections of manifolds. For
the 3 planes example from section 4.3.3, i.e. three planes intersecting at the same line,
we sample 3000 points. Local PCA has particular difficulty distinguishing points close to
the intersection, and only until the sample size has been increased considerably we recover
the correct clustering with that algorithm. The 2 planes with 1 line and 1 sphere with 1
line examples are used to evaluate the performance of the algorithms when manifolds have
different dimensions, a setting that is not the original target of Arias-Castro et al. (2017),
where a dimension parameter must be chosen. On the other hand, SMCE is not particularly
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designed to handle intersecting manifolds, and we see the overall low performance in most
of the experiments run.

Algorithm 3planes 2spheres 2planes 1line 1sphere 1line 1sphere 1plane

path 14.72% 0.49% 0.38% 0.22% 0.78%

SMCE 48.9% 16.2% 31.1% 26.8% 42.7%

local PCA 43.66% 3.1% 32.17% 16.43% 1.19%

Table 1: Misclustering rate

4.5.2 MNIST

In this section we compare misclustering rates when we test algorithms on subsets of the
MNIST data set consisting of different pairs of digits. Following the same preprocessing
step as in Babaeian (2018), we first utilize the SURF feature of the Bag of words model to
represent the features of each image. The original feature vectors have a size of 500. Then,
for some pairs of digits, we use PCA to reduce the dimension of the image vector to 10. In
the final step we apply the unsupervised algorithms to the data sets. We only present the
results for some examples of pairs of digits for brevity (see Table 2), but similar observations
to the ones that we discuss below can be drawn from other choices of digits. Like in the
synthetic data experiments, we grid search the optimal parameters for every algorithm and
for every task. In all the tasks considered in this section we also run vanilla SC algorithm
with a standard kNN graph, tuning k to achieve the best misclustering rate. In contrast to
the experiments in section 4.5.1, here it is not clear that the considered data sets possess
an underlying multi-manifold geometric structure.

SC with the angle-constrained path algorithm can be seen as a generalization to vanilla
SC, and we can see that it improves SC significantly in some tasks, such as clustering
between digits [0,2], and at least behaves comparably to vanilla SC in other tasks; pre-
sumably, the improved performance over vanilla SC is manifested when the data manifolds
corresponding to different digits do intersect. Notice that for the [0,7] digits SC with path
algorithm and vanilla SC fail, while SMCE does perform very well. Overall, local PCA
performs poorly for the tasks discussed here.

We want to highlight that the performance of the MMC algorithms that we have com-
pared in these experiments may strongly depend on the manifold assumption (which may
not hold on first place), and thus, if one was to stick to the theoretical assumptions discussed
in this paper, one would need to guarantee, for example, that the data embedding methods
in the preprocessing steps preserve or enhance these assumptions. The experiments that we
have considered here are thus not meant to suggest that one algorithm is always better than
the others. Instead, we wanted to evaluate the performance of algorithms with theoretical
guarantees such as SC using path-based graphs on real data sets to test their capabilities
and highlight that other methods used in the literature may underperform in some standard
real data tasks.
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Algorithm [0,1] [0,2] [0,3] [0,4] [0,5] [0,6] [0,7] [0,8] [0,9]

path 14.0% 5.6% 1.9% 1.8% 2.6% 7.7% 46.4% 9.7% 1.9%

local PCA 6.4% 25.9% 30.0% 45.5% 34.8% 34.5% 34.1% 26.6% 25.1%

SMCE 20.0% 25.5% 6.9% 9.2% 24.1% 12.1% 2.9% 17.8% 3.8%

SC 18.8% 12.8% 1.8% 2.2% 2.6% 10.0% 46.4% 11.8% 2.3%

Table 2: Misclustering rates for some subsets of MNIST
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Appendix A. Proofs of main results

A.1 Discrete Dirichlet energies

It is well known that an operator like Lε+,ε− (defined in (2.7)) is positive semi-definite with
respect to 〈·, ·〉L2(µn) (e.g. Von Luxburg (2007)); here and in the remainder we use µn to
denote the empirical measure of X. Notice that Lε+,ε− ’s eigenvalues, labeled in ascending
order as

0 = λ
ε+,ε−
1 ≤ λε+,ε−2 ≤ λε+,ε−3 ≤ · · · ≤ λε+,ε−n ,

can be characterized variationally according to the Courant-Fisher minmax principle:

λ
ε+,ε−
l = min

S∈Gl
max

u∈S\{0}

bε+,ε−(u)

‖u‖2
L2(µn)

, (A.1)

where Gl denotes the set of all linear subspaces of L2(µn) of dimension l. Here, bε+,ε− is the
Dirichlet energy:

bε+,ε−(u) : =
1

n2(εm+2
+ − εm+2

− )

∑
xi,xj∈Xn

ωxixj (u(xi)− u(xj))
2 =

1

2
〈Lε+,ε−u, u〉L2(µn) (A.2)

where u ∈ L2(µn).
We introduce inner and outer weights associated to the ω defined as ωIxixj = ωxixj

and ωOxixj = 0 when xi, xj belong to the same manifold, and ωIxixj = 0 and ωOxixj = ωxixj
otherwise. With this notation in place, we can introduce outer and inner Dirichlet energies
associated to Lε+,ε− according to:

b
ε+,ε−
O (u) : =

1

n2(εm+2
+ − εm+2

− )

∑
xi,xj∈Xn

ωOxixj (u(xi)− u(xj))
2,

b
ε+,ε−
I (u) : =

1

n2(εm+2
+ − εm+2

− )

∑
xi,xj∈Xn

ωIxixj (u(xi)− u(xj))
2.

(A.3)

Clearly bε+,ε− = b
ε+,ε−
O + b

ε+,ε−
I .

It will be convenient for our analysis to decompose b
ε+,ε−
I further and write it as the sum

of Dirichlet energies associated to each of the manifoldsMk. For that purpose we split the
data set X into disjoint sets X =

⋃N
k=1Xk, where each of the Xk can be taken to be, without

the loss of generality, equal to Xk = X∩Mk (this is due to the first condition in Assumption
1 which implies that with probability one no xi belongs to two or more of the Mk). It is
worth highlighting that the previous partitioning of the data makes sense mathematically
even if it is not meaningful in practice (because we do not know the manifolds Mk). In
what follows and whenever needed we list the points in Xk as {x1k, x2k, · · · , xnkk} and use
µnk to denote their associated empirical probability measure. The number of data points
in Mk, i.e. nk, is easily seen to satisfy Enl = nwl. Moreover, the following concentration
estimate holds.

Proposition 23 With probability no less than 1− 2 exp
(
−2t2

n

)
, we have

nwi − t < ni < nwi + t. (A.4)
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The graph Dirichlet energy associated to an individual manifold is defined by

b
ε+,ε−
l (ul) :=

1

n2
l (ε

m+2
+ − εm+2

− )

∑
xi,xj∈χln

ωxixj (ul(xi)− ul(xj))2, ul ∈ L2(µnl ). (A.5)

It follows that

b
ε+,ε−
I (u) =

N∑
l=1

(
n2
l

n2

)
b
ε+,ε−
l (ul), u ∈ L2(µn),

where in the above and in the remainder we identify a function u : X → R with a tuple
(u1, . . . , uN ) where each of the uk is a function from Xk into R.

Remark 24 The local discrete Dirichlet energies b
ε+,ε−
k are similar to discrete Dirichlet

energies that have been studied in the literature under the smooth manifold assumption.
There is however an important difference. Indeed, although the weight matrix ω is assumed
to satisfy the full inner connectivity condition, i.e. with high probability the weights ωxixj
can be thought of as those coming from a proximity graph, the type of proximity graph that
we consider here is not standard since it is built with a kernel that has annular geometric
structure. This type of kernel has not been considered nor analyzed before. As observed
intuitively, as well as in our experiments, the idea of removing connections between points
that are too close to each other significantly helps in reducing the number of connections be-
tween points in different manifolds, a feature that is useful for the multi-manifold clustering
problem.

A.2 Discretization and interpolation maps

Our first goal is to find a quantitative relationship between the Dirichlet energies D and
bε+,ε− via two conveniently chosen maps P : L2(µ)→ L2(µn) and I : L2(µn)→ L2(µ). We
look forward to obtaining inequalities of the form:

σηD(Iu) ≤ (1 + e1)bε+,ε−(u); bε+,ε−(Pf) ≤ (1 + e2)σηD(f) + e3 (A.6)

where e1, e2, e3 are small error terms depending on the problem’s parameters, and ση is the
constant in (2.8).

We start by combining Proposition 2.11 in Calder and Garćıa Trillos (2022) with Propo-
sition (23) to obtain the probabilistic estimates that we use in the remainder to connect
graph-based energies with their continuum counterparts.

Corollary 25 With probability at least 1−
∑N

l=1(nwl+t) exp
(
−C(nwl − t)θ2δ̃ml

)
−2N exp

(
−2t2

n

)
,

there exist:

1. probability density functions ρ̃nl :Ml → R satisfying:

‖ρl − ρ̃nl ‖L∞(Ml)
≤ C(θ + δ̃)

for each l = 1, . . . , N , and also
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2. maps T̃1, . . . , T̃N such that for each l, T̃l : Ml → Xl is the ∞-OT map between
ρ̃nl dvolMl

and µnl , and

sup
x∈Ml

dMl
(x, T̃l(x)) ≤ δ̃.

Each of the maps T̃l in the above corollary induces a partition Ũ1l, . . . , Ũnll ofMl, where:

Ũil := T̃−1
l ({xil}) .

For each l = 1, . . . , N, a (local) discretization map P̃l : L2(µl)→ L2 (µnl ) is defined as

(P̃lfl) (xil) := nl ·
ˆ
Ũil

f(x)ρ̃nl (x)dvolMl
(x), fl ∈ L2(µl), (A.7)

and an associated (local) extension map P̃ ∗l : L2 (µnl )→ L2 (µ̃nl ) defined as

P̃ ∗l u = u ◦ T̃l.

The (global) discretization map P : L2(µ)→ L2(µn) can now be defined according to

Pf := (P1f1, . . . , PNfN )

where f = (f1, . . . , fN ) ∈ L2(µ). In other words, P acts on f according to the coordinatewise
action of the Pl on the fl. Likewise, we may define P̃ ∗ : L2(µn)→ L2(µ) according to:

P ∗u = (P ∗1 u1, . . . , P
∗
NuN ).

We now introduce the interpolation map I : L2(µn)→ L2(µ). This map takes the form
I = ΛP̃ ∗, i.e. it is the composition of the extension map P̃ ∗ and a smoothening operator
that acts coordinatewise. The smoothening operator is chosen conveniently so as to make
the error in the first inequality in (A.6) as small as possible; the first work to our knowledge
that attempted to do something similar when analyzing graph Laplacians is Burago et al.
(2014). To conduct the analysis in our setting we must introduce new constructions and
prove new results given the annular geometry of the kernel used to build the data graph.

Let η : [0,∞)→ R and ψ : [0,∞)→ [0,∞) be the functions given by

η(t) :=

{
1 0 ≤ t ≤ 1

0 t > 1,
ψ(t) :=

1

ση

ˆ ∞
t

η(s)sds, (A.8)

where recall ση was defined in (2.8).
For every r1, r2 such that r1 > r2 we define the function:

Klr1,r2(x, y) :=

(
r2

1

rm+2
1 − rm+2

2

ψ

(
dMl

(x, y)

r1

)
− r2

2

rm+2
1 − rm+2

2

ψ

(
dMl

(x, y)

r2

))
, x, y ∈Ml

which serves as “kernel” and induces the convolution operator:

Λlr1,r2f(x) :=
1

τl(x)

ˆ
Ml

Klr1,r2(x, y)fl(y)dvolMl
(y),
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which acts on functions fl :Ml → R. In the above, τl(x) is a normalization factor given by

τl(x) :=

ˆ
Ml

Klr1,r2(x, y)dvolMl
(y);

notice that Klr1,r2 is non-negative.
We can put together the action of each convolution operator on each of the manifolds

and define:

Λr1,r2f := (Λ1
r1,r2f1, . . . ,Λ

N
r1,r2fN ), f = (f1, . . . , fN ) ∈ L2(µ).

Our global interpolation operator takes the form:

Iu := ΛP̃ ∗u, u ∈ L2(µn);

In the remainder it will be convenient to write the above in coordinates as:

Iu = (I1u1, . . . , INuN ).

Having defined the maps P and I we are now ready to state precisely the connection
between the Dirichlet energies D and b.

Proposition 26 (Inequality for Dirichlet energies) Let ε+, ε−, δ̃, and θ be fixed but
small enough numbers satisfying Assumptions 2. Let b be the Dirichlet energy associated to
the weighted graph (X,ω) defined in (A.2) and D the Dirichlet energy defined in (2.3).

Then, with probability greater than 1−
∑N

l=1(nwl+t) exp
(
−C(nwl − t)θ2δ̃m

)
−2N exp

(
−2t2

n

)
−

C1(n), we have:

(1) For any f ∈ L2(µ),

σηD(Ĩu) ≤

(
1 + C(ε+ +

δ̃

ε+
+ θ + δ̃)

)
bε+,ε−(u)

(2) For any f ∈ L2 (µn),

b
ε+,ε−
I (P̃ f) ≤

(
1 + C(ε+ +

δ̃

ε+
+ θ + δ̃)

)
σηD(f)

In addition, if f is in the span of ∆M’s eigenfunctions with corresponding eigenvalue
less than λ, then:

b
ε+,ε−
O (P̃ f) ≤ CNN0

w2
minn

2(εm+2
+ − εm+2

− )

(
1 + λm/2+2

)
‖f‖2L2(M)

We recall that the quantity N0 was introduced in section 2.1 in Definition 5 and it represents
the largest number of connections in the graph (X,ω) between two distinct manifolds. The
following estimates complement Proposition 26 and essentially state that the maps I and
P are almost isometries.
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Proposition 27 (Discretization and interpolation maps are almost isometries) Let
ε+, ε−, δ̃, and θ be fixed but small enough numbers satisfying Assumptions 2. Then, with

probability at least 1−
∑N

l=1(nwl + t) exp
(
−C(nwl − t)w2

l δ̃
m
)
−2N exp

(
−2t2

n

)
−C1(n), we

have:

(1) For every f ∈ L2(µ)∣∣∣‖f‖2L2(µ) − ‖Pf‖
2
L2(µn)

∣∣∣ ≤ Cδ̃‖f‖L2(µ)

√
D(f) + C(θ + δ̃)‖f‖2L2(µ)

(2) For every u ∈ L2 (µn)∣∣∣‖u‖2L2(µn) − ‖Iu‖
2
L2(µ)

∣∣∣ ≤ Cε+‖u‖L2(µn)

√
bε+,ε−(u) + C(θ + δ̃)‖u‖2L2(µn)

A.3 Preliminary local energy estimates

In order to prove the above results we first establish a sequence of preliminary estimates
on each of the individual manifolds Ml. The results presented in this subsection are inde-
pendent of the fact that all manifolds forming our model (1.2) have the same dimension or
not.

Lemma 28 Suppose 0 < r2 <
1
4r1 are small enough, in particular smaller than half the

injectivity radius of the manifold Ml. Then, there exists an absolute constant C > 0 such
that

(1 + CmlKlr
2
1)−1 ≤ τl(x) ≤ 1 + CmlKlr

2
1, and |∇τl(x)| ≤ CmlKlr1

ση
,

for all x ∈Ml. Here Kl is a uniform bound on the absolute value of sectional curvatures.

Proof First, notice that:

τl(x) =
r2

1

rml+2
1 − rml+2

2

ˆ
Ml

ψ

(
dMl

(x, y)

r1

)
dvolMl

(y)− r2
2

rml+2
1 − rml+2

2

ˆ
Ml

ψ

(
dMl

(x, y)

r2

)
dvolMl

(y)

=
r2

1

rml+2
1 − rml+2

2

ˆ
Bml (0,r1)

ψ

(
|v|
r1

)
Jx(v)dv − r2

2

rml+2
1 − rml+2

2

ˆ
Bml (0,r2)

ψ

(
|v|
r2

)
Jx(v)dv,

where in the above Jx denotes the Jacobian of the exponential map expx : Bml(0, ιl) →
BMl

(x, ιl). Using a standard estimate for the Jacobian, namely

(1 + CmlKl|v|2)−1 ≤ Jx(v) ≤ 1 + CmlKl|v|2, ∀v ∈ Bml(0, ιl/2), (A.9)

we can see that τl(x) satisfies (1 + CmlKlr
2
1)−1Cα ≤ τl(x) ≤ (1 + CmlKlr

2
1)Cα for some

constant C, and for

Cα :=
r2

1

rml+2
1 − rml+2

2

ˆ
Bml (0,r1)

ψ

(
|v|
r1

)
dv − r2

2

rml+2
1 − rml+2

2

ˆ
Bml (0,r2)

ψ

(
|v|
r2

)
dv.

A direct computation using polar coordinates and integration by parts reveals that Cα is
actually equal to one. This establishes the first assertion.
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To obtain the estimate for the gradient of τl(x), we notice that from the the definition of
ψ in (A.8), the chain rule, and the fact that ∇dMl

(·, y)(x) = − 1
dMl

(x,y) exp−1
x (y), it follows:

|∇τl(x)| = 1

ση(r
ml+2
1 − rml+2

2 )

∣∣∣∣∣
ˆ
BMl

(x,r1)

(
η

(
dMl

(x, y)

r1

)
− η

(
dMl

(x, y)

r2

))
exp−1

x (y)dvolMl
(y)

∣∣∣∣∣
=

1

ση(r
ml+2
1 − rml+2

2 )

∣∣∣∣∣
ˆ
Bml (r1)

η

(
|v|
r1

)
vJx(v)dv −

ˆ
Bml (r1)

η

(
|v|
r2

)
vJx(v)dv

∣∣∣∣∣
≤ CmlKlr

2
1

ση(r
ml+2
1 − rml+2

2 )

(ˆ
Bml (r1)

η

(
|v|
r1

)
|v|dv +

ˆ
Bml (r2)

η

(
|v|
r2

)
|v|dv

)

≤ CmlKlr
2
1(rml+1

1 + rml+1
2 )

ση(r
ml+2
1 − rml+2

2 )
≤ CmlKlr1

ση
.

Notice that in the first inequality we have used (A.9) and the radial symmetry of the
integrands (which induces a cancellation). In the last step we used 0 < r2 ≤ 1

4r1.

The next definitions is used in the subsequent lemmas. For every l = 1, . . . , N we define

D̃
ε+,ε−
NL,l (fl) :=

1

εm+2
+ − εm+2

−

ˆ
Ml

ˆ
Ml

[
η

(
dMl

(x, y)

ε+

)
− η

(
dMl

(x, y)

ε−

)]
(fl(x)− fl(y))2

ρ̃nl (x)ρ̃nl (y)dvolMl
(x)dvolMl

(y),

(A.10)

where we recall that the densities ρ̃nl are defined in Corollary 25. We also consider:

Erl (fl) :=

ˆ
Ml

ˆ
Ml

η

(
dM(x, y)

r

)
(fl(x)−fl(y))2ρ̃nl (x)ρ̃nl (y)dvolMl

(x)dvolMl
(y), fl ∈ L2(µl)

(A.11)
Notice that for every r1 > r2 > 0 we have:

(rm+2
1 − rm+2

2 )Dr1,r2
NL,l(fl) = Er1l (fl)− Er2l (fl), fl ∈ L2(µl). (A.12)

Lemma 29 Suppose ε+, ε− satisfy Assumptions 2. Then, there exists a universal constant
C > 0 such that for every 0 < ε− <

1
4ε+ and every fl ∈ L2(µl)

1

εm+2
+ − εm+2

−
E
ε+
l (fl) ≤ C (1 + cρLρl)D

ε+,ε−
NL,l (fl),

where Lρl is a constant depending on ρl.

Proof
The proof is very similar to the one in Lemma 4 in Garćıa Trillos et al. (2019). In that

Lemma the idea is to cover a larger ball with smaller balls and use the triangle inequality.
Here the only difference is that we want to cover a larger ball with a collection of annuli.
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Lemma 30 Suppose that ε+, ε− satisfy Assumptions 2. Then, there exists a universal
constant C > 0 such that

Dl(Λ
l
ε+,ε−fl) ≤ (1 + cρLρlε+)

[
1 + CmlKlε

2
+

(
1 +

√
1 + cρLp

ση

)]
1

ση
D
ε+,ε−
NL,l (fl), ∀fl ∈ L2(Ml, ρl).

We recall that Dl was defined in (2.6) and D
ε+,ε−
NL,l in (A.10).

Proof We can write ∇(Λlε+,ε−fl) as

∇(Λlε+,ε−fl) =
1

τl(x)
Al1(x) +Al2(x),

where

Al1(x) :=

ˆ
RMl

(x,ε+,ε−)
∇Klε+,ε−(·, y)(x) (fl(y)− fl(x)) dvolMl

(y)

and

Al2(x) = ∇(
1

τl(x)
)

ˆ
RMl

(x,ε+,ε−)
Klε+,ε−(x, y) (fl(y)− fl(x)) dvolMl

(y);

here RMl
(x, ε+, ε−) := {x̃ ∈Ml : ε− < dMl

(x, x̃) < ε+}.
We find a bound for |Al1(x)|2; notice that 1

τl(x) ≤ 1 + CmlKlε
2
+ by (28). First, notice

that:

∇Klε+,ε−(·, y)(x) = ∇

[
ε2

+

εm+2
+ − εm+2

−
ψ

(
dMl

(x, y)

ε+

)
−

ε2
−

εm+2
+ − εm+2

−
ψ

(
dMl

(x, y)

ε−

)]

= − 1

εm+2
+ − εm+2

−

(
ε+ψ

′
(
dMl

(x, y)

ε+

)
− ε−ψ′

(
dMl

(x, y)

ε−

))
exp−1

x (y)

dMl
(x, y)

=
exp−1

x (y)

ση(ε
m+2
+ − εm+2

− )

[
η

(
dMl

(x, y)

ε+

)
− η

(
dMl

(x, y)

ε−

)]
.

Since for Al1(x) we have |Al1(x)| = 〈Al1(x), w〉 for some unit vector w ∈ TxMl, we can
combine with the inequality above to obtain:

|Al1(x)| = 〈Al1(x), w〉

=
1

ση(ε
m+2
+ − εm+2

− )

ˆ
RMl

(x,ε+,ε−))

[
η

(
d(x, y)

ε+

)
− η

(
d(x, y)

ε−

)]
· (fl(y)− fl(x)) 〈exp−1

x (y), w〉dvolMl
(y)

=
1

ση(ε
m+2
+ − εm+2

− )

ˆ
R(ε+,ε−)

[
η

(
|u|
ε+

)
− η

(
|u|
ε−

)]
φ(u)〈u,w〉Jx(u)du,

where φ(u) = fl (expx(u)) − fl(x) and R(ε+, ε−) := {u ∈ Rml : ε− < |u| < ε+}. By the
Cauchy-Schwartz inequality,
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|Al1(x)|2 ≤ 1

σ2
η(ε

m+2
+ − εm+2

− )2

ˆ
R(ε+,ε−)

|φ(u)|2Jx(u)2

[
η

(
|u|
ε+

)
− η

(
|u|
ε−

)]
du

·
ˆ
R(ε+,ε−)

〈u,w〉2
[
η

(
|u|
ε+

)
− η

(
|u|
ε−

)]
du

=
1

ση(ε
m+2
+ − εm+2

− )

ˆ
R(ε+,ε−)

|φ(u)|2Jx(u)2

[
η

(
|u|
ε+

)
− η

(
|u|
ε−

)]
du

≤
1 + CmlKlε

2
+

ση(ε
m+2
+ − εm+2

− )

ˆ
Ml

[
η

(
dMl

(x, y)

ε+

)
− η

(
dMl

(x, y)

ε−

)]
(fl(y)− fl(x))2 dvolMl

(y),

(A.13)

where the equality comes from
ˆ
R(ε+,ε−)

〈u,w〉2
[
η

(
|u|
ε+

)
− η

(
|u|
ε−

)]
du =

ˆ
Bm(ε+)

〈u,w〉2du−
ˆ
Bm(ε−)

〈u,w〉2du = ση(ε
m+2
+ −εm+2

− ),

and the last inequality from the bound (A.9). Integrating (A.13) against ρ2
l dvolMl

and
using the Lipschitz continuity of ρl we deduce∥∥∥∥Al1τl

∥∥∥∥2

L2(Ml,ρ
2
l volMl

)

≤
(1 + CmlKlε

2
+)(1 + cρLρlε+)

ση(ε
m+2
+ − εm+2

− )

·
ˆ
Ml

ˆ
BMl

(x,ε+,ε−)

[
η

(
dMl

(x, y)

ε+

)
− η

(
dMl

(x, y)

ε−

)]
|fl(y)− fl(x)|2dµl(x)dµl(y)

≤
(1 + CmlKlε

2
+)(1 + cρLρlε+)

ση
D
ε+,ε−
NL,l (fl).

Now we analyze the term Al2(x). First, recall that |∇(τ−1
l )| ≤ CmlKlε+

ση
and τl ≤

1 + CmlKlε
2
+ by Lemma 28. Using the mean value theorem, it is straightforward to show

that

Klε+,ε−(x, y) ≤
ε2

+

εm+2
+ − εm+2

−
ψ(
dMl

(x, y)

ε+
) ≤

ε2
+η(

dMl
(x,y)

ε+
)

ση(ε
m+2
+ − εm+2

− )
. (A.14)

Thus, by the Cauchy-Schwartz inequality and (A.14), we have

|Al2(x)|2 ≤ |∇(
1

τl(x)
)|2
ˆ
Ml

Klε+,ε−(x, y)dµ(y)

ˆ
Ml

|fl(x)− fl(y)|2Klε+,ε−(x, y)dµl(y)

≤
C2m2K2

l ε
2
+

σ3
η(ε

m+2
+ − εm+2

− )

ˆ
Ml

ε2
+η

(
dMl

(x, y)

ε+

)
|fl(x)− fl(y)|2dµl(y).

Integrating both sides of the above inequality with respect to ρ2
l dvolMl

, using the Lipschitz
continuity of ρl, and using Lemma 29, we conclude that

‖Al2‖L2(Ml,ρ
2
l volMl

) ≤
CmlKlε

2
+(1 + cρLρlε+)

√
1 + cρLρl

ση

√
1

ση
D
ε+,ε−
NL,l (fl),
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for some universal constant C. Combining the estimates for
∥∥∥Al1τl ∥∥∥2

L2(Ml,ρ
2
l volMl

)
and ‖Al2‖L2(Ml,ρ

2
l volMl

)

we finally obtain:

(
Dl(Λε+,ε−fl)

)1/2 ≤ (1 + cρLρlε+)

[
1 + CmlKlε

2
+

(
1 +

√
1 + cρLρl
ση

)]√
1

ση
D
ε+,ε−
NL,l (fl).

Lemma 31 Suppose ε+, ε− satisfy Assumptions 2. Then, there exists a universal constant
C > 0 such that

DNL,l
ε+,ε−(fl) ≤ (1 + cρLρlε+)

(
1 + CmlKlε

2
+

)
σηDl(fl), ∀fl ∈ L(µl).

Proof By a density argument we may assume without the loss of generality that fl is
smooth. Now, for every x ∈Ml,

ˆ
RMl

(x,ε+,ε−)
|fl(x)− fl(y)|2dµ(y) =

ˆ
R(ε+,ε−)

|fl(expx(v))− fl(x)|2ρl(expx(v))Jx(v)dv,

where RMl
(x, ε+, ε−) and R(ε+, ε−) are as defined in the proof of Lemma 30, and Jx is

the Jacobian of the exponential map at x. From the Fundamental Theorem of Calculus it
follows that

|fl(expx(v))− fl(x)|2 ≤
ˆ 1

0
| d
dt
fl (expx(tv)) |2dt =

ˆ 1

0
|dfl(Φt(x, v)2)|2dt,

where Φt denotes the time t geodesic flow onMl’s tangent bundle TMl: that is, Φt(x, v) =
(ϕx,v(t), ϕ

′
x,v(t)) ∈ TMl, where ϕx,v(t) := expx(tv) and ϕ′x,v(t) is obtained by parallel

transporting the vector v ∈ TxMl along the geodesic connecting x and expx(tv); Φt(x, v)2

denotes the second coordinate of Φt(x, v). We can then obtain:

ˆ
Ml

ˆ
R(ε+,ε−)

|fl(expx(v))− fl(x)|2ρl (expx(v)) dvρl(x)dvolMl
(x)

≤
ˆ 1

0

ˆ
M

ˆ
R(ε+,ε−)

|dfl (Φt(x, v)) |2ρl (Φ1(x, v)1) ρl (Φ0(x, v)1) dvdvolMl
(x)dt,

where we use Φ0(x, v)1 and Φ1(x, v)1 to denote the first coordinates of Φ0(x, v) and Φ1(x, v)
respectively. From the Lipschitz continuity of ρl it follows ρl(x) ≤ (1 + cρLρlε+)ρ(y) for
all x, y ∈ Ml satisfying d(x, y) ≤ ε+. Combining the fact that Φt preserves the canonical
volume form volTMl

on TMl and that

R(ε+, ε−) := {ξ = (x, v) ∈ TM : ε− ≤ |v| ≤ ε+} ; Br := {ξ = (x, v) ∈ TM : |v| ≤ r}
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are invariant under Φt, we obtain

ˆ
M

ˆ
R(ε+,ε−)

|fl(expx(v))− fl(x)|2ρl (expx(v)) dvρl(x)dvolMl
(x)

≤ (1 + cρLρlε+)

ˆ 1

0

ˆ
R(ε+,ε−)

|dfl (Φt(ξ)2) |2ρ2
l (Φt(ξ1)) dvolTMl

(ξ)dt

= (1 + cρLρlε+)

[ˆ
Bε+
|dfl(ξ2)|2ρ2

l (ξ1)dvolTMl
(ξ)−

ˆ
Bε−
|dfl(ξ2)|2ρ2

l (ξ1)dvolTMl
(ξ)

]

= (1 + cρLρlε+)ση(ε
m+2
+ − εm+2

− )

ˆ
M
|∇fl|2ρ2

l (x)dvolMl
(x).

Therefore,

D
ε+,ε−
NL,l (fl) ≤

(
1 + CmlKlε

2
+

)
·

· 1

εm+2
+ − εm+2

−

ˆ
Ml

ˆ
R(ε+,ε−)

|fl(expx(v))− fl(x)|2ρl (expx(v)) dvρ(x)dvolMl
(x)

≤
(
1 + CmlKlε

2
+

)
· (1 + cρLρlε+)σηDl(fl).

The following is an adaptation of Lemma 14 in Garćıa Trillos et al. (2019) to the kernel
with annular geometry that we consider in this paper.

Lemma 32 Suppose δ̃, ε+, ε− satisfy Assumptions 2. Then, with probability at least 1 −∑N
l=1(nwl+t) exp

(
−C(nwl − t)θ2δ̃m

)
−2N exp

(
−2t2

n

)
and for a universal constant C > 0,

the following statements hold:

(1) For every ul : X ln → R we have

D
ε′+,ε

′
−

NL,l (P ∗l ul) ≤
(

1 + C(θ + δ̃)
)(

1 + C(
δ̃

ε+
+ ε2
−)

)
b
ε+,ε−
l (ul),

where ε′+ := ε+ − 2δ̃ and ε′− := ε− + 2δ̃ +
8ε′3−
R2 . Applying Assumption 2, C

δ̃εm+1
+ +εm+4

−
εm+2
+ −εm+2

−

can be simplified to C1
δ̃
ε+

+ C2ε
2
−, where C1 ≤ 16C

15 , C2 ≤ C
15 ; or just C( δ̃

ε+
+ ε2
−).

(2) For every fl ∈ H1(Ml)

b
ε+,ε−
l (Plfl) ≤

(
1 + C(θ + δ̃)

)(
1 + C(

δ̃

ε+
+ ε2
−)

)
D
ε′′+,ε

′′
−

NL,l (fl), (A.15)

where ε′′+ := ε+ +
8ε′′3+
R2 + 2δ̃ and ε′′− := ε− − 2δ̃. We recall that bl was introduced in

(A.3).
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Proof

We first recall a well known relation between the geodesic distance in Ml and the
Euclidean distance in the ambient space Rd. Namely,

|x− y|≤ dMl
(x, y) ≤ |x− y|+ 8

R2
l

|x− y|3, x, y ∈Ml, (A.16)

where Rl is the reach of the manifold Ml (see Federer (1959) for a definition of reach).

To show (1), notice that if |x− y|< ε−, then from (A.16) we get

|x− y|≤ dMl
(x, y) ≤ |x− y|+

8ε3
−

R2
l

. (A.17)

We now use the map T̃l, the density ρ̃nl from Corollary 25, and the induced partition

{U1l, . . . , Unll} on Ml of the form Uil = T̃−1
l (xil), where xil ∈ Xl, to write

n2
l (ε

m+2
+ − εm+2

− )b
ε+,ε−
l (ul)

=
∑
i,j

ˆ
Uil

ˆ
Ujl

[
η

(
|T̃l(x)− T̃l(y)|

ε+

)
− η

(
|T̃l(x)− T̃l(y)|

ε−

)]
· |(P ∗ul) (x)− (P ∗ul) (y)|2 ρ̃nl (x)ρ̃nl (y)dvolMl

(y)dvolMl
(x)

≥
(

1− C(θ + δ̃)
) ˆ
Ml

ˆ
Ml

η(d(T̃l(x), T̃l(y))

ε+

)
− η


[
d(T̃l(x), T̃l(y))− 8ε3−

R2

]
+

ε−




· |(P ∗ul) (x)− (P ∗ul) (y)|2 dµl(y)dµl(x)

≥
(

1− C(θ + δ̃)
) ˆ
Ml

ˆ
Ml

η(d(x, y) + 2δ̃

ε+

)
− η


[
d(x, y)− 8ε3−

R2 − 2δ̃
]

+

ε−




· |(P ∗ul) (x)− (P ∗ul) (y)|2 dµl(y)dµl(x)

≥
(

1− C(θ + δ̃)
)

(ε′m+2
+ − ε′m+2

− )D
ε′+,ε

′
−

NL,l (P ∗l ul),

where in the first inequality we use i) in Corollary 25 and (A.17), and in the second in-
equality we use ii) in Corollary (25). Combining the above inequality with Assumptions 2
we conclude that

(
1 + C(θ + δ̃)

)
(1 + C

δ̃εm+1
+ + εm+4

−

εm+2
+ − εm+2

−
)b
ε+,ε−
l (ul) ≥ D

ε′+,ε
′
−

NL,l (P ∗ul).
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For (2), we proceed similarly as in the proof of (1) to deduce

b
ε+,ε−
l (Pfl) ≤

1 + C(θ + δ̃)

ση(ε
m+2
+ − εm+2

− )

∑
i

∑
j

ˆ
Uil

ˆ
Ujl

[
η

(
|T̃ (x)− T̃ (y)|

ε+

)
− η

(
|T̃ (x)− T̃ (y)|

ε−

)]
· |fl(y)− fl(x)|2dµl(y)dµl(x)

≤ 1 + C(θ + δ̃)

ση(ε
m+2
+ − εm+2

− )

ˆ
Ml

ˆ
Ml

η

[
d(x, y)− 8ε3+

R2 − 2δ̃
]

+

ε+

− η(d(x, y) + 2δ̃

ε−

)
· |fl(y)− fl(x)|2dµl(y)dµl(x)

≤ 1 + C(θ + δ̃)

ση(ε
m+2
+ − εm+2

− )

[
E
ε′′+
l (fl)− E

ε′′−
l (fl)

]
≤
(

1 + C(θ + δ̃)
)(

1 + C
εm+4
− + εm+1

+ δ̃

εm+2
+ − εm+2

−

)
D
ε′′+,ε

′′
−

NL,l (fl),

where in the last line we have used (A.11) and Assumptions 2.

We are ready to prove Proposition 26.

A.4 Proofs of Propositions 26 and 27

Proof [Proof of Proposition 26]
(1): Let u ∈ L2(µn). We write u in coordinates as u = (u1, . . . , uN ). We combine

Lemmas 30 and 32 to obtain for every l = 1, . . . , N :

σηDl(Ilul) ≤
(

1 + C(θ + δ̃)
)

(1 + C
δ̃

ε+
)(1 + cρLρlε+)

[
1 + CmlKlε

2
+

(
1 +

√
1 + cρLρ

ση

)]
b
ε+,ε−
l (ul).

From the above we deduce that D(Iu) =
∑N

l=1w
2
lDl(Ilul) is smaller than:

(
1 + C(θ + δ̃)

)
(1 + C

δ̃

ε+
)(1 + cρLρε+)

[
1 + CmKε2

+

(
1 +

√
1 + cρLρ

ση

)]
N∑
l=1

w2
l b
ε+,ε−
l (ul).

In turn, Proposition 23 implies that with probability at least 1− 2N exp
(
−2t2

n

)
we have

N∑
l=1

w2
l b
ε+,ε−
l (ul) ≤ (1 + t)

N∑
l=1

(nl
n

)2
b
ε+,ε−
l (ul) = (1 + t)b

ε+,ε−
I (u) ≤ (1 + t)bε+,ε−(u).

Putting together the above inequalities we obtain the desired estimate. Here it is worth
highlighting that the last inequality in the above expression comes from the fact that the
discrete Dirichlet energy bε+,ε− is the sum of b

ε+,ε−
I and b

ε+,ε−
O . As we will see below, in

order to obtain a reverse inequality between bε+,ε− and D one needs to control b
ε+,ε−
O (Pf)

using regularity estimates of f in each of the Ml. We will be able to obtain this control
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when f is in the span of the eigenfunctions of ∆M smaller than a certain value (which is
all we need in the remainder).

(2): Similarly to (1), we may combine Lemma 31 and Lemma 32, to deduce:

b
ε+,ε−
I (Pf) ≤

(
1 + cρLρlε

′′
+

) (
1 + CmlKlε

′′2
+

)(
1 + C(

εm+4
+ + εm+1

+ δ̃

εm+2
+ − εm+2

−
+ θ + δ̃)

)
σηD(f)

≤

(
1 + C(ε′′+ +

δ̃

ε+
+ θ + δ̃) + t

)
σηD(f).

(A.18)

where the last step we used Assumption 2.
Let f ∈ L2(M) belong to the span of ∆M’s eigenfunctions with corresponding eigenvalue

less than λ. Then, f can be written as f =
∑N

l=1 f
l where each f l has support on Ml, and

where, abusing notation slightly, each f l has the form f l =
∑

q bqlf
l
q for an orthonormal

basis of eigenfunctions of ∆Ml
, {f lq}, with corresponding eigenvalues smaller than λ. It is

straightforward to see that:

b
ε+,ε−
O (P̃ f) =

1

n2(εm+2
+ − εm+2

− )

∑
xi,xj∈Xn

ωOxixj (P̃ f(xi)− P̃ f(xj))
2

≤ 2

εm+2
+ − εm+2

−

∑
xi∈Xn

∑
xj∈Xn

ωOxixj (P̃ f(xi))
2

=
2

εm+2
+ − εm+2

−

N∑
l=1

∑
s:s 6=l

∑
xi∈Ml

∑
xj∈Ms

ωOxixj |
ˆ
Uil

f l(x)p̃nl (x)dvolMl
(x)|2

=
2

εm+2
+ − εm+2

−

N∑
l=1

‖f l‖2L∞(Ml)

n2
l

∑
s:s 6=l

∑
xi∈Ml

∑
xj∈Ms

ωOxixj

=
2N ·N0

εm+2
+ − εm+2

−

N∑
l=1

‖f l‖2L∞(Ml)

n2
l

≤ 2N ·N0(1 + t)

w2
minn

2(εm+2
+ − εm+2

− )

N∑
l=1

‖f l‖2L∞(Ml)
.

(A.19)

In the above, the last inequality follows with high probability according to Proposition (23).
To complete the proof we find estimates for each of the terms ‖f l‖2L∞(Ml)

and to do this

we adapt the argument in Lemma 3.3 of Lu (2022). From standard higher order elliptic
regularity results (e.g. Theorem 2 in Evans (2010)) it follows that for every s ∈ N∥∥∥f l∥∥∥2

H2s(Ml)
≤ C(Ml, ρl, s)

(∥∥∥∆s
Ml
f l
∥∥∥2

L2(Ml)
+
∥∥∥f l∥∥∥2

L2(Ml)

)
,

where in the above H2s(Ml) is the Sobolev space of functions onMl with square-integrable
derivatives of order up to 2s; it is at this stage that we use the smoothness of the manifold
Ml and the density ρl. Moreover, by the Sobolev embedding theorem on compact manifolds
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(e.g. Theorem 2.20 in Aubin (1998)), we have H2s(Mk) ⊂ C1(Mk) as long as 2s > m/2+1.
Choosing 2s = m/2 + 2 we obtain:∥∥∥f l∥∥∥

L∞(Ml)
≤
∥∥∥f l∥∥∥

C1(Ml)
≤ C (Ml, ρl)

∥∥∥f l∥∥∥
Hm/2+2(Ml)

≤ C (Ml, ρl)
(
λm/4+1 + 1

)∥∥∥f l∥∥∥
L2(Ml)

.

(A.20)
Recalling that f l has the form

∑
q bqlf

l
q, where the f lq are orthonormal in L2(Ml, ρl) and

are eigenfunctions of ∆Ml
with eigenvalues λlq smaller than λ, we can see that

∥∥∥∆s
Ml
f l
∥∥∥2

L2(Ml,ρl)
=

∥∥∥∥∥∑
q

bql(λ
l
q)
sf lq

∥∥∥∥∥
2

L2(Ml,ρl)

=
∑
q

b2ql(λ
l
q)

2s
∥∥∥f lq∥∥∥2

L2(Ml,ρl)
≤ λ2s‖f l‖2L2(Ml)

.

Putting the above estimates together and combining with (A.19) gives us the desired result.

Before proving Proposition 27 we need one last preliminary estimate.

Lemma 33 Suppose ε+, ε− satisfy Assumptions 2. Then, there exists a universal constant
C > 0 such that

‖Λε+,ε−f‖2L2(M,ρ)≤ (1 + CcρLρε+)(1 + CmKε2
+)‖f‖2L2(M,ρ),

and

‖Λε+,ε−f − f‖2L2(M,ρ)≤
Cc2

ρε
2
+

ση

N∑
l=1

wlD
ε+,ε−
NL,l (fl) ≤

Cc2ρε
2
+

σηwmin
D(f).

for all f ∈ L2(M, ρ). In the above, wmin := minl=1,...,N wl.

Proof
Since Λε+,ε− acts on f coordinatewise, we get

ˆ
M

(Λε+,ε−f(x))2dµ(x) =

N∑
l=1

wl

ˆ
Ml

(Λlε+,ε−fl(x))2ρl(x)dvolMl
(x)

≤
N∑
l=1

wl

ˆ
Ml

ˆ
Ml

Klε+,ε−(x, y)

τl(x)
(fl(y))2ρl(x)dvolMl

(y)dvolMl
(x)

≤ (1 + CcρLρε+)(1 + CmKε2
+)

N∑
l=1

wl

ˆ
Ml

(fl(y))2ρl(y)dvolMl
(y)

= (1 + CcρLρε+)(1 + CmKε2
+)

ˆ
M

(f(x))2dµ(x),

where the first inequality follows from Jensen’s inequality, and the second inequality follows
from Lemma 28 and the properties of the density functions ρl.
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For the second inequality, we first calculate the difference between Λlε+,ε−fl(x) and fl(x):

|Λε+,ε−l fl(x)− fl(x)|2 =

(
1

τl(x)

ˆ
Ml

Klε+,ε−(x, y)(fl(y)− fl(x))dµl(y)

)2

≤ 1

τl(x)2

ˆ
Ml

Klε+,ε−(x, y)dµl(y)

ˆ
Ml

Klε+,ε−(x, y)(fl(x)− fl(y))2dµl(y)

=
1

τl(x)

ˆ
Ml

Klε+,ε−(x, y)(fl(x)− fl(y))2dµl(y).

Then we integrate with respect to ρl(x)dvolMl
(x) to get:

‖Λε+,ε−l fl − fl‖2L2(Ml,ρl)
≤ (1 + CmlKlε

2
+)

ˆ
Ml

ˆ
Ml

Klε+,ε−(x, y)(f(x)− f(y))2dµl(y)dµl(x)

≤
(1 + CmlKlε

2
+)ε2

+

ση(ε
m+2
+ − εm+2

− )

ˆ
Ml

ˆ
Ml

η

(
d(x, y)

ε+

)
(f(x)− f(y))2dµl(y)dµl(x)

≤
Cc2ρε

2
+

ση
D
ε+,ε−
NL,l (fl),

where the second inequality follows from the fact that η ≤ 1
ση
ψ (recall (A.8)), and the third

inequality follows from Lemma 29. Multiplying the above by wl, adding over l, and using
Lemma 31 we get the desired result.

Proof [Proof of Proposition 27] (1): For each l = 1, . . . , N , we use estimates proved in
Calder and Garćıa Trillos (2022) (appearing in Pages 24-25 in the proof of Proposition 4.2)
to conclude that there is a constant C for which∣∣∣‖fl‖2L2(µ̃nl ) − ‖fl‖

2
L2(µl)

∣∣∣ ≤ C(θ + δ̃)‖fl‖2L2(µl)∥∥∥|P̃lfl‖2L2(µnl )−‖fl‖
2
L2(µl)

∣∣∣ ≤ C‖fl‖L2(µl)‖P̃l
∗
P̃lfl − fl‖L2(µ̃ln)+C(θ + δ̃)‖fl‖2L2(µl)

‖P̃l
∗
P̃lfl − fl‖2L2(µ̃ln)≤ Cδ̃

2Dl(fl),

for every fl ∈ L2(µl); in the above we use µ̃ln to denote the measure ρ̃lndvolMl
(x). Combining

the previous inequalities, we deduce that:∥∥∥|P̃ f‖2L2(µ)−‖f‖
2
L2(µ)

∣∣∣ ≤ N∑
l=1

wl

∥∥∥|P̃lfl‖2L2(µnl )−‖fl‖
2
L2(µl)

∣∣∣
≤ C

N∑
l=1

wl‖fl‖L2(µl)‖P̃l
∗
P̃lfl − fl‖L2(µ̃ln)+C(θ + δ̃)‖f‖2L2(µ).

Now, the first term in the last inequality above is controlled by Cδ̃‖f‖L2(µ)

√
D(f). Indeed,

this follows from Cauchy-Schwartz inequality:(
N∑
l=1

wl‖fl‖L2(µl)‖P̃l
∗
P̃lfl − fl‖L2(µ̃ln)

)2

≤

(
N∑
l=1

wl‖fl‖2L2(µl)

)(
N∑
l=1

wl‖P̃l
∗
P̃lfl − fl‖2L2(µ̃ln)

)

≤ C δ̃2

wmin
‖f‖2L2(µ)D(f).
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Putting things together we finally deduce∥∥∥|P̃ f‖2L2(µn)−‖f‖
2
L2(µ)

∣∣∣ ≤ C δ̃
√
wmin

‖f‖L2(µ)

√
D(f) + C(θ + δ̃)‖f‖2L2(µ).

(2): From the identity ‖ul‖L2(µnl )= ‖P̃l
∗
ul‖L2(µ̃nl ) (which follows automatically from the fact

that the map T̃l is a transport map between µ̃nl and µnl ) and the triangle inequality we get∥∥∥|Ilul‖L2(µ̃nl )−‖ul‖L2(µnl )

∣∣∣ ≤ ‖Λε+,ε−l P̃ ∗l ul − P̃ ∗l ul‖L2(µ̃nl )

≤
(
1 + cρ‖ρl − ρ̃nl ‖L∞(Ml)

)
· ‖Λε+,ε−l P̃ ∗l ul − P̃ ∗l ul‖L2(µl)

≤
(
1 + cρ‖ρl − ρ̃nl ‖L∞(Ml)

)
· Cε+

√
D
ε+,ε−
NL,l (P̃ ∗l ul)

≤ Cε+

√
b
ε+,ε−
l (ul),

where the third inequality comes from Lemma 33 and the last one follows from Lemma 32.
Also, notice that

‖Ilul‖L2(µ̃nl )= ‖Λ
ε+,ε−
l P̃ ∗l ul‖L2(µ̃nl )≤ C‖P̃ ∗l ul‖L2(µ̃nl )= C‖ul‖L2(µnl ).

This inequality is also a consequence of Lemma 33. So far we have proved that∥∥∥|Ilul‖2L2(µ̃nl )−‖ul‖
2
L2(µnl )

∣∣∣ ≤ Cε+

√
b
ε+,ε−
l (u)‖ul‖L2(µnl ).

Next, we compare ‖Ilul‖2L2(µ̃nl ) and ‖Ilul‖2L2(µl)
, bounding their difference with∥∥∥|Ĩlul‖2L2(µ̃nl )−‖Ĩlul‖

2
L2(µl)

∣∣∣ ≤ C(θ + δ̃)‖Ĩlul‖2L2(µ̃nl )≤ Ccρ(θ + δ̃)‖ul‖2L2(µnl ),

as it follows from the fact that the difference between ρl and ρ̃nl is uniformly controlled with
very high probability, i.e. i) in Corollary 25.

Finally, we obtain∥∥∥|ul‖2L2(µnl )−‖Ĩlul‖
2
L2(µl)

∣∣∣ ≤ ∥∥∥|Ĩlul‖2L2(µ̃nl )−‖ul‖
2
L2(µnl )

∣∣∣+
∥∥∥|Ĩlul‖2L2(µ̃nl )−‖Ĩlul‖

2
L2(µl)

∣∣∣
≤ Cε+

√
b
ε+,ε−
l (ul)‖ul‖L2(µnl )+Ccρ(θ + δ̃)‖ul‖2L2(µnl ).

Adding over all l = 1, . . . , N and using Cauchy-Schwarz inequality we obtain the desired
estimate:∥∥∥|u‖2L2(µn)−‖Ĩu‖

2
L2(µ)

∣∣∣ =

∣∣∣∣∣
N∑
l=1

‖ul‖2L2(µnl )−
N∑
l=1

wl‖Ĩlul‖2L2(µl)

∣∣∣∣∣
≤ Cε+

N∑
l=1

wl

√
b
ε+,ε−
l (u)‖ul‖L2(µnl )+Ccρ(θ + δ̃)

N∑
l=1

wl‖ul‖2L2(µnl )

≤ Cε+‖u‖L2(µn)

√
bε+,ε−(u) + Ccρ(θ + δ̃)‖u‖2L2(µn).
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A.5 Proof of Theorem 6

Proof [Proof of Theorem 6] With the aid of Propositions 26 and 27 we can now com-
pare λ

ε+,ε−
k and λk, the k-th eigenvalues of L and ∆M (listed according to multiplicity)

respectively.
First, to find an upper bound for λ

ε+,ε−
k in terms of λk, let f1, . . . , fk be an orthonormal

set (w.r.t. L2(µ)) consisting of eigenfunctions of ∆M corresponding to its first k eigenvalues
(and let us label them λ1 ≤ · · · ≤ λk). Let

vi := P̃ fi,∀i = 1, . . . , k.

Applying Proposition 27 to every f of the form

f := fi − fj ,

we deduce that

|〈fi, fj〉L2(µ) − 〈vi, vj〉L2(µn)| ≤ Cδ̃
√
λk + C(θ + δ̃) <

1

k
.

We can then conclude that v1, . . . , vk are linearly independent and that the subspace S :=
Span{v1, . . . , vk} has dimension k. From (A.1) we deduce that

λ
ε+,ε−
k ≤ max

v∈S,‖v‖L2(µn)=1
bε+,ε−(v).

For v ∈ S, written as v =
∑k

i=1 aivi =
∑k

i=1 aiP̃ fi, we can write v := P̃ f where f =∑k
i=1 aifi. This f satisfies:

D(f) = 〈∆Mf, f〉L2(µ) ≤ λk‖f‖2L2(µ)

according to the spectral decomposition of ∆M. Applying part (2) of Proposition (26) we
obtain:

bε+,ε−(v)

≤ CNN0

w2
minn

2(εm+2
+ − εm+2

− )

(
1 + λ

m/2+2
k

)
‖f‖2L2(M) +

(
1 + C(ε′′+ +

δ̃

ε+
)

)
σηD(f)

≤ CNN0

w2
minn

2(εm+2
+ − εm+2

− )

(
1 + λ

m/2+2
k

)
‖f‖2L2(M) +

(
1 + C(ε′′+ +

δ̃

ε+
)

)
λkση · ‖f‖2L2(µ).

Finally, from Proposition 27 applied to a v ∈ S with norm one, we deduce that v’s corre-
sponding f satisfies:

‖f‖2L2(µ)≤ 1 + C(δ̃
√
λk + θ + δ̃).

From this we conclude that

1

ση
λ
ε+,ε−
k ≤ CNN0

w2
minn

2(εm+2
+ − εm+2

− )

(
1 + C ′(λ

m/2+2
k + δ̃

√
λk + θ + δ̃)

)
+

(
1 + C(ε′′+ + δ̃

√
λk + θ +

δ̃

ε+
)

)
λk.
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This establishes the upper bound for λ
ε+,ε−
k in terms of λk.

For the lower bound, we follow completely analogous arguments as the ones above,
relating functions u ∈ L2(µn) with f ∈ L2(µ) via the map I and applying Propositions 26
and 27.

A.6 Proof of Theorem 8

Proof [Proof of Theorem 8] We use an energy estimate based on Proposition 26 to find a
relationship between eigenvectors of Lε+,ε− and eigenfunctions of ∆M. We follow a similar
strategy to the one in Garćıa Trillos et al. (2019).

Let λ be an eigenvalue of ∆M and let k ∈ N be the first integer for which λ = λk (here
λk is as in (2.5)). Let l be the multiplicity of λ so that λ = λk = · · · = λk+l−1 < λk+l. The
gap γλ associated to λ is given by:

γλ :=
1

2
min{|λ− λk−1|, |λ− λk+l|} (A.21)

if λ > 0, and γλ := λl+1 = λN+1 otherwise.
Now, we can pick ε+, ε−, θ, δ̃ to be small enough so that

e+ C
(
ε+ + θ + δ̃

)
λ ≤ γλ

Then, for these choices of parameters, we know from Theorem 6 that

|λε+,ε− − σηλ| ≤ γλ (A.22)

Let S be a subspace of L2(µn) spanned by all eigenvectors of Lε+,ε− with eigenvalues

λ
ε+,ε−
k , · · · , λε+,ε−k+l−1,

and let us denote the orthogonal projection onto S as PS , the orthogonal projection onto
the span of the eigenvectors of L with eigenvalue strictly smaller than λ

ε+,ε−
k as PS− , and

the orthogonal projection onto the span of the eigenvectors of L with eigenvalue strictly
larger than λ

ε+,ε−
k+l−1 as PS+ .

Let f be a normalized (w.r.t L2(µ)) eigenfunction of ∆M with eigenvalue λ and let
u = P̃ f . Notice that we can assume without the loss of generality that f takes the form
in (2.4) for one of the manifolds Mk (in particular the support of f is Mk). Based on
Proposition 26 and its proof (specifically the bound (A.20)) we have:

e+ ση

[
1 + C

(
ε+ + θ + δ̃

)]
λ ≥ e+ ση

[
1 + C

(
ε+ + θ + δ̃

)]
D(f)

≥ bε+,ε−(u) = 〈Lε+,ε−u, u〉
≥ λε+,ε−k ‖PSu‖2L2(µn)+λ

ε+,ε−
k+l ‖PS+u‖2L2(µn)

≥ λε+,ε−k

(
‖u‖2L2(µn)−‖u− PSu‖

2
L2(µn)

)
+ λ

ε+,ε−
k+l

(
‖u− PSu‖2L2(µn)−‖PS−u‖

2
L2(µn)

)
.

(A.23)
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Using the results about γλ we obtained above and Proposition 27 we deduce

|σηλ2 − λε+,ε−2 | ≤ e+ Cση

(
ε+ + θ + δ̃

)
λ ≤ γλ; |1− ‖u‖2L2(µn)| ≤ C(θ + δ̃)

Here C is some constant may correspond to λ. Combining the above inequalities with
(A.23), we obtain:

e+ ση

[
1 + Cση

(
ε+ + θ + δ̃

)]
λ

≥ σηλ+ (λ
ε+,ε−
2 − σηλ2) + λ

ε+,ε−
2 (‖u‖2L2(µn)−1) + (λ

ε+,ε−
k+2 − λε+,ε−2 )‖u− PSu‖2L2(µn)

− λε+,ε−k+l ‖PS−u‖
2
L2(µn)

≥ σηλ− e− C
(
ε+ + θ + δ̃

)
+ 2γλ‖u− PSu‖2L2(µn)−λ

ε+,ε−
k+l ‖PS−u‖

2
L2(µn).

From this and the upper bound for λ
ε−,ε+
k+l in terms of λk+l:

‖u− PSu‖L2(µn)≤
[
e

γλ
+
C

γλ
(ε+ + θ + δ̃)

]1/2

+
√
λk+l‖PS−u‖L2(µn).

We now compare the functions u and f at the data points xi. Notice that for every data
point xi ∈Mk we have:

|u(xi)− f(xi)| = |P̃ f(xi)− f(xi)| ≤ n
ˆ
Ũik

|f(x)− f(xi)|ρ̃n(x)dvolMk
(x) ≤ ‖∇f‖L∞(µk)δ̃.

Also, due to (A.20) we know that ‖∇f‖L∞(µk)≤
√
wkC(Mk, ρk)(λ

m/4+1+1) ≤ C(M, ρ)(λm/4+1+
1). Thus,

|u(xi)− f(xi)| ≤ C(M, ρ)(λm/4+1 + 1)δ̃, ∀xi ∈Mk.

Notice that on the other hand, u(xi) = f(xi) = 0 for xi ∈ M \Mk by definition of P̃ and
the fact that f is zero outside of Mk. We conclude that:

‖u− f‖L2(µn)≤ CM,ρ(λ
m/4+1 + 1)δ̃,

and in turn

‖f−PSP̃ f‖L2(µn)≤
[
e

γλ
+
C

γλ
(ε+ + θ + δ̃)

]1/2

+CM,ρ(λ
m/4+1+1)δ̃+

√
λk+l‖PS−P̃ (f)‖L2(µn).

(A.24)

From this point on the idea is to use an inductive argument. We describe in detail the
base case and outline the inductive step. Base Case: When λ = 0 (and λ1 = · · · = λN =
0 < λN+1) we have ‖PS−‖L2(µn) = 0 and thus we can drop the last term in (A.24). This
means that if f1, · · · , fl form an orthonormal basis for the space of eigenfunctions of ∆M
with eigenvalue λ, then we can find an orthonormal set v1, · · · , vl spanning S such that

‖fi − vi‖L2(µn)≤
[
e

γλ
+
C

γλ
(ε+ + θ + δ̃)

]1/2

+ C(M, ρ)δ̃.
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In turn, this also implies that if u1, · · · , ul form an orthonormal basis of Lε+,ε− with corre-
sponding eigenvalues λ

ε+,ε−
2 , · · · , λε+,ε−l+1 , then there exists an orthonormal set f̃1, · · · , f̃l for

∆ρl with eigenvalue λ satisfying the same inequality above with fi replaced with f̃i and vi
replaced with ui.

Inductive step: having found the desired relationship for the eigenvectors and eigen-
functions associated to the first portion of the spectrum of ∆M, we return to (A.24) and
notice that by Proposition 27 we can conclude that the term ‖PS−P̃ f‖L2(µn) is smaller than

C(M, ρ)((λ(1/4) + 1)
√
δ̃ +
√
θ).

We can plug this estimate in (A.24) and then proceed as in the base case to obtain the
desired result.

A.7 Different dimensions: Proof of Theorem 10

We start by writing the discrete Dirichlet form bε+,ε− (A.2) as the sum of three terms:

bε+,ε−(u) = bmax(umax) + bS(uS) + bO(u),

where

bmax(v) :=
1

n2(εm+2
+ − εm+2

− )

∑
xi,xj∈Xn∩Mmax

ωxixj (v(xi)− v(xj))
2, v ∈ L2(Xn ∩Mmax),

bS(uS) :=
1

n2(εm+2
+ − εm+2

− )

N∑
k=Nmax+1

∑
xi,xj∈Xn∩Mk

ωxixj (uk(xi)−uk(xj))2, uS = (uNmax+1, . . . , uN ),

and lastly,

bO(u) := bε+,ε−(u)− bmax(umax)− bS(uS).

Notice that bmax captures all interactions between points that belong to the manifolds with
the maximum dimension m. For this energy we can use all the results presented in section
2.3 and in particular relate it to the Dirichlet form:

Dmax(f) :=

{∑Nmax
i=1 w2

i

´
Mi
|∇fi(x)|2ρ2

i (x)dvolMi(x), if f ∈ H1(Mmax)

+∞, if f ∈ L2(Mmax) \H1(Mmax).

The energy bS , on the other hand, captures the interactions between points that are on
the same manifold when this manifold is not one of the ones with the largest dimension m.
Using (A.5), we can write bS as:

bS(uS) =

N∑
k=Nmax+1

(nk
n

)2
·

(
εmk+2

+ − εmk+2
−

εm+2
+ − εm+2

−

)
· bk(uk).

67
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Finally, the term bO(u) accounts for all interactions between points in two different manifolds
when the two manifolds are among the ones with dimension smaller than m, or when one of
them has dimension m and the other one does not. In short, bO accounts for all interactions
not accounted for by the terms bmax and bS and is thus a non-negative term.

We let Ĩmax : L2(Xn ∩Mmax)→ L2(Mmax) and Pmax : L2(Mmax)→ L2(Xn ∩Mmax)
be the maps constructed in section A.2 applied to the data set Xn ∩Mmax and Mmax, i.e.
the union of manifolds with the same dimension m. We also consider the following maps:

I ′ : L2(Xn)→ L2(Xn ∩Mmax)

I ′ : u 7−→ umax,

P ′ : L2(Xn ∩Mmax)→ L2(Xn)

P ′ : v 7−→ u = (v, 0),

where by u = (v, 0) we mean that u coincides with v for data points in Mmax and u = 0
for data points in M\Mmax.

It will be convenient to introduce the norms:

‖uk‖2L2(Xn∩Mk) :=
1

n

∑
xi∈Xn∩Mk

(uk(xi))
2, uk ∈ L2(Xn ∩Mk),

and

‖v‖2L2(Xn∩Mmax) :=
1

n

∑
xi∈Xn∩Mmax

(v(xi))
2, v ∈ L2(Xn ∩Mmax),

as well as the discrete Laplacians:

Lkuk(x) :=
1

nk(ε
mk+2
+ − εmk+2

− )

∑
y∈Xn∩Mk

ωxy(u(x)− u(y)), x ∈ X ∩Mk, u : X → R.

We use λ
ε+,ε−
2,k to denote the second eigenvalue of Lk.

Proof [Proof of Theorem 10]

Following the structure of the proofs of Theorems 6 and 8 we see that we can obtain our
desired estimates if we can obtain similar inequalities to the ones in Propositions 26 and 27
where now we use the maps Imax◦I ′ and P ′◦Pmax as interpolation and discretization maps
respectively. There is only one small caveat in the almost isometry property of Imax ◦ I ′ as
we explain below.

We start by noticing that from the above definitions we have:

bmax(I ′u) ≤ bε+,ε−(u), ∀u ∈ L2(Xn),

and by Proposition 26

σηDmax(Imax ◦ I ′u) ≤

(
1 + C(ε+ +

δ̃

ε+
+ θ + δ̃)

)
bmax(I ′u),
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so that

σηDmax(Imax ◦ I ′u) ≤

(
1 + C(ε+ +

δ̃

ε+
+ θ + δ̃)

)
bε+,ε−(u), ∀u ∈ L2(Xn). (A.25)

The above occurs with probability at least 1 −
∑N

l=1(nwl + t) exp
(
−C(nwl − t)θ2δ̃m

)
−

2N exp
(
−2t2

n

)
− C1(n) .

On the other hand, for arbitrary f ∈ L2(Mmax) we have

bε+,ε−(P ′ ◦ Pmaxf) = bmax(Pmaxf) + bO(P ′ ◦ Pmaxf)

≤

(
1 + C(ε+ +

δ̃

ε+
+ θ + δ̃)

)
Dmax(f) + bO(P ′ ◦ Pmaxf),

(A.26)

whereas

bO(P ′ ◦ P̃maxf) ≤ CNN0

w2
minn

2(εm+2
+ − εm+2

− )

(
1 + λm/2+2

)
‖f‖2L2(Mmax) , (A.27)

for f an element in the span of ∆Mmax ’s eigenfunctions with corresponding eigenvalue less
than λ, as it follows from a completely analogous computation to the one in (A.19); this
holds in the same event of very high probability where (A.25) holds.

We consider now the norm distortion of the maps I ◦ I ′ and P ′ ◦ Pmax. First, notice
that by definition, for v ∈ L2(Xn ∩Mmax) we have

‖P ′v‖2L2(Xn) = ‖v‖2L2(Xn∩Mmax),

and thus combining with 1) in Proposition (27) we obtain:∣∣∣‖P ′ ◦ Pmaxf‖2L2(Xn) − ‖f‖
2
L2(Mmax)

∣∣∣ ≤ Cδ̃‖f‖L2(Mmax)

√
Dmax(f) + C(θ + δ̃)‖f‖2L2(Mmax).

(A.28)
Now, for a given u ∈ L2(Xn) we have:∣∣∣‖I ′u‖2L2(Xn∩Mmax) − ‖u‖

2
L2(Xn)

∣∣∣ =

N∑
k=Nmax+1

‖uk‖2L2(Xn∩Mk).

Also, if we let uk represent the average of uk in Mk ∩ Xn we see that

‖uk−uk‖2L2(Xn∩Mk) ≤
1

λ
ε+,ε−
2,k

〈Lkuk, uk〉L2(Mk∩Xn) =
1

λ
ε+,ε−
2,k

n2
k

n2
bk(uk) ≤ C(Mk, wk, ρk)ε

m−mk
+ b(u),

for all k = Nmax + 1, . . . , N , where the last inequality holds with very high probability.
Indeed, notice that by Theorem 6 applied to a single manifold Mk we can find a lower
bound for λ

ε+,ε−
2,k in terms of the first non-trivial eigenvalue for wk∆Mk

. We have also used

the fact that bk(uk) ≤ (n/nk)
2εm−mk+ b(u). This means that

∣∣∣‖I ′u‖2L2(Xn∩Mmax) − ‖u‖
2
L2(Xn)

∣∣∣ ≤ C(M, µ)ε
m−mNmax+1

+ bε+,ε−(u) +
N∑

k=Nmax+1

(uk)
2.
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Combining with Proposition 27 and using the triangle inequality we deduce that∣∣∣‖Imax ◦ I ′u‖2L2(Mmax) − ‖u‖
2
L2(Xn)

∣∣∣ ≤ Cε+‖u‖L2(µn)

√
bε+,ε−(u)

+ C(θ + δ̃)‖u‖2L2(µn) + C(M, µ)
n∑

k=Nmax+1

εm−mk+ bε+,ε−(u)

+

N∑
k=Nmax+1

(uk)
2.

(A.29)

Notice that the right hand side in the above expression is small for a u with low Dirichlet
energy only when u is close to the orthogonal complement of Span{1MNmax+1

, . . . ,1MN
}

(i.e. the uk are small). Because of this, we will only be able to proceed as in the proofs of
Theorems 6 and 8 to obtain all our estimates if first we show that the top N eigenvectors
of L are close to the indicator functions of M1 ∩ Xn, . . . ,MN ∩ Xn. However, this is
straightforward from the following observations:

1. We can obtain an upper bound for the first N eigenvalues of L following the repre-
sentation (A.1) and computing the graph Dirichlet energy of the indicator functions
of the sets Mk ∩ Xn. Namely, we have:

λ
ε+,ε−
k ≤ CNN0

w2
minn

2(εm+2
+ − εm+2

− )
, k = 1, . . . , N.

2. Using the alternative representation:

λ
ε+,ε−
N+1 = max

S∈GN
min

u∈S⊥\{0}

bε+,ε−(u)

‖u‖2
L2(µn)

we can obtain the lower bound

λ
ε+,ε−
N+1 ≥

1

2
σηλN+1,

with very high probability. Indeed, taking S = Span{1M1∩Xn , . . . ,1MN∩Xn} and a
unit norm u ∈ S (in particular uk = 0 for all k = Nmax+1, . . . , N) we see from (A.25)
and (A.29) that

bε+,ε−(u) ≥ σηλN+1

(
1− C(ε+ + ε+

√
λN+1 + ε

m−mNmax+1

+ λN+1 + θ +
δ̃

ε+
)

)
≥ ση

2
λN+1.

3. Combining the previous steps we get an order one lower bound for the gap between
λ
ε+,ε−
N and λ

ε+,ε−
N+1 . We can then follow the proof of Theorem 8 to show that there

exists an orthonormal set v1, . . . , vN consisting of eigenvectors of L corresponding to
L’s first N eigenvalues such that

‖
√

n

nk
1Mk∩Xn − v

k‖2L2(Xn) ≤
C(M, µ)N0

n2(εm+2
+ − εm+2

− )
.
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We deduce that if u belongs to the orthogonal complement of Span{v1, . . . , vN}, then

(uk)
2 ≤ C(M, µ)N0

n2(εm+2
+ − εm+2

− )
,

with very high probability.

As discussed above, with the above estimates in hand we can now proceed as in the
proofs of Theorems 6 and 8.
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