Journal of Machine Learning Research 24 (2023) 1-63 Submitted 11/21; Revised 7/22; Published 3/23

Off-Policy Actor-Critic with Emphatic Weightings

Eric Graves GRAVESQUALBERTA.CA
Ehsan Imani IMANIQUALBERTA.CA
Raksha Kumaraswamy KUMARASWQUALBERTA.CA
Martha White WHITEMQUALBERTA.CA

Reinforcement Learning and Artificial Intelligence Laboratory
Department of Computing Science, University of Alberta
Edmonton, Alberta, Canada T6G 2E8

Editor: Joelle Pineau

Abstract

A variety of theoretically-sound policy gradient algorithms exist for the on-policy setting
due to the policy gradient theorem, which provides a simplified form for the gradient. The
off-policy setting, however, has been less clear due to the existence of multiple objectives
and the lack of an explicit off-policy policy gradient theorem. In this work, we unify these
objectives into one off-policy objective, and provide a policy gradient theorem for this
unified objective. The derivation involves emphatic weightings and interest functions. We
show multiple strategies to approximate the gradients, in an algorithm called Actor Critic
with Emphatic weightings (ACE). We prove in a counterexample that previous (semi-
gradient) off-policy actor-critic methods—particularly Off-Policy Actor-Critic (OffPAC)
and Deterministic Policy Gradient (DPG)—converge to the wrong solution whereas ACE
finds the optimal solution. We also highlight why these semi-gradient approaches can still
perform well in practice, suggesting strategies for variance reduction in ACE. We empirically
study several variants of ACE on two classic control environments and an image-based
environment designed to illustrate the tradeoffs made by each gradient approximation. We
find that by approximating the emphatic weightings directly, ACE performs as well as or
better than OffPAC in all settings tested.
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1. Introduction

Policy gradient methods are a general class of algorithms for learning optimal policies for
both the on and off-policy settings. In policy gradient methods, a parameterized policy is
improved using gradient ascent (Williams, 1992), with seminal work in actor-critic algo-
rithms (Witten, 1977; Barto et al., 1983) and many techniques since proposed to reduce
variance of the estimates of this gradient (Konda and Tsitsiklis, 2000; Weaver and Tao, 2001;
Greensmith et al., 2004; Peters et al., 2005; Bhatnagar et al., 2007, 2009; Grondman et al.,
2012; Gu et al., 2017b). These algorithms rely on a fundamental theoretical result: the
policy gradient theorem. This theorem (Sutton et al., 1999a; Marbach and Tsitsiklis, 2001)
simplifies estimation of the gradient, which would otherwise require difficult-to-estimate
gradients with respect to the stationary distribution of the policy and potentially of the
action-values.
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These gradients can be sampled on-policy or off-policy. On-policy methods are limited
to learning about the agent’s current policy: the policy must be executed to obtain a
sample of the gradient. Conversely, in off-policy learning the agent can learn about many
policies that are different from the policy being executed. Sampling these gradients is most
straightforward in the on-policy setting, and so most policy gradient methods are on-policy.

Off-policy methods, however, are critical in an online setting, where an agent generates
a single stream of interaction with its environment. Off-policy methods can learn from data
generated by older versions of a policy, known as experience replay, a critical factor in the re-
cent success of deep reinforcement learning (Lin, 1992; Mnih et al., 2015; Schaul et al., 2016).
They also enable learning from other forms of suboptimal data, including data generated
by human demonstration, non-learning controllers, and even random behaviour. Off-policy
methods also enable learning about the optimal policy while executing an exploratory pol-
icy (Watkins and Dayan, 1992), thereby addressing the exploration-exploitation tradeoff.
Finally, off-policy methods allow an agent to learn about many different policies at once,
forming the basis for a predictive understanding of an agent’s environment (Sutton et al.,
2011; White, 2015) and enabling the learning of options (Sutton et al., 1999b; Precup,
2000; Klissarov and Precup, 2021). With options, an agent can determine optimal (short)
behaviours from its current state.

Off-policy policy gradient methods have been developed, particularly in recent years
where the need for data efficiency and decorrelated samples in deep reinforcement learning
require the use of experience replay and so off-policy learning. This work began with the
Off-Policy Actor-Critic algorithm (OffPAC) (Degris et al., 2012a), where an off-policy policy
gradient theorem was provided that parallels the on-policy policy gradient theorem, but only
for tabular policy representations.! This motivated further development, including a recent
actor-critic algorithm proven to converge when the critic uses linear function approximation
(Maei, 2018), as well as several methods using the approximate off-policy gradient such as
Deterministic Policy Gradient (DPG) (Silver et al., 2014; Lillicrap et al., 2015), Actor-Critic
with Experience Replay (ACER) (Wang et al., 2016), and Interpolated Policy Gradient
(IPG) (Gu et al., 2017a). However, it remained an open question whether the foundational
theorem that underlies these algorithms can be generalized beyond tabular representations.

This question was resolved with the development of an off-policy policy gradient the-
orem, for general policy parametrization (Imani et al., 2018). The key insight is that
the gradient can be simplified if the gradient in each state is weighted with an emphatic
weighting. This result, combined with previous methods for incrementally estimating em-
phatic weightings (Yu, 2015; Sutton et al., 2016), allowed for the design of a new off-policy
actor-critic algorithm, called Actor-Critic with Emphatic Weightings (ACE). Afterwards,
an algorithm was proposed that directly estimates the emphatic weightings using a gradi-
ent temporal difference update, with an associated proof of convergence using the standard
two-timescale analysis (Zhang et al., 2020).

However, ACE and the underlying off-policy policy gradient theorem do not obviously
resolve the dilemma of computing the off-policy gradient, because ACE—and previously
OffPAC—were introduced under what is called the excursions objective. This objective
weights states by the visitation distribution of the behaviour policy. This is sensible in the

1. See B. Errata in Degris et al. (2012b) that the theorem only applies to tabular policy representations.
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parallel off-policy setting, where many policies are learned in parallel from one stream of
experience. The agent reasons about the outcomes of those policies when taking excursions
from its current behaviour. In the episodic setting, however, weighting the states by the
visitation distribution of the behaviour policy is not appropriate. Instead, an ideal episodic
objective should be weighted by the start-state distribution, and this objective should be
optimized from off-policy data without changing this weighting.

Potentially because of this mismatch, most recent methods have pursued strategies that
directly correct state-weightings,? to obtain gradients of either the episodic objective (Liu
et al., 2020b) or a finite-horizon objective (Kallus and Uehara, 2020). This approach involves
estimating the distribution of state visitation under the behaviour policy and the discounted
state visitation under the target policy to obtain an importance sampling ratio to reweight
the updates. One disadvantage to this approach is that the state visitation distribution
must be estimated, and these estimates can be extremely biased—both by the initialization
and by the limitations of the parametric function class used for the estimates.

In this work, we revisit estimating the off-policy gradient with emphatic weightings.
First, we propose a unifying objective for the episodic setting and the excursions objective.
This objective facilitates the design of a single, unifying off-policy algorithm pertinent to
both settings. Then, we extend the off-policy policy gradient theorem both to this objective
and to objectives that incorporate entropy regularization. We further show that the on-
policy episodic objective can also be seen as a special case, through the use of interest
functions to specify interest in the set of start states. We then highlight the difference to
previous off-policy approaches including OffPAC and DPG, which use a biased gradient
that we call the semi-gradient because it omits a component of the gradient. We prove that
in a simple three state counterexample, with two states aliased, the stationary point under
semi-gradients is suboptimal, unlike ACE which converges to the optimal solution.

Though such state-aliasing is not pathological, it does seem to contradict the success
of methods built on OffPAC in the literature. We show that, under a condition called the
strong growth condition (Schmidt and Roux, 2013), which is obtained if there is sufficient
representational capacity, the semi-gradient solution is equivalent to that of ACE. Further,
we highlight that even outside this setting, in some cases the semi-gradient can be seen
as using the sound update underlying ACE, but with a different state weighting. These
two insights help explain why OffPAC has been surprisingly effective and suggest promising
directions for a lower-variance version of ACE.

Finally, we discuss several improvements to the algorithm, including using direct esti-
mates of the emphatic weightings to reduce variance, incorporating experience replay, and
balancing between the higher-variance full gradient update and the lower-variance semi-
gradient update. We empirically investigate variants of ACE in several benchmark envi-
ronments, and find that those with direct estimates of the emphatic weighting consistently
perform as well as or better than Off PAC.

Remark on Contributions: This paper builds on our conference paper (Imani et al.,
2018). The conference paper presented a policy gradient theorem for one off-policy objective

2. A notable exception is an approach that uses a nonparametric Bellman equation—essentially using
nonparametric estimates of the environment model (Tosatto et al., 2020). This approach allows direct
estimation of the gradient by taking derivatives through this nonparametric Bellman equation.
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function, and a counterexample showing that OffPAC and DPG can converge to the wrong
solution, with experiments limited to the simple three-state counterexample.

An important limitation of that work is that it only applies to the excursions objective,
which does not obviously relate to the standard policy gradient objective. Further, the
work primarily investigated the true gradient, and did not provide much insight into how
to practically use the algorithm. This paper builds on the conference paper in several
substantive ways.

1. We first clarify the confusion surrounding objectives by providing a more general
objective that includes both the standard objective and the excursions objective. We
provide all the derivations for this more general objective (their Theorems 1 and 2
and Proposition 1, which are our Theorems 2 and 3 and Proposition 6). The result is
nearly identical, but reiterated with the more general definition, and slightly different
terminology. We also highlight that we can recover a sound on-policy algorithm using
interest functions.

2. We prove that the semi-gradient from OffPAC has suboptimal solutions on the coun-
terexample. The conference paper only showed this empirically. To obtain this result,
we needed to extend the derivation to include entropy regularization, so that the op-
timal policy is stochastic and its parameters are bounded. Then we proved that the
stationary points for OffPAC on the counterexample do not include the optimal point.

3. We provide insight into why semi-gradient methods can perform well, by showing
that in some cases the weighting does not affect the solution and that locally we can
characterize the semi-gradient as a gradient update with a different state weighting.

4. We provide several algorithmic improvements to ACE, particularly by directly esti-
mating the emphatic weightings to give a lower variance update. In our experiments,
this algorithm outperforms or performs comparably to all others, including OffPAC.

5. We conduct a more thorough empirical investigation of ACE in more settings, in-
cluding two classic benchmarks and a new partially-observable image-based domain.
The experiments are aimed at deeply investigating the role of different components,
including (a) the objective used for learning versus evaluation, (b) the algorithm for
estimating the emphatic weightings, and (c) the algorithm used for the critic.

2. Problem Formulation

Throughout the paper, we use bolded symbols to represent vectors and matrices, and up-
percase italicized symbols to represent random variables. We consider a Markov decision
process (8, A, P, r), where 8§ denotes the set of states, A denotes the set of actions, P
: 8 x A — A(8) denotes the one-step state transition dynamics, and 7 : 8 x A x 8§ — R de-
notes the transition-based reward function. At each timestep t = 1,2, ..., the agent selects
an action A; according to its behaviour policy p, where p: 8 — A(A). The environment
responds by transitioning into a new state S;11 according to P, and emits a scalar reward
Riy1 = 7(St, A¢, Sey1)-

The discounted sum of future rewards given actions are selected according to some target
policy 7 is called the return, and defined as:

Gt = Ryy1 + Y41 Revo + Y172 Regs + - (1)
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= Ri1 + 741Gy

We use transition-based discounting v : §x A x8 — [0, 1], as it facilitates specifying different
tasks (termination) on top of the same MDP (White, 2017). This generality is useful in our
setting, where we may be interested in learning multiple (option) policies, off-policy. The
state value function for 7 and ~ is defined as

U (s) EEr[Gy|S; = 5] Vs eS8, (2)

where under discrete states and actions this corresponds to

vr(s) = Z m(als) Z P(s|s,a)[r(s,a,s") +v(s,a,8)v.(s")] VseS

a€eA s'es

and under continuous states and actions this corresponds to

vr(s) = /Aw(a|s) /SP(s/s,a)[r(s,a,s/) +9(s,a,8 )vz(s)]dads’ Vs € 8.

When possible, we will opt for the more generic expectation notation, to address both the
finite and continuous cases.

In off-policy control, the agent’s goal is to learn a target policy m while following the
behaviour policy p. The target policy mg is a differentiable function of a weight vector
60 € R" ng € N. The goal of the agent is to learn a policy that maximizes total reward.
Depending on the setting, however, this goal is specified with different objectives, as we
discuss in the next section.

Throughout, we assume that the limiting distribution d,(s) under u exists, where

du(s) = Jim P(Sy = s|so, 1) (3)

and P(S; = s|so, i) is the probability—or density—that S; = s when starting in state sg and
executing . Similarly, d, denotes the limiting distribution® of states under . Note that
this limiting distribution exists in either the episodic or continuing settings (White, 2017;
Huang, 2020). One way to see this is that in the episodic setting under transition-based
discounting, there are no explicit terminal states. Rather, the agent transitions between the
state right before termination, back to a start state, as it would for a continuing problem.
The transition-based discount truncates returns, to specify that the goal of the agent from
each state is to maximize return for the episode.

3. The Weighted-Excursions Objective for Off-Policy Control

In this section we introduce the weighted-excursions objective that unifies two objectives
commonly considered in off-policy control. The objective encompasses the standard on-
policy episodic objective as well as the excursions objective that allows option policies to be

3. This term is sometimes overloaded to mean the discounted state visitation starting from a single start
state so: Yoo, ¥"P(S: = s|so, 7). This overloading comes from the definition given in the original policy
gradient theorem (Sutton et al., 1999a). We only use it to mean state visitation (limiting distribution).
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learned off-policy with different termination conditions. Throughout, we will define both
the finite state and continuous state versions.
The standard episodic objective is

0) LS do(s)mp(s)  or  Jo(0) & /8 do(s)vm, (5) ds ()

SES

where dy € A(S) is the start state distribution. This objective can be optimized in either
the on-policy or off-policy settings, with different updates to account for the fact that data
is gathered according to p in the off-policy setting.

Another objective that has been considered in the off-policy setting is the excursions
objective (Degris et al., 2012b)

exc o Z d UTrg (5)

sES

where the state weighting is determined by the behaviour policy’s limiting state distribution
d,. This objective assumes that the target policy mg will be executed as an excursion from
the current behaviour—or that the agent will use the target policy in planning under the
current state visitation. In the options framework (Sutton et al., 1999b), for example,
the agent learns the optimal policies for a variety of different options, each with different
termination conditions. The behaviour policy itself p could be learning in a continuing
environment, even though the objective for the option policy my is episodic, in that it has
termination conditions.

The excursions objective, however, is not necessarily appropriate for learning an alterna-
tive optimal policy. For example, consider an episodic setting where a reasonable behaviour
policy is currently being used, and we would like to learn an improved policy. The improved
policy will be executed from the set of start states, not from the visitation distribution un-
der the behaviour policy. In this setting, we would like to optimize the standard episodic
objective, using off-policy data generated by the current behaviour policy.

These two settings can be unified by considering the weighted-excursions objective

O due)ils)en(s) o O [ Giuds O

seS

where the weighting ¢ : 8§ — [0,00) represents the interest in a state (Sutton et al.,
2016). This objective reduces to the episodic (start-state) formulation by setting i(s) =
do(s)/d,(s). This choice is not just hypothetical; we will show how our algorithm designed
for the excursions objective can also be used for the start-state formulation by using an
easy-to-compute setting of the interest i(s) for each s € 8. This generalization goes beyond
unifying the previous two objectives, and also naturally allows us to reweight states based
on their importance for the target policy. For example, when learning an option, the in-
terest function could be set to 1 in states from which the policy will be executed (i.e., the
initiation set), and zero elsewhere.

More generally, we could consider the generic objective ) s d(s)vr,(s) for any state
weighting d. Then the weighted-excursions objective is simply an instance of this more
generic objective, with d = d,(s)i(s). The reason that we opt for the weighted-excursions
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objective is because it is sufficiently general to incorporate our two settings of interest
but sufficiently restricted to facilitate development of a practical off-policy algorithm. In
fact, the idea of interest comes from the same work on emphatic weightings (Sutton et al.,
2016) on which we build our algorithm. This work also provides insight into how to easily
incorporate such interest functions in the off-policy setting.

Remark: In this work, we focus on episodic objectives—those with termination—Dbut it
is worthwhile to contrast this to the objective used for continuing problems. For continuing
problems, there is a compelling case for the average reward objective

T @) ES g (5)rmg(s)  or Jue(0)E /5 g (5)mo (5) dis (7)

se8

for rr(s) = Ex[r(s, A, S")]. Optimizing Jaye is equivalent to optimizing ¢ dx(s)vx(s) for
a constant 0 < v < 1 (Sutton and Barto, 2018). Intuitively, the agent seeks to maximize
state values while shifting its state distribution towards high-valued states.

A sharp distinction has been previously made between alternative life objectives and
excursions objectives in policy evaluation (Patterson et al., 2022). In that work, alternative
life objectives use the state-weighting d. that specifies: learn the best value function as if
data had been gathered under the target policy w. Such a weighting is obtained by us-
ing prior corrections—namely reweighting entire trajectories with products of importance
sampling ratios (Precup et al., 2000; Meuleau et al., 2000)—or estimating d,/d, (Hallak
and Mannor, 2017; Liu et al., 2018; Gelada and Bellemare, 2019). The excursions objec-
tive, on the other hand, uses a weighting of d,. This distinction is not clearly relevant
to control. Instead, typically on-policy average reward algorithms are developed for the
continuing objective—which has weighting d,. The few off-policy algorithms designed for
the continuing, average reward setting directly estimate dr and d, (Liu et al., 2019). The
episodic objective for control does not include d,, and so is different from the alternative
life objective in policy evaluation.

In the remainder of this paper we develop an algorithm for optimizing the weighted-
excursions objective in Equation (6) from off-policy data.

4. An Off-Policy Policy Gradient Theorem using Emphatic Weightings

In this section, we introduce the off-policy policy gradient theorem for the discrete and con-
tinuous settings as well as for deterministic policies. We additionally compare this gradient
to the gradient underlying OffPAC, and provide a generalized gradient that interpolates
between this gradient—called the semi-gradient—and the true gradient.

4.1 The Off-Policy Policy Gradient Theorem

The policy gradient theorem with function approximation in the on-policy setting was a
seminal result (Sutton et al., 1999a, Theorem 1). The first attempt to extend the policy
gradient theorem to the off-policy excursion objective was limited to the setting where the
policy is tabular (Degris et al., 2012b, Theorem 2).% In this section, we show that the policy

4. Note that the statement in the paper is stronger, but in an errata published by the authors, they highlight
an error in the proof. Consequently, the result is only correct for the tabular setting.
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gradient theorem does hold in the off-policy setting for the weighted excursions objective, for
arbitrary smooth policy parametrizations. The resulting gradient resembles the standard
policy gradient, but with emphatic weightings to reweight the states.

Definition 1 (Emphatic Weighting) The emphatic weighting m : 8 — [0,00) for a be-
haviour policy u and target policy w can be recursively defined as

m(s") £ du(s")i(s') + E[(S, 4, 9 )m(S) | §" = &, (8)
where the distribution over S, A from next state S’ is under P and .

Under finite states and actions, this expectationis Y ¢ > .- 1 7(als)P(s'|s,a)v(s,a, s )m(s).
Under continuous states and actions, it is [ [, 7(als)P(s]s,a)v(s, a, s )m(s) dads. If a de-
terministic policy 7 : 8§ — A is used, then it is [; P(s'|s,7(s))y(s,7(s), s")m(s) ds.

Notice that these emphatic weightings involve states leading into s’; bootstrapping is
back-in-time, rather than forward. The emphatic weighting reflects the relative importance
of a state s, based on its own interest and weighting—the first term d,,(s")i(s')—as well as
the discounted importance of states that lead into s’. For value estimation, this is sensible
because it reflects how much the agent bootstraps off of the values in s, and hence how
much it relies on accurate estimates in s’. For policy gradients, we have a related role: the
importance of a state is due both to its own value, as well as how much other states that
lead into it depend on the value obtained from that state.

Theorem 2 (Off-Policy Policy Gradient Theorem) For finite states and actions,

ajgéa) — Z m(S) Z 8ﬂ-(gf;e)qﬂ.(s, CL) = Z m(s)g(s, 0) (9)

sSES a SES

where 31 (A[S:0)
e ogm ;
g(s,@) d:fEﬂe |:89

1s the gradient for a given state, rewritten using the log-likelihood ratio. For continuous
states, and either continuous or discrete actions,

ang(o) = /m(s)g(s,a) ds. (9 for continuous states)
8

0x(S,4) | § = s} (10)

Proof We first start with the finite state setting. The proof relies on the vector form of
the emphatic weighting

m' = iT(I - PTFKY)ilﬂ
where the vector i € RIS has entries i(s) = d,(s)i(s) and Py, € RISl is the matrix with

def

entries Pr(s,8") = >, 4 m(als; 0)P(s']s,a)y(s,a,s"). First notice that

8J,(0) 0¥ sesi(s)vn(s) <., Ovals)
00 Saa =2 i) 90

SES

Therefore, to compute the gradient of J,, we need to compute the gradient of the value
function with respect to the policy parameters. A recursive form of the gradient of the
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value function can be derived, as we show below. Before starting, for simplicity of notation
we will use

g(s) = 32 MU0 (s ),

a
where g : 8§ — R%. Now let us compute the gradient of the value function:

81)7r S 0
a; - 20 Z m(als; 0)gr(s, a)

:Z&r(gf;a)qw(s,a)—i-Zﬂ(a]s;O)W (11)

00

= g(s) -+ ZT‘-(CLLS; 0)825’ P(S"S, a)(T(S,Cg;/) + ’Y(S, a, Sl)’Uﬂ-(S,))

=g(s)+ Zw(a|s; 0) Z P(s'|s,a)v(s,a, S,)avgés’)'

We can simplify this more easily using vector form. Let v, € RIS*? be the matrix of
gradients (with respect to the policy parameters @) of v, for each state s, and G € RISIxd
the matrix where each row corresponding to state s is the vector g(s). Then

Vv, =G+P. Vv, = v,=(01-P,,)'G. (12)

Therefore, we obtain

Zi(s)av“(s) =iV, =i I-P,,)"'G

sES 00
=m'G
On(als; 0
= Z m(s) Z (8‘0)%7(87 a).
s€S a
The proof is similar for the continuous case; we include it in Appendix B. |

We additionally prove the deterministic policy gradient objective, for a deterministic policy,
m:8 — A. The objective remains the same, but the space of possible policies is constrained,
resulting in a slightly different gradient.

Theorem 3 (Deterministic Off-policy Policy Gradient Theorem)

0J,(0) / 0n(s;0) 0gr(s,a)
= 1
06 ") 90 oo ds (13)

where

m(s') = d,(s)i(s") + /SP(S/|S,7T(S; 0))v(s,m(s;8),s )m(s)ds.

The proof is presented in Appendix A.
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4.2 Connection to OffPAC and the Semi-gradient
The off-policy policy gradient above contrasts with the one used by OffPAC

[Glogw(a\sﬂ)

(S, 4) | S = s] . (14)

Zdﬂ(S)Eﬂe

sES

The only difference is in the state weighting d,. This small difference, however, is key for
getting the correct gradient. In fact, the OffPAC gradient can be considered a semi-gradient,
because it drops a part of the gradient when using the product rule:

VoJexc(0) =Y du(s)Ve Y ma(als)gx(s, a)

s€8
= Z d,(s) Z [qx(s,a)Veme(als) + mg(als)Veqx(s,a)].
s€8 a

The second term with Vggr(s,a) is not obviously easy to compute, because it requires
reasoning about how changes to the policy parameters affect the action-values. OffPAC
opted to drop this term, and justify why this approximation was acceptable. The resulting
semi-gradient has proven to be surprisingly effective, though we provide several examples
in this work where it performs poorly.

Note that using this correct weighting is only critical due to state aliasing. If the policy
representation is tabular, for example, the weighting on the gradients does not affect the
asymptotic solution as long as it is non-zero.> The gradient >, sm(s)g(8,s) = 0 if and
only if g(€,s) = 0, because the gradient vector has an independent entry for each state.
Therefore, even if the state weighting in the gradient is changed to some other weighting d,
then we still get > s d(s)g(@,s) = 0. This is the reason that the semi-gradient underlying
OffPAC converges to a stationary point of this objective in the tabular setting. More
generally, for any sufficiently powerful function approximator that can obtain g(0,s) = 0
for all states, this result holds. In optimization, this property has been termed the strong
growth condition (Schmidt and Roux, 2013). We state this simple result for the irrelevance
of the weighting formally in the following proposition, both to highlight it and because to
the best of our knowledge it has not been formally stated.

Proposition 4 (Irrelevance of Weighting under the Strong Growth Condition)
If g(6,s) = 0 for all states, then 0 is a stationary point under any state weighting d : 8§ — R.

This result states that with a function approximator that can perfectly maximize value in
each state, the choice of state weighting in the gradient computation is not relevant. Both
the off-policy gradient with emphatic weighting, and the semi-gradient with weighting d,,,
can converge to this stationary point.

Alternatively, we can consider the more generic emphatic weighting that lets us sweep
between the gradient and the semi-gradient. The emphatic weightings were introduced
for temporal difference (TD) learning with eligibility traces (Mahmood et al., 2015). The
weightings depend on the eligibility trace parameter, A. For A = 1, the weightings effectively

5. Note that the weighting on the gradients could still affect the rate of convergence (Laroche and Tachet des
Combes, 2021).

10
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become 1 everywhere—implicitly resulting in state weightings of d,—because there is no
bootstrapping. For A = 0, the weightings are exactly as defined above.

Definition 5 (Generalized Emphatic Weighting) For n € [0,1], the generalized em-
phatic weighting m, : 8§ — [0,00) for a behaviour policy p and target policy m is defined
as

my(s') E (1= n)dyu(s)i(s") +nm(s") (15)

Forn =1, my(s') =m(s).

Note that in the original work, m(s") was called the follow-on weighting, and m,,(s’) the
emphatic weighting. Because m,, is a strict generalization of m, we simply call m an
emphatic weighting as well.®

The parameter 1 can be interpreted as trading off bias and variance in the emphatic
weightings. Notice that for n = 0, and assuming an interest of 1 everywhere, we get that
my(s) = d,(s). Such a choice would give exactly the semi-gradient weighting. As we
increase 7, we interpolate between the semi-gradient and the full gradient. For n = 1, we
get my(s) = m(s) and so we have the full gradient. For = 0, therefore, we obtain a biased
gradient estimate, but the emphatic weightings themselves are easy to estimate—they are
myopic estimates of interest—which could significantly reduce variance when estimating
the gradient. Selecting n between 0 and 1 could provide a reasonable balance, obtaining a
nearly unbiased gradient to enable convergence to a valid stationary point but potentially
reducing some variability when estimating the emphatic weighting. We will develop our
algorithm for the general emphatic weighting, as this will give us more flexibility in the
weighting, and will also allow us to incorporate OffPAC as one extreme (biased) version of
the approach.

4.3 Summary

In this section we proved the off-policy policy gradient theorem for the weighted-excursions
objective, for both stochastic (Theorem 2) and deterministic (Theorem 3) policies. These
gradients are similar to the standard policy gradient, but with states weighted by emphatic
weightings. We contrasted this to Off PAC, the (unsound) algorithm on which many off-
policy policy gradient algorithms are built, highlighting that the only distinction is in this
state weighting. We argued that this state weighting does not always affect the solution
(Proposition 4), potentially partially explaining why OffPAC often performs well—especially
in deep RL with large neural networks. Finally, we show how we can use generalized em-
phatic weightings, with a parameter n (Definition 5), that allows us to interpolate between
the sound, but harder-to-estimate emphatic weighting (at n = 1) and the unsound, but
easy-to-obtain weighting used in OffPAC (at n = 0).

6. Note that the original emphatic weightings (Sutton et al., 2016) use A = 1 — 7. This is because their
emphatic weightings are designed to balance bias introduced from using A for estimating value functions:
larger A means the emphatic weighting plays less of a role. For this setting, we want larger 7 to correspond
to the full emphatic weighting (the unbiased emphatic weighting), and smaller n to correspond to a more
biased estimate, to better match the typical meaning of such trace parameters.

11
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5. Actor-Critic with Emphatic Weightings

In this section, we develop an incremental actor-critic algorithm with emphatic weightings
that uses the above off-policy policy gradient theorem. To perform a gradient ascent update
on the policy parameters, the goal is to obtain a sample of the gradient in Equation 9. As
discussed above, the only difference to the semi-gradient used by OffPAC, in Equation 14,
is in the weighting of the states: the true gradient uses m(s) and the semi-gradient uses
d,(s). Therefore, we can use standard solutions developed for other actor-critic algorithms
to obtain a sample of g(s,0). The key difficulty is in estimating m(s) to reweight this
gradient.

5.1 Sampling the Gradient from a State

Before addressing this key difficulty, we provide a brief reminder on how to obtain a sample of
g(s, 0), with more details in Appendix C. The simplest approach to compute the gradient for
a given state is to use what is sometimes called the all-actions gradient ), W%(s, a).

To avoid summing over all actions, we instead obtain an unbiased sample of the gradient

under the action taken by the behaviour policy A ~ u(s,-): p(s, A; 0)%&1‘3;@%(5,14)
where the importance sampling ratio p(s,a; @) o W/E,((LL';TS?) corrects the distribution over

actions. The estimated gradient has more variance when we only use a sampled action
rather than all actions. The standard strategy to reduce this variance is to subtract a
baseline, such as an estimate of the value function v(s). The resulting update is

pls,;0) P PEE O g (5, 0) — o),

In practice, it is difficult to obtain ¢r(s,a) to compute this gradient exactly. Instead,
we obtain (a likely biased) sample of the advantage, 0; ~ ¢r(St, Ar) — v(s¢). An unbiased
but high variance estimate uses a sample of the return G; from (s¢,a;), and uses §; =
Gy — v(st). Then E[&|S: = s, A = a] = gz(s,a) — v(s). On the other extreme, we can
directly approximate the action-values, ¢(s,a). In-between, we can use n-step returns, or
A-returns, to balance between using observed rewards and value estimates. In this work,
we opt for the simplest choice: n = 1 with 0; = Ry11 + Y4+10(Se41) — v(St).

Finally, we need to estimate the values themselves. Any value approximation algorithm
can be used to estimate v, such as TD, gradient TD or even emphatic TD. Given we already
compute the emphasis weighting, it is straightforward to use emphatic TD. We investigate
both a gradient TD critic and an emphatic TD critic in the experiments.

5.2 Estimating the Gradient with Emphatic Weightings

The previous section outlined how to sample the gradient for a given state. We now need to
ensure that these updates across states are weighted by the emphatic weighting. Intuitively,
if we could estimate m,,(s) and d,,(s) for all s, then we could simply premultiply the update
with my,(s)/d,(s). However, estimating the state distribution is nontrivial, and actually
unnecessary. In this section, we first explain how to obtain a Monte Carlo estimate of this
pre-multiplier, and then how to directly estimate it with function approximation.

12
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5.2.1 AN UNBIASED ESTIMATE OF THE GRADIENT WITH EMPHATIC WEIGHTINGS

We can rely on the original work introducing the emphatic weightings to obtain a Monte
Carlo estimate with the update

My = (1 —n)i; + nkF Fy=wpi1Fi 1+t (16)

where Fy = 0 and 4, is the interest observed in S, with i(s) = E[it|S; = s]. Putting this
together with the previous section, the gradient can be sampled by (1) sampling states
according to d,, (2) taking actions according to p, (3) obtaining an estimate &; of the
advantage ¢ (s,a) — v(s), and then (4) weighting the update with M, to get

dlog m(A¢|St; 0)
00

0+ 0+ ap: M, O¢.

Note that the all-actions gradient update with this emphatic weighting would be

0log m(b|Sy; 0)

0« 6 +alM, > w(b|S;6) 9

beA

QW(Stab)a

but as before we will assume that we use one sampled action. We prove that our update is
an unbiased estimate of the gradient for a fixed policy in Proposition 6. We assume access
to an unbiased estimate d; of the advantage for this result, though in practice ; is likely to
have some bias due to using approximate values.

Proposition 6 For a fized policy w, with the conditions on the MDP from (Yu, 2015) and
assuming unbiased oy, namely that E[6;|S; = s, Ay = a] = qr(s,a) — v(s),

On(als; @
ESydyy, A 01 M1,V g og (A S5 0)] =Y my(s Z (a'g)qw(s,a).
sES

Proof Emphatic traces M; have been shown to provide an unbiased estimate of the true
emphatic weighting for policy evaluation in Emphatic TD. We use the emphatic weight-
ing differently, but can rely on the proof from (Sutton et al., 2016) to ensure that (a)
d,(s) limy—yo0 B, [M] Sy = s] = my(s). Note also that, given S;, the next action does not
impact the expectation: (b) E,[M;|S; = s] = E,[M;|S; = s, A¢]. Using these equalities, we
obtain

Esynd,,, AtN,u[ptMtétvO log m(A¢|St; 0)]

= Zd tMt5tV0 log m(A¢|St; 0)|S; = 5]
SES

= Z dyu( [ [pe M0,V g log (A¢|S; 0)| St = s, At]} > law of total expectation
SES

= Zd |: Mt’St =S At] Eu[ptéth lOgﬂ'(At‘St; 9)‘St = S,At]}
SES

= Zd E,[Mi|Sy = s|E, |Epu[pe6: Ve log m(A¢| Si; 0)|Se = s, At]} > using (b)
sSES

13
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= Zmn u[pt0: Vg log m(As]Si; 0)|Sy = s > using (a)
SES
on(als; @
_Zm’n Z((‘)L)q”(s’a)’
SES

where the last line follows from the fact that

EH [ptdtVQ lOg W(At‘st; 0) ‘St = S]

;0
= Z,u (als)p(s,a)Velogm(als; H)W(g‘;’)Eu[étSt =s,A: =a]
or(als; 0) )
= Z,u als)p(s,a)Velogm(als; H)T[qﬂ(s,a) —v(s)] > by assumption
on(als; @
= Z (8’9 )qw(s, a). [ |

5.2.2 A BIASED ESTIMATE OF THE GRADIENT WITH EMPHATIC WEIGHTINGS

For a fixed policy, the emphatic trace provides an unbiased way to reweight the gradient.
However, this is no longer true when the target policy is updated online in an actor-critic al-
gorithm like ACE; the emphatic trace will contain importance sampling ratios for older ver-
sions of the policy. If the target policy changes substantially during the learning process—as
one would hope—the older importance sampling ratios could bias the emphatic trace’s es-
timates. On the other hand, a constant discount rate v < 1 would give exponentially less
weight to older importance sampling ratios in the emphatic trace, potentially mitigating
the bias. We empirically investigate the impact of this type of bias in section 9.3.

As a Monte Carlo estimator of the emphatic weightings, the emphatic trace can also
yield high-variance estimates. Furthermore, the product of importance sampling ratios in
the emphatic trace can lead to even higher-variance estimates, which can slow learning
(Precup et al., 2001; Liu et al., 2020a; Ghiassian et al., 2018). As such, several algorithms
have been proposed that use parametrized functions to estimate the factors required for
reweighting the updates (Hallak and Mannor, 2017; Gelada and Bellemare, 2019; Liu et al.,
2018; Zhang et al., 2019). We can similarly approximate the emphatic weighting directly.

For our setting, this involves estimating I, [M;|S; = s] = my(s)/d,(s). Because M; is a
function of F;, we directly approximate [E,[F;|S; = s] by learning a parametrized function
fo(s) and use it in place of F; to compute M;. Notice that the resulting fs(s) =~ E,[F;|S: =
s] = m(s)/du(s), and so (1 — n)i(s) + nfe(s) = Eu[M¢|S; = s] = my(s)/du(s). Because
we sample s ~ d,,, weighting the update with an estimate of m,(s)/d,(s) is effectively an
importance sampling ratio that ensures the updates are weighted according to my,(s).

The direct approximation relies on the recursive equation for the emphatic weighting
that allows for a temporal-difference update. Unlike the usual TD update, this update
bootstraps off the estimate from the previous step rather than the next step, because the
emphatic weightings accumulate interest back in time, leading into the state. Recall the
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recursive equation

m(s') = du(s')i(sl) + Zw(a|s; 0)p(s'|s,a)y(s,a, s )ym(s).
S.A

This equation is a Bellman equation, that specifies the emphatic values for state s’ in
terms of the immediate interest and the states leading into s. We approximate fg(s) ~
m(s)/d,(s), rather than m(s). The recursive formula for an f(s) that equals m(s)/d,(s) is

(') = i(s") + ggay D mlals; O)p(s'[s, a)y (s, a, ") du(s) f(5"),

8,A
where iy + pr—17:f4(S¢—1) is a sample of this target, as we show in the next proposition.

Proposition 7 Under the conditions stated by Sutton et al. (2016),
Jim By [ie + pr-17fp(Se-1)15 = sl =i(s') + m Zﬁ(fﬂs; 0)p(s'|s, a)y(s, a,s")d(s) fp(s).
Proof The proof follows the strategy showing the unbiasedness of F; in Sutton et al.
(2016).
tliglo Eulie + pe—17:f4(Si-1)|St = §]
=i(s') + Jim By [pr—17efo (Se-1)[Se = s']

m(als; 0)

1(als)

=i(s") + Z d“(smglzz(s 15:9) FLC(LETS?)')/(S, a,s") fe(s) > Bayes rule

=i(s") + gz D m(als; 0)p(s']s, a) (s, a, ")y (s) f ()

s,a

=i(s') + Ztlgglo Pr{S;_1=s8,4;-1 =a|S; =5} v(s,a,8) fo(s)

The utility of this result is that it provides a way to sample the target for this Bellman
equation. The following is a sample update whose target is equal to the above in expectation,
when sampling s ~ d,;:

& < &+ Belit + pr—17fo(St—1) — fo(Se)| Ve fo(St), (17)

where (; is a step-size. The update aims to minimize the difference between the current
estimate of the emphatic weightings and the target, using a standard semi-gradient TD
update. We could alternatively use a gradient TD (Sutton et al., 2009; Sutton and Barto,
2018) update

@ &+ B ([it + pr—17efo(St=1) — [6(58) | Vo fe(St) — 1h(Si—1) Ve fe(Si—1)),  (18)

where the auxiliary function h(s) provides an estimate of E,[is+pi—17: f(St—1)— f (St)| St =
s] using a regression update.
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Once we use an approximation to the emphatic weighting, we may introduce bias into
the gradient estimate. As an extreme case, imagine the function is restricted to predict the
same value for all states. Using these estimates means replacing M; in the actor updates
with a constant factor that can be subsumed in the step-size and therefore following the
semi-gradient updates in Equation 14. However, the advantage is that these lower-variance
estimates do not have to be computed online, unlike M;. The function fg can be trained
by sampling transitions from a replay buffer (Lin, 1993; Mnih et al., 2015) and applying the
update in Equation 17.

5.3 Summary

In this section, we showed how to operationalize the off-policy policy gradient theorem,
by discussing how to sample the gradient. The gradient involves a standard actor-critic
update from a state s, but additionally weighted by the emphatic weighting m,(s). We
leverage existing results for sampling the emphatic weighting in Section 5.2.1, and proved
that using this unbiased emphatic weighting in our update results in an unbiased update
(Proposition 6). These sampled emphatic weightings, however, can be high variance and
become biased if the policy changes on each step. We develop a parameterized estimator
in Section 5.2.2, by developing a recursive formula for fg(s) ~ m(s)/d,(s) in Proposition
7. Though a similar form was used to show unbiasedness of a sampled weighting in the
original work on emphasis (Sutton et al., 2016), they did not recognize nor leverage this
recursive form to develop a TD algorithm to learn a parameterized estimator. We need this
fo(s), instead of directly estimating m(s), because states are sampled s ~ d,,, so weighting
by m(s) would be incorrect.

We summarize the final algorithm in Algorithm 1, in Section 7. This pseudocode is
provided later, after incorporating entropy regularization and showing how to use the algo-
rithm for episodic problems. The algorithm shows both how to use the emphatic trace and
directly-estimated emphatic weightings.

6. Incorporating Entropy Regularization

In this section, we discuss how to extend the off-policy policy gradient theorem to incorpo-
rate entropy regularization. We focus on discrete states and actions in the main body, and
include results for continuous states and actions in the appendix. Entropy regularization is
commonly used with policy gradient methods, as it encodes a preference for more stochas-
ticity in the policy. Recall that at each state, the policy induces a probability distribution
over actions whose entropy is defined as

H(m(]s)) = =) m(als)logm(als).

acA

This value captures the stochasticity in the policy. A uniform random policy will maximize
entropy, while the entropy of a nearly deterministic policy will be a large negative value.
Entropy regularization is believed to promote exploration, improve the loss surface, and
promote faster convergence rates. For exploration, entropy regularization can help make
the policy more stochastic and diversify the set of states and actions that the agent learns
about (Williams and Peng, 1991; Haarnoja et al., 2018). To find a good policy, the agent
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needs accurate estimates of values of different actions in different parts of the state space. A
greedy policy only takes actions that are deemed optimal at the current point which results
in learning only about a limited number of trajectories. Entropy regularization has also
shown to help policy optimization by modifying the landscape. The resulting objective is
smoother, which allows the use of larger step-sizes and also reduces the chance of getting
stuck in bad local maxima (Ahmed et al., 2019).

Finally, the use of entropy regularization facilitates convergence analysis to stationary
points. Mei et al. (2020) showed that entropy regularization can ensure existence of sta-
tionary points and also improve the rate of convergence in tabular policy optimization.
The idea is similar to convex optimization, where ¢» regularization makes the loss function
strongly convex and improves the convergence rate from sublinear to linear. In Appendix
E, we extend the proof of existence of a stationary point for entropy regularized policy op-
timization to state aggregation. Therefore, in addition to extending our algorithm to allow
for entropy regularization, we also use this extension to formally prove a counterexample
for the semi-gradient updates.

Extending the results to entropy regularization is relatively straightforward, as it relies
on the already developed machinery of soft action-values that include entropy in the rewards.
Entropy regularization augments each reward with a sample of the entropy at the current
state so that the return is modified to

Gt & (Ri1 — Tlog m(Ae|St)) + a1 (Reyo — Tlog m(Ae1|Set1)) + - ..
= Ry — 7log W(At’St) + ’Yt+1ét+1,

where 7 is a parameter that controls the amount of regularization. Entropy regularized
state values and action values can be defined as (Geist et al., 2019)

Or(s) £ EA[Gy|S =] VseS$

def

Gr(s,a) = Ex[Riq1 +’yt+1@t+1]5t =s,A=a] Vse€S8andac A
= Z P(s|s,a)[r(s,a,s") +v(s,a,s)0(s")] Va € A,VseS.

s'e8
Here, 0,(s) = Ex[G:(S, A)|S = s] + 7H(w(:|s)) for entropy H(7(-|s)) = Er[—logm(A]|s)].
The entropy-regularized objective function simply uses these entropy regularized values,

Ju(0) 23" dy(3)i(5)my (). (19)

SES

The off-policy policy gradient theorem can be extended to the entropy regularized ob-
jective. The result looks a little different, because the relationship between the soft values
and soft action-values is a little different than in the unregularized setting. Notice that
—7logm(als) is not included in the first reward for §r(s,a), because this first action is
given—not random—and entropy is an expectation over all actions. Further, log 7(als) can
be arbitrarily large, though the entropy itself remains nicely bounded. For this reason, we
do not define the soft action-values to be E, [ét|5t = s,A: = a], as we typically would
for the unregularized setting. Nonetheless, deriving the policy gradient theorem for these
soft action-values uses exactly the same steps. Further, we do recover the unregularized
formulation when 7 = 0.
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Theorem 8 (Off-policy Policy Gradient Theorem for Entropy Regularization)

0J,(0) _ Zm(s) Z or(als; H)fi (s,0) + T@%(WHS; 0))

00 00 N 00
sES a
0 :0)
= Z m(s) Z ﬂ-(g|08) [Gr(s,a) — Tlogm(als; 0))]
sES a

The proof is in Appendix D, as is the extension to continuous states, continuous actions,
and other regularizers.

This theorem shows that we can use a similar update as in the unregularized setting,
simply by adding —7logm(als;@)). Given the true soft action-values Gr(s,a), an update
with an unbiased sample of the gradient is

Olog m(A¢[St; 0)

9<—0+O[ptMt 96

(G (St, Ar) — Tlog m(Ae]St;0))] -

In practice, we subtract a baseline and use an estimate J§; of the advantage Gr(s,a) —
Tlog(als; @) — Ux(s), by only directly estimating the soft values v(s) = v,(s). The 1-step
return sample is again the TD error, but with entropy regularization added to the rewards:
0t = Ryy1 — mlog m(A¢|St) + ve10(Sis1) — v(Sh).

7. Formulating Episodic Problems as a Special Case

The goal in an episodic problem is to maximize the expected episodic return. Mismatch
between the algorithm’s objective and this goal, even in the on-policy setting, can lead
the agent to suboptimal policies (Thomas, 2014; Nota and Thomas, 2020). This section
describes how we can use the interest function to maximize the right objective.

The objective function in Equation 4 that weights state values by the start state distri-
bution is equal to expected episodic return. With limited function approximation resources
this weighting matters. If the parametrized function is incapable of representing a policy
that maximizes all state values, the agent has to settle for lower values in some states to
maximize the values of more important ones. For example, if the weighting is d,,, the agent
may incorrectly prioritize states that appear less often at the start of an episode and more
frequently at other points in the behaviour policy’s trajectories, and fail to optimize the
episode return.

The interest function in Equation 6 allows us to focus the parametrized function’s re-
sources on states of interest. Recall that we assume that the agent observes interest i; in
state Sy, with i(s) = E[i; | St = s]. So far, we have not used the additional flexibility
that the interest itself can be random, but for this unification we will use this property.
If we could set i(S;) = do(S¢)/d,.(S¢) then the objective function would correspond to the
episodic objective. However, neither d, nor dy is available to the agent, and we would like
to avoid estimating those distributions.

Fortunately, we can show that if the signal is set to one at the beginning of an episode and
set to zero thereafter, its expectation in the limit of time will be proportional to the correct
ratio. Under transition-based discounting, the agent is informed that an episode has begun
whenever it receives a discount factor of zero: namely, that the transition (S, A¢, Sit1)
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resulted in termination. Therefore, we can obtain this result by allowing for the interest to
be a function of the whole transition.

Proposition 9 If the signal iy is set to

et | 1, if v =0 (i.e. the beginning of an episode) (20)
1+ =
! 0, otherwise
then its expected value under the behaviour policy is
, do(s)
Eulic | St = s] « .
g du(s)
Proof
Epulie | Se = s] = Pr(yn =05 = s)
_ Pr(Si=s|v =0)Pr(y=0)
Pr(S; = s)
_ do(s) Pr(y¢ = 0)
dyu(s)
d
L o)
du(s)
where we used the fact that Pr(S; = s | 4 = 0) = do(s) and Pr(S; = s) = d,(s). [ |

The constant term is the same for all states, Pr(v; = 0). It simply reflects the probability
of termination under the behaviour policy. This constant term does not change the relative
ordering between policies, since all weight is still on the start states. Therefore, the resulting
objective is equivalent to the episodic objective.

We can relate the resulting update to the on-policy and off-policy updates used for the
episodic setting. In the on-policy setting, if we use the interest function given by Equation
20 and a constant discount factor v during the episode, then the update reduces to the
unbiased episodic actor-critic algorithm of Sutton and Barto (2018), originally proposed by
Thomas (2014).

Sutton et al. (1999a) proved the policy gradient theorem for the episodic setting

0Jo(8) _ ~— ; O (als; 6) NS tp
o0 - ;dﬂ'(s) ; o0 QTr(sa a) for dﬂ'(s) - ;’7 Pr(87t>ﬂ—)7

where Pr(s;t, ) is the probability of going from a start state to state s in t steps under
7, the weighting in the gradient d is the discounted state visit distribution, and the agent
should discount updates that occur later in the episode to account for this weighting. An
algorithm that does not discount later updates—and thus samples according to d,—results
in a biased update.

To fix this problem, Thomas (2014) proposed the unbiased actor-critic algorithm with
the updates rules

0 — 0+ aléVglogm(A|s; 0)
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I+ ~lI.

Since [ is initialized to 1 and updated after the update to @, I will be 1 during the first
weight update, and will decay by ~ each timestep thereafter.
The on-policy ACE update rule with p =1 and n=1is

Ft — ")/tFt_l -+ it for F() =0
0 < 6+ aF:0Vglogm(Als; 0).

Because i; = 1 on the first time step and F is initialized to 0, F' will be 1 on the first
weight update and will decay by ~ each time step thereafter. From this inspection it is clear
that the ACE update reduces to the unbiased actor-critic update in the on-policy episodic
setting. The final ACE algorithm with all the discussed techniques is in Algorithm 1.

Algorithm 1 Online Actor Critic with Emphatic weightings (ACE)

Initialize weights for actor @ and critic w
For emphatic trace, initialize Fy = 0; for directly-estimated emphatic weightings, initial-
ize weights ¢ for approximate emphatic weightings fe
Suggested (default) settings of parameters: n = 0.1, 7 = 0.01
Obtain initial feature vector x¢ and set ig < 1
repeat
Choose an action a; according to pu(:|x)
Observe reward r¢41, next state vector x;11 and 411
For episodic setting: Set i1 = 1 if a new episode has begun; else i;11 =0
For excursions setting: If no preferences between states, set 4,41 = 1
Tl < Tegp1 — T log m(ag|xy; 0)
pr m(at]x4;6)

mlat]x:)
Update (entropy-regularized) critic vy

if using emphatic trace then
Mt — (1 — T])lt + 77Ft
Fei1 < pryes1 By + i
else
My < (1 — )iy +nfe(xe)
¢ < &+ Brlir1 + pryesi fo(xe) — fo(xet1)] Ve fo(xir)
Ot < T1 + Y+ 10w (St41) — vw(st)
1 « Vglogn(blx;0)
00+ atptMtéﬂ,b
until agent done interaction with environment

8. Stationary Points under the Semi-gradient and Gradient Updates

In this section, we provide more insight into the difference between the stationary points of
the weighted excursions objective—obtained using the true gradient in Equation 9—versus
those obtain with the semi-gradient update underlying OffPAC, in Equation 14. We first
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provide a counterexample showing that all the stationary points for the semi-gradient have
poor performance. In fact, initializing at the optimal solution, and then updating with
the semi-gradient, moves the solution away to one of these highly suboptimal stationary
points. We then discuss that the semi-gradient update can actually be seen as a full gradient
update, albeit with a different implicit state weighting. This connection illuminates why
the semi-gradient does so poorly on the counterexample, but also potentially sheds light on
why OffPAC has generally performed reasonably in practice.

8.1 A Counter-example for the Semi-Gradient Update

Recall that, in the derivation of the policy gradient theorem, the product rule breaks down
the gradient of the value function into the two terms shown in Equation 11. The policy
gradient theorem in OffPAC only considers the first term, i.e. the gradient of the policy
given a fixed value function. The approximated gradient is

0J,(0 on(als; 0
505 ) ~ sezgd“(s);(a’e)qﬂ(s,a).

The approximation above weights the states by the behaviour policy’s state distribution
instead of emphatic weightings.

To see the difference between these weightings, consider the MDP in Figure la. For the
actor, so has a feature vector [1,0], and the feature vector for both s; and sg is [0, 1]. This
aliased representation forces the actor to take a similar action in s; and so. The behaviour
policy takes actions ag and a; with probabilities 0.25 and 0.75 in all non-terminal states, so
that sg, s1, and sy will have probabilities 0.5, 0.125, and 0.375 under d,,. The target policy
is initialized to take ag and a; with probabilities 0.9 and 0.1 in all non-terminal states,
which is close to optimal.

We trained two actors on this MDP, one with semi-gradient updates and one with
gradient updates. The actors are initialized to the target policy above and the updates
use exact values rather than critic estimates. States and actions are sampled from the
behaviour policy. As shown in Figures 1b and 1c, while both methods start close to the
highest attainable value of the objective function (that of a deterministic policy that takes ag
everywhere), semi-gradient updates move the actor towards a suboptimal policy and reduce
the objective function along the way. Gradient updates, however, increase the probability
of taking ag in all states and increase the value of the objective function.

The problem with semi-gradient updates boils down to the weighting. In an expected
semi-gradient update, each state tries to increase the probability of the action with the
highest action-value. There will be a conflict between the aliased states s; and sy because
their highest-valued actions differ. If the states are weighted by d,, in the expected update, s1
will appear insignificant to the actor, and the update will increase the probability of a1 in the
aliased states. The ratio between g (s1,ag) and gr(s2,a1) is not enough to counterbalance
this weighting.

However, s; has an importance that the semi-gradient update overlooks. Taking a
suboptimal action at s; will also reduce ¢(so,ap), and after many updates the actor will
gradually prefer to take a; in sg. Eventually, the target policy will be to take a; at all
states, which has a lower value under the objective function than the initial target policy.
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Figure 1: (a) A counterexample that demonstrates the suboptimal behaviour of semi-
gradient updates. The semi-gradients converge for the tabular setting (Degris
et al., 2012b), but not necessarily under function approximation—such as with
the state aliasing in this MDP. The start state is denoted sy and the terminal
state is denoted ¢. States s; and s are aliased to the actor. The interest i(s)
is set to one for all states. (b) Learning curves comparing semi-gradient updates
and gradient updates, averaged over 30 runs with negligible standard error bars.
The actor has a softmax output on a linear transformation of features and is
trained with a step-size of 0.1 (though results were similar across all the stepsizes
tested). The dashed line shows the highest attainable objective function under
the aliased representation. (c¢) The probability of taking the optimal action (ag)
in the aliased states.

This experiment highlights why the weight of a state should depend not only on its own
share of d,, but also on its predecessors. The behaviour policy’s state distribution is not
the proper deciding factor in the competition between s; and so, even when optimizing the
excursions objective.

Proposition 10 formalizes the problem with semi-gradient updates by showing that,
under any 7 > 0, semi-gradient updates will not converge to a stationary point of the
objective function in the counterexample. The requirement 7 > 0 is only needed to ensure
existence of a stationary point; this result holds for 7 arbitrarily close to zero. The proof is
presented in Appendix E.

Proposition 10 For any 7 > 0 where 7 # 7; &= 0.2779 in the three-state counterexample,
semi-gradient updates do not converge to a stationary point of the objective function.

8.2 The Semi-Gradient as a True Gradient with a Different Weighting

In this section, we show that the semi-gradient can locally be seen as a gradient update,
with a different state weighting in the objective. Locally for the current weights 6; with
corresponding policy m, that state weighting is d = d,(I — Pr), with objective J;(0) “
Y scs A(8)vry(s). The resulting d may not be a distribution. In fact, it may not even be
positive! If it is negative, the objective tells the agent to minimize the value for that state.
This is precisely what occurs in the above counterexample.
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First, to see why this is the implicit state weighting, notice that for the semi-gradient
update to be a gradient update, the weighting d,, used in the update has to correspond
to an emphatic weighting mg for some state weighting d in the objective. In other words,
du(s) = mqa(s) where my = d(I— Py ,)~'. This requirement implies that d = my(I— Py ).
Therefore, by using the weighting d,, in the expected gradient, the semi-gradient update
locally around 6; can be seen as a gradient update on J;. This weighting d actually changes
as 0; changes. In fact, we know that the semi-gradient update cannot be seen as the gradient
of a fixed objective function, from our counterexample for OffPAC and the result for the
on-policy setting showing that omitting the discount factor results in an update that is
not a gradient (Nota and Thomas, 2020). However, even if this interpretation is only valid
locally at each update, such a negative weighting can be problematic.

We can compute the implicit weighting d, in our counter-example. Let b = p(ag|so)
and p = 7(ap|so). Then we know that d,(so) = 0.5, dy(s1) = 0.5b = 0.125 and d,(so) =
0.5(1 — b) = 0.375. Further, we know that m(so) = d,(so) and

m(s1)

81
m(s2)

du(s1) + m(ag|so)m(so) = bd,.(s0) +pm(so) = du(s0)(b + p) = 0.5(b+ p)
du(s2) + (1 = p)m(so) = du(s0)((1 —b) + (1 —p)) = 0.5(2 — b —p).

The implicit d for the semi-gradient update, locally around this 7, has m(s) = d,(s) where
m(so) = d(sp) and so d(sg) = du(so) = 0.5 and

~—

m(s1) = d(s1) + pm(so) = d(s1) + pdu(so) = d(s1) + 0.5p
m(s2) = d(s2) + (1 —p)m(so) = d(s2) + (1 — p)du(so) = d(s2) + 0.5(1 — p).

Using m(s1) = du(s1) = 0.5b and m(s2) = d,(s2) = 0.5(1 — b), we get that

d(s1) =m(s1) — 0.5p = 0.5(b — p)
d(s2) = 1i(52) — 051 — p) = 0.5((1 — b) — (1~ p)) = 05(p — b).

If b > p, then d(s2) < 0; if b < p, then d(s1) < 0; and if b = p then both are zero. In our
counterexample, we set b < p, making the update move away from increasing the value in
s1, namely preferring to increase the value in so and decrease the value in s;. The iterative
updates maintain the condition b < p, even as the policy changes—which changes p—so the
implicit weighting systematically causes convergence to a suboptimal policy.

We note that the implicit weighting is independent of the representation. However,
we know that the semi-gradient update converges to a stationary point of the excursions
objective for the tabular setting. This might seem odd, given that the implicit weighting
is negative for a state in this counterexample. However, this is not contradictory. Recall
in Section 2 we discussed that in the tabular setting, the condition for the stationary point
is that the gradient must be zero at every state, independently. Summing up zeros, even
when weighting those zeros with a negative weighting, still results in zero.

There has been other work that has noted that optimizing under a different state weight-
ing can still be effective. Proposition 6 of Ghosh et al. (2020) shows that a lower bound
can be optimized, using data generated under the behaviour policy. The action-values of
the behaviour policy is used, and only the log likelihood terms of the target policy are
differentiated. This lower bound, however, is only an approximation to the true objective.
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Our result differs, in that it highlights that equivalent solutions can be obtained, even under
different state weightings.

This view suggests a direction to reduce variance in the ACE updates: consider appro-
priate implicit weightings d, that allow for low variance emphatic updates. One potentially
promising approach is to only consider emphatic weightings a small number of steps back-
in-time. Another is to err on the side of smaller 7 in the emphatic trace in ACE, knowing
that the implicit weighting d may remain reasonable for a broad range of 7.

9. Experiments: Studying Properties of ACE

In this section we investigate key properties of the ACE algorithm empirically.” Specifically,
we study the effects of the trade-off parameter and the choice of estimator for the emphatic
weightings on the learned policy, as these choices are central to the ACE algorithm. First, we
revisit the simple counterexample from Section 8.1 to examine how the trade-off parameter
can affect the learned policy. Next, we illustrate some issues with using the emphatic trace
in the ACE algorithm by testing it on a modified version of the counterexample. We then
move to two classic control environments to study the two estimators discussed in Section
5.2 and their effects on the learned policy. Finally, we test several variants of ACE on a
challenging environment designed to illustrate the issues associated with both estimators.
Please see Table 1 in Appendix F for a description of each of the algorithms compared.

9.1 The Impact of the Trade-Off Parameter

The parameter 1 can be interpreted as trading off bias and variance. For n = 0, the bias
can be significant, as shown in the previous section. A natural question to ask is how the
bias changes as i ranges from 0 to 1.

To answer this question, we repeated the experiment in Section 8.1, but this time
with 7 taking values in {0,0.25,0.5,0.75,1} and the actor’s step-size taking values in
{0.01,0.02,0.05,0.1,0.2,0.5, 1}, with the best-performing step-size (by total area under the
learning curve, averaged over 30 runs) for each value of 1 used in Figures 2b and 2c. To
highlight the rate of learning, the actor’s policy was initialized to take each action with equal
probability. The results are displayed in Figure 2 with shaded regions depicting standard
error.

Figure 2a shows the performance of ACE with each value of 1 over the range of step-sizes
tested. ACE performed well for a range of step-sizes, and even small values of 7 significantly
improved over n = 0 (OffPAC). However, the performance of ACE with n > 0 was more
sensitive to the choice of step-size, with performance decreasing as the step-size grew large,
while the performance of n = 0 was lower overall but remained steady with larger step-sizes.

Figure 2b plots the learning curves for ACE with each value of 7. For n = 0 (OffPAC),
the algorithm decreased the objective function during learning to get to a suboptimal fixed
point, while n > 0 always improved the objective function relative to the starting point.
For a surprisingly small choice of 7 = 0.5, the actor converged to the optimal solution, and
even 1 = 0.25 produced a much more reasonable solution than n = 0.

7. Code is available at: https://github.com/gravesec/actor-critic-with-emphatic-weightings.
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Figure 2c¢ shows the probability of taking the optimal action in the aliased states. The
optimal policy is to take ag in the aliased states with probability 1. ACE with n = 0
(OffPAC) quickly converged to the suboptimal solution of choosing the best action for so
instead of s;. Even with 7 just a bit higher than 0, convergence is to a more reasonable
solution, choosing the optimal action the majority of the time.
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Figure 2: Performance of ACE with different values of 7 in the counterexample.

To determine whether the 1 parameter has similar effects when ACE is used with a
learned critic, we repeated the previous experiment but this time using value estimates from
a critic trained with GTD(\) (Maei, 2011). We checked all combinations of the following
critic step-sizes: {1072, 1074,1073,1072,1071, 10°}, the following critic trace decay rates:
{0,0.5,1.0}, and the following actor step-sizes: {107!°,1078,1076,1074,1072}, and used
the best-performing combination (by area under the learning curve) for each value of 7 in
Figures 3b and 3c. We averaged the results over 10 runs, and plotted the standard error as
shaded regions. Figure 3 shows that, as before, even relatively small values of 1 can achieve
close to the optimal solution. However, n = 0 (OffPAC) still finds a suboptimal policy.
Overall, the outcomes are similar to the previous experiment, although noisier due to the
use of a learned critic rather than the true value function.
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Figure 3: Performance of ACE with a GTD(\) critic and different values of 7 in the coun-
terexample.

So far we have only considered ACE with a discrete action policy parameterization.
However, an appealing property of actor-critic algorithms is their ability to naturally handle
continuous action spaces. To determine if the findings above generalize to continuous action
policy parameterizations, we created an environment similar to Figure la, but with one
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continuous unbounded action. Taking action with value a at sy will result in a transition to
s1 with probability 1 — o(a) and a transition to se with probability o(a), where o denotes
the logistic sigmoid function. For all actions from sg, the reward is zero. From s; and s2, the
agent can only transition to the terminal state, with reward 20(—a) and o(a) respectively.
The behaviour policy takes actions drawn from a Gaussian distribution with mean 1.0 and
variance 1.0.

Because the environment has continuous actions, we can include both stochastic and
deterministic policies, and so can include DPG in the comparison. DPG is built on the
semi-gradient, like OffPAC (Silver et al., 2014). We include True-DPG with Emphatic
weightings (True-DPGE), which uses the true emphatic weightings rather than estimated
ones to avoid the issue of estimating the emphatic weightings for a deterministic target
policy, and focus the investigation on whether DPG converges to a suboptimal solution
in this setting. Estimation of the emphatic weightings for a deterministic target policy is
left for future work. The stochastic actor in ACE has a linear output unit and a softplus
output unit to represent the mean and the standard deviation of a Gaussian distribution.
All actors are initialized with zero weights.

Figure 4 summarizes the results. The first observation is that DPG demonstrates subop-
timal behaviour similar to OffPAC. As training goes on, DPG prefers to take positive actions
in all states, because s9 is updated more often. This problem goes away in True-DPGE.
The emphatic weightings emphasize updates in s; and, thus, the actor gradually prefers
negative actions and surpasses DPG in performance. Similarly, True-ACE learns to take
negative actions but, being a stochastic policy, it cannot achieve True-DPGE’s performance
on this domain. ACE with different 7 values, however, cannot outperform DPG, and this
result suggests that an alternative to importance sampling ratios is needed to effectively
extend ACE to continuous actions.
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1.2 1.2 10
1.1 1.1 [Fue-ACE DPG
Ju 1.0 Ju 10 msy g
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Figure 4: Performance of ACE with different values of n, True-ACE, DPG, and True-DPGE
on the continuous action MDP. The results are averaged over 30 runs. For con-
tinuous actions, the methods have even more difficulty getting to the optimal so-
lutions, given by True-DPGE and True-ACE, though the action selection graphs
suggest that ACE for higher 7 is staying nearer the optimal action selection than
ACE(0) and DPG.
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9.2 Challenges in Estimating the Emphatic Weightings

Up to this point we have been using the emphatic trace originally proposed by Sutton et al.
(2016) to estimate the emphatic weightings. As discussed in Section 5, there can be multiple
sources of inaccuracy from using this Monte Carlo estimate in an actor-critic framework.

However, it is unclear how the issues affecting the emphatic trace manifest in practice,
and hence whether introducing a parametrized function to directly estimate the emphatic
weightings is worth the added bias—especially if the representation is poor. To study
the effects of this choice of estimator on the ACE algorithm, we conducted a series of
experiments starting with a modified version of the counterexample in Figure 1a, moving
to two classic control environments, and ending with a challenging environment designed
to illustrate the issues associated with both estimators.
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Figure 5: An 11-state MDP that makes estimating the emphatic weightings with the em-
phatic trace more difficult.

The first environment, shown in Figure 5, is an extended version of the counterexam-
ple with two long chains before the aliased states. Like the original counterexample, the
behaviour policy takes ag with probability 0.25 and a; with probability 0.75 in all non-
terminal states, and the interest i(s) is set to 1 for all states. Each state is represented by
a unique feature vector except states sg and syg, which are aliased and appear the same
to the actor. The addition of the new states makes trajectories considerably longer, which
may exacerbate the issues with the emphatic trace.

We repeated the experiment from Figure 2 on the long counterexample. The following
actor step-sizes were tested: {5 - 107°,1074,2-107%,5-107%,1073,2-1073,5 - 1073, 10*2},
with the best-performing value (by total area under the learning curve, averaged over 10
runs) for each value of 7 used in Figures 6b and 6¢. The actor was again initialized to take
each action with equal probability, and the true state values were again used in the updates
in order to isolate the effects of the emphatic trace.

We also trained an actor called True-ACE that uses the true emphatic weightings for the
current target policy and behaviour policy, computed at each timestep. The performance
of True-ACE is included here for the sake of comparison, as computing the exact emphatic
weightings is not generally possible in an unknown environment.

The results in Figure 6 show that, even though performance improves as 7 is increased,
there is a significant gap between ACE with n = 1 and True-ACE. Unlike Figure 2, the
methods have more difficulty reaching the optimal solution, although ACE with larger n
does still find a significantly better solution than n = 0. Additionally, values of n greater
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than 0 result in high-variance estimates of the emphatic weightings, which lead to more
variable performance, as shown by the larger shaded regions representing standard error.
These results overall show the inaccuracies pointed out in Section 5 indeed disturb the
updates in long trajectories.

L8 True-ACE L8 True-ACE Lo
1.6 1.6 ACE(1) 0.8
1.4 1.4
0.6 E(0 75
Ju ) Ju n(A0|S9) > \CE(0.7
1.2 1.2 P 3
ACE(1)- / CE(0.25) 0.4 N\ ACE(0.5)
) 10 CE(0.25) 1.0 ACE(0.25)
0.81, ACE(0) 0.8 0.2
0.0 ACE(0)
ACE(0.5) 1074 10°3 1072 0 2500 5000 7500 10000 "0 2500 5000 750010000
step-size Episodes Episodes
(a) Actor step-size sensitivity (b) Learning curves (¢) Optimal action probability

Figure 6: Performance of ACE with different values of 1 on the 11-state MDP.

9.3 Estimating the Emphatic Weightings in Classic Control Environments

The results of the previous experiments suggest that using the emphatic trace to estimate
the emphatic weightings can significantly impact the performance of ACE. To better un-
derstand how the issues with the emphatic trace affect the learning process beyond our
counterexample, we tested several variants of ACE on off-policy versions of two classic con-
trol environments: Puddle World (Degris et al., 2012b) and Mountain Car (Moore, 1990).

As an off-policy Monte Carlo estimator of the emphatic weightings, the emphatic trace
can yield extremely high-variance estimates which can interfere with learning (Ghiassian
et al., 2018). To see how the variance of the emphatic trace affects ACE, we tested a variant
called ACE-direct that uses the one-step temporal-difference update from Section 5.2.2 to
estimate the emphatic weightings. Temporal-difference methods often have lower variance
than Monte Carlo methods—at the cost of introducing bias—which makes using a TD-style
update to estimate the emphatic weightings an appealing alternative to the emphatic trace
(Sutton and Barto, 2018).

As discussed in Section 5.2.2, the emphatic trace can also be biased when used in an
actor-critic algorithm where the target policy is changing. To determine how detrimental
this bias is to the performance of ACE, we tested a variant called ACE-ideal where all
importance sampling ratios in the emphatic trace are re-computed at each time step us-
ing the current target policy, yielding an unbiased Monte Carlo estimate of the emphatic
weighting for the current state. ACE-ideal is not a practical algorithm, as the computation
and memory required grow with the number of time steps, but it allows us to isolate the
effects of the bias introduced by using the emphatic trace with a changing target policy.

Other baselines for comparison included OffPAC, and ACE using the emphatic trace
(referred to as ACE-trace). To determine the effects of different choices of critic, we included
versions of each algorithm using an ETD critic (Sutton et al., 2016) and a TDRC critic
(Ghiassian et al., 2020). We also included versions of each algorithm using the uniform
interest function (i.e., i = 1 for all time steps), as well as the episodic interest function from
Section 7—with the exception of OffPAC. OffPAC scales policy updates using only the
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interest for the current time step, which when combined with the episodic interest function
leads to a single policy update on the first time step followed by no updates thereafter.

To get a clear picture of the performance of each algorithm, we conducted a grid search
on the free parameters of each algorithm. For the step size parameter of the actor, critic,
and the direct estimator of emphatic weightings, we tested values of the form %Z where
ranged from 0 to 15. For the trace decay rate of the critic, we tested values of the form
1—- %] where j ranged from 0 to 6. The discount factor was .95. We sought to establish the
performance of each variant for n = 1, as they all reduce to OffPAC when 1 = 0.

Each combination of parameters for each algorithm was run on 5 different trajectories
generated by a fixed behaviour policy interacting with the environment for 100,000 time
steps. The learned policies were saved every 1,000 time steps and evaluated 50 times using
both the episodic and excursions objective functions from Section 3. For the episodic
objective function, the policies were evaluated by creating 50 different instances of the
environment and executing the target policy from the starting state until termination or
1000 time steps had elapsed. The excursions objective function was evaluated similarly,
but with the environment’s starting state drawn from the behaviour policy’s steady state
distribution, chosen by running the behaviour policy for 50,000 time steps and saving every
thousandth state. The results were averaged, and the best-performing combinations (by
area under the learning curve for the appropriate objective function) were re-run on enough
different trajectories to reduce the standard error to an acceptable level (100 runs for Puddle
World, 30 runs for Mountain Car). The initial parameter sweep was intended to find good
parameter settings for each method at a reasonable computational cost, and not necessarily
the absolute best performance.

9.3.1 PubpbpLE WORLD

The Puddle World environment is a 2-dimensional continuous gridworld containing a start
location, goal location, and puddles through which it is costly to move. While it first
appeared in Boyan and Moore (1995), we use the version from Degris et al. (2012b) that
includes an additional puddle near the goal state which makes the task more difficult.® The
behaviour policy took the North, East, South, and West actions with probabilities .45, .45,
.05, and .05 respectively. The observations were tile coded with a fairly low-resolution tile
coder (4 tilings of 2 x 2 tiles plus a bias unit) to generate feature vectors with a large degree
of generalization.

Figure 7 presents the results for the Puddle World environment. The left-hand column
shows learning curves, while the right-hand column contains sensitivity analyses for the
actor’s step size. The first four plots (figures 7a, 7b, 7c, and 7d) show results when using
ETD as the critic, while the last four plots (figures 7e, 7f, 7g, and 7h) show results for a
TDRC critic. The first and third rows show results using the excursions objective function,
and the second and fourth rows show results for the episodic objective function.

Comparing the performance of each algorithm under the excursions and episodic objec-
tive function, we can see that the algorithms all performed better in the excursions setting
than the episodic setting. This is due to the excursions setting being easier than the episodic
setting for the classic control problems in this section. In the excursions setting, the agent

8. Please see Degris et al. (2012b) for a picture of the Puddle World environment.
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Figure 7: Results on Puddle World. Shaded regions are 95% confidence intervals.
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starts from the behaviour policy’s state distribution, which in the problems studied is closer
to the goal state than the start state. This is not necessarily true for all problems, however,
and in general there is no strict ordering of objectives in terms of difficulty.

ACE variants that used the episodic interest function (dashed lines) generally performed
much worse than their counterparts using the uniform interest function (solid lines), with
the exception of ACE-direct. This is consistent with the discussion in Section 7 of Thomas
(2014)—although they deal with the on-policy case—which states scaling policy updates by
an accumulating product of discount factors hurts the sample efficiency of the algorithm.
However, the off-policy case can exacerbate this issue as the accumulating product includes
both discount factors and importance sampling ratios. The fact that the direct method
of estimating emphatic weightings allowed ACE to perform well when using the episodic
interest function is intriguing and merits further study.

The choice of critic affected the performance of the algorithms to differing degrees.
Replacing an ETD critic with a TDRC critic improved the performance of each of the
algorithms, with episodic performance showing the greatest improvement (compare figures
7c and 7g), perhaps due to the excursions objective being easier for this environment as
previously mentioned. ACE-direct with uniform interest performed well regardless of the
choice of critic, but improved substantially in the episodic setting when using a TDRC
critic. Using a TDRC critic instead of an ETD critic also improved the sensitivity of the
algorithms to the actor’s step size, allowing a slightly wider range of step sizes to perform
well for most methods (compare Figure 7b to 7f, and Figure 7d to 7h).

When comparing ACE-trace (orange) to ACE-ideal (blue)—where the emphatic trace’s
importance sampling ratios were computed using the current policy, resulting in an unbi-
ased Monte Carlo estimate of the emphatic weightings—we can see that correcting the bias
introduced by using the emphatic trace with a changing policy did not improve performance
significantly in all but one situation. The one exception was when performance was evalu-
ated with the excursions objective function (figures 7a and 7e). When using an ETD critic
(Figure 7a), ACE-ideal outperformed ACE-trace early in learning before deteriorating to
a similar level of performance by the end of the experiment. Conversely, ACE-ideal out-
performed ACE-trace throughout the experiment when using a TDRC critic (Figure 7e),
although the difference was barely significant. In all other situations, the performance of
ACE-ideal was not significantly different from the performance of ACE-trace.

Overall, ACE-direct performed better than or equal to ACE-trace, ACE-ideal, and Off-
PAC across all combinations of critic, interest function, and objective function. However, it
diverged for some actor step sizes when used with an ETD critic (figures 7b and 7d). This
could be due to the use of a semi-gradient update rule (analogous to off-policy TD(0) which
is not guaranteed to converge when used with function approximation) for the direct method
of estimating emphatic weightings. To resolve this issue, one could use the gradient-based
update rule in equation 18 of Section 5.2.2. We chose to use the semi-gradient update to
keep both the explanation and experiments simple, as there were already a large number of
concepts and algorithmic parameters involved.
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9.3.2 OFF-POLICY MOUNTAIN CAR

In the original Mountain Car environment, the agent attempts to drive an underpowered
car out of a valley (Moore, 1990).° In the off-policy version, the agent learns from expe-
rience generated by a fixed behaviour policy, in this case the uniform random policy. The
observations were tile coded using 8 tilings of 4 x 4 tiles plus a bias unit. ACE-ideal was
omitted from the Mountain Car experiments due to computational constraints; the uniform
random behaviour policy rarely completed an episode, which resulted in extremely long
trajectories that prevented ACE-ideal from running in a reasonable amount of time.
Figure 8 contains the results for the Off-policy Mountain Car environment. The left-
hand column shows learning curves, while the right-hand column shows sensitivity analyses
for the actor’s step size. The first four plots (figures 8a, 8b, 8c, and 8d) show results when
using ETD as the critic, while the last four plots (figures 8e, 8f, 8g, and 8h) show results
for a TDRC critic. The first and third rows show results using the excursions objective
function, and the second and fourth rows show results for the episodic objective function.
Across all choices of critic and objective function, algorithms trained using the episodic
interest function (dashed lines) performed much worse than their counterparts trained us-
ing the uniform interest function (solid lines). This finding is consistent with the results
from Puddle World, although much more pronounced. In this specific experiment, the ex-
tremely long trajectories generated by the uniform random behaviour policy caused the
emphatic trace (and hence the policy updates) of the algorithms that used episodic inter-
est to quickly shrink to the point of irrelevance, whereas in the Puddle World experiment
the behaviour policy encounters the goal state more often, limiting trajectory length and
shrinking the updates more slowly. Nevertheless, using the direct method to estimate the
emphatic weightings allowed ACE to improve the performance of the policy in some cases,
whereas using the emphatic trace prevented the policy from meaningfully improving.
Again, the choice of critic played a role in the performance of all the algorithms to
varying degrees. Using a TDRC critic instead of an ETD critic improved the performance
of each of the algorithms, with OffPAC seeing the greatest improvement, followed by ACE-
trace. ACE-direct again performed well regardless of the choice of critic. Using a TDRC
critic improved the sensitivity of each of the algorithms to the actor’s step size, allowing a
wider range of step sizes to perform well (compare figures 8b and 8f, and 8d and 8h).
Comparing ACE-direct (red) to ACE-trace (orange) reveals several advantages of using
the direct method to estimate the emphatic weightings. The direct method allowed ACE to
learn faster, with less variance, and find a better-performing target policy by the end of the
experiment, regardless of the choice of critic or objective function used for evaluation. In
addition, the direct method allowed a wider range of actor step sizes to perform well, with
performance increasing and decreasing more smoothly and predictably than when using the
emphatic trace. Finally, the choice of critic had little effect on the performance of ACE-
direct, whereas ACE-trace performed better with a TDRC critic than with an ETD critic.
Overall, ACE with the direct method performed better than or equal to OffPAC (green)
and ACE-trace for all critics and objective functions, but was less sensitive to the actor step
size and choice of critic than OffPAC.

9. Please see Degris et al. (2012b) for a picture of the Mountain Car environment.
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Figure 8: Results on Off-policy Mountain Car. Shaded regions are 95% confidence intervals.
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9.4 The Virtual Office Environment

The classic control environments considered in the previous section are well-known en-
vironments for testing general off-policy algorithms, but were not designed to probe the
weaknesses of the specific algorithms being studied. Hence, both semi-gradient updates
and the direct method of estimating emphatic weightings perform well, and the tradeoffs
made in the design of each algorithm are not obvious. In this section, we introduce an
environment designed to highlight issues with both semi-gradient updates and the direct
method of estimating emphatic weightings.

The environment is based on Dung et al. (2007)’s Virtual Office, a grid world consisting
of a hallway and two cubicles that are identical except for the goal locations. To illustrate
the problem with semi-gradient updates, two key properties of the counterexample from
Section 8.1 must be incorporated: the optimal actions in the two identical rooms must
be different, and the behaviour policy must visit the suboptimal room more often. To
accomplish the first goal, we introduced hidden goal states in the north-east and south-east
corners of the two rooms, and assigned rewards of 1 and 0 respectively to the goal states of
the north-east room and rewards of 0 and .5 respectively to the goal states of the south-east
room. To encourage the behaviour policy to visit the suboptimal room (i.e., the south-east
room) more often, we fixed the starting state to the left-most, middle-most state and used a
behaviour policy that favoured the South and East actions, taking the North, East, South,
and West actions with probabilities .2, .4, .3, and .1 respectively.

While Dung et al. (2007)’s Virtual Office contains some partial observability in the form
of the two identical rooms, to fully illustrate the tradeoff made by the Markov assumption
used in the derivation of the direct method, we limited the agent’s observations to a 3 x 3
grid in front of the agent. The RGB colour values of each square in the agent’s view were
used as observations, with the agent unable to see through walls or perceive the goal states.

The final environment was implemented using Minigrid (Chevalier-Boisvert et al., 2018),
and is depicted in Figure 9. The agent (red triangle) must navigate to one of the terminal
states (the north-east and south-east squares of the green rooms) to obtain the associated
reward. The agent observes the RGB colour values of the 3 x 3 grid of squares in front of it
(the lighter blue squares), and selects the North, East, South, or West action in response.

For this experiment we followed the methodology detailed in the previous section, with
minor changes. First, we restricted the critic trace decay rate to be 0, as eligibility traces
can alleviate some of the issues caused by partial observability (Loch and Singh, 1998).
Second, we ran each combination of parameters for 30 runs of 200,000 time steps each. The
learned policies were saved every 5,000 time steps and evaluated 50 times using both the
episodic and excursions objective functions. The best-performing parameter settings were
then re-run 100 times and averaged.

Figure 10 contains the results of our experiment on the Virtual Office environment.
The left-hand column shows learning curves, while the right-hand column shows sensitivity
analyses for the actor’s step size. The first four plots (figures 10a, 10b, 10c, and 10d) show
results when using ETD as the critic, while the last four plots (figures 10e, 10f, 10g, and
10h) show results for a TDRC critic. The first and third rows show results for the excursions
objective function, and the second and fourth rows show the episodic objective function.
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Figure 9: The Virtual Office environment.

Interestingly, algorithms that used the episodic interest function (dashed lines) per-
formed better than or equal to their counterparts that used the uniform interest function
(solid lines) for all combinations of objective function and critic, unlike the previous ex-
periments on Mountain Car and Puddle World. In addition, the algorithms that used the
episodic interest function worked well for a larger range of step sizes, making it easier to
find a value that performs well. This could be due to the partially observable nature of the
environment; many of the agent’s observations are similar, which could cause the emphatic
weightings with a uniform interest function to quickly become very large, necessitating a
very small step size to compensate.

As in the previous experiments, the choice of critic played an important role in the
performance of all the algorithms, although this time with mixed results. Using a TDRC
critic instead of an ETD critic improved the performance of Off PAC and ACE-direct with
uniform interest, but had very little impact on ACE-trace with uniform interest and ACE-
direct with episodic interest, and actually reduced the performance of ACE-trace with
episodic interest (compare figures 10a and 10e, and 10c and 10g). Similarly, using a TDRC
critic had mixed effects on the sensitivity of each of the algorithms to the actor’s step size.
It allowed a wider range of step sizes to perform well for some algorithms, but also led to a
narrower range of well-performing step sizes for some algorithms (compare figures 10b and
10f, and 10d and 10h).

ACE-direct with the episodic interest function performed better than or equal to the
other methods across most combinations of critic and objective function, with the possible
exception of the episodic objective function. With a TDRC critic, OfPAC learned more
quickly than the other methods before eventually being surpassed by both ACE-direct
variants. However, OffPAC was able to close the gap near the end of the experiment, with
the final learned policy of OffPAC performing comparably to the ACE-direct variants. With
an ETD critic, ACE-trace with episodic interest performed surprisingly well, with the final
policy possibly outperforming ACE-direct with episodic interest. However, the variance of
the policy learned by ACE-trace was much larger than the other methods, rendering the
difference in performance not statistically significant. Conversely, ACE-direct with episodic
interest learned a low-variance policy on each of the settings tested, performing as well as
or better than the other algorithms.
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Figure 10: Results on the Virtual Office. Shaded regions are 95% confidence intervals.
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9.5 Summary

In this section we investigated several key properties of the ACE algorithm empirically.
First we studied how the parameter 7 trades off bias and variance in the counterexample
from Section 8.1 and a continuous action version, finding that even small values of n (i.e.,
closer to semi-gradient updates) greatly improved the quality of the final learned policy,
both when using the true value function and when using a learned critic.

Next we tested the ability of the emphatic trace to accurately estimate the emphatic
weightings on an extended version of the counterexample, showing that while higher values
of n improved performance, a significant gap remained between ACE with n =1 and ACE
with the true emphatic weightings.

Then we moved to two classic control domains and tested several variants of ACE to
determine how the choice of estimator for the emphatic weightings (and associated bias
and variance properties) and the choice of critic affects the learning process. We found
that the emphatic trace’s extreme variance greatly reduced the performance of ACE—with
its bias playing somewhat less of a role—and replacing the emphatic trace with the direct
method from Section 5.2.2 resulted in ACE performing as well as or better than the other
variants. The TDRC critic was the better critic overall, but ACE with the direct method
of estimating emphatic weightings was insensitive to the choice of critic and performed well
regardless of whether ETD or TDRC was used.

Finally, we compared the performance of several variants of ACE on a new environment
designed to highlight the weaknesses of each of the variants, finding that the episodic variant
of ACE with the direct method of estimating emphatic weightings performed as well as or
better than the other variants in almost all the situations tested, suggesting it should be
the default method of estimating the emphatic weightings.

10. Conclusion

In this paper we introduced a generalized objective for learning policies and proved the off-
policy policy gradient theorem using emphatic weightings. Using this theorem, we derived
an off-policy actor-critic algorithm that follows the gradient of the objective function, as op-
posed to previous methods like OffPAC and DPG that follow an approximate semi-gradient.
We designed a simple MDP to highlight that stationary points for semi-gradients can be
highly suboptimal, with semi-gradient updates moving away from the optimal solution. We
also show, though, that the semi-gradient methods can produce reasonable solutions, either
because of sufficiently rich policy parameterizations or because in some cases they can be
seen as using the true gradient update with a different state weighting.

We leverage these insights to improve the practicality of the method empirically. We
design Actor-Critic with Emphatic Weightings (ACE) to have a tuneable parameter 7 that
sweeps between the full gradient (at 7 = 1) and the semi-gradient (at n = 0), often ob-
taining the best performance with a relatively small but non-zero n (typically n = 0.1).
We additionally reduce variance by directly estimating emphatic weightings with function
approximation rather than using the emphatic trace. Empirically, the direct method of
estimating the emphatic weightings performed better than the emphatic trace across all
objective functions and environments tested. In addition, ACE with the direct method was
less sensitive to the actor step size and choice of critic than OffPAC. Overall, ACE with the
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direct method performed better than or equal to OffPAC in all situations, suggesting that
incorporating (low-variance) state reweightings might be a reasonable direction for future
policy gradient methods.
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Appendix A. Proof of Deterministic Off-Policy Policy Gradient Theorem
A.1 Assumptions
We make the following assumptions on the MDP:

Assumption 1 P(s'|s,a),7(s,a,s),v(s,a,s"),m(s;0) and their derivatives are continuous
in all variables s,a,s’,0.

Assumption 2 S is a compact set in R?, and A is a compact set in R.

Assumption 3 The policy 7 and discount ’y are such that the inverse kernel of 6(s,s’) —
P (s,s') exists, where Pr (s, s") = [, 7( (s,a,s")P(s'|s,a)da.

Under Assumption 1, vg,(s) and 80( %) are continuous functions of 8 and s. Together,

om(s;0) _and o

00
functions of s, which allows us to switch the order of integration and differentiation, and
the order of multiple integrations.

3U7r9 (s) qrg(s,a)

& are bounded

9

Assumptions 1 and 2 imply that ‘

A.2 Proof of Theorem 3

Proof We start by deriving a recursive form for the gradient of the value function with
respect to the policy parameters:

dvr(s) 0
00 %Qﬂ'(

= 8/ (8'|s, m(s; 9))( (s,7(s;0),s) +7(s,7r(s;0),5’)vﬂ(s’)) ds’
/80 s'|s, m(s; 0))( (s,7(s;0),s) +’y(s,7r(s;0),s’)vﬂ(s’))) ds’, (21)

s,7(s;0))

where in Equation 21 we used the Leibniz integral rule to switch the order of integration
and differentiation. We proceed with the derivation using the product rule:

8 %P(S’LS, (s 0)) (r(s, 7(5:0), ) + (s, 7(s;0), sl)vw(s’))
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For simplicity of notation, we will write Equation 22 as
c%ﬂ(s) B / aUﬂ-(S/) /
0 g(s) + /SPTW(S,S) 20 ds’, (23)

since P(s'|s, 7(s;0))v(s,7(s;0),s") is a function of s and s’ for a fixed deterministic policy.

Then we can write 2% 8(55 as an integral transform using the delta function:

8”” / 5(s 8”” ) s (24)

Plugging Equation 24 into the left-hand side of Equation 23, we obtain:

/
/6 81}71— dsl _ g(s) +/Pﬂ,y($, Sl)avq'r(s ) dSl
kil 96

= /5 5(s,8") — Pr (s, s’)) c%gés’) ds' = g(s)
. 81}59(8) _ /Sk(s,s/)g(sl) dSl, (25)
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where k(s, s') is the inverse kernel of §(s, s") —Pr (s, s"). Now, using the continuous version
of the weighted excursions objective defined in Equation 6, we have:

9J,(0) _ 9 »
50 - ag/sdu(s)z(s)vw(s) ds
8U7r( )dp,(s)’t(s) ds

8

//k:ss "Yds'd,(s)i(s)ds
// s,5") i(s)dsg(s')ds, (26)

where in Equation 26 we used Fubini’s theorem to switch the order of integration.
Now, we convert the recursive definition of emphatic weightings for deterministic policies
over continuous state-action spaces into a non-recursive form. Recall the definition:

m(s') = du(s')i(s') + /S P, (s, 5 )m(s) ds. (27)

Again, we can write m(s’) as an integral transform using the delta function:

= /5(5, s ym(s) ds. (28)
8

Plugging Equation 28 into the left-hand side of Equation 27, we obtain:

/ 5(s, 8'Ym(s) ds = d,(s')il(s') + / P, (s, 5 )mf(s) ds

8
= / s,5) e (8,8"))m(s) ds = d,(s)i(s)
= m(s') = /Sk(s,s/)du(s)i(s) ds, (29)

where k(s, ') is again the inverse kernel of (s, s’) — Pr (s, s’). Plugging Equation 29 into

Equation 26 yields
(7]
L [ontsats'yas
8

_ /m(s)ﬁﬂ(s;e) 0qr(s,a)
s 00 da

ds.
a=m(s;0)

Appendix B. Continuous State Off-Policy Policy Gradient Theorem

Given the Deterministic Off-Policy Policy Gradient Theorem in Appendix A, we can now
provide a proof for the continuous-state version of the Off-Policy Policy Gradient Theorem
provided in Theorem 2.
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Proof The gradient of the objective in the continuous-states case is

0J,(0) _ 0 Jsi(s)vx(s)ds _ /J( yunls) g

00 00 00

(30)

Therefore, again to compute the gradient of .J,, we need to compute the gradient of the value
function with respect to the policy parameters. A recursive form of the gradient of the value
function can be derived, as we show below. Before starting, for simplicity of notation, we
will again use

g(s) = 2 IO (s a),

a
where g : 8§ — R?%. Now let us compute the gradient of the value function:

Ovg(s 0

_Zaﬂ'sae S’Q)_i_zﬂ_(s,a;e)aqﬂ(s,a)

a / ! - / d/
+Z (5.a:0) fg s'|s,a)(r sa,sa)o—i-’y(s,a,s)v (") ds

+Z s,a;0) / (s|s,a)v(s, a,s’)avggs,) ds’

/Z s,a;0)P(s'|s,a)y (s,a,s')avg‘gs,) ds’. (31)

For simplicity of notation we will write Equation 31 as

e o)+ [Py P as, (52)

where Py (s,s') =, 7(s,a;0)P(s'|s,a)y(s,a,s’). Again, as in the deterministic off-policy

. . . Ovg(s)
policy gradient theorem, we can write =55~
tion:

as an integral transform using the delta func-

av“ / 5(s a”” ) s (33)

Plugging Equation 33 into the left-hand side of Equatlon 32, we obtain:

O (s') ' — (s s s vz (s') S
o) as = )+ [ P fos) o

— / (s,8) = Pr (s, s')) Ovr(s') ds’ = g(s)

90
— %a“és) - / k(s,s')g(s') ds'. (34)
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Plugging this gradient from Equation 34 back into Equation 30, we obtain

0Ju(0) [ .  0vug(s)
50 —/Sz(s) 5 ds

0
- /8 i(s) /S k(s,s')g(s") ds' ds (35)
= /S /S k(s,s')i(s)ds g(s') ds’ (36)
_ /S m(s)g(s') ds’
= [m(s)ets)as.

where in Equation 35 we used Fubini’s theorem to switch the order of integration, and in
Equation 36 we use the non-recursive version of emphasis as shown in Equation 29.
|

Appendix C. Standard Approaches for Sampling the Gradient from a
State

In this section we overview the standard approach to sample the gradient from a given
state, that is used in both ACE and OffPAC. This section reiterates known results, but is
included here for completeness.

C.1 Sampling the Gradient for a Given State

For a given state, we can use the same strategies to sample the gradient as OffPAC, and
many other actor-critic algorithms. We can use the log-likelihood approach, and incorporate
baselines. For continuous actions, we can also use other strategies like the reparameteriza-
tion trick. For concreteness, we explicitly explain how we sample this gradient here, using
a value baseline and the log-likelihood approach, but emphasize that this can be replaced
with other choices.
Under finite states, the simplest approach to compute the gradient for a given state is
to use what is sometimes called the all-actions gradient
> Onls0)

a

If there are many actions or if the action space is continuous, this gradient is not an appropri-
ate choice. Instead, we can obtain a sample estimate of this gradient using the log-likelihood
trick: o (als: 0) 51 (a]5: 0)
7 (als; og m(als;
S0 T e (s,0) = 3 wlals; )BT g (s, a),

a a

which follows from the fact that the derivative of logy is £. Above we called this log

likelihood form g¢(s,0). Now we can use one action sampled according to 7 to obtain
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an unbiased estimate of the all-actions gradient. In the off-policy setting, however, we
do not use 7w to select actions. So, additionally, we can incorporate importance sampling
p(s,a;0) = ﬂ;S((ZLTs?) to adjust for the fact that the actions are taken according to behaviour
policy u:

on(als; 0) B 1 .\ Ologm(als; 0)
=g (o) = D wels) orn(ale: )55 (5.0

= > uals)pls, a:0) BTN (o o)

a

We can obtain an unbiased sample of the gradient by sampling an action A ~ u(s,-) and
using g(A) & p(s, A;0) 2 BT (5 A).

The estimated gradient has more variance when we only use a sampled action rather
than all actions. The standard strategy to reduce this variance is to subtract a baseline.
The baseline is a function of state, such as an estimate of the value function v(s), with
modified update

p(s, a; H)W [q=(s,a) — v(s)].

It is straightforward to show that the expected value of this update is the same, i.e. that

> ulalspto.a 0) BT (s, ) — o)) = S ulalspto.a 0) TR0 (s )

Note that this is not the minimal variance baseline (Dick, 2015), but it nonetheless is one
of the most commonly chosen in practice due to its efficacy and simplicity.

C.2 Estimating the Advantage

In practice, it is difficult to obtain ¢, (s,a) to compute this gradient exactly. Instead, we
obtain (a likely biased) sample of the advantage, §; ~ ¢r(S¢, Ar) — v(s¢). An unbiased
but high variance estimate uses a sample of the return G; from (s¢,a;), and uses §; =
Gy — v(sy). Then E[&|S; = s, A = a] = gz(s,a) — v(s). On the other extreme, we can
directly approximate the action-values, ¢(s,a). In-between, we can use n-step returns, or
A-returns, to balance between using observed rewards and value estimates.

The simplest choice is to use a 1-step return: 7(s,a) + ¥(s, a, St+1)v(Si+1) is used as
an approximation of ¢,(s,a). The value function v is typically called the critic, and plays
both the role of estimating the return as well as that of a baseline. The advantage is set to
0t = Rev1 + Y1410(St41) — v(St), which is simply the TD error.

More generally, however, we can also use multi-step returns. For an n-step return,
with data sampled on-policy, with Yiy1:44n o H?:l Vt+; as short-hand for the product of
discounts, we would use

Ot = Rep1 + Vi1 Reva + o Ve 1tn—1Rign + Vet 1:44n0(Stqn) — v(S).

With off-policy data, we would need to incorporate importance sampling ratios

0t = Reg1 + per1ve+1Revo + - o protttn—1Ye+1it+n—1Ritn + Pratittn Vet 14400 (Sen) — 0(St),
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where pii1:44n o H?zl pi4;- For sufficiently large n, we recover the sampled return and

so obtain an unbiased—but likely high-variance—estimate of the advantage. An interim n
likely provides a reasonable choice between bias and variance, between n = 0 with a direct
estimation of ¢ (s, a), and large n that gives an unbiased sample of the return.

We can also average across multiple n, and obtain A-returns (Sutton and Barto, 2018).
For larger A, more weight is put on the n-step returns with larger n, and for A = 1 we once
again recover an unbiased sample of the return. Such an approach was used in OffPAC,
which requires storing traces of gradients of policy parameters (see Algorithm 1 in Degris
et al., 2012b). Note that this A-return is used for the policy update. The update to the
value estimate (critic) itself can use a different A, as it stores a separate trace for the
gradient of the value function. The update with eligibility traces is only sound under
linear function approximation for the values and linear function approximation for action-
preferences. In this work, therefore, we opt for the simplest choice: n = 1 with §; =
Rip1 +7e01v(Ser1) — v(S).

Finally, we need to estimate the values themselves. Any value approximation algorithm
can be used to estimate v, such as TD, gradient TD or even emphatic TD. Given we already
compute the emphasis weighting, it is straightforward to use emphatic TD. We investigate
both a gradient TD critic and an emphatic TD critic in the experiments.

Appendix D. Proof of Theorem 8

D.1 Entropy-regularized OPPG theorem with discrete states and actions

Proof The proof for this theorem is mostly similar to the one for Theorem 2. First, since
the interest function does not depend on the parameters,

0J.(0) 0 ,csi(s)Tn(s) <., \OUx(s)
20 50 2 i) 54—

SES

Recall that 0.(s) = >, m(a|s; 0)Gx(s,a) + 7H(m(:|s;0)). We define the following notation
which helps with the recursive expression of the gradient:

g(5) = 3 U505 () 4+ 2 (m(15:)),

a

where g : 8§ — R%. The gradient of the entropy regularized value function is then

(%50(8) = é% Zﬂ(a|s;0)q}(s,a) + 7H(7(-|s; 0))
—za:a”(g’; ) +Z (als; 0) aq’r s “) T(feﬂf(w(-ys;e)) (37)
:g(s) + ZW(CL’S;H)aZs’p( |Sva)( (Sacg; ) + ’Y(Svav 5,)777T(S,))

9+ 3 mals:0) Y plls.a)(s.a, ) P2,
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So the gradient of the regularized value function can be written in vector form similar to
the unregularized version. Let v, € RI$I*? be the matrix of gradients of o, for each state s;
and G € RI$I*? the matrix where each row corresponds to state s in the vector g(s). Then

=G+ P7r AV (38)
— v, =(1-P,,)"'G.
Therefore, we obtain
. 8?77r(3) T2 1~ T A
Zz(s) 29 — 1 Vr i'I-P,,) 'G=m'G

=Y mls) | T (5,0 + 7t 15:0)

We can further simplify this gradient by explicitly computing the gradient of the negative
of the entropy:

0-H(m(-[s;0)) on(als; 0) ' 0logm(als; 0)
%0 - Z a0 log w(als; 0) + zazﬂ(a|s,0)80

B or(als; 0) ' or(als; 0)
5 g 4 3 O

or(als; 0)
> D) tog m(al:6),

where the last line follows from the fact that ), M 89 Y a7(als;0) = 8%1 =0. N

This form looks a bit different than the (on-policy) policy gradient update given by
(Geist et al., 2019, Theorem 6). We can actually get a similar form by rewriting the inner
term above. For a specific s, using chain rule on the entropy we obtain

Z or(als; O)q (s,0) +T£ 5 (n(|5: 0)) = Z aw(a]s;e)qﬂ(s’a) Yy or(als; 0) OH(m(-|s; 0))

00 00 - 00 00 or(als; @)
On(als; 0) | . OH s; 0
:Z (8’0 ) |:q7r($,a)+7' ( (‘ )):| )

a

D.2 Regularized OPPG theorem with continuous states and actions

Theorem 11

‘9%9) :/Sm(s) [/A@ﬂ(g\;é’) (s, a)da+7’(,% (77(-|8;9))] ds

Proof We extend the result from the previous section to the continuous state and action
setting using a similar strategy to the one we used in Appendix B to extend Theorem 2
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to the continuous state setting. In addition, we opt for a generic regularizer Q(m(:|s;8)) :
A(A) — R, which slightly modifies the definition of the regularized value functions to be

Or(s) = / m(als; 0)Gr(s,a)da + 7Q(n(+|s;9)) Vs €8
A
Gr(s,a) = /P(s’|s7 a)[r(s,a,s') +7(s,a,s)ox(s")] ds’ Vs € §,Va € A.
8
We use the following notation to simplify the derivation:
0
86) = [ TG (s 0 dat 7 n(15:6).
Starting with the continuous objective function from equation (6) and using the Leibniz

integral rule to differentiate under the integral (which applies because we assumed the state
space is a compact set in Assumption 2 from Appendix A.1):

0J.(8) 8 [ vz (s)
50 :80/5() ()ds—/s(s) 20 ds. (39)

Next, we find a recursive expression for the gradient of the regularized value function:

8550(8) _ (‘980/ 7(als; 0)Gx(s,a)da + 7Q(m(+]s; 0))

/Aaw(gl;e)q (s, a)da+/ﬂ7r(a\s;0)a%8(2’a)da+7';09(7r('|8;9))
04r(s,a)

g(s)+/J47r(a|s;0)60’da

(S) +/A (CL‘S 0) 880/ (3/‘5‘,@) [T(s,a,s’) + 7(3,@, Sl)f)ﬂ—(slﬂ ds' da

(s)+/ m(als; 0)/ (s']s, a)w(s,a,s')aﬁgéS/) ds’' da

~ ol
// (a|s;0)P(s|s, a) (s,a,s')daavgés ) ds’,

where in the last step we used Fubini’s Theorem to switch the order of integrals (which we
can do because the absolute value of the integral is finite due to Assumptions 1 and 2).

Again we will use the shorthand Pr (s, s") = [, w(als;0)P(s'|s,a)y(s,a,s") da to simplify

the derivation. Next we write 8%658) as the integral transform

61} 81}
( / d(s ( ds' ,
plug it into the previous equation, and solve to get

~
/5 (%W ds' =g(s) + /P,W(s s )6%(8 ) ds’
S 6

I
o

Il
(1=}
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[ 660 = P s1) o 0~ 0o

— 8’(771—(8) _ /Sk(s,s')g(sl) dSl,

00

where k(s,s’) is the inverse kernel of d(s,s’) — Pr4(s,s’). Then plugging the above into
Equation (39), interchanging integrals using Fubini’s theorem, and simplifying gives

8<]5é0) = /Si(s)/sk(s,s’)g(s’) ds’ ds

:iééu@M&@d@@q@’
_ /5 m(s&(s') ds’

:Am@g@@
= [mis) | [ ) da (s o) as.

Appendix E. Proof of Proposition 10

This section proves Proposition 10. First, a result by Mei et al. (2020) for tabular domains
is extended to state aggregation and transition dependent discounting (which includes the
three-state counterexample) to show that entropy-regularized policy gradient converges to
a point where the gradient is zero. Then, it is shown that such point is not a stationary
point for semi-gradient updates.

E.1 Entropy-regularized PG under State Aggregation

We assume the policy is a softmax policy and additionally specifically characterize the
gradient under state aggregation. This specific characterization facilitates showing that the
solution to the objective lies on the interior of the simplex, and so that a stationary point
exists.

We define alias(s) as the set of state that share their representation with s including s
itself. We additionally defined 8,., C § the set of representative states, one for each bin
in the aggregation. For example, in the three-state counterexample alias(sg) = {so} and
alias(s;) = alias(sg) = {s1,s2}. We simply need to choose one state in each aliased set,
giving 8yep = {50, 51}

For a parameter set @, the policy is a softmax transform defined as follows. For a state
s’ with representative state s, i.e., s’ € alias(s), we have

exp(6(s,a))
dow exp(@(s, a’)) '

7(s',a;0) = (40)
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Using again the three-state counterexample, 8 has four components: 6(sg,ag) and 0(sp, a1)
specify the policy for sg, and 0(s1,ap) and 0(s1,a1) specify the policy for both s; and sy
since these two states are aliased.

The softmax policy has a simple well-known gradient, which we can explicitly write for
state-aggregation in the following lemma for easy reference in later proofs.

Lemma 12 Assume the policy uses a softmax distribution, as in Equation 40. For any
state s € Syep, for any s’ € alias(s),

on(s',d’;0) _ { (s, a;0)[1 —7(s',a;0)] ifd =a

90(s, a) —7m(s,a;0)m(s',a’;0)  ifd #a (41)

and, across all actions, this can be compactly written as

on(s',d;0)

90(s, ) diag(m(s, .;0)) — m(s,.;0)m(s,.;0) .

Proof For explicit step to obtain this derivation, notice first that

log7(s',a;0) = logZexp
and so
on(s',a;0) 8log7r( ',a;0)
000.0) " g0 0
v 1.9 010(s,a") —log y o, exp(6(s,a”))]
= (s, a30) 90(s, )
00(s,a’)  0dlogy . . exp(O(s,a"))
_ / /. 9 . a
= (s, a30) 00(s,a) 00(s,a)
If ' = a, then
06(s.') _ 9lox Y, exp(B(s.a") _ | L %, exp(0(s,0")
00(s, a) 00(s, a) B > exp(6(s,a”) 00(s, a)
1
=1- exp(0(s,a
S exp(8(s, ) PO
=1—mn(als; 0)
=1- W(S,a a; 9)7

where the last step follows from the fact that 7(s, a; 8) = 7(a|s; @) under state aggregation.
If @’ # a, then

96(s,a')  dlog ¥ exp(8(s,a”))

- — 0= . _ o
00(s,a) 96(s, a’) 0 — m(als; 0) (s, a;0).
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The gradient ascent update using the entropy-regularized objective is

0J,(64)
00
for stepsize n > 0. For an appropriately small stepsize 7, this will converge to a stationary
point if one exists, and otherwise move to a point on the simplex, where 0;(s,a) — oo for
an action a in state s. The standard condition on 7 is that n < 1/L for Lipschitz constant
L of juv which is a common assumption for policy gradient methods. In the next section,
we show that this update converges to a stationary on the interior of the policy simplex.
We provide one more result, that is useful for this characterization. Lemma 13 breaks
down the gradient into its components. Mei et al. (2020), in their Lemma 10, proved this
result for entropy regularized policy gradients, assuming tabular policies in the on-policy
setting. We extend it to state aggregation, with our off-policy gradient. Their presentation
has an extra term —7logm(als; @). This discrepancy is just a difference in notation. In our
formulation, entropy regularized action values are defined to contain the entropy term so
that the connection between the regularized and unregularized policy gradient is clearer.

9t+1 = Ot +n (42)

Lemma 13 For each state s € 8y, and action a

0.J,.(0 ] )
ad;(a)) = > msn(s,a;0) [qﬁ(s/, a) — vﬂ(s')].
’ s'calias(s)
Proof According to Theorem 8

dJ,(0 or(als; 0) _
Z )=§m<s>;(a’9 iz(s.a).

Notice that only for states s’ € alias(s), and any o', we have % # 0. We can write

partial derivatives w.r.t. the parameters of each state and action, using Equation 41:

0J,(0) , on(s',a’;0)
(o)~ 2 "2 ey

s’ €alias(s) a’

= Z m(s’) [W(s’,a; 0)(1—7(s',a;0))G:(s,a)

s'calias(s)

— Z m(s',a;0)w(s',a’;0)q (s, a’)]
a’'#a
= Z m(s (s, a;0) [(jﬂ(s’,a) - Zﬂ(s’,a’;a)q}(s’,a’)]

’

s’ €alias(s) a

= > m(s)n(s,a;0) [Gn(s a) — Ta(5)] -

s'calias(s)
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E.2 Existence of stationary points for the entropy-regularized PG objective

We are now ready to prove that a stationary point exists for 7 > 0. Mei et al. (2020)
(Lemma 17) proved that, under tabular representation and softmax parameterization, en-
tropy regularized policy gradient updates converge to a point where the gradient is zero.
We extend their proof to state aggregation and transition-dependent discounting. We ad-
ditionally avoid assuming that the rewards are non-negative.

Assumption 4 (Lipschitz continuity) JL is Lipschitz continuous with Lipschitz con-
stant L.

Assumption 5 (Bounded reward) [r(s,a)| < Rpaq-

Assumption 6 (Bounded expected sum of future discounting) There ezists C € R
such that for any s € 8, Ex[vit1 + Yi+1Ve42 + ... |Se = s] < C. This assumption is satisfied
if ™ is proper, or if v+ < 1 after a bounded number of steps i € N.

We first prove that the state values are bounded and show that the action-values are
lower bounded by the scaled log of the probabilities. We use this to show the main result
in Proposition 15.

Lemma 14 Under Assumptions 5 and 6, for any given policy parameters 6,

U (8) < CRpax + CTlogng
Gr(s,a) — Up(s) > —1logm(a|s; @) — (2C + 1) Rypae — CTlogng.

Proof First notice that for any distribution p over actions

1 1
Ent ==Y pla)l <-> —log|—] =1
ntropy (p) p(a)logp(a) < og (m) 0g N,

Ng
a€A a€A

where n, is the number of actions. The inequality follows from the fact that the uniform dis-
tribution has the highest entropy. We use this inequality to bound E,[— log 7(A|S; 0)|S: =
s =—> ,m(als;0)logm(als; @), which is the entropy of 7(s,-;8). Using this bound on en-
tropy, and the facts that the entropy is nonnegative and v44; < 1 for all ¢ € N, we obtain

Or(8) = Ex[G¢|St = s] — TEx[log m(A¢|St; 0) + vig1log w(Sit1, Arg1;0) + ... |Sp = 5]
<CRmaz + TE[—log m(A¢|St; 0)|S: = s] + TEx[ver1(— log m(Sit1, As41;0))|Se = s] + . ..
<CRumaz + Tlogng + 7logngEr[vi41|S: = s] + TlognagEr[vit2| St = s] + ...
<CRumaz + C1logng.

Finally, we can lower bound the advantage function, using 0, (s) > E[G¢|S: = s| > —CRpaa
and

Gr(s,a) = Ex[Riyr1 + Y4107 (Se41) St = s, Ay = a] — T log w(als; 0)
> —Rpazr — CRpaz — 7log w(als; 0),
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giving

— CRpaz — 7logm(als; ) — vx(s)

— CRpaz — 7logm(als; 0) — (CRpyax + C1logng)
—Tlogw(a|s; 0) — (2C 4 1) Ryag — C1logny,.

qNﬂ‘(Saa)_'Dﬂ( ) R
Ry,

I\/ I\/

Proposition 15 Under Assumptions 4, 5 and 6, the entropy-reqularized policy update in
Equation 42 with 7 >0 and n < 1/L converges to a point with zero gradient.

Proof Let {6,};°, be the trajectory of parameters under the gradient ascent update, where
0, — 0. This trajectory either converges to finite 8, that provides a policy on the interior
of the policy simplex, or it pushes the weights for a subset of actions to infinity to converge
to a point on the simplex, where certain actions have zero probability. The gradient is only
zero for the solution on the interior, and so to prove the result we simply need to show that
this process converges to the interior. We show this is true for every parameter (s, a) in
the vector 8;, where s € 8;¢p, and a € A.

Define Ap(s) and A4 (s) as the sets of actions with zero and nonzero probability under
7(s,.;05). We use a proof by contradiction to show that Ag(s) = @) for any s as long as
7 > 0. Suppose there exist s and ag such that ag € Ap(s). Note that m(s',a;0) = (s, a;0)
for all s’ € alias(s). We know that m(s,ag;80;) — 0 and —log (s, ap;0;) — oo as t — oo.
Therefore there exists o > 0 such that for all s’ € alias(s) and t > ¢

(2C + 1)Rppaz + C1logn,
. )

—logm(s', ag; 0;) >

According to Lemma 13, for all £ > ¢,

0.J,(6y)

96:(s,a0) = Z m(s")m(s', ap; 0%) [(jw(s’,ao) - ﬁw(s')} > And applying Lemma 14

s'calias(s)

= Z m(s (s, ap; 0;) [—Tlog m(a|s;0) — (2C + 1) Rypar — C7log na]

s’calias(s)
2 1 1
> Z m(s")m(s', ap; 0;) |:T( O+ DRnoa + C7logna _ ((2C + 1) Ripae + C7log na)]
s’calias(s) T
— 0. (43)

So 0;(s,ap) is non-decreasing after tp, because we only add this non-negative gradient to
0.(s,ap). This means that 6. (s, ap) is lower bounded by a constant c:

exp(Buo (s, ap)) > e > 0.

Next, we bound | ", exp (6o (s,a))|. Notice that the sum of gradient components over all
actions at a state is zero:

Z 39t (s, a) = Z m(S')ZW(s’,a; 0:)[Gx (s, a) — 0 (s")]

s'calias(s) a
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s’ calias(s)

Because
8J (6:)
Zaetsa Z@Otsao Z 89tsa+

we get that for all ¢ > o,

aJ (6y)
Z 89t3a+ Z@Otsa Zﬁetsao

CLJrGA
&] (6;)
=0- <0
Z 00,(s,a0) —
agE€Ao

where the last line follows from Equation 43. This means that }_, <4 () 0:(s,a4) is non-
increasing after tg. For ay € A (s), we know that there exists some constant that lower
bounds 6 (s, ay) for all . Otherwise, a; € A4 (s) would not have non-zero probability under
7(8,.;0). Therefore, non-increasing Ea+eﬂ+(s) 0.(s,a+) cannot be due to some 6;(s,a)
approaching —oo while others approach oco. Instead, each 6;(s,a+) must also be bounded
above. This means there exists some by > 0 such that exp(—b1) < exp(6:(s,a4))exp(bs)
for every a4 € A4 (s).

For all ap € Ap, we also know that there exists by such that exp(6:(s,ap)) < by for all
t > to. Otherwise, if exp(0;(s, ap)) approaches infinity, then ag would not be in Ag. Putting
this together with the above, and knowing there is at least one a € A4 (s),

Zexp(@t(s, a)) < nqexp(by) + bo

a

Zexp(@t(s,a)) > exp(by) >0

Finally, this gives

exp(@t(s, ao))
Za €xp (Ht('S? a))

> ¢ .
~ ngexp(by) + bo

7T(8> ao; et) =

Taking the limit as ¢ — oo, this lower bound remains positive, implying that (s, ag; Oo) >
0, which is a contradiction.

Therefore, no such ag can exist and so Ag(s) = 0 for all s € 8. Since the policy converges
to the interior of the probability simplex and the objective function is Lipschitz continu-
ous, the gradient has to be zero at the point of convergence (Mei et al., 2020) (Lemma 17). B
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E.3 Proof for Three-State Counterexample

In the previous section, we showed that a stationary point for the entropy-regularized PG
objective exists. We now show that in the three-state counterexample that such a point is
not a stationary point under semi-gradient updates.

Lemma 16 A point with zero gradient is not a stationary point under semi-gradient updates
in the three-state counterexample.

Proof Suppose 6 is a point with zero gradient, i.e.:

0J,,(6)
00

=0.

Every component of the gradient vector is zero, thus

0J.(0) Or(als; 0) . B
960y~ 2 ) 98, =0

sealias(s1)

Since taking any action from s; or so results in termination, the following holds for s €
{s1, s2} and any action a:

Gr(s,a) = Z P(s'|s, a) [r(s, a,s’) — tlogm(als; 0) + (s, a, 3')%(3’)]
= Z P(s'|s,a) [r(s, a,s’) — rlogm(als;0) + (s, a, s')f}ﬂ(s')]

=r(s,a) — Tlogm(als;0) > Recall that r(s,a) £ ZP(S/|S, a)r(s,a,s’).

States s; and so have the same representation, meaning that agé?;.;g) = agé?i;g) and

w(s1,.;0) = 7(s2,.;0). So

dJ,.(0) Z m(s) om(sy1,a;0)

(1) 98(sr,) (5@~ Tlogmlsr,a;0)]

s€alias(s1)

_ () § 01,0 8)
- ¥ ()a o) "0

s€calias(s1)

on(s1,a;0
_( Z m(s)) ] 6‘(9(181’.))7-10g7r(31,a;0).

s€calias(s1)

For simplicity of notation, define

s€alias(s1)

D(Sl)d:ef Z du(s),

sealias(s1)
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letting us write the above as

B or(s1,a;0) or(s1,a;0) ‘
= Z m(s) d WT(S,CL)—M(Sl) 2 WTlogw(sl,a,B).

s€alias(s1)

0.J,(6)
90(s1,.)

Similarly, the semi-gradient update to 6(s1,.) becomes

(81, a; on(s1,a;0
Z du(s) d WT(S,&)—D(Sl) d MTlogw(sl,a;B).

scalias(s1)

We show that, even though 0 is a stationary point under the true gradient update, this
semi-gradient under @ is not zero. Notice first that

or(s1,a;0) ‘
D(Sl) : WTIOgW(Sl,a,H)
B or(s1,a;0) . D(s1) 0J,(0) 0J,.(0)
= D(s1) 00051, Tlogm(s1,a;0) + M (s)) 90(s1..) > because 90(s1.) 0
B or(s1,a;0) _
= D(s1) 0001 Tlog(s1,a;0)
D(s1) or(s1,a;0) or(s1,a;0)
———r(s,a) — M ————7lo ,a; 0
M(s1) Sea%;(Sl)m(s) T oB(sr,) ) T M) 2 g,y e i6)
aw(sb a; 9) D<31) 87T(81, a; 0)
D(s1) 96001, Tlog m(s1, a; )+M(31) Seag(s)m(s) 300, ) r(s,a)
or(s1,a;0) _
— D(Sl) WTlog 7['(81, a; 0)
D(s1) or(s1,a;0)
m(s ———r(s,a)| .
M(s1) Sea%;(Sl) (s) — 06(s1,.) (5
Therefore,
on(sy,a;0 on(s1,a;0
Z d,(s) 6(0(18))7“(5,@ — D(s1) 8(0(18))7'10g w(s1,a;0) (45)
s€alias(s1) a L a b
O(s1,a:6) Ds1) o (s1,0:6)
= Y duls)) —a—tr(s,a) — Yo om(s)) | (s, a)
s€alias(s1) a 60(817.) M(Sl) scalias(s1) a 80(81’.)
87"-(51) a; 0) def Zs’ealias(sl) d#(‘s/)
= o(s ————r(s,a > where 6(s) = d,(s) — m(s
sEag(sl) ( ) 80(81") ( ) ( ) M( ) Zs’éalias(sl) m(sl) ( )
871'(81,&0;9) 67r(31,a1;0)
) B0,y 20D 0 )
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> because r(s1,a0) = 2,7r(s2,a1) = 1,7(s1,a1) = r(s2,a9) =0

B or(s1,a0;0) or(s1,a1;0)  Om(s1,a0;0)
=2(6(s1) 5(52))W. > as 201 260(s1..) by Lemma 12
On(s1,a0;0)

The second factor 90(s1,) is nonzero due to softmax parametrization. It therefore suffices

to show that the first term 2(6(s1) — d(s2)) is not zero.
In each episode in the counterexample, regardless of the policy, the agent spends one
step in sg and one step in either s; or so. Therefore

d“(SO) = 0.5, du(sl) + du(Sg) =0.5.
Unfolding the emphatic weightings gives

d,(s0) = 0.5
(81) =d,(s1) + du(s0)m(s0,a0;0) = du(s1) + 0.5m(s0, ap; 0)

dy(s2) + dpu(s0)m(s0,a150) = dy(s2) + 0.57(s0, a1;0)
=0.5—d,(s1) +0.5(1 — 7(s0,a0;0)) = 1 — d,(s1) — 0.57(s0, ao; 0).

Plugging these values into §(s) results in

'calias(s1 dﬂ s'
3(5) = d(s) - é - ))m(()) m(s)
d,(s1) + du(s2)
= du(s) - m(s1) + m(s2) m(s)
= du(s) ~ Z2m(s) = du(s) — 0.5m(s)

Therefore,

8(s1) = du(s1) — 0.5m(s1) = 0.5d,(s1) — 0.257(s0, ao; )
d(s2) = du(s2) — 0.5m(s2) = 0.5 — dy(s1) — 0.5+ 0.5dy,(s1) + 0.257(s0, ao; 0)
= —0.5d,,(s1) + 0.257(s0, ao; 6),

and we get that

2(5(51) — (5(82) = d#(sl) — 0.57T(80, agp; 0) + 0.5du(81) - 0.257T($0, ap; 0)
= 1.5d,,(s1) — 0.757(s0, ag; 0)
= 0.75(p(s0, ao) — 7(s0, ao; 9)). > because d,(s1) = 0.5u(s0, a)

As long as 7(sg,a0;0) # u(so,ap), the semi-gradient is not zero. For example, as in
Section 8.1, we can choose p(sg,ap) = 0.25. Now we show that 7(sg,ap;0) # 0.25 for a
stationary point under the true gradient.

Let us first write the partial derivative w.r.t. the first parameter given that 7(sg, ap; 0) =
0.25:

0J,.(0) Z m(s) or(als; 0) (5, 0)

89(80,@0) N P (90(8(],61,0)(]7T y

s€alias(sg)
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or(so,ap;0)

B or(so,a1;0)
- m(s(’)[ 96(s0, ao)

80(80, (10) Qﬂ'(SO7 al)

Gr(s0,a0) +
=05 [W(b’o, ao; 0)(1 — m(s0, ao; 0))qx (S0, ao)

— 7(s0, a1; 0)m(s0, ao; @)Gr(s0, a1)
= 0.5%0.25 % 0.75[Gx (S0, a0) — G (50, a1)].
For this derivative to be zero, ¢ (s0,a0) — (S0, a1) must be zero.

(50, a0) — Gr(s0, 1)

= —7log7(s0, a0; @) + 7(s1, a0, 0)dx(s1,a0) + 7(s1,a1,6)qx(s1, 1)

+ 7log m(s0, a1;6) — m(s2, ao, 0)qx(s2, a0) — m(s2, a1,0)qx(s2,a1)

= —711log0.25 4+ 7(s1,a9,0)(2 — Tlog 7(s1, a9, 0)) + 7(s1,a1,0)(—7logw(s1,a1,8))
+ 710g 0.75 — 7(s2, ap, 0)(—7log 7(s2, agp, @) — m(s2,a1,0)(1 — 7logn(s2,a1,0))

Recall that 7 (s2,-,0) = m(s1,-,0) and 7(s1,a1,0) =1 —7(s1,a0,0). Then

4x(50,a0) — Gr(S0,01)

= —7110g0.25 4+ 7(s1, a9,0)(2 — Tlog 7(s1, a9, 0)) + 7(s1,a1,0)(—7logw(s1,a1,6))

+ 710g0.75 — 7(s1,ap, 0)(—7log 7 (s1,a9,0)) — 7(s1,a1,0)(1 — 7logn(s1,a1,0))

= 7(log 0.75 — log 0.25) + 27(s1, ap,0) — 7(s1,a1,0)

= 7(log3) + 37 (s1,a0,60) — 1, (46)

because log 0.75—1og 0.25 = log(0.75/0.25) = log 3. For small values of 7, 7(s1, ag, @) should
be close to 1/3 to make 8 a stationary point.

Now let us write the partial derivative w.r.t. 8(s1,ap), again assuming 7(sg, ag; @) = 0.25
and by noting that s; and so are aliased:

s, a)

97,0) _ r(als:0)
m_ Z m(s) — 06(s1, a) (

s€calias(s1)
B o (s1,a0;0) _ or(s1,a1;0) _
= mis1) [ 00(s1,a0) Gr(s1,00) + 00(s1,ao) Gnlon, 1)

On(s2,ap;0) 871'(52,@1;0)6 (52 Gl)]

90(s1,ap) Gn(s2,00) + 00(s1,ap)

#m(es)|
= )51, 00:6) (1 = 51003 6)) i (51,0)
—7(s1,a0;0)(1 — w(s1,0a0;0))dx(s1, al)}

+ m(s2) |:7T(81, ap; 0)(1 — m(s1,a0;0))dx(s2,a0)

— (81, a0;0)(1 — 7(s1, ao; 0))Gr (2, al):|
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=m(s1) [77(31, ap; 0)(1 — w(s1,a0;0))Gx(s1,a0)

—7(s1,a0;0)(1 — 7(s1, a0;0))Gx (51, a1)

T m(sy) [ﬂsl, 00:0)(1 — (51, a0: 0))dx (52, a0)

—m(s1,a0;0)(1 —m(s1,a0;0))dx(52,a1)

= m(s1,a0;0)(1 — 7(s1,a0;0))

|:m(31)(q~7r(317 ao) — Gr(s1,a1)) + m(s2)(Gr(s2,a0) — Gr(s2,a1))|.

Making the partial derivative zero requires either 7(s1, ag; @), 1 —m(s1, ag; @), or the contents
of the brackets to be zero. The first two are incompatible with the requirement for making
Equation 46 zero so we will continue with the third one. Note that
m(s1) = d,(s1) + du(so)m(s0, ap; @) = 0.125 + 0.5 % 0.25 = 0.25,
m(s2) = d,(s2) + du(so)m(s0,a1;0) = 0.375 + 0.5 % 0.75 = 0.75,

and the factor in the brackets becomes

m(s1)(Gx(s1,a0) — Gr(s1,a1)) + m(s2)(Gr(s2,a0) — Gr(s2,a1))
= 0.25(2 — Tlog 7(s1, ao, 0) + Tlog w(s1, a1, 8))
+0.75(—7 log m(s2,a0,0) — 1 + Tlog 7(s2, a1,0))

= —0.25 + 7(—log 7(s1, ag, 0) + log (51, a1,0))

= —0.25 + 7(log(1 — 7w(s1, ao, 0)) — log 7 (s1, ao, 0))

1 777(51,&0,9))

m(s1,a0,0)
Making this zero is also at odds with the requirement for Equation 46. To see why, let’s
consider both conditions, where we use p = 7(s1, ag, @) to simplify notation.

=—-0.25+ Tlog(

Tlogd+3p—1=0

1—
P_,

—0.25+ 7log

The first equation requires p = (1—71og 3)/3. The second equation requires p = (exp(0.25/7)+
1)~!. These two equations intersect when 7; ~ 0.2779, but otherwise do not equal each other,
meaning we cannot satisfy both of these criteria. Therefore, for any 7 # 7;, a stationary
point @ under the true gradient cannot have 7 (sg, ag, @) = 1(so, ag) = 0.25 and thus cannot
be a stationary point under semi-gradient.

|

This counterexample shows one environment where the sets of stationary points under the
true gradient is disjoint from the set of stationary points under the semi-gradient.
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ACE(n) Actor-Critic with Emphatic weightings. 7 interpolates between semi-gradient
updates (n = 0) and gradient updates (n = 1).

OffPAC Off-Policy Actor-Critic (Degris et al., 2012b). Equivalent to ACE(0).

GTD(\) Gradient Temporal-Difference learning (Sutton et al., 2009). \ is the decay
rate of the eligibility trace vector.

ETD()) Emphatic Temporal-Difference learning (Sutton et al., 2016). A is the decay

rate of the eligibility trace vector.

TDRC(A) Temporal-Difference learning with Regularized Corrections (Ghiassian et al.,
2020; Patterson et al., 2022). X is the decay rate of the eligibility trace vector.

DPG Deterministic Policy Gradient (Silver et al., 2014). Uses a deterministic policy
parameterization and semi-gradient updates.

True-DPGE A version of DPG using true gradient updates (i.e., scaling the update by the
true emphatic weightings).

True-ACE A version of ACE using the true emphatic weightings.

ACE-direct A version of ACE that uses the direct method from Section 5.2.2 to estimate
the emphatic weightings.

ACE-trace A version of ACE that uses the emphatic trace from Sutton et al. (2016) to
estimate the emphatic weightings.

ACE-ideal A version of ACE that re-computes the emphatic trace on each time step using
the current policy to remove the influence of old versions of the policy.

Table 1: Descriptions of the algorithms used in the experiments.
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