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Abstract

Bayesian inference allows to obtain useful information on the parameters of models, either in
computational statistics or more recently in the context of Bayesian Neural Networks. The
computational cost of usual Monte Carlo methods for sampling posterior laws in Bayesian
inference scales linearly with the number of data points. One option to reduce it to a
fraction of this cost is to resort to mini-batching in conjunction with unadjusted discretiza-
tions of Langevin dynamics, in which case only a random fraction of the data is used to
estimate the gradient. However, this leads to an additional noise in the dynamics and
hence a bias on the invariant measure which is sampled by the Markov chain. We advo-
cate using the so-called Adaptive Langevin dynamics, which is a modification of standard
inertial Langevin dynamics with a dynamical friction which automatically corrects for the
increased noise arising from mini-batching. We investigate the practical relevance of the
assumptions underpinning Adaptive Langevin (constant covariance for the estimation of
the gradient, Gaussian minibatching noise), which are not satisfied in typical models of
Bayesian inference, and quantify the bias induced by minibatching in this case. We also
suggest a possible extension of AdL to further reduce the bias on the posterior distribu-
tion, by considering a dynamical friction depending on the current value of the parameter
to sample.

Keywords: Mini-batching, Langevin dynamics, Markov Chain Monte Carlo

1. Introduction

Bayesian modeling allows to determine the distribution of parameters in statistical models,
and hence to estimate functions of these parameters and their uncertainties. The Bayesian
approach to neural networks in particular has recently gained some attention from the Ma-
chine Learning community; see for instance Wang and Yeung (2020); Izmailov et al. (2021)
and references therein. Since the distributions of parameters are given by (possibly very)
high dimensional probability measures, Markov Chain Monte Carlo (MCMC) techniques
(see Robert and Casella (2004); Brooks et al. (2011)) are the default methods to sample
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these target measures. In this work, we restrict ourselves to probability distributions having
a density with respect to the Lebesgue measure. Quantities of interest are then expectations
with respect to the target distribution, which are approximated by Monte Carlo estimates
based on ergodicity results for the Markov chains under consideration. Let us however men-
tion, that, beyond sampling from distributions of parameters, MCMC methods can also be
used for optimization when run at small target temperature, which may be beneficial to
explore complex non-convex energy landscapes (see for instance Ma et al. (2019); Leimkuh-
ler et al. (2019); Dieuleveut et al. (2020)), or to ensure some form of regularization in an
attempt to avoid overfitting (as already noted in Welling and Teh (2011)).

Two major classes of MCMC techniques can be distinguished. The first one gathers
methods based on the Metropolis–Hastings algorithm (see Metropolis et al. (1953); Hast-
ings (1970)). The second class of MCMC techniques relies on discretizations of stochastic
differential equations (SDEs) which are ergodic with respect to the target measure. The
SDEs used to sample from a probability distribution were originally introduced in molecular
dynamics, where atomic configurations in a system are typically distributed according to
the Boltzmann–Gibbs distribution π(dθ) = Z−1 exp (−V (θ)) dθ, with Z the normalization
constant and V the potential energy function of the system; see Frenkel and Smit (2002);
Tuckerman (2010); Leimkuhler and Matthews (2015); Allen and Tildesley (2017). Two
prominent examples of such dynamics are Langevin dynamics (which we consider in this
work as being the underdamped, or kinetic version) and its overdamped limit. In prac-
tice, methods from the two classes can be blended, as for the Metropolis-adjusted Langevin
algorithm (see Roberts and Tweedie (1996); Rossky et al. (1978); Roberts and Rosenthal
(1998)), which is a Metropolis–Hastings algorithm whose proposal function is provided by a
Euler–Maruyama discretization of overdamped Langevin dynamics. We focus in this work
on the second class of techniques, namely the discretization of SDEs. Langevin-like dynam-
ics are gaining increasing popularity in Machine Learning and related application fields (see
for instance Chen et al. (2014); Mou et al. (2021); Gürbüzbalaban et al. (2021) to quote
just a few works).

Both Metropolis–Hastings methods and discretization of SDEs can be computationally
expensive in the context of Bayesian inference since the log-likelihood and/or its gradient
have to be evaluated at each step, either to perform a Metropolis test or to compute the
forces in the dynamics. The cost of computing the log-likelihood and its gradient scales
as O(Ndata), where Ndata is the size of the data set, which may be large. Some variations
of Metropolis-like algorithms, based on estimates of the log-likelihood obtained from a
random subsample of the data, have been introduced to reduce the computational cost of
one iteration; see for example Korattikara et al. (2014); Bardenet et al. (2014); Quiroz et al.
(2019). These methods however require some prior knowledge on the target measure, and/or
introduce some bias on the measure actually sampled by the algorithm. A similar approach
was proposed for discretizations of SDEs by Welling and Teh (2011), who suggested to use
a mini-batch of the data to construct an estimator of the gradient of the log-likelihood,
leading to the so-called Stochastic Gradient Langevin Dynamics (SGLD).

SGLD however also induces biases on the sampled invariant measure, which have two
origins: the finiteness of the time step and the fact that the mini-batch size n is smaller
than Ndata. It is possible to remove the bias by using decreasing time steps, as initially
suggested in Welling and Teh (2011) and mathematically analyzed in Teh et al. (2016), but
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this is not practical for the convergence of longtime averages, in particular when there is
some metastability in the system (i.e. in situations when the posterior probability measure
is multimodal, and the numerical methods remain temporarily stuck in one of the modes
before finding their way to another one. Multimodality is generic in Bayesian inference as
soon as some parameters are exchangeable. It can be argued that numerical methods which
are able to switch between equivalent modes have good exploration properties, which allows
them to find possibly unanticipated local modes; see Chopin et al. (2012)). An analysis
of the asymptotic bias of SGLD for fixed step sizes is provided in Vollmer et al. (2016)
(together with some analysis of the non-asymptotic bias, following the approach developed
in Mattingly et al. (2010)). The results show that SGLD has a weak error of order one,
similarly to the Euler-Maruyama discretization of overdamped Langevin dynamics, but with
an extra term in the leading error arising from the mini-batching procedure. In fact, the
magnitude of this term makes it the dominant one, unless n is very close to Ndata.

Various extensions and refinements of SGLD were proposed, in an attempt to improve
the performance of the method and/or to reduce its bias. A first trend is to apply the
mini-batching philosophy to dynamics which are more efficient in terms of sampling than
overdamped Langevin dynamics, in particular Langevin dynamics (see Matthews and Weare
(2018)), Hybrid Monte Carlo algorithms (see Chen et al. (2014)) and piecewise determin-
istric Markov processes (see Pakman et al. (2017); Bierkens et al. (2019)). A second trend is
to rely on control variate techniques to reduce the covariance of the stochastic estimator of
the gradient of the log-likelihood, computed in practice by Gaussian approximations of the
modes of the target probability measure; see for instance Nagapetyan et al. (2017); Brosse
et al. (2018); Baker et al. (2019). Of course, both trends can (should) be combined.

Our emphasis in this work is on the adaptive Langevin dynamics (AdL), introduced
in Jones and Leimkuhler (2011); Ding et al. (2014), which provides a way to reduce, and
hopefully even almost remove the bias arising from mini-batching in SGLD. This dynam-
ics is a modification of Langevin dynamics where the friction is considered as a dynamical
variable that adjusts itself so that the distribution of the velocities is correct. In addi-
tion to correcting for the mini-batching bias, it can also be used to train neural networks;
see Leimkuhler et al. (2019). AdL was mathematically studied in Leimkuhler et al. (2020),
and further tested from a numerical viewpoint in Shang et al. (2015). The method com-
pletely removes the mini-batching bias when the covariance matrix Σx(θ) of the estimator
of the gradient is constant in the range of parameters explored by the method. This as-
sumption is satisfied for Gaussian posterior distributions, as obtained when considering a
Gaussian prior and Gaussian likelihoods, or when the number of data points is large enough
and the posterior distribution concentrates around a Gaussian distribution according to the
Bernstein–von Mises theorem (see for instance Section 10.2 in van der Vaart (1998)). There
are however situations where this assumption does not hold (as we highlight on a numerical
example in Section 3.3.2), in which case AdL fails to fully correct for the bias arising from
mini-batching.

In this paper, we consider the case of extreme mini-batching procedures, corresponding
to n as small as 1, as in initial works on stochastic approximation in Robbins and Monro
(1951). In this situation, no central limit theorem can be invoked to precisely characterize
the statistical properties of the stochastic gradient estimator. This is in contrast with vari-
ous works which assume the mini-batching noise to be Gaussian. This is however not needed
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to make precise the weak error of numerical methods, and hence the bias on the invariant
probability measure, as we show in our estimates on the bias for SGLD and Langevin dy-
namics with stochastic gradient estimators. One of our contributions is to precisely quantify
how the bias on the invariant measure depends on the type (with or without replacement)
and amount of mini-batching, through some key parameter ε(n) defined in Section 2.2. We
also carefully study the covariance matrix of the stochastic gradient estimator in illustrative
numerical examples, highlighting that this matrix may exhibit substantial variations in the
range of parameters explored by the dynamics under consideration, so that the key assump-
tion underlying AdL is not satisfied in general. Nonetheless, our numerical analysis explains
why AdL still succeeds to substantially reduce the bias compared to SGLD and Langevin
dynamics. We finally introduce an extended version of AdL allowing to even further reduce
the bias incurred by non constant covariance matrices.

One of our main contributions is to prove that, for all the Langevin-type SDEs considered
in this paper (standard Langevin, adaptive Langevin, extended adaptive Langevin), the bias
introduced by the minibatching procedure is controlled by

ε(n)∆t min
S∈S
‖Σx − S‖L2(π) = ε(n)∆t‖Σx − S∗‖L2(π), (1)

where ∆t is the time step used to discretize the SDE at hand, and π is the target posterior
distribution. The vector space of matrix valued functions S depends on the chosen dynam-
ics. For discretizations of standard Langevin dynamics, S∗ = 0 (see Sections 2.3.2 and 2.4.2,
in particular (37)), whereas S∗ corresponds to the average of Σx with respect to π for AdL
(see Section 3.3.1, in particular (67) and Remark 15) and to the L2(π)-projection of Σx

onto the vector space of symmetric matrices generated by some basis of functions for the
extended version of AdL we introduce (see Section 4.2, in particular (76)). We numerically
verify that the reduction in the bias is proportional to the quality of the approximation of
the covariance matrix on a basis of functions (e.g. constant matrices, piecewise constant
scalar functions, ...).

The paper is organized as follows. We start in Section 2 by reviewing various results
related to the numerical analysis of SDEs and the quantification of the bias on the invariant
measure sampled by SGLD and Langevin dynamics with stochastic gradient estimators.
We next turn to AdL in Section 3: we illustrate that some residual bias remains present
due to the fact that the covariance of the gradient estimator is not constant in general, and
we quantify it. Section 4 is dedicated to the introduction of an extended version of AdL
that allows to accomodate non constant covariance matrices for the gradient estimator and
further reduce the bias. Some conclusions and perspectives are gathered in Section 5.

2. Stochastic gradient Markov Chain Monte Carlo

We consider a Bayesian inference problem where we denote by x = (xi)i=1,...,Ndata
∈ XNdata a

set of Ndata data points, with X ⊂ Rddata . The data points are assumed to be independent
and identically distributed (i.i.d.) with respect to an elementary likelihood probability
measure Pelem(·|θ), parameterized by θ ∈ Θ = Rd. The likelihood of x is then given by

Plikelihood(x|θ) =

Ndata∏
i=1

Pelem(xi|θ).
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In the Bayesian framework, a prior distribution Pprior is considered on the parameters. The
aim is to sample from the posterior distribution

π(θ|x) ∝ Pprior(θ)Plikelihood(x|θ), (2)

in order, for instance, to compute expectations with respect to this distribution. Sampling
is usually done with MCMC methods. This however requires, at each iteration, to compute
either the log-likelihood π(·|x) or its gradient

∇θ(log π(θ|x)) = ∇θ(logPprior(θ)) +

Ndata∑
i=1

∇θ(logPelem(xi|θ)). (3)

The cost of computing these quantities scales as O(Ndata), and is usually the computational
bottleneck in implementations of MCMC algorithms. As discussed in the introduction, we
focus here on stochastic gradient dynamics, which are discretizations of stochastic dynamics
admitting π(·|x) as invariant probability measure, and where the cost of evaluating (3) is
reduced by approximating the gradient through some estimator based on a mini-batch of
the complete data set.

We first review in Section 2.1 elements on the error analysis of discretization of SDEs,
with some emphasis on the bias induced on the invariant measure, as these results will
be repeatedly used throughout this paper, and are key to understanding the performance
and limitations of all the methods we discuss. We then recall in Section 2.2 the mini-
batching method introduced in Welling and Teh (2011) and focus on the case where the
size of the mini-batch is small, possibly limited to a single point (as done in stochastic
approximation algorithms in Robbins and Monro (1951)). We then recall two classical
SDEs upon which our method is based: overdamped Langevin dynamics in Section 2.3
(known as SGLD when using mini-batching), and then Langevin dynamics in Section 2.4.
In each of these sections, we analyze how mini-batching affects the posterior distribution
and quantify the bias incurred on it by studying the associated effective dynamics. These
results are illustrated by numerical examples in Section 2.5.

2.1 Some elements on error analysis for discretizations of SDEs

Consider a SDE (θt)t>0 ⊂ Θ with generator L admitting π(·|x) as invariant probability
measure: For any smooth function φ with compact support,∫

Θ
Lφdπ(·|x) = 0.

Denote by (θm)m>0 a time discretization of the SDE with a fixed time step ∆t (so that θm

is an approximation of θm∆t). We assume that the Markov chain corresponding to the time
discretization of the SDE admits a unique invariant probability measure, denoted by π∆t.
This is for instance the case for Langevin-type dynamics when the drift of the dynamics is
globally Lipschitz or when Lyapunov conditions are satisfied; see Mattingly et al. (2002).
For a given observable φ, the target expectation

Eπ(φ) =

∫
Θ
φ(θ)π(θ|x) dθ
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is approximated by Eπ∆t(φ), which is itself typically estimated by the trajectory average

φ̂∆t,Niter =
1

Niter

Niter∑
m=1

φ(θm).

The total error on averages with respect to π(·|x) can then be written as:

φ̂∆t,Niter − Eπ(φ) = (Eπ∆t(φ)− Eπ(φ)) +
(
φ̂∆t,Niter − Eπ∆t(φ)

)
.

The first term on the right hand side corresponds to the bias on the invariant probability
measure resulting from taking finite step sizes. The second term in the error has two
origins: (i) a bias coming from the initial distribution of θ0 when this random variable is
not distributed according to π∆t; (ii) a statistical error, which is dictated by the central
limit theorem for Niter large.

We focus in this work on the bias on the invariant probability measure, which can
be bounded using the weak order of the scheme, provided some ergodicity conditions are
satisfied. Recall that a numerical scheme is of weak order s if for any smooth and compactly
supported function φ and final time T > 0, there exists C ∈ R+ such that

∀m ∈ {1, . . . , dT/∆te}, |E[φ(θm∆t)]− E[φ(θm)]| 6 C∆ts. (4)

When this condition holds, and under appropriate ergodicity conditions (see Talay and
Tubaro (1990) for a pioneering work, as well as Talay (2002); Mattingly et al. (2002); Abdulle
et al. (2014); Leimkuhler et al. (2016); Bou-Rabee and Owhadi (2010) for subsequent works
on Langevin-like dynamics), the following bound is obtained on the bias on the invariant
probability measure of the numerical scheme: For any smooth and compactly supported
function φ, there exist ∆t? > 0 and L such that

∀∆t ∈ (0,∆t?], |Eπ∆t(φ)− Eπ(φ)| 6 L∆ts. (5)

In order to write a sufficient local consistency condition to obtain an estimate such as (4),
we introduce the evolution operator P∆t associated with the numerical scheme at hand,
defined as follows: For any smooth and compactly supported function φ,

(P∆tφ) (θ) = E
[
φ
(
θm+1

) ∣∣ θm = θ
]
.

Under appropriate technical conditions, including moment conditions on the iterates of
the numerical scheme (see Theorem 2.1 in Milstein and Tretyakov (2013) for a precise
statement), a sufficient condition for (4) to hold is

P∆t = e∆tL +O(∆ts+1), (6)

where (etLφ)(θ) = E[φ(θt) | θ0 = θ] is the evolution operator associated with the underlying
SDE. Here and in the sequel, the above equality has to be understood as follows: For any
smooth and compactly supported function φ, there exist ∆t? > 0 and K ∈ R+ such that,
for any ∆t ∈ (0,∆t?], there is a function Rφ,∆t for which

P∆tφ = e∆tLφ+ ∆ts+1Rφ,∆t, sup
∆t∈(0,∆t?]

sup
θ∈Θ
|Rφ,∆t(θ)| 6 K; (7)
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see for instance Section 3.3 in Lelièvre and Stoltz (2016) for a more precise discussion of
this point.

Let us conclude this section by introducing the concept of effective dynamics (also called
modified SDEs in Shardlow (2006); Zygalakis (2011)), a tool inspired by backward numer-
ical analysis. The idea is to construct a continuous dynamics, parameterized by the time
step, which better coincides with the numerical scheme than the reference dynamics. More
precisely, given a numerical scheme of weak order s, characterized by the local consistency
condition (6), we look for a modified SDE with generator Lmod,∆t such that

P∆t − e∆tLmod,∆t = O(∆ts+2). (8)

An alternative reformulation is the following: denoting by (θ̃)t>0 the solution to the SDE
with generator Lmod,∆t, then

E[φ(θ1) | θ0 = θ] = E[φ(θ̃∆t) | θ0 = θ] +O(∆ts+2),

while

E[φ(θ1) | θ0 = θ] = E[φ(θ∆t) | θ0 = θ] +O(∆ts+1).

The prime interest of effective dynamics in our work is to provide some interpretation of the
behavior of numerical schemes. Following the standard philosophy of backward analysis, it is
indeed possible to obtain information on the behavior of numerical schemes by studying the
properties of the effective dynamics, in particular their invariant probability measures. This
is also useful for instance to understand the impact of mini-batching on SGLD and Langevin
dynamics (see respectively Vollmer et al. (2016) and Section 2.4), and is also the foundation
of Adaptive Langevin dynamics. In particular, when (8) holds with Lmod,∆t = L+∆tsAmod,
then (5) can be rewritten more precisely in the form of a Talay–Tubaro expansion (see Talay
and Tubaro (1990)):

∀∆t ∈ (0,∆t?], |Eπ∆t(φ)− Eπ(φ)−∆tsEπ(fφ)| 6 L̃∆ts+1, (9)

with f = (−L∗)−1A∗mod1, adjoints being taken on L2(π) (provided the inverse of L can be
defined on an appropriate subspace of L2(π), see again Section 3.3 in Lelièvre and Stoltz
(2016)). The formula (9) allows to make precise the dominant term in the error Eπ∆t(φ)−
Eπ(φ).

2.2 Mini-Batching procedure

The idea of using mini-batching in the context of SDEs has first been introduced through
SGLD in Welling and Teh (2011) to reduce the calculation time of one step of the discretiza-
tion of the overdamped Langevin dynamics (see (17) below) from O(Ndata) to a fraction of
this cost. It is inspired from the classical stochastic gradient descent method in Robbins
and Monro (1951) in the sense that a consistent approximation of ∇θ(log π(·|x)) is used in
the discretization of overdamped Langevin dynamics; see Section 2.3 below.

Mini-batching relies on computing at each iteration an approximation of the gradient
of the log-likelihood using a random subset of size n of the data points, which reduces the
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cost from O(Ndata) to O(n). More precisely, the gradient of the posterior distribution is
approximated by

F̂n(θ) = ∇θ(logPprior(θ)) +
Ndata

n

∑
i∈In

∇θ(logPelem(xi|θ)), (10)

where In is a random subset of size n generated by sampling uniformly indices from
{1, ..., Ndata}, with or without replacement. Sampling with or without replacement pro-
duces similar results when n� Ndata with Ndata large enough. Sampling with replacement
however leads to estimators (10) with larger variances for a given value of n (as quantified
by (13) below), and should therefore be avoided when larger batches are considered. In any

case, it is easily shown that F̂n(θ) in (10) is a consistent approximation of ∇θ(log π(·|x))
given by (3).

Properties of F̂n(θ). In view of (10), the covariance matrix of the stochastic gradient,
which is nonnegative and symmetric, is given by:

cov
(
F̂n(θ)

)
= ε(n)Σx(θ), (11)

with Σx(θ) the empirical covariance of the gradient estimator for n = 1 (i.e. with expecta-
tions computed with respect to the random variable I uniformly distributed in {1, ..., Ndata}):

Σx(θ) = covI [∇θ(logPelem(xI |θ))]

=
1

Ndata − 1

Ndata∑
i=1

[∇θ(logPelem(xi|θ))−Fx(θ)] [∇θ(logPelem(xi|θ))−Fx(θ)]T ,

(12)
where uvT is the matrix (uivj)16i,j6d ∈ Rd×d for u, v ∈ Rd, the average force reads

Fx(θ) =
1

Ndata

Ndata∑
i=1

∇θ(logPelem(xi|θ)),

and

ε(n) =


Ndata(Ndata − 1)

n
, for sampling with replacement,

Ndata(Ndata − n)

n
, for sampling without replacement.

(13)

We refer for instance to Chaudhari and Soatto (2018) for more details. We will see in
the next sections that, for all the methods we consider, the bias due to mini-batching
is controlled by ε(n) whether sampling is performed with or without replacement. It is
really this parameter (in fact, ε(n)∆t) which needs to be small in order for the asymptotic
analysis on the bias to be correct. Note that ε(n) > Ndata−1 for sampling with replacement,
which means that a bias is necessarily observed in this case. Values of ε(n) of order Ndata

are obtained only when the mini-batch size n is a fraction of the total number of data
points Ndata. To obtain values of order 1, sampling has to be done without replacement
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Figure 1: Histogram of Zx,Ndata,n when sampling is performed without replacement for the
Gaussian model of Section 2.5.1, with Ndata = 100, σθ = 1, σx = 1, µ = 0, θ = 0.5. The
reference standard Gaussian distribution is superimposed as a continuous line.

with n close to Ndata. In contrast, ε(n) is of order N2
data when the mini-batch size is small,

whether sampling is performed with or without replacement.

The above definitions allow to rewrite (10) as

F̂n(θ) = ∇θ(log π(θ|x)) +
√
ε(n)Σ

1
2
x (θ)Zx,Ndata,n, (14)

where Zx,Ndata,n is by construction a centered random variable with identity covariance. If n
and Ndata are large enough, and n� Ndata, the central limit theorem holds so that Zx,Ndata,n

asymptotically follows a centered reduced normal distribution (as assumed for instance
in Chen et al. (2014); Ahn et al. (2012); Zhu et al. (2019)). Most of the works in the
literature consider the regime where the central limit theorem holds. This is however un-
necessary when it comes to quantifying the weak error of the numerical scheme and hence
the error on the invariant measure. In our work, we consider explicitly the case when n is
of order 1 and Ndata is (moderately) large, so that Zx,Ndata,n is not necessarily close to a
Gaussian distribution. This is illustrated in Figures 1 and 2, where we plot the distribution
of Zx,Ndata,n for various values of n for the models introduced in Section 2.5, where the
elementary likelihood is either a Gaussian or a mixture of Gaussians. It is clear that the
distribution of Zx,Ndata,n is far from being Gaussian for small values of n, but is nonetheless
centered and with covariance Id. Distributions close to Gaussian are obtained for n = 20−30
for the situation considered in Figure 2.

2.3 Stochastic Gradient Langevin Dynamics

We introduce in this section the SGLD algorithm (see Section 2.3.1) and analyze the bias due
to replacing the gradient (3) by the stochastic estimator (10) using the effective dynamics
associated with the numerical method at hand (see Section 2.3.2).

2.3.1 Description of the method

A popular SDE to sample from π(·|x) is the overdamped Langevin dynamics:

dθt = ∇θ(log π(θt|x)) dt+
√

2 dWt, (15)
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Figure 2: Histogram of Zx,Ndata,n for θ = (1, 0.2), when sampling is performed without
replacement for the model of Section 2.5.2 with Ndata = 100 data points sampled from
a mixture of Gaussians with parameters σ1 = σ2 = 0.4, w = 0.5, θ1 = 0.2 and θ2 = 1.
The reference standard Gaussian distribution is superimposed as a continuous line on the
marginal distributions in θ1, θ2.
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where Wt is a standard d-dimensional Wiener process. Its generator is given by

Lovd = ∇θ(log π(·|x))T∇θ + ∆θ. (16)

It is well known that the process (15) is irreducible and admits π(·|x) as a unique invariant
probability measure, so that expectations can be approximated by trajectory averages (see
for instance Kliemann (1987)). In general, one cannot directly simulate the overdamped
Langevin dynamics (15). To numerically approximate the solution, the widely used Euler-
Maruyama scheme can be considered:

θm+1 = θm + ∆t∇θ(log π(θm|x)) +
√

2∆tGm, (17)

where ∆t > 0 is the step size, and (Gm)m>0 is a vector of i.i.d. standard d-dimensional
Gaussian random variables. It can be shown that the bias Eπ∆t(φ)−Eπ(φ) for overdamped
Langevin dynamics is of orderO(∆t); see for instance Talay (1990) and Theorem 7.3 in Mat-
tingly et al. (2002) for pioneering works on ergodic properties of discretization of SDEs and
error estimation for globally Lipschitz vector fields.

Using the stochastic estimator (10), SGLD corresponds to the following numerical
scheme:

θm+1 = θm + ∆tF̂n(θm) +
√

2∆tGm. (18)

We assume in the sequel that this Markov chain admits a unique invariant probability
measure π∆t,n (we omit the dependence on x to simplify the notation).

Remark 1 It is suggested in Welling and Teh (2011) to use decreasing time steps as this
allows to ultimately eliminate the bias without resorting to a Metropolis Hastings scheme.
However, considering decreasing time steps means that we need more iterations for a fixed
final time T , which increases the computational cost of the algorithm and results in a possi-
bly large variance in the estimation of averages at fixed computational cost. In practice, it is
more customary to use a small finite time step. As discussed in Vollmer et al. (2016), the
bias arising from mini-batching dominates the one resulting from the time step discretiza-
tion. Our focus in this work is therefore on the bias arising from mini-batching and not on
the bias coming from the use of finite time steps.

2.3.2 Effective SGLD

We recall in this section how to prove that the bias between the invariant measure π∆t,n of
SGLD (18) and π(·|x) is of order O((1 + ε(n))∆t) – by which we mean that error estimates
such as (5) hold with ∆ts replaced by (1 + ε(n))∆t on the right hand side, namely: for any
smooth and compactly supported function φ, there exist ∆t? > 0 and L such that∣∣∣∣∫

Θ
φdπ∆t,n −

∫
Θ
φdπ

∣∣∣∣ 6 L(1 + ε(n))∆t.

Such error estimates were already obtained in Vollmer et al. (2016). This analysis is im-
portant since we will repeatedly rely on it to quantify the bias on the invariant probability
measures of numerical schemes, in particular for Adaptive Langevin dynamics and their
extensions, which is why we insist on presenting the overall strategy.

11
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From a technical viewpoint, the analysis relies on effective dynamics, discussed at the
end of Section 2.1. To derive an effective dynamics for the SGLD, we follow the general
framework of backward error analysis for SDEs considered in Shardlow (2006); Zygalakis
(2011); Debussche and Faou (2012); Abdulle et al. (2012), which is based on building a
perturbation to the generator associated with the original dynamics (16), constructed so
that SGLD evolved over one step is closer to the SDE associated with the modified generator
than to the original dynamics. Recalling the definition (7) for the notation we use for
remainder terms, the results in Vollmer et al. (2016) show that (see also Appendix A.1 for
a short proof allowing to make precise the dependence of the remainder term on n)

P̂∆t,n = e∆t(Lovd+∆tAovd,n) +O
(

(1 + ε(n)3/2)∆t3
)
, Aovd,n = ε(n)Amb +Adisc, (19)

where P̂∆t,n is the evolution operator associated with the SGLD scheme (18), and the
operators Amb and Adisc respectively encode the perturbations arising from mini-batching
and time discretization:

Ambφ =
1

2
Σx : ∇2

θφ,

Adiscφ = −∇2
θ(log π(·|x)) : ∇2

θφ−
1

2
∇θ∆(log π(·|x))T∇θφ

− 1

2
∇θ(log π(·|x))T∇2

θ(log π(·|x))∇θφ.

In the latter expressions, we denote by : the Frobenius inner product of two square matrices,
i.e.

∀M1,M2 ∈ Rd×d, M1 : M2 =

d∑
i,j=1

M1
i,jM

2
i,j .

In fact, as discussed in Remark 18 of Appendix A.1, the error estimate in (19) can be
improved to O((1 + ε(n))∆t3) when E[Z3

x,Ndata,n
] = 0. Using results from Remark 5.5

in Lelièvre and Stoltz (2016), or from Vollmer et al. (2016), and following the general
strategy of Talay–Tubaro estimates such as (9), we deduce that the bias between π∆t,n

and π is of order O ((1 + ε(n))∆t) provided that ∆t and ε(n)∆t are small enough.

Proposition 2 Assume that the SGLD scheme (18) admits a unique invariant probability
measure π∆t,n, and that log π(·|x) satisfies the assumption of Kopec (2015a), namely π(·|x)
has moments of all orders and log π(·|x) is a smooth semi-convex function which, together
with its derivatives, grows at most polynomially, and satisfies the following bounds for some
constants a, b > 0:

−θT∇θ [log π(θ|x)] > −a|θ|2 − b.

Introduce the smooth functions

fdisc = (−Lovd)−1A∗disc1, fmb = (−Lovd)−1A∗mb1. (20)

Then, for any smooth function ϕ with compact support, there is ∆t? > 0 and K ∈ R+ for
which ∫

Θ
ϕdπ∆t,n −

∫
Θ
ϕdπ = ∆t

∫
Θ
ϕ (fdisc + ε(n)fmb) dπ + ε(n)3/2∆t2Rϕ,n,∆t,

12
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with

sup
16n6Ndata

sup
∆t∈(0,∆t?]

|Rϕ,n,∆t| 6 K.

The bias is determined by the norm of the correction functions fdisc, fmb in appropriate
functional spaces. These functions are well defined and belong to L2(π) in the framework
of Kopec (2015a), so that the bias term can be bounded as∣∣∣∣∆t∫

Θ
ϕ (fdisc + ε(n)fmb) dπ

∣∣∣∣ 6 (1 + ε(n))∆t
(
‖fdisc‖L2(π) + ‖fmb‖L2(π)

)
‖ϕ‖L2(π). (21)

The bias is expected to be larger when Σx is larger, because A∗mb1 in (20) is larger –
although this statement is not as clear cut as for Langevin dynamics since the correction
function fmb involves derivatives of Σx, in contrast to estimates obtained for underdamped
and adaptive Langevin dynamics. The dimension dependence of the correction terms is not
so easy to determine, as the inverse of −Lovd considered as an operator on L2(π) scales as
the inverse of the Poincaré constant, and the scaling of the latter constant is not known
unless the logarithm of the target distribution is (a perturbation of) a strongly log-concave
function; see for instance Bakry et al. (2014).

Note that the bias can be decreased by either decreasing ∆t or increasing n, hence
decreasing ε(n) in view of (13). However, as already discussed in Vollmer et al. (2016),
the mini-batching error usually dominates the discretization error by orders of magnitude
since ε(n) is proportional to N2

data unless n is a fraction of Ndata, in which case it scales
as Ndata.

Remark 3 To reduce the mini-batching bias, it is suggested in Vollmer et al. (2016) to
renormalize the magnitude of the injected noise by a quantity involving Σx(θ) (the so-called
modified SGLD scheme). Since Σx(θ) is usually unknown, this requires estimating this
matrix, which is however computationally expensive since the estimation has to be repeated
for each new value of θ, and may cancel the gain provided by mini-batching in the first
place. Our focus in this work is to reduce the mini-batching error without the need to
estimate Σx(θ).

2.4 Langevin dynamics with mini-batching

It has been observed in practice that a better sampling of probability measures can be
provided by Langevin dynamics, both in the literature on computational statistical physics
(see for instance Cancès et al. (2007)) and more recently in the machine learning literature,
see for instance Dalalyan and Riou-Durand (2020). We first present in Section 2.4.1 the
numerical scheme obtained by discretizing Langevin dynamics with a splitting scheme and
replacing the gradient of the log-likelihood by its estimator (10), and then analyze the bias
induced on the invariant probability measure of the numerical scheme in Section 2.4.2.

2.4.1 Standard Langevin dynamics

Langevin dynamics introduces some inertia in the evolution of θ, through an extended con-
figuration space with a momentum vector p conjugated to θ. It can be seen as a perturbation
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of the Hamiltonian dynamics where some fluctuation/dissipation mechanism is added to the
evolution of the momenta, and reads{

dθt = pt dt,

dpt = ∇θ(log π(θt|x)) dt− Γpt dt+
√

2Γ1/2 dWt,
(22)

where Γ ∈ Rd×d is a positive definite symmetric matrix. It would be possible, as in molecular
dynamics, to attach a mass to each degree of freedom, but we set here for simplicity this mass
to 1, the generalization to non trivial mass matrices being straightforward. The generator
of Langevin dynamics (22) is given by

Llan = ∇θ(log π(·|x))T∇p + pT∇θ − pTΓ∇p + Γ : ∇2
p. (23)

The diffusion constant
√

2Γ1/2 in front of the Wiener process ensures that the following
probability distribution is invariant:

µ(dθ dp|x) = π(θ|x)τ(dp) dθ,

where

τ(dp) = (2π)−d/2e−p
2/2 dp, (24)

see for instance Pavliotis (2014); Leimkuhler and Matthews (2015); Lelièvre and Stoltz
(2016). In particular, the marginal distribution of µ(·|x) in the θ variable is indeed the
target distribution (2). It can even be shown that time averages along solutions of (22)
almost surely converge to averages with respect to µ since the generator of the dynamics is
hypoelliptic; see Kliemann (1987).

To numerically approximate the solution of Langevin dynamics, we use a numerical
integrator based on a second order Strang splitting, the so-called OABAO scheme, encoded
by the following evolution operator (although there are various other choices of orderings,
see for instance Leimkuhler and Matthews (2013); Leimkuhler et al. (2016); Leimkuhler and
Matthews (2015)):

P∆t = e∆tL3/2e∆tL2/2e∆tL1e∆tL2/2e∆tL3/2, (25)

where

L1 = ∇θ log(π(·|x))T∇p, L2 = pT∇θ, L3 = −pTΓ∇p + Γ : ∇2. (26)

The elementary generators L1 and L2 are respectively associated with the elementary dif-
ferential equations dpt = ∇θ log(π(θt|x) dt and dθt = pt dt, which can be analytically in-
tegrated. The elementary generator L3 is associated with the Ornstein–Uhlenbeck pro-
cess dpt = −Γpt dt+

√
2Γ1/2 dWt, which can also be analytically integrated as:

pt = e−Γtp0 +
√

2

t∫
0

e−(t−s)ΓΓ1/2 dWs ∼ N (αtp0, Id − α2t), αt = e−Γt. (27)
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Finally, the numerical scheme encoded by (25) reads:

pm+ 1
3 = α∆t/2 p

m + (Id − α∆t)
1/2 Gm,

θm+ 1
2 = θm +

∆t

2
pm+ 1

3 ,

pm+ 2
3 = pm+ 1

3 + ∆t∇θ
[
log π

(
θm+ 1

2

∣∣∣x)] ,
θm+1 = θm+ 1

2 +
∆t

2
pm+ 2

3 ,

pm+1 = α∆t/2 p
m+ 2

3 + (Id − α∆t)
1/2 Gm+ 1

2 ,

(28)

where (Gm)m>0 and (Gm+ 1
2 )m>0 are two independent families of i.i.d. standard d-dimensional

Gaussian random variables. Moreover, it is proved in Leimkuhler et al. (2016); Abdulle et al.
(2014); Durmus et al. (2021) that the Markov chain generated by (28) admits a unique in-
variant probability measure µ∆t and that there exists C ∈ R+ such that, for any smooth
function φ with compact support,∣∣∣∣∫

Θ
φ(θ, p)µ∆t(dθ dp)−

∫
Θ
φ(θ, p)µ(dθ dp|x)

∣∣∣∣ 6 C∆t2.

The key element to prove this statement is the fact that the numerical scheme (28) is an
approximation of weak order 2 of Langevin dynamics (see Leimkuhler et al. (2016); Abdulle
et al. (2014))

P∆t = e∆tLlan +O(∆t3). (29)

2.4.2 Error estimates for Langevin dynamics with mini-batching

In order to analyze the error on the posterior measure sampled by a discretization of
Langevin dynamics used in conjunction with mini-batching, we derive here the effective
dynamics associated with the numerical method (28) when the gradient of the log-likelihood
is replaced by its stochastic estimator (10) (similar results are obtained for other Strang
splittings). This corresponds to the following numerical scheme:

pm+ 1
3 = α∆t/2 p

m + (Id − α∆t)
1/2 Gm,

θm+ 1
2 = θm +

∆t

2
pm+ 1

3 ,

pm+ 2
3 = pm+ 1

3 + ∆tF̂n

(
θm+ 1

2

)
,

θm+1 = θm+ 1
2 +

∆t

2
pm+ 2

3 ,

pm+1 = α∆t/2 p
m+ 2

3 + (Id − α∆t)
1/2 Gm+ 1

2 .

(30)

When using mini-batching, we are in fact replacing e∆tL1 in (25) by the elementary evolution
operator QL1

∆t acting as (
QL1

∆tϕ
)

(θ, p) = E
[
ϕ
(
θ, p+ ∆tF̂n(θ)

)]
.
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A simple computation provided in Appendix A.2 shows that

QL1
∆t = e∆tL1 +O(ε(n)∆t2). (31)

Denoting by P̂∆t,n the evolution operator of the numerical scheme (30), and by µ∆t,n its
invariant probability measure (assuming that it exists and it is unique), it can then be
proved that (see Appendix A.2)

P̂∆t,n = e∆tLlan +O
(
(ε(n) + ∆t)∆t2

)
. (32)

This allows to formulate the following result on the bias of µ∆t,n.

Proposition 4 Assume that the Markov chain (30) admits a unique invariant probability
measure µ∆t,n, and that log π(·|x) satisfies the assumption of Kopec (2015b), namely it is a
smooth semi-convex function which, together with its derivatives, grows at most polynomi-
ally, and satisfies the following bounds for some constants a, b, c > 0 with b ∈ (0, 1):

− log π(θ|x) > a|θ|2, −1

2
θT∇θ [log π(θ|x)] > −b log π(θ|x) + γ2 b(2− b)

8(1− b)
|θ|2 − c.

Then, there exist smooth functions fdisc, fmb such that, for any smooth function ϕ with
compact support, there is ∆t? > 0 and K ∈ R+ for which∫

Θ×Rd
ϕdµ∆t,n−

∫
Θ×Rd

ϕdµ = ∆t

∫
Θ×Rd

ϕ (∆tfdisc+ε(n)fmb) dµ+(∆t+ε(n)3/2)∆t2Rϕ,n,∆t,

with
sup

16n6Ndata

sup
∆t∈(0,∆t?]

|Rϕ,n,∆t| 6 K.

Note that the factor ∆t in the term ∆t+ ε(n) of the remainder is useful only when n =
Ndata, in which case ε(n) = 0. Proposition 4 makes precise the statement that the bias
between µ and µ∆t,n is of order O ((ε(n) + ∆t)∆t). Indeed, fdisc, fmb belong to L2(π) in
the framework of Kopec (2015a) (see also the discussion in Lelièvre and Stoltz (2016)), so
that the bias term can be bounded as∣∣∣∣∆t ∫

Θ×Rd
ϕ (∆tfdisc + ε(n)fmb) dµ

∣∣∣∣ 6 ∆t
(
∆t‖fdisc‖L2(µ) + ε(n)‖fmb‖L2(µ)

)
‖ϕ‖L2(µ).

(33)
It is clear that the error ε(n)∆t coming from mini-batching dominates the error ∆t2 due to
time discretization since ε(n) is much larger than ∆t unless n is very close to Ndata. Com-
paring this equality to (29) highlights the fact that mini-batching degrades the consistency
estimate (29) by one order in ∆t with respect to Langevin dynamics (22). The bias is of
the same order of magnitude as for SGLD, see (21).

Sufficient conditions for log π(θ|x) to satisfy the assumptions in Kopec (2015b) are
for instance that − log π(θ|x) is a bounded perturbation of a strongly convex function.
The dimension dependence of the correction functions fdisc, fmb is not clear since, as for
overdamped Langevin dynamics, bounds on these functions depend on the norm of the
inverse of the adjoint of the generator Llan (see (36) for fmb). The scaling with respect
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to the dimension for such operators has only been recently studied, see Cao et al. (2019);
Bernard et al. (2022); Brigati and Stoltz (2023). As for overdamped Langevin dynamics, it
depends on the Poincaré constant.

We do not provide at this stage functional estimates on the function fmb which appears
in the dominant term of the bias in (33). This is discussed after (35) below.

Remark 5 To remove the bias on the invariant probability measure at dominant order
in ε(n)∆t, it is suggested in Matthews and Weare (2018) to modify the integration of the
Ornstein–Uhlenbeck part on the momenta. This requires however an estimation of the co-
variance matrix, which can again be computationally prohibitive (as discussed in Remark 3).

2.4.3 Effective dynamics for Langevin dynamics with mini-batching

We now construct an effective dynamics which coincides at order 3 in ∆t over one time
step with the numerical scheme (30) even when using mini-batching, in order to obtain an
equality similar to (29). This effective dynamics is the key building block to understand
Adaptive Langevin dynamics in Section 3.1. A straightforward computation, following the
lines of Matthews and Weare (2018), shows that (see Appendix A.2)

P̂∆t,n = e∆t(Llan+∆tε(n)Alan) +O
(

(1 + ε(n)3/2)∆t3
)
, Alan =

1

2
Σx : ∇2

p. (34)

The effective dynamics associated with Llan + ∆tε(n)Alan isdθ̃t = p̃t dt,

dp̃t = ∇θ
[
log π

(
θ̃t

∣∣∣x)] dt− Γp̃t dt+
(

2Γ + ε(n)∆tΣx(θ̃t)
)1/2

dWt,
(35)

where 2Γ + ε(n)∆tΣx(θ) is a positive definite matrix since Σx is positive (even though the
latter matrix is unknown). This allows to identify the correction function fmb in (33) as

fmb = (−L∗lan)−1A∗lan1 =
1

2
(−L∗lan)−1 Σx : (∇∗p)21, (36)

where the adjoints of the operator are taken on L2(µ). Thanks to estimates on Llan obtained
from hypocoercive estimates (see Hérau (2006); Dolbeault et al. (2009, 2015)), we deduce
that there exists a constant C ∈ R+ such that

‖fmb‖L2(µ) 6 C
∥∥Σx : (∇∗p)21

∥∥
L2(µ)

= C
∥∥(∇∗p)21

∥∥
L2(τ)

‖Σx‖L2(π) . (37)

In fact, (∇∗p)21 is the matrix whose entry (i, j) for 1 6 i, j 6 d is pipj−δi,j . Here and in the
sequel, we assume implicitly that Σx has all its entries in L2(π). The bias on the invariant
probability measure sampled by the numerical scheme is therefore, at dominant order, of
order ε(n)∆t‖Σx‖L2(π), in accordance with the general estimate (1) (choosing S = {0}
hence S∗ = 0).

Remark 6 Consider the simple case when the covariance of the gradient estimator is con-
tant, namely Σx = σ2Id ∈ Rd×d, and the friction is isotropic, namely Γ = γId ∈ Rd×d,
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with σ, γ > 0. In this situation, the modified Langevin dynamics (35) samples the invariant
probability measure with a density proportional to µ(θ)βeff , with

βeff =

(
1 +

ε(n)σ2∆t

2γ

)−1

< 1. (38)

Since the exponent βeff is smaller than 1, the modified Langevin dynamics samples a tem-
pered version of µ.

2.5 Numerical illustration

We illustrate in this section the results on the bias of the posterior measure introduced by
mini-batching when the elementary likelihoods are given by either a Gaussian or a mixture
of Gaussians. The aim is to numerically quantify the bias in the non asymptotic regime
n = O(1) (for which Zx,Ndata,n is not Gaussian), and to have a benchmark on the bias to
compare with AdL.

2.5.1 Gaussian posterior

We first suppose that the elements of the data set are normally distributed, namely xi|θ ∼
N (θ, σ2

x), where θ is the parameter to estimate. The prior distribution on θ is a centered
normal distribution with variance σ2

θ . In this case, simple computations show that the
posterior distribution on θ is also Gaussian with mean µpost and variance σ2

post, where (see
for instance Vollmer et al. (2016))

µpost =

(
σ2
x

σ2
θ

+Ndata

)−1 Ndata∑
i=1

xi, σ2
post =

(
1

σ2
θ

+
Ndata

σ2
x

)−1

. (39)

Moreover,

F̂n(θ) = − θ

σ2
θ

+
Ndata

n

∑
i∈In

xi − θ
σ2
x

.

The variance of F̂n(θ) as a function of θ can therefore be analytically computed using (12)
(see again Vollmer et al. (2016) for instance):

Σx(θ) = varI [∇θ(logPelem(xI |θ))] =
var(x)

σ4
x

, (40)

where I is a random variable uniformly distributed in {1, ..., Ndata}, and

var(x) =
1

Ndata − 1

Ndata∑
i=1

xi − 1

Ndata

Ndata∑
j=1

xj

2

is the empirical variance of the data. In this case, the covariance of the force Σx is constant
and does not depend on the parameter θ.

Let us first discuss SGLD. As shown in Section 2.1 in Vollmer et al. (2016), there is
no bias on the mean of the posterior distribution π∆t,n of the Markov chain associated
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with SGLD. The latter distribution is however not strictly Gaussian, because the random
variable Zx,Ndata,n is not Gaussian. It can however be shown that the non Gaussianity arises
from higher order terms, so that the shape of the the distribution is Gaussian at dominant
order in (1 + ε(n))∆t. In order to characterize the dominant order of the shape of the
distribution, we write the effective dynamics with generator Lovd + ∆tAovd,n in (19), which
turns out to be an Ornstein–Uhlenbeck process:

dθt =

[
−

(
1 +

∆t

2σ2
post

)
θ − µpost

σ2
post

]
dt+

√
2

(
1 +

∆tε(n)

2σ4
x

var(x) +
∆t

σ2
post

)1/2

dWt.

The probability measure of the latter process is a Gaussian distribution with mean 0 and
variance

σ2
post

(
1 +

∆t

2σ2
post

)−1(
1 +

ε(n)∆t

2σ4
x

var(x) +
∆t

σ2
post

)
.

This shows that the invariant probability measure of SGLD is, at dominant order in ∆t
and ε(n)∆t, a Gaussian distribution with mean 0 and variance

σ2
post

[
1 +

∆t

2

(
ε(n)

σ4
x

var(x) +
1

σ2
post

)]
+O

(
(1 + ε(n)2)∆t2

)
. (41)

For Langevin dynamics with mini-batching, there is (as for SGLD) no bias on the mean
of the posterior distribution π∆t,n, as proved in Appendix B. As for SGLD, the latter dis-
tribution is also not strictly Gaussian when the random variable Zx,Ndata,n is not Gaussian.
It is however close to a Gaussian distribution since the marginal posterior distribution in
the θ variable obtained for the effective Langevin dynamics is, according to Remark 6, a
Gaussian distribution with mean µpost and variance σ2

post/βeff . This means that the variance
for the discretization of Langevin dynamics (30) is, at dominant order in ∆t and ε(n)∆t,
and when Γ = γId,

σ2
post

(
1 +

ε(n)∆t

2γσ4
x

var(x)

)
+O

(
(1 + ε(n)2)∆t2

)
. (42)

Note that this expression coincides with (41) when γ = 1 and ε(n)� 1.
To perform the numerical experiments, we generate a data set of Ndata = 100 according

to a Gaussian distribution with mean θ0 = 0 and variance σx = 1. We also set σθ = 1
in the prior distribution. We run the SGLD scheme (18) and Langevin dynamics with
the numerical scheme (30) with Γ = 1 for a final time T = 106 and various values of ∆t
(which corresponds to Niter = T/∆t time steps). We also consider various values of n, the
subsampling of the data points being done with and without replacement. We report in
Figure 3 the relative bias on the variance, given in the limit Niter → +∞ by the ratio of∣∣∣∣∣
[∫

R
θ2π∆t,n(θ|x) dθ −

(∫
R
θπ∆t,n(θ|x) dθ

)2
]
−

[∫
R
θ2π(θ|x) dθ −

(∫
R
θπ(θ|x) dθ

)2
]∣∣∣∣∣ ,

and σ2
post, where π∆t,n(·|x) denotes the invariant measure in the θ variable of the nu-

merical scheme under consideration (for (30), this corresponds to the marginal measure
of µ∆t,n(θ, p|x) in the θ variable).
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(b) Langevin dynamics

Figure 3: Relative error on the variance of the posterior distribution for various values of
∆t and n when the elementary likelihood is a Gaussian distribution, when sampling with
(circles) and without replacement (squares).

Several conclusions can be drawn from the results presented in Figure 3. First, note
that the bias is determined by the value of ε(n) irrespectively of the fact that sampling is
performed with or without replacement. Second, the bias is indeed affine in ε(n), with a
slope which proportional to ∆t. In fact, all curves would be superimposed if we were plotting
the error as a function of ε(n)∆t, which demonstrates that the error is indeed determined at
dominant order by this parameter. We do not report results for ε(n) = 0, which corresponds
to n = Ndata and sampling without replacement, since the corresponding error is anyway
much smaller than the one arising from mini-batching. Finally, errors are very similar for
SGLD and the scheme (30) associated with Langevin dynamics, as anticipated from the
comparison of (41) and (42) when choosing γ = 1.

2.5.2 Mixture of Gaussians

We next consider a more realistic case where the data points are distributed according to a
mixture of Gaussians:

Pelem(xi|θ) =
w√
2πσ1

exp

(
−(xi − µ1)2

2σ2
1

)
+

1− w√
2πσ2

exp

(
−(xi − µ2)2

2σ2
2

)
, (43)

where w ∈ [0, 1], µ1, µ2 ∈ R and σ1, σ2 ∈ (0,+∞). We consider the case when the pa-
rameters to estimate are the centers of the Gaussians θ = (µ1, µ2), whereas σ1, σ2 and w
are given. The prior distribution on the vector of parameters θ is chosen to be a centered
normal distribution with covariance matrix I2. To perform numerical simulations, we fix
µ1 = 1, µ2 = 0.5, σ1 = σ2 = 0.4, w = 0.4 and Ndata = 200 to generate the data set
according to (43). We run again the numerical schemes (18) and (30), with Γ = I2 and an
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Figure 4: L1 error on the θ1 marginal of the posterior distribution for various values of
∆t and n when the elementary likelihoods are mixtures of Gaussians, when sampling with
(circles) and without replacement (squares).

integration time T = 106. We compute the L1 error on the marginal distribution in the
θ1 = µ1 variable, given in the limit Niter → +∞ by∫

R

∣∣∣∣∫
R
π∆t,n(θ|x) dθ2 −

∫
R
π(θ|x) dθ2

∣∣∣∣ dθ1. (44)

We plot this error with respect to ε(n) for various values of ∆t in Figure 4. We use numerical
quadratures to approximate the integral with respect to θ1 in (44) (approximating the
marginals as piecewise constant functions over a grid of 500 bins over the interval [0,1.4]),
and also to compute the integral with respect to θ2 for π(·|x).

The interpretation of the results presented in Figure 4 is quite similar to the discussion
of the results of Figure 3. They confirm that the bias is determined by the value of ε(n)
irrespectively of the fact that sampling is performed with or without replacement. Note also
that the errors are quite similar for SGLD and Langevin dynamics with Γ = I2. Moreover,
the L1 error (44) is affine in ε(n) provided ε(n)∆t is sufficiently small so that the asymptotic
analysis of the bias is indeed valid. From a quantitative viewpoint, the affine regime is
observed for L1 errors below 0.1. This regime is relevant for time steps ∆t 6 10−4 for the
values of n considered in our simulations, but not for simulations with larger time steps.

3. Adaptive Langevin dynamics

Using SGLD or Langevin dynamics with mini-batching introduces a bias on the posterior
distribution. We recall in Section 3.1 the Adaptive Langevin (AdL) dynamics introduced
in Jones and Leimkuhler (2011) and Ding et al. (2014). The aim of this dynamics is to
remove, or at least substantially reduce the bias due to mini-batching. Under the key
assumption that the covariance matrix Σx(θ) defined in (12) is constant (but unknown), it
can indeed be proved that Adaptive Langevin dynamics samples the target distribution (see
Section 3.2). However, we demonstrate in Section 3.3 that this assumption may not hold
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in practice, e.g. for models for which the elementary likelihood is a mixture of Gaussians,
which motivates the construction of an extended version of AdL to tackle such cases. We
also quantify the bias on the invariant measure due to the fact that Σx is not constant
by deriving an error estimate involving (1), henceforth explaining why AdL reduces the
minibatching bias compared to SGLD or Langevin dynamics. Our analysis also allows to
understand why AdL with a scalar friction can provide results of almost the same quality
as AdL with a genuine friction matrix. This is illustrated for a model of logistic regression
for MNIST data in Section 3.4, and for Bayesian neural networks in Section 3.5.

3.1 General formulation of Adaptive Langevin dynamics

AdL was initially introduced to address the issue of the gradient of the energy not being
exactly computed in molecular dynamics in Jones and Leimkuhler (2011). It was then
considered for Bayesian inference in Ding et al. (2014) where it allows to remove the bias
arising from mini-batching under the assumption that the covariance Σx is constant. As
discussed in Section 2.4, the effect of the stochastic estimator (14) of the force in Langevin
dynamics is, at dominant order, to add an unknown contribution to the diffusion coefficient
in front of the Brownian motion, which we denote by

√
2A∆t,n(θ)1/2, with

A∆t,n(θ) = Γ +
ε(n)∆t

2
Σx(θ). (45)

Note that A∆t,n(θ) ∈ Rd×d is an unknown positive definite symmetric matrix. The idea
behind AdL is to modify the effective Langevin dynamics so that it admits π(·|x) as an
invariant probability measure (more precisely, that it admits an invariant probability mea-
sure whose marginal distribution in the θ variable is π(·|x)). The friction matrix, denoted
here by ξ ∈ Rd×d, is no longer a constant, but a dynamical variable that adjusts itself to
the effective noise resulting from mini-batching. The unknowns in the dynamics are there-
fore (θ, p, ξ) ∈ Ξ = Θ × Rd × Rd×d. Denoting by [ξ]i,j the components of ξ, AdL can be
written as 

dθt = pt dt,

dpt = (∇θ(log π(θt|x)− ξtpt) dt+
√

2A∆t,n(θt)
1/2dWt,

d[ξt]i,j =
1

η
(pi,tpj,t − δi,j) dt, 1 6 i, j 6 d,

(46)

where η is a positive scalar which sets the timescale for the evolution of the friction matrix
(see Remark 8 below for more general choices). Let us emphasize once again that we
consider that each degree of freedom has mass 1 for simplicity, but our analysis can be
easily generalized to non trivial mass matrices, or even to non-quadratic kinetic energies as
the ones considered in Stoltz and Trstanova (2018).

Remark 7 If the initial condition ξ0 is symmetric, then the matrix ξt is symmetric for all t.
In any case, the quantities ξi,j,t− ξj,i,t are constant. This shows that it suffices to introduce
(d+ 1)d/2 new variables ([ξ]i,j)16i6j6d to simulate AdL. However, for Lemma 9 below, it is
more convenient to write out statements and proofs with all variables ([ξ]i,j)16i,j6d.
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Remark 8 It is possible to formulate AdL for with different timescale parameters for the
evolution of the components of the friction matrix, as defined by a symmetric matrix η =
ηT ∈ Rd×d with positive entries. In this case, each element i, j of ξ follows the dynamics

d[ξt]i,j =
1

ηi,j
(pi,tpj,t − δi,j) dt.

Let us conclude this general presentation of AdL by recalling the motivation for the
dynamics on the friction variable. We assume for this discussion that d = 1 in order to
simplify the presentation. One way to understand the intuition behind AdL is to see (46)
as the superposition of a Hamiltonian dynamics (which preserves the energy − log π(θ|x) +
|p|2/2) and the following elementary dynamics:

dpt = −ξtpt dt+
√

2A
1/2
∆t,ndWt,

dξt =
1

η

(
p2
t − 1

)
dt.

Note that we write A
1/2
∆t,n here instead of A∆t,n(θ)1/2 since the value of θ does not change

for this subdynamics. Knowing that the marginal distribution over the variable p of the
invariant probability measure should be a Gaussian of variance 1 (see Ding et al. (2014)),
the idea is to keep the right balance between the friction ξ and the fluctuation A∆t,n. Given
that the strength of the fluctuation is unknown, the friction is adjusted so that the average
kinetic energy is fixed to its target value, i.e. E(|p|2) = 1. More precisely, if |p|2 > 1, the
kinetic energy is larger than what it should be, so the friction is increased, which ends up
decreasing p. We can use the same line of argument for the opposite case. In fact, the
dynamics of the additional variable ξ follows a negative feedback loop control as in the
Nosé–Hoover thermostat; see Nosé (1984) and Hoover (1985).

3.2 Adaptive Langevin dynamics for gradient estimators with constant
covariance

We discuss more precisely in this section the properties of AdL under the crucial assumption
that the covariance of the gradient estimator is constant :

Σx(θ) = Σx. (47)

This implies in particular that the matrix A∆t,n defined in (45) is constant. The limitations
of this assumption are discussed more precisely in Section 3.3.

We start by discussing invariant probability measures of AdL in Section 3.2.1. We next
present in Section 3.2.2 numerical schemes to integrate AdL, together with error estimates on
the bias of their invariant measures. These results are numerically illustrated in Section 3.2.3
for the Gaussian model of Section 2.5.1, for which the fundamental assumption (47) is
satisfied. Let us emphasize here again that, in contrast to various works in the literature,
we do not necessarily assume that n is much larger than 1 and that the random variable
in (14) follows a Gaussian distribution.
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3.2.1 Invariant probability measure of AdL

The generator of the stochastic dynamics (46) can be decomposed as

LAdL,Σx = Lham + LFD + LNH,

where

LNH = −pT (ξ −A∆t,n)∇p +
1

η

∑
16i,j6d

(pipj − δi,j)∂[ξ]i,j ,

and

Lham = pT∇θ +∇θ(log π(·|x))T∇p, LFD = A∆t,n : ∇2
p − pTA∆t,n∇p.

We recall the following result on the invariant probability measure of (46); see Section 2
in Leimkuhler et al. (2020).

Lemma 9 Suppose that (47) holds. Then the dynamics (46) admits the invariant proba-
bility measure

ν(dθ dp dξ) = π(θ|x)τ(dp)ρ(dξ) dθ, (48)

where τ(dp) is defined in (24) and

ρ(dξ) =
∏

16i,j6d

√
η

2π
exp

(
−η

2

(
ξi,j − [A∆t,n]i,j

)2
)
d[ξ]i,j ,

where [A∆t,n]i,j is the (i, j) component of A∆t,n.

Lemma 9 suggests that, as long as assumption (47) is satisfied, sampling a probability
measure using Adaptive Langevin dynamics is not affected by the mini-batching procedure
to estimate the gradient of the log-likelihood in the θ variable. The marginal distribution
of (48) in the variable θ is indeed the target distribution π, whatever the value of A∆t,n.
This shows that AdL can indeed adjust the friction in order to compensate fluctuations
of arbitrary constant magnitude. We recall the proof of Lemma 9 because we use similar
computations in the proof of Theorem 17 below.

Remark 10 Let us emphasize that Lemma 9 states that ν is invariant by AdL. How-
ever, the dynamics cannot be ergodic for this measure since [ξt]i,j − [ξt]j,i remains constant,
whereas [ξ]i,j and [ξt]j,i are independent under the probability measure (48). The dynamics
can therefore at best be ergodic for the restriction of ν onto the sub-manifold

S (ξ0) = Θ× Rd ×
{
ξ ∈ Rd×d

∣∣∣ [ξ]i,j − [ξ]j,i = [ξ0]i,j − [ξ0]j,i

}
,

which is determined by the initial condition ξ0. Such an ergodicity result is however not triv-
ial at all since there are d(d+1) independent degrees of freedom in the symmetric matrix ξt,
while the noise acting on the momentum variable p is only of dimension d. The stochastic
dynamics is therefore highly degenerate. In any case, the important point here is that the
marginal in the θ-variable of the projected measure is π(·|x) whatever the distribution ρ
in (48).
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Proof We follow the approach in Section 2 of Leimkuhler et al. (2020). It suffices to show
that, for all smooth and compactly supported functions φ,∫

Ξ
LAdL,Σxφdν =

∫
Ξ
φ
(
L∗AdL,Σx

1
)
dν = 0, (49)

where adjoints are taken in L2(ν). Simple computations based on integration by parts show
that ∂∗θi = −∂θi − ∂θi(log π(θ|x)), ∂∗pi = −∂pi + pi, ∂

∗
[ξ]i,j

= −∂[ξ]i,j + η ([ξ]i,j − [A∆t,n]i,j).

We can then rewrite the generators Lham and LFD as (see Leimkuhler et al. (2020)):

Lham =

d∑
i=1

∂∗pi∂θi − ∂
∗
θi
∂pi , (50)

LFD = −∇∗pA∆t,n∇p = −
∑

16i,j6d

[A∆t,n]i,j∂
∗
pi∂pj . (51)

Moreover, for φ, ψ two smooth and compactly supported functions,∫
Ξ

(LNHφ)ψ dν =
∑

16i,j6d

∫
Ξ
−pi([ξ]i,j − [A∆t,n]i,j)

(
∂pjφ

)
ψ +

1

η
(pipj − δi,j)

(
∂[ξ]i,jφ

)
ψ dν

=
∑

16i,j6d

∫
Ξ
−([ξ]i,j − [A∆t,n]i,j)∂

∗
pj (piψ)φ+

1

η
(pipj − δi,j)

(
∂∗[ξ]i,jψ

)
φdν

= −
∫

Ξ
(LNHφ)ψ dν.

(52)
It is then clear that Lham and LNH are antisymmetric, while LFD is symmetric. Moreover,
LNH1 = Lham1 = LFD1 = 0. The invariance of ν therefore follows from (49).

The mathematical properties of AdL are investigated in Herzog (2018) and Leimkuhler
et al. (2020) in the case when Σx = σ2Id with σ2 constant, and the friction is scalar valued
(in which case the invariant probability measure provided by Lemma 9 is in fact the only
invariant probability measure). The main contributions of Leimkuhler et al. (2020) are
the following: (i) the exponential convergence of the law of the process encoded by the
convergence of the semi-group etL is proved using the hypocoercive approach of Hérau
(2006) and Dolbeault et al. (2009, 2015); (ii) a central limit theorem for time averages
along one realization of the dynamics is derived with bounds on the asymptotic variance
depending on the parameters η and Γ of the dynamics. If A∆t,n ≈ Γ (which is the case
when ∆t is sufficiently small and n is sufficiently large), the mathematical analysis suggests
to fix Γ and η of order 1.

3.2.2 Numerical scheme

We now construct a numerical scheme for which AdL in (46) is the effective dynamics
at dominant order in ∆t and ε(n)∆t. Concretely, we replace the matrix A∆t,n by its
expression (45) in the SDE (46) and consider the symmetric splitting scheme introduced
in Leimkuhler et al. (2020), which is based on decomposing (46) into the following four
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elementary SDEs (the variables which are evolved are indexed by t, while the ones which
remain constant do not have any subscript):

dθt = p dt, (53)

dpt = −ξpt dt+
√

2Γ1/2 dW1,t, (54)

dpt = ∇θ(log π(θ|x)) dt+
√
ε(n)∆tΣx(θ)1/2 dW2,t, (55)

d[ξt]i,j =
1

η
(pipj − δi,j) dt, 1 6 i 6 j 6 d, (56)

where W1,t,W2,t are two independent standard d-dimensional Brownian motions. The el-
ementary ordinary differential equations (53) and (56) can be trivially integrated. The
elementary SDE (54) is an Ornstein–Uhlenbeck process that can be analytically integrated
in law as

pm+1 = e−∆tξpm + σξ,Γ,∆tG
m, σ2

ξ,Γ,∆t = 2

∆t∫
0

e−sξΓe−sξ ds,

where (Gm)m>0 is a family of i.i.d. standard d-dimensional Gaussian random variables.
If there exists M such that ξM + Mξ = Γ, then σ2

ξ,Γ,∆t = 2
(
M − e−∆tξMe−∆tξ

)
. In

particular, for Γ = γId and when ξ is invertible, one can choose M = γξ−1/2 in which case
σ2
ξ,Γ,∆t = γξ−1(Id − e−2∆tξ). When ξ is singular or close to singular, the latter formula has

to be understood through a limiting procedure based on spectral calculus, see Leimkuhler
et al. (2020).

The elementary SDE (55) is integrated as

pm+1 = pm + ∆tF̂n (θ) = pm + ∆t∇θ(log π(θ|x)) + ∆t
√
ε(n)Σx(θ)1/2Zx,Ndata,n. (57)

Since the random variable Zx,Ndata,n has mean 0 and identity covariance by construction,
the equality (82) in Appendix A.2 shows that the numerical scheme (57) is weakly consistent
with (55), with an error of order (1 + ε(n)3/2)∆t3 over one time step, even if Zx,Ndata,n is
not Gaussian. In the case where E[Z3

x,Ndata,n
] = 0, the error over one time step is of order

(1 + ε(n))∆t3.

The numerical scheme we consider is finally obtained by a Strang splitting where (55)
is updated in the central step of the algorithm, in order to compute the force only once per
time step and avoid its storage. The order in which the remaining elementary dynamics
are integrated is unimportant for our purposes, although some orderings may be better
than others, in particular in some limiting regimes where one of the parameters goes to 0
or infinity; see Leimkuhler and Shang (2016) for an extensive discussion in the context of

26



Mini-batching error and adaptive Langevin dynamics

AdL. Fixing Γ = γId, the numerical scheme reads as follows:

pm+ 1
2 = e−∆tξm/2pm +

[
γ(ξm)−1

(
Id − e−∆tξm

)]1/2
Gm,

ξm+ 1
2 = ξm +

∆t

2η

(
pm+ 1

2

(
pm+ 1

2

)T
− Id

)
,

θm+ 1
2 = θm +

∆t

2
pm+ 1

2 ,

p̃m+ 1
2 = pm+ 1

2 + ∆tF̂n

(
θm+ 1

2

)
,

θm+1 = θm+ 1
2 +

∆t

2
p̃m+ 1

2 ,

ξm+1 = ξm+ 1
2 +

∆t

2η

(
p̃m+ 1

2

(
p̃m+ 1

2

)T
− Id

)
,

pm+1 = e−∆tξm+1/2p̃m+ 1
2 +

[
γ(ξm+1)−1

(
Id − e−∆tξm+1

)]1/2
Gm+ 1

2 ,

(58)

where (Gm)m>0 and (Gm+ 1
2 )m>0 are two independent families of i.i.d. standard Gaussian

random variables. Note that it is possible to work only with the additional variables
(ξi,j)16i6j6d since the updates of ξi,j and ξj,i in (46) are the same. The initial conditions
for ξ0 is γId, while the components of θ0, p0 are initialized to 0. Of course, more educated
choices can be considered depending on the system at hand (e.g. restarting from values
sampled by SGLD or some Langevin-like dynamics).

Remark 11 Other versions of the numerical scheme (58) can be considered, in particular
the one used in Leimkuhler et al. (2020), for which ξ ∈ R. In this case, (56) should be
replaced by

dξt =
1

η

(
pT p− d

)
dt. (59)

Another option to reduce the number of additional variables is to consider the variable ξ as
a diagonal matrix with entries ξi. In this case, (56) has to be replaced with

d[ξt]i =
1

η

(
p2
i − 1

)
dt, 1 6 i 6 d. (60)

The numerical schemes for these two cases can be obtained by an obvious modification of
the right hand side of the update formulas for ξm+ 1

2 and ξm+1 in (58).

Using the Baker–Campbell–Hausdorff formula (see for instance Section III.4.2 in Hairer
et al. (2006)), as done in Leimkuhler et al. (2016) and Leimkuhler and Shang (2016) for
instance, one can prove that the evolution operator P̂∆t,n of the numerical scheme (58)
satisfies (see Appendix A.3)

P̂∆t,n = e∆tLAdL,Σx +O
(

(1 + ε(n)3/2)∆t3
)
. (61)

Then, by following the strategy of proof of Theorem 3.3 in Lelièvre and Stoltz (2016), the
following error estimate holds.
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Proposition 12 Assume that (46) and (58) both admit a unique invariant probability mea-
sure, respectively denoted by νξ0 and νξ0,∆t,n. Then, for any smooth function ϕ with compact
support, there exist C ∈ R+ and ∆t? > 0 such that, for any 0 < ∆t 6 ∆t?,∣∣∣∣∫

Ξ
(LAdL,Σxϕ)(θ, p, ξ) νξ0,∆t,n(dθ dp dξ)−

∫
Ξ

(LAdL,Σxϕ)(θ, p, ξ) νξ0(dθ dp dξ)

∣∣∣∣
6 C

(
1 + ε(n)3/2

)
∆t2.

(62)

In view of (62), the order of magnitude of the bias on the invariant probability mea-
sure is of order ε(n)3/2∆t2, which is smaller than the bias ε(n)∆t obtained with SGLD
or Langevin (recall Propositions 2 and 4). Even if the estimate is stated for averages of
functions LAdL,Σxϕ, this bound allows to uniquely characterize the bias on the invariant
measure. To state it for any smooth function ϕ (and not just functions in the range of
the operator LAdL,Σx), one would need results ensuring that the inverse of LAdL,Σx is well
defined, and that it stabilizes spaces of smooth functions with polynomial growth and whose
derivatives also grow at most polynomially. This would be the counterpart of similar es-
timates for Langevin like dynamics (see Kopec (2015a,b)). Such results are however not
available, and are presumably rather difficult to prove. At the moment, as discussed at the
end of Section 3.2.1, the only available ergodicity results on AdL concern the exponential
convergence of the semigroup, which ensures that the inverse of the generator is well defined
on certain functional spaces, such as L2(ν) (see Herzog (2018); Leimkuhler et al. (2020)).

Note also that the error estimate (62) holds even when Zx,Ndata,n is not Gaussian (namely
for small values of n). When E[Z3

x,Ndata,n
] = 0, the error estimate (62) holds with C(1 +

ε(n))∆t2 on the right hand side. When Zx,Ndata,n is Gaussian, the integration (57) is in
fact exact in law. In any case, the analysis we made crucially depends on the fact that (47)
holds. When it does not hold, there is an additional bias on the invariant measure due to
mini-batching of order ε(n)∆t, much larger than the error of order

(
1 + ε(n)3/2

)
∆t2 in (62).

This is quantified in Section 3.3.

3.2.3 Numerical illustration for Gaussian likelihoods

We consider the same setting as in Section 2.5.1. The covariance Σx, given by (40), is
constant for this model, so that assumption (47) indeed holds. We run the numerical
scheme (58) with γ = 1 for an integration time T = 106. Similar computations have already
been performed in Ding et al. (2014) and Leimkuhler and Shang (2016). In Figure 5, we
plot the error on the variance of the marginal posterior distribution in the θ variable with
respect to ε(n). First, we note that, for ∆t small enough (namely ∆t 6 0.005), the bias is not
affected by the value of ε(n) (even for the very large value N2

data obtained when n = 1), and
hence by the size of the mini-batch. The bias is therefore simply due to the discretization
time step. For large values of ∆t (namely ∆t > 0.008 in our experiments), the error is
affected by the value of n. This is probably due to the fact that this rather large value of
∆t is out of the regime where the asymptotic analysis for the bias holds. In any case, a
comparison with Figure 3 shows that the error obtained with AdL is much smaller than the
one obtained with SGLD (18) or the numerical scheme (30) (which corresponds to Langevin
dynamics with mini-batching), even with much larger time steps.
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Figure 5: Relative error on the variance of the posterior distribution for various values of n
using AdL when the elementary likelihood is Gaussian, and sampling is performed without
replacement.

3.3 Impact of a non constant covariance matrix

The bias analysis in the previous section does not hold in the case of a non constant
covariance matrix Σx. We first quantify in Section 3.3.1 the bias due to mini-batching
when assumption (47) is not satisfied. We illustrate our analysis in Section 3.3.2 with a
numerical example where the elementary likelihood is a mixture of Gaussians. In this case,
Σx(θ) genuinely depends on θ.

3.3.1 Mini-batching bias for Adaptive Langevin dynamics and non constant
covariance

We consider the situation where Σx(θ) genuinely depends on θ, and prove that the bias on
the invariant measure is of order ε(n)∆t+ ∆t2. This is done in two steps. We first charac-
terize the bias of the continuous Adaptive Langevin dynamics with covariance matrix Σx(θ)
instead of the constant covariance matrix

Σx =

∫
Θ

Σx(θ)π(θ|x) dθ (63)

obtained by averaging over the target probability distribution. We then combine this esti-
mate with (62).

The motivation for introducing the particular constant matrix (63) is discussed after
Lemma 14 below. The generator of (46) can be written in terms of Σx as

LAdL,Σx = LAdL,Σx
+ ε(n)∆tL̃Σx−Σx

, L̃M = M : ∇2
p. (64)

Since Σx does not depend on θ, the probability measure ν defined in (48) is an invariant
probability measure of the dynamics with generator LAdL,Σx

. It is then easy to prove that
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the extra bias due to mini-batching on the invariant measure of (46) when Σx is not constant
is of order ε(n)∆t.

Proposition 13 Assume that the continuous dynamics (46) for Σx depending on the θ
variable, and the same dynamics (46) with constant covariance set to Σx, both admit
unique invariant probability measures, respectively denoted by νξ0 and νξ0; and that the
resolvent L−1

AdL,Σx
is bounded on the subspace of functions in L2(νξ0) with average 0 with

respect to νξ0. Then, for any smooth function ϕ with compact support,∫
Ξ

(LAdL,Σxϕ) (θ, p, ξ) νξ0(dθ dp dξ)−
∫

Ξ
(LAdL,Σxϕ) (θ, p, ξ) νξ0(dθ dp dξ)

= −ε(n)

∫
Ξ

(LAdL,Σxϕ) (θ, p, ξ)fAdL,Σx(θ, p, ξ) νξ0(dθ dp dξ),

(65)

where (adjoints being taken on L2(νξ0))

fAdL,Σx =
(
−L∗

AdL,Σx

)−1
L̃∗

Σx−Σx
1. (66)

The ergodicity assumption on the dynamics are not trivial statements, as discussed in
Remark 10. The boundedness of the resolvent has been proved when ξ is scalar valued,
see Leimkuhler et al. (2020). If this result could be extended to LAdL,Σx , with further
estimates on the derivatives (similary to the ones discussed after Proposition 12), it would be
possible to replace LAdL,Σxϕ by ϕ in (65). In contrast to (overdamped) Langevin dynamics,
the dimension dependence of (66) is currently not known (see however partial elements
in (Bernard et al., 2022, Section 3.3)).
Proof Note first that, by the assumed invariance of νξ0 by (46), it holds∫

Ξ
(LAdL,Σxϕ) (θ, p, ξ) νξ0(dθ dp dξ) = 0.

Moreover, using the invariance of νξ0 under the dynamics (46) with constant covariance set
to Σx,∫

Ξ
(LAdL,Σxϕ) (θ, p, ξ) νξ0(dθ dp dξ) =

∫
Ξ

(
LAdL,Σx

ϕ
)

(θ, p, ξ) νξ0(dθ dp dξ)

+ ε(n)∆t

∫
Ξ

(
L̃Σx−Σx

ϕ
)

(θ, p, ξ) νξ0(dθ dp dξ)

= ε(n)∆t

∫
Ξ
ϕ L̃∗

Σx−Σx
1 dνξ0

= −ε(n)∆t

∫
Ξ

[
LAdL,Σx

ϕ
] [(
−L∗

AdL,Σx

)−1
L̃∗

Σx−Σx
1

]
dνξ0 ,

where leads to the claimed equality in view of the definition of fAdL,Σx .

The estimate (65) shows that the difference between νξ0 and νξ0 is of order ε(n)∆t, with
a magnitude related to the norm of fAdL,Σx in L2(νξ0). The latter quantity, estimated in
the following lemma, is typically smaller than similar quantities for Langevin like dynamics
such as (37).
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Lemma 14 Suppose that the same assumptions as in Proposition 13 hold true, and that the
marginal distributions of νξ0 in the θ and p variables are respectively π(·|x) and τ . Then,
there exists C ∈ R+ such that

‖fAdL,Σx‖L2(νξ0 ) 6 C
∥∥Σx − Σx

∥∥
L2(π)

. (67)

Lemma 14 provides a motivation for the choice of Σx. Indeed, the error estimate in
Lemma 14 would be true with Σx replaced by any constant, positive, symmetric matrix M ∈
Rd×d. The choice leading to the sharpest upper bound is the L2(π)-orthogonal projection Σx

of Σx onto constant matrices.
Proof Note first that L̃∗

Σx−Σx
1 =

(
Σx − Σx

)
:
(
∇2
p

)∗
1. The (i, j)-component of

(
∇2
p

)∗
1

is ∂∗pi∂
∗
pj1 = pipj − δi,j . Since∫

Rd
(pipj − δi,j)2 τ(p) dp = 1 + δi,j ,

we obtain, by a Cauchy–Schwarz inequality,∥∥∥L̃∗Σx−Σx
1
∥∥∥2

L2(νξ0 )
6
∥∥Σx − Σx

∥∥2

L2(π)

d∑
i,j=1

∫
Rd

(pipj − δi,j)2 τ(p) dp = d(d+1)
∥∥Σx − Σx

∥∥2

L2(π)
.

The conclusion then follows from the definition (66) and the assumed boundedness of the
resolvent.

We finally deduce from (62) and (65) that the total error between the invariant prob-
ability measures for (46) and (58) is of order ε(n)∆t + ∆t2. However, as motivated by
Lemma 14, the prefactor for the error term ε(n)∆t is much smaller than the one for SGLD
and Langevin dynamics, and depends only on the deviation of the covariance of the gradient
from its average.

Remark 15 Using other versions of the numerical scheme (58) (see Remark 11) affects
the prefactor for the error term ε(n)∆t. If we consider the case where the variable ξ is a
scalar, in other words, if we consider (59) for the numerical scheme, Σx in (63) should be
replaced by s∗Idd, with

s∗ =
1

d

∫
Θ

Tr (Σx(θ))π(θ|x) dθ.

In this case, the prefactor in front of the minibatching error term is larger than ‖Σx −
Σx‖L2(π), as it is given by

‖Σx − s∗Id‖L2(π) = min
s∈R
‖Σx − sId‖L2(π).

The latter quantity corresponds to the projection error onto the class of isotropic matrices.
If we consider the variable ξ to be a diagonal matrix, i.e. we consider (60) for the

numerical scheme, Σx in (63) should be replaced by a diagonal matrix with entries

D∗i =

∫
Θ

[Σx(θ)]i,i π(θ|x) dθ, 1 6 i 6 d.
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The upper bound in Lemma 14 then corresponds to the projection error of Σx onto constant
diagonal matrices:

‖Σx −D∗‖L2(π) = min
(D1,...,Dd)∈Rd

‖Σx − diag(D1, . . . , Dd)‖L2(π).

By interpreting the various L2(π)-norms of the difference between Σx and a constant
matrix as the distance to finite dimensional subspaces of L2(π) included in each other, one
can conclude that

‖Σx − Σx‖L2(π) 6 ‖Σx −D∗‖L2(π) 6 ‖Σx − s∗Id‖L2(π),

i.e. the projection error obtained for isotropic matrices is the largest, followed by the pro-
jection error for diagonal matrices, the smallest projection error being obtained for genuine
matrices.

3.3.2 Mixture of Gaussians

We numerically illustrate here that the bias on the posterior distribution is indeed of or-
der ε(n)∆t+ ∆t2 when (47) does not hold. We consider to this end the model described in
Section 2.5.1 with the same parameters as in that section. Assuming that the data points xi
are distributed according to Pelem(·|θ0) for some θ0, the covariance Σx(θ) has the following
limit when the number of data points Ndata is large:

Σ(θ) := lim
Ndata→∞

Σx(θ)

=

∫
X

∇θ(logPelem(x|θ))∇θ(logPelem(x|θ))TPelem(x|θ0) dx

−

∫
X

∇θ(logPelem(x|θ))Pelem(x|θ0)dx

∫
X

∇θ(logPelem(x|θ))Pelem(x|θ0)dx

T

.

(68)
This limit is well defined provided ∇θ(logPelem(·|θ)) ∈ L2(Pelem(·|θ0)) for all θ ∈ Θ. Com-
puting Σ(θ) in (68) is intractable in general for two reasons: (i) θ0 is unknown and anyway
the data points may even not be distributed according to Pelem(·|θ0); (ii) the integral over
x is possibly a high dimensional one or requires an evaluation cost of O(Ndata) to approx-
imate it. We nonetheless use the formula (68) to compute the elements of Σ(θ) in the
low-dimensional case considered here to better understand the issues at stake. We plot in
Figure 6 the components Σ11(θ), Σ12(θ) and Σ22(θ) of the symmetric matrix Σ(θ) in (68).
It is clear that the variance genuinely depends on the value of the parameter θ = (θ1, θ2),
so that assumption (47) fails in this case.

To check whether the failure of assumption (47) has an impact on the properties of
AdL, we use the data set described in Section 2.5.2. We run the numerical scheme (58)
for the following two cases: when ξ is a d × d matrix or when it is a scalar. We fix
T = 106, γ = 1 and η = 0.1. This last choice is motivated by metastability issues we
noticed while using AdL for larger values of η. We report in Figure 7 the L1 error given
by (44). Note first that using AdL greatly reduces the L1 error compared to the results
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Figure 6: The three components of the elementary covariance matrix Σ in (68) when the
elementary likelihood are mixture of Gaussians: surface (left) and contour (right) plots.
The modes of the posterior distribution are indicated by orange ellipses.
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Figure 7: L1 error on the posterior distribution for various values of ∆t and n when sampling
from the posterior distribution for the mixture of Gaussians case using AdL, with mini-
batching performed without replacement.

of Figure 4, obtained with SGLD (18) or the numerical scheme (30) (which corresponds to
Langevin dynamics with mini-batching). This allows to run simulations with much larger
timesteps ∆t. However, AdL, in both cases, fails to completely correct the bias due to mini-
batching. Consistently with the analysis of Section 3.3.1, we observe that the bias seems to
scale linearly with ε(n)∆t‖Σx(θ) − S∗‖L2(π) (where S∗ is the L2(π)-projection of Σx onto
the set of admissible matrices) when this quantity is sufficiently small. We numerically
compute ∥∥∥∥Σx(θ)− 1

d

∫
Θ

Tr
(
Σx(θ′)

)
π(θ′|x) dθ′

∥∥∥∥
L2(π)

≈ 1.75

for the scalar case, and ∥∥∥∥Σx(θ)−
∫

Θ
Σx(θ′)π(θ′|x) dθ′

∥∥∥∥
L2(π)

≈ 0.57

for the full matrix case. This is consistent with the numerical results for ε(n)∆t 6 100,
where the error on the posterior distribution in the scalar case is roughly 3 times larger
than the error in the full matrix case.

3.4 Lack of reduction of the bias for a model of logistic regression

The estimate of Lemma 14 suggests that the reduction in the minibatching error is di-
rectly related to the improved quality of the approximation of the covariance matrix. We
demonstrate in this section on the example of a Bayesian logistic regression model that the
reduction may not be substantial in certain cases when passing from a scalar friction to
a genuinely matricial one. This motivates using scalar AdL as this method has a smaller
computational cost, and explains why previous numerical results obtained with scalar AdL
were of good quality.
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Presentation of the model. We consider a subset of the MNIST data set containing
the digits 7 and 9, and which have been pre-processed by a principal component analysis, as
described in Section 4.3 of Leimkuhler et al. (2020). More precisely, there areNdata = 12, 251
scores on the 100 first principal component z = (z1, z2, ..., zNdata

) ⊂ Rd (with d = 100),
labeled by y = (y1, y2, ..., yNdata

) ⊂ {0, 1} (the labels 0 and 1 correspond respectively to
digits 7 and 9). We assume that the elementary likelihood on the data point xi = (zi, yi) is

Pelem(xi|θ) = σ(θT zi)
yi(1− σ(θT zi))

1−yi ,

where

σ(z) =
exp(z)

1 + exp(z)
, (69)

and θ ∈ Rd is the vector of parameters we want to estimate. Assuming that the prior over
the vector of parameter θ is a centered standard normal distribution, a simple computation
based on the identity σ′(z) = σ(z)(1− σ(z)) shows that

F̂n(θ) = θ +
Ndata

n

∑
i∈In

(yi − σ(θT zi))zi.

Numerical results. We use AdL to sample from the posterior distribution, with γ =
η = 1, T = 103 and ∆t = 10−3. We run the numerical scheme (58) for the following three
cases: ξ is a scalar, a diagonal matrix or a full matrix. We plot the marginal distributions
of some parameters θi in Figure 8. The results suggest that the posterior distribution of
the parameters is close to a Gaussian distribution. As pointed out in Section 3.2.3, AdL is
sufficient in this case to remove the minibatching error.

According to Lemma 9, the posterior distribtion of the variable ξ is centered on A∆t,n

given by (45), when the latter matrix is constant. An estimate of the average covariance
matrix can then be obtained with the estimator

1

ε(n)∆t

(
1

Niter

Niter∑
m=1

ξm − γId

)
,

where γId is replaced by γ in the scalar case. We plot in Figure 9 the diagonal components
of the estimate of the average of the covariance matrix of the stochastic gradient for the
following three cases considered here (ξ scalar, diagonal of full matrix). We can see that Σx

has a dominant part which is equal to s∗Id (although there are many non zero off diagonal
terms). In view of Remark 15, we expect AdL to give comparable results whether the
friction variable is a scalar, a diagonal matrix and a full matrix. In order to investigate
this, we plot in Figure 10 the mean relative error on the diagonal entries of the covariance
matrix of the vector of parameters θ with respect to ε(n), given by

1

d

d∑
i=1

∣∣∣∣ [cov(θ)n]i,i − [cov(θ)Ndata
]i,i

[cov(θ)Ndata
]i,i

∣∣∣∣ ,
where cov(θ)n and cov(θ)Ndata

denotes respectively the covariance of the vector of parame-
ters θ along trajectories of AdL with a minibatch of size n, and AdL with a computation
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Figure 8: Marginal posterior distributions of θ3 and θ44 (top), and of (θ3, θ28) and (θ43,
θ55) (bottom).
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Figure 10: Error on the covariance matrix of the parameters using AdL for ξ scalar, diagonal
matrix or full matrix.

of the exact gradient using the Ndata data points. The error on the covariance matrix is
some measure of the bias on the posterior distribution effectively sampled by the numerical
scheme. The results confirm that AdL with scalar ξ already leads to acceptable results in
this example and performs as well as AdL with diagonal ξ.

3.5 Bayesian neural networks

In this section, we give another numerical example which demonstrates that, when the
covariance matrix is not isotropic, there is a reduction of bias when passing from scalar to
diagonal AdL. We consider to this end Bayesian neural networks (BNNs) used for binary
classification problems. BNNs sample parameters of neural networks and therefore provide a
distribution of likelihoods for points outside of the training set. The fact that a distribution
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Figure 11: Data set for the classification problem tackled with BNNs. The solid lines
are a guide to the eye to indicate possible decision boundaries. The cross represents the
point x = (1, 1.5) at which the parameters of the BNN, and hence its outputs, are sampled.

of likelihoods has a large variance is an indication that the classification of points outside the
training set is uncertain. We consider here such a situation. We assess how the distributions
of likelihoods is impacted by the minibatching error, and how this error can be reduced by
diagonal versions of AdL.

Presentation of the model. We use a synthetic data set created by generating points
using a mixture of Gaussians. Points in the class 0 (resp. 1) are generated by considering
realizations of a random variable X0 ∈ R2 (resp. X1)

X0 = x0,I + cG0, X1 = x1,J + cG1,

where G0, G1 are two independent 2-dimensional standard Gaussian random variables,
while I ∼ U{1, 2, 3}, J ∼ U{1, 2, 3, 4} and

x0,1 = (1, 1),

x0,2 = (0, 2),

x0,3 = (1, 3).


x1,1 = (2, 0.5),

x1,2 = (1, 2),

x1,3 = (2, 3),

x1,4 = (1, 4),

with c2 = 0.03. The first class is therefore the superposition of 3 Gaussian distributions,
while the second one is the superposition of 4 Gaussian distributions. The total number of
data points is Ndata = 500 (250 points in each class); see Figure 11. The probability that
a point x has label 1 is estimated with a 2-layer neural network, with a hidden layer of
size d1. More precisely,

Nθ(x) = σ(W 2r(W 1x+ b)),
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where W 1 ∈ Rd1×2, b ∈ Rd1 and W 2 ∈ Rd1×1. The activation functions r is the ReLU
function r(z) = max(0, z) which acts componentwise, while σ is the sigmoid function (69).
The vector of parameters is therefore θ = (W 1, b,W 2) ∈ Rd with d = 4d1, where the
matrices W 1 and W 2 are reshaped into vectors. For the numerical simulations, we set
d1 = 8.

The loss function is the binary cross entropy loss

Lf (x, y) = y log(f(x)) + (1− y) log(1− f(x)), (70)

where x ∈ R2 is a point from the data set and y ∈ {0, 1} its corresponding label. The
likelihood distribution can be written in terms of the loss function as

Pelem(x, y|θ) ∝ exp(−LNθ(x, y)).

The prior distribution on the parameters θ is a standard d-dimensional Gaussian distribu-
tion.

Shape of the friction matrix in Adaptive Langevin dynamics. We restrict our-
selves to diagonal friction matrices, and do not consider the full matricial case since it is
computationally too expensive and cannot be considered as a practical sampling algorithm
in the BNN framework. It is convenient to reshape ξ as a vector of dimension 4d1. As
in (60), the first 2d1 entries of ξ correspond to the scalar coefficients associated with the
sampling of the entries of W 1, the following d1 components to the components of b, and the
final d1 components to those of W 2. This corresponds more formally to the choice

ξ =

 ξ1 0 0

0 ξ2 0

0 0 ξ3

 ,

where ξ1, ξ2, ξ3 are diagonal matrices of respective sizes 2d1, d1 and d1. The number of
coefficients can be reduced by considering a single scalar variable for W 1, b,W 2, which
corresponds to the choice

ξ =

 ξ1I2d1 0 0

0 ξ2Id1 0

0 0 ξ3Id1

 ,

with ξ1, ξ2, ξ3 ∈ R.

Numerical results. We fix γ = 1 and η = 200, and use the numerical scheme (58) for
AdL both in the diagonal and scalar cases to sample from the posterior distribution on θ.
The numerical scheme is run for 4 × 105 epochs (each epoch being composed of Ndata/n
iterations of the numerical method), for various sizes of minibatch and various time steps.
We plot in Figure 12 the distribution of Nθ(x) for various size of minibatch in the case
of diagonal and scalar AdL; and in Figure 13 the L1 error on the distribution of Nθ(x)
for a given point x = (1, 1.5) outside of the data set. The exact posterior distribution is
considered to be the one corresponding to AdL without minibatching.

The results show that the diagonal version of AdL reduces the minibatching error com-
pared to the scalar version of AdL for values of ε(n)∆t sufficiently small. To confirm the
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Figure 12: Distribution of Nθ(x) for various size of minibatch for ∆t = 10−2.
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Figure 13: L1 error on the posterior distribution of Nθ(x) for various minibatching sizes
and two values of the timestep ∆t.

effect of the non isotropic matrix on the reduction of the bias, we approximate the mean and
the variance of the diagonal element of the covariance matrix Σx using ξ for the diagonal
AdL and compare them to the mean of ξ for the scalar case. We confirm that

1

Niter

Niter∑
i=1

1

d

d∑
j=1

[ξdiagonal,i]j,j ≈
1

Niter

Niter∑
i=1

ξscalar,i,

where ξdiagonal and ξscalar are respectively the ξ variables for the diagonal and scalar AdL.
The variance on the diagonal elements is about 2 (for each set of NN parameters), while
the average of these elements is of the order of γ = 1.
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4. Extended Adaptive Langevin Dynamics

AdL corrects for the bias due to mini-batching when the covariance of the stochastic gradient
is constant. This is unfortunately not always the case as we demonstrated in Section 3.3.
In this section, we suggest an extension of AdL which allows to remove the bias when
the covariance is not constant but can be decomposed on a finite basis of functions. This
approach in fact generally allows to reduce the minibatching bias even if the covariance
matrix cannot be decomposed in a finite basis, as the residual minibatching bias, still of
order ε(n)∆t, has a prefactor related to some projection error of the covariance matrix onto
the approximation space under consideration, see (76) below.

We start by presenting the modified AdL dynamics in Section 4.1, under the assumption
that the covariance of the force estimator can be decomposed on a finite basis of functions.
This key assumption guarantees that the marginal distribution in the θ variable is the target
posterior (2). We next propose a numerical scheme for extended AdL in Section 4.2, where
we also quantify the bias on the invariant measure arising from the use of finite time steps,
and possibly from mini-batching in situations where the covariance of the force estimator
cannot be decomposed as a finite sum for the chosen basis of functions. We then discuss
in Section 4.3 a crucial point of the method, namely the choice of basis functions. We
finally present in Section 4.4 numerical results for the example of Section 2.5.2 where the
elementary likelihoods are given by a mixture of Gaussians, and for which AdL fails to fully
remove the bias because the covariance matrix is not constant. We demonstrate that with a
reduced number function basis, the bias is significantly reduced even for the smallest values
of n, including n = 1.

4.1 Presentation of the dynamics

Using the same notation as in Section 3, let us consider the case where A∆t,n(θ) in (45)
genuinely depends on θ in the following manner.

Assumption 16 The matrix-valued function A∆t,n can be decomposed on a finite basis of
functions f0, . . . , fK as

A∆t,n(θ) =

K∑
k=0

Ak∆t,nfk(θ), (71)

where A0
∆t,n, ..., A

K
∆t,n ∈ Rd×d are symmetric matrices. Moreover, A∆t,n(θ) is a symmetric

positive matrix for any θ ∈ Θ.

The choice of the basis of function is of great importance for the numerical performance
of the method and is discussed more precisely in Section 4.3. The situation when (71) does
not hold is considered at the end of Section 4.2. Note that the matrices A0

∆t,n, ..., A
K
∆t,n

need not be positive as long as A∆t,n(θ) is. In accordance with (71), we choose the variable
ξt(θ) to be of the following form:

ξt(θ) =
K∑
k=0

ξk,tfk(θ), ξk,t ∈ Rd×d. (72)
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If K = 0 and f0 = 1, then (71) coincides with assumption (47), in which case AdL is
sufficient to remove the bias due to mini-batching. In practice, the expression (71) can be
thought of as a truncation of the expansion of the function A∆t,n(θ) on a complete basis.

We are now in position to write the following extended Adaptive Langevin dynamics
(eAdL), for which we introduce K + 1 additional (matrix) equations on the coefficients ξk,t
in (72): 

dθt = pt dt,

dpt = ∇θ(log π(θt|x)) dt− ξt(θt)pt dt+
√

2A∆t,n(θt)
1/2 dWt,

d[ξk,t]i,j =
fk(θt)

ηk
(pi,tpj,t − δi,j) , 1 6 i, j 6 d, 0 6 k 6 K,

(73)

where A∆t,n is given by (45), [ξk,t]i,j is the (i, j) component of ξk,t ∈ Rd×d, and ηk are
positive scalars for 0 6 k 6 K. The interest of eAdL is the following consistency result on
the existence of an invariant probability measure with the correct marginal distribution in
the θ variable.

Theorem 17 Suppose that Assumption 16 holds. Then, the eAdL dynamics (73) admits
the invariant probability measure

νK(dθ dp dξ0 . . . dξK) = π(θ|x)τ(dp)ρK(dξ) dθ, (74)

where τ(dp) is defined in (24), and

ρK(dξ0 . . . dξK) =
K∏
k=0

d∏
i,j=1

√
ηk
2π

exp

(
−ηk

2

(
[ξk]i,j − [Ak∆t,n]i,j

)2
)
d[ξk]i,j ,

with [Ak∆t,n]i,j the (i, j) component of Ak∆t,n ∈ Rd×d.

As for AdL (see the discussion following Lemma 9), Theorem 17 suggests that we recover
the target posterior distribution π(·|x) whatever the extra noise due to mini-batching, since
the marginal in the variable θ of the probability measure νK in (74) is π(·|x). However,
from a discussion similar to the one in Remark 10, the dynamics cannot be ergodic for the
extended measure νK .
Proof We follow the same approach as for the proof of Lemma 9. The generator of the
dynamics reads

LeAdL,Σx = Lham + LFD + L̃NH,

where Lham and LFD are the same operators as in (50) and (51) respectively (even if A∆t,n

depends on θ), while

L̃NH =

K∑
k=0

fkLNH,k,

where

LNH,k = −
d∑

i,j=1

pi

(
[ξk]i,j − [Ak∆t,n]i,j

)
∂∗pj +

1

ηk
(pipj − δi,j)∂[ξk]i,j .
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A computation similar to the one performed in the proof of Lemma 9 shows that L∗NH,k =

−LNH,k, with adjoints taken with respect to L2(νK); while Lham and LFD are respectively
antisymmetric and symmetric on L2(νK). This implies that L∗eAdL,Σx

1 = 0, from which the
claimed invariance of νK follows.

4.2 Numerical scheme and estimates on the bias

We present in this section a numerical integrator for the eAdL dynamics (73) based on a
Strang splitting similar to the one considered in Section 3.2.2 for AdL. We consider the
same elementary SDEs (53)-(56) as for the discretization of AdL, except that there are
now K + 1 elementary SDEs in (56), indexed by 0 6 k 6 K. The associated numerical
scheme obtained for Γ = γId reads

ξm =
K∑
k=0

ξmk fk(θ
m),

pm+ 1
2 = e−∆tξm/2pm +

[
γ (ξm)−1

(
Id − e−∆tξm

)]1/2
Gm,

ξ
m+ 1

2
k = ξmk +

∆t

2ηk
fk(θ

m)

[(
pm+ 1

2

)(
pm+ 1

2

)T
− Id

]
, k = 0, ...,K,

θm+ 1
2 = θm +

∆t

2
pm+ 1

2 ,

p̃m+ 1
2 = pm+ 1

2 + ∆tF̂n

(
θm+ 1

2

)
,

θm+1 = θm+ 1
2 +

∆t

2
p̃m+ 1

2 ,

ξm+1
k = ξ

m+ 1
2

k +
∆t

2ηk
fk(θ

m+1)

[(
p̃m+ 1

2

)(
p̃m+ 1

2

)T
− Id

]
, k = 0, ...,K,

ξm+1 =
K∑
k=0

ξm+1
k fk(θ

m+1),

pm+1 = e−∆tξm+1/2p̃m+ 1
2 +

[
γ
(
ξm+1

)−1
(

Id − e−∆tξm+1
)]1/2

Gm+ 1
2 ,

(75)

where (Gm)m>0 and (Gm+ 1
2 )m>0 are two independent families of i.i.d. standard d-dimensional

Gaussian random variables.

Characterization of the bias. We assume as before that the numerical scheme (75)
admits a unique invariant probability measure, which may depend on the initial condi-
tion (ξ0

0 , . . . , ξ
0
K). Error estimates on this invariant probability measure can be obtained by

following the approach of in Section 3.3.1. Given the high level of similarity between the
estimates in Section 3.3.1 and the ones obtained here, we only make precise what needs to
be changed.

The main conclusion is that the bias is still of order ∆t2 + ε(n)∆t, but with a smaller
prefactor for the dominant term ε(n)∆t. Let us emphasize that we do not require Assump-
tion 16 to hold for this analysis. To make this precise, the first step is to write the generator
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as
LeAdL,Σx = L

eAdL,Σ
K
x

+ ε(n)∆tL̃
Σx−Σ

K
x
,

where L̃M is defined in (64), and Σ
K
x is a symmetric positive matrix which belongs to the

vector space generated by f0, . . . , fK . The specific choice of this matrix for the theoreti-
cal analysis relies again on an orthogonal projection and the associated projection error,
see (76) below. One can then state an inequality similar to (65), where νξ0 is replaced by
the invariant probability measure νK,(ξ0

0 ,...,ξ
0
K) of the eADL dynamics associated with the

generator L
eAdL,Σ

K
x

, and νξ0 is replaced by the invariant probability measure νK,(ξ0
0 ,...,ξ

0
K) of

the eAdL dynamics with generator LeAdL,Σx . The prefactor of the dominant error term,
proportional to ε(n)∆t, depends on the function

f
eAdL,Σx,Σ

K
x

=
(
−L∗

eAdL,Σ
K
x

)−1
L̃∗

Σx−Σ
K
x

1,

where adjoints are taken on L2(νK,(ξ0
0 ,...,ξ

0
K)). Under appropriate conditions on the structure

of νK,(ξ0
0 ,...,ξ

0
K) and resolvent bounds for L

eAdL,Σ
K
x

, it is possible to upper bound the norm

of feAdL,Σx in L2(νK,(ξ0
0 ,...,ξ

0
K)) by

∥∥∥Σx − Σ
K
x

∥∥∥
L2(π)

. By optimizing upon the matrix valued

function Σ
K
x , one can conclude that the prefactor of the error term proportional to ε(n)∆t

is bounded, up to a constant, by

min
M0,...,MK∈Rd×d

∥∥∥∥∥Σx −
K∑
k=0

Mkfk

∥∥∥∥∥
L2(π)

, (76)

which corresponds to the L2(π) projection error of Σx onto the vector space of symmetric
matrices generated by the basis. This shows that the better the approximation of the
covariance Σx is for the chosen basis (f0, . . . , fK), the smaller the bias is.

Discussion on the computation cost. As for the numerical discretization of AdL (58)
(see Remark 11), we can also use the numerical scheme (75) while considering each variable
ξk as a scalar or a diagonal matrix. Observations similar to the ones made in Remark 15
apply here as well. More precisely, the prefactor of the error term proportional to ε(n)∆t
is bounded by the L2(π)-projection of Σx onto: (i) the vector space generated by functions
with values in the vector space of isotropic matrices, i.e. the variables ξk are scalars for
each k, so that Mk = σkId where σk ∈ R in (76); (ii) the vector space of diagonal matrices
generated by the basis when the variables ξk are diagonal matrices for each k, meaning
that M0, . . . ,MK are diagonal matrices in (76). For the numerical simulations reported in
Section 4.4, we consider the variables ξk as full d× d symmetric matrices.

The extra computational cost associated with extended Adaptive Langevin dynamics
depends on the choice made for the form of the friction matrix. When ξ is a scalar, the
extra computational cost compared to standard Langevin like dynamics is of order K, while
it is of order Kd when ξ is a diagonal matrix. When ξ is a matrix, the computational cost
is much higher because of the matrix exponential which appears in the first and last steps
of the numerical scheme (75). The computation of such exponentials involves in general
a matrix diagonalization, which has a cost of order d3. Additionally, one needs to update
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the components of K matrices of size d × d, which has a cost of order Kd2. Overall, the
extra computational cost of extended Adaptive Langevin is therefore of order (K + d)d2

in the matrix case, to be compared to the cost of order d3 of usual Adaptive Langevin
with constant friction matrices. This cost could however be mitigated to CKd2 upon
using a midpoint scheme to integrate the Ornstein–Uhlenbeck process, and solving the
resulting matrix problem using iterative methods. In any case, when the dimension d of
the parameters is large, it is usually too expensive from a computational viewpoint to use
matrix versions of Adaptive Langevin. This may also be unnecessary, as all the d2 entries
of the covariance matrix are not necessarily relevant; recall the exampled of Section 3.4 and
see the discussion in Section 5.

4.3 Choice the basis functions

The choice of the basis functions f0, . . . , fK is a key point in eAdL, since there is a trade-off
between a good approximation of the matrix A∆t,n(θ) such that the projection error (76)
is small, and the number of additional degrees of freedom (which is equal to the number of
functions K introduced multiplied by d(d+1)/2 if the unknown are matrices). One typically
prefers to introduce only a limited number of degrees of freedom. One option towards this
goal is for instance to consider only isotropic matrices ξk = σkId with σk ∈ R. Such a choice
is advocated in Ding et al. (2014) for K = 0 and f0 = 1.

Spatial decomposition. Numerical experiments suggest that the covariance matrix of
the estimator of the gradient may change rapidly in certain regions of the parameter space
(see in particular Figure 6). A convenient approach to approximating this matrix is to
partition the domain Θ into K+1 subdomains, denoted by D0, . . . ,DK , and to consider the
functions fk to be indicator functions of these domains, i.e. fk = 1Dk . This corresponds
to a piecewise constant approximation of the covariance matrix. If the domain is simple
and the dimension d is sufficiently small, one can think of simple geometric decompositions,
using e.g. rectangles if Θ is itself rectangular, or rings around the various modes of the
posterior distribution. For more complicated domains in possibly high dimension, one can
decompose the parameter space with a Voronoi tessellation, where the centers of the Voronoi
tesselation are for instance the local maxima of the posterior distribution. Such points can
be located by performing preliminary SGLD or AdL runs. This amounts to considering a
constant friction matrix in each mode of the probability distribution.

Polynomial approximation. If the domain Θ is sufficiently simple from a geometric
viewpoint, a more sophisticated method is to couple a spatial decomposition with some
spectral approximation, by introducing basis functions on each subdomain. For instance,
for a rectangular decomposition of the domain, a polynomial basis can be defined on each
subdomain

Dk = [M−k,1,M
+
k,1]× ...× [M−k,d,M

+
k,d], (77)

by tensorization of monomial functions of the form

ek,j,i(θj) =

(
θj −M−k,j
M+
k,j −M

−
k,j

)i
. (78)

45



Sekkat and Stoltz

The integer k indexes the domain under consideration, j characterizes the degree of freedom
under consideration, and i is the power of the monomial. The normalization we choose
ensures that each of the term in the tensor product defining the basis function has values
in [0, 1]. Defining for instance the degree of the tensor product deg to be the maximum of
the degree of the individual polynomials, the total number of degrees of freedom is given
by K(deg+ 1)d. When deg is large, the elementary polynomials (78) assume non negligible
values only close to the boundary of the domain, which can result in numerical instabilities.
We therefore rescale the basis functions so that their L2(π) norm is 1 (as the normalization
factor being estimated using preliminary AdL runs).

4.4 Numerical illustration on a mixture of Gaussians

We present in this section numerical results for the example introduced in Section 2.5.2. The
covariance matrix in this case is not constant, and AdL fails to correct for the extra noise
due to mini-batching; see Section 3.3.2 and Figure 7. We consider the same parameters as
in Section 3.3.2. To define the basis functions, we first consider a symmetric rectangular
partition on the domain, with 4 meshes of the form (77), with M−0,1 = M−0,2 = M−1,2 =

M−2,1 = 0, M+
0,1 = M+

0,2 = M−1,1 = M+
1,2 = M+

2,1 = M−2,2 = M−3,1 = M−3,2 = 0.7 and

M+
1,1 = M+

2,2 = M+
3,1 = M+

3,2 = 1.4. We define polynomials on each mesh as discussed
in Section 4.3. We run the numerical scheme (75) for eAdL with ηk = 1 for all values
of 0 6 k 6 K, for a final time T = 106, various values of ∆t, and various degrees of
polynomials. The case K = 0 corresponds to standard AdL, while K = 3 corresponds to
an estimation of the covariance matrix by a piecewise constant matrix valued function on
the 4 domains under consideration, K = 15 to products of affine functions in each degree
of freedom on the 4 domains, and K = 35 to products of second order polynomials in each
variable on each domain. We fix the size of the minibatch n to 5 and 15, which corresponds
respectively to ε(n) = 7800 and ε(n) = 2466.67. We report in Figure 14 the L1 error on
the marginal distribution over θ1 of the posterior distribution sampled by the numerical
scheme for various values of K. Let us first emphasize that the bias decreases compared
to AdL even for the smallest value K = 3 (compare with Figure 7). A dramatic decrease
is observed for K = 15. A small bias remains for K > 15, probably mostly due to the
time step error. We plot in Figure 15 the quantity ‖Σx − SK‖L2(π) where SK is the L2(π)
projection of Σx onto the vector space of symmetric matrices generated by the basis for
each value of K. The key observation here is that the projection error, which quantifies the
quality of the approximation of Σx, decays similarly to the bias on the invariant measure
when K is increased. This therefore confirms the bias analysis of Section 4.2, which predicts
that the bias should be controlled by the projection error.

5. Discussion and perspectives

We quantified in this work the bias on the posterior distribution arising from mini-batching
for (kinetic or underdamped) Langevin dynamics, both for standard and adaptive Langevin
dynamics. As highlighted in (1), the bias is dictated by the quality of the approximation
of the covariance matrix Σx(θ) of the gradient estimator by the average (at θ fixed) of the
extra friction variable ξ introduced in AdL. The latter average is independent of the pa-
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Figure 14: L1 error on the the marginal over θ1 of the posterior distribution with eAdL for
various values of K and ∆t (K = 0 corresponds to AdL results).

0 5 10 15 20 25 30 35
K

0.0

0.1

0.2

0.3

0.4

0.5

0.6

||Σ
x(θ

)−
S K
|| L

2 (
π)

Figure 15: Projection error ‖Σx − SK‖L2(π), where SK is the L2(π) projection of Σx onto
the vector space of symmetric matrices generated by the basis for each value of K.
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rameter θ in the original formulation of AdL, and this is sufficient to remove the bias if the
target distribution is Gaussian, and allows to strongly reduce the bias for posteriors close
to Gaussian (as for the MNIST example considered in Section 3.4). The latter situation is
typical when the number of data points Ndata is large, as the posterior distribution concen-
trates in a Gaussian manner around one mode (up to symmetries) due to the Bernstein–von
Mises theorem (see Section 10.2 in van der Vaart (1998)). In this case, it is likely that AdL
already captures most of the mini-batching bias. Our analysis however allows to go one step
further, and make precise when a reduction to diagonal, or even isotropic friction matrices,
does not degrade the quality of the sampling.

Standard AdL is however not sufficient in various situations, in particular when Σx

genuinely depends on θ, which is the case when Ndata is of moderate size. In this case, the
posterior distribution can strongly deviate from a Gaussian distribution. Extended AdL
provides a framework to systematically reduce the mini-batching bias in such situations, by
adding extra degrees of freedom to better tune the friction variable. Striking reductions in
the bias can be observed already for not too many additional degrees of freedom, even for
the extreme situation where the batch size is set to its minimal value n = 1. In any case,
eAdL always leads to a smaller bias than AdL.

Let us also emphasize here that AdL and eAdL can be used in conjunction with other
techniques to reduce the variance of the stochastic estimator of the force, such as control
variate or extrapolation techniques (see for instance Nagapetyan et al. (2017); Brosse et al.
(2018); Baker et al. (2019); Durmus et al. (2016)). AdL and eAdL should therefore not be
seen as alternatives to these techniques, but as complements.

The choice of the dimensionality of the vector space for the friction variable is a key
element for standard AdL and its extension, as this directly impacts the computational cost
of the method; see the discussion at the end of Section 4.2. One would like the number of
degrees of freedom to be as small as possible. From a theoretical perspective, this motivates
further characterizing the structure of the covariance matrix Σx, which have been observed
to be low rank in certain situations related to neural network training; see Chaudhari
and Soatto (2018). The low rank structure suggests that most of the variance Σx(θ) can
be captured by relying on frictions ξ(θ) parametrized by a few degrees of freedom only,
potentially much smaller than d. Better characterizing the structure of Σx could also shed
some light on the current active research efforts on understanding the so-called implicit bias
of neural network training.
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Appendix A. Consistency estimates

We provide in this appendix the algebraic manipulations for various consistency estimates.
To simplify the notation, we simply write Z in all this section for the random variable which
appears in (14). The analysis we perform is asymptotic since it relies on the assumption
that ε(n) > 1 and ∆t 6 1 are such that ε(n)∆t 6 1 is sufficiently small. Let us also
recall that the notation O(∆ts+1) in equalities such as (6) is made precise in (7). We
explicitly write the first estimates in Section A.1 using the full notation from (7) to give a
clear meaning to all equalities, but then return to the notation O(∆ts+1) for the sake of
readability, hoping that the first estimates and (7) allow the reader to see how to give a
precise meaning to all the equalities we write.

A.1 Proof of (19)

We prove here that the evolution operator for SGLD satisfies (19) for ∆t and ε(n)∆t small.
The equality (19) should be understood as follows: for any given smooth function θ 7→ ϕ(θ)
with compact support, there exist ∆t? > 0 and K ∈ R+ such that, for any ∆t ∈ (0,∆t?],
there is a function Rϕ,n,∆t for which(

P̂∆t,nϕ
)

(θ) =
(

e∆t(Lovd+∆tAovd,n)ϕ
)

(θ) + (1 + ε(n)3/2)∆t3Rϕ,n,∆t(θ),

with

sup
∆t∈(0,∆t?]

sup
16n6Ndata

sup
θ∈Θ
|Rϕ,n,∆t(θ)| 6 K.

We rewrite to this end the SGLD scheme (18) as

θm+1 = Φ∆t,n(θm, Zm, Gm),

with

Φ∆t,n(θ, Z,G) = θ +
√
ε(n)∆tΣ

1/2
x (θ)Z +

√
2∆tG+ ∆t∇θ(log π(θ|x).

Consider a given smooth function θ 7→ ϕ(θ) with compact support. Then, there exists C ∈
R+ such that

ϕ(Φ∆t,n(θm, Zm, Gm)) = ϕ
(

Φ∆t,n(θm, 0, Gm) +
√
ε(n)∆tΣ

1/2
x (θm)Zm

)
= ϕ(Φ∆t,n(θm, 0, Gm)) +

√
ε(n)∆tΣ

1/2
x (θm)Zm · (∇θϕ)(Φ∆t,n(θm, 0, Gm))

+
1

2
ε(n)∆t2(∇2

θϕ)(Φ∆t,n(θm, 0, Gm)) : Σ
1/2
x (θm)Zm ⊗ Σ

1/2
x (θm)Zm

+
1

6
ε(n)3/2∆t3D3ϕ(Φ∆t,n(θm, 0, Gm)) :

(
Σ

1/2
x (θm)Zm

)⊗3

+ ε(n)2∆t4Rϕ,n,∆t(θ
m, Gm, Zm),

with

sup
∆t∈(0,∆t?]

sup
16n6Ndata

sup
θ∈Θ
|Rϕ,n,∆t(θ,G, Z)| 6 C

(
1 + |Z|4

)
.
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In the above expansion in powers of ∆t, we use the notation

D3ϕ(θ) : v1 ⊗ v2 ⊗ v3 =

d∑
i,j,k=1

[v1]i[v2]j [v3]k(∂
3
θi,θj ,θk

ϕ)(θ),

and v⊗3 = v⊗v⊗v. Using classical results on the evolution operator of the Euler–Maruyama
scheme to compute the expectation of ϕ(Φ∆t,n(θm, 0, Gm)) with respect toGm (see for exam-
ple Vollmer et al. (2016) for details), we can compute the expectation of ϕ(Φ∆t,n(θm, Zm, Gm))
with respect to the variables Gm and Zm as(
P̂∆t,nϕ

)
(θm) = Id + ∆tLovdφ(θm) + ∆t2

(
1

2
L2

ovd +Adisc

)
ϕ(θm)

+ ∆t2ε(n)EG [(Ambϕ)(Φ∆t,n(θm, 0, G))] +
(

1 + ε(n)3/2
)

∆t3Rϕ,n,∆t(θm),

with

sup
∆t∈(0,∆t?]

sup
16n6Ndata

sup
θ∈Θ
|Rϕ,n,∆t(θ)| < +∞.

For the end of the proof, for the sake of readability, we no longer make explicit that the
operator equalities should be understood as applied to a smooth and compactly supported
functions ϕ, with remainder terms multiplying functions of θ which are uniformly bounded
with respect to 1 6 n 6 Ndata, ∆t 6 ∆t? and θ ∈ Θ. Since EG [Ambϕ(Φ∆t,n(θm, 0, G))] =
Ambϕ(θm) +O(∆t), we obtain on the one hand that

P̂∆t,n = Id + ∆tLovd + ∆t2
(

1

2
L2

ovd +Adisc + ε(n)Amb

)
+O

(
(1 + ε(n)3/2)∆t3

)
. (79)

On the other hand, notice that

e∆t(Lovd+ε(n)∆tAmb+∆tAdisc) = Id + ∆tLovd + ∆t2
(

1

2
L2

ovd +Adisc + ε(n)Amb

)
+O((1 + ε(n))∆t3).

(80)

Using (79) alongside with (80), we deduce the desired result (19).

Remark 18 Note that when E[Z3] = 0, the remainder term is in fact of order O
(
(1 + ε(n)2∆t)∆t3

)
in (79). This leads to a remainder of order O

(
(1 + ε(n))∆t3

)
in (19).

A.2 Proof of (31), (32) and (34)

To prove (31), we consider a smooth function (θ, p) 7→ ϕ(θ, p) with compact support, and
rewrite the operator as(

QL1
∆tϕ

)
(θm, pm) = E

[
ϕ
(
θm, pm + ∆tF̂n(θm)

)]
= E

[
ϕ
(
θm, pm + ∆t∇θ(log π(θm|x)) +

√
ε(n)∆tΣ

1/2
x (θm)Zm

)]
.
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We then have(
QL1

∆tϕ
)

(θm, pm) = E [ϕ (θm, pm + ∆t∇θ(log π(θm|x))]

+
√
ε(n)∆tE

[
Σ

1/2
x (θm)Zm · ∇pϕ(θm, pm +∇θ(log π(θm|x))

]
+

1

2
ε(n)∆t2E

[
∇2
pϕ(θm, pm + ∆t∇θ(log π(θm|x)) : Σ

1/2
x (θm)Zm ⊗ Σ

1/2
x (θm)Zm

]
+O

(
ε(n)3/2∆t3

)
,

so that(
QL1

∆tϕ
)

(θm, pm) =
(
e∆tL1ϕ

)
(θm, pm) + ε(n)∆t2(Alanϕ)(θm, pm + ∆t∇θ(log π(θm|x)))

+O
(
ε(n)3/2∆t3

)
=
(
e∆tL1ϕ

)
(θm, pm) + ε(n)∆t2 (Alanϕ) (θm, pm) +O

(
ε(n)3/2∆t3

)
,

(81)
from which the result directly follows.

Remark 19 If E[Z3] = 0, the error term O
(
ε(n)3/2∆t3

)
can be replaced by O

(
ε(n)∆t3

)
.

To prove (32), we use the Baker–Campbell–Hausdorff formula on the operator of the
numerical scheme (30):

P̂∆t,n = e∆tL3/2e∆tL2/2QL1
∆te

∆tL2/2e∆tL3/2

= e∆tL3/2e∆tL2/2e∆tL1e∆tL2/2e∆tL3/2 + ε(n)∆t2e∆tL3/2e∆tL2/2Alane∆tL2/2e∆tL3/2

+O
(
ε(n)3/2∆t3

)
= e∆tLlan +O

(
(∆t+ ε(n))∆t2

)
.

Using computations similar to the ones leading to (19), we can prove the following estimate
on QL1

∆t:

e∆t(L1+ε(n)∆tAlan) = QL1
∆t +O

(
(1 + ε(n)3/2)∆t3

)
. (82)

The desired result (34) follows by using the BCH formula.

A.3 Proof of (61)

The evolution operator of the numerical scheme of AdL is given by

P̂∆t,n = e∆tL4/2e∆tL3/2e∆tL2/2QL1
∆te

∆tL2/2e∆tL3/2e∆tL4/2,

where L1 = ∇θ log(π(·|x))T∇p and L2 are respectively the generators of (55) when ε(n) = 0
and (53) (which coincide with the operators in (26)), while L3 and L4 are the generators
of (56) and (54). Replacing QL1

∆t by its expression in (81) and using the BCH formula, we
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obtain, by computations similar to the ones leading to (82):

P̂∆t,nϕ = e∆tL4/2e∆tL3/2e∆tL2/2e∆tL1e∆tL2/2e∆tL3/2e∆tL3/2 + ε(n)∆t2Alanϕ+O
(
ε(n)3/2∆t3

)
= e∆t(L1+L2+L3+L4)ϕ+ ε(n)∆t2Alanϕ+O

(
(1 + ε(n)3/2)∆t3

)
= e∆t(L1+L2+L3+L4+ε(n)∆tAlan)ϕ+O

(
ε(n)∆t3

)
+O

(
(1 + ε(n)3/2)∆t3

)
= e∆tLAdL,Σxϕ+O

(
(1 + ε(n)3/2)∆t3

)
.

When E[Z3] = 0, the error term becomes O
(
(1 + ε(n))∆t3

)
.

Appendix B. Unbiasedness of the mean of Gaussian distributions for
Langevin dynamics

We prove that, in the case of one dimensional Gaussian likelihoods, there is no bias on the
mean of the posterior distribution when using the discretization of Langevin dynamics (30)
(see Section 2.5.1). We start by rewriting the numerical scheme as(

θm+1

pm+1

)
= M1

(
θm

pm

)
+ (1− α∆t)

1/2M2

(
Gm

Gm+1/2

)
+ V m

3 ,

where

M1 =

 1− a∆t2

2
α∆t/2

(
∆t− a∆t3

4

)
−a∆tα∆t/2 α∆t

(
1− a∆t2

2

)
 , M2 =

 ∆t

(
1− a∆t2

4

)
0

α∆t/2

(
1− a∆t2

2

)
1

 ,

V m
3 =

 ∆t2

2
bm

α∆t/2∆tbm

 ,

and

a =
1

σ2
θ

+
Ndata

σ2
x

, bm =
Ndata

n

∑
i∈Imn

xi
σ2
x

.

Since

E[bm] =
1

σ2
x

Ndata∑
i=1

xi := b,

we obtain, by first taking expectations with respect to Gm and Gm+1/2, and then with
respect to realizations of Imn in bm:

E
[(
θm

pm

)]
= Mm

1 E
[(
θ0

p0

)]
+
m−1∑
j=0

M j
1V

j
3 , (83)
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with V2 = (∆t2b/2, α∆t/2∆tb)T . We note that (recalling that, for the one dimensional case
considered here, the friction Γ > 0 is a scalar)

M1 = Id −∆t

(
0 −1
a Γ

)
+O(∆t2),

which shows that the eigenvalues of M1 have real parts which are strictly smaller than 1
provided ∆t is sufficiently small. Therefore, Mm

1 → 0 as m→ +∞, and the matrix Id−M1

is invertible. Moreover, a simple computation shows that

(Id −M1)

(
b/a
0

)
= V3,

so that

(Id −M1)−1V3 =

(
b/a
0

)
.

By letting m go to infinity in (83), and using the above equality, we finally conclude that

lim
m→+∞

E
[(
θm

pm

)]
=

(
b/a
0

)
=

(
µpost

0

)
,

which shows that the mean posterior distribution is unbiased.
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