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Abstract
Many scientific problems require identifying a small set of covariates that are associated
with a target response and estimating their effects. Often, these effects are nonlinear and
include interactions, so linear and additive methods can lead to poor estimation and variable
selection. Unfortunately, methods that simultaneously express sparsity, nonlinearity, and
interactions are computationally intractable — with runtime at least quadratic in the
number of covariates, and often worse. In the present work, we solve this computational
bottleneck. We show that suitable interaction models have a kernel representation, namely
there exists a “kernel trick” to perform variable selection and estimation in O(# covariates)
time. Our resulting fit corresponds to a sparse orthogonal decomposition of the regression
function in a Hilbert space (i.e., a functional ANOVA decomposition), where interaction
effects represent all variation that cannot be explained by lower-order effects. On a variety
of synthetic and real data sets, our approach outperforms existing methods used for large,
high-dimensional data sets while remaining competitive (or being orders of magnitude faster)
in runtime.
Keywords: functional ANOVA, interaction discovery, kernel ridge regression, nonlinear
variable selection, sparse high-dimensional regression

1. Introduction

Many scientific and decision-making tasks require learning complex relationships between a
set of p covariates and target response from N observed datapoints with N � p. For example,
in genomics and precision medicine, researchers would like to identify a small set of genetic
and environmental factors (out of potentially thousands or millions) associated with diseases
and quantify their effects (Maher, 2008; Aschard, 2016; Slim et al., 2018; Greene et al., 2010).
Estimating these effects can be challenging, however, without sufficiently flexible models.
Blood sugar levels, for example, could vary sinusoidally with the time of day (e.g., depending
on when an individual has breakfast, lunch, and dinner). In other instances, effects can
be challenging to estimate due to multiplicative interactions. A particular drug could help
individuals with certain genetic characteristics but harm others. To learn such nuances in
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our data for better decision-making, we need statistical methods that can model nonlinear
and interaction effects. We also need computationally efficient methods that can scale to
large-p settings. Unfortunately, as we detail below, existing methods suffer in at least one of
these three categories.

Sparse linear regression methods (e.g., the Lasso) are typically fast but do not have the
flexibility to learn nonlinear or interaction effects (Chen et al., 1998; Candes and Tao, 2007;
Nakagawa et al., 2016). SpAM extends the Lasso to model nonlinear effects but assumes
additive effects (Liu et al., 2008). Conversely, the hierarchical Lasso models interactions but
assumes linearity, and its runtime scales quadratically with dimension (Bien et al., 2013).
Recently, Agrawal et al. (2019) developed a kernel trick to learn interactions in time linear
in dimension, but this method assumes linear effects. Black-box models, such as neural
networks and random forests, often include interactions and nonlinear effects for the sake of
prediction. However, it is unclear how to access the effects from the fitted prediction model.

The hierarchical functional ANOVA (Stone, 1994), which includes many of the models
described above as special cases, provides a general framework to jointly model interactions
and nonlinear effects through a variance decomposition of the regression function. As long
as the response has finite variance and the covariates vary over a compact set, the functional
ANOVA decomposition exists. Such a variance decomposition, which includes classical
ANOVA decompositions of contingency tables and generalized additive models as special
cases, has been widely used in applications due to desirable interpretability properties. For
example, in genetic applications, biologists use ANOVA decompositions to isolate the marginal
effects of particular genetic or environmental factors on disease in a population (Vitezica et al.,
2013; Maher, 2008; Aschard, 2016). Unfortunately, existing functional ANOVA methods,
which are primarily kernel-regression based, do not scale well with dimension (Gu and Wahba,
1993; Lin and Zhang, 2006; Gunn and Kandola, 2004); these methods use kernels that take
O(pQ) time to evaluate, where Q equals the size of the highest order interaction. Hence,
running kernel ridge regression for inference takes O(pQN2 +N3) time.

Contributions. We consider two interconnected tasks: (1) high dimensional variable selection
and (2) estimation of nonlinear additive and interaction effects. We define a new class
of kernels called “model selection kernels” to simultaneously solve each of these tasks via
kernel ridge regression. Model selection kernels have the flexibility to select a sparse subset
of covariates that drive the response, and estimate nonlinear effects among the selected
covariates. However, model selection kernels are computationally intractable to compute
in general. Hence, we propose SKIM-FA kernels, a type of model selection kernel that also
enjoys computational efficiency. We show how to compute SKIM-FA kernels in O(pQ) time by
exploiting special low-dimensional structure. We motivate this structure from the perspective
of hierarchical Bayesian modeling. Then, we use equivalences between kernel ridge regression,
Gaussian processes, and conjugate Bayesian regression to develop our efficient inference
procedure.

Outline. We start by describing how to model nonlinear interaction effects and encode
sparsity using hierarchical Bayesian modeling in Section 2. In Section 3, we define model
selection kernels and develop two kernel tricks to perform inference more efficiently when the
covariates are independent. Then, we extend our procedure to the general covariate case in
Section 4. We defer implementation details of our final algorithm to Section 5. We conclude
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by discussing related work in Section 6 and benchmarking our method against other methods
often used to model high-dimensional data in Section 7.

2. A Framework for Modeling Nonlinear Additive and Interaction Effects
and Inducing Sparsity

Problem statement. Suppose we collect data D = {(x(n), y(n))}Nn=1 with covariates x(n) ∈ Rp

and continuous scalar responses y(n). We model y(n) = f∗(x(n)) + ε(n), where ε(n) i.i.d.∼
N (0, σ2

noise), x
(n) i.i.d.∼ µ, and the unknown regression function f∗ belongs to some class of

functions H. Using only noisy realizations of f∗, we would like to identify which covariates
f∗ depends on1 (i.e., perform variable selection), and recover main effects and interaction
effects. For example, a biologist might seek to identify a small set of genes (out of tens of
thousands of possible genes) associated with a disease — e.g., to design new gene-based drug
targets. Understanding the relationship between the selected genes and disease response
could help the biologist properly administer the drug.

To perform variable selection and estimation, existing methods often assume the majority
of effects equal zero. Problematically, when there are interactions present, sparsity in effects
does not guarantee that a sparse set of covariates is selected. For example, suppose we
include all additive and pairwise interaction effects in our model. A method that selects
p non-zero effects might be considered sparse in the effects since p� p2. But the selected
effects could correspond to p (or nearly p) selected covariates, so the burden of data collection
is not reduced relative to the original problem; see Bien et al. (2013) for further motivation
of sparsity in covariates, by contrast to sparsity in effects. To ensure sparsity in covariates,
many interaction methods impose a “hierarchy” or “heredity” constraint (Bien et al., 2013;
Radchenko and James, 2010; Haris et al., 2016). Such a constraint allows interactions to
be present only among selected additive effects. If the additive effects are weak, then this
constraint will lead to poor inference; see also our extended discussion in Appendix C.

To perform variable selection and estimation without requiring a heredity constraint, we
use penalized regression:

f̂ = arg min
f∈H

N∑
n=1

L(y(n), f(x(n))) + J(f), (1)

where L(·, ·) and J(f) denote some loss function and penalty on model complexity, respectively.
This paper focuses on four subproblems resulting from Eq. (1): (P1) picking H to model
interactions, (P2) selecting L(·, ·) and J(f) to induce sparsity (i.e., to identify the small
subset of covariates that influences the response), (P3) tractably solving Eq. (1) for our
choice of sparsity-inducing J(f), and (P4) efficiently reporting effects in f̂ .

2.1 Our Contributions: An Overview

We describe, at a high level, our solutions to subproblems P1 through P4, and what parts of
our solutions are new. Our solutions to P3 and P4 are our core contributions.

1. When the derivative exists, this set equals equals all covariates with non-zero derivatives; that is, all xj
with j ∈ {1, . . . , p} such that ‖∂f∗/∂xj‖ 6= 0. See also Corollary 1.
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P1: Constructing H. Our construction of H in Section 2.2 is based on Huang (1998). We use
the hierarchical functional ANOVA introduced in Stone (1994) to make recovering interaction
effects a well-defined inference task (i.e., statistically identifiable).

P2: Selecting the loss and penalty. We select the loss and penalty from a hierarchical Bayesian
modeling point of view in Section 2.3. In particular, we choose the loss L to correspond to a
negative log-likelihood of the data and the penalty J(f) to correspond to a negative log prior
of f . Existing sparse Bayesian interaction methods do not work at our level of generality.
Nevertheless, our proposed class of priors is heavily influenced by existing sparse Bayesian
interaction models.

P3: Solving Eq. (1). We solve Eq. (1) in time linear in p by using two kernel tricks to (1)
reduce the cost of modeling nonlinear functions and (2) avoid summing over a combinatorial
number of interaction terms. The first kernel trick, described in Section 3, is based on
the foundational smoothing spline ANOVA (SS-ANOVA) work by Gu and Wahba (1993).
To make the connection to SS-ANOVA, we show that there exists a duality between our
class of hierarchical models (see P2) and reproducing kernel Hilbert spaces induced by what
we call model selection kernels. Our model selection kernels generalize the kernels used
in Gu and Wahba (1993) by removing the requirement that all covariates be independent.
Our second kernel trick, which allows us to avoid summing over a combinatorial number of
interaction terms, applies to a subset of model selection kernels. We call this subset of kernels
SKIM-FA kernels and prove that SKIM-FA kernels have desirable statistical properties from
the hierarchical Bayesian modeling point of view.

P4: Reporting effects. For the case of independent covariates, we report effects using
the procedure in Gu and Wahba (1993). Our new contribution, provided in Section 4, is
developing an efficient algorithm to report effects for the non-independent case.

2.2 Interactions and Identifiability for Nonlinear Functions

We construct H in Eq. (1) by considering functions on Rp that can be written as a sum of
lower-dimensional functions (i.e., interaction effects) that depend on at most Q covariates
with Q < p. Our goal is to estimate these interaction effects. Unfortunately, as we detail
below, such an expansion is not unique, and therefore not a valid target of inference. To
make inference over H well-defined, we use the hierarchical functional ANOVA (Stone, 1994).

Modeling Interactions. Let H = HQ :=
⊕

V :|V |≤QHV , where HV belongs to the space
of all square-integrable functions of xV (with respect to the probability measure µ) and
V ⊂ [p] := {1, · · · , p}. Then, for f∅ in the space of constant functions H∅ = {θ : θ ∈ R},

⊕
V :|V |≤Q

HV =

f : f =
∑

V :|V |≤Q

fV (xV ), fV ∈ HV


=

f : f = f∅ +

p∑
i=1

f{i}(xi) +

p∑
i<j

f{i,j}(xi, xj) + · · ·+
∑

V :|V |=Q

fV (xV )

 .

(2)
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Similar to additive models, f{i}(xi) has the interpretation as the main or marginal effect of
covariate xi on y. Similarly, f{i,j}(xi, xj) has the interpretation as the two-way or pairwise
effect of xi and xj on y. Unfortunately, the components in Eq. (2) are not identifiable without
further constraints. For example, if f∗(x) = f{1}(x1) + f{2}(x2) + f{1,2}(x1, x2), then f∗ also
decomposes as f{1}(x1) + [f{2}(x2) + 5] + [f{1,2}(x1, x2)− 5].

Identifiability with the Functional ANOVA. To resolve identifiability issues, we construct a
smaller space of functions HoV ⊂ HV , where HoV includes only functions whose variation
cannot be explained by lower-order effects of xV :

HoV = {fV ∈ HV : ∀A ( V, ∀fA ∈ HA, 〈fV , fA〉µ = 0}, (3)

where 〈·, ·〉µ is an inner product on L2. That is, 〈fA, fB〉µ = Ex∼µ[fA(xA)fB(xB)].

Theorem 1. (Stone, 1994; Huang, 1998) Suppose f ∈ HQ and µ is absolutely continuous
with respect to Lebesgue measure. Further, suppose that the domain of functions in HQ is
X , and X is a compact set of Rp. Then, there exist (µ-almost everywhere) unique functions
fV ∈ HoV such that f =

∑
V :|V |≤Q fV .

Definition 1. Suppose f =
∑

V :|V |≤Q fV where fV ∈ HoV . Then,
∑

V :|V |≤Q fV is called the
functional ANOVA decomposition of f with respect to µ.

In light of Theorem 1, we assume compactness throughout to have a well-defined target
of inference (i.e., the functional ANOVA decomposition of f in Definition 1). By the
orthogonality constraints in Eq. (3), the effect f{i,j}(xi, xj) in Definition 1 represents, for
example, the variation that cannot be explained by 1D functions of xi and xj and an intercept.
When the covariates are independent, then the signal variance decomposes as

var(f) = var(f{∅}) +
∑
i

var(f{i}) +
∑
i,j

var(f{i,j}) + · · · var(f{1,2,··· ,p}(x1, · · · , xp)), (4)

where var(f) = 〈f, f〉µ. Hence, Eq. (4) allows us to analyze how the variance of the function
is distributed across the interactions of different orders. Hence, the name functional analysis
of variance or functional ANOVA. When all the covariates are categorical, then the functional
ANOVA reduces to the classical ANOVA decomposition of a contingency table.

2.3 How to Achieve Sparsity for Nonlinear Functions

To complete our specification of Eq. (1), we still need to pick a loss and penalty function on
HQ. We motivate our choice of loss and penalty from a Bayesian point of view. That is, we
view L(·, ·) as the negative log-likelihood function, J(f) as the negative log prior on f , and
f̂ as the maximum a priori (MAP) estimate under our proposed Bayesian model.

Our loss. Since the noise terms are Gaussian (see “Problem Statement” at the start of Sec-
tion 2), the negative log-likelihood is quadratic: L(y, f(x)) = (y − f(x))2 (i.e., squared-error
loss).
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Our penalty. We are primarily interested in the case when f∗ is sparse, i.e., when f∗ depends
on a small number of covariates. So J(f) should promote such sparsity. To that end, we first
take a basis expansion of each component space, and then place a sparsity prior on the basis
coefficients. We assume that for all V ⊂ [p] and 1 ≤ |V | ≤ Q, there exists a BV ∈ N ∪ {∞}
and feature map ΦV : R|V | 7→ RBV such that the components of ΦV form a basis of HoV .
Then, for any fV ∈ HoV , there exists ΘV ∈ RBV such that fV (xV ) = ΘT

V ΦV (xV ). Hence,
if we can estimate ΘV , we can estimate the functional ANOVA decomposition of f∗ by
Theorem 1.

To obtain a MAP estimate of ΘV , we draw each ΘV ∼ N (0, θV · IBV ), where θV ∈ R is
a non-negative auxiliary parameter drawn from a sparsity prior (e.g., a Laplace prior) and
IBV denotes the BV ×BV identity matrix; see Section 5 for our particular choice of prior. If
θ := {θV } is sparse, then we claim that {fV } is sparse. To understand why, suppose θV = 0.
Then, the prior variance of fV equals 0. Hence, fV will equal 0. Thus, a prior that induces
sparsity in θ enables us to get sparsity in the number of effects selected. However, sparsity
in effects does not automatically guarantee that a sparse subset of covariates is selected, as
we discussed at the start of Section 2.

To get sparsity in covariates without requiring a heredity constraint, we draw θ from a
hierarchical sparsity prior; see Section 3.2 for details. Since ΦV is a basis of HoV and our
prior on ΘV has full support on RBV , our choice of likelihood and prior allows us to model
any f ∈ HQ as summarized below:

ΘV | θV ∼ N (0, θV · IBV ), V ⊂ [p], |V | ≤ Q, θV ≥ 0 (5a)

y(n) | x(n),Θ, σ2
noise ∼ N (f(x(n)), σ2

noise), f =
∑

V :|V |≤Q

ΘT
V ΦV (·), n ∈ [N ], (5b)

where the likelihood in the first equation corresponds to exp(−J(f)) and exp(−L(y(n), f(x(n))))
corresponds to the likelihood in the last equation.2 While other likelihoods and priors exist
to model interactions and sparsity, many existing sparse Bayesian methods are instantiations
of Eq. (5), and have desirable statistical shrinkage properties; see, for example, Wei et al.
(2019); Curtis et al. (2014); Griffin and Brown (2017); Agrawal et al. (2019); Chipman (1996);
George and McCulloch (1993). In the next section, we exploit the special Gaussian and
interaction structure in Eq. (5) for faster inference.

3. Using Two Kernel Tricks to Reduce Computation Cost

In principle, we can analytically compute the MAP estimate of ΘV in Eq. (5) (and hence solve
Eq. (1) in closed-form); conditional on θ, Eq. (5) reduces to conjugate Bayesian regression.
Unfortunately, unless p is very small or Q = 1, computing this closed-form solution is typically
computationally intractable, for reasons we describe next. To remedy this computational

2. While Eq. (5) has the flexibility to induce sparsity in both covariates and effects, it does not lead to
sparsity in the basis expansion of a selected effect (e.g., if fV is selected, then ΘV will be a dense vector
with probability one). Since our goal is not to learn a sparse representation of fV , our choice of a Gaussian
prior (or L2 regularization) is not very limiting since irrelevant basis components will just be shrunk
close to zero. However, if there are many irrelevant basis components in ΦV , then a Laplace prior (or L1

penalty) might be preferable. Other methods, such as sparse additive models, also use L2 regularization
to penalize the basis expansion coefficients (Liu et al., 2008).
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intractability, we show how to make inference scale linearly with p by exploiting special
model structure in Section 3.1 and Section 3.2.

Intractability of Conjugate Bayesian Regression. Our model in Eq. (5) hasBQ :=
∑

V :|V |≤QBV
parameters. In general, computing the MAP estimate of these BQ parameters requires in-
verting a BQ ×BQ covariance matrix (Rasmussen and Williams, 2006, Chapter 2). So the
computational cost of MAP inference scales as O(B3

Q + NB2
Q). BQ may be prohibitively

large for two reasons. First, BQ is large if any basis-expansion size (i.e., any BV ) is large. For
example, if HoV is infinite-dimensional (e.g., if HV equals the space of all square-integrable
functions of xV ), then BV = ∞. Even if all the HoV are finite-dimensional (e.g., if HV is
generated from a finite polynomial basis), BV typically grows exponentially with the size
of |V |; see, e.g., Huang (1998). BQ may also be large due to the combinatorial sum over
interactions; even if all of the BV equal 1, BQ still has on the order of O(pQ) terms. Hence,
without additional structure, the computation time for conjugate Bayesian regression is lower
bounded by Ω(p3Q + p2QN). Fortunately, due to unique structure in our problem, we show
how to avoid the cost of explicitly generating the basis expansion (“Trick 1” in Section 3.1),
and summing over all O(pQ) interactions (“Trick 2” in Section 3.2). In what follows, we
assume θ is fixed. Then, we show how to estimate θ in Section 5.

3.1 Trick 1: Represent and Access Sparsity Without Basis Expansion

We show how to remove the computational dependence on the size of BV through a kernel trick.
Our kernel generalizes the one used in Gu and Wahba (1993), which assumes independent
covariates, to the case of general covariate distributions. In order to prove the existence of a
kernel trick, we make the following assumption:

Assumption 1. Each HV is a reproducing kernel Hilbert space (RKHS).

Given that there exist reproducing kernels that can approximate any continuous function
arbitrarily well, Assumption 1 is a mild condition (Micchelli et al., 2006). The non-trivial
part is proving the existence of a kernel to induce HoV , which is not immediate due to the
orthogonality constraints in Eq. (3).

Proposition 1. (existence of a kernel trick) Under Assumption 1, there exists a positive-
definite kernel kV such that kV (x, x̃) = 〈ΦV (x),ΦV (x̃)〉, where the components of ΦV ∈ RBV
form a countable basis of HoV .

We prove Proposition 1 in Appendix B.1. In Section 3.2, we show how to efficiently
evaluate kV without explicitly computing the feature maps. In light of Proposition 1, we
introduce model selection kernels to rewrite the model in Eq. (5) as a Gaussian process. We
then show how this reparametrization allows us to perform inference more efficiently.

Definition 2. A kernel kθ is a model selection kernel if it can be written as
∑

V :|V |≤Q θV kV ,
where kV is the reproducing kernel for HoV and k∅(x, x̃) = 1 (i.e., the kernel k∅ induces the
space of constant functions H∅).
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Lemma 1. Let {y(n)}Nn=1 be generated according to the model in Eq. (5). Suppose that
{ỹ(n)}Nn=1 is generated according to the model below:

f ∼ GP (0, kθ)

ỹ(n) | f, x(n) ∼ N (f(x(n)), σ2
noise), n ∈ [N ],

(6)

where kθ is defined in Definition 2. Then, {y(n)}Nn=1 | X
d
= {ỹ(n)}Nn=1 | X , where d

= denotes
equality in distribution.

Based on the reparametrization in Lemma 1 (see Appendix B.4 for the proof), J(f)
equals the penalty induced by the kernel kθ. Hence, the solution to Eq. (1) reduces to kernel
ridge regression (or equivalently equals the posterior predictive mean of the Gaussian process)
by Rasmussen and Williams (2006, Chapter 2):

f̂(x) = f̄θ(x) :=
N∑
n=1

α̂nkθ(xn, x), α̂ = (Kθ + σ2
noiseIN×N )−1Y, (7)

where Y is a column vector with nth component Yn = y(n) and [Kθ]nm = kθ(x
(n), x(m)).

Unlike the “weight-space view” in Section 2.3 where fV = ΘT
V ΦV (·), it is not clear how to

actually recover the effects fV from the prediction function f̄θ. For general kernels, accessing
fV (and consequently computing the functional ANOVA of f̄θ) lacks an analytical form.
Fortunately, we can easily recover fV from f̄θ for model selection kernels:

Lemma 2. Let kθ be a model selection kernel and f (M)(x) =
∑M

m=1 αmkθ(xm, x) for αm ∈ R
and xm ∈ Rp. Then, f (M)(x) =

∑
V :|V |≤Q fV , where fV = θV

∑M
m=1 αmkV (xm, x) ∈ HoV .

It follows from Lemma 2 that model selection kernels enable easy variable selection; we
just need to examine the sparsity pattern of θ. For general kernels, we would need to search
over the entire domain of the fitted regression function (a p-dimensional space) to perform
variable selection.

Corollary 1. (nonlinear variable selection) Suppose f (M)(x) =
∑M

m=1 αmkθ(xm, x). Then,
f (M)(x) functionally depends on the set of covariates {i : ∃V ⊂ [p], i ∈ V s.t. θV 6= 0}.

We have avoided the cost of generating the basis expansion to solve Eq. (1), but Eq. (7)
is still computationally intractable; kθ sums over O(pQ) kernels. Hence, the cost to compute
the kernel matrix Kθ and invert (Kθ +λIN×N ) takes O(N2pQ) and O(N3) time, respectively.

3.2 Trick 2: A Recursion to Avoid a Combinatorially Large Summation Over
Interactions Given Covariate Independence

We show how to compute kθ in O(pQ) time (and hence solve Eq. (7) in O(pQN2 + N3)
time) for a particular subset of model selection kernels that we call SKIM-FA kernels. In
what follows, we start by motivating SKIM-FA kernels from the hierarchical Bayesian char-
acterization of model selection kernels in Eq. (5). We show that, when the covariates are
independent, we can compute SKIM-FA kernels much more efficiently using a second kernel
trick. In Section 4, we generalize to the non-independent covariate case by building on the
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procedure described in this section.

The Sparse Kernel Interaction Model for Functional ANOVA (SKIM-FA). To motivate SKIM-
FA, suppose for the moment we know what covariates f functionally depends on. Let the
binary vector κ ∈ {0, 1}p encode this knowledge, where κj = 0 if and only if f does not
depend on covariate xj . Then, fV = 0 if there there exists some j ∈ V such that κj = 0.
Equivalently, it suffices to check that

∏
j∈V κj = 0. Hence, if we knew κ, we should adjust our

prior variance for fV from θV to θV
∏
j∈V κj . This update to the prior enforces support on

only selected covariates, and is the same as fitting the model without the irrelevant covariates
included. Since we do not know κ in advance, however, we treat κ as learnable parameter,
and use it to (1) induce sparsity in effects via the product structure above, and (2) perform
variable selection. We propose the following prior on ΘV in Eq. (5), which generalizes the
prior for linear pairwise interaction models in Agrawal et al. (2019):

ΘV | η, κ ∼ N

0, η2
|V |
∏
i∈V

κ2
i · IBV ×BV

 , (8)

for non-negative random vectors κ ∈ Rp+ and η ∈ RQ+1
+ . We do not restrict κ ∈ {0, 1}p so

that we can leverage gradient-based techniques for learning κ more easily; see Section 5 for
details.

SKIM-FA interpretation. In Eq. (8), η2
|V | quantifies the overall strength of |V |-way interactions

by modifying the prior variance of all effects of order |V |. Hence, η|V | plays an analogous
role to the “global scale” in sparse Bayesian linear models; see, for example, Piironen and
Vehtari (2017); Carvalho et al. (2009); Agrawal et al. (2019). κi plays the role of a “variable
importance” measure for covariate xi by affecting the prior variance of all effects involving
covariate xi. Hence, if it turns out an effect involving xi is strong, the posterior of κi will
place high probability at large values (i.e., indicating that covariate xi has high “importance”).
Notice that if κi = 0, then the prior variance of ΘV equals 0 whenever i ∈ V . Consequently,
all effects involving xi will equal 0. Hence, we can perform variable selection in O(p) time
by just examining the sparsity pattern of κ instead of in O(pQ) time using Corollary 1. In
Section 5, we show how we select our sparsity prior on κ. Finally, note that while we added
more structure to the prior, we have not lost modeling flexibility; as long as P(κi > 0) does
not equal 0, then the prior variance of ΘV will be non-zero.3 Hence, our prior will have
support on all of HQ.

Definition 3. A SKIM-FA kernel is a model selection kernel that can be written as

kSKIM-FA(x, x̃) =
∑

V :|V |≤Q

η2
|V |
∏
i∈V

κ2
i

 kV (x, x̃).

3. SKIM-FA considers all interactions of order Q among selected covariates (i.e., does not assume sparsity in
interactions between selected covariates). Specifically, suppose {x1, x2, x3} are selected and Q = 2. Then,
SKIM-FA considers all additive and pairwise effects between the first three covariates. If f{1,2} = 0, for
example, then the posterior of f{1,2} is non-zero because the prior on Θ{1,2} is drawn from a Gaussian
distribution with non-zero variance. However, as N increases, the posterior of f{1,2} will be close to 0.
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for some κ ∈ Rp and η ∈ RQ+1.

Proposition 2. For a SKIM-FA kernel, Eq. (5a) can be replaced by Eq. (8) in Lemma 1.

Proof. Set θV = η2
|V |
∏
i∈V κ

2
i in Lemma 1.

Efficient evaluation of SKIM-FA kernels. Recall that ki is the reproducing kernel for Hoi .
Suppose, for the moment, that the reproducing kernel kV for HoV equals

∏
i∈V ki; we will

shortly show that this condition holds when the covariates are independent. Then, by
Theorem 2 and Corollary 2 below, we can compute SKIM-FA kernels orders of magnitude
faster by not explicitly summing over all O(pQ) interactions in Definition 3.

Theorem 2. Suppose kV (x, x̃) =
∏
i∈V ki(xi, x̃i). Then,

kSKIM−FA(x, x̃) =

Q∑
q=1

η2
q k̄q(x, x̃) s.t.

k̄q(x, x̃) =
1

q

q∑
s=1

(−1)s+1k̄q−s(x, x̃)ks(x, x̃), k̄0(x, x̃) = 1,

ks(x, x̃) =

p∑
i=1

κ2s
i [ki(xi, x̃i)]

s.

(9)

As we show in Appendix B.5, the key to proving Theorem 2 is an old recursive kernel
formula provided in Vapnik (1995, pg. 199). From Theorem 2, we have two corollaries. The
first requires a short inductive argument; see Appendix B.6. The second follows immediately
by setting Q = 2 into Eq. (9).

Corollary 2. kSKIM−FA(x, x̃) takes O(pQ) time to evaluate on a pair of points.

Corollary 3. Suppose Q = 2. Then, kSKIM-FA(x, x̃) equals

0.5η2
2


 p∑
i=1

κ2
i ki(xi, x̃i)

2

−
p∑
i=1

κ4
i [ki(xi, x̃i)]

2

+ η2
1

p∑
i=1

κ2
i ki(xi, x̃i) + η2

0. (10)

To see why “trick 2” in Eq. (9) indeed acts as another kernel trick, consider the linear
interaction case when HQ consists of interactions of the form

∏
i∈V xi. Suppose further that

κ and η are equal to the ones vector. Then, kSKIM−FA(x, x̃) =
∑

V :|V |≤Q
∏
i∈V xix̃i, which

explicitly generates and sums over the interactions
∏
i∈V xi. However, it is well known that

polynomial kernels implicitly generate interactions, and hence can be used instead to avoid
summing over all interactions. The core idea in Eq. (9) is similar; the kernel ks, which sums
over kernels raised to the s power in Eq. (9), implicitly generates interactions of order equal
to s just like a polynomial kernel. However, instead of generating interactions of the form∏
i∈V xi, k

s operates on one-dimensional kernels ki, where its product with k̄q−s generates
interactions of the form

∏
i∈V ki. Since kV =

∏
i∈V ki by assumption, these “interactions” of

kernels span HoV by the product property of kernels.
To understand when kV =

∏
i∈V ki in Theorem 2 holds, we provide sufficient conditions

based a result from Gu and Wahba (1993). We leave our construction of ki to Appendix D.

10
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Assumption 2. (Tensor product space) For all V ⊂ [p] and 1 ≤ |V | ≤ Q, HV =
⊗

i∈V Hi.

Proposition 3. (Gu and Wahba, 1993) Suppose µ = µ⊗, where µ⊗(x) := µ1(x1)⊗µ2(x2) · · ·⊗
µp(xp) and µj is the marginal distribution of xj. Then, under Assumption 1 and Assumption 2,
kV =

∏
i∈V ki.

Since any Hilbert space of square-integrable functions of xV can be approximated arbi-
trarily well by taking tensor products of one-dimensional Hilbert spaces by Stone (1994);
Huang (1998), Assumption 2 is a mild assumption. The more problematic assumption is
that all covariates are independent (i.e., that µ = µ⊗).

4. How to Get Sparsity, Interactions, and Fast Inference When Covariates
Are Dependent

Here we extend to the general µ case. We start by motivating this extension in Section 4.1.
In Section 4.2, we develop a change-of-basis formula to take the functional ANOVA decom-
position of f̄θ with respect to µ⊗ to one with respect to µ. In this section, we assume Q = 2.
We defer the general Q case to Appendix F.

4.1 Practical Problems From Assuming Independent Covariates

Since µ⊗ = µ1(x1) ⊗ µ2(x2) · · · ⊗ µp(xp), µ⊗ has the same 1D marginal distributions
as µ. Nevertheless, we prove that the functional ANOVA decomposition of an f ∈ H
can be arbitrarily different depending on if µ⊗ or µ is selected. We prove this claim by
showing something stronger, namely that the intercepts between two functional ANOVA
decompositions can be arbitrarily far apart (see Appendix B.3 for the proof of Proposition 4).

Proposition 4. For any ∆ > 0, there exists a probability measure µ and square-integrable f
such that the relative difference

|fµ∅ − f
µ⊗
∅ |

|fµ∅ |
> ∆, where fµ∅ = Eµf(X) and f

µ⊗
∅ = Eµ⊗f(X).

To build intuition for Proposition 4, and motivate using µ instead of µ⊗ to compute the
functional ANOVA decomposition of f̄θ, consider the following toy example.

Example 1. Suppose f∗(x1, x2) = 100x1x2 − 50, where x1 could represent exercise, x2

protein consumption, and f∗(x1, x2) the expected percent decrease in body mass index after
taking a weight-loss drug for an individual who consumes x1 grams of protein and exercises
x2 minutes per week. Suppose exercise and protein consumption are positively correlated and
that µ corresponds to a multivariate Gaussian distribution with mean zero, unit variance, and
correlation equal to 0.9. Then, µ⊗ corresponds to a multivariate Gaussian distribution with
mean zero, unit covariance but correlation equal to 0. Suppose we report the intercept f∅ to
summarize the typical decrease in body mass index in a population of people who might take
the weight-loss drug (e.g., after drug approval). In the functional ANOVA decomposition
of f∗ with respect to µ, f∅ = Eµ[f∗] = Eµ[f∗ + ε] = Eµ[y]= 40. Hence, this intercept says
that, on average, people in this population should decrease their body mass index by 40% if
they take the drug. If we instead use µ⊗, then f∅ = Eµ⊗ [f∗] = −50 6= Eµ[f∗], suggesting

11
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(a) Product measure (b) Covariate measure (c) Runtimes on Simulated Data

Figure 1: Left and middle: the colors denote the contour plot of the function f∗(x1, x2) =
100x1x2 − 50. Darker green indicates larger positive values while darker red indicates larger
negative values. The gray solid lines in the left and right hand figures represent the density
contours of µ⊗ and µ in Example 1, respectively. Right : runtime comparisons of different
methods as p/N increases; see Section 7 for details.

that the drug increases body mass index. In the µ⊗ case, it is not clear how to interpret
the intercept; µ⊗ averages the regression surface f∗ over individuals who rarely occur in
the actual population (e.g., those who exercise very frequently but do not consume much
protein); see also Fig. 1a and Fig. 1b for a visualization.

4.2 A Change of Basis to Handle Covariate Dependence

We generalize to the non-independent case through a change-of-basis formula provided in
Theorem 3. Our formula allows us to re-express the effects estimated using the kernel in
Section 3.2, which assumes independent covariates, to one with respect to the actual distribu-
tion µ. Our idea is similar to ideas in numerical linear algebra; we use one parameterization
of a vector space, in our case the space of functions HQ, that makes computation “nice.”
Once we finish computation in the “nice” parameterization, we use a change-of-basis formula
to report the actual quantity we care about in the original parameterization of the space,
namely reporting the functional ANOVA decomposition of our fit f̄θ with respect to µ.

To make this idea mathematically precise, suppose we can write HQ using two different
parameterizations, one that uses µ⊗ in Eq. (3) (denoted as HoV,µ⊗) and the other that uses µ
in Eq. (3) (denoted as HoV,µ). Then,

HQ =
⊕

V :|V |≤Q

HoV,µ⊗︸ ︷︷ ︸
(a)

=
⊕

V :|V |≤Q

HoV,µ︸ ︷︷ ︸
(b)

. (11)

If these equalities indeed hold, then we can use Theorem 2 to estimate f∗ in O(pQN2 +N3)
time. Hence, it suffices to show how to take this estimate of f∗ and compute its functional
ANOVA decomposition with respect to µ instead of µ⊗ (i.e., move from the parameterization
in Eq. (11)(a) to the one in Eq. (11)(b)). We show how to compute this change-of-basis
when all the H{i} are finite-dimensional.

12
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Assumption 3. For all i ∈ [p] there exists a Bi <∞ and linearly independent set of contin-
uous functions {φib}Bib=1 such that H{i} = span{1, φi1, · · · , φiBi} and Φi = [φi1, · · · , φiBi ]T .

Assumption 3 is a mild condition since we can approximate any function arbitrarily
well by setting Bi sufficiently large given that H{i} is separable; see Huang (1998) for rates
of convergence for different finite-basis approximations. Under this assumption, Lemma 3
implies that HoV,µ⊗ = HoV,µ. Hence, a change-of-basis formula exists. We provide the
change-of-basis formula for Q = 2 in Theorem 3.

Lemma 3. Under Assumption 2, Assumption 3, and compactness of the domain of f , any
f ∈ H is square-integrable with respect to any probability measure.

Theorem 3. Suppose Q = 2 and that Assumptions 2 and 3 hold. For f ∈ H, let

f = f
µ⊗
∅ +

p∑
i=1

f
µ⊗
{i} +

p∑
i,j=1

f
µ⊗
{i,j}

= fµ∅ +

p∑
i=1

fµ{i} +

p∑
i,j=1

fµ{i,j}

be the functional ANOVA decompositions of f with respect to µ⊗ and µ, respectively. Then,
there exist unique coefficients, Ψi

ij ∈ R1×Bi ,Ψj
ij ∈ R1×Bj ,Ψ0

ij ∈ R, such that

fµ{i,j}(xi, xj) = f
µ⊗
{i,j}(xi, xj)− [Ψi

ijΦi(xi) + Ψj
ijΦj(xj) + Ψ0

ij ]

fµ{i}(xi) = f
µ⊗
{i} (xi) +

∑
p≥j>i

Ψi
ijΦi(xi) +

∑
1≤j<i

Ψi
jiΦi(xi)

fµ∅ = f
µ⊗
∅ +

∑
1≤i<j≤p

Ψ0
ij ,

(12)

where Φi denotes the (finite-dimensional) feature map in Definition 2.

We prove Theorem 3 in Appendix B.9. By Corollary 2, we can estimate fµ⊗{i} (xi) and
f
µ⊗
{i,j}(xi, xj) in time linear in p. Hence, it remains to show how we can actually compute
each Ψi

ij in Theorem 3. In Section 5, we show how to estimate Ψi
ij arbitrarily well using a

Monte Carlo approach.

5. Final Algorithm and Implementation Details

We start by describing and motivating our choice of sparsity prior on κ. Then, we show how
we fit κ and η using cross-validation and our computational tools in Section 3. We conclude
by showing how we compute Ψi

ij in Theorem 3 via Monte Carlo.
Our sparsity inducing prior on κ. To induce sparsity in κ for variable selection, we pick a
prior on κi that equals the mixture of a discrete point mass at 0 and a Uniform(0, 1) random
variable. Similar to a spike-and-slab prior (George and McCulloch, 1993), the point mass at 0
allows us to achieve exact sparsity. Unlike a spike-and-slab prior, however, we construct our
prior so that we can still take gradients (and hence use continuous optimization techniques

13
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Algorithm 1 Learn SKIM-FA Kernel Hyperparameters and Kernel Ridge Weights
1: procedure LearnHyperParams(M , γ, T , uinit, c) whereM equals the cross-validation

fold size, γ the learning rate, T the number of gradient descent steps, uinit initializer for
Ũ , and c the value selected in Eq. (13)

2: Initialize Ũ (0) = (uinit, · · · , uinit) ∈ Rp
3: Initialize η = (1, · · · , 1) ∈ RQ+1 . These are the global scale parameters in Eq. (8)
4: σ

(0)
noise =

√
0.5var(Y ) . Initialize noise variance as half of the response variance

5: τ (0) = (Ũ (0), η(0), σ
(0)
noise) . Collect all parameters into a single vector

6: for t ∈ 1 : T do . Make T gradient step updates
7: Sample A ∼ π . π is uniform distribution over all N −M subsets of [N ]
8: Collect N −M covariates in XA ∈ R(N−M)×p and responses in YA ∈ R(N−M)

9: for i ∈ 1 : p do
10: U

(t−1)
i = [Ũ

(t−1)
i ]2/

(
[Ũ

(t−1)
i ]2 + 1

)
11: κ

(t−1)
i = max

(
U

(t−1)
i − c, 0

)
12: end for
13: Compute kernel matrix KA

τ ∈ R(N−M)×(N−M), where [KA
τ ]ij =

kSKIM-FA([XA]i, [XA]j) via Eq. (9) and [XA]i, [XA]j ∈ Rp

14: Let fA equal the solution of Eq. (7) with λ = [σ
(t)
noise]

2, K = KA
τ , Y = YA

15: L = 1
M

∑
n∈[N ]\A(y(n) − fA(x(n)))2 . Cross-validation loss in Eq. (14)

16: τ (t) = τ (t−1) − γ∇τ (t−1)L . Gradient update to parameters via autodiff library
17: end for
18: Compute α(T ), the kernel ridge regression weights found by solving Eq. (7) using all

N datapoints with SKIM-FA hyperparameters equal to κ(T ), η(T ), σ
(T )
noise

19: return κ(T ), η(T ), σ
(T )
noise, α

(T )

20: end procedure

like gradient descent). Our construction involves introducing another random variable Ui so
that

κi =
1

1− c
max(Ui − c, 0), Ui ∼ Uniform(0, 1). (13)

Then, P(κi = 0) = c. Otherwise, with probability 1− c, κi ∼ Uniform(0, 1). Hence, c plays a
similar role as a prior inclusion probability in a spike-and-slab prior. Since the gradient of κi
equals 0 when Ui < c, this zero gradient property is key for inducing sparsity; see our proof
of Proposition 5.4

Cross-validation loss and optimization. Given the empirical success of cross-validation and its
use in other functional ANOVA methods (e.g., as in Gu and Wahba (1993); Lin and Zhang
(2006)), we also use cross-validation to fit the SKIM-FA kernel hyperparameters κ and η.
Specifically, we would like to pick U, η, σ2

noise (where κi = 1
1−c max(Ui − c, 0)) by minimizing

4. At Ui = c, the derivative of max(Ui − c, 0) is undefined. Since max(Ui − c, 0) is a convex function, the
set of all subgradients at Ui = c is [0, 1]. We let the subgradient equal 0 at Ui = c.
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a leave-M -out cross validation loss:

L(U, η, σ2
noise) =

1(
N
M

) ∑
A:A⊂[N ]
|A|=N−M

 1

M

∑
m∈A

(y(m) − f̄A(x(m)))2



= EA∼π

 1

M

∑
m∈[N ]\A

(y(m) − f̄A(x(m)))2

 ,
(14)

where f̄A equals the kernel ridge regression fit in Eq. (7) using the subset of datapoints in A
and π equals the uniform distribution over all N −M sized subsets A of [N ].

Since the gradient of L(U, η, σ2
noise) exists when all Ui 6= c, and the subgradient when some

Ui = c, we can minimize Eq. (14) using gradient descent. However, this loss is computationally
intensive; we need to solve Eq. (7)

(
N
M

)
times in order to take a single gradient descent

step. Instead, we approximate Eq. (14) by using stochastic gradient descent. Specifically,
we randomly draw a single A from π in Eq. (14) and use the mean-squared prediction error
of f̄A to estimate Eq. (14). Then, this estimate leads to an unbiased estimate of Eq. (14),
and hence an unbiased estimate of the gradient of L(U, η, σ2

noise). We summarize our full
procedure in Algorithm 1, and prove that it leads to sparsity below.5

Proposition 5. Suppose κ(t)
i = 0 at some iteration t in Algorithm 1. Then, for all subsequent

iterations t′ ≥ t, κ(t′)
i = 0.

Based on Proposition 5, we may view Algorithm 1 as a gradient-based analogue of
backward stepwise regression; we start with the model that includes all covariates by
initializing all Ui > c (and consequently all κi > 0). Then, we keep pruning off covariates
the longer we run gradient descent. We demonstrate empirically in Section 7 that the actual
data-generating covariates remain while the irrelevant covariates get pruned off. Once we
have found the kernel hyperparameters from Algorithm 1, Algorithm 2 and Algorithm 3 show
how to perform variable selection and recover the effects, respectively. Both Algorithm 2
and Algorithm 3 follow directly from Corollary 1 and Lemma 2. In Appendix E, we discuss
additional algorithmic details such as how to select c in Algorithm 1.
Estimating Ψi

ij for change-of-basis formula in Theorem 3. Our change-of-basis formula
in Eq. (12) requires computing Ψi

ij . As we show in our proof of Eq. (12), Ψi
ij has the

interpretation as the basis coefficients associated with an L2 projection. Since this L2

projection requires a high-dimensional integration, we use Monte Carlo to estimate Ψi
ij in

Algorithm 4. We prove that our Monte Carlo estimate converges to the true projection
coefficients in Proposition 6 below.

Proposition 6. Let W → ∞ in Algorithm 4. Then, the components returned from Algo-
rithm 4 converge to the decomposition in Eq. (12).

5. Note that in Algorithm 1 we do not minimize over U but instead over Ũ , where Ui =
Ũ2

i

Ũ2
i +1

. Since the

range of Ũ2
i

Ũ2
i +1

equals (0, 1) when Ũi varies over all of R, we can optimize Ũi over an unconstrained domain.

Since we only care about estimating the κi, it does not matter that Ui is not a 1-1 function of Ũi.
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Algorithm 2 SKIM-FA Variable Selection
1: procedure VarSelect(κ)
2: return {i : κi 6= 0}
3: end procedure

Algorithm 3 Estimated functional ANOVA effect f̄V of f̄θ with respect to µ⊗
1: procedure OrthEffects(V , α, κ, η, α)
2: θV = η2

|V |
∏
i∈V κ

2
i

3: return f̄V (·) = θV
∑N

n=1 αnkV (x(n), ·)
4: end procedure

6. Related Work

Below we compare SKIM-FA to existing functional ANOVA methods, and our previous work
for the linear interaction case. We continue our literature review in Appendix C, where we
also contrast with further methods used for interaction discovery.

Comparison with existing functional ANOVA methods. The foundational work by Gu and
Wahba (1993) used a type of model selection kernel to estimate the functional ANOVA
decomposition of f∗ with splines. Since the method in Gu and Wahba (1993) does not lead to
sparsity, Gunn and Kandola (2004); Lin and Zhang (2006) put an L1 penalty on θ to achieve
sparsity, similar to multiple kernel learning techniques (Lanckriet et al., 2004a). Adding
an L1 penalty does not lead to an analytical solution nor a convex optimization problem.
Hence, Gunn and Kandola (2004); Lin and Zhang (2006) alternate between minimizing θ and
recomputing f̄θ, similar to Algorithm 1. Other approaches use cross-validation and gradient
descent to iteratively select θ (Gu and Wahba, 1993). In either case, the computational
bottleneck is computing and inverting (Kθ + σ2

noiseIN×N )−1Y : kθ takes O(pQ) time to
compute on a pair of points. Hence, computing and inverting Kθ +σ2

noiseIN×N take O(pQN2)
time and O(N3) time, respectively.

Many existing functional ANOVA techniques assume that all covariates are independent,
i.e., that µ equals the product measure; see, for example, Gunn and Kandola (2004); Lin and
Zhang (2006); Gu and Wahba (1993); Durrande et al. (2013). Hooker (2007) highlighted
pathologies that arise when using µ⊗ instead of µ. Specifically, he empirically showed
on synthetic and real data that the functional ANOVA decomposition of an f ∈ H with
respect to µ can be significantly different than the decomposition with respect to µ⊗. This
discrepancy arises because µ⊗ can place high probability in regions where the actual covariate
distribution µ has low probability; see also Section 4.1.

Finally, unlike our approach, some functional ANOVA methods assume sparsity in the
effects rather than in the covariates the response depends on; see, for example, Gunn and
Kandola (2004); Lin and Zhang (2006)). Recall from the discussion and example in Section 2
that sparsity in the covariates is useful for interpretability and downstream applications. But
sparsity in the effects need not imply sparsity in the covariates. For example, suppose Q = 2.
Then, there are on the order of p2 interaction effects. A method that selects p non-zero
effects might be considered sparse in the effects since p� p2. But the selected effects could
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Algorithm 4 Change of Basis Formula for Finite Dimensional Model Selection Kernels
1: procedure ReExpressEffect(α, kθ, W , µ)
2: Compute fµ⊗{i,j}, f

µ⊗
{i} , f

µ⊗
∅ using Algorithm 3

3: For 1 ≤ w ≤W randomly sample x(w) i.i.d.∼ µ

4: Compute Xij = [1 Φi(x
(1)
i ) · · ·Φi(x

(W )
i ) Φj(x

(1)
j ) · · ·Φj(x

(W )
j )]T , 1 = (1, · · · , 1) ∈ RW

5: Compute fµ⊗ij,W = [f
µ⊗
{i,j}(x

(1)
i , x

(1)
j ) · · · fµ⊗{i,j}(x

(W )
i , x

(W )
j )]T

6: Compute [Ψ̂0
ij Ψ̂i

ij Ψ̂j
ij ]
T = (XT

ijXij)
−1XT

ijf
µ⊗
ij,W . Least-squares projection

7: Compute f̂µ{i,j} = f
µ⊗
{i,j} − [Ψ̂i

ijΦ
T
i (·) + Ψ̂j

ijΦ
T
j (·) + Ψ0

ij ]

8: Compute f̂µ{i} = f
µ⊗
{i} +

∑
j>i Ψ̂i

ijΦi(·) +
∑

j<i Ψ̂i
jiΦi(·)

9: Compute f̂µ∅ = f
µ⊗
∅ +

∑
i<j Ψ̂0

ij

10: return f̂µ{i,j}, f̂
µ
{i}, f̂

µ
∅

11: end procedure

correspond to p (or nearly p) selected covariates, which would not reduce the number of
covariates.

Comparison with Agrawal et al. (2019). There are five main differences between this work
and Agrawal et al. (2019): the method in Agrawal et al. (2019) (1) assumes linear interaction
effects, (2) only considers pairwise interactions, (3) assumes strong-hierarchy (namely that
interactions only occur among selected main effects), (4) does not necessarily correspond
to an ANOVA decomposition, and (5) does not induce exact sparsity. See Appendix C for
further discussion.

7. Experiments

Summary of experimental results. In this section, we compare our inference methods in
Section 5 against existing procedures in terms of variable selection and estimation performance.
We find that when the interaction effects are strong or comparable to the strength of the
additive effects, our method outperforms existing methods in terms of variable selection
and estimation performance. When the interaction effects are weak our method does not
(uniformly) have the best performance but still performs well relative to many of the other
methods.6

There are two immediate challenges with our empirical evaluation. The first is that
existing methods estimate the functional ANOVA decomposition assuming all covariates
are independent (or sometimes do not even specify the measure). Hence, we start our
evaluation by assuming the covariates are independent so that we can compare against
existing methods in Section 7.3 and Section 7.4. Then, in Section 7.5, we show why the
assumption of independent covariates is problematic to demonstrate the practical utility of
Algorithm 4.

6. All results can be re-generated using the data and code provided in https://github.com/agrawalraj/
skimfapaper.
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The second challenge concerns our performance metrics (detailed in Section 7.1 and
Section 7.2), which require knowing the ground truth effects. Since we do not know the
ground truth effects in real data, we start in Section 7.3 by evaluating each method on
simulated data so that we have ground truth effects. To compare methods on real data, we
use a similar evaluation procedure as in Agrawal et al. (2019) to construct a synthetic ground
truth for benchmarking (see Section 7.4 for details).

7.1 Benchmark Methods

We compare our method against other methods used to model high-dimensional data and
interactions. We focus on the Q = 2 case throughout since (1) existing methods typically
only work for the pairwise interaction case and (2) higher-order interactions are often difficult
to interpret and estimate. Even when Q = 2, the functional ANOVA methods outlined in
Section 7.1 take O(p2N2 + N3) time, making them computationally intractable for even
moderate p and N settings. Instead, we focus on methods that can model interactions and
actually scale to moderate-to-large p and N settings. These methods include approximate
“two-stage” and greedy forward-stage regression methods, and linear interaction models.
We detail these approaches in more depth in Appendix C. The list below summarizes the
candidate methods (and software implementations) that we select from each category for
empirical evaluation. In Appendix D and Appendix E we detail the hyperparameters used
to fit SKIM-FA.

SPAM-2Stage: we perform variable selection by fitting a sparse additive model (SpAM) (Liu
et al., 2008) to the data. We use the sam package in R. Since sam does not provide a default
way to select the L1 regularization strength, we use 5-fold cross-validation. For estimation,
we generate all main and interaction effects among the subset of covariates selected by SpAM.
We calculate these effects by taking pairwise products of univariate basis functions generated
from a natural cubic spline basis with 5 total knots; see Appendix D for details. We estimate
the basis coefficients (and hence effects) using ridge regression, where again we use 5-fold
cross-validation to pick the L2 regularization strength.

Multivariate Additive Regression Splines (MARS): we use the python implementation of
MARS (Friedman, 1991) in py-earth. We consider two functional ANOVA decompositions
of the fitted regression function: (1) MARS-Vanilla and (2) MARS-EMP. For MARS-Vanilla,
the main effect of each covariate equals the sum of all selected univariate basis functions
of that covariate (i.e., after the pruning step of MARS). Similarly, each pairwise effect
equals the sum of all selected bivariate basis functions of those two covariates. This is
the functional ANOVA decomposition originally proposed in Friedman (1991) and the one
actually implemented in existing MARS software packages. It is unclear, however, what
measure this functional ANOVA decomposition is taken with respect to. To the best of our
knowledge, there currently does not exist a procedure to perform the functional ANOVA
decomposition of MARS with respect to the empirical distribution of the covariates. We
describe how to perform such a decomposition via MARS-EMP, which assumes the covariates
are jointly independent. This method could be of independent interest and is outlined in
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Appendix G.

Hierarchical Lasso (HierLasso): we use the implementation of HierLasso (Lim and Hastie,
2015) in the authors’ R package glinternet. Since Lim and Hastie (2015) use cross-validation
to pick the L1 regularization strength, we similarly use 5-fold cross-validation.

Pairs Lasso: we fit the Lasso on the expanded set of features {xi}pi=1 and {xixj}pi,j=1. We
fit the Lasso using the python package sklearn, and use 5-fold cross-validation to select the
L1 regularization strength.

7.2 Evaluation Metrics

Variable selection evaluation metrics. We consider both the power to select correct covariates
and avoid incorrect ones. # Correct Selected counts the number of covariates correctly
selected by the method. Higher is better. # Wrong Selected counts the number of covariates
incorrectly selected by the method (i.e., Type I error). Lower is better. # Correct Not
Selected counts the number of covariates that belong to the true model but were not selected
by the method (i.e., Type II error). Lower is better.

Estimation evaluation metrics. We evaluate how well a method estimates main effects and
interaction effects. Instead of looking only at the total mean squared estimation error, we
break this error into multiple buckets to understand what bucket drives the majority of the
error. Lower is better for all of the following quantities. Correct Selected SSE (Main) takes
the sum of squared errors (SSE) between each estimated main effect component and true
main effect component. This sum equals

∑
i∈S1
‖f∗i − f̂i‖2µ, where S1 is the set of correctly

identified main effects, f̂i is the estimated main effect, and f∗i is the true main effect. Correct
Not Selected SSE (Main) takes the sum of squared norms of main effects not selected. This
sum equals

∑
i∈S2
‖f∗i ‖2µ, where S2 is the set of correct main effects not selected. Wrong

Selected SSE (Main) takes the sum of squared norms of main effect components incorrectly
selected. This sum equals

∑
i∈S3
‖f̂i‖2µ, where S3 is the set of incorrect main effects selected.

Correct Selected SSE (Pair), Correct Not Selected SSE (Pair), and Wrong Selected SSE (Pair)
are the same as the analogous main effect metrics but instead considers interaction effects.
Total SSE equals the sum of the 6 buckets above and Total SSE / Signal Variance equals
the relative estimation error, i.e., Total SSE divided by the true signal variance.

7.3 Synthetic Data Evaluation

We randomly generate covariates and responses as follows. For the covariates, we draw
each data point and covariate dimension x(n)

i
i.i.d.∼ Uniform([−1, 1]). Since [−1, 1] is compact,

Theorem 1 ensures that the functional ANOVA decomposition is unique. We let y depend
on the first 5 covariates; the remaining p− 5 covariates are taken as noise covariates that we
do not want to select. To generate responses reflective of what we might expect in real data,
we consider the 5 trends shown in Fig. A.1: linear, sine, logistic, quadratic, and exponential.
We let the main effects equal the sum of these 5 trends, where the ith trend is applied
to covariate i. For the interactions between the first 5 covariates, we consider all pairwise
products of the 5 trends above, resulting in 10 total interactions. We select a noise variance
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Method Setting # Correct Selected # Wrong Selected # Correct Not Selected
SKIM-FA Weak Main 5 9 0
MARS Weak Main 5 75 0

SPAM-2Stage Weak Main 1 41 4
HierLasso Weak Main 5 120 0
Pairs Lasso Weak Main 5 144 0
SKIM-FA Equal 5 0 0
MARS Equal 5 71 0

SPAM-2Stage Equal 5 15 0
HierLasso Equal 5 40 0
Pairs Lasso Equal 5 213 0
SKIM-FA Main-Only 3 0 2
MARS Main-Only 5 70 0

SPAM-2Stage Main-Only 5 15 0
HierLasso Main-Only 4 5 1
Pairs Lasso Main-Only 4 6 1

Table 1: Synthetic Data Variable Selection Performance Results for p = 1000. The method
with the fewest number of incorrect covariates selected is bolded.

such that the R2 =
σ2
signal

σ2
signal+σ

2
noise

= 0.8, where σ2
signal = 〈f∗, f∗〉µ. We further decompose the

signal variance in terms of the total variance explained by main effects and interactions.
Similar to the empirical evaluations in Lim and Hastie (2015), we consider the following
three settings:

• Weak Main Effects: each main effect and pairwise effect has 0.01 * 1/5 and 0.99
* (1 / 10) of the total signal variance, respectively. Hence, the total main effect and
pairwise effect variances equal 1% and 99% of the total signal variance, respectively.

• Equal Main and Interaction Effects: each main effect and pairwise effect has 0.5 *
1/5 and 0.5 * (1 / 10) of the total signal variance, respectively. Hence, the total main
effect variance equals the total pairwise signal variance.

• Main Effects Only: each of the 5 main effects has 1/5th of the total signal variance,
and each pairwise effect has 0 signal variance (i.e., no pairwise interactions).

To test the impact of increasing dimensionality on inference quality, we consider p ∈
{250, 500, 1000} and keep N = 1000 fixed for each setting. For estimation, we compare only
the nonlinear methods; linear methods will artificially perform poorly since some of the effects
are highly nonlinear by construction. Evaluating estimation performance is trickier than
evaluating selection performance since the functional ANOVA decomposition depends on the
choice of measure. Unless otherwise stated, the target of inference is finding the functional
ANOVA decomposition of f∗ with respect to µ (the joint distribution of the covariates).

We summarize the variable selection and estimation performances of each method for
p = 1000 in Table 1 and Table 2, respectively; see Appendix I for model performance results
for all choices of p. As we discuss below, SKIM-FA outperforms all of the other methods (in
terms of both variable selection and estimation) in the Weak Main Effects and the Equal
Main and Interaction settings. For the Main Effects Only setting, SKIM-FA selects the
fewest number of incorrect covariates. Since SKIM-FA does not select two of the correct
covariates in this setting, however, its estimation performance is worse than some of the
other benchmark methods.
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Method Setting
Correct
Selected
SSE

(Main)

Correct
Not

Selected
SSE

(Main)

Wrong
Selected
SSE

(Main)

Correct
Selected
SSE
(Pair)

Correct
Not

Selected
SSE
(Pair)

Wrong
Selected
SSE
(Pair)

Total
SSE

Total SSE
÷

Signal
Variance

SKIM-FA Weak Main 0.72 0 1.37 0.61 0 0.63 3.33 0.17
SPAM-2Stage Weak Main 0.16 0.2 6.69 0 18.33 0.31 25.69 1.28
MARS-EMP Weak Main 0.67 0 5.86 3.37 0 5.63 15.52 0.78

MARS-VANILLA Weak Main 23.62 0 3.18 23.16 0 15.43 65.39 3.27
SKIM-FA Equal 1.54 0 0 0.29 0 0 1.82 0.09

SPAM-2Stage Equal 1.67 0 1.07 0.41 0 2.16 5.31 0.27
MARS-EMP Equal 0.61 0 3.84 1.7 0 2.52 8.67 0.43

MARS-VANILLA Equal 454.88 0 3.16 21.46 0 13.22 492.72 24.64
SKIM-FA Main Only 2.7 8.1 0 0 0 0.24 11.03 0.55

SPAM-2Stage Main Only 2.67 0 0.78 0 0 0.02 3.46 0.17
MARS-EMP Main Only 0.45 0 2.68 0 0 2.39 5.51 0.28

MARS-VANILLA Main Only 16.14 0 1.56 0 0 10.33 28.02 1.4

Table 2: Synthetic Data Estimation Performance Results for p = 1000. The method with
the smallest total SSE is bolded.

Weak main effects setting. In the setting of weak main effects, Spam-2Stage performs worse
than the other methods in terms of the power to select correct covariates; Spam-2Stage
only selects one correct covariate for p = 500 and p = 1000. This poor variable selection is
expected since the signal is locked away in the interactions but SpAM assumes additive effects.
In particular, only 1% of the variance is explained by additive effects (even though additive
and interaction effects explain 80% of the variance in the response). MARS, HierLasso, and
Pairs Lasso detect all 5 correct covariates but they all pick up many more incorrect covariates
relative to SKIM-FA.

MARS selects many incorrect covariates because it can only form an interaction between
two covariates if at least one of the covariates has an additive effect (similar to Spam2Stage).
In the extreme case of no additive effects, for example, MARS randomly selects covariates to
have additive effects. By random chance, MARS will eventually select a correct covariate
(i.e., one the response actually depends on) to have an additive effect. Since this covariate
has an interaction effect, in the next step MARS will (likely) select the correct interaction
effect. Hence, MARS will need to select many incorrect covariates as additive effects before
identifying the true interactions.

In terms of estimation performance, SKIM-FA has the smallest total mean-squared
estimation error. Since Spam-2Stage only considers interactions between covariates selected
by SpAM, its poor estimation performance is driven by not selecting many of the correct
covariates. MARS-VANILLA performs a functional ANOVA decomposition with respect
to an unspecified measure. Hence, it is unclear how to interpret its main and interaction
effects. One might think (and truthfully what we initially thought) that MARS-VANILLA
would still return a functional decomposition close to one with respect to the actual covariate
distribution. Table I.6 shows that this intuition is incorrect; the relative estimation error of
MARS-VANILLA always exceeds 1! This poor estimation performance stems from not speci-
fying the measure (and hence the target of inference), not MARS’s ability in finding a model
with good predictive performance. In particular, MARS-EMP, which produces the exact
same predictions as MARS-VANILLA, yields better performance because it re-orthogonalizes
the fit with respect to the covariate distribution.
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Equal main and interaction effects setting. In this setting, all methods are able to recover all
5 true covariates. For both estimation and variable selection, SKIM-FA performs best.

Main effects only setting. Each method selects the majority of correct covariates. However,
some methods – namely Pairs Lasso and HierLasso – have a systematic bias; for all choices
of p, they never select covariate 3 (the quadratic trend) since a quadratic trend has a weak
linear correlation. Since the other methods can model nonlinear relationships, they can
pick up this trend. Hence, they have better statistical power to detect correct covariates,
improving variable selection performance. In terms of Type I error, some methods select
incorrect covariates much more frequently. For example, MARS consistently selects over 50
incorrect covariates for all choices of p. A potential reason for this poor performance is that
MARS induces sparsity through a greedy pruning step instead of an actual sparsity inducing
penalty as in the other methods.

Runtime comparisons. We conclude this section by comparing each method in term of
runtime in the high-dimensional setting. The two Lasso methods take O(p2N) time while
the remaining methods depend only linearly on p. When p > N and ω = p/N , our method
takes O(ωN3) while the two Lasso based methods take O(ω2N3) time. Hence, for higher-
dimensional problems, our method will become much faster relative to the Lasso methods.
For example, in genome-wide association studies, data sets can have N on the order of 103

and p on the order of 107 (1000 Genomes Project, 2015). Hence, ω = 104, which corresponds
to a potential 104 computational speedup factor. In Fig. 1c, we compare the runtimes of
each method as we vary p/N on simulated data. We keep N fixed at 100 and vary p from 10
to 104. As expected, as p/N increases, our method yields substantial computational savings
relative to Pairs Lasso and HierLasso. Relative to Spam-2Stage and MARS, our method
does not yield better computational scaling. However, based on our synthetic evaluation
above (and real data evaluation in Section 7.4), we have better statistical performance.

7.4 Evaluation on Real Data: Bike Sharing & Concrete Compressive Strength
Data sets

Evaluating the methods in terms of variable selection and estimation quality is challenging be-
cause we typically do not have ground truth main and interaction effects for high-dimensional
(real) data. Similar to the evaluation procedure in Agrawal et al. (2019), we instead take a
low-dimensional data set where N is large and p is small. We make it high-dimensional by
adding synthetic random noise covariates. These two choices have several purposes. First,
by fitting a regression function on the original low-dimensional data set, standard N−1/2

statistical convergence rates apply. Hence, for large N , a maximum-likelihood estimate of
the regression function will be close to the true regression function, creating a (near) ground
truth for estimation evaluation. For variable selection, the random noise covariates create
a “synthetic control;” if a method selects any of the random noise covariates as a main or
interaction effect, we know the method selected an incorrect covariate.

Based on these ideas, we consider the popular (low-dimensional) Bike Sharing data
set, which we downloaded from the UCI Machine Learning Repository. This data set
contains 17,389 datapoints and 13 covariates. We consider 4 continuous variables (hour, air
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Method # Covariates # Original Selected # Wrong Selected
SKIM-FA 1000 3 0
HierLasso 1000 3 5

SPAM-2Stage 1000 3 8
Pairs Lasso 1000 3 76

MARS 1000 3 119

Table 3: Variable Selection Performance for the Bike Sharing Data Set.

Method # Noise
Correct
Selected
SSE

(Main)

Correct
Not

Selected
SSE

(Main)

Wrong
Selected
SSE

(Main)

Correct
Selected
SSE
(Pair)

Correct
Not

Selected
SSE
(Pair)

Wrong
Selected
SSE
(Pair)

Total
SSE

SKIM-FA 1000 0.145 0.002 0 0.107 0.009 0 0.263
SPAM-2Stage 1000 0.149 0.002 0.027 0.081 0.009 0.000 0.269
MARS-EMP 1000 0.214 0.002 0.485 0.054 0.026 0.245 1.026
MARS-Vanilla 1000 6.556 0.002 0.796 0.947 0.026 1.882 10.209

Table 4: Estimation Performance for the Bike Sharing Data Set.

temperature, humidity, windspeed) and use the total number of bikes rented as the response.
We standardize the response by subtracting the mean and dividing by the standard deviation,
and min-max standardize the covariates so that each covariate belongs to [0, 1]. For the
proxy ground truth, we fit a pairwise interaction model consisting of all 4 main effects and 6
possible pairwise interactions.

Similar to our synthetic evaluation, we randomly subsample a total of N = 103 datapoints,
and then train each benchmark method on this subsampled data set. To make the inference
task high-dimensional we inject pnoise ∈ {250, 500, 1000} random noise covariates, where
these noise covariates are drawn iid from a Uniform(0, 1) distribution. We report on the same
variable selection and estimation metrics as in the synthetic experiments for pnoise = 1000 in
Table A.1 and Table A.2, respectively; see Table I.8 and Table I.9 for all choices of pnoise.
We see that again SKIM-FA has similar or much better estimation and variable selection
performance relative to the other methods. Finally, to understand the impact of correlated
predictors on performance, we append correlated (real) covariates to the Bike Sharing data
set (instead of synthetic ones drawn from a Uniform(0, 1) distribution) in Appendix I.1. We
again find that SKIM-FA has better performance than the other methods.

7.5 Impact of Correlated Predictors on the Functional ANOVA

So far we have performed the functional ANOVA decomposition assuming that the covariates
are jointly independent; for our synthetic data evaluation in Section 7.3 this independence
held by design. Here we show the effect correlated predictors have on the resulting de-
composition. Recall that previous functional ANOVA methods assume product measure,
but our Algorithm 4 provides the flexibility to select different measures. We demonstrate
the practical utility of this flexibility here. To this end, we consider the simplest possible
regression function with interactions: f(x1, x2) = x1x2. If x1 ⊥⊥ x2, then the functional
ANOVA decomposition of f with respect to µ(x1, x2) equals x1x2. However, if x1 and x2 are
correlated, then the functional ANOVA decomposition no longer equals x1x2. In particular,
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(a) ρ = 0.1 (b) ρ = 0.5

Figure 2: The left hand and right hand plots show how the additive effect of x1 (in the
functional ANOVA decomposition of the function x1x2) varies as the correlation between x1

and x2 increases.

(a) Absolute Value of Correlation Matrix (b) Main Effect of Water on Strength

Figure 3: Effect of Correlated Predictors on the Concrete Compressive Strength Data Set

as the correlation between x1 and x2 increases, f can be explained better by additive effects
(e.g., in the degenerate case when x1 = x2, then f(x1, x2) = x2

1). To test this empirically, we
randomly generate x1, x2 from a multivariate Gaussian distribution with marginal variances
equal to 1 and pairwise correlation equal to ρ. We let ρ ∈ {0.1, 0.5}. Fig. 2 shows that when
ρ gets stronger, the discrepancy between a functional ANOVA decomposition with respect
to µ(x1, x2) versus product measure µ⊗ = N(0, 1)⊗N(0, 1) increases. As expected, as the
correlation increases, a quadratic-like function of x1 and x2 explains f increasingly well.

We perform a similar analysis above but for real data, namely the Concrete Compressive
Strength data set from the UCI machine learning repository. In Fig. 3, we plot the correlations
between the 8 covariates that potentially predict the response (concrete strength). The
two most correlated covariates are the amount of water and the amount of superplasticizer.
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Method # Covariates Selected MSE R2

SKIM-FA 31 39.1 0.43
HierLasso 8 68.1 0.01

SPAM-2Stage 0 68.9 0.00
MARS 15 96.1 -0.39

Pairs Lasso – – –

Table 5: Test Set Predictive Performance for the Obesity Gene-Expression and SNP Data
Set.

Since the covariates have non-trivial correlations, the functional ANOVA decomposition with
respect to µ and µ⊗ might be different based on Proposition 4. In Fig. 3 we see that there
indeed is a difference; the (estimated) additive effect for water on concrete strength varies
substantially depending on which measure is selected to perform the functional ANOVA
decomposition. In Appendix I.2, we compare how the functional ANOVA decomposition
changes depending on if we use µ or µ⊗ for the Bike Sharing data set. Unlike the Concrete
Compressive Strength data set, however, we do not see a large difference between the two
functional ANOVA decompositions for the Bike Sharing data set.

7.6 Evaluation on Real Data: Obesity Gene-Expression and SNP Data Set

We conclude by evaluating each method on a high-dimensional genomics data set where
N � p. Unlike our previous evaluation, however, we do not know the ground truth effects.
Hence, we are unable to compute the evaluation metrics in Section 7.2. We instead report
the mean-squared prediction error of each method on a left-out test set as a proxy. As a
qualitative check on inference quality, we interpret the genes selected by SKIM-FA and find
that some correspond to genes already flagged as obesity-related based on previous biological
studies. Below we summarize the data and our findings in more depth.

We consider the data set kindly provided by Joseph et al. (2018), which consists of the
body mass index (BMI) of N = 87 individuals. After using the pre-processing steps in
Joseph et al. (2018), we also consider 13,276 gene-expression levels, 16 single-nucleotide
polymorphisms (SNPs), and a genetic risk-score feature as covariates for a total of p =
13,293 covariates. Since the number of covariates is more than 100 times the number of
observations, and the number of pairwise interactions almost exceeds 100 million, this data
set leads to a non-trivial inference task. We report the out-of-sample mean-squared error and
out-of-sample R2 for each method in Table 5 (15% of the data is used for testing purposes).
Table 5 has missing values for Pairs Lasso since the number of interactions is too large to run
on a single machine. SPAM-2Stage does not select any covariates, and hence the R2 is zero.
Both HierLasso and MARS seem to overfit given the poor R2 performance, even though
each selects 8 and 15 covariates, respectively. SKIM-FA performs the best (R2 = 0.43), and
selects 31 covariates; see Appendix I.3 for the names of all genes and SNPs selected.

We do not know which of these 31 genes are truly associated with obesity. Nevertheless,
we find that several genes SKIM-FA selects are obesity related based on previous studies.
SKIM-FA selects IRS2, which is a gene associated with obesity and diabetes risk; see, for
example, Butte et al. (2011). SKIM-FA says that IRS2 has a negative effect on BMI (i.e.,
a higher expression of IRS2 decreases BMI) which agrees with the findings in Lin et al.
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(2004) based on experimental data on mice; see Appendix I.3 for details. SKIM-FA also
selects a SNP (Rs2112347) and two genes (KISS1R and SKP1) which are obesity related
based on Young et al. (2015); Wang et al. (2021); Geronikolou et al. (2020). Interestingly,
as we discuss in Appendix I.3, SKP1 does not have strong additive effects, but it has the
strongest interactions. Hence, SKP1 might be an interesting candidate for further study of
its interaction properties.

8. Conclusion

In this paper, we developed a new, computationally efficient method to perform sparse
functional ANOVA decompositions. The heart of our procedure relied on a new kernel trick
to implicitly represent nonlinear interactions (Theorem 2), and a change-of-basis formula
(Theorem 3) to re-express the fit in terms of an arbitrary measure. We compared our method
against other methods often used to model high-dimensional data with interactions. We
found improved performance on both simulated and real data sets by relaxing assumptions
such as linearity and the presence of strong-additive effects while still remaining competitive
(or being orders of magnitude faster) in terms of runtime.

There are many interesting future research directions. One involves scaling our method to
both the large N and p setting; our current method takes O(pQN2 +N3) time which becomes
problematic for large N . This cubic dependence, however, is not unique to our method
but rather a fundamental obstacle faced by kernel ridge regression and Gaussian processes.
Fortunately, many methods already exist to help alleviate these computational challenges
with respect to N ; see, for example, Gardner et al. (2018); Titsias (2009); Quiñonero
Candela and Rasmussen (2005). Another interesting direction involves applying our method
to biological data sets. In particular, an open challenge in genomics has been detecting
epistasis, or interaction effects between genetic variants, from genome sequencing data (Maher,
2008; Aschard, 2016; Slim et al., 2018; Greene et al., 2010). Detecting epistasis has been
statistically and computationally challenging because p is in the millions, so the number
of pairwise interactions is on the order of trillions. Since our method does not require
explicitly generating all interactions, it has the potential to tractably detect interactions in
such especially high-dimensional data regimes.

Acknowledgments

This work was supported in part by the DARPA I2O LwLL program, NSF Award 2029016,
an ONR Early Career Grant, and MIT Lincoln Laboratory.

26



The SKIM-FA Kernel

Supporting Materials

Appendix A. Figures and Tables Referenced in Section 7

Figure A.1: Test functions used to generate synthetic data

Table A.1: Variable Selection Performance for the Bike Sharing Data Set.

Method # Covariates # Original Selected # Wrong Selected
SKIM-FA 1000 3 0
HierLasso 1000 3 5

SPAM-2Stage 1000 3 8
Pairs Lasso 1000 3 76

MARS 1000 3 119

Table A.2: Estimation Performance for the Bike Sharing Data Set.

Method # Noise
Correct
Selected
SSE

(Main)

Correct
Not

Selected
SSE

(Main)

Wrong
Selected
SSE

(Main)

Correct
Selected
SSE
(Pair)

Correct
Not

Selected
SSE
(Pair)

Wrong
Selected
SSE
(Pair)

Total
SSE

SKIM-FA 1000 0.145 0.002 0 0.107 0.009 0 0.263
SPAM-2Stage 1000 0.149 0.002 0.027 0.081 0.009 0.000 0.269
MARS-EMP 1000 0.214 0.002 0.485 0.054 0.026 0.245 1.026
MARS-Vanilla 1000 6.556 0.002 0.796 0.947 0.026 1.882 10.209
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Appendix B. Proofs

B.1 Proof of Proposition 1

It suffices to prove that HoV is an RKHS. First we prove that HoV is a Hilbert space. Since
HoV ⊂ HV , it suffices to show that HoV is a vector space and complete. To show that HoV is a
vector space, take arbitrary f, g ∈ HoV and α, β ∈ R. We want to show αf + βg ∈ HoV . Take
an arbitrary fA ∈ HA, A ( V . Then,

〈αf + βg, fA〉µ = α〈f, fA〉µ + β〈g, fA〉µ
= 0

since f, g ∈ HoV . Hence, HoV is a vector space.
Suppose towards a contradiction that HoV is not complete. Then, since HV is complete,

there exists an f ′ ∈ HV \ HoV and Cauchy sequence {fn}∞n=1 such that limn→∞ ‖f ′ − fn‖HV
= 0, where fn ∈ HoV and ‖ · ‖HV denotes the induced RKHS norm for HV . Then, there exists
an ε > 0 and fA ∈ HA, A ( V such that

ε = 〈f ′, fA〉µ
= 〈f ′ + fm − fm, fA〉µ
= 〈f ′ − fm, fA〉µ + 〈fm, fA〉µ
= 〈f ′ − fm, fA〉µ
≤ ‖f ′ − fm‖µ‖fA‖µ (by Cauchy-Schwarz).

(15)

To reach a contraction, it suffices to show that there exists an m <∞ such that ‖f ′−fm‖µ <
ε

‖fA‖µ . To obtain this inequality, we upper bound ‖ · ‖µ in terms of ‖ · ‖HV . Let rV be the
reproducing kernel for HV . Then, for f ∈ HV ,

|f(x)|2 = |〈f, rV (x, ·)〉HV |
2 (by the reproducing property)

≤ ‖f‖2HV rV (x, x)2 (by Cauchy-Schwarz).
(16)

Then,

‖f‖2µ =

∫
|f(x)|2dµ

≤ ‖f‖2HV

∫
rV (x, x)2dµ

(17)

Since HV belongs to the space of square integrable functions,
∫
rV (x, x)2dµ = MV < ∞.

Hence,
‖f ′ − fm‖µ ≤MV ‖f ′ − fm‖2HV <∞. (18)

Since ‖f ′ − fm‖2HV → 0, there exists an m such that ‖f ′ − fm‖µ < ε
‖fA‖µ . Hence, HoV is

complete.
To complete the proof it suffices to show that the evaluation functional on HoV is a

bounded operator. Since HV is an RKHS there exists an Mx <∞ such that for all f ∈ HV
|f(x)| ≤Mx‖f‖HV . (19)

Since HoV ⊂ HV , then for all g ∈ HoV ,

|g(x)| ≤Mx‖g‖HV . (20)
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B.2 Proof of Lemma 2

f (M)(x) =

M∑
m=1

αmkθ(xm, x)

=
M∑
m=1

 ∑
V :|V |≤Q

θV kV (xm, x)


=

∑
V :|V |≤Q

θV

 M∑
m=1

kV (xm, x)


=

∑
V :|V |≤Q

fV (x).

(21)

It remains to show that fV ∈ HoV . For allm ∈ [M ], kV (xm, ·) ∈ HoV . Hence, θV
∑M

m=1 kV (xm, x) ∈
HoV since HoV is a Hilbert space.

B.3 Proof of Proposition 4

We prove the claim using a constructive proof with p = 2 variables. Consider the function

f(x1, x2) = 1 + (x1 − x2)2kI(|x1| ≤M)I(|x2| ≤M). (22)

Suppose the joint distribution of (x1, x2) under µ equals(
x1

x2

)
∼ N

(0
0

)
,

(
1 ρ
ρ 1

) .

Then, the joint distribution of (x1, x2) under µ⊗ equals(
x1

x2

)
∼ N

(0
0

)
,

(
1 0
0 1

) .

By symmetry,

Eµ⊗ [f(x1, x2)] = 2µ2(x2 < 0)Eµ⊗ [f(x1, x2) | x2 < 0]

≥ 2µ1(x1 > c)µ2(x2 < 0)Eµ⊗ [f(x1, x2) | x1 > c, x2 < 0]

= µ1(x1 > c)Eµ⊗ [f(x1, x2) | x1 > c, x2 < 0]

≥ µ1(x1 > c)c2kI(|c| < M).

(23)

Under µ, we may assume without loss of generality that

x1 ∼ N (0, 1)

ε ∼ N (0, 1) s.t. ε ⊥⊥ x1

x2 = ρx1 +
√

1− ρ2ε.
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Then,

lim
ρ→1

Eµf(x1, x2) = 1 + lim
ρ→1

∫
(x1 − x2)2kI(|x1| ≤M)I(|x2| ≤M)dµ(x1, x2)

= 1 + lim
ρ→1

∫
(x1 − ρx1 −

√
1− ρ2ε)2kI(|x1| ≤M)I(|x2| ≤M)dµ⊗(x1, ε)

= 1 +

∫
lim
ρ→1

(x1 − ρx1 −
√

1− ρ2ε)2kI(|x1| ≤M)I(|x2| ≤M)dµ⊗(x1, ε)

= 1,

(24)

where the second to last line follows from he Dominated Convergence Theorem since f(x1, x2)
is uniformly bounded by (2M)2k. Since Eµf(x1, x2) > 1 for 0 ≤ ρ < 1, there exists a
sequence {ρk}∞k=1 such that for all k ∈ N, 1 < Eµkf(x1, x2) < 2 and 0 < ρk < 1, where µk
sets ρ = ρk. Pick k′ large enough so that fµ⊗{∅} > 2. Then, for k ≥ k′,

|fµ⊗{∅} − f
µk
{∅}|

|fµk{∅}|
≥
|fµ⊗{∅} − f

µk
{∅}|

2

=
f
µ⊗
{∅} − f

µk
{∅}

2

>
f
µ⊗
{∅} − 2

2

(25)

Let k∗ = max

(
k′,

⌈
.5 c

√
2(∆+1)
µ1(x1>c

⌉)
. Then, by Eq. (23) and Eq. (25),

|fµ⊗{∅}−f
µk∗
{∅} |

|fµk∗{∅} |
> ∆.

B.4 Proof of Lemma 1

By equation 2.25 of Rasmussen and Williams (2006, Chapter 2), Eq. (7) equals the posterior
predictive mean of the following Bayesian model:

f ∼ GP (0, kθ)

y | f, x ∼ N (f(x), σ2
noise = λ).

We may re-write kθ as,

kθ(x, x̃) =
∑

V :|V |≤Q

θV ΦT
V (x)ΦT

V (x̃)

=
∑

V :|V |≤Q

ΦT
V (x)[θV IBV ×BV ]ΦT

V (x̃)

=
∑

V :|V |≤Q

ΦT
V (x)ΣV ΦT

V (x̃),

where ΣV = θV IBV ×BV . Then, by Rasmussen and Williams (2006, Chapter 2.1.2) and
the additive property of kernels, f ∼ GP (0, kθ) has the same distribution as drawing a set
of regression coefficients ΘV ∼ N (0,ΣV ) and setting f =

∑
V :|V |≤Q ΘT

V ΦV (·). Hence, the
posterior predictive mean of the Gaussian process at a point x equals

∑
V :|V |≤Q Θ̂T

V ΦV (x).
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B.5 Proof of Theorem 2

kSKIM-FA(x, x̃) =
∑

V :|V |≤Q

η2
|V |
∏
i∈V

κ2
i

 kV (x, x̃)

=
∑

V :|V |≤Q

η2
|V |
∏
i∈V

κ2
i

∏
i∈V

ki(xi, x̃i)

=
∑

V :|V |≤Q

η2
|V |
∏
i∈V

κ2
i ki(xi, x̃i)


=

Q∑
q=1

∑
V :|V |=Q

η2
|V |
∏
i∈V

κ2
i ki(xi, x̃i)


=

Q∑
q=1

η2
q

∑
V :|V |=q

∏
i∈V

κ2
i ki(xi, x̃i)



(26)

Let k̃i(·, ·) = κ2
i ki(·, ·). Then, Vapnik (1995, pg. 199) shows that

k̄q :=
∑

V :|V |=q

∏
i∈V

k̃i =
1

q

q∑
s=1

(−1)s+1k̄q−sk
s, (27)

where ks(x, x̃) =
∑p

i=1[k̃i(xi, x̃i)]
s and k̄0(x, x̃) = 1. The result follows from Eq. (26) and

Eq. (27).

B.6 Proof of Corollary 2

Computing and storing k1(x, x̃), · · · , kQ(x, x̃) takes O(pQ) time and requires O(Q) memory,
respectively. After computing and storing k̄1(x, x̃), · · · , k̄q(x, x̃), k̄q+1(x, x̃) takesO(q+1) time.
Hence, computing all k̄1(x, x̃), · · · , k̄Q(x, x̃) terms takesO(Q2) time given k1(x, x̃), · · · , kQ(x, x̃).
Since Q < p, computing kSKIM-FA(x, x̃) takes O(pQ) time.

B.7 Proof of Proposition 5

∂L

∂Ũ
(t)
i

=
∂L

∂κ
(t)
i

∂κi

∂U
(t)
i

∂U
(t)
i

∂Ũ
(t)
i

=
∂L

∂κ
(t)
i

I(U
(t)
i > c)

2Ũ
(t)
i

(Ũ
(t)
i + 1)2

.

Since κ(t)
i = 0, that implies U (t)

i ≤ c. Hence,
∂L

∂Ũ
(t)
i

= 0. Consequently,

Ũ
(t+1)
i = Ũ

(t)
i − γ

∂L

∂Ũ
(t)
i

= Ũ
(t)
i .

(28)

By Eq. (28), κ(t′)
i = 0 for all t′ ≥ t.
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B.8 Proof of Lemma 3

It suffices to prove that any fV ∈ HV is square-integrable with respect to any probability
measure. Since φib is a continuous function on a compact set, there exists a 0 < Mib <∞
such that |φib| is bounded by Mib. Without loss of generality, assume V = {1, · · · , q}. Then,
there exists coefficients cb1,··· ,bq ∈ R such that

fV (xV ) =
∑

b1∈[B1]

· · ·
∑

bq∈[Bq ]

cb1,··· ,bq

q∏
i=1

φibi(xi)

≤
∑

b1∈[B1]

· · ·
∑

bq∈[Bq ]

cb1,··· ,bqM
q
∗

<∞

for all xV , whereM∗ = maxi∈[p] maxb∈[Bi]Mib <∞ since Bi <∞. Hence, for any probability
measure µ,

∫
|fV (xV )|2dµ <

∫  ∑
b1∈[B1]

· · ·
∑

bq∈[Bq ]

cb1,··· ,bqM
q
∗


2

dµ

=

 ∑
b1∈[B1]

· · ·
∑

bq∈[Bq ]

cb1,··· ,bqM
q
∗


2

<∞.

(29)

B.9 Proof of Theorem 3

Let

f̃ij = f
µ⊗
{i,j} − [Ψi

ijΦi + Ψj
ijΦj + Ψ0

ij ]

f̃i = f
µ⊗
{i} +

∑
j>i

Ψi
ijΦi +

∑
j<i

Ψi
jiΦi(xi)

f̃∅ = f
µ⊗
∅ +

∑
i<j

Ψ0
ij .

(30)

32



The SKIM-FA Kernel

We start by proving that f = f̃∅ +
∑p

i=1 f̃i +
∑p

i,j=1 f̃ij . Expanding each component,

f̃∅ +
∑
i

f̃i +
∑
i<j

f̃ij = f̃∅ +
∑
i

f̃i +
∑
i<j

[
f
µ⊗
{i,j} − [Ψi

ijΦi + Ψj
ijΦj + Ψ0

ij ]
]

= f
µ⊗
∅ +

∑
i

f̃i +
∑
i<j

[
f
µ⊗
{i,j} − [Ψi

ijΦi + Ψj
ijΦj ]

]

= f
µ⊗
∅ +

∑
i

fµ⊗{i} +
∑
j>i

Ψi
ijΦi +

∑
j<i

Ψi
jiΦi

+

∑
i<j

[
f
µ⊗
{i,j} − [Ψi

ijΦi + Ψj
ijΦj ]

]
= f

µ⊗
∅ +

∑
i

f
µ⊗
{i} +

∑
i<j

f
µ⊗
{i,j}+∑

i

∑
j>i

Ψi
ijΦi +

∑
i

∑
j<i

Ψi
jiΦi −

∑
i<j

[
Ψi
ijΦi + Ψj

ijΦj

]
= f +

∑
i

∑
j>i

Ψi
ijΦi +

∑
i

∑
j<i

Ψi
jiΦi −

∑
i

∑
j>i

[
Ψi
ijΦi + Ψj

ijΦj

]
= f +

∑
i

∑
j<i

Ψi
jiΦi −

∑
i

∑
j>i

Ψj
ijΦj

= f +
∑
i

∑
j<i

Ψi
jiΦi −

∑
j

∑
j<i

Ψi
jiΦj

= f.

We now prove that there exists unique coefficients, Ψi
ij ∈ R1×Bi ,Ψj

ij ∈ R1×Bj ,Ψ0
ij ∈

R, such that f̃ij belongs to the orthogonal complement of the Hilbert space Hadd
{i,j} :=

span{1, {φib}Bib=1, {φjb}
Bj
b=1} = H∅

⊕
H{i}

⊕
H{j}. Recall that

H{i,j} = span{1, {φib}Bib=1, {φjb}
Bj
b=1}, {φibφjb′}b∈[Bi],b′∈[Bj ]}.

Then, fµ⊗{i,j} ∈ H{i,j} and Hadd
{i,j} is a closed convex subspace of H{i,j}. Therefore, by the

Hilbert Projection Theorem, there exists unique f̄ij ∈ Hadd
{i,j} and f

⊥
ij ∈ H{i,j} such that

f
µ⊗
{i,j} = f̄ij + f⊥ij s.t.

〈g, f⊥ij 〉µ = 0 ∀g ∈ Hadd
{i,j}.

(31)

Since span{1, {φib}Bib=1, {φjb}
Bj
b=1} is a linearly independent basis of Hadd

{i,j}, there exists unique

coefficients, Ψi
ij ∈ R1×Bi ,Ψj

ij ∈ R1×Bj ,Ψ0
ij ∈ R, such that f̄ij = Ψi

ijΦ
T
i (xi)+Ψj

ijΦ
T
j (xj)+Ψ0

ij .
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To complete the proof, we need to show that f̃ij = fµ{i,j}, f̃i = fµ{i}, f̃∅ = fµ∅ . It suffices to
show that ∫

xi

f̃i dµi = 0∫
xi,xj

f̃ij dµi = 0∫
xi,xj

f̃if̃ij dµ(xi, xj) = 0.

(32)

The last two equalities in Eq. (32) follow directly from Eq. (31). For the first equality in
Eq. (32), notice that∫

xi

f̃i dµi = Eµi f̃i

= Eµi

fµ⊗{i} +
∑
j>i

Ψi
ijΦi +

∑
j<i

Ψi
jiΦi


= Eµif

µ⊗
{i} +

∑
j>i

Eµi [Ψ
i
ijΦi] +

∑
j<i

Eµi [Ψ
i
jiΦi]

=
∑
j>i

Ψi
ijEµi [Φi] +

∑
j<i

Ψi
jiEµi [Φi]

= 0,

where the last equation follows from the fact that the components of Φi span Ho{i} (and
hence are all zero mean).

B.10 Proof of Proposition 6

As shown in the proof of Theorem 3, Ψi
ij ∈ R1×Bi ,Ψj

ij ∈ R1×Bj ,Ψ0
ij ∈ R equal the unique

set of coefficients such that f̄ij = Ψi
ijΦi + Ψj

ijΦj + Ψ0
ij for f̄ij defined in Eq. (31) and also

shown below:

f
µ⊗
{i,j} = f̄ij + f⊥ij s.t.

〈g, f⊥ij 〉µ = 0 ∀g ∈ Hadd
{i,j}.

Let y(w)
ij = f

µ⊗
{i,j}(x

(m)
i , x

(w)
j ) and ε(w)

ij = f⊥ij (x
(w)
i , x

(w)
j ), where x(w) i.i.d.∼ µ. Then,

y
(w)
ij = Ψi

ijΦi(x
(w)
i ) + Ψj

ijΦj(x
(w)
j ) + Ψ0

ij + ε
(w)
ij x(w) i.i.d.∼ µ. (33)

Then, Eq. (33) is a special case of the random design linear model under misspecification
studied in Hsu et al. (2014). Hence, by Hsu et al. (2014, Theorem 11) we can consistently
recover Ψi

ij , Ψj
ij , Ψ0

ij by using ordinary least-squares. Hence Algorithm 4 recovers Ψi
ij , Ψj

ij ,
Ψ0
ij as W →∞.
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Appendix C. Literature Review

Finite Basis Expansion Methods. Stone (1994) introduced the hierarchical functional de-
composition and derived statistical rates of convergence by approximating H using a finite
B-spline tensor product basis. Huang (1998) later extended this result to general tensor
product families such as wavelets, polynomials, etc. There have been a number of specific
Bayesian and frequentist methods that fall within the general class of models described in
Huang (1998); see, for example, Wei et al. (2019); Scheipl et al. (2012); Curtis et al. (2014);
Ferrari and Dunson (2020b); Gustafson (2000). Unfortunately, since these methods explicitly
generate the tensor product basis, they are computationally intractable as p increases beyond
a few hundred or thousand covariates. In Radchenko and James (2010), the authors consider
the Q = 2 setting, and develop the VANISH algorithm to fit nonlinear interaction models
under a heredity constraint (i.e., interaction terms are only added if the main effects are
selected). They authors use a finite basis to model the main and interaction effects but do
not assume a tensor product basis. Unfortunately, their method does not scale well with
larger p since the runtime is O(p2); see Step 0 of the VANISH algorithm on page 6. In Haris
et al. (2016), the authors generalize VANISH (and several other algorithms) by using an
alternating directions method of multipliers algorithm to fit interactions.

Linear models trivially fall within this class as well. For Q = 1, the Lasso and the many
related techniques provide fast variable selection and estimation in high-dimensional linear
models (Chen et al., 1998; Candes and Tao, 2007; Nakagawa et al., 2016). For Q = 2, the
hierarchical Lasso (Bien et al., 2013) extends the Lasso to model interactions, and there have
been many variants of this model; see, for example, Lim and Hastie (2015); Shah (2016).
However, these methods take at least O(p2) time since they explicitly model all main and
interaction effects. Other linear interaction methods assume that the interactions have a
low-rank structure. This structure helps both statistically and computationally; see, for
example, Rendle (2010); Ferrari and Dunson (2020a). However, this low-rank structure in
the interaction effects might not always hold in practice.

Two-Stage & Forward-Stage Approaches. Instead of modeling interactions jointly, a common
heuristic (similar in spirit to forward stepwise regression) is greedily adding interactions such
as in multivariate additive regression splines (MARS) or GA2M (Lou et al., 2013). The
iFORM algorithm proposed in Hao and Zhang (2014) is the middle-ground between MARS
and fitting a model with all interactions terms included at the start. Specifically, iFORM
starts with the empty model, and then proceeds by adding one more predictor at a time,
where all interactions between the current active set of predictors are considered. Another
common approach is performing computationally cheap variable selection methods designed
for generalized additive models (e.g., Lasso or SpAM (Liu et al., 2008)) to identify a sparse
set of relevant variables. By restricting to a small set of variables, one can then apply more
computationally intensive interactions techniques such as RKHS ANOVA methods.

The approaches above requires some form of strong-hierarchy, namely that all interactions
have non-zero main effects, to consistently identify the correct set of variables. While
some problems have strong main effects, in other applications this may not be the case.
For example, in genome-wide associate studies, fitting an additive-only model to predict
an individual’s height from genetics only has an R2 of about 5% even though height is
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well-predicted by parents’ heights (thought to be between 80%− 90%) (Maher, 2008). This
discrepancy, more generally called the problem of missing heritability, remains an open
challenge in biology for understanding complex diseases based on genetics. One explanation
for missing heritability is not modeling genetic interactions (Maher, 2008; Aschard, 2016;
Slim et al., 2018; Greene et al., 2010). In other words, the main effects might be weak, or
in the extreme case some genes might only have interaction effects. Hence, from a purely
variable selection standpoint, modeling interactions could help better identify genes that are
risk-factors for certain diseases.

In the orthogonal µ case, the statistical benefit from modeling interactions can be easily
seen from the decomposition in Eq. (4). Suppose Q = 2 and that main effects total signal
variance equals 5, the pairwise signal variance equals equals 90, and the noise variance equals
5. Then, the R2 for an additive-only model is 5% while the R2 for interaction model is 90%.
Since the achievable signal increases (and necessarily the effective noise variance decreases),
performing variable selection in a lower signal-to-noise regime might offset the statistical
price of modeling more parameters.

Tree-Based Approaches. Tree-based methods (e.g., random forest, CART, gradient boosting)
are often used for black-box prediction tasks. While these methods sometimes provide variable
importance measures, it is unclear how to access the effects from the fitted prediction function
and perform variable selection. Nevertheless, some authors have adapted tree-based methods
to estimate effects and perform variable selection. For example, in Linero (2018), the authors
modify the Bayesian additive regression trees method in Chipman et al. (2010) by placing
Dirichlet priors on the splitting proportions of the regression tree prior to induce sparsity.
While Linero (2018) perform variable selection by looking at posterior inclusion probabilities,
it is unclear how to access the interaction effects from the fit. Other authors have adapted
tree-based methods to estimate heterogeneous treatment effects (i.e., interactions between a
treatment and set of covariates). For example, in Su et al. (2011), the authors modify the
CART splitting rule to get better estimates of heterogeneous treatment effects. Similarly,
in Krzykalla et al. (2020), the authors use a model-based recursive partitioning to identify
covariates that most strongly interact with a particular treatment. In general, estimating
treatment-by-covariate interactions is less computationally demanding since there are only
O(p) number of pairwise interactions between a single treatment and all covariates.

Kernel Methods. Many of the functional ANOVA methods described in Section 6 use kernels
to model nonlinear interaction effects. Unfortunately, as we discuss in Section 6, these
methods are computationally intractable for moderate p when Q > 1. Some kernel methods
used to identify interactions fall under the general area of “multiple kernel learning,” where
the goal is to learn some weighted combination of kernels (Lanckriet et al., 2004b; Bach
et al., 2004). Hierarchical kernel learning, for example, is a multiple kernel learning method
that learns nonlinear interactions via hierarchy conditions encoded in a directed acyclic
graph (Bach, 2008). This hierarchy condition translates into a method similar to the greedy
forward-stage methods discussed above where higher-order interactions are added only when
all lower-interactions are present. For R selected kernels, the runtime stated in Bach (2008) is
O(N3R+N2Rp2 +N2R2p). The quadratic dependence on p makes this method unsuitable
for larger p problems. Duvenaud et al. (2013) considers a greedy kernel search based on
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adding and multiplying a base set of kernels together. Since the multiplication of two kernel
corresponds to an interaction, this method has the flexibility to model interaction effects.
However, the focus in Duvenaud et al. (2013) is on prediction and understanding the structure
of the fitted kernel instead of estimating effects and performing variable selection.

Comparison with Agrawal et al. (2019). The structure of the SKIM-FA prior in Eq. (8)
generalizes the prior used in Agrawal et al. (2019) to handle non-linear effects. However,
in Agrawal et al. (2019), the authors use a regularized horseshoe prior to achieve sparsity
in κ. While a regularized horseshoe prior does not lead to exact sparsity in κ, the authors
in Agrawal et al. (2019) were still able to develop an O(p) variable selection procedure by
exploiting strong-hierarchy, namely that interactions only occur among selected main effects.
In the current work, we do not make any strong-hierarchy assumption. Hence, to develop an
O(p) variable selection procedure, we need exact sparsity in κ; see Section 5 for details.

In terms of computational complexity, Agrawal et al. (2019) fit linear interaction models
in O(pN2 +N3) time per iteration, which has the same asymptotic complexity as Algorithm 1.
However, they use Hamiltonian Monte Carlo (HMC) to perform inference. Each HMC step
requires computing and inverting an N ×N kernel matrix many times. Hence, their method
takes hours to complete when p and N are larger than 500. Due to this computational
intensity, we do not benchmark against their method.

Appendix D. Zero Mean Kernels and Finite-Basis Functions

In this section, we show how we construct ki, i.e., the reproducing kernel for Ho{i}. We
construct ki by first generating a finite-dimensional basis for H{i}. Then, we normalize each
basis function to be zero mean and unit variance so that the normalized basis functions span
Ho{i}. For a more general approach to construct zero mean kernels (e.g., even when H{i} is
infinite-dimensional) see Durrande et al. (2013).

Construction of Ho{i}. For each covariate dimension i, consider a set of linearly independent
basis functions {φib}Bib=1 such that

H{i} = span{1, φi1, · · · , φiBi}.

Let φ̃ib =
φib−Eµ[φib]√

Varµ[φib]
. Then,

Ho{i} = span{φ̃i1, · · · , φ̃iBi}, Φi := [φ̃i1, · · · , φ̃iBi ].

Hence, ki(xi, x̃i) = Φi(xi)
TΦi(x̃i) is the reproducing kernel for Hoi . In many instances, we do

not actually know the joint distribution of the covariates. In this case, we approximate µ

37



Agrawal and Broderick

with the empirical distribution µ̂ of the datapoints:

φ̃ib =
φib − E ˆ̂µ[φib]√

Varµ̂[φib]
s.t.

µ̂ =
1

N

N∑
n=1

δx(n)

E ˆ̂µ[φib] =
1

N

N∑
n=1

φib(x
(n)
i )

Varµ̂[φib] =
1

N

N∑
n=1

φ2
ib(x

(n)
i )− E ˆ̂µ[φib].

Note. for the experiments in Section 7, we use a natural cubic spline basis with 5 knots at
the quantiles to generate each H{i} for SKIM-FA and SPAM-2Stage.

Practical Considerations for Picking Basis Functions. While any set of basis functions can
be used to generate Ho{i} in principle, we provide several suggestions below; see Chapter of
Hastie et al. (2001) for a more in-depth review.

• If xi is a seasonal covariate, use a wavelet basis to generate Ho{i}.

• If xi is categorical, let Ho{i} equal the one-hot encoding of xi.

• if xi is continuous, use a polynomial spline basis.

– If extrapolation beyond the data is a concern, use a natural cubic spline basis
(which enforces linearity beyond the boundary knots).

Appendix E. Additional Algorithmic Details

To fit SKIM-FA, we set the number of iterations T = 2000, learning rate γ = 0.1, and
cross-validation batch size M = 0.2N in Algorithm 1. We let the truncation level c in
Algorithm 1 depend on the iteration number t for 1 ≤ t ≤ T . Empirically, we find gradually
increasing c as a function of t works well for accurately selecting the correct covariates and
inducing sparsity in κ. As outlined in Algorithm 5, we suggest the following schedule for c:

When t < 500, c = 0 in Algorithm 5. Hence, since κ(t)
i = max(U

(t)
i − c, 0), κ(t)

i 6= 0 for
t ≤ 500 and i ∈ [p]. At iteration 500, we drop the bottom 25th% of covariates (determined
by their importance measure U (t)

i ). Specifically, κ(500) has 25% of its entries equal to zero.
For subsequent iterations, we take the previous trunction level ct and increase that level by
a factor of (1 + r) until ct reaches γ. If ct−1 is larger than γ, we set ct equal to ct−1.

Appendix F. SKIM-FA Extensions

F.1 Beyond Gaussian Responses

Throughout we have assumed that y | x is drawn from a Gaussian distribution. In general,
we may assume that the response belongs to an exponential family, which allows us to model,
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Algorithm 5 Scheduler for Truncation Level c

1: procedure TruncScheduler(U (t), ct−1, t, r = .01, γ = .75)
2: if t < 500 then return 0
3: end if
4: if t = 500 then return q25(U

(t)
1 , · · · , U (t)

p ) . Take the 25th% of the components in
U (t)

5: end if
6: if t > 500 then return max(min((1 + r)ct−1, γ), ct−1)
7: end if
8: end procedure

for example, count, binary, and exponential response data. For non-Gaussian responses, there
does not exist an analytical solution to Eq. (1). Nevertheless, a combination of reweighted
least squares and the Newton Raphson method can be used to iteratively solve Eq. (1) when
H is an RKHS; see Cawley et al. (2007) for details. Since the results in Cawley et al. (2007)
are not unique to the specific kernel used, we can extend SKIM-FA beyond Gaussian errors.
However, from an implementation standpoint, this extension might be challenging since we
must take gradients of the kernel hyperparameters during the Newton Raphson optimization
steps. Hence, a similar framework used in Margossian et al. (2020) might be needed for the
practical implementation of SKIM-FA to general responses.

F.2 Change-of-Basis Formula For General Q and Arbitrary Measures

We discuss how to extend the change-of-basis formula in Algorithm 4 to general Q. The
general idea is as follows:

1. (PROJECT) Project each Q way interaction onto the space spanned by all lower-order
interactions

2. (UPDATE) Subtract out the lower-order variation from the Q way interactions, and
add back this projected variation to the lower-order interactions

3. (RECURSE) Repeat Step 1 and Step 2 for the Q − 1 way interactions, then Q − 2
interactions, until the highest order interaction is the constant term

Line 6 in Algorithm 4 is the analogue of the PROJECT step, and Lines 7-9 in Algorithm 4 is
the analogue of the UPDATE STEP. Under Assumption 2, we describe how the PROJECT-
UPDATE-RECURSE methodology can be used to move between two arbitrary functional
ANOVA decompositions with respect to µ′ and µ.

Suppose we are given the functional ANOVA decomposition with respect to µ′: f =∑
V :|V |≤Q f

′
V , where f

′
V ∈ HoV,µ′ . Given each f ′V , we would like re-express f as

∑
V :|V |≤Q fV ,

where fV ∈ HoV,µ. Such a decomposition exists since HoV,µ′ = HoV,µ by Assumption 2 and
Lemma 3. We define the projection operator of a function with interactions in A ⊂ [p], |A| ≤ Q
below:

projFA,µ[fA] :=
∑

V :V (A
gVA , gVA ∈ H

o
V,µ, FA =

⊕
V :V (A

HoV,µ (34)
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The UPDATE step involves adding and subtracting gVA from the interactions. Since each
component gVA in projFA,µ[fA] is unique by the Hilbert Projection Theorem, this procedure
is well defined. We summarize our algorithm in Algorithm 6. The proof of correctness,
namely that Algorithm 6 recovers the functional ANOVA decomposition of f with respect to
µ follows by using the same proof strategy in Theorem 3.

Algorithm 6 Change of Basis Formula for General Q and Measures
1: procedure ReExpressANOVA(

∑
V :|V |≤Q f

′
V , µ)

2: Let I equal the highest order interaction in
∑

V :|V |≤Q f
′
V

3: if I = 0 then return f ′∅
4: end if
5: For all A ⊂ [p], |A| = I, compute projFA,µ[f ′A].
6: For all A ⊂ [p], |A| = I, let fA = f ′A − projFA,µ[f ′A] . Update higher-order

interaction effects
7: For all V ⊂ [p], |V | < I, let f ′V = f ′V +

∑
A:|A|=I,V (A gVA . Update lower-order

interaction effects
8: return

∑
A:|A|=I fA + ReExpressANOVA(

∑
V :|V |≤I−1 f

′
V , µ) . RECURSE step

9: end procedure

Computing the Projection Operator via Monte-Carlo. We show how to compute projFA,µ[f ′A]
via Monte-Carlo as we do in Algorithm 4 when Q = 2. To this end, let the components
of ΦA =

⊗
j∈A Φj . Let d∗ = maxV :|V |≤Q dim(ΦA). For 1 ≤ w ≤ W randomly sample

x(w) i.i.d.∼ µ, where W > d∗. Define

XA = [ΦV (x
(1)
V ) · · ·ΦV (x

(W )
V )]TV :V (A (35)

where Φ∅ = 1. Let f ′A,W = [f ′A(x
(1)
V ) · · · f ′A(x

(W )
V )]T . Then,

ĝVA(·) = Ψ̂T
V ΦV (·), where [Ψ̂V ]TV :V (A = (XT

AXA)−1XT
Af
′
A,W . (36)

By following nearly an identical proof of Proposition 6, ĝVA(·)→ gVA(·) as W →∞.

F.3 Consistency Guarantees

Proving selection consistency is beyond the scope of the current paper. Given selection
consistency, however, estimation consistency follows from the work in Huang (1998), where
the author examines the consistency properties of fitting functional ANOVA models via a
finite-dimensional tensor product basis (i.e., as we do in SKIM-FA).

To make this connection more concrete, suppose the number of correct covariates S
is fixed (and does not depend on p or N). If selection consistency holds, then SKIM-FA
consistently recovers S with probability one as N, p→∞. To simplify the analysis, suppose
we use sample splitting, where the first N

2 datapoints are used for selection, and the remaining
N
2 datapoints are used to re-estimate the effects among the selected covariates. For any
desired probability, N can be chosen sufficiently large such that SKIM-FA selects all S correct
covariates exceeding the chosen probability. Since S is fixed, the results in Huang (1998)
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apply when estimating the effects on the held-out set of N2 datapoints. In particular, Huang
(1998) provides the rate at which N must grow as a function of the size and smoothness
of the tensor product basis generated from the S selected covariates; see Theorem 3 and
Corollary 2 of Huang (1998) for different rates of convergence.

Appendix G. MARS ANOVA Procedure

We show how to perform the functional ANOVA decomposition of f̂ with respect to
µ̂⊗ = µ̂1 ⊗ · · · ⊗ µ̂p, where f̂ denotes the regression function fit from MARS and µi the
empirical distribution of covariate i: µ̂i = 1

N

∑N
n=1 δx(n)i

. Under µ̂⊗, the functional ANOVA

decomposition of f̂ equals

f̂∅ = Eµ̂⊗ [f̂ ]

f̂{i}(xi) = Eµ̂⊗ [f̂ | xi = xi]− f̂∅
f̂{i,j}(xi, xj) = Eµ̂⊗ [f̂ | xi = xi, xj = xj ]− f̂{i}(xi)− f̂{j}(xi)− f̂∅,

(37)

which is also shown in Durrande et al. (2013, Equation 5). We show how to compute each of
the expectations in Eq. (37). The intercept f̂∅ equals the sample average of the fitted values
(i.e., f̂ applied to each of the N training datapoints). Let X denote the N × p matrix of
training data. Let Xi equal the matrix obtained by setting all values in the ith column of X
equal to xi and the remaining columns unchanged. Then,

Eµ̂⊗ [f̂ | xi = xi] =
1

N

N∑
n=1

f̂(Xi
n),

where Xi
n is the nth row of Xi

n. Similarly, let Xij equal the matrix obtained by setting all
values in the ith and jth columns of X equal to xi and xj respectively, and the remaining
columns unchanged. Then,

Eµ̂⊗ [f̂ | xi = xi, xj = xj ] =
1

N

N∑
n=1

f̂(Xij
n ).

Appendix H. Additional Experimental Details

H.1 Fitting benchmark methods

SPAM-2Stage: we perform variable selection by fitting a sparse additive model (SpAM) (Liu
et al., 2008) to the data. We use the sam package in R. Since sam does not provide a default
way to select the L1 regularization strength, we use 5-fold cross-validation. For estimation,
we generate all main and interaction effects among the subset of covariates selected by SpAM.
We calculate these effects by taking pairwise products of univariate basis functions generated
from a natural cubic spline basis with 5 total knots; see Appendix D for details. We estimate
the basis coefficients (and hence effects) using ridge regression, where again we use 5-fold
cross-validation to pick the L2 regularization strength.
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Multivariate Additive Regression Splines (MARS): we use the python implementation of
MARS (Friedman, 1991) in py-earth.

Hierarchical Lasso (HierLasso): we use the implementation of HierLasso (Lim and Hastie,
2015) in the authors’ R package glinternet. Since Lim and Hastie (2015) use cross-validation
to pick the L1 regularization strength, we similarly use 5-fold cross-validation.

Pairs Lasso: we fit the Lasso on the expanded set of features {xi}pi=1 and {xixj}pi,j=1. We
fit the Lasso using the python package sklearn, and use 5-fold cross-validation to select the
L1 regularization strength.

H.2 Evaluation Criteria

Variable Selection Evaluation Metrics. We consider both the power to select correct covariates
and avoid incorrect ones. # Correct Selected counts the number of covariates correctly
selected by the method. Higher is better. # Wrong Selected counts the number of covariates
incorrectly selected by the method (i.e., Type I error). Lower is better. # Correct Not
Selected counts the number of covariates that belong to the true model but were not selected
by the method (i.e., Type II error). Lower is better.

Estimation Evaluation Metrics. We evaluate how well a method estimates main effects and
interaction effects. Instead of looking only at the total mean squared estimation error, we
break this error into multiple buckets to understand what bucket drives the majority of the
error. Lower is better for all of the following quantities. Correct Selected SSE (Main) takes
the sum of squared errors (SSE) between each estimated main effect component and true
main effect component. This sum equals

∑
i∈S1
‖f∗i − f̂i‖2µ, where S1 is the set of correctly

identified main effects, f̂i is the estimated main effect, and f∗i is the true main effect. Correct
Not Selected SSE (Main) takes the sum of squared norms of main effects not selected. This
sum equals

∑
i∈S2
‖f∗i ‖2µ, where S2 is the set of correct main effects not selected. Wrong

Selected SSE (Main) takes the sum of squared norms of main effect components incorrectly
selected. This sum equals

∑
i∈S3
‖f̂i‖2µ, where S3 is the set of incorrect main effects selected.

Correct Selected SSE (Pair), Correct Not Selected SSE (Pair), and Wrong Selected SSE (Pair)
are the same as the analogous main effect metrics but instead considers interaction effects.
Total SSE equals the sum of the 6 buckets above and Total SSE / Signal Variance equals
the relative estimation error, i.e., Total SSE divided by the true signal variance.

Appendix I. Additional Experimental Results
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Effect Signal Variance

Hour 0.382
Air Temp. 0.104
Humidity 0.024
Windspeed 0.002

Hour x Air Temp. 0.047
Hour x Humidity 0.01
Hour x Windspeed 0.002

Air Temp. x Humidity 0.012
Air Temp. x Windspeed 0.005
Humidity x Windspeed 0.003

Table I.7: Proxy Ground Truth Effects and Signal Variances for the Bike Sharing Data Set.

I.1 Appending Irrelevant but Real Covariates to the Bike Sharing Data Set

In Section 7, we appended fake covariates drawn from a Uniform(0, 1) distribution to the Bike
Sharing Data Set for various choices of pnoise. In many applications, however, covariates are
correlated and this correlation structure might affect the performance of a method. To create
a design matrix with a non-trivial correlation structure, we start by taking a completely
different data set, namely the SECOM data set from the UCI Machine Learning repository
which contains 591 covariates related to semi-conductor manufacturing.7 Then, we append
these covariates to the Bike Sharing data set. Since these two data sets are independent,
the covariates in the SECOM data set play the same role as the synthetic fake covariates in
Section 7 (i.e., should not be selected) but now have a real correlation structure. Appendix I.1
and Table I.11 summarize how each method performs in terms of variable selection and
estimation, respectively.

I.2 Impact of Correlated Predictors on the Functional ANOVA for the Bike
Sharing Data Set

We perform the same analysis as in Section 7.5 but for the Bike Sharing data set in Fig. I.1.
Unlike the Concrete Compressive Strength data set, however, we do not see a large difference
between the two functional ANOVA decompositions for the Bike Sharing data set in Fig. I.1.

I.3 Obesity Gene-Expression and SNP Data Set: Additional SKIM-FA Fit
Details

Since the number of datapoints is small (N = 87), the number of datapoints in between any
adjacent knots in a spline basis is small. Hence, we instead fit a linear interaction model for
this data set using SKIM-FA. Since we fit a linear interaction model, we can examine the
regression coefficients to understand the fit. Table I.12 summarizes the 31 variables selected
by SKIM-FA and their estimated main effects.

7. We only consider 432 continuous covariates (with non-zero variance) in the SECOM data set.
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Method # Covariates # Original Selected # Wrong Selected

SKIM-FA 250 2 0
HierLasso 250 3 7
Pairs Lasso 250 3 29

MARS 250 3 96
SPAM-2Stage 250 4 97

SKIM-FA 500 2 0
HierLasso 500 3 8

SPAM-2Stage 500 3 22
Pairs Lasso 500 3 39

MARS 500 4 109

SKIM-FA 1000 3 0
HierLasso 1000 3 5

SPAM-2Stage 1000 3 8
Pairs Lasso 1000 3 76

MARS 1000 3 119

Table I.8: Variable Selection Performance for the Bike Sharing Data Set.

Method # Noise

Correct
Selected
SSE

(Main)

Correct
Not

Selected
SSE

(Main)

Wrong
Selected
SSE

(Main)

Correct
Selected
SSE
(Pair)

Correct
Not

Selected
SSE
(Pair)

Wrong
Selected
SSE
(Pair)

Total
SSE

SKIM-FA 250 0.15 0.027 0 0.019 0.038 0 0.233
SPAM-2Stage 250 0.149 0 0.172 0.091 0 0.01 0.422
MARS-EMP 250 0.209 0.002 0.476 0.052 0.026 0.344 1.11
MARS-Vanilla 250 6.522 0.002 1.644 1.036 0.026 2.2 11.431

SKIM-FA 500 0.148 0.027 0 0.019 0.038 0 0.231
SPAM-2Stage 500 0.15 0.002 0.057 0.081 0.009 0.002 0.302
MARS-EMP 500 0.225 0 0.529 0.052 0.026 0.3 1.131
MARS-Vanilla 500 5.564 0 0.5 1.037 0.026 2.085 9.212

SKIM-FA 1000 0.145 0.002 0 0.107 0.009 0 0.263
SPAM-2Stage 1000 0.149 0.002 0.027 0.081 0.009 0.000 0.269
MARS-EMP 1000 0.214 0.002 0.485 0.054 0.026 0.245 1.026
MARS-Vanilla 1000 6.556 0.002 0.796 0.947 0.026 1.882 10.209

Table I.9: Estimation Performance for the Bike Sharing Data Set.

50



The SKIM-FA Kernel

(a) Main Effect of Hour of the Day on Rentals (b) Main Effect of Hour of Temperature

(c) Main Effect of Humidity (d) Main Effect of Windspeed

Figure I.1: Effect of Correlated Predictors on the Bike Sharing Data Set
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Method # Covariates # Original Selected # Wrong Selected

SKIM-FA 432 2 0
HierLasso 432 3 1

SPAM-2Stage 432 0 0
Pairs Lasso 432 3 14

MARS 432 3 97

Table I.10: Variable Selection Performance for the Bike Sharing-SECOM Data Set.

Method # Noise

Correct
Selected
SSE

(Main)

Correct
Not

Selected
SSE

(Main)

Wrong
Selected
SSE

(Main)

Correct
Selected
SSE
(Pair)

Correct
Not

Selected
SSE
(Pair)

Wrong
Selected
SSE
(Pair)

Total
SSE

SKIM-FA 432 0.137 0.026 0 0.016 0.029 0 0.208
SPAM-2Stage 432 0 0.549 0 0 0.074 0 0.623
MARS-EMP 432 0.212 0.001 7.416 0.049 0.018 6.113 13.810
MARS-Vanilla 432 3.876 0.001 85.369 1.704 0.0178 104.405 195.373

Table I.11: Estimation Performance for the Bike Sharing-SECOM Data Set.

We report the 10 strongest interaction effects in Table I.13. We see that SKP1 has the
largest number of strong interaction effects follows by IRSP2.

I.4 Sensitivity to Non-Compactness and Sparse Interaction Effects

To test the sensitivity of SKIM-FA to the compactness assumption in Theorem 1 we in-
stead draw covariates each independently from a Gaussian distribution. Since a Gaussian
distribution has support on all of R, the covariates do not belong to a compact set. On
an unbounded set, the exponential function has an infinite mean. Hence, we replace the
exponential trend in Section 7.3 with a cubic trend. On an unbounded set, to model a sine
trend, we would need to use a wavelet basis. Since we have only have support for a spline
basis in the current version of our package, we replace the sine trend in Section 7.3 with a
leaky rectified linear unit (ReLU) trend, which is often used in neural networks. We keep
the linear, logistic, and quadatic effects.

We let y depend on the first 5 covariates; the remaining 995 covariates are taken as noise
covariates that we do not want to select. Hence, we consider a total of p = 1000 covariates.
We let the main effects equal the sum of the 5 trends discussed above, where the ith trend
is applied to covariate i. To additionally test the impact of not having all interactions
present, we only consider 5 out of the 10 possible pairwise interactions: linear-logistic, leaky
ReLU-linear, leaky ReLU-quadratic, logistic-quadratic, and cubic-logistic. We select a noise
variance such that the R2 =

σ2
signal

σ2
signal+σ

2
noise

= 0.8, where σ2
signal = 〈f∗, f∗〉µ. We generate a

total of N = 1000 datapoints.
In terms of variable selection performance, SKIM-FA selects all 5 true covariates and 0

incorrect covariates. We summarize the estimation performance below:
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• Corrected Selected SSE (Main): .95

• Corrected Not Selected SSE (Main): 0

• Wrong Selected SSE (Main): 0

• Correct Selected SSE (Pair): 2.17

• Correct Not Selected SSE (Pair): 0

• Wrong Selected SSE (Pair): .94

• Total SSE: 4.05

Since SKIM-FA considers all pairwise interactions among selected covariates, SKIM-FA
estimates 5 incorrect interactions. However, the total variance of these 5 incorrect interactions
estimated by SKIM-FA is only .94. Hence, SKIM-FA shrinks all 5 incorrect interactions close
to 0.

Each true main and pairwise effect has variance 2. Since all covariates are independent,
the total signal variance of the main and pairwise interaction effects is each 10. Hence, the
normalized SSE for the true main effects is .95/10 = .095 and 2.17/10 = .217 for the true
pairwise effects.
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Effect Coeff.

GSC 1.40
IRS2 -1.04
EOGT 1.03

SNORA71B -1.00
SPATA20 -0.95
AK299501 -0.80
CLIC5 0.77
SKP1 0.77

SETDB2 -0.77
BTN2A3P 0.76
SAP130 0.76
KISS1R 0.69
ZBED3 -0.66
AQP11 -0.64
IYD 0.59

LOC100287177 -0.56
TMEM74B 0.47
ATP2B3 -0.44

LOC283070 0.42
IRX1 0.39
RPA4 -0.34
TSHZ3 0.31
INTS4 -0.30

ALDH1A2 -0.30
PCDH8 0.30
FBN2 0.29
KLK7 -0.28

FBXL12 -0.27
SEMA6B 0.24
SLC25A13 -0.00

Table I.12: Main Effects Selected by SKIM-FA on the Obesity Gene-Expression and SNP
Data Set

54



The SKIM-FA Kernel

Effect Coeff.

(SKP1, SETDB2) -0.14
(SKP1, ZBED3) 0.13
(RPA4, SETDB2) 0.12
(IRS2, RPA4) 0.11

(IRS2, SNORA71B) -0.11
(SKP1, RPA4) -0.10

(SNORA71B, RPA4) -0.08
(RPA4, ZBED3) 0.08
(SKP1, IRS2) -0.06

(RPA4, SAP130) 0.06

Table I.13: Interaction Effects Selected by SKIM-FA on the Obesity Gene-Expression and
SNP Data Set (10 Strongest Interactions Shown)
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