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Abstract

Many of the new developments in machine learning are connected with gradient-based opti-
mization methods. Recently, these methods have been studied using a variational perspec-
tive (Betancourt et al., 2018). This has opened up the possibility of introducing variational
and symplectic methods using geometric integration. In particular, in this paper, we intro-
duce variational integrators (Marsden and West, 2001) which allow us to derive different
methods for optimization. Using both Hamilton’s and Lagrange-d’Alembert’s principle, we
derive two families of optimization methods in one-to-one correspondence that generalize
Polyak’s heavy ball (Polyak, 1964) and Nesterov’s accelerated gradient (Nesterov, 1983),
the second of which mimics the behavior of the latter reducing the oscillations of classical
momentum methods. However, since the systems considered are explicitly time-dependent,
the preservation of symplecticity of autonomous systems occurs here solely on the fibers.
Several experiments exemplify the result.

Keywords: Polyak’s heavy ball, Nesterov’s accelerated gradient, momentum methods,
variational integrators, Bregman Lagrangians

1. Introduction

Many of the literature on machine learning and data analysis is connected with gradient-
based optimization methods (see Polak, 1997; Nesterov, 2018; and references therein). The
computations often involve large data and parameter sets and then, not only the compu-
tational efficiency is a crucial point, but the optimization theory also plays a fundamental
role. A typical optimization problem is:

argmin f(z), =z €@, (1.1)
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where we assume that () is a convex set in R™ and f is a continuously differentiable convex
function with Lipschitzian gradient. In this case, one of the most extended algorithms to
achieve (1.1) is Nesterov’s accelerated gradient (Nesterov, 1983; Su et al., 2016) which may
take the following form:

Yk+1 =z — NV f(xg),

k
= + - — s
Tr4+1 = Yk+1 k13 (yk+1 yk)

starting from an initial condition zy (see more details in Sections 2 and 7). An impor-
tant observation was made by Su et al. (2016) showing that the continuous limit of Nes-
terov’s method is a time-dependent second order differential equation. Moreover, Wibisono
et al. (2016) show that this system of differential equations has a variational origin (see
also Wibisono, 2016). In particular, they take as point of departure this variational ap-
proach that captures acceleration in continuous time considering a particular type of time-
dependent Lagrangian functions, called Bregman Lagrangians (see Section 3).

In a recent paper, Betancourt et al. (2018) introduce symplectic (and presymplectic)
integrators for the differential equations associated with accelerated optimizations methods
(see Sanz-Serna and Calvo, 1994; Hairer et al., 2010; Blanes and Casas, 2016, for an intro-
duction to symplectic integration). They use the Hamiltonian formalism since it is possible
to extend the phase space to turn the system into a time-independent Hamiltonian system
and apply there standard symplectic techniques (see Marthinsen and Owren, 2016; Celle-
doni et al., 2020). For recent improvements of this approach using adaptive Hamiltonian
variational integrators, see Duruisseaux et al. (2021).

In our paper we set an alternative route: The idea is to use variational integrators
adapted to an explicit time-dependent framework and external forces (see Marsden and
West, 2001, and references therein) to derive a whole family of optimizations methods. The
theory of discrete variational mechanics has reached maturity in recent years by combining
results of differential geometry, classical mechanics, and numerical integration. Roughly
speaking, the continuous Lagrangian L: T'Q) — R is substituted by a discrete Lagrangian
Lg: Q x @ — R. Observe that, by replacing the standard velocity phase space T'Q) with
Q x @, we are discretizing a velocity vector by two (in principle) close points. With the
unique information of the discrete Lagrangian we can define the discrete action sum and,
applying standard variational techniques, we derive a system of second order difference
equations known as discrete Euler-Lagrange equations. The numerical order of the methods
is obtained using variational error analysis (see Marsden and West, 2001; Patrick and Cuell,
2009). Moreover, it is possible to derive a discrete version of Noether’s theorem relating the
symmetries of the discrete Lagrangian with conserved quantities. The derived methods are
automatically symplectic and, perhaps more importantly, easily adapted to other situations
as, for instance, Lie group integrators, time-dependent Lagrangians, forced systems, optimal
control theory, holonomic and nonholonomic mechanics, field theories, etc.

The Lagrangian functions described in Section 3, Bregman Lagrangians, are those ex-
plicitly time-dependent that typically arise on accelerated optimization. The geometry
for time-dependent systems is different from symplectic geometry, in particular, the phase
space is odd dimensional. In this case, an appropriate geometric framework is given by
cosymplectic geometry (see Libermann, 1959; Cappelletti-Montano et al., 2013; and ref-
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erences therein). In Section 4, we introduce the cosymplectic structure associated with a
time-dependent Hamiltonian system (induced by a time-dependent Lagrangian) and also an
interesting symplectic preservation property associated with the restriction of the Hamil-
tonian flow to the fibers of the projection onto the time variable (Theorem 1). Having in
mind this geometrical framework, we introduce in Section 5 discrete variational mechanics
for time-dependent Lagrangians with fixed time step (compare with Marsden and West,
2001, for variable time step). Moreover, we recover the symplectic character on fibers of
the continuous Hamiltonian flow. We show the feasibility of constructing variational inte-
grators using similar techniques to the developed for the autonomous case that, in some
interesting cases, are in addition explicit and, consequently, reduce the computational cost.
An example of such methods is the second-order difference equation

Tpy1 = T — MV f(xr) + pr(zr — 21-1)

a type of momentum-descent method widely studied in the literature and whose origin goes
back to Polyak (1964). Momentum methods allow to accelerate gradient descent by taking
into account the “speed” achieved by the method at the last update. However, because of
that speed, momentum methods can overpass the minimum. Nesterov’s method tries to an-
ticipate future information reducing the typical oscillations of classical momentum methods
towards the minimum. In Section 6 we adapt our construction of variational integrators to
add external forces using discrete Lagrange-d’Alembert’s principle (see Marsden and West,
2001). Upon this machinery, we derive in Section 7 two families of momentum methods
in mutual bijective correspondence, one of which corresponds to Nesterov’s method (see
Theorem 6). Finally, for Section 8, many methods and numerical simulations have been
implemented in Julia v1.8.2. We optimize several test functions with our methodology and
other methods that appeared recently in the literature. One of the test functions is reused
afterwards for a machine learning example.

2. From Gradient Descent to Nesterov’s Accelerated Gradient

In this section we give a historical perspective of Nesterov’s accelerated gradient from gradi-
ent descent with a threefold objective: First, properly introduce the methods of interest and
their properties, second, give an overall view of the elements to take under consideration,
and, third, set some of the notation.

Although the first method that comes to mind to solve the optimization problem (1.1)
is Newton-Raphson, the first “dynamical” one is due to Cauchy (1847). His method, known
as Gradient Descent (GD), is the one-step method

Tpt1 = x — NV f(z) (2.1)

where 7 is the step size parameter or, as it is referred in the machine learning community,
the learning rate. It is readily seen that this method is a simple discretization of the first
order ODE

z=-Vf(z), (2.2)

from which it takes its dynamical nature. What is perhaps not so readily seen is that, given
an initial condition zg, the trajectories obtained from both equations, x; and z(t), converge
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to the argument of minima z*. In particular, xj converges linearly to x* while the function
values f(xy) do so to the global minimum f(z*) at a rate of O(1/k) (Polyak, 1964, 1987).

An initial improvement over GD was given by Polyak (1964): He introduced a novel
two-step method, Polyak’s Heavy Ball (PHB), also known as Classical Momentum (CM)
after Sutskever et al. (2013). As it was originally presented, PHB/CM takes the form of
the two-step method

Tpr1 =z — NP (zk) + plag — vp—1) , (2.3)

where P is a functional operator for which a root is sought and wu,n are “small” positive
constants that condition the convergence of the method. In comparison with (2.1), (2.3)
adds a new term, xj — x5_1, the momentum of the discrete motion that incorporates past
information in an amount controlled by u, the so called momentum coefficient. When P is
conservative, that is, when P = V f, Polyak showed that, although the method’s trajectory
still converges linearly as GD’s, it does so faster than GD’s, that is, with a smaller geometric
ratio (Polyak, 1964, 1987).

The continuous analogue of (2.3) is the second order ODE

Z+v(t)t+nt)P(x) =0, (2.4)

that turns out to be the equation of motion of a Lagrangian system when P = V f (Lemma
4). Then z(t) traces the motion of a point mass in a well given by f. We therefore drop P
and stick hereon with V f.

A further an crucial step towards improving GD (and PHB/CM) was given in 1983 by
Nesterov, a former student of Polyak. He presented a new method, coined after him as
Nesterov’s Accelerated Gradient (NAG), similar to PHB/CM but with a slight change of
unexpected consequences. A naive derivation from (2.3) is almost immediate: Introduce a
new variable y; in (2.3) so it can be easily rewritten as the equivalent method

Yer1 = 2k — MV f (k) 5 (2.5a)
Tht1 = Y1 + pr(Te — Tp—1) , (2.5b)

where discrete-time dependence has been added to the coefficients u,n for convenience.
Replace the 2’s of the momentum term (right hand side of the second equation, Eq. 2.5b)
by y’s to get the new and non-equivalent method

Ukr1 = Tk — eV f(Zk) s (2.6a
Tht1 = Yet1 + ik (Urs1 — k) 5 (2.6b)

where the bars are added to distinguish more easily both methods and underline that the
sequences of points that they define are in fact different. This latter method (2.6) is NAG as
it is usually presented. Nesterov showed in turn that his method accelerates the convergence
rate of the function values down to O(1/k?) (see Nesterov, 1983, 2018).

The original values of n, ux given by Nesterov are rather intricate, a simpler and com-
monly used version is

Uk+1 = Tx — NV f(Zk), (2.7a)
k

T pu— 1 —_— 1 —_— U 2. b

Tpt1 = Y1 + k+3(yk+1 Uk) (2.7b)
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with 7 > 0 constant. As it is shown in Su et al. (2016), a continuous analogue of (2.7) is
L3
x+;:1:+Vf(az):0, (2.8)

which is but a particular case of PHB/CM’s continuous analogue (2.4). Besides that, Su
et al. (2016) also show that the function values converge to the minimum at an inverse
quadratic rate, that is, f(z(t)) = f(z*) + O(}/#2).
More generally (Remark 13), (2.6) is a natural discretization of a perturbed ODE of the
form
T+vt)t+nt)Vf(x)=eF(x,,t), (2.9)

which also is the equation of motion of a Lagrangian system (Lemma 4). In fact, it is this
variational origin that Wibisono et al. (2016) take as point of departure. Once a particular
type of time-dependent Lagrangian functions is considered, a subfamily of the so called
Bregman Lagrangians, the variational approach captures acceleration in continuous-time
into the derived discrete schemes achieving, in this case, a function value convergence rate
of O(#'~™) with n > 3 (see also Wibisono, 2016).

3. Bregman Lagrangians

A Bregman Lagrangian is roughly speaking a time-dependent mechanical Lagrangian whose
kinetic part is close to be a metric. They are built upon Bregman divergences (Brégman,
1967), a particular case of divergence functions. Bregman Lagrangians allow to define
variational problems whose solutions minimize an objective function at an exponential rate
(Betancourt et al., 2018).

A divergence function over a manifold @ is a twice differentiable function B: Q xQ —
R, such that for all x,y € () we have:

o B(z,y) >0 and B(z,z) = 0;
o 0.8(x,z) = 0yB(x,x); and
e 07,B(z, ) is negative-definite.

Divergence functions appear as pseudo-distances that are non-negative but are not, in
general, symmetric. A typical divergence function over () = R" associated with a differen-
tiable strictly convex function ®: R™ — R is the Bregman divergence:

Bo(z,y) = ®(z) — ®(y) — (d®(y),z — y) .

Observe that it is the remainder of the first order Taylor expansion of ® around y evaluated
at z, a sort of Hessian metric.
Given a Bregman divergence over R", let us consider the time-dependent kinetic energy

K(CE, :tv t) = B‘I)(:E + e_a(t):t7 IL’) )
and the time-dependent potential energy

Uz, t) = PO f(a),
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from which we define the Bregman Lagrangian L: TR" x TR — R by

L(z,@,t) = OO (K (2,8,t) — U, t))
= 2O+ (@(az +emWg) — &(z) — e~ (dd(x), &) — B f(:c)) ,

where the time-dependent functions «(t), 3(t),v(t) are chosen to produce different algo-
rithms. These functions verify what Wibisono et al. (2016) refer to as ideal scaling con-
ditions, namely,

y(t) = e® and  B(t) < eV, (3.1)

The first condition greatly simplifies several expressions that can be derived from the Breg-
man Lagrangian. For instance, when %(t) = e®® is met, the associated Euler-Lagrange
equations reduce to

d
9 —a):) |4 —a(t) ; a(t)+8(t) =
V@(m+e a:) [dt<m+e x)}+e Vf(x)=0.

The second condition ensures convergence of the underlying trajectories to the minimum at
a rate not slower than O(e=#®).
1

In the particular case where ®(z) = 1||z||?, for which Bg(z,y) = &||z—y||?, the Bregman
Lagrangian takes the simple form

L(z,&,t) = a(t)3]|2]* — b(t) f(2) , (3.2)

with a(t) = 7O~ and b(t) = e>OFBO+@),

4. Geometry of the Time-Dependent Lagrangian and Hamiltonian
Formalisms

Since Bregman Lagrangians are time-dependent, in this section, we introduce some needed
geometric ingredients about non-autonomous mechanics and highlight some of their main
invariance properties (see Abraham and Marsden, 1978; Libermann and Marle, 1987; de
Leén and R. Rodrigues, 1987).

Let @ be a manifold and T'Q its tangent bundle. Coordinates (x%) on @ induce coordi-
nates (2%, %) on TQ. Therefore we have natural coordinates (z%,4%,t) on TQ x R which is
the velocity phase space for time-dependent systems.

Given two instants (time values) a,b € R, with a < b, and corresponding positions
Ta,Tp € Q, consider the set of curves:

Cg,b = C2([a, b, za,xp) = {0: [a,0] > Q| o € C? with o(a) = x4, o(b) = xp}.

Given a time-dependent Lagrangian function L: T'Q) x R — R, define the action functional
j L. Caz,b — R

b
jL(a):/ L(d'(t),t)dt, (4.1)

where ¢’: [a,b] — TQ.
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Using variational calculus, the critical points of J; are locally characterized by the
solutions of the Euler-Lagrange equations:

d /0L OL
— - | — — <3 <n=di . .
ky (83‘0’) e 0, 1<i<n=dmQ@ (4.2)

For time-dependent Lagrangians it is possible to check that the energy Er: TQ x R — R,

0L

EL:AL—L:dUajCi

_L’

where A is the Liouville vector field on T'Q) (Libermann and Marle, 1987), is not, in general,

preserved since
dE;, OL

at ot
We now pass to the Hamiltonian formalism using the Legendre transformation

FL:TQ xR — T*Q x R,

where T*(Q is the cotangent bundle of ) whose natural coordinates are (z%,p;). The Leg-
endre transformation is locally given by

o oL
fw,j;z,t):(%a t).

T 9a

We assume that the Legendre transformation is a diffeomorphism (that is, the La-
grangian is hyperregular) and define the Hamiltonian function H: T*Q x R — R by

H=FEpo(FL)™!,
which induces the cosymplectic structure (g, 7r) on 7%Q x R with
dt := pr; dt, Qp = —d(prj g — Hdt) = Qo +dH A dt,

where pr;, ¢ = 1, 2, are the projections to each Cartesian factor and 6 denotes the Liouville
1-form on T*@Q (Abraham and Marsden, 1978), given in induced coordinates by 6o = p; da’.
We also denote by g = —dpr] g the pullback of the canonical symplectic 2-form wg =
—dfg on T*(Q. In coordinates, g = da® A dp;. (Observe that now Qg is presymplectic
since ker Qg = span{9/dt}.) Therefore in induced coordinates (%, p;, t):

Qp =da* Adp; +dH Adt, nr = dt.
We define the evolution vector field Ey € X(T*Q x R) by
ig, =0, ig,dt=1. (4.3)

In local coordinates the evolution vector field is:

0 OH 0 O0H 0

Eg=— - — i .
H= i " opiox 0z opr

7
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The integral curves of Ep are given by:

T —— (4.4)

i=1 it = o
b 8])1 ) pl axz

The integral curves of Ep are precisely the curves of the form ¢ — FL(o'(t),t) where
o: I — @ is a solution of the Euler-Lagrange equations for L: TQQ x R — R.
From Equation (4.3) we deduce that the flow of E verifies the following preservation
properties
Lg,Qy =LEp, Qo+ dH Adt) =0, Lg,dt=0. (4.5)

Denote by Uy: U C T*Q x R — T*(Q) x R the flow of the evolution vector field Ef, where
U is an open subset of T*(Q x R. Observe that

Us(ag,t) = (Ve s(ag),t+5), ag € T,Q,
where W (o) = pry(Vs(ag,t)). Therefore from the flow of Ey we induce a map
U o: U CTQ = T7Q,

where Uy = {og € T*Q | (0, t) € U}. Observe that if we know W, , for all ¢, we can recover
the flow W, of Ey.
From Equations (4.5) we deduce that

UH(Qo +dH Adt) = Qg +dH Adt,  Wi(dt) = dt. (4.6)

The following theorem relates the preservation properties (4.6) with the symplecticity of
the map family {¥; ,: T%Q — T*Q}.

Theorem 1 We have that ¥y : Uy C T*Q — T*Q is a symplectomorphism, that is,
\I/;SwQ = wQ.

Proof First, observe that any vector Y, 1) € T(aqjt)(T*Q x R) admits a unique decompo-
sition:
Yiagt) = Yo, (t) + Yi(ayg) ,

where Yy, (t) € To, T*Q and Yi(oy) € T;R. Moreover, we have that (dt, Yy, (t)) = 0.
Therefore, if we restrict ourselves to vectors tangent to the pro-fibers T{y, ) pry L) =
Viag.t) Pr2 then we have the decomposition

}/(Oéq,t) == Yaq (t) + Ot == Yaq (t) € ‘/(Oéq,t) pl"2 = TaqT*Q .
From the second preservation property given in (4.5) we deduce that
0 = (A1) g Yo (1)) = (T30 0, 1. Yy (8) = ((A8)u ) T Yo, (1))
Therefore TW;(Ya, (t)) € Viw, (ag)t+5)PT2 = T, ,(ay) T Q and

T (Yo, (t) = T o(Ya, () + Op s = Ty o(Ya, (1))
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Using the first identity in (4.5) we deduce that

(WQ)ag (Yo (1), Yo (1) = (g + dH A dt) (0, (Ya, (1), Ya, (t))
= (Qq+dH A dt)(‘l’s,t(aq),t+5) (T, (Yaq (t)), T\IIS(?% (1))

= (WQ)w, s (ag) (TWi,s(Yay (1)), TW:,5(Ya, (1))

where Yy, (1), ffaq (t) € To,T*Q = Tia, 1) pry ' (t). We conclude that Ui wq = wg- [ |

5. Discrete Variational Methods for Time-Dependent Lagrangian
Systems

Consider the set of discrete paths (or sequences) on @ for a fixed number of steps N € N,
that is, the set

(N+1)
Cd(Q> = {xd: {O,l,...,N} —>Q} ZQX XQ.
Then an appropriate discrete interpretation of the velocities are pairs in Q X @), a discrete
version of T'Q).
A discrete time-dependent Lagrangian is a family of maps

LE:QxQ =R, keN,

for which we define the discrete action map on the space of sequences as

N-1

Sa(za) = Y Li(xk, 2k41), 74 € Ca(Q) .
k=0

If we consider variations of x4 with fixed end points zg and zy and extremize S; over
Z1,...,TN—1, we obtain the discrete Euler-Lagrange equations (DEL for short)

Oz, Sd(xq) = DlLs(xk,ka) + DQLZ_l(xk,l,xk) =0, foralk=1,...,N—1,

where D1 and Dy denote the partial derivatives with respect to the first and second com-
ponents, respectively.
If, for all k, LS is regular, that is, the matrix

0*Lk
DLk = [ —4—
12d (3$k3$k+1>
is non-singular, then we locally obtain a well defined family of discrete Lagrangian maps:
Frrp: @xQ  — QxQ
(Tk, Tey1) > (Thy1, Top2(Th, Thy1, b)) -

where the value of z9 is determined in terms of xx, xx4+1 and k. In this setting, we can
define two discrete Legendre transformations associated with L%, F iL‘g: QxQ—T*Q, by
the expressions

FELE: (a, 2h11) ¥ (@pg1, D2 Ll (xr, 2111))

F~LY: (2k, 2p1) — (@, —D1Li(z, 2p41)) -
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We can also define the evolution of the discrete system on the Hamiltonian side, F e k41"
T*Q — T*Q, by any of the formulas:

Fpprn =FVY Lo (FLY) ™" =F Lo Fyypo (FTLE) ™ =F L™ o Fyppa0 (F L),
thanks to the commutativity of the following diagram.

Fr_1k Fi kt1

(Tp—1, k) (T, Tht1) (Tht1, Tht2)
F-Lk F-LAH!
Frio] / m
(@K, pr) . (Tk+1, Pht1)
Fr gt

Proposition 2 The discrete Hamiltonian map Fk7k+1: (T*"Q,wq) — (T*Q,wq) is a sym-
plectic transformation, that is,

(Frogs1) 'wg = wg -

Proof Using similar arguments to the autonomous case (Marsden and West, 2001), we
deduce that
(F*Lg)*wq = (F~ L) wq -

From the definition of Fk,k+1 :T*Q — T*Q we deduce that

(Figer1)'wo = (FF Lo (F~ L)) wq = ((F~Lg)") H(FFL§) we) = wq.

Given the map Fk7k+1(qk,pk) = (qk+1,Prk+1), we immediately have the map

(xkapk7 kh’) = (xk+l7pk+17 (k + 1)h>

on T*() x R where we now give explicit information of the evolution of discrete time.

Let see the relation of these discrete maps Fj, p41: @ X @) — @ x  and Fk,k_l'_l: Q) —
T*(Q) with the Euler-Lagrange equations and Hamilton equations of a time-dependent La-
grangian system. Given a regular Lagrangian function L: TQ) x R — R and a sufficiently
small time step h > 0, we are going to define an h-and-k-dependent family of discrete La-
grangian functions Lf} n: @ x @ — R as an infinitesimal approximation to the continuous
action Jr, defined in éXpression (4.1). As intermediate step, we first consider the exact
time-dependent discrete Lagrangian associated with a regular Lagrangian L which is
given by the expression

1

B (k+1)h
Ld:h ($07«T1) = E /kh L($071(t),i071(t),t) dt,

where ¢ 1 (t) is the unique solution of the Euler-Lagrange equations for L with z¢ 1 (kh) = o
and xo,1((k+ 1)h) = 21, (see Hartman, 2002; Marrero et al., 2016). Then for a sufficiently

10
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small h, the solutions of the DEL for LY dh E e on the solutions of the Euler-Lagrange equa-
tions for L (Theorem 1.6.4, Marsden and West, 2001).
In practice, L, f(xg, x1) will not be available, therefore we take an approximation,

k,E
L(ki:,h(x07x1) ~ Ld:h (:1:07 151) )

using some quadrature rule. Then, as we have seen, the scheme derived from the DEL will
be geometric integrators for Equations (4.4) preserving the symplectic form in the sense of
Theorem 1 (see Patrick and Cuell, 2009).

Remark 3 As we have commented in the Introduction, one of the main advantages of
the proposed approach is the possibility to use other options to derive different numerical
methods for optimization by only discretizing a unique function, the action functional. Of
course, there are many different ways to do it (Marsden and West, 2001). For instance, we
can combine several discrete Lagrangians together to obtain a new discrete Lagrangian with
higher order (composition methods) or similarly obtaining splitting methods (Campos and
Sanz-Serna, 2017). Also, we can easily derive symplectic partitioned Runge-Kutta methods
or symplectic Garlekin methods using polynomial approximations of the trajectories and a
numerical quadrature to approximate the action integral (Campos, 2014). Moreover, it is
possible to adapt the variational integrators to a non-euclidean setting using appropriate
retraction maps.

6. Discretization of Lagrangian Systems with Forces

Our intention here is to continue looking for numerical approximations to the time-dependent
Euler-Lagrange equations but considering additionally an external force that decreases
jointly with the time-step parameter h. With it, we will obtain a whole family of algorithms
whose behavior resembles that of the Nesterov method. Fortunately, discrete mechanics is
also adapted to the case of external forces (see Marsden and West, 2001). To this end, in
addition to a time-dependent Lagrangian function L: T'QQ x R — R, we have an external
force given by a fiber preserving map F: TQ x R — T*(Q) given locally by

F(z,i,t) = (%, Fi(z, &,1)).

Given the force f, we derive the equations of motion of the forced system modifying Hamil-
ton’s principle to the Lagrange-d’Alembert principle, which seeks curves o € Ci p sat-
isfying

g/ dt+/¢F@KﬂJﬁa@ﬁﬁ:O, (6.1)

for all o € T,C? .p- Using integration by parts, we derive the forced Euler-Lagrange equa-
tions, which have the following coordinate expression:

d (OL\ 0L
t(%J_aﬁ_ﬂ'

To discretize these equations, we consider, as before, a family of Lagrangian functions
Lfl: Q@ x @ — R and two discrete forces (Féf)i: Q x Q — T*Q, which are fiber preserving
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in the sense that mg o (F¥)* = pry, where pry(z_,z4) = x. Combing both forces, we

obtain Ff: QxQ—T"Q x Q) by
(Fj (@, Tper1), (0, 0xp41)) = (F) ™ (xh, wh1)0g + (F) T (@h, Thi1) 0pg1 -

Asin (6.1), we have a discrete version of the Lagrange-d’Alembert principle for the discrete
forced system given by Lfl and F C]f :

4 Lfl(l'k, karl) + <Fc§($k7 karl)? (5xk7 5$k+1)> =0,
0 0

=2
=2

~
I
>
I

for all variations {5mk}]k\7:0 vanishing at the endpoints, that is, dxg = dxy = 0. This is
equivalent to the forced discrete Euler-Lagrange equations:

Dy LY (g, 1) + Do LA Nap_, 21) + (F) ™ (g, 2hs1) + (F5 DT (@p1,26) =0, (6.2)

forall k=1,...,N — 1.

7. The Variational Derivation of PHB/CM and NAG

As seen in Section 2, NAG can be derived naively from PHB/CM. Besides, under suitable
conditions on w,n and the starting points, both methods converge to a minimum of f, the
latter, NAG, doing so faster (Polyak, 1964; Nesterov, 1983). Questions arise: What makes
NAG faster than PHB/CM? Can this be exploited to obtain even faster methods? Can
it be generalized? Questions that boil down to how NAG is fundamentally derived from
PHB/CM.

To begin with, note that the NAG equations (2.6) can be rewritten only in terms of the
x’s, as in (2.3), or only in terms of the y’s, yielding the equations

AZp = pr AZp—y — iV f(Tr) — (e f(Zr) — -1V f(Tr-1)) (7.1a)
Afy = pr—1AGk—1 — MV f (ke + th—1Ak—1) - (7.1b)

The first, Eq. (7.1a), when compared with (2.3) shows an extra term,

e (Y f (Z1) — k-1 V f (Zr-1))

that in fact points to the very origin of the method: an additional forcing term. The second,
Eq. (7.1b), compared again with (2.3) shows that the y-trajectory is obtained almost as
if it was computed by PHB/CM but evaluating V f at a “future” point, g + pr—1AYk—1,
which “informs better” the method on how to advance towards the minimum.

Besides the convergence towards the minimum, it can be shown that both methods are
a time discretization of the second order differential equation (Su et al., 2016)

Z4+v(t)r+nt)Vf(z)=0, (7.2)

a well known fact in the literature, equation that furthermore is variational in general (see
Lemma 4). A fact that is not so well known is that NAG discretizes better the equation

12
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when including a force term proportional to the underlying time step and, moreover, it can
be derived, as well as PHB/CM, from a variational approach, in the geometric integration
sense (see Sections 5 and 6).

We first give a rather simple and direct result whose purpose is to establish properly the
continuous setting over which the discretizations will be built and from which the methods
can be derived.

Lemma 4 Given a vector field P: R™ — R™, consider the second order differential equation

§ 4 v(t)i + n(t)Pz) = sc% [n(t)P(@)] (7.3)

where v,n: Ry — R are continuous time-dependent real valued functions and where € € R is
a constant. If P is conservative, that is, if P =V f, then (7.3) corresponds to the equation
of motion of the (forced) time-dependent Lagrangian system:

Lz, &,t) = a(t)3]|2]* — b(t) f(z) , (7.4a)
F(z,i,t) = 5a(t)(% [Z((?)P(x)] , (7.4b)

in which f is the field’s potential and where

a(t) = exp(f[;f v(s)ds), and b(t) =a(t)n(t), (7.5)
fort > 0.

Proof Assume P is conservative and let f denote its potential. Then the Euler-Lagrange
equation for (7.4) is
d [b(¢
a(t)i+ad' (t)z +b(t)P(x) = ga(t)(ﬂ [a((tiP(x)] . (7.6)
Dividing by a(t), and taking into account that, from (7.5) we have that

R0
0=

we obtain (7.3). ]

and n(t) = Z(t) (7.7)

Remark 5 P being conservative is not a necessary condition for (7.3) to be derived from
the Lagrange-d’Alembert principle. In order to be variational, Equation (7.6) requires a
Lagrangian of the form
L(z,&,t) = a(t)33* + (c(x,t), ) + d(z, 1)
for some unknown functions c,d, which implies
od  Oc
— = — 4+ b(t)P(x).
oz~ on TPOP@)

A wector field P satisfying this last relation need not be conservative.
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Next, the result that links the previous continuous equation (7.3) with PHB/CM and
NAG, showing, in particular, that NAG is a forced version of PHB/CM, between which the
transition is immediate.

Theorem 6 Given a real valued function f: R™ — R and a vector field P: R" — R",
consider the time-dependent discrete Lagrangian and forces

LE(z0,21) = ais |21 — 20]” = by, f(20) — b1 f(21), (7.8a)
(F3) (20, 21) = = %=1 (b, + b )P(20) , and (7.8b)
(F§)+(zo, z1) = (by + bﬁ)P(zo) . (7.8¢)

where {ay}r>0, {0y }x>0, {b;}kzo, are arbitrary sequences of real numbers. If f is reqular
enough, so that P =V f, and ay, is never null, then the free and forced equations of motion
for L% and (L%, (F¥)=, (F¥)*) are, respectively, equivalent to the following recursive schemes

Yk1 = T — NP (xy) , Uk+1 = T, — N P(Ty) , (7.9a)
Tht1 = Yk1 + e(Tp — Tp—1) Thg1 = Ukt + Me(Ura1 — Tr) (7.9b)
where N
b, +0b
P41 = and = E—F (7.10)
k41 ag
for k> 0.

Conversely, given a vector field P: R™ — R" and two arbitrary sequences of real numbers
{tk41te>0 and {nk} k>0, consider the sequences of pairs of points given in equations (7.9a)-
(7.9b). If P is conservative and pp4+1 is never null, then both schemes are variational.
Moreover, they are equivalent to the equations of motions for the free and forced time-
dependent discrete Lagrangian systems given in (7.8a)-(7.8c), for which f is the field’s
potential and

apg = 1, Ap+1 = ak/,ukJrl, Vk > 0, bki = %aknk, Vk > 0. (7.11)
Proof Partial differentiation of the Lagrangian gives
DlLS(Z(), 2’1> = — akAZ() - bIZVf(Z()) s
DQLS(ZO, 2‘1) = akAzo - bLlVf(zl) 5

from where it is readily seen that the DEL equations with forces (6.2) are

—ak11Az1 + arAzg — (b,;+1 + b;rH)Vf(zl) =

= (b B )V () = (B + 00V S (0),
k+1

where the RHS is null for the non-forced DEL equations. Dividing by —ag11 and using the
relations (7.10), we get

Az — pe1820 + M1V f(21) = =1 (1 V f(21) — eV f(20)) (7.12)
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where, again, the right hand side is null for the non-forced case. Replacing z; with xpy; in
the non-forced case, and with Zy; in the forced one, taking into account that P = V f, and
using the equations in (7.9a), we obtain those in (7.9b).

The converse is immediate. |

Now remarks are in order that will summarize some points that have been mentioned
earlier and underline others that haven not been yet.

Remark 7 (One-to-one correspondence) Note that both equations in (7.9a) are for-
mally the same, whereas in (7.9b) there is a difference in the last term: While PHB/CM
uses x’s, NAG considers y’s. This is a slight change that nonetheless defines different
schemes and in which the forcing term is hidden. This result not only shows that NAG is a
forced version of PHB/CM, but that the schemes are in a natural bijective correspondence.

Remark 8 (Strategies) A specific method is defined by a strategy: a pair of coefficients
(1,m).  This work and especially Theorem 6 focus on wvariational strategies, those pairs
w,n: N — R that can be derived variationally from a time-dependent Lagrangian of the
form (3.2). Being the original strategy of Polyak’s method constant, it falls within this
class of variational momentum-descent methods, whereas the original method by Nesterov
is non-variational and belongs to a broader class of generalized momentum-descent methods
where the coefficients might depend on the objective function itself (confer with Polyak, 1964;
Nesterov, 1983; see also Eq. 8.12).

Remark 9 (Initial conditions) Usually the initial condition, (zo,vo) or (zg,po) in phase
space, or (xo,x1) in configuration space, is crucial for the proper simulation of the dynamical
system. Here, however, the dynamics are a tool and generally an initial condition so that
T1 = xg OT Yo = To, where xg = g is close to the minimum, will suffice, which corresponds
to sticking the ball to the bowl’s wall and leave it roll.

Remark 10 (Natural trajectory) From the schemes’ definitions, the sequences {x}}72
and {T1}72, are the natural (on track) dynamical trajectories towards the minimum of f,
while {yx}72, and {yr}7, are off road marks that limit these trajectories like slalom flags.
The latter are, however, asymptotically close to the former and, hence, to the minimum.

Remark 11 (Discrete flow) If one wants to compare the trajectories obtained from both
methods, perhaps Equations (7.9) are better suited. If one is solely interested in a simple
implementation to compute the minimum, then Equations (2.3) and (7.1b) are a good alter-
native since they can easily be rewritten to give discrete flow updates in the form “momentum
first, then position” as in Sutskever et al. (2013):

Az = pp—1Axp—1 — iV f(xr), AUk = pth—1AYk—1 — MV f (U + pe—1870k—1), (7.13a)
T1 = T + Azy, Uk+1 = U + AGg, (7.13b)

where both methods should be initialized with o = ¢ and Axz_1 = Ay, = 0. Both
approaches, Equations (7.9) and Equations (7.13), have been considered for the simulations
of Section 8.
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Remark 12 (Force approximation) The action induced by the discrete forces in (7.8) is
a second order approzimation to the action induced by the continuous force (7.4b). Indeed,
given continuous coefficients a(t), b(t), define ap, = a(kh)/h? and blf so that by, +b; = b(kh),
and similarly for a continuous path x(t) and a variation éz(t) of it. Then

N-1
k=0
N-1 a Nl
_1 _ B
= _h o (b, + bg)Vf(l‘k) -0z + h Z by, + b;_l)vf(xk_l) 51
k=1 el

N-1 .4 4h
_ kT3 _M N B o . 2
= kz/ ( o) b()V f(z(t)) + b(t — h)V f(x(t h))> Sx(t) dt + O(h?)

—_

dt [a(t)

T d [b(t)
— /0 ~ha(t) [a(t)Vf(:r(t))]-5x(t)dt+(9(h2)

where we have considered a mid point quadrature rule to establish the second equality, the
rest follows.

Remark 13 (Force evanescence) As remarked, NAG can be viewed as an approxima-
tion to a forced continuous Lagrangian system, where the force is proportional to the time
step that is used a posteriori for the discretization. Although its contribution is non-null
along the whole trajectory, it however vanishes not only locally, when h decreases, but also
asymptotically in time, when t or k increase.

8. Simulations
Numerical experiments are performed considering different elements, namely:

e The time-dependent coefficients that appear in the Lagrangian, a(t) and b(t), for the
simple case (3.2);

e The discretization scheme used to approximate the Lagrangian action; and obviously,

e The objective function to be minimized, f(z).

8.1 Lagrangian Coefficients

We consider three different Lagrangians or, more precisely, three different pairs of time-
dependent coefficients (a(t),b(t)) given, as in (3.2), by time-dependent exponents triples
(a(t), B(t),v(t)) satisfying the ideal scaling conditions (3.1), which ensure that argmin f is
an attractor of the underlying dynamical system.
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8.1.1 POTENTIAL DILATION

The first Lagrangian under consideration is a potential dilation of a mechanical Lagrangian,
namely,

. L.
Loant) =" (5161 = £(2) (5.1)
whose Euler-Lagrange equation is

j}+%a’:+Vf(w):0, (8.2)

which is the equation considered in Su et al. (2016).
A naive choice of exponents from which to obtain the time-dependent coefficients a(t) =
b(t) =" is
a(t) =0, B(t) =0, v(t) = nlogt. (8.3)

However, they do not satisfy the ideal scaling conditions. A triple that does meet this
requirement is

a(t) =logp —logt, B(t) = 2(logt —logp), (t) = plogt + logp, (8.4)

where p = n — 1, but only when n > 3, thus, showing the “magic” n = 3 in (8.2) of NAG
(Su et al., 2016). It is, in fact, the only choice satisfying the scaling conditions and gives
an optimal rate of convergence not slower than O(1/:2).

8.1.2 MODIFIED POTENTIAL DILATION

The Lagrangian
1
Le.vt) = (G4l - DE=21(2)) (85)
whose Euler-Lagrange equation is

G+ %m + D3V f(2) =0,

is the Lagrangian considered by Wibisono et al. (2016) for the metric case and corresponds
to the exponents

a(t) =logp —logt, B(t) = plogt+logC, v(t) = plogt + logp, (8.6)
where C = D/p? and p = n — 1. They satisfy the ideal scaling conditions for n > 1,
giving a rate of convergence not slower than O(1/t»~') (confer with Wibisono et al., 2016,

in particular for specific details on the constant C).

8.1.3 EXPONENTIAL DILATION

Finally, the exponentially dilated Lagrangian
: a (L2
L(I’,i{},t) =€ inH —f(.’IJ) ’ (87)
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whose equation of motion is precisely the one of a mechanical system with linear damping,
T+ A+ Vf(r)=0, (8.8)

corresponds to the choice exponents
a(t) =log A, B(t) = —2log A, y(t) = At + log \. (8.9)

We note here three points. First, it is the unique choice for a(t) = b(t) = e that satisfies
the ideal scaling conditions. Second, in principle this choice gives a theoretical convergence
rate of O(1), fortunately it can be reduced down to o(1) (Attouch et al., 2021, Th. 2.5).
Third and more notably, although the Lagrangian (8.7) is explicitly time-dependent, the
Euler-Lagrange equation (8.8) is autonomous and it introduces a linear time-independent
damping term in the equation.

8.2 Discretizations

Using the trapezoidal rule to approximate the action of the above Lagrangians, we retrieve
common NAG coefficients that appear in the literature. With some abuse of notation, we
write in general

a(k) = a(tk)—;;(tkm, and bE(k) = =L

where t; = kh.

8.2.1 BOUNDED COEFFICIENTS FROM THE POTENTIAL DILATION

For the continuous time-dependent coefficients a(t) = b(t) = t", with n = p + 1, the
trapezoidal rule yields the discrete time-dependent coefficients

e+t s tk
CL(]C) - 2h2 ) b (k) - Ea
from which we obtain the coefficients
k" + (k—1)" 2Kk™ 9

p(k) (8.10)

= — k)= —————h".
kn + (k+ 1)’ (k) k™ + (k+1)n

Both coefficients are strictly increasing and bounded above by 1 and h?, respectively. To
avoid integer overflow and slightly reduce computational cost in final implementations, these
expressions can be simplified to

_2k—n
2%k +n

2k

k
(k) 2k +n

+o(1), nk)= ( +o(1)> h.

For the particular case n = 3, that is p = 2, we get u(k +3/2) = % + O(1/k?) as in (2.7).
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8.2.2 UNBOUNDED COEFFICIENTS FROM THE MODIFIED POTENTIAL DILATION

In this case, the continuous time-dependent coefficients are a(t) = t" and b(t) = Dt?" 73, as
in Wibisono et al. (2016), which yield

k" + (k—1)" 2k 3.9
k)= ———— k)= D—————t7"°h". A1
As earlier,
2k —n 2k
= 1 =D 1 n=3p2
k) = S o) (k) =D (52 o))

This time, 7 is unbounded when n > 4, and bounded above by Dh? when n = 3.

Similarly, Betancourt et al. (2018) suggest a palindromic split Hamiltonian method
with 7 stages that can be recovered from the proposed perspective considering the discrete
Lagrangian

1

Th+1 — Tk
L ws1) = i (2 L

h

P s fE)+ f<xk+1>> |

k+1/2 9

Note that it is not obtained by a trapezoidal approximation of the Lagrangian (8.5), but it
is still a discretization of it for which

2% —1\" 2k + 1) 3 + 2k —1)>3 o
K="= kY=D L b,
(k) (2k n 1> D 2(2k + 1)21-3 k412

As before,

2% -

8.2.3 CONSTANT COEFFICIENTS FROM THE EXPONENTIAL DILATION

Taking a(t) = b(t) = e yields

14 e M 2

(k)

For A=1and h = 0.1024, 1 ~ 0.9 and 7 ~ 0.01, values that often appear in the literature,
as in Sutskever et al. (2013). In general, any pair of constant coefficients u,n > 0 can be
obtained from values A € R, h > 0.

8.2.4 THE ACTUAL METHOD BY WIBISONO, WILSON, AND JORDAN

Strictly speaking, the method by Wibisono et al. (2016) is based on NAG, but it differs
from it. Although they consider the previous Lagrangian (8.5) and experiment with it in
Betancourt et al. (2018); Jordan (2018), what is proposed in Wibisono et al. (2016) is the
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3-phase scheme

p k
= 1
Tk41 k+p2k+ k:+pyk’ (8.13a)
. N p
yr = argmin < fo—1(y;zx) + ==y — zx||P ¢ » (8.13b)
y phP

k o_

2k = 21 — Dgtz W2V f (yk) » (8.13¢)

with 2o = yo = zo and where p =n — 1, fo—1(y; k) is the (p — 1)-th Taylor expansion of f
about x; and N is a constant related to D and p that ensures convergence. Note that for
n =3 (p = 2), the optimization problem (8.13b) is explicit and reduces to

1
Y = T — NhQVf(xk) ; (8.14)

but it is implicit in general, which increases the cost of the method, aside of having to
compute the Hessian and higher derivatives of f, either explicitly or by autodifferentiation.

In Section 8.4, we will refer to method (8.13) by WWJ, after the authors, and consider
it as a (modified) NAG method.

8.3 Objective Functions

Several objective functions are considered: a highly dimensional quadratic function with
tridiagonal matrix representation, a generalized Rosenbrock function, yet another test func-
tion for momentum-descent methods, and one that combines a generalized logistic function
with a mean loss and that is often used in Neural Networks.

8.3.1 HIGHLY DIMENSIONAL QUADRATIC FUNCTION

In Betancourt et al. (2018), they consider the quadratic map on R"
flx) =3 (x,x7 "2}, (8.15)

where ¥ is the matrix whose elements are ¥;; = pl=il with p = 0.9 and n = 50, and whose
inverse ¥ 7! is the tridiagonal matrix

L —p
—p 1+p° —p

—p 1+p* —p

8.3.2 GENERALIZED ROSENBROCK FUNCTION

The Rosenbrock function (Rosenbrock, 1960/61), whose expression is
fla,y) = (a—a)’ +bly —2)?,
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with a, b > 0, represents a banana-shaped flat-valley surrounded by steep walls with a unique
critical point and global minimum at a,a?, whose search by numerical means is difficult,
hence its use to test and benchmark optimizers. We consider here its generalization to
higher dimensions, n > 2, namely

n—1
F@) =37 [(1— )% +100(z441 — 22)?] . (8.16)

i=1
As in the two-dimensional case, the function has a global minimum at (1,1,...,1) but,
unlike it, also has a local minimum close to (—1,1,...,1) (the higher is the dimension, the

closer it gets).

8.3.3 YET ANOTHER TEST FuNcTION (YATF)
Another example that might hinder the search of a minimum is the following
f(z,y) =sin(22* — y® + 3) - cos(z + 1 — exp(2y)), (8.17)

which has a local minimum close to (0.32, 1.60).

8.3.4 MULTINOMIAL LOGISTIC REGRESSION

In artificial neural networks (ANN), the activation function of a node (or neuron) defines
the output of that node given an input (or set of inputs). Supervised learning is a learning
paradigm of the training process of the ANN. Different choices are available for the acti-
vation function and the training process, which is a subject that might be in some cases
controversial within the ANN community, but that is not the object of this work. We
consider a shallow neural network with a single layer for classification in n classes or tar-
gets given m features. Upon reaching the neurons, the inputs (features) are weighted and
possibly biased, which in fact is the model to be determined through the learning process,

weR™™ beR": zeR"—w-z+beR".

The chosen activation function is a classifier, a generalization of the logistic function, the
multinomial logistic function (a.k.a. softmax),

0= ()

As loss function, we choose the cross-entropy or log-loss,

H(y,y) = — (y,log®) ,

where y € R" is the computed output, y € {0,1}" with Z]. y; = 1 is the expected output
(class), and log is applied componentwise. We take as objective function the average loss
over a training dataset D of length |D|, namely,

f(w,b):—|11)| S (y, (logoo)(w -z +b)) . (8.18)
(z,y)€D

It is important to note here that f is the sum of convex functions and therefore itself
convex, however f need not have a global minimum but an asymptotic infimum: 0 as, for
instance, exp(t) opposed to cosh(t). This depends on the data fed for the training process.
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8.4 Experiments

Many experiments have been performed, we optimized each test function using the afore-
mentioned methods (and others) set with different parameters and initial guesses, from
which we present here a small but suggestive sample. In summary, we minimize the test
functions (8.16) and (8.17), the quadratic function (8.15), and the loss (8.18) with the
PHB/CM and NAG methods (7.9) given by the constant, bounded and unbounded coeffi-
cients (8.12), (8.10), and (8.11), respectively, and WWJ’s method (8.13), the latter three
for n = 3,4, for a total of seven methods. Each objective is minimized using its own initial
guess, time-step, and number of epochs, which are fixed for the seven simulations.

We set Rosenbrock’s test function with 30 dimensions and seek for its global minimum
at (1,...,1) from (0,...,0) at a pace of h = 0.01 for 20000 epochs. In the case of the YATF,
there is a local minimum near (0.32,1.60) which we seek from (—0.25,0.35) with time-step
h = 0.01 for 3800 epochs. A random point on a sphere of radius 50 is the initial guess
for the 50-dimensional quadratic function, whose global minimum, sought for 10000 epochs
with h = 0.1, is clearly at the origin. For the convergence tests, the log-loss function is fed
with 10 arbitrary samples, with 4 features and 3 targets each, which defines an optimization
problem of dimension 10 with no global minimum, hence we will seek for the infimum for
12000 epochs at a pace of h ~ 0.945 from a random weight distribution with null biases.
For an actual ANN test, the log-loss function is fed with the widely used Iris dataset (Dua
and Graff, 2017; see below for more details).

The methods have been implemented in Julia v1.8.2 (Bezanson et al., 2017), using
solely as nonnative libraries NLsolve.jl (Mogensen et al., 2020) to solve the side problem
(8.13c), Plots.jl (Breloff, 2021) and PGFPlotsX.jl for plotting, and Pluto.jl for an interactive
notebook. Methods, functions, and simulations are available online (Campos, 2022a,b). All
plots except Figures 1 and 7 represent the objective function residual against the epoch in
log-log scale.

In Figure 1, we can see how the trajectories computed by PHB/CM and NAG for the
YATF pass by its minimum about (0.32,1.60). They start at the bottom left and go upward
until they “realize” they have overreached the minimum and, about (0.7, 1.9), they back up.
Although not shown in the figure, this motion is repeated successively, but each time they
back up, they do so sooner and closer to the minimum, like a heavy ball in a bowl. The
trajectories shown in the figure correspond to the iterations 765 to 1450 of the methods.

Similarly we observe in Figure 2 that NAG oscillates less than PHB/CM. Each downward
peak corresponds to the trajectory passing by the minimum of the YATF. In fact, the
trajectories shown in Fig. 1 correspond to the first peak in blue of Fig. 2. These oscillations
where the trajectories pass by the minimum of the objective function back and forth, and the
fact that NAG oscillates less than PHB/CM slightly outperforming it are common aspects
of all the simulations performed, reason why in the remaining figures we focus solely on
NAG methods, where several aspects are worth noting.

Figures 3-6 compare the seven methods enumerated above, one figure for each objective
function presented in Section 8.3, and following the same order. Each figure is made up
of two plots: the top one is composed of methods with n = 3, the bottom one of methods
with n = 4, whereas both include the NAG method with constant coefficients for proper
reference.
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Yet Another Test Function
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Figure 1: Trajectory slices nearby the local minimum of the YATF using PHB/CM (pale)
and NAG (strong) with the bounded coefficients from the Lagrangian’s polyno-

mial dilation with n = 3. A nonlinear grayscale gradient indicates the minimum’s
location in black.

Yet Another Test Function
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Figure 2: YATF residual values along PHB/CM (pale) and NAG (strong) trajectories for
coefficients from the polynomially dilated Lagrangian with n = 3 (blue) and n =4
(violet), and from the exponentially dilated Lagrangian (green).
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Quadratic function (dimension 50)
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Figure 3: Quadratic test function values along trajectories computed with NAG for constant

(green), bounded (blue), and unbounded (violet) coefficients, and WWJ (red); the
latter three set with n = 3 (top) and n = 4 (bottom).
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Rosenbrock’s test function (dimension 30)
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Figure 4: Rosenbrock’s test function values along trajectories computed with NAG for con-
stant (green), bounded (blue), and unbounded (violet) coefficients, and WWJ
(red); the latter three set with n = 3 (top) and n =4 (bottom).
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Yet Another Test Function (dimension 2)
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Figure 5: YATF residual values along trajectories computed with NAG for constant (green),

bounded (blue), and unbounded (violet) coefficients, and WWJ (red); the latter
three set with n = 3 (top) and n = 4 (bottom).
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Multinomial logistic loss (dimension 10)
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Figure 6: Logistic loss values along trajectories computed with NAG for constant (green),
bounded (blue), and unbounded (violet) coefficients, and WWJ (red); the latter
three set with n = 3 (top) and n =4 (bottom).
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Observe first that, the three methods with n = 3 behave similarly for the four objective
functions. This is not surprising since the Lagrangians considered reduce to a potentially
dilated mechanical Lagrangian in which the objective function, in the cases of unbounded
NAG and WWJ, is coupled with a further constant coefficient, D = 1/4 when n = 3, which
slightly delays convergence when compared to bounded NAG. This coefficient needs to be
small in order to ensure convergence according to Wibisono et al. (2016).

When n = 4, these three methods clearly show their differences. Most importantly,
unbounded NAG (8.11) blows up in Figure 3 (highly dimensional quadratic function). This
is due to the increasing and unbounded learning rate coefficient n that is “ignored” when the
gradient is almost null but brakes the method when it steps at a point where the gradient
is not negligible. Therefore we infer that unbounded NAG is not suited for long runs when
n > 4 and should be restarted to avoid blow-up. Surprisingly WWJ is not affected by this
problem even though the same coefficient appears in its definition, Eq. (8.13). The method
is numerically stable thanks to the fast convergence of the trajectory towards the minimum.

In fact, WWJ really shows up when n = 4, where it clearly outperforms its NAG coun-
terpart, unbounded NAG, as well as bounded NAG, but may “stall” when the simulation
has advanced, Fig. 3. Besides, there is a trick into its performance, when n > 4 the method
must solve a side optimization problem, (8.13c), which is solved here using the NLsolve.jl
library, something that it somewhat redundant and suffers from the curse of dimensionality:
it is around 10 times slower than the other methods for the low dimensional case (YATF)
and more than 100 times slower in the high dimensional ones (Rosenbrock and quadratic
function). Nonetheless, this disadvantage might decrease or even disappear when the Breg-
man divergence is not the usual Euclidean norm (something worth exploring), since the
associated methods are unlikely to be explicit.

With regards to constant NAG, the results are somehow paradoxical. Recall that the
exponentially dilated Lagrangian is the only case in which a good convergence rate is not
ensured, Eq. (8.9), however it is the method that in general performs the best, Figures
3-5. Furthermore, although within the Machine Learning community it is perhaps the most
popular method among the analyzed, it is the one that has performed the worst in the
purely ML scenario, Figure 6.

Fig. 6 is where the theoretical convergence rates are better seen. In this figure, the
values obtained by unbounded NAG and WWJ coalesce for both, n = 3 and n = 4.

In addition to the previous optimization problems, we apply the analyzed methods to a
simple classification problem using Firsher’s Iris dataset (Dua and Graff, 2017). The dataset
consists of 150 entries (or samples) with 7 fields: 4 features and 3 targets. Therefore we
consider a shallow neural network with a single layer of 3 neurons with 4 inputs. The input
data (the features) are weighted and biases upon entry into the network, the computed out-
put is compared with the expected output (targets) using the multinomial logistic function.
This process is summarized by the objective function (8.18).

For simplicity, we only consider four methods: constant, bounded, and unbounded NAG,
and WWJ, the latter three with n = 3. We train the network (or optimize the objective
function) at an increasing number of epochs (from 25 up to 250) for 1000 runs. At each
run and for each number of epochs, the samples are randomly split in two: 100 samples for
training and 50 samples for testing. At the same time, the initial weights of the network
are drawn from a normal distribution with null mean and standard deviation o = 10. This
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Multinomial logistic loss
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Figure 7: Average accuracies for Iris dataset achieved by NAG with constant (green),
bounded (blue), and unbounded (violet) coefficients, and WWJ (red); the lat-
ter three set with n = 4.

initial guess is kept for the four methods. Then the network is trained and the accuracy
of network with the computed weights is measured (percentage of correct matches for the
testing data).

Figure 7 shows the average accuracy along the 1000 runs for each method versus the
number of epochs. This figure is clearly consistent with what is obtained in Fig. 6.

9. Conclusions and Future work

In this paper, we have studied the relation between accelerated optimization and discrete
variational calculus, proving a symplecticity property for the continuous differential equation
in Theorem 1 which is also preserved by the corresponding discrete variational methods. We
have derived Classical Momentum (CM) or Polyak’s Heavy Ball (PHB), and Nesterov’s Ac-
celerated Gradient methods (NAG) from the discrete Hamiltonian and Lagrange-d’Alembert
principles in Theorem 6 adding forces in the picture and proven a one-to-one correspon-
dence. Several simulations were performed showing the applicability of our techniques to
optimization. Among all the methods, NAG with the constant coefficients from the expo-
nentially dilated Lagrangian, aside from being the simplest choice, it also seems to be the
best one for general purpose applications according to the simulations.

In a future paper, we will study whether the proposed optimization algorithm generated
by using Lagrange-d’Alembert principle achieves the accelerated rate for minimizing both
strongly convex functions and convex functions (Wibisono et al., 2016; Shi et al., 2019). The
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main idea is to discretize, using discrete variational calculus, the continuous Euler-Lagrange
equations (with or without forces) while maintaining their convergence rates (see Vaquero
et al., 2021, for recent advances in this topic). Moreover, the extension to problems of
accelerated optimization in manifolds will be given using discrete variational calculus and
well-know optimization techniques with retraction maps (Absil et al., 2008; see also Lee
et al., 2021).
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