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Abstract
We develop a method to generate predictive regions that cover a multivariate response
variable with a user-specified probability. Our work is composed of two components. First,
we use a deep generative model to learn a representation of the response that has a unimodal
distribution. Existing multiple-output quantile regression approaches are effective in such
cases, so we apply them on the learned representation, and then transform the solution
to the original space of the response. This process results in a flexible and informative
region that can have an arbitrary shape, a property that existing methods lack. Second,
we propose an extension of conformal prediction to the multivariate response setting that
modifies any method to return sets with a pre-specified coverage level. The desired coverage
is theoretically guaranteed in the finite-sample case for any distribution. Experiments
conducted on both real and synthetic data show that our method constructs regions that
are significantly smaller compared to existing techniques.
Keywords: conformal prediction, uncertainty quantification, quantile regression, multiple
regression, variational auto-encoder

1. Introduction

In real-world applications, it is often required to estimate more than one response variable.
Consider, for example, estimating the effects and side effects of a drug given the patient’s
demographic information and medical measurements. These two responses may be correlated
in the way that when the drug is effective the side effects are more severe (Schuell et al.,
2005), and this relation might not be linear. In such high-stakes settings, giving point
predictions for the drug’s effects and side effects is insufficient; the decision-maker must know
the plausible effects for an individual. The plausible effects can be represented as a region in
the multidimensional space that covers a pre-specified proportion (e.g., 90%) of the drug’s
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possible outcomes. In the one-dimensional case, the region reduces to an interval, determined
by lower and upper bounds for the response variable. The problem of constructing such a
prediction interval is extensively investigated in the literature (Koenker and Bassett, 1978;
Izbicki et al., 2020; Meinshausen, 2006; Guan, 2019; Gupta et al., 2021). This approach can
be naïvely extended to the multivariate case by estimating a prediction interval for each
response separately. However, this process will result in a rectangle-shaped region, whereas
the shape of the true distribution of the response variables can be arbitrary, not a rectangle,
and even not convex. In that case, the predicted region is likely to be over-conservative:
it would not reflect the true underlying uncertainty. A better approach is to predict both
outcome variables (drug effect and side effect) jointly. This strategy encourages the model to
exclude unlikely combinations of the two from the predicted region. In this work, we show
how to construct a region that reflects the true distribution of the response variables while
attaining the pre-specified coverage level.

1.1 Problem Formulation

This paper studies the problem of constructing reliable uncertainty estimates in multivariate
regression problems. Suppose we are given n training samples {(Xi, Yi)}ni=1, where X ∈ Rp
is a feature vector, and Y ∈ Rd is a response vector. Given a new test point Xn+1, our
goal is to construct a region of values in which the unknown test response Yn+1 falls with
high probability. Formally, we seek to build a marginal distribution-free quantile region
R̂(Xn+1) ⊆ Rd that is likely to contain the response Yn+1 with a user-specified coverage
probability 1− α:

P[Yn+1 ∈ R̂(Xn+1)] ≥ 1− α, (1)

for any joint distribution PXY and any sample size n. This property is called marginal
coverage, and in order to guarantee it, we assume that all samples {(Xi, Yi)}n+1

i=1 are drawn
exchangeably. That is, we assume that the training samples and test samples follow the same
distribution. In addition, we aim to construct quantile regions that are as small as possible,
reliably estimating the conditional distribution of Y | X. When d = 1, the quantile region
reduces to a one-dimensional prediction interval, determined by lower and upper bounds,
within which the response is expected to lie with probability at least 1− α.

One of the methods that addresses this problem is directional quantile regression (DQR)
(Kong and Mizera, 2012; Paindaveine and Šiman, 2011; Boček and Šiman, 2017). The main
idea is to estimate conditional quantiles in different directions, where each defines a half-space,
and the quantile region is defined as the intersection of all half-spaces. This method is simple
and fast, compared to competitive methods that require approximating the entire distribution
PXY (Carlier et al., 2016, 2017, 2020). However, being an intersection of half-spaces, the
quantile region is convex, so it might be unnecessarily large, as demonstrated in Section 2.1.
Additionally, the empirical coverage of such a quantile region is lower than the nominal one,
which forces the user to estimate extremal conditional quantiles, as explained in Section
4.1. Furthermore, since the conditional distribution of Y | X is unknown, it is difficult
estimating what empirical coverage DQR will achieve given a certain nominal level. This
raises the problem of choosing the correct nominal level for which DQR achieves the desired
coverage rate. In sum, the DQR method can work effectively only in specific cases, i.e., when
the distribution of Y | X has level sets of the density that are convex. However, even in
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those cases, the user is required to estimate extremal quantiles, a process that is known to
be impractical, as shown by Diebolt et al. (2000). Furthermore, as demonstrated in (Liu
et al., 2019, Section 4.1), DQR is not guaranteed to capture the zone with the highest density
even for convex density level sets.

In this work we develop a novel scheme to construct statistically efficient quantile regions,
relying on the DQR approach. The core idea is to learn a representation of the response
variable for which the DQR method is effective. Once obtaining a quantile region for that
representation, we transform it to the original representation of the response variable Y . In
this work, we use a conditional variational auto-encoder (CVAE) (Sohn et al., 2015) model
to learn a mapping between these two representations, described in detail in Appendix F.4;
see also (Thickstun et al., 2017; Xu and Tewari, 2021; Bengio et al., 2013; Oord et al., 2017;
Kobyzev et al., 2020) for other representation learning techniques. In striking contrast to the
DQR, this scheme is non-parametric and can produce non-convex regions, which are therefore
smaller and more informative. In Section 2.1, and in the experiments, provided in Section 5,
we show that among the four methods we examine in this work, our method consistently
tracks the conditional distribution better, tested on six real data sets, and various synthetic
examples. This phenomenon is supported by a theoretical guarantee of the quantile region
covering only possible responses, i.e., responses in the support of Y | X.

Secondly, we extend ideas from conformal prediction to the multidimensional case and
propose a calibration procedure that guarantees the coverage requirement (1) in the finite-
sample case for any distribution. Conformal inference (Vovk et al., 2005) is a framework
commonly used in the one-dimensional case (d = 1) (Romano et al., 2019; Izbicki et al., 2020;
Sesia and Candès, 2020; Kivaranovic et al., 2020; Chernozhukov et al., 2021; Gupta et al.,
2021; Izbicki et al., 2021; Guan, 2019) that provides a generic methodology for building
prediction intervals that provably attain valid marginal coverage (1). See (Angelopoulos and
Bates, 2021) for a recent overview of this subject. The procedure we propose is generic and
can be applied to any multiple-output quantile regression method, including those we discuss
in this work. In Section 4.1 we show that this procedure is vital to the DQR method, since
its empirical coverage is significantly lower than the nominal level.

2. Background and Related Work

In this section, we describe existing and related methods, but first, begin with a small synthetic
experiment that demonstrates the challenges of constructing informative conditional quantile
regions.

2.1 A Synthetic Example

The example provided hereafter illustrates how the existing methods perform on this synthetic
data, revealing their strengths and weaknesses, which will be further discussed in this section.
We generate a v-shaped 2-dimensional response whose structure varies with the feature
vector X ∈ R. This data is visualized in Figure 1, presenting the marginal and conditional
distribution of the data. Observe that as X increases, the response is shifted downwards
and the slope of the valley becomes steeper. For illustration purposes, we choose to work
with a one-dimensional feature vector here, however, in section 5 we also examine data sets
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with responses and features of higher dimensions. The full description of the distribution of
Y | X is given in Appendix B.1.

Figure 2 presents the conditional distribution of two test points: x = 1.5 and x = 2.5,
and the quantile regions constructed for each of them. This figure shows that the regions
constructed by our method reflect the true conditional distribution. This stands in striking
contrast with the competitive techniques, which are described hereafter.

Figure 1: Synthetic data visualization. Left: scatter plot of the marginal distribution of Y .
Right: scatter plot of the conditional distribution of Y | X = x, for x ∈ {1.5, 2, 2.5}.

2.2 One-dimensional Quantile Regression

Conditional quantile regression is a commonly used method to estimate a certain quantile,
such as the median, of a Y conditional on X, given a sample {(Xi, Yi)}ni=1 drawn from a
distribution PXY . The α-th quantile function of Y is defined as:

qα(x) := inf{y ∈ R : F (y | X = x) ≥ α},

where F is the CDF of Y | X = x. One application of conditional quantiles is to obtain a
prediction interval for a one-dimensional response, as presented next. Denote by αlo = α/2,
αhi = 1− α/2 the lower and upper quantile levels, respectively. Given the lower and upper
quantiles qαlo(x), qαhi(x), the prediction interval for Y given X = x is defined as:

C(x) = [qαlo(x), qαhi(x)].

By construction, the interval satisfies the requirement in (1). While the true conditional
quantiles are unknown, they can be estimated empirically by solving an optimization problem,
e.g., by minimizing the pinball loss (Koenker and Bassett, 1978; Koenker and Hallock, 2001;
Steinwart and Christmann, 2011). This process is known to yield estimations that are
asymptotically consistent under some regularity conditions (Meinshausen, 2006; Takeuchi
et al., 2006; Steinwart and Christmann, 2011). Even though the estimated quantiles are not
perfectly accurate, they have been shown to be adaptive to local variability (Hunter and
Lange, 2000; Taylor, 2000; Koenker and Hallock, 2001; Meinshausen, 2006; Takeuchi et al.,
2006; Steinwart and Christmann, 2011).
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Method Quantile region
x = 1.5 x = 2.5

Naïve QR

NPDQR

VQR

Our method

Figure 2: Quantile region obtained by each of the methods: Naïve QR, NPDQR, VQR, and
our method. See more details about the synthetic data in Appendix B.1.
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2.3 Naïve Multivariate Quantile Regression

The idea presented in the previous section can be extended to build a quantile region for a
multivariate response. The naïve approach regresses to the upper and lower quantile for each
dimension separately. The nominal coverage level for each dimension is set to be 1−β, where
β = α/d. This process results in a prediction interval Cj for each feature in the response
vector that attains the right coverage rate in the population level:

P[Yn+1 ∈ Cj(x)] = 1− β.

The prediction intervals are used to construct the quantile region in the following way:

R(x) = C1(x) × C2(x) × ...× Cd(x).

Notice that the resulted quantile region is a rectangle, for any distribution of Y | X.
Furthermore, in the ideal infinite-samples case, the produced quantile region satisfies the
coverage requirement (1), as proved in Appendix A.1. Even though this method converges
to the desired coverage level with infinite data, the quantile regions it produces are not
flexible, and too conservative. This problem is illustrated in Figure 2, where we see that the
regions produced by this naïve approach do not reflect the true distribution of the response,
as opposed to the other methods: the true distribution is v-shaped, whereas the estimated
regions are rectangles. Moreover, further experiments (Section 5) reveal that this method
produces the largest quantile regions among all existing methods, indicating poor statistical
efficiency.

2.4 Directional Quantile Regression

The next approach, which we refer to as directional quantile regression (DQR) (Kong and
Mizera, 2012; Paindaveine and Šiman, 2011; Boček and Šiman, 2017), is not restricted to
produce rectangle-shaped quantile regions, in contrast to the naïve approach, and thus can
improve the statistical efficiency. However, DQR is also limited as it can only produce convex
quantile regions, as it coincides with Tukey depth (Tukey, 1975; Kong and Mizera, 2012).
Observe that the naïve method from Section 2.3 estimates the boundaries of the quantile
region in four directions u ∈ {(0, 1), (1, 0), (0,−1), (−1, 0)}. The DQR method extends this
procedure, and estimates the boundaries in all directions, as displayed in Figure 3. Formally,
DQR first projects Y ∈ Rd using a direction u ∈ Sd−1, where Sd−1 := {u ∈ Rd : ‖u‖2 = 1} is
the unit sphere of Rd. The quantile region boundaries are defined as the following hyperplanes.
The order-α quantile of Y given X = x in a direction u ∈ Sd−1 is any element of the collection
of hyperplanes:

παu,x := {(x, y) ∈ Rp × Rd : uT y = fθ(x, u)},
with

θ = argmin
θ′

1

n

n∑
i=1

ρα(uTYi, fθ′(Xi, u)),

where θ are the parameters of the regression model, fθ(x, u) : Rp+d → R is the regression
function and ρα is the pinball loss, expressed as:

ρα(y, ŷ) =

{
α(y − ŷ) y − ŷ > 0,

(1− α)(ŷ − y) otherwise.
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Paindaveine and Šiman (2011) defined fθ(x, u) as a linear function, i.e., fθ(x, u) = θ(u)Tx,
where the coefficients θ(u) ∈ Rp are a function of the direction u. A solution for each direction
defines the following half-space:

H+
u (x) = {y ∈ Rd : uT y ≥ fθ(x, u)}.

Figure 3 illustrates the half-spaces obtained from different directions. As the figure implies,
the quantile region is defined as the intersection of all half-spaces obtained from all directions:

R(x) = ∩u∈Sd−1H+
u (x). (2)

As shown by Boček and Šiman (2017), the conditional quantile regions are closed, convex and
nested, i.e., for any x ∈ X , Rα1(x) ⊆ Rα2(x) for α1 ≥ α2. The convexity of the constructed
regions is also illustrated in Figure 2. However, the quantile region achieves coverage lower
than the nominal level in the population level. See Section 4.1 for more details. We note
that there are more recent methods to compute the same quantile regions described in this
section (Hallin et al., 2010, 2015; Charlier et al., 2020). These methods require estimating
only a finite set of half-spaces, but they are all limited to construct convex regions. In fact,
the method of Hallin et al. (2010) is the common way to compute these directional regions,
although in this work we focus on the version proposed by Paindaveine and Šiman (2011),
for simplicity.

Figure 3: Half-spaces obtained from DQR on unconditional data. The left and right panels
contain 8 and 512 different half-spaces, respectively. Figure credit: Hallin et al.
(2013).

2.5 Additional Related Work

The problem of estimating the quantile region for Y | X = x was also tackled by Hallin et al.
(2015); Charlier et al. (2020). However, their proposed methods can only construct convex
regions and are based on kernel functions or on a quantization grid, which are infeasible
for high-dimensional regressors. A similar technique is the one by Liu et al. (2019), which
is a fast algorithm to construct half-space regions. A different approach to multivariate
quantiles, called vector quantile regression (VQR) (Carlier et al., 2016, 2017, 2020), addresses
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the estimation of the conditional distribution of Y | X = x, and can produce non-convex
quantile regions. Nevertheless, it assumes that Y depends linearly on X, and Figure 2
shows that this method fails on the synthetic data, in which this assumption is not satisfied.
This approach relates to the one proposed by Chernozhukov et al. (2017) that is based on
statistical depth. More recent approaches to construct distribution-free quantile regions,
based on geometric tools, are proposed by Hallin (2017); Hallin et al. (2021). However, these
methods can only handle data without covariates.

2.6 Our Contribution

We state three features of our method, where each addresses a different limitation of the
vanilla DQR method.

Flexible quantile regions. The DQR method can only construct convex regions, whereas
the true distribution of the response might not be convex. As illustrated in Figure 2, the
quantile regions produced by this method are too conservative and uninformative. In contrast,
as indicated by this figure, the regions produced by our algorithm are non-convex, reflecting
the true distribution of the response.

Feasible for high-dimensional responses. Due to the curse of dimensionality, the
quantile regression problem becomes more difficult when increasing the dimension of the
response. In addition, the discrepancy between the nominal coverage level and the empirical
coverage rate achieved by DQR worsens as the dimension of the response increases. See Section
4.1 for more details. Moreover, the time complexity of the methods proposed by Carlier
et al. (2016, 2017, 2020) grows exponentially as the dimension of the response increases.
Our method overcomes these limitations by computing the directional quantiles in space Z,
whose dimension can be determined regardless of the dimension of the response. As a result,
our method is feasible for higher-dimensional response settings.

Guaranteed coverage rate. The quantile regions constructed by DQR and VQR are not
guaranteed to achieve the desired coverage rate. This problem is more severe with the DQR,
whose coverage rate is significantly lower than the nominal level, even with infinite data.
See Section 4.1 for additional details. To overcome this limitation, we develop a calibration
scheme that guarantees the coverage requirement (1). This process is generic and can also be
applied to our proposed method, DQR, VQR, and other methods. Our numerical experiments
in Section 5 show that, after calibration, all methods achieve the right marginal coverage.

3. Proposed Method

In this section, we introduce the proposed algorithm, but first, extend DQR beyond linear
settings.

3.1 Non-parametric Directional Quantile Regression

Before describing our contribution, we pause to extend the formulation of conditional
directional quantiles as defined by Kong and Mizera (2012); Paindaveine and Šiman (2011);
Boček and Šiman (2017) beyond linear models. This extension of DQR will be used as a
subroutine in our main algorithm. To this end, we follow the original DQR from Section 2.4,
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however, use a non-parametric function class for fθ, formulated as neural networks in this
work. In such a case, the quantile region for Y conditional on X = x is given by

R(x) = {y ∈ Rd : uT y ≥ fθ(x, u),∀u ∈ Sd−1}.

The latter stands in contrast with the methods proposed by Paindaveine and Šiman (2011);
Boček and Šiman (2017) that allow R(x) in (2) to depend only linearly on x. We refer to
this new method as non-parametric DQR (NPDQR) throughout this work.

3.2 Our Method: Going Beyond Convex Quantile Regions

In this section, we present a general approach to construct quantile regions of an arbitrary
shape, overcoming the convexity restriction of NPDQR. Our method relies on the following
observation. When the distribution of Y | X has level sets of the density that are convex,
NPDQR (which must create convex regions) is still appropriate. This motivates us to transform
an arbitrary response into a space where it has level sets of the density that are convex.
Then, we will apply NPDQR and construct a convex quantile region in that space. Lastly, we
will transform it back to the original space of the response, using the inverse of the mapping.
By applying a non-linear mapping, this process will result in a quantile region that is not
restricted to have a convex shape, having an arbitrary structure.

We now describe this procedure in detail. We start by learning a mapping that transforms
a general distribution Y | X = x into a latent distribution Zx whose level sets are convex.
In this work, we focus on mapping Y | X to a r-dimensional standard normal distribution,
which is not only spherical, but also has convex level sets. To learn such a mapping, we
fit a conditional variational auto-encoder (CVAE) (Sohn et al., 2015) on the training set
{(Xi, Yi)}i∈I1 , and obtain the non-linear transformation between space Y to space Z. For
technical details regarding CVAE, see Appendix F.4. For our purposes, an ideal CVAE
(E(y;x),D(z;x)) should satisfy the following:

Zx = E(Y ;X = x) ∼ N (0, 1)r, D(Zx;X = x) = Y.

Since Zx is spherically distributed, the conditional distribution Zx | Xn+1 = x for a new test
point Xn+1 has a convex level sets. Figure 4 illustrates this process. The top panel visualizes
the non-linear mapping Y | X → Zx ∼ N (0, 1)3 obtained by the CVAE model. Observe how
the distribution Zx | X = x has approximately a spherical shape. Observe also that the
inverse transformation is fairly accurate, so it can map samples from space Z back to space
Y.

Since the distribution of Z | X is approximately spherical, NPDQR can estimate effectively
its quantile region. We therefore fit NPDQR in space Z. First, we map the response vectors
of the training set to space Z, and obtain the transformed training set {(Xi, E(Yi;Xi))}i∈I1 .
Next, we fit a NPDQR model on the transformed training samples, as described in Section
2.4. This process results in a model that can construct a quantile region RZ(x) ⊆ Z, for
any given feature vector x. Notice that even though the constructed regions are convex,
they are appropriate, since the distribution of Z | X is approximately spherical. That is,
NPDQR is applied in a space for which it is well-suited. The procedure of fitting the NPDQR
model is summarized in the bottom panel of Figure 4, displaying (in red) the quantile region
constructed in space Z during training, for a specific feature vector x.
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CVAE
training

NPDQR

training

Figure 4: CVAE and NPDQR training schemes on the synthetic data. For further details
regarding the synthetic data, see Appendix B.1.
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At test time, given a test point Xn+1, we (i) construct a quantile region RZ(Xn+1) ⊆ Z
by applying the fitted NPDQR model; and (ii) transform the estimated region to the original
space Y, forming the desired quantile region:

RY(Xn+1) := D(RZ(Xn+1);Xn+1) ⊆ Y. (3)

Observe that RY(Xn+1) is the quantile region of Xn+1 in Y . From a practical point of view,
the function D can only map a discrete set of points from RZ(Xn+1), and therefore the
resulting set RY(Xn+1) is a discretization of the quantile region. We address this important
issue in Section 4.2 and show how to construct a continuous region from the discretized
RY(Xn+1). The test procedure is illustrated in Figure 5, in which, we can see that while the
quantile region in space Z has a convex shape, the transformed one (in space Y) has the
desired non-convex structure. The whole procedure is summarized in Algorithm 1, which we
refer to as Spherically Transformed DQR (ST-DQR).

Figure 5: The test procedure on the synthetic data, given a new test point Xn+1 = xnew.

We pause here to highlight several features of the proposed algorithm. First, we use
a CVAE model which is nonlinear and non-convex, so we can obtain arbitrary quantile
regions, unlike previous approaches. Second, since we apply NPDQR in a latent r-dimensional
space, where r is a hyper-parameter, our method can effectively treat high-dimensional
response variables by choosing r < d. We demonstrate this in Section 5.1, in which we display
the results obtained by different methods on synthetic data sets with higher-dimensional
responses.

3.3 Theoretical Results

We explain a formal property satisfied by our proposed algorithm that supports the behavior
we observed in Figure 2. We would like our quantile region to reflect the true distribution of
the response variable. For example, in the synthetic data from Figure 2, the quantile region
should only cover blue points, i.e., areas where the response can be present. Formally, we
ask that the quantile region will be contained in the support of Y | X = x. We now show
that a quantile region constructed by our method satisfies this property.

Theorem 1 Suppose Y | X = x has a continuous distribution for all x. Suppose (E(y;x),D(z;x))
is a CVAE model that satisfies:

∀x ∈ supp(X) : Zx = E(Y ;X = x) ∈ Rr, D(Zx;X = x)
d
= Y | X = x,

11
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Algorithm 1: Spherically transformed DQR (ST-DQR)
Input:
Data (Xi, Yi) ∈ Rp × Rd, i ∈ I1.
Miscoverage level α ∈ (0, 1).
Directional quantile regression algorithm, e.g., NPDQR from Section 3.1.
Conditional variational auto-encoder algorithm (E(y;x),D(z;x)); see Section F.4.
A test point Xn+1 = x.

Training time:
Fit a CVAE model on the data {(Xi, Yi)}i∈I1 . See (Sohn et al., 2015).
Transform the response values Yi to the space Z: Zi = E(Yi;Xi), i ∈ I1.
Fit a directional quantile regression model on the training set in space Z
{(Xi, Zi) : i ∈ I1} to obtain a method to construct quantile regions in Z, denoted by
RZ(x).

Test time:
Construct the quantile region in Z RZ(Xn+1 = x).
Transform the quantile region to Y: RY(Xn+1 = x) = D (RZ(Xn+1 = x);Xn+1 = x).

Output:
A quantile region RY(Xn+1 = x) for the unseen input Xn+1 = x.

where E and D are continuous functions. Suppose RZ(x) is a quantile region in space Z.
Define the quantile region in space Y as: RY(x) = D(RZ(x);x). Then the quantile region
RY(x) satisfies:

RY(x) ⊆ supp(Y | X = x). (4)

All proofs are given in Appendix A. Even though the requirement in (4) is a modest bar,
we see in Figure 2 that, unlike the proposed method, the other methods do not satisfy this
property. In conclusion, we have shown that a quantile region in Y constructed by our
method does not contain spurious portions, since it does not cover areas outside the support
of Y | X = x. As a complementary result, we also give a lower bound for the coverage rate of
a quantile region constructed by our method in Appendix A.4. To achieve the exact nominal
coverage level, we propose a calibration procedure, described in Section 4.

4. Calibration

In this section, we introduce a procedure to calibrate quantile regions to exactly achieve 1−α
coverage. The procedure is modular and can be used with any quantile region algorithm,
such as DQR, VQR, or our proposed method from the previous section. At a technical level,
the calibration scheme instantiates split conformal prediction (Vovk et al., 2005) in a way
that is compatible with multi-dimensional quantile regions.

4.1 DQR Requires Estimating Extreme Quantiles

To motivate our calibration scheme, we first point out that the parameter α in DQR does
not correspond to the coverage level. This phenomenon is known in the literature (Zuo and
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Serfling, 2000; Tukey, 1975), and in this section, we provide an intuitive explanation and
an example illustrating this problem. As a result, the DQR regions have a coverage level
unknown to the user without further calibration, such as the one described in this section.
This problem arises from the definition of the DQR quantile region as an intersection of
infinite half-spaces, where each covers 1− α of the distribution; see Figure 3. As a result,
their intersection, i.e., the quantile region output by DQR, covers strictly less than 1 − α
of the distribution. To make this precise, we now analyze the coverage rate of a quantile
region constructed with the DQR method, in the setting in which Y | X = x ∼ N (0, 1)r (see
Appendix F.5 for the full calculation). The left panel of Figure 6 displays the coverage rate
of a quantile region constructed by DQR as a function of the dimension r, when the nominal
coverage level is set to 90%. The right panel in that figure presents the coverage of a DQR
quantile region as a function of the directional quantile level 1− α for r = 3. We see that
the achieved coverage is far below the nominal rate. For example, to construct regions that
truly have coverage 90% in a three-dimensional response setting, one would need the 99.38%
directional quantiles. Unfortunately, such extreme quantiles are impractical to estimate, as
shown by Diebolt et al. (2000). In summary, the DQR regions do not achieve the nominal
coverage rate, even for reasonable quantile levels. The coverage level is the scaling of interest
to the user, so we turn to formulate a calibration scheme that guarantees the desired coverage
level.

Figure 6: Coverage rate of a quantile region constructed by DQR. Left panel: marginal
coverage as a function of r, when the desired level is 90%. Right panel: marginal
coverage as a function of 1− α, for r = 3.

4.2 Calibration Preliminaries

Recall that ST-DQR produces a discretization of the quantile region for a given test point
Xn+1, denoted by RY(Xn+1) ⊆ Y ; see (3). We now show how to extend this discrete set to a
continuous quantile region that contains infinitely many points. In more detail, we introduce
a family of continuous quantile regions, parameterized by a single number. Then, in Section
4.3, we explain how to choose this parameter to achieve the desired coverage level. The
method we develop can also generate valid predictive regions for NPDQR (or any quantile
method), by discretizing its quantile regions.

13
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We begin by defining a base region Sγ(x), which we will later expand or contract. We
define that a point y ∈ Y is inside the base region of Xn+1 = x if it is close to a point in
RY(x). Formally, the base region is given by

Sγ(x) =

{
y ∈ Rd : min

a∈RY (x)
d(a, y) ≤ γ

}
, (5)

where d denotes L2 distance, and γ is a distance threshold. We initialize γ to be γinit, which
is the 90-th quantile of the distance between two neighbor points in RY(Xn+1); see more
details in Appendix F.1. We find that this initialization performs well in the sense that
it tends to transform the discrete set into a continuous region, although other options are
possible.

Notice that since γ is not tuned, the coverage achieved by this method might be far from
the nominal level. To tune this parameter, we first split the data into a training set, indexed
by I1, and a calibration set, indexed by I2. Denote the coverage rate of the base regions by

cinit =
1

| I2 |
|{Yi : Yi ∈ Sγinit(Xi), i ∈ I2}| ,

where | · | is the set size. Depending on cinit, we grow or shrink the base region Sγinit to
the extent required to achieve the desired 1 − α coverage. We describe these two cases
(grow/shrink) separately next. See Appendix F.6 for an explanation of why it is important
to handle the two cases separately.

Case 1: Too low coverage. In this setting, cinit ≤ 1−α and therefore we need to enlarge
the base region by increasing γ. Figure 7 shows the effect of γ on the quantile region and its
coverage rate. By inflating γ, we enlarge the quantile region and, as a result, increase the
coverage rate. In Section 4.3 we show how to exploit the calibration set to compute γcal that
rigorously achieves this nominal rate. Given γcal, the calibrated quantile region in this case
is formulated as

Sγcal(x) =

{
y ∈ Rd : min

a∈RY (x)
d(a, y) ≤ γcal

}
. (6)

In practice, DQR tends to generate regions with coverage rate below the nominal level (recall
Figure 6), therefore, this regime, where cinit ≤ 1− α, is most likely to happen in practice.

Figure 7: Demonstration of the quantile region under Case 1 (i.e., γinit yields regions of a
low coverage rate) for different values of γ.
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Case 2: Too high coverage. This scenario treats the case where cinit > 1− α, which is
less likely to occur in practice. In this setting, analogously to Case 1, one could decrease
γ to reduce the coverage rate. This strategy, however, may result in a new region that is
composed of many disjoint sub-regions, as explained in Appendix F.6. This construction is
undesired and hard to interpret for continuous distributions, such as the one presented in
Figure 2. We therefore alter the scheme in Case 1, and shrink the base region in a different
manner. We begin by taking a set of points outside the quantile region, denoted by RcY(x):

RcY(x) =

{
y ∈ Rd : min

a∈RY (x)
d(a, y) > γinit

}
.

Next, we say that a point y is inside the quantile region if it is far from its boundaries.
Formally, the calibrated quantile region is given by

Sγcal(x) =

{
y ∈ Rd : min

a∈Rc
Y (x)

d(a, y) ≥ γcal

}
, (7)

where the calibrated threshold parameter, γcal, is defined hereafter.

4.3 The Calibration Scheme

We now turn to describe how to choose the distance threshold γ in a way that guarantees
the coverage requirement (1), by borrowing ideas from conformal prediction. Following the
discussion from the previous subsection, we divide the calibration scheme into two cases,
depending on the value of cinit which is evaluated on the calibration set. For cinit ≤ 1− α
(Case 1), we grow the base quantile region by computing γcal > γinit as follows:

E+
i = min

a∈RY (Xi)
d(a, Yi), ∀i ∈ I2, (8)

γcal := d(n2 + 1)(1− α)e-th smallest value of {E+
i : i ∈ I2},

where n2 = |I2|. The effect of γ on the coverage rate is visualized in Figure 8. The figure
shows that γcal is the value for which the empirical marginal coverage rate is equal to the
desired level (up to a small correction). In Case 2, where cinit > 1− α, we instead grow the

Figure 8: Quantile region coverage rate under Case 1 for different values of γ. The value for
which the 90% marginal coverage rate is attained is γ = γcal.
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Algorithm 2: Calibrating Multivariate Quantile Regression
Input:
Data (Xi, Yi) ∈ Rp × Rd, 1 ≤ i ≤ n.
Miscoverage level α ∈ (0, 1).
Multivariate quantile regression algorithm, e.g., NPDQR from Section 3.1.
An unseen input Xn+1 = x.

Training time:
Randomly split {1, ..., n} into two disjoint sets I1, I2 of sizes n1 and n2 = n− n1,
respectively.
Fit the multivariate quantile regression algorithm on the training set {(Xi, Yi) : i ∈ I1}.
Compute the coverage rate of the uncalibrated quantile regions:
cinit ← 1

n2
|{Yi : Yi ∈ Sγinit(Xi), i ∈ I2}|.

if cinit ≤ 1− α then
Compute E+

i for each i ∈ I2, according to Equation (8).
Compute γcal the d(n2 + 1)(1− α)e-th smallest value of {E+

i }i∈I2 .
else
Compute E−i for each i ∈ I2, according to Equation (9).
Compute γcal the b(n2 + 1)αc-th smallest value of {E−i }i∈I2 .

Test time:
Obtain a base quantile region RY(Xn+1 = x) using the multivariate quantile regression
algorithm. if cinit ≤ 1− α then
Construct the calibrated quantile region Sγcal according to Equation (6).

else
Construct the calibrated quantile region Sγcal according to Equation (7).

Output:
A quantile region Sγcal(x) for the unseen test point Xn+1 = x.

complement of the base quantile region by computing γcal as follows:

E−i = min
a∈Rc

Y (Xi)
d(a, Yi),∀i ∈ I2, (9)

γcal := b(n2 + 1)αc-th smallest value of {E−i : i ∈ I2}.

In words, under Case 1 (Case 2), the quantity E+
i (E−i ) is the distance of Yi from its

closest point inside (outside) the base quantile region. From a computational perspective,
Case 1 is more efficient since usually |RY(x)| < |RcY(x)|. As a result, computing E+

i =
mina∈RY (x) d(a, Yi) requires less operations compared to E−i = mina∈RcY (x) d(a, Yi). We now
state that a quantile region constructed by the above procedure, summarized in Algorithm 2,
satisfies the marginal, distribution-free coverage guarantee (1). The proof is given in Section
A.3.

Theorem 2 If (Xi, Yi), i = 1, ..., n+1 are exchangeable, then the quantile region Sγcal(Xn+1)
constructed by Algorithm 2 satisfies:

P(Yn+1 ∈ Sγcal(Xn+1)) ≥ 1− α.
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Moreover, if the distances E+
i , E

−
i are almost surely distinct, then the quantile region is

almost perfectly calibrated:

P(Yn+1 ∈ Sγcal(Xn+1)) ≤ 1− α+
1

n2 + 1
.

We pause here to explain the significance of Theorem 2. First, the coverage guarantee of the
calibration procedure applies for any sample size, and dimension of (X,Y ). In addition, once
applying this procedure, we guarantee that the calibrated version of any base multivariate
quantile regression method (DQR/VQR/ST-DQR) would attain the desired 1 − α coverage.
Therefore, the calibrated methods would differ only in their statistical efficiency, i.e., the
area of the constructed quantile region.

5. Experiments

Herein, we systematically quantify the effectiveness of our proposed method (ST-DQR) and
compare its performance to existing techniques (Naïve QR, NPDQR, and VQR). Turning to
the details of our setup, for all methods except for VQR, we apply a deep neural network as
a base model for constructing quantile regions with 1 − α = 0.9 coverage level. The VQR
method cannot incorporate neural networks in the same way, so we applied the procedure
exactly as proposed by Carlier et al. (2016); see Appendix F.7 for details. We split the data
sets (both real and synthetic) into a training set (38.4%), calibration (25.6%), validation
set (16%) used for early stopping, and a test set (20%) to evaluate performance. Then, we
normalize the feature vectors and response variables to have a zero mean and unit variance.
Appendix C gives the details about the network architecture, training strategy, and more
information about this experimental protocol. The performance metrics (coverage and area,
as described below) are averaged over 20 random splits of the data. For our method, we
set the dimension of the latent space to r = 3; see F.4.2 for other choices of this hyper-
parameter. In all experiments, we report only the performance of the calibrated quantile
regions, since this puts all methods on the same scale. Specifically, ST-DQR, NPDQR, and
VQR are calibrated according to Algorithm 2 and Naïve QR is calibrated as described in
Appendix C.1. Software implementing the proposed method and reproducing our experiments
can be found at https://github.com/Shai128/mqr

We report the following two metrics, evaluated on test data:

• Coverage: The percentage of samples that are covered by the quantile region. The
coverage of a point is determined as described in Section 4.2.

• Area: The area of the generated quantile region. To evaluate this metric, we take
a grid in space Y, and define the area to be the number of cells that fall inside the
quantile region. See more details in Appendix F.2.

5.1 Synthetic Data Results

We return to the synthetic v-shaped data from Section 2.1 and extend it to higher-dimensional
settings. In Appendix B.1 we describe how we generate such data for increased dimensions
of X and Y . Furthermore, we explore two settings: in the first, the relationship between
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the response variables and the covariates is linear, whereas in the second this relationship
follows a non-linear model. In both cases the relationship between the elements in the
response vector is non-linear, however, the relationship between Y and X can be either
linear or non-linear; see Figure 1. We evaluate the four methods described in this paper
(ST-DQR, Naïve QR, NPDQR, and VQR) using the synthetic data sets, and examine their
robustness to non-linearity, a high regressor dimension, and a high dimensional response
vector. We find that the VQR method is feasible only for data sets of small dimensions, so we
report the results only for those data sets; see more details in Table 18 in the Appendix that
summarizes VQR’s runtime and memory footprint. For NPDQR and ST-DQR, we estimate a
(pre-calibration) directional quantiles of a level higher than the nominal 90% rate (see Table
7), due to the under-coverage problem presented in Section 4.1. For Naïve QR and VQR,
we set the quantile level to be equal to the target 1− α = 90% rate.

Table 1 displays the coverage rates and areas of the constructed quantile regions. Observe
that all methods attain the nominal coverage level, a consequence of applying our proposed
calibration procedure from Algorithm 2. However, the regions constructed by different
methods are different in size, as presented in the same table. Here, our proposed method
ST-DQR constructs quantile regions that are substantially smaller compared to all other
techniques. These results are anticipated, since Naïve QR and NPDQR are restricted to
produce convex quantile regions, forcing the two to cover irrelevant areas, whereas our
method does not have this limitation. In addition, since the linearity assumption of VQR is
not satisfied in the non-linear setting, the quantile regions it produces are unnecessarily large.
Finally, following Figure 2, we can see the advantages of our non-parametric method: it
produces a quantile region of an arbitrary shape, estimating well the conditional distribution
of Y | X in contrast to the competitive techniques. Table 1 also reports the performance
metrics that correspond to data sets with high-dimensional features. These results indicate
that VQR is infeasible when the dimension of the feature vector is not small enough, while
other methods (including ours) are robust to high-dimensional regressors; see Table 18 in the
Appendix for more details.

In the case where the response is a four-dimensional vector, the differences between our
method and Naïve QR/NPDQR become more significant. (Once again, VQR is infeasible in
this setting.) Here, Naïve QR and NPDQR produce quantile regions with an area larger
by a factor of 180-440 than regions constructed by our method. This limitation of the
standard methods to handle a high dimensional response is also visualized in Figure 9. One
explanation for the substantial improvement that our method achieves is this: while the
standard methods work in a four-dimensional space (the dimension of Y ), our method works
in a lower-dimensional space (in this case, the dimension of Z is three), so it can achieve a
higher coverage rate for the same directional quantile level; recall Figure 6. Therefore, the
calibration applied to our method is milder and does not affect much the base quantile region
(5). By contrast, the uncalibrated NPDQR has an extremely low coverage rate and therefore
requires an aggressive calibration. That is, it must smooth out the original fit, making it
more like a round ball and less adaptive to the test point.
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Coverage rate

Setting d p ST-DQR Naïve QR NPDQR VQR

linear 2 1 89.943 90.059 90.041 89.755

linear 2 10 89.926 89.789 90.131 90.065

linear 2 50 89.91 89.99 89.96 -

linear 2 100 89.963 89.993 90.003 -

nonlinear 2 1 90.126 90.078 90.165 90.13

nonlinear 3 1 90.165 90.114 90.021 90.156

nonlinear 3 10 89.991 89.881 90.051 -

nonlinear 4 1 90.031 90.175 89.955 -

nonlinear 4 10 89.792 89.841 89.956 -

Relative area of quantile regions

ST-DQR Naïve QR NPDQR VQR

1 3.88 3.25 1.476

1 4.372 4.222 1.264

1 4.573 3.926 -

1 3.922 3.406 -

1 3.369 2.934 2.73

1 24.611 21.396 8.161

1 35.21 27.897 -

1 72.037 217.172 -

1 183.672 440.817 -

Table 1: Simulated data experiments. The standard errors are given in Appendix E.3.1. See
Appendix B.1 for more details about the synthetic data sets.

Figure 9: Quantile region area vs. the dimension of the response. The area is scaled by the
area of the quantile region constructed by our method, averaged on 20 random
splits of the data. The data set used is the non-linear synthetic data with p = 10.

5.2 Real Data Results

Next, we compare the performance of the proposed ST-DQR method to NPDQR, and Naïve
QR on six benchmarks data sets as in (Romano et al., 2019; Sesia and Candès, 2020): blog
feedback (blog_data), physicochemical properties of protein tertiary structure (bio), House
Sales in King County, USA (house), and medical expenditure panel survey number 19-21
(meps_19, meps_20,and meps_21). We modify each data set to have a 2-dimensional
response as described in Appendix B.2, which also provides additional information about
each data set. We follow the experimental protocol and training strategy described in
Section 5.1. Specifically, we randomly split each data set into disjoint training (38.4%),
calibration (25.6%), validation (16%), and testing sets (20%), and further normalized the
feature vector and response variables to have a zero mean and a unit variance each. Due
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to the under-coverage problem of DQR presented in Section 4.1, we estimate a directional
quantile of a level higher than the nominal 90% rate for NPDQR and ST-DQR; see Table 8.
For Naïve QR and VQR, we set the quantile level to be equal to the target 1 − α = 90%
rate.

Table 2 summarizes the performance metrics, showing that all calibrated methods
consistently attain the nominal coverage rate, as guaranteed by Theorem 2. In addition, the
same table indicates that the regions constructed by our method are significantly smaller
than the ones produces by the competitive methods. Similar to the synthetic case, VQR
is infeasible to deploy and thus omitted from that table. Instead, in Table 3 we report
the results on a smaller version of the data sets, in which each feature vector is reduced
to dimension 10 using PCA so that VQR is feasible. The table shows that even for these
modified versions of the data sets, our method outperforms all the others.

We also test the quality of the constructed regions on sub-populations of the data as
follows. We split the test set into three disjoint clusters c0, c1, c2, where each contains at
least 20% of the data. The split is done using the K-means algorithm (Hartigan and Wong,
1979). For illustration purposes, we define the quantile region of a cluster c as

Sγcal(c) =
⋃
x∈c

Sγcal(x).

Figure 10 displays the quantile region constructed by each method for each of the three
clusters for the bio data set. The figure shows that the regions constructed by our method
reflect the distribution of Y | X ∈ c better than other methods. Appendix D presents the
quantile regions constructed on the house data set, leading to a similar conclusion.

Coverage rate

Data Set name ST-DQR Naïve QR NPDQR

bio 90.0 90.002 89.892

house 90.157 89.978 89.876

blog_data 90.145 90.064 90.016

meps_19 90.144 89.892 89.865

meps_20 89.997 90.0 89.913

meps_21 89.899 89.879 89.676

Relative area of quantile regions

ST-DQR Naïve QR NPDQR

1 1.223 1.222

1 1.168 1.149

1 1.551 1.821

1 2.215 2.169

1 2.27 2.209

1 2.191 2.212

Table 2: Real data experiments. The standard errors are given in Appendix E.3.2. See
Appendix B.2 for more details about the real data sets.

6. Conclusion

In this work, we introduced the ST-DQR method to construct non-parametric and flexible
quantile regions of an arbitrary shape. We also proposed a modular extension of conformal
prediction to the multivariate response setting that guarantees any pre-specified coverage
level. Experiments showed that our method generates informative quantile regions for data
with response vectors and features of high dimensions.
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Method Quantile region
c = 0 c = 1 c = 2

Naïve QR

Coverage 91.80% 91.23% 90.65%

NPDQR

Coverage 89.85% 89.25% 88.70%

VQR

Coverage 89.60% 88.70% 88.84%

ST-DQR

Coverage 90.40% 90.60% 88.78%

Figure 10: Quantile regions constructed for Bio data set. The regions were obtained by each
of the methods: Naïve QR, NPDQR, VQR, and our ST-DQR. In this data set, Y0
and Y1 are two protein structural features.
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Coverage rate

Data Set name ST-DQR Naïve QR NPDQR VQR

bio 90.0 90.002 89.892 89.87

house 89.923 90.094 90.067 90.119

blog_data 90.078 90.035 89.823 90.034

meps_19 90.179 90.16 89.919 90.149

meps_20 90.087 89.925 90.036 90.134

meps_21 90.061 89.957 89.965 89.887

Relative area of quantile regions

ST-DQR Naïve QR NPDQR VQR

1 1.223 1.222 1.591

1 1.501 1.425 1.359

1 1.744 1.95 1.658

1 2.82 1.527 1.078

1 2.761 1.488 1.1

1 2.848 1.538 1.061

Table 3: Real data experiments. All feature vectors were reduced to dimension 10 using
PCA. The standard errors are given in Appendix E.3.2.

A promising future direction could be to exploit the property that the response is
approximately normally distributed in the latent space Zx, and construct a quantile region
for normally distributed data instead of using DQR. Another direction could be to replace the
CVAE model (used to transform points from space Y to space Z and vice versa) with more
recent techniques, such as normalizing flows (Kobyzev et al., 2020; Rezende and Mohamed,
2015). Turning the calibration procedure, for very high-dimensional responses, other notions of
statistical error beyond marginal coverage—such as the false-negative rate across coordinates—
may be more appropriate. Extensions of our procedure to control other error rates would
be possible in combination with generalizations of conformal prediction (Bates et al., 2021;
Angelopoulos et al., 2021), and we view this as an important next step. Lastly, it would be
exciting to explore the conditional coverage of multivariate quantile regression methods, and
offer techniques that further improve it, e.g., by generalizing the one proposed by Feldman
et al. (2021) to this setting.
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Appendix A. Theoretical Results

We now present the proofs of the theoretical results presented in the main manuscript.
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A.1 Coverage Guarantee of Naïve Multivariate Quantile Regression

The naïve multivariate quantile regression introduced in Section 2.3 achieves the desired
coverage level, as proved next.

P[Yn+1 ∈ R(x)] = P

 d∧
j=1

Yn+1 ∈ Cj(x)


= 1− P

 d∨
j=1

Yn+1 /∈ Cj(x)


≥ 1−

d∑
j=1

P
[
Yn+1 /∈ Cj(x)

]
= 1−

d∑
j=1

α/d

= 1− α.

A.2 Proof of Theorem 1

Proof [Proof of Theorem 1] We begin by proving that for a fixed X = x,

D : Rr → supp(Y | X = x). (10)

Assume for the sake of contradiction that Equation (10) does not hold. That is, there exists
y ∈ Im(D) such that y /∈ supp(Y | X = x). Therefore, there exists ε > 0 such that the ball
B := {a ∈ Rd : ‖a− y‖2 ≤ ε} satisfies:

B ∩ supp(Y | X = x) = ∅, P(D(Zx;X = x) ∈ B | X = x) > 0.

However, under the assumption, D(Zx;X = x)
d
= Y | X = x, so it follows that:

P(Y ∈ B | X = x) = P(D(Zx;X = x) ∈ B | X = x) > 0,

which contradicts B ∩ supp(Y | X = x) = ∅. We conclude Im(D) ⊆ supp(Y | X = x).
Finally, since a quantile region in space Y satisfies RY(x) = D(RZ(x);x) by construction,
we have

RY(x) ⊆ Im(D) ⊆ supp(Y | X = x).

A.3 Proof of Theorem 2

Proof [Proof of Theorem 2] We provide the proof for Case 1, in which cinit ≤ 1− α. The
proof for the complementary case is similar. Recall that the quantile region is defined as:

Sγcal(x) =

{
y ∈ Rd : min

a∈RY (x)
d(a, y) ≤ γcal

}
,
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where
γcal = Q̂1−α({E+

i }i∈I2), E+
i = min

a∈RY (Xi)
d(a, Yi),

and Q̂1−α({E+
i }i∈I2) is the d(1− α)(1 + |I2|)e-th smallest value in {E+

i }i∈I2 . This implies
that:

Yn+1 ∈ Sγcal(Xn+1) ⇐⇒ E+
+n+1

≤ Q̂1−α({E+
i }i∈I2). (11)

Since the conformity scores
{
E+
i

}
i∈I2 and E+

n+1 are exchangeable, the probability of the
event in (11) is at least 1− α. The remaining technical details for proving this statement
follow from Romano et al. (2019). The upper bound guarantee of the coverage follows
from (11) as well, by applying (Romano et al., 2019, Lemma 2).

A.4 ST-DQR Coverage Rate Lower Bound

While the property guaranteed in Theorem 1 is highly desired, it does not suffice, as it can
be trivially satisfied by an empty region RY(x) = ∅, which is a subset of supp(Y | X = x),
hence satisfies the property of Theorem 1. We therefore require the quantile region RY(x) to
achieve a high coverage rate as well. For complex distributions of Y | X = x, the task of
constructing a quantile region with a good coverage rate is difficult to achieve via NPDQR. By
contrast, the distribution of the response in space Z is spherical (recall that Z ∼ N (0, 1)r)
and thus much simpler to handle in the sense that the region constructed by NPDQR in space
Z is likely to achieve a better coverage rate. Therefore, we would like this coverage property
to be preserved when transforming the quantile region back to space Y. We now show that
our method satisfies this property, i.e., the coverage attained in space Y is at least as good
as the one in space Z.

Proposition 3 Suppose (E(y;x),D(z;x)) is a CVAE model as in Theorem 1. Suppose
RZ(x) is a quantile region in space Z, and RY(x) is a quantile region in space Y, as defined
in Theorem 1. Assuming the coverage rate of RZ(x) is 1−β, then the coverage rate of RY(x)
is at least 1− β.

Proof By the assumption of the coverage rate:

P(Zx ∈ RZ(x) | X = x) = 1− β.

Since D is a function, it follows that:

Zx ∈ RZ(x) =⇒ D(Zx;X = x) ∈ D(RZ(x);X = x)

Therefore:

P (D(Zx;x) ∈ D (RZ(x);x) | X = x) ≥ P(Zx ∈ RZ(x) | X = x) = 1− β.

Finally, since Y | X = x
d
= D(Zx;X = x), and, RY(x) = D(RZ(x);x), we conclude that:

P(Y ∈ RY(x) | X = x) = P (D (Zx;x) ∈ D (RZ(x);x) | X = x) ≥ 1− β.
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Appendix B. Data Sets Details

This section provides details about the generation of the synthetic data, and about the real
data sets used in the experiments.

B.1 Synthetic Data Details

The generation of the feature vector and the response variable of the linear version of the
synthetic data is done in the following way:

β̂ ∼ Uniform(0, 1)p,

β =
β̂

‖β̂‖1
,

Z ∼ Uniform(−π, π),

φ ∼ Uniform(0, 2π),

R ∼ Uniform(−0.1, 0.1),

X ∼ Uniform(0.8, 3.2)p,

Y0 =
Z

βTX
+R cos(φ),

Y1 =
1

2
(− cos(Z) + 1) +R sin(φ),

where Uniform(a, b) is a uniform distribution on the interval (a, b). The non-linear version
of the synthetic data is generated in the same way, except for an additional non-linear
dependence between X and Y1:

Y1 =
1

2
(− cos(Z) + 1) +R sin(φ) + sin

(
1

n

p∑
i=1

Xi

)
.

In the three-dimensional response case, we define the third response variable as:

Y2 = sin

(
Z

βTX

)
,

and in the four-dimensional response case, the fourth response Y3 is defined as:

Y3 = cos

(
sin

(
Z

βTX

))
+R cos(φ) sin(φ)

We report the number of samples of each data set in Table 4.

B.2 Real Data Details

The real data sets originally contained a one-dimensional response, so we increase the target
dimension by considering one of the features as a response variable instead. The feature
concatenated to the response was chosen to be highly correlated to it, and to have a small
correlation to the other features, so it will not be easy to predict. Table 5 displays the size of
each data set, the feature dimension, the response dimension, and the index of the feature
that is used as a response instead of an input variable.
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Setting p Number of Samples

linear 1 20000

linear 10 20000

linear 50 80000

linear 100 100000

non-linear 1 20000

non-linear 10 20000

Table 4: Synthetic data sets information. The number of samples as a function of the feature
dimension.

Data Set Name Number of Samples p d Additional Response

blog_data 52397 279 2 The time between the blog post publication and base-time

bio 45730 8 2 F7 - Euclidean distance

house 21613 17 2 Latitude of a house

meps_19 15785 138 2 Overall rating of feelings

meps_20 17541 138 2 Overall rating of feelings

meps_21 15656 138 2 Overall rating of feelings

Table 5: Information about the real data sets.
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Appendix C. Experimental Setup

The network we used receives as an input a vector of size p + d (where p is the feature
dimension, and d is the response dimension). The first p variables in the input vector
correspond to the elements of the feature vector, and the last variables correspond to the
desired quantile level. We split the data sets (both real and synthetic) into a training set
(38.4%), calibration (25.6%), validation set (16%) used for early stopping, and a test set (20%)
to evaluate performance. Then, the feature vectors and the responses were preprocessed
using z-score normalization. The neural network consists of 3 layers of 64 hidden units, and
a leaky ReLU activation function with parameter 0.2. The learning rate used is 1e−3, the
optimizer is Adam (Kingma and Ba, 2015), and the batch size is 256 for all methods. The
maximum number of epochs is 10000, but the training is stopped early if the validation loss
does not improve for 100 epochs, and in this case, the model with the lowest loss is chosen.
The number of distinct directions used in each gradient step is 32, and they are taken from a
fixed collection of 2048 directions that were sampled once, before the training process. The
number of directions used to determine the quantile region belonging is 256, and they are
sampled from the same collection of directions. The results are averaged over all seeds in the
range between 0 and 19 (inclusive). We reduce the dimension of the feature vector to 50 in
meps data sets, and to 100 in blog data set, using PCA. The code we use is based on the
implementation of Chung et al. (2020).

C.1 Naïve Quantile Regression Setup

We trained a quantile regression model using the pinball loss to predict two quantile levels for
each dimension d: 1− α/d and α/d. The quantiles are then used to construct a prediction
interval, according to the explanation in 2.2. The calibration scheme used extends CQR,
developed by Romano et al. (2019), to the multi-dimensional response case, which we describe
in detail next. Let αlo = α/2 and αhi = 1− α/2. The CQR conformity scores are defined as:

Ei = max{max{q̂jlo(Xi)− Yi, Yi − q̂jhi(Xi)} : j ∈ {1, .., d}},

where q̂jlo, q̂
j
hi are the estimated lower and upper quantiles of the j-th dimension of Y | X,

respectively. We define by Q the (1− α)(| I2 | +1)-th empirical quantile of {Ei}i∈I2 . The
calibrated quantile region is given by:

R̂(x) = ×
j∈{1,...,d}

[q̂jlo(x)−Q, q̂jhi(x) +Q]

C.2 Directional Quantile Regression Setup

As explained in Section 4.1, the empirical coverage rate of an uncalibrated DQR model is
significantly lower than the nominal level. We therefore require the model to achieve a higher
coverage level, according to Tables 7, 8. The quantile region obtained by DQR was then
calibrated to achieve 90% coverage rate, according to Algorithm 2. The level of the estimated
directional quantiles is chosen using an independent train/validation/test split, where the
value that achieves the highest coverage level is chosen. The examined directional-quantile
levels are 90%, 93%, and 95%. For the four-dimensional response data sets, we also examined
a directional-quantile level of 98% for NPDQR.
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C.3 Implementation Details of Our Method

Table 6 displays the hidden dimension of each layer in the encoder E and decoder D of the
CVAE. The dimensions were chosen according to the model’s performance over the linear
synthetic data set, with feature vectors of different dimensions. The networks include a
dropout with parameter 0.1, and a batch-norm layer for blog data set only. The learning
rate used to train the CVAE is 1e−4 for the real data sets and 1e−3 for the synthetic data
sets, and for both the batch size used is 512. The activation function used is the leaky ReLU
function with parameter 0.2. The maximum number of epochs is 10000, but the training is
stopped early if the validation loss does not improve for 200 epochs, and in this case, the
model with the lowest loss is chosen. In Tables 7, 8 we report the nominal levels of the
estimated directional quantiles used to construct the uncalibrated quantile regions. The
regions are then calibrated according to Algorithm 2.

p Hidden layers dimension

p ≤ 5 32, 64, 128, 256, 128, 64, 32

5 < p ≤ 8 64, 128, 256, 128, 64

8 < p ≤ 10 64, 128, 256, 512, 256, 128, 64

10 < p ≤ 25 64, 128, 256, 256, 128, 64

25 < p 128, 256, 512, 512, 256, 128

Table 6: Dimension of each hidden layer for the CVAE architecture as a function of p.

Data Set setting d p NPDQR nominal coverage level ST-DQR nominal coverage level

linear 2 10 95% 95%

linear 2 50 95% 95%

linear 2 100 95% 95%

non-linear 2 1 95% 93%

non-linear 2 10 95% 93%

non-linear 3 1 95% 93%

non-linear 3 10 95% 93%

non-linear 4 1 98% 93%

non-linear 4 10 98% 95%

Table 7: The directional-quantile levels used for a NPDQR model in the synthetic data sets.

C.4 Machine’s Spec

The resources used for the experiments are:
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Data Set Name NPDQR nominal coverage level ST-DQR nominal coverage level

blog_data 95% 93%

bio 95% 95%

house 95% 95%

meps_19 95% 93%

meps_20 95% 93%

meps_21 95% 93%

Table 8: The directional-quantile levels used for a NPDQR model in the real data sets.

• CPU: Intel(R) Xeon(R) E5-2650 v4.

• GPU: Nvidia TITAN-X, 1080TI, 2080TI.

• OS: Ubuntu 18.04.

Appendix D. Quantile Regions Constructed for House Data Set

Similarly to figures 2 and 10, we display in Figure 11 the constructed quantile regions for the
House data set. We split the data into three clusters, as described in 5.2, and color in red
the quantile region of each cluster. It is clear from the figure that our method constructs the
most informative quantile regions, among all existing methods. The VQR method could not
produce quantile regions for this data set since the dimension of the feature vector is too
large to handle for the software we used; see Table 18 in the Appendix.

Appendix E. Additional Experiments

In this section we provide additional experiments, analyzing the conditional coverage, the
effect of the calibration set, and more, using the methods discussed in this work. The
experimental setup is identical to the one described in Section 5, unless explicitly stated
otherwise.

E.1 Calibrating on the Training Set

In this section, we display the performance of each method calibrated on the training
set instead of the calibration set. That is, here, all methods were calibrated to achieve
1− α = 90% coverage rate on the training set. A similar experiment examining the effect of
calibrating with a training set instead of a calibration set was previously suggested by Barber
et al. (2021), showing that naively calibrated intervals do not attain the right coverage level.
The results given below indicate that a model calibrated using the training data does not
achieve the desired coverage level, emphasizing the necessity of a calibration set.

Table 9 presents the coverage rates and the areas of each method on the real data sets.
This table shows that the coverage attained by these methods is far from the nominal level.
Furthermore, this table reveals that our method achieves the best marginal coverage.
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Method Quantile region
c = 0 c = 1 c = 2

Naïve QR

NPDQR

ST-DQR

Figure 11: House data set results. Quantile region obtained by each of the methods: Naïve
QR, NPDQR, and our ST-DQR. In this data set, Y0 and Y1 are the price and latitude
of a house.

30



Flexible Multiple-Output Quantile Regression

Coverage rate

Data Set name ST-DQR Naïve QR NPDQR

bio 88.51 (.101) 86.902 (.147) 85.907 (.173)

house 88.29 (.164) 82.228 (.348) 75.555 (.28)

blog_data 87.675 (.159) 82.802 (.186) 78.9 (.32)

meps_19 88.028 (.171) 83.432 (.231) 82.653 (.871)

meps_20 88.28 (.148) 84.595 (.179) 81.536 (.946)

meps_21 87.664 (.207) 83.456 (.278) 82.996 (.943)

Area of quantile regions

ST-DQR Naïve QR NPDQR

306.77 (3.869) 388.469 (4.699) 325.729 (5.141)

338.502 (6.657) 347.108 (7.483) 259.874 (4.539)

95.812 (7.953) 184.51 (4.369) 146.073 (5.806)

160.33 (6.21) 399.095 (22.885) 320.96 (16.72)

162.464 (3.133) 419.837 (13.336) 311.72 (17.832)

162.164 (4.409) 409.609 (17.192) 344.641 (16.135)

Table 9: Real data experiments. Coverage, area, and their standard error of the quantile
regions constructed by each method calibrated on the training set.

E.2 Evaluating Conditional Coverage

In this section, we analyze the conditional validity of the proposed method and compare it
to the existing ones.

E.2.1 Synthetic Data Sets

Figure 12 presents the coverage as a function of the feature vector on the non-linear synthetic
data with d = 2 response values and n = 10000 samples. We generated the feature vector
to have the value of x repeated p = 10 times. This figure indicates that our ST-DQR
achieves the best conditional coverage compared to the competitors. Table 13 shows the
coverage as a function of the sample size on the synthetic data described above for different
values of x. This figure reveals that as the sample size increases, the conditional coverage
of all methods gets closer to the nominal level. Additionally, while ST-DQR attains poor
conditional coverage for small samples, it performs better than existing methods for larger
samples. Furthermore, it constructs quantile regions that represent better underlying
uncertainty compared to competitors, as discussed next. Figures 14 display the quantile
regions constructed by ST-DQR on the non-linear synthetic data described above with
different sample sizes. This figure shows that even with a small data set, the regions reflect
well the conditional uncertainty of the response. This stands in striking contrast to the
regions constructed by NPDQR, visualized in Figure 15 In addition, the regions seem to
converge to the true conditional density of Y | X = x as the sample size increases.

The experiments conducted in this section indicate that our ST-DQR achieves good
conditional coverage and performs better as the sample size increases.

E.2.2 Real Data sets

In this section, we assess conditional coverage violation on the real data sets by measuring the
deviation of the cluster coverage from the nominal level. Formally, we define the ∆Coverage
as:

∆Coverage =
1

|C|

∑
c∈C

∣∣∣∣∣ 1

|c|
∑
xi∈c

1{yi ∈ Sγcal(xi)} − (1− α)

∣∣∣∣∣ ,
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Figure 12: Conditional coverage achieved over the non-linear synthetic data with 10000
samples.

where C is a split of the test set split into clusters, as defined in Section 5.2. Figure 16
displays the ∆Coverage achieved by the techniques discussed in this paper on the real
data sets introduced in Section 5.2. This figure reveals that our ST-DQR attains the best
∆Coverage, indicating for a good conditional coverage compared to existing methods.

In Figure 17 we report the ∆Coverage on a different version of the real data sets, in
which each feature vector is reduced to dimension 10 using PCA so that VQR is feasible. The
table shows that even for these modified versions of the data sets, our method achieves better
conditional coverage compared to VQR.

E.3 Standard Errors

In this section, we report the standard errors of the metrics reported in the experiments
section.

E.3.1 Synthetic Data

We report the coverage rate along with its standard error, and the area along with its
standard error in Tables 10, 11 respectively.

E.3.2 Real Data

Table 12 shows the standard error of the coverage and area of the quantile regions constructed
for each of the real data sets using the methods discussed in this paper. Additionally, we
report the area of quantile regions constructed by our method with different values of r in
Table 13. Table 14 displays the standard error of each of the metrics for the reduced version
of the real data sets.

Appendix F. Technical Details

In this section, we provide technical details regarding techniques used in this work.
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Figure 13: Conditional coverage achieved over the non-linear synthetic data with increasing
sample size and for different feature vectors.
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Data Set Size Quantile region
x = 1.5 x = 2 x = 2.5

500

Coverage 61.5% 92% 91.58%

10000

Coverage 84.12% 93.28% 99.32%

50000

Coverage 88.01% 93.42% 98.95%

Figure 14: Calibrated quantile regions constructed by ST-DQR for the linear synthetic data
set with p = 10 for different data set sizes.
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Data Set Size Quantile region
x = 1.5 x = 2 x = 2.5

500

Coverage 71.16% 97.63% 100%

10000

Coverage 79.5% 91% 98.2%

50000

Coverage 81.95% 87.15% 91.15%

Figure 15: Calibrated quantile regions constructed by NPDQR for the linear synthetic data
set with p = 10 for different data set sizes.

Figure 16: ∆Coverage achieved on the real data sets.
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Figure 17: ∆Coverage achieved on the reduced version of the real data sets where all
feature vectors were reduced to dimension 10 using PCA.

Setting d p ST-DQR Naïve QR NPDQR VQR

linear 2 1 89.943 (.126) 90.059 (.147) 90.041 (.162) 89.755 (.101)

linear 2 10 89.926 (.137) 89.789 (.154) 90.131 (.115) 90.065 (.125)

linear 2 50 89.91 (.08) 89.99 (.058) 89.96 (.07) -

linear 2 100 89.963 (.082) 89.993 (.059) 90.003 (.062) -

nonlinear 2 1 90.126 (.169) 90.078 (.171) 90.165 (.163) 90.13 (.145)

nonlinear 3 1 90.165 (.139) 90.114 (.16) 90.021 (.141) 90.156 (.131)

nonlinear 3 10 89.991 (.164) 89.881 (.173) 90.051 (.133) -

nonlinear 4 1 90.031 (.125) 90.175 (.109) 89.955 (.121) -

nonlinear 4 10 89.792 (.141) 89.841 (.155) 89.956 (.138) -

Table 10: Simulated data experiments. Coverage rate and standard error achieved with each
method.
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Setting d p ST-DQR Naïve QR NPDQR VQR

linear 2 1 315.313 (1.539) 1223.439 (3.374) 1024.657 (13.404) 465.427 (3.019)

linear 2 10 384.33 (1.805) 1680.308 (3.408) 1622.519 (15.904) 485.761 (2.263)

linear 2 50 388.561 (1.97) 1777.014 (1.816) 1525.568 (13.966) -

linear 2 100 456.75 (5.01) 1791.202 (1.751) 1555.475 (23.214) -

nonlinear 2 1 236.668 (2.11) 797.438 (2.514) 694.339 (8.421) 646.065 (2.643)

nonlinear 3 1 933.924 (12.592) 22984.579 (108.375) 19982.523 (1050.929) 7621.711 (135.156)

nonlinear 3 10 1251.648 (32.406) 44070.685 (140.94) 34917.304 (2498.402) -

nonlinear 4 1 379.863 (7.52) 27364.108 (154.317) 82495.522 (5832.992) -

nonlinear 4 10 293.998 (5.958) 53999.244 (210.159) 129599.146 (9656.909) -

Table 11: Simulated data experiments. Area and standard error of the quantile regions
constructed by each method.

Coverage rate

Data Set name ST-DQR Naïve QR NPDQR

bio 90.0 (.093) 90.002 (.106) 89.892 (.102)

house 90.157 (.133) 89.978 (.133) 89.876 (.143)

blog_data 90.145 (.089) 90.064 (.076) 90.016 (.075)

meps_19 90.144 (.121) 89.892 (.108) 89.865 (.163)

meps_20 89.997 (.145) 90.0 (.135) 89.913 (.126)

meps_21 89.899 (.14) 89.879 (.092) 89.676 (.15)

Area of quantile regions

ST-DQR Naïve QR NPDQR

333.057 (3.8) 407.304 (5.333) 406.852 (6.955)

360.616 (6.789) 421.087 (4.062) 414.327 (5.349)

138.527 (11.535) 214.8 (4.857) 252.249 (7.093)

188.503 (7.585) 417.525 (19.792) 408.791 (11.748)

190.762 (3.866) 433.061 (12.122) 421.309 (11.149)

196.867 (7.593) 431.402 (15.341) 435.418 (10.448)

Table 12: Real data experiments. Coverage, area, and standard error of the quantile regions
constructed by each method.

F.1 The Initial Distance Threshold

In this section, we formally define γinit. Let RY = {a1, a2, ...am}, and denote the distance
of ai from its neighbor by Di = mina∈RY (x) d(ai, a). The initial distance threshold γinit is
defined as the 90-th smallest quantile of {Di : i = 1, ...,m}.

Data Set r = 1 r = 2 r = 3 r = 4

bio 317.316 (3.004) 321.482 (3.447) 333.057 (3.8) 342.314 (3.941)

house 268.405 (2.949) 326.061 (6.588) 360.616 (6.789) 359.062 (5.866)

meps_20 192.848 (4.43) 198.335 (4.181) 190.762 (3.866) 190.021 (4.225)

Table 13: Area and its standard error of quantile regions constructed on real data sets using
ST-DQR with different values of r.
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Coverage rate

Data Set ST-DQR Naïve QR NPDQR VQR

bio 90.0 (.093) 90.002 (.106) 89.892 (.102) 89.87 (.104)

house 89.923 (.159) 90.094 (.111) 90.067 (.149) 90.119 (.172)

blog_data 90.078 (.075) 90.035 (.072) 89.823 (.078) 90.034 (.076)

meps_19 90.179 (.121) 90.16 (.105) 89.919 (.093) 90.149 (.128)

meps_20 90.087 (.158) 89.925 (.139) 90.036 (.158) 90.134 (.179)

meps_21 90.061 (.152) 89.957 (.149) 89.965 (.166) 89.887 (.111)

Area of quantile regions

ST-DQR Naïve QR NPDQR VQR

333.057 (3.8) 407.304 (5.333) 406.852 (6.955) 530.053 (5.189)

384.985 (6.94) 577.808 (5.167) 548.684 (6.955) 523.282 (4.645)

208.05 (3.63) 362.808 (6.332) 405.793 (8.749) 344.921 (4.684)

249.926 (9.727) 704.739 (27.762) 381.729 (11.357) 269.517 (11.503)

240.692 (5.099) 664.476 (19.175) 358.091 (7.766) 264.666 (6.205)

249.156 (8.992) 709.56 (24.683) 383.216 (13.327) 264.41 (10.889)

Table 14: Reduced real data experiments. Coverage, area, and standard error of the quantile
regions constructed by each method. All feature vectors were reduced to dimension
10 using PCA.

F.2 Grid Size

Recall that our method maps a discretized quantile region RZ(x) to space Y. We also
discretize the space Y to compute the area of a quantile region. In this section, we describe
how we make these discretizations in practice. For both tasks, we define a grid in space Y or
space Z, and set the grid’s boundaries in each dimension to be the 99% and 1% empirical
quantiles of the training set’s response variables, respectively. We also increase the upper and
lower boundaries by 1 for a grid used to discretize a quantile region, i.e., RY(x) or RZ(x),
and by 0.2 for a grid used to measure the area of a region in Y . Table 15 shows the number
of points in the grid, depending on its purpose. In all cases, the grid is equally spaced, having
the same number of points in each dimension.

Space dimension Area calculation RY(x) or RZ(x)

2 3025 1e4

3 103823 42875

4 234256 104976

Table 15: Number of cells in a grid used for area calculation, or for discretizing the quantile
regions RY(x) and RZ(x).

F.3 Dealing With High-Dimensional Responses

In many cases, it is required to quantify the uncertainty of a high-dimensional response that
has more than three dimensions. In this section, we present several ways to interpret the
quantile regions produced by our ST-DQR in the high-dimensional setting.

Dimension-wise prediction interval. The simplest way to interpret a high-dimensional
quantile region is to construct an interval for each dimension. For instance, given a quantile
region R(X) ⊆ Y , the prediction interval for the j-th variable of the response can be defined
as: Cj(X) = [min(R(X))j ,max(R(X))j ]. The Cartesian product of these intervals forms
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the complement of R(X) to a rectangle. Furthermore, this rectangle is more conservative as
it covers more area than the region R(X).

Querying a point coverage. The quantile region can be used to query whether certain
points fall inside it or not. By doing so, the user can check if a scenario is likely and take a
decision according to the response.

Visualizing 3d slices. Assuming there are d responses, one can visualize the quantile
region of each triplet (i1, i2, i3) ∈ {1, ..., d}3 while the other coordinates are held fixed at
some value. This way, the user can learn the relation between each response triplet.

F.4 Conditional Variational Auto Encoder

A conditional variational auto encoder (CVAE), proposed by Sohn et al. (2015), is a model
that aims to capture the implicit conditional distribution of Y | X by reconstructing the
input data from its encoded representation. Such a model is composed of an encoder E that
encodes Y | X into a latent variable Zx, and a decoder D that reconstructs (Zx;x) back to
the original variable Y | X. Formally, CVAE is a pair (E(·;x),D(·;x)) that ideally satisfies:

Zx = E(Y ;X = x) ∼ N (0, 1)r,

D(E(Y ;X = x);X = x)
d
= Y | X = x,

where N (0, 1) is a standard normal distribution. In practice, we estimate (E,D) with a
neural network. The loss used for training the CVAE model includes two components:
a reconstruction loss (measuring the mean squared error) that penalizes for inaccurate
reconstruction, and an additional term that encourages the encoded vector to be normally
distributed. In this work, we used a loss that measures the KL-divergence (Kullback, 1997;
Kullback and Leibler, 1951), between the encoded representations and the multivariate
normal distribution, multiplied by a coefficient λ. Below, we examine the effects of the
KL-divergence penalty coefficient and the dimension of the encoded space on the performance
of the CVAE model. To maximize performance, we suggest choosing these hyper-parameters
via cross-validation.

F.4.1 KL-divergence Loss Coefficient

In this section, we investigate the effects of the KL-divergence loss penalty coefficient, denoted
by λ, on the performance of the resulting CVAE model. Figure 18 presents the encoded
and reconstructed samples, computed by CVAE models with different values of λ on the
non-linear synthetic data set, with p = 1; see more details about the synthetic data in
Section B.1. We report the results only for the conditional distribution of Y | X = 2. The
figure shows that as λ increases, the distribution of Zx is closer to standard normal, but the
reconstruction becomes worse. On the other hand, as λ decreases, the CVAE recovers better
the input data, but the distribution of Zx is far from being standard normal. Relying on
that figure, we set λ to be equal to 0.01 for all of the experiments presented in this paper.
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Figure 18: CVAE results for different λs.

F.4.2 The Dimension of the Latent Space

In this section, we examine the second hyper-parameter of the CVAE, which is the dimension
of the latent vector Z, denoted by r. Specifically, we study the effects of r on the CVAE
performance as well as the efficiency of the constructed quantile regions. The reconstruction
errors for different values of r are summarized in Table 16. The table shows that the CVAE
reconstructs better the data when using a larger latent space dimension. This trend is also
visualized in Figure 19. This is anticipated, as the expressiveness of the CVAE depends on r,
in the sense that as r increases, the CVAE is more flexible. In practice, we recommend setting
this hyper-parameter to be the dimension of the response, or choosing it using cross-validation.

Data Set r = 1 r = 2 r = 3 r = 4

bio 0.034 (6e-3) 0.021 (7e-3) 0.021 (7e-3) 0.021 (.001)

house 0.036 (6e-3) 0.031 (.002) 0.026 (.002) 0.025 (.002)

meps_20 0.104 (.003) 0.025 (6e-3) 0.024 (7e-3) 0.025 (4e-3)

Table 16: CVAE reconstruction loss and its standard error on real data sets achieved with
different latent space dimensions.

We now turn to test how r affects the area of a quantile region constructed to cover
1−α = 90% of the data. The levels of the estimated directional quantiles used for constructing
the quantile region are summarized in Table 8. Table 17 displays the area of quantile regions
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Figure 19: CVAE reconstruction (MSE) loss as a function of the latent space dimension for
bio, house, and meps_20 data sets.

constructed by our method with different values of r, scaled by the area achieved by the
best method. Following that table, the best latent space dimension for bio and house data
sets is r = 1, whereas for meps_20 data set it is r = 4. This phenomenon can be explained
in the following way. The coverage of a quantile region constructed in space Z depends on
the dimension r; see Figure 6. As the dimension increases, the coverage rate of the DQR
region decreases, and this coverage is preserved when transforming the region to space Y;
see Proposition 3. On the other hand, as r increases, the CVAE reconstructs better the
data, which results in more accurate regions. Therefore, there is a trade-off between the
reconstruction loss and the coverage attained in space Z, where both are determined by r.
Since the CVAE’s reconstruction on bio and house data sets does not significantly improve
for larger values of r, the limitation of the DQR has a stronger impact on the produced
region, and as a result, ST-DQR with r set to 1 constructs smaller quantile regions. However,
meps_20 data set requires a large value of r to reconstruct well the data, as presented in
Figure 19, and therefore using r = 4 results in the best quantile regions. To conclude, the
best value of r varies between the data sets, so we recommend finding it via cross-validation
to maximize the performance of the method.

Data Set r = 1 r = 2 r = 3 r = 4

bio 1 1.013 1.05 1.079

house 1 1.215 1.344 1.338

meps_20 1.015 1.044 1.004 1

Table 17: Area of quantile regions constructed on real data sets using our method with
different values of r, scaled by the area achieved by the best method. The standard
errors are reported in Table 13
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F.5 Coverage Rate of a DQR Quantile Region

In this section, we compute the coverage rate of a quantile region constructed with NPDQR
when the nominal coverage level is set to 1− α ≥ 0.5. In this setting, the training samples
given to NPDQR are {(Xi, Zi)}ni=1, so the model is fitted in space Z. We assume that the
CVAE is ideal, i.e., Zi ∼ N (0, 1)r, where r ∈ N+.

For any direction u ∈ Sr−1, the half-space defined by NPDQR satisfies:

P(Zr ∈ H+
u (x)) = 1− α.

Let Zr ∼ N (0, 1)r, and Z ∼ N (0, 1). Note that

1− α = P(Zr ∈ H+
u (x)) = P(uTZr ≥ C),

for C = Φ−1(α) ≤ 0. Denote by χ2
r a chi-squared random variable with r degrees of freedom.

The probability to lie inside the quantile region is:

P(Zr ∈ R(x)) = P(∀u ∈ Sr−1 : Zr ∈ H+
u (x))

= P(∀u ∈ Sr−1 : uTZr ≥ C)

= P
(

max
u∈Sr−1

uTZr ≤ −C
)

= P
(
ZrT

‖Zr‖2
Zr ≤ −C

)
= P(‖Zr‖2 ≤ −C)

= P(χ2
r ≤ C2)

= P(χ2
r ≤ Φ−1(α)2)

= Fχ2
r
(Φ−1(α)2),

where Fχ2
r
is the CDF of chi-squared distribution with r degrees of freedom. In Section 4.1

we use this computation to report the exact coverage rate of NPDQR as a function of the
nominal coverage level, and the dimension of the response r.

F.6 Calibration - Shrinking The Quantile Region

In this section, we demonstrate the necessity of handling the two calibration cases (Case 1
and Case 2) separately. Recall that in Case 1 cinit ≤ 1−α, therefore we grow the base region
(5), and in the complementary case, Case 2, we shrink it. If these two cases would not be
treated separately, one would shrink a large region by following the technique presented in
Case 1, which is mainly suited for growing small regions; see Section 4.2. Figure 20 illustrates
the outcome of shrinking a large region using the procedure described in Case 1. The figure
shows that the calibrated region is not continuous, and its boundaries are the same as those
of the base region. That is, shrinking the base region according to Case 1 procedure does
not yield the desired region. However, shrinking the base region according to the method
described in Case 2 (see Section 4.2) does result in a smaller, continuous quantile region, as
displayed in Figure 21. Therefore, we suggest treating the two cases separately.
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Figure 20: Visualization of a large quantile region (pink) calibrated according to Case 1. The
resulted calibrated region is not continuous and is not a smaller version of the
base region.

Figure 21: Visualization of the calibration of the large base region (pink) from Figure 20,
where the calibration is done according to Case 2. The calibrated region (red) is
both continuous, and smaller than the base one.
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F.7 Vector Quantile Regression

Given a test point Xn+1 = x, we estimate the vector quantile function Q(·;x) as described by
Carlier et al. (2016), using Gurobi solver (Gurobi Optimization, LLC, 2021).1 This process
results in a set of m quantiles {Q(Ui;x)}mi=1, for Ui ∼ Uniform[0, 1]d, where Uniform(a,b)
is a uniform distribution on the interval (a, b). To construct the quantile region, we follow
the procedure developed by Chernozhukov et al. (2017). We sample m directions, denoted
by {Sj}mj=1, from a spherical uniform distribution of dimension d. Next, we match every
element in {Sj}mj=1 to an element in {Ui}mi=1 by solving the following assignment problem:

minimize
∑
i∈[m]

‖Ui − f(Ui)‖2,

subject to ∀i ∈ [m] : f(Ui) ∈ {Sj}mj=1 ∧ f is a permutation.

The discrete set of points inside the quantile region is given by:

RY(x) = {Q(Ui;x) : i ∈ [m] ∧ ‖f(Ui)‖2 ≤ 1− α}.

Setting d p Run time (hours) Memory consumption (GB)

linear 2 1 < 1 < 13

linear 2 10 < 1 < 13

linear 2 50 > 1 < 13

non-linear 2 1 < 1 < 13

non-linear 3 1 < 1 < 13

non-linear 3 10 - > 13

non-linear 4 1 - > 13

non-linear 4 10 - > 13

Table 18: VQR run time and memory usage on the synthetic data.
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