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Abstract

Online control with non-stochastic disturbances and adversarially chosen convex cost func-
tions, referred to as online non-stochastic control, has recently attracted increasing atten-
tion. We study online non-stochastic control with partial feedback, where learners can only
access partially observed states and partially informed (bandit) costs. The problem setting
arises naturally in real-world decision-making applications and strictly generalizes excep-
tional cases studied disparately by previous works. We propose the first online algorithm
for this problem, with an Õ(T

3/4) regret competing with the best policy in hindsight, where

T denotes the time horizon and the Õ(·)-notation omits the poly-logarithmic factors in T .
To further enhance the algorithms’ robustness to changing environments, we then design a
novel method with a two-layer structure to optimize the dynamic regret, a more challeng-
ing measure that competes with time-varying policies. Our method is based on the online
ensemble framework by treating the controller above as the base learner. On top of that,
we design two different meta-combiners to simultaneously handle the unknown variation of
environments and the memory issue arising from the online control. We prove that the two
resulting algorithms enjoy Õ(T

3/4(1 +PT )
1/2) and Õ(T

3/4(1 +PT )
1/4 +T

5/6) dynamic regret
respectively, where PT measures the environmental non-stationarity. Our results are fur-
ther extended to unknown transition matrices. Finally, empirical studies in both synthetic
linear and simulated nonlinear tasks validate our method’s effectiveness, thus supporting
the theoretical findings.

Keywords: online non-stochastic control, partial feedback, dynamic regret, online en-
semble, online learning with memory, bandit convex optimization

1. Introduction

In online decision making, an agent interacts with unknown environments and receives spe-
cific feedback for making decisions to maximize the cumulative rewards (or equivalently,
minimizing the cumulative costs). The problem is of great significance because it, on the
one hand, draws tight connections with different disciplines such as reinforcement learn-
ing (Sutton and Barto, 2018), control theory (Kirk, 2004), online learning (Shalev-Shwartz,
2012), and operations research (Taha, 2003) while, on the other hand, has many applica-
tions in real-world tasks ranging from game playing (Marden and Shamma, 2018) to the
dialog system (Bubeck et al., 2023).

A large body of literature has recently been devoted to leveraging modern machine
learning techniques to design online decision-making methods with provable non-asymptotic
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guarantees. In particular, online non-stochastic control (Agarwal et al., 2019) has attracted
increasing attention, which studies the problem of controlling linear dynamical systems with
non-stochastic disturbances and adversarially chosen convex cost functions. Specifically, the
learner aims to control the following linear dynamical system (LDS),

xt+1 = Axt +But + ξt, (1.1)

where xt ∈ X ,ut ∈ U denote the state and action, A,B are the system transition matrices,
and ξt is a non-stochastic disturbance, that is, without any distributional assumptions.
Ahead of time, environments adversarially choose convex cost functions c1, . . . , cT : X×U →
R+ unknown to the learner, where T is the time horizon. In each round t ∈ [T ], the learner
submits an action ut, suffers a cost ct(xt,ut) and updates the policy. This problem is of
great importance. On the one hand, it relaxes the requirements of traditional control theory,
leading to more robust and practical algorithms for real-world decision-making applications.
On the other hand, it establishes profound connections between modern online learning and
decision-making problems, promoting more methods with sound theoretical guarantees.

The goal of online non-stochastic control is to minimize the game-theoretic regret (Zinke-
vich, 2003), defined as the difference between the cumulative cost of the learner’s policy and
that of the best one in hindsight. Formally,

S-RegT ,
T∑
t=1

ct(xt,ut)−min
π∈Π

T∑
t=1

ct(x
π
t ,u

π
t ), (1.2)

where xπt ,u
π
t are produced by the compared policy π from a certain policy class Π. The

measure (1.2) is also called static regret to emphasize that the compared policy is fixed
over the horizon. Agarwal et al. (2019) initiated the study of online non-stochastic control
and proposed a reduction to online convex optimization with memory (Anava et al., 2015)
via a novel policy parameterization, with an Õ(

√
T ) regret. The Õ(·)-notation omits the

poly-logarithmic factors in T . Note that the result holds for the standard full feedback ,
where states are fully observed and the learner has full information of the cost functions.

Nevertheless, in real-world decision-making tasks, usually the learner can only receive
partial feedback . For example, in a data center, multiple servers operating near-by might
produce a considerable amount of heat, so monitoring and cooling are essential to avoid
equipment damage due to the high temperature (Lazic et al., 2018). Recently, data-driven
control method has been explored as a means of this problem to have a minimal electricity
cost (Gao, 2014). The data center cooling problem is naturally with partial feedback. First,
the state observation is partial since we may only receive a small part of the descriptive
statistics. Moreover, the cost is partially informed because it is hard to know exactly how
the electricity is consumed. Targeting such problems, we aim to design effective methods
with sound theoretical guarantees for online non-stochastic control with partial feedback.

Some recent efforts are devoted to relaxing the requirements of feedback quality. Among
them, Gradu et al. (2020); Cassel and Koren (2020) considered the bandit costs, and Sim-
chowitz et al. (2020) studied the partially observed states. The two kinds of partial feedback
reflect certain aspects of the problem and are likely to exist together in real applications, as
mentioned in the data center cooling example above. However, previous works do not con-
sider them simultaneously. Besides, all aforementioned results choose the static regret (1.2)
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as the performance measure. Recently, open-environment machine learning (Zhou, 2022a)
has received much attention, where the machine learning process has to handle unknown
changes that have never occurred in training data, e.g., emerging new classes (Mu et al.,
2017; Cai et al., 2019), feature change (Hou et al., 2017; Hou and Zhou, 2018), and data
distribution change (Sugiyama and Kawanabe, 2012; Zhao et al., 2021b). Under such situa-
tions, the performance of the best fixed policy could be poor, which necessitates the learner
to compete with a sequence of changing policies. Thus in this work, we further consider the
dynamic regret , defined as

D-Reg(π1:T ) ,
T∑
t=1

ct(xt,ut)−
T∑
t=1

ct(x
πt
t ,u

πt
t ), (1.3)

where π1, . . . , πT ∈ Π represent a sequence of time-varying policies. This metric is general
since the compared policies are allowed to change. In particular, the static regret (1.2)
is a special case by taking all the compared policies as the best fixed one in hindsight,
namely, πt = π? ∈ arg minπ∈Π

∑T
t=1 ct(x

π
t ,u

π
t ) for any t ∈ [T ]. It is well-known that a

sublinear dynamic regret is impossible in the worst case without additional restrictions on
the comparators (Besbes et al., 2015; Zhao and Zhang, 2021). To this end, we introduce the
cumulative variation of compared policies, referred to as path length PT ,

∑T
t=2 d(πt−1, πt),

where d(·, ·) quantifies the difference between two policies. Notice that the path length essen-
tially measures the environmental non-stationarity, and thus an ideal dynamic regret upper
bound should be a function of this metric. Indeed, the fundamental obstacle in dynamic
regret optimization lies in automatically adapting to the unknown non-stationarity (Zhao
et al., 2020, 2021a,c), which in this context refers to the unknown path length PT .

In this work, we first adopt a policy parameterization (Agarwal et al., 2019; Simchowitz
et al., 2020) called Disturbance-Response Policy (see Definition 2 for details) to reduce online
non-stochastic control with partial feedback to bandit convex optimization with memory and
inexact feedback, and then design an online method with O(T

3/4) static regret, extending
the previous work of Cassel and Koren (2020) to partially observed state information. We
further demonstrate that our proposed method achieves an O(T

3/4(1 + PT )
1/4) dynamic

regret bound whenever the environmental non-stationarity measure PT is known apriori to
the learner and can be used as the algorithm input.

Furthermore, since the prior knowledge of environmental changes is typically unavail-
able in practice, inspired by recent advancements in non-stationary online learning (Zhao
et al., 2021a, 2022b), we propose a two-layer method using an online ensemble frame-
work (Zhou, 2012; Zhao, 2021) to tackle this uncertainty. This method consists of multiple
base learners for exploration and a meta learner employing expert-tracking techniques to
adaptively track the best base learner. Additionally, the limited feedback information and
the memory effect inherent in online control make the problem considerably more chal-
lenging. Consequently, we introduce two distinct base learner scheduling schemes based on
weighted combination and optional selection strategies, respectively, to handle environmen-
tal non-stationarity under limited feedback. We also employ carefully designed regularized
surrogate costs to address the memory effect. Accordingly, we propose a new method for
online non-stochastic control with partial feedback, called PaRtial feedback Online Non-
stochastic Control (abbreviated as Pronc), with two implementations: Pronc-Combine
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Table 1: Summary of our results in both known and unknown systems. Overall we propose two
online ensemble algorithms, called Pronc-Combine and Pronc-Select, based on the weighted
combination and optional selection strategy, respectively. The two methods are comparable under
different degrees of the environmental non-stationarity.

Known System Unknown System

regret preferred regret preferred

Pronc-Combine Õ(T
3/4(1 + PT )

1/2)
PT ≤ O(T

1/6)
Õ(T

4/5(1 + PT )
1/2)

PT ≤ O(T
1/15)

[Section 4.3] [Theorem 2 and 4] [Theorem 5]

Pronc-Select Õ(T
3/4(1 + PT )

1/4 + T
5/6)

PT ≥ Ω(T
1/6)

Õ(T
3/4(1 + PT )

1/4 + T
5/6)

PT ≥ Ω(T
1/15)

[Section 4.4] [Theorem 3 and 4] [Theorem 5]

(weighted combination) and Pronc-Select (optional selection). We prove that the two
algorithms enjoy Õ(T

3/4(1+PT )
1/2) and Õ(T

3/4(1+PT )
1/4 +T

5/6) dynamic regret guarantees,
respectively. Note that the two algorithms are favored in different situations. Please refer
to the ‘Known System’ column in Table 1 for details. By doing so, we establish the first
dynamic regret guarantee for online non-stochastic control with partial feedback.

Furthermore, we extend the results to unknown systems where transition matrices
in (1.1) are unavailable to the learner. We tackle this issue by adopting a plug-in system
estimation operation (Simchowitz et al., 2020), achieving Õ(T

4/5(1+PT )
1/2) and Õ(T

3/4(1+
PT )

1/4 + T
5/6) dynamic regret bounds respectively. Please refer to the ‘Unknown System’

column in Table 1 for the comparison of the two bounds in different cases. We finally con-
duct experiments in synthetic linear and simulated nonlinear environments to validate the
effectiveness and efficiency of the proposed method.

The main contributions of this paper are summarized as follows.

• We introduce the problem of online non-stochastic control with partial feedback that
considers not only non-stochastic disturbances and adversarial cost functions but also
the ubiquitous partial feedback in real-world online decision-making tasks.

• We present the first dynamic regret for this problem by designing novel online meth-
ods, which admit the online ensemble framework with different scheduling schemes
(weighted combination or optional selection). The two realized algorithms enjoy
Õ(T

3/4(1 + PT )
1/2) and Õ(T

3/4(1 + PT )
1/4 + T

5/6) dynamic regret bounds respectively.

• As a byproduct, we give an Õ(T
3/4(1 + PT )

1/4 + T
5/6) dynamic regret bound for stan-

dard bandit convex optimization problem, improving upon the best known result of
O(T

3/4(1 + PT )
1/2) (Zhao et al., 2021a) when the environmental non-stationarity is

large, more concretely, PT ≥ Ω(T
1/6). The result may be of independent interest.

We organize the rest of the paper as follows. Section 2 presents brief reviews of the re-
lated work. Section 3 introduces the problem setup and lists the assumptions used through-
out this paper. In Section 4, the main contribution of this paper, we propose our method
in detail and offer the corresponding theoretical guarantees. Section 5 presents the empir-
ical performance of our proposed method, and Section 6 concludes the paper. We defer
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some additional notations and preliminaries to Appendix A, proofs of all the theorems to
Appendix B, and supporting lemmas to Appendix C.

2. Related Work

This section briefly reviews related works of online non-stochastic control and dynamic
regret of online convex optimization (with memory).

Online Non-stochastic Control. Online control is a field with a rich and extensive
history. In the past few decades, considerable efforts have been taken in the expansive field
of classic online control (Ljung and Söderström, 1983; Guo and Ljung, 1995; Harold et al.,
1997; Fiechter, 1997; Abbasi-Yadkori and Szepesvári, 2011; Cohen et al., 2018; Guo, 2020).
This list is far from exhaustive, and interested readers can delve into the references therein
for recent developments in online control.

In recent years, there has been a surge in efforts to develop robust control algorithms
using data-driven techniques from statistics and machine learning. A notable line of research
focuses on the problem of online non-stochastic control (Hazan, 2020), in which both the
cost functions and disturbances can exhibit adversarial behavior. In the pioneering work
of Agarwal et al. (2019), the authors reduced the problem to online convex optimization
with memory (Anava et al., 2015) at an acceptable cost by the disturbance-action policy
parameterization as well as a truncation operation and obtained an optimal Õ(

√
T ) regret

against the best linear controller. As a side note, the optimal rate is also attainable in
unknown systems with stochastic disturbances (Cassel et al., 2022b) or stochastic convex
costs (Cassel et al., 2022a). The subsequent works considered more challenging tasks.
Hazan et al. (2020) studied unknown system transition and achieved an Õ(T

2/3) regret via
system identification. Simchowitz et al. (2020) investigated partially observed states via
a novel perspective called “Nature’s y” and established theoretical guarantees in various
cases. Specifically, in known systems, they attained Õ(

√
T ) regret for convex losses with

adversarial disturbances and O(poly(log T )) regret for strongly convex as well as smooth
losses with semi-non-stochastic disturbances. In unknown systems, they obtained Õ(T

2/3)
and Õ(

√
T ) regret in the two aforementioned cases. Gradu et al. (2020); Cassel and Koren

(2020) both assumed bandit (partially informed) cost functions and proved an Õ(T
3/4)

regret. Simchowitz (2020) considered strongly convex cost functions and presented O(log T )
and Õ(

√
T ) regret in known and unknown systems respectively based on a novel variant of

the online Newton step algorithm (Hazan et al., 2006).

While static regret minimization yields fruitful results, in many real-world applica-
tions the environments can be non-stationary such that the best fixed comparator may
also perform poorly over the whole time horizon. To this end, Zhao et al. (2022b) intro-
duced dynamic (policy) regret for online non-stochastic control and achieved an optimal
Õ(
√
T (1 + PT )) bound, where PT reflects the variation of compared policies.1 Note that

they only considered the full feedback, i.e., fully informed costs and fully observed states.
Our paper substantially extends theirs by considering the more challenging partial feedback
setting. Detailed comparisons of problem setups can be found in Table 2. As for methods,

1. The extended journal version (Zhao et al., 2023) provides further improvements by achieving the optimal
dependence on the memory length and extending the results to unknown systems.
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briefly, both works employ the online ensemble framework to optimize the dynamic regret,
but nevertheless the bandit feedback considered in our work brings unique challenges. To
handle the lack of feedback information, we propose two novel online ensemble methods
based on parallel and serial updates, which can fully exploit the feedback information to
update the base learner(s) properly. We defer a more detailed discussion of the techni-
cal differences from Zhao et al. (2022b) to Remark 4 in Section 4.3. Apart from convex
costs, the work by Baby and Wang (2022) achieved an enhanced dynamic regret for online
non-stochastic control with quadratic cost functions.

Moreover, Gradu et al. (2023); Zhang et al. (2022b) adopted adaptive regret to ensure
low-regret guarantees in arbitrary intervals, that is, for any I ⊆ [1, T ],

A-RegI ,
∑
t∈I

ct(xt,ut)−min
π∈Π

∑
t∈I

ct(x
π
t ,u

π
t ).

Specifically, Gradu et al. (2023) studied the weakly adaptive regret and obtained the ex-
pected regret bound as maxI⊆[1,T ] A-RegI ≤ Õ(

√
T ). Zhang et al. (2022b) achieved an

Õ(
√
|I|) deterministic strongly adaptive regret for any interval I ⊆ [1, T ]. Although a

black-box reduction from dynamic regret to adaptive regret has been proved in the online
linear optimization over simplex problem (Luo and Schapire, 2015), in the general setup of
online convex optimization, the relationship between dynamic regret and adaptive regret is
generally unclear (Zhang, 2020, Section 5). Besides, the techniques to optimize these two
measures are significantly different. Concretely, to optimize adaptive regret, static algo-
rithms need to run on some carefully designed interval covering (Daniely et al., 2015; Zhang
et al., 2019), while for dynamic regret, base algorithms run on the whole horizon but have
to deal with a certain degree of non-stationarity (Zhang et al., 2018; Zhao et al., 2021c).

Apart from regret minimization studied by aforementioned works, optimizing the com-
petitive ratio (i.e., the worst-case ratio of the total cost incurred by the online learner and
the offline optimal cost) is also an important and rising topic in online control (Shi et al.,
2020; Zhang et al., 2021; Goel et al., 2023; Goel and Hassibi, 2023).

Dynamic Regret of Online Convex Optimization (with Memory). Regret mini-
mization serves as a cornerstone in online learning (Hazan, 2016). A well-studied perfor-
mance measure is static regret, which depicts the learner’s excess loss compared to the best
fixed comparator in hindsight. However, such a measure is not favorable enough in changing
environments, because even the best comparator may also perform poorly under such condi-
tions. Recognizing this limitation, in the past few decades, there have been efforts devoted
to other performance measures considering more non-stationarity. In the field of prediction
with expert advice, a measure called tracking regret (also known as shifting/switching re-
gret), has received much attention (Herbster and Warmuth, 1998; Cesa-Bianchi et al., 2012;
György and Szepesvári, 2016; Wei et al., 2016; Luo et al., 2022). This measure allows for a
more flexible comparator that can adapt to changes multiple times.

In online convex optimization, Zinkevich (2003) proposed the general notion of dynamic
regret, which generalizes the standard static regret by competing with an arbitrary sequence
of changing comparators inside the feasible domain, namely,

D-Reg(v1:T ) ,
T∑
t=1

ft(wt)−
T∑
t=1

ft(vt). (2.1)
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It recovers the static regret by taking all comparators as the best one in hindsight, i.e.,
vt = v? ∈ arg minv∈K

∑T
t=1 ft(v) for all t ∈ [T ], where K is the feasible set. With the

prior knowledge of the path length PT , online gradient descent with an optimal step size
is able to obtain an O(

√
T (1 + PT )) regret bound (Zinkevich, 2003). While without such

prior knowledge, this result degenerates to O(
√
T (1 + PT )). Later Zhang et al. (2018)

proposed a tighter O(
√
T (1 + PT )) result even without knowing PT in advance and estab-

lished a matching lower bound to prove its optimality. Subsequently, problem-dependent
dynamic regret guarantees in terms of the gradient variation and small loss were developed
by Zhao et al. (2020) for smooth functions. Moreover, a more efficient version with the
same bounds and only one gradient per iteration was achieved by the collaborated online
ensemble framework proposed by Zhao et al. (2021c), even though O(log T ) base learners
are simultaneously performed at each round. There are many recent advancements and
applications of dynamic regret minimization (Cutkosky, 2020; Yuan and Lamperski, 2020;
Zhang et al., 2021; Baby and Wang, 2021; Jacobsen and Cutkosky, 2022; Zhang et al.,
2022a; Zhao et al., 2022c; Bai et al., 2022; Yan et al., 2023; Zhang et al., 2023).

Besides works that only consider the effect of the current decision, others study the
impact of the decisions in the near past, called online learning with memory. The memory
problem is first studied in the expert setting (Merhav et al., 2002; Geulen et al., 2010;
György and Neu, 2014). For general convex sets, Anava et al. (2015) initiated the study of
OCO with memory, benchmarked by the following policy regret (Dekel et al., 2012):

S-RegT ,
T∑

t=H+1

ft(wt−H:t)−min
v∈K

T∑
t=H+1

ft(v, . . . ,v), (2.2)

where ft : KH+1 7→ R is a function of the past H + 1 decisions wt−H:t, served as a descrip-
tion of the memory. The authors proposed a gradient descent algorithm with O(

√
T ) and

O(log T ) regret for convex and strongly convex loss functions, respectively. Just like stan-
dard OCO, the performance against a fixed comparator is less attractive in non-stationary
environments, motivating the need to compete with time-varying comparators. Due to this,
Zhao et al. (2022b) introduced the more general dynamic policy regret,

D-Reg(v1:T ) ,
T∑

t=H+1

ft(wt−H:t)−
T∑

t=H+1

ft(vt−H:t), (2.3)

where v1:T represents any sequence of changing comparators inside the domain. The au-
thors established a minimax optimal O(

√
T (1 + PT )) regret guarantee without the prior

knowledge of PT through a meta-base online ensemble method.
While traditional online learning primarily focus on the impact of current decisions,

with little regard for their future influence, recent research is increasingly emphasizing the
importance of online decision-making, which depicts the sequential interaction between the
learner and the environments (Foster et al., 2021; Wang et al., 2022). Online decision making
draws deep ties with the memory in online learning, which brings the impact of past decisions
into the present. Apart from online non-stochastic control, the focus of this paper, there
are other paradigms in online decision-making worth mentioning, such as online Markov
decision processes (MDP) and rehearsal learning. In online MDP, the technique from online
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learning with memory is also proved to play an important role (Zhao et al., 2022a). As for
rehearsal learning, it focuses on enabling the learner to act proactively to prevent undesirable
outcomes, emerging as a promising domain for further exploration (Zhou, 2022b).

3. Preliminaries

In this section, we formalize the problem setup and list some standard assumptions that
will be used in the theoretical analysis.

3.1 Problem Setup

We study online non-stochastic control with partial feedback where only partially observed
states and partially informed costs are accessible. Consider the following dynamical system:

xt+1 = Axt +But + ξt, yt = Cxt + et, (3.1)

where A ∈ Rdx×dx , B ∈ Rdx×du , C ∈ Rdy×dx are system transition matrices, xt ∈ Rdx denotes
the state, ut ∈ Rdu is the learner’s action guided by a certain policy, ξt ∈ Rdx and et ∈ Rdy
are the disturbances chosen by an oblivious adversary. In round t, the learner only receives
a partial observation yt ∈ Rdy of the state, and a partially informed (bandit) cost ct(yt,ut),
where ct : Rdy × Rdu 7→ R+ is a convex and Lipschitz-continuous function adversarially
chosen by the oblivious adversary. We adopt dynamic regret (1.3) as the performance
measure. In the following, we conclude the capability and generality of our problem setup.

Capability. Online non-stochastic control is powerful in modeling due to its relaxed as-
sumptions on the disturbances and cost functions, which enable the model to be applied
to broader real-world applications. For instance, the model can tolerate misspecifications
such as non-linearity and non-stationarity by treating unmodeled parts as non-stochastic
disturbances. This is also validated via experiments (see Section 5). Furthermore, this
paper considers the much weaker partial feedback. Specifically, our problem setup requires
only partially informed costs and partially observed states and is thus closer to real-world
decision-making tasks. At last, methods with dynamic regret guarantees are provably com-
petitive with a sequence of time-varying policies and are thus more attractive than the
standard static regret in non-stationary environments.

Generality. Our problem setup generalizes those of previous works (Agarwal et al., 2019;
Cassel and Koren, 2020; Gradu et al., 2020; Simchowitz et al., 2020; Hazan et al., 2020;
Zhao et al., 2022b) from various aspects including cost information, state observability,
system knowability, and performance measure. Table 2 reports the comparison between our
problem setup and those of the related works.

3.2 Assumptions

We list the assumptions used in this paper, which are common in the literature (Agarwal
et al., 2019; Simchowitz et al., 2020; Hazan, 2020).

Assumption 1 (Boundedness). The system transition matrices satisfy ρ(A) ≤ κA <
1, ‖B‖op ≤ κB, ‖C‖op ≤ κC , where ρ(·) is the spectral radius and ‖·‖op denotes the ma-
trix operator norm. And the disturbances are bounded as ‖ξt‖2 , ‖et‖2 ≤W for all t ∈ [T ].
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Table 2: Comparisons of our work and previous ones regarding problem setups, including cost
information, state observability, system knowability, and performance measure.

References Partial Costs Partial States Unknown System Dynamic Regret

Agarwal et al. (2019) 7 7 7 7

Cassel and Koren (2020) 3 7 7 7

Gradu et al. (2020) 3 7 7 7

Hazan et al. (2020) 7 7 3 7

Simchowitz et al. (2020) 7 3 3 7

Zhao et al. (2022b) 7 7 7 3

Ours 3 3 3 3

Note that Assumption 1 is without loss of generality since it can be extended to strongly
stabilizable systems, where the system is instable, but can be stabilized by a linear controller,
due to the reduction proposed in Appendix A of Cassel et al. (2022b).

Assumption 2 (Lipschitzness). There exists a constant Lc > 0 for non-negative convex
cost function ct such that for all (y,u), (y′,u′) ∈ Rdy+du , and Rc = max{‖[y; u]‖2 , 1},

|ct(y,u)− ct(y′,u′)| ≤ LcRc
∥∥[y − y′,u− u′]>

∥∥
2
, 0 ≤ ct(y,u) ≤ LcR2

c .

Note that Lc is the intrinsic Lipschitz constant of the cost function. The LcRc scaling of
the Lipschitz constant aims to describe cost functions whose Lipschitz constant scales with
radius (Simchowitz et al., 2020), e.g., quadratic costs.

4. Our Method

This section proposes our method for online non-stochastic control with partial feedback.
We first reduce the problem to online learning in Section 4.1. In Section 4.2, we design the
first online algorithm for the reduced problem and then provide both static and dynamic
regret bounds whenever the environmental non-stationarity is known. To step further,
we propose a meta-base online ensemble method with two different scheduling schemes to
handle the unknown environmental non-stationarity in Section 4.3 and Section 4.4. Finally,
we present the overall results for online non-stochastic control in Section 4.5.

4.1 Reduction to Online Learning

In this part, we reduce the online non-stochastic control problem to online convex optimiza-
tion with memory by policy parameterization, specifically, through disturbance-response
policies and a truncation operation. The reduction further allows us to update the policy
via advanced online learning techniques.

First, we briefly introduce the disturbance-response policy (DRP). It is developed to
handle partially observed states in the seminal work of Simchowitz et al. (2020) and follows
the classical Youla parameterization (Youla et al., 1976) via the perspective of “Nature’s
y”, defined as follows.

Definition 1 (Nature’s y). Nature’s y (denoted by ynat) is the observation in the absence
of any action on the system. In linear dynamical system with partial feedback (3.1), given
disturbances ξ1:t, e1:t, ynat

t , et +
∑t−1

i=1 CA
i−1ξt−i holds.
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Intuitively, Nature’s y is an external observation of the cumulative impact of distur-
bances. Consequently, we formulate the disturbance-response policy, which considers the
influence of Nature’s y in the limited past.

Definition 2. Given Nature’s ynat
t−m+1:t, a disturbance-response policy, parameterized by a

m-length tuple of matrices M = (M [0], . . . ,M [m−1]) ∈ M, chooses the action as ut(M) =∑m−1
i=0 M [i]ynat

t−i, where M denotes the domain of policy parameters.

DRP is powerful in handling partially observed states and encompasses many policy
classes of interest. Choosing Π = ΠDRP in (1.3) forms the performance measure used in our
work. We defer the derivation of Definition 1 and the relation between the observation y
and Nature’s ynat to Appendix A.2.

DRP parametrizes the observation yt and action ut as affine functions of its parameters
M1:t, which makes the cost ct(yt(M1:t−1),ut(Mt)) convex in M1:t. Denoting by ht(M1:t) the
parameterized loss, the control problem seems to be transformed into pure online learning
with memory, with regret

∑T
t=1 ht(M1:t)−

∑T
t=1 ht(M

?
1:t). However, one obstacle that pro-

hibits using OCO with memory is the time-varying memory length. To address this issue,
a truncation operation (Agarwal et al., 2019; Simchowitz et al., 2020) is proposed to artifi-
cially erase the effect of actions of more than H rounds before. Intuitively, the rationality
behind the truncation operation is that in stable systems (Assumption 1), the impact of
the actions in the far past can be nearly ignored. The truncated observation, action, and
the corresponding cost are defined as follows.

Definition 3. In round t, the truncated action ũt, observation ỹt, cost ft are defined as

ũt (Mt) ,
m−1∑
i=0

M
[i]
t ynat

t−i, ỹt (Mt−H:t−1) , ynat
t +

H∑
i=1

G[i]ũt−i (Mt−i) ,

ft (Mt−H:t) , ct (ỹt (Mt−H:t−1) , ũt (Mt)) ,

where Mt−H:t ∈MH+1 are policy parameters, and G is the Markov operator of the system,
a tuple of matrices of length H, with each entry G[i] , CAi−1B for i ∈ [H].

The Markov operator G describes how the system transforms the impact of actions into
observations, reflecting certain properties of the system. The following lemma shows that,
by carefully choosing the memory length H, the truncation error between the control cost
and truncated cost can be neglected in terms of the time horizon T .

Lemma 1 (Lemma C.3 of Simchowitz et al. (2020)). Under Assumption 2, in known sys-
tems, choosing memory length H = Θ(log T ) gives ε ≤ O(1/T ), where ε , maxt∈[T ] |εt| and

εt , |ct(yt,ut)− ft(Mt−H:t)| denotes the truncation error of round t.

It is noteworthy to point out that Lemma 1 only holds in known systems, where the trun-
cated cost ft is actually parametrized by the Markov operator G and Nature’s ynat

t−H−m+1:t,
i.e., ft(·|G,ynat

t−H−m+1:t). As will be discussed in Section 4.5, in unknown systems, the in-
accurately estimated parameters will further import bias into the truncation error, which
needs more involved analysis.

Through the disturbance-response policy and the truncation operation, we reduce online
non-stochastic control to bandit convex optimization with memory and inexact feedback.
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The feedback is both bandit and inexact due to the bandit nature of control costs and
the truncation error, respectively. For ease of understanding and generality, we focus on
the vector domain K instead of the policy parameter domain M. Specifically, in round t,
the learner submits wt and receives an inexact loss value ft(wt−H:t) + εt. The learner’s
performance is measured by dynamic policy regret (2.3), restated as follows,

D-Reg(v1:T ) ,
T∑

t=H

ft(wt−H:t)−
T∑

t=H

ft(vt−H:t), (4.1)

where v1:T denotes a sequence of time-varying comparators. The truncated costs inherit
some nice properties from the control costs ct such as convexity and coordinate-wise Lips-
chitzness, and thus (4.1) can be further decomposed into three parts,

D-Reg(v1:T ) ≤
T∑

t=H

f̃t(wt)− f̃t(vt)︸ ︷︷ ︸
Unary-Regret

+λ
T∑
t=2

‖wt −wt−1‖2︸ ︷︷ ︸
Switching-Cost

+λ
T∑
t=2

‖vt − vt−1‖2︸ ︷︷ ︸
Path-Length

, (4.2)

where λ = L(H+1)2/2, L is the Lipschitz constant of f1:T , f̃t : K → R a simplified notation
when all decisions are the same, namely, f̃t(w) , ft(w, . . . ,w). The goal of standard
OCO is to only optimize the unary regret, i.e., the first term in (4.2), to catch up with
the changing environments. However, the memory issue raised from online decision-making
problems imports a unique term called switching cost, the variation of the decision sequence
w1:T , preventing the decisions from moving too fast. Thus there exists a tradeoff between
the unary regret and the switching cost, requiring decisions to move neither too fast nor
too slowly. The two parts need to be controlled simultaneously to obtain a small regret.

4.2 Base Algorithm

We first consider the unary regret in (4.2). To deal with the lack of gradient information,
we follow the classical zeroth-order FKM method (Flaxman et al., 2005) in standard bandit
convex optimization. Specifically, we aim to construct an unbiased gradient estimator g̃t =
df̃t(w̄t + δst)st/δ of ∇f̄t(w̄t), where st is a random unit vector from a sphere S ⊆ Rd, δ > 0
is the magnitude of perturbation, w̄t ∈ (1 − α)K is a shrunk decision to ensure the final
decision wt = w̄t + δst ∈ K and f̄t(w̄t) , Est∈S[f̃t(w̄t + δst)] is the smoothed version of
f̃t. The key is to obtain f̃t(w̄t + δst), which is, however, inaccessible in the control-reduced
online learning problem, leading us to the two issues below.

Regardless of the truncation error for a while, we need the value of f̃t(wt), requiring
the decisions of the last H rounds to be the same, i.e., wt−H = . . . = wt. To achieve this,
we artificially divide the whole time horizon into mini-batches, within which the decisions
remain the same (Dekel et al., 2012; Cassel and Koren, 2020). Specifically, in each round,
we choose a random bit bt independently from a pre-defined Bernoulli distribution. Only
if we choose a 1 with H consecutive 0 before, we estimate the gradient with ft(wt−H:t).
Note that although mini-batching slows down the algorithmic update, it will not increase
the regret too much (at most 3H times) (Cassel and Koren, 2020, Lemma 11).

The above statement relies on the accessibility of ft(wt−H:t), which does not hold here
since the learner only receives a control cost ct(yt,ut), leading to a biased gradient estimator:
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Algorithm 1 Base Algorithm

Input: Memory H, dimension d, domain K, shrinkage α, perturbation δ, step size η.
1 Initialize the corresponding variables.
2 Initialize w1, . . . ,wH , any feasible decisions for the first H rounds.

for t = H + 1, . . . , T do
3 Submit decision wt and receive cost ft(wt−H:t) + εt.
4 Draw a random bit bt ∼ Bernoulli(1/H).

if t ≥ H and bt
∏H−1
i=1 (1− bt−i) = 1 then

5 Estimate the gradient via (4.3).
6 Update the decision via (4.4).

else
7 Maintain the decision wt+1 = wt.

end

end

g̃t =
d

δ
· ct(yt,ut) · st =

d

δ
· (ft(wt−H:t) + εt) · st. (4.3)

Fortunately, we find that the bias can be quantified and bounded, stated in the following
lemma, whose proof can be found in Appendix B.1.

Lemma 2 (Gradient Estimation Bias). Letting d, δ be the dimension and perturbation
magnitude, s ∈ S be a random unit vector, and f̄ be the smoothed version of f , if the
gradient is estimated as g̃ = d (f(w̄ + δs) + ε) s/δ, then ‖E [g̃]−∇f̄(w̄)‖2 ≤ dε/δ holds.

We now have a solution to optimize the unary regret in (4.2). The switching cost,
fortunately, can be bounded directly via gradient descent under static regret (Cassel and
Koren, 2020). Thus we can simply run gradient descent with the gradient estimator g̃t (4.3):

w̄t+1 = Π(1−α)K [w̄t − ηg̃t] . (4.4)

Algorithm 1 concludes the algorithm. The learner first submits a decision and receives
an inexact cost value in Line 3. Then it draws a random bit from a pre-defined Bernoulli
distribution in Line 4. If the condition after Line 4 is satisfied, the learner conducts gradient
descent with the gradient estimator in Line 5 and Line 6. Otherwise, it maintains the
previous decision in Line 7. Algorithm 1 enjoys the following theoretical guarantee, and the
proof can be found in Appendix B.2.

Theorem 1. Suppose the domain K satisfies rB ⊆ K ⊆ RB ⊆ Rd, the loss function ft is
convex, L-coordinate-wise Lipschitz continuous and satisfies ft(·) ≤ Cf . Given perturbation
magnitude δ and step size η, the expected dynamic regret of Algorithm 1 is at most

E[D-Reg(v1:T )] ≤ 3H(7R2 +RPT )

4η
+

3d2C2
fηT

2δ2
+

6dR

δ
+
λdCfηT

Hδ
+
LeffδT

H
+ λPT ,

where path length PT =
∑T

t=2 ‖vt − vt−1‖2 measures the non-stationarity of environments
and Leff , (3L+RL/r + 2λ/H) denotes the effective Lipschitz constant.
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Corollary 1. Under the same assumptions as Theorem 1, setting the perturbation magni-
tude δ? = (3dCf/Leff)

1/2(7H3R2/(2T ))
1/4 and step size η? = δ?R/(dCf )(7H/(2T ))

1/2 gives

E[S-RegT ] = E

[
T∑
t=1

ft(wt−H:t)−min
v∈K

T∑
t=1

ft(v, . . . ,v)

]
≤ O(H

3/4T
3/4).

Remark 1. In Theorem 1, if the path length PT is known in advance, by setting per-
turbation magnitude δ? = (3dCf/Leff)

1/2(H3(7R2 + RPT )/(2T ))
1/4 and step size η? =

δ?/(dCf )(H(7R2 + RPT )/(2T ))
1/2 optimally, our method achieves O(H

3/4T
3/4(1 + PT )

1/4)
dynamic regret for any comparator sequence v1:T ∈ KT . ¶

Remark 2. In non-stochastic control, the memory length is usually chosen asH = Θ(log T ),
so the result of Corollary 1 matches the O(T

3/4) bound given by FKM method (Flaxman
et al., 2005) for standard bandit convex optimization, up to poly-logarithmic factors in T .
Note that this result is suboptimal compared with the lower bound Ω(

√
T ) (Shamir, 2013).

Despite the optimal attainable results by recent breakthroughs (Bubeck et al., 2017; Latti-
more, 2020), they are computationally expensive, not efficiently implementable in practice,
and generally too involved to analyze the switching cost in our problem. ¶

The parameter configuration in Remark 1 requires prior knowledge of the environmental
non-stationarity measure PT , which is unavailable in applications. To handle this, we design
two different scheduling schemes to realize novel meta-base online ensemble structures, based
on the weighted combination or optional selection strategies to schedule base learners along
with carefully designed regularized surrogate costs to address the memory issue.

4.3 Meta Algorithm I: Weighted Combination

Since the non-stationarity measure PT is unknown, we guess its possible values, leading
to multiple possibly optimal perturbation magnitudes and step sizes. A natural idea is to
employ multiple base learners (Algorithm 1) to explore different parameters. Theorem 1
shows that the base learner with the truly optimal parameter configuration (the only right
guess) will outperform the others, allowing us to choose the one with the smallest regret.

Note that in our problem, the learner cannot maintain multiple perturbation magnitudes
since the partial feedback prohibits multiple queries of a cost function. As a result, we fix
the perturbation magnitude as δ? and only explore the optimal step size. Specifically, we
equip the base learners with different step sizes from a candidate pool H = {η1, . . . ηN},
which is a discretization of the theoretically optimal step size η?, using the natural boundary
of path length PT ∈ [0, 2RT ]. The specific values of δ?, η?,H will be illuminated later.

Again, since the bandit feedback only allows one query in each round, simply maintain-
ing multiple base learners and running them parallelly are not permitted. To deal with this,
we propose our first scheduling scheme (meta learner), based on the weighted combination
of base learners’ decisions. Specifically, in round t, the learner first combines the i-th base
learner’s decision w̄t,i with weight pt,i as w̄t =

∑N
i=1 pt,iw̄t,i, then submits a perturbed de-

cision wt = w̄t + δ?st, receives a cost and finally updates the weight to pt+1,i for all i ∈ [N ].
Meanwhile, the i-th base learner updates its local decision to w̄t+1,i with step size ηi.

The next question comes: how do we update the two-layer structure with only one cost
value? In the following, we illuminate this problem with a simple derivation. In round t, we
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…

Figure 1: Illustration of our Pronc-Combine algorithm. The overall algorithm follows a
two-layer meta-base online ensemble structure. Base(η) denotes the base algorithm with
step size η. The base learners update in a parallel way, and the meta learner (Hedge)
updates the weight pt via the surrogate cost defined in (4.5).

have to optimize the instantaneous regret f̄t(w̄t)− f̄t(v̄t), where f̄t is the smoothed function
of unary loss f̃t. By plugging in the definition of the combined decision w̄t, it holds that

f̄t(w̄t)− f̄t(v̄t) ≤
N∑
i=1

pt,if̄t(w̄t,i)− f̄t(v̄t) ≤
N∑
i=1

pt,i〈∇f̄t(w̄t,i), w̄t,i − v̄t〉,

where both inequalities come from the convexity of the smoothed function f̄t. The analysis
shows that N gradients∇f̄t(w̄t,1),∇f̄t(w̄t,2), . . . ,∇f̄t(w̄t,N ), i.e., N queries of cost functions,
are required to update the base learners, which is prohibited by bandit feedback. To fix
this issue, inspired by Zhao et al. (2021a), we start by adopting the convexity of f̄t at the
very first step of the analysis:

f̄t(w̄t)− f̄t(v̄t) ≤ 〈∇f̄t(w̄t), w̄t − v̄t〉 =
N∑
i=1

pt,i〈g̃t, w̄t,i − v̄t〉+ 〈∇f̄t(w̄t)− g̃t, w̄t − v̄t〉,

where the second term above is caused by the biased gradient estimator and can be con-
trolled via Lemma 2. Accordingly, by importing a surrogate loss `t(·) , 〈g̃t, ·〉, the first
term above can be rewritten as

∑N
i=1 pt,i(`t(w̄t,i) − `t(v̄t)), where the gradients of all base

learners are the same as ∇`t(w̄t,1) = . . . = ∇`t(w̄t,N ) = g̃t, allowing them to run gradient
descent with the same gradient. It is worthy noting that although the adversary becomes
completely adaptive after this operation, because the estimated gradient g̃t relies on the
decision of the current round, we can utilize deterministic full-information algorithms to
optimize the first term above. Regarding the second term, which represents the gap be-
tween the true gradient ∇f̄t(w̄t) and the estimated gradient g̃t, taking expectation over it
is sufficient due to Lemma 2.

As mentioned at the end of Section 4.1, how to balance the unary regret and the switch-
ing cost is the key issue when analyzing the dynamic regret of OCO with memory. We give
a simple analysis to show that just ignoring the switching cost would lead to linear regret
in the time horizon T . Formally, by definition of the meta-decision w̄t =

∑N
i=1 pt,iw̄t,i, a
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one-step switching cost ‖w̄t − w̄t−1‖2 can be bounded by

‖w̄t − w̄t−1‖2 ≤ R ‖pt − pt−1‖1 +
N∑
i=1

pt,i ‖w̄t,i − w̄t−1,i‖2 ,

where pt , (pt,1, . . . , pt,N ). A more detailed derivation is deferred in (B.7). The switching
cost of the base learner with the maximum step size satisfies ‖w̄t,N − w̄t−1,N‖2 ≤ O(ηN ).
Considering the optimal step size η? in Remark 1, since the maximum path length could
be PT = O(T ), the maximum step size ηN = O(1). Summing over time horizon T makes
the overall regret O(T ), which is unacceptable. To address the memory issue, inspired by
the study in the full-information setup (Zhao et al., 2022b), we add a regularization term
in the surrogate cost of each base learner to punish the one with large switching cost,

`t,i(w̄t,i) , 3H〈g̃t, w̄t,i〉+ λ ‖w̄t,i − w̄t−1,i‖2 . (4.5)

Later, the overall regret can be decomposed into meta-regret and base-regret, incurred by the
meta/base learner, respectively (see Appendix B.3 for details of the regret decomposition),

Meta-Reg =
∑
t∈S

(〈pt, `t〉 − `t,i) + λR
∑
t∈S
‖pt − pt−1‖1 ,

Base-Reg = 3H
∑
t∈S
〈g̃t, w̄t,i − v̄t〉+ λ

∑
t∈S
‖w̄t,i − w̄t−1,i‖2 ,

where `t , (`t,1(w̄t,1), . . . , `t,N (w̄t,N )) denotes the surrogate loss vector and S is the set of
mini-batches. Notice that the meta-regret is the static regret of a Prediction with Expert
Advice problem (Cesa-Bianchi and Lugosi, 2006), incorporated with the switching cost.
Thus, we can use Hedge (Freund and Schapire, 1997), a basic expert-tracking method, as
the meta learner, with the following update rule:

pt+1,i ∝ pt,i exp(−ηmeta`t,i(w̄t,i)), (4.6)

where ηmeta denotes the learning rate of the meta algorithm. All base learners run gradient
descent (4.4) with the gradient estimator (4.3) and the step sizes from H = {η1, . . . ηN}.

Combining all the ingredients, Algorithm 2 concludes our first online ensemble algo-
rithm, named Pronc-Combine. The learner broadcasts the gradient estimator to all base
learners for updates and constructs surrogate losses as the input of the meta learner in
Line 6 and Line 7. The meta learner updates in Line 8. The learner gives the decision of
the next round in Line 9 and Line 10. Besides, we note that w̄t is the weighted combination
of the base decisions. It is only used to generate the perturbed final decision wt and can
be abandoned afterward. The i-th base learner only needs to maintain its own local deci-
sion w̄t,i. The following theorem shows the overall dynamic regret bound of our proposed
Pronc-Combine algorithm. The proof can be found in Appendix B.3.

Theorem 2. Under the same assumptions of Theorem 1, define the perturbation magnitude
δ?, the step size η? as

δ? =

√
3dCf
Leff

(
7HR2

T

)1/4

, η? =
δ?

dCf

√
H(7R2 +RPT )

T
, (4.7)
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Algorithm 2 Pronc-Combine

Input: Memory length H, dimension d, domain K, shrinkage coefficient α, perturbation
magnitude δ?, step size pool H = {η1, . . . , ηN}, learning rate of meta learner ηmeta.

1 Initialize the corresponding variables.
2 Initialize w1, . . . ,wH , any feasible decisions for the first H rounds.

for t = H + 1, . . . , T do
3 Submit decision wt and receive cost ft(wt−H:t) + εt.
4 Draw a random bit bt ∼ Bernoulli(1/H).

if t ≥ H and bt
∏H−1
i=1 (1− bt−i) = 1 then

5 Estimate gradient via (4.3) with perturbation magnitude δ?.
for i = 1, . . . , N do

6 Base-learner updates via (4.4).
7 Construct the surrogate loss as (4.5).

end
8 Meta-learner updates its weights via (4.6).

9 Obtain weighted combined decision w̄t+1 =
∑N

i=1 pt+1,iw̄t+1,i.
10 Draw random unit vector st+1 ∈ S and perturb w̄t+1 to wt+1 = w̄t+1 + δ?st+1.

else
11 Maintain pt+1,i = pt,i, w̄t+1,i = w̄t,i,wt+1 = wt for i ∈ [N ].

end

end

and the corresponding step size pool H as

H =

{
ηi

∣∣∣∣∣ ηi = 2i−1 δ
?R

dCf

√
7H

T
, i ∈ [N ]

}
, (4.8)

where N = dlog2 (1 + 2T/7) /2e+1 denotes the number of candidate step sizes. Our Pronc-
Combine (Algorithm 2) ensures that for any comparator sequence v1:T ∈ KT ,

E

[
T∑

t=H

ft(wt−H:t)−
T∑

t=H

ft(vt−H:t)

]

≤ 20λ
3/2dCfR

3/2

δ?

√
T

H
ln

(
1

2
log

(
1 +

PT
7R

)
+ 2

)
+

3H(7R2 +RPT )

2η?

+
3d2C2

fη
?T

2δ?2 +
6εdRT

δ?
+
λdCfη

?T

Hδ?
+ Leffδ

?T + λPT

= O(min{T 3/4(1 + PT )
1/2, T}).

Remark 3. Our result recovers the dynamic regret of standard bandit convex optimization
without memory (Zhao et al., 2021a) by setting the memory length H = 1. When environ-
ments change severely (path length PT ≥ Ω(

√
T )), the above result becomes vacuous, which

is left as an important future direction to investigate. Indeed, even for the standard bandit
convex optimization, or the simpler multi-armed bandits (Auer et al., 2002), obtaining the
optimal dynamic regret for large non-stationarity remains open (Foster et al., 2020). ¶
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Remark 4. We finally discuss the relationship and difference between our work and the
prior study (Zhao et al., 2022b) in terms of the techniques. Our Pronc-Combine is mainly
a combination of Zhao et al. (2021a) and Zhao et al. (2022b), with a careful adaptation to the
partial-feedback non-stochastic control. Specifically, our algorithm additionally necessitates
the design of linearized surrogate costs (4.5) to broadcast the gradient estimator to all
the base learners, making the parallel update feasible in the online ensemble structure
under the limited bandit feedback. Moreover, this linearization operation will introduce
a bias term related to the difference between the expectation of the gradient estimator
and the true gradient, which is unique in the control-based bandit convex optimization
problem and requires more involved analyses, especially in unknown systems. Furthermore,
in Section 4.4, we present another online ensemble algorithm called Pronc-Select that
admits serial updates, which is fundamentally different from the fashion of the parallel
update in Pronc-Combine and thus evidently differs from the prior work (Zhao et al.,
2022b). The new update borrows the idea of the Bandits-over-Bandits mechanism from
the literature of non-stationary linear bandits (Cheung et al., 2019) but requires additional
technical modifications. As far as we know, this is the first work to adapt those techniques
in the non-stochastic control, substantially improving the result of Pronc-Combine and
even the best known dynamic regret of bandit convex optimization in most cases. ¶

4.4 Meta Algorithm II: Optional Selection

In this section, we propose another scheduling scheme based on the optional selection strat-
egy. Briefly, the meta learner does not consider all base learners simultaneously but chooses
only one for prediction and update. Concretely, our method adopts an ensemble mecha-
nism called Bandits-over-Bandits (BOB), originally proposed by Cheung et al. (2019) for
designing parameter-free algorithms in non-stationary stochastic linear bandits. To the best
of our knowledge, our work is the first to leverage this technique in (adversarial) bandit
convex optimization. Moreover, as will be shown, this structure indeed helps in giving a
better dynamic regret bound than the best known result in certain conditions.

In the following, we describe the BOB mechanism in detail. Generally, it is an ensemble
structure with multiple base learners exploring the parameter space and a meta learner
tracking the optimal parameter adaptively. In contrast to the parallel update strategy (i.e.,
Pronc-Combine in Section 4.3), BOB updates the base learners serially. Concretely, BOB
performs in episodes. In each episode, only one base learner is chosen according to some
selection criteria and returns its cumulative loss to the meta learner when the episode ends.

The serial update way brings unique benefits to the bandit convex optimization problem.
Recall that in Pronc-Combine, we use a fixed perturbation magnitude δ? in (4.7) since the
bandit feedback prohibits multiple queries within a single round. While in BOB, different
perturbation magnitudes can be adopted in different episodes since only one base learner is
active in each episode. In other words, the BOB mechanism allows decoupled base learners
to explore both the perturbation magnitude space and the step size space, which intuitively
leads to a better dynamic regret guarantee.

Now it is time to design the meta learner. A natural idea is to run a Multi-Armed
Bandit (MAB) algorithm, such as Exp3 (Auer et al., 2002), by treating base learners as
arms. By the no-regret guarantee of MAB algorithms, which states that, on average the
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…

…

Figure 2: Illustration of our Pronc-Select algorithm. The overall algorithm follows a
two-layer meta-base online ensemble structure. Base(δ, η) denotes the base algorithm with
perturbation magnitude δ and step size η. The base learners update in a serial way, and
the meta learner (Exp3) updates the weight pt via the surrogate cost defined in (4.9).

performance of the algorithm is almost as good as that of the best arm, it seems that
our problem is perfectly solved. However, as pointed out by Agarwal et al. (2017), this
reasoning is flawed as the base learners are not static arms. In a valid adversarial MAB
problem, two algorithms should receive the same loss if they select the same arm, no matter
which arms they chose before. While in BOB, the performance of an arm is affected by
previous choices. In other words, if previously selected arms have already achieved a small
enough regret, even if the current arm is not good, it will still perform well. To fix this, the
BOB mechanism restarts the decision at the beginning of each episode to erase the effect
of previous choices.

Using the BOB mechanism directly as a black box is infeasible due to the existence of the
memory, i.e., switching costs. To handle this, we design a novel surrogate loss for the meta
learner to enforce low switching costs explicitly. Specifically, in episode i, denote by (δi, ηi)
the parameter (arm) that Exp3 chooses, ∆i the time steps in episode i, and {wt(δi, ηi)}t∈∆i

the decision sequence produced by the arm, we define the surrogate loss of arm (δi, ηi) as

`i(δi, ηi) , 3H
∑
t∈∆i

f̃t(wt(δi, ηi)) + λ
∑
t∈∆i

‖wt(δi, ηi)−wt−1(δi, ηi)‖2 , (4.9)

which is the cumulative unary loss along with the switching cost in episode i. The last
term is a regularization term responsible for punishing the base learner with large switching
costs. With such a novel surrogate loss, the overall regret of all episodes {∆i}d|S|/∆ei=1 can
be decomposed into the meta-regret and base-regret, incurred by the meta learner and base
learners, respectively (see Appendix B.4 for details of the regret decomposition),

Meta-Reg =

d|S|/∆e∑
i=1

`i(δi, ηi)−
d|S|/∆e∑
i=1

`i(δ
?, η?),

Base-Reg =

d|S|/∆e∑
i=1

∑
t∈∆i

3H(f̃t(wt(δ
?, η?))− f̃t(vt)) + λ ‖wt(δ

?, η?)−wt−1(δ?, η?)‖2 .

It is noteworthy to point out that the base-regret is again the dynamic regret over the
unary losses along with the switching cost, which our base algorithm can optimize with
sound guarantees (Theorem 1), and the meta-regret is the static regret of an adversarial
MAB problem, which can be optimized by Exp3 (Auer et al., 2002). For completeness, we
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restate the algorithmic details of Exp3 here, whose main idea is constructing an unbiased
loss estimator and passing it to Hedge (4.6). First, define an unbiased loss vector via the
importance weighting to recover the losses of all arms,

̂̀
i(δ, η) ,

`i(δ, η)

pi(δ, η)
1{(δ, η) = (δi, ηi)}, (4.10)

where pi(δ, η) denotes the probability of choosing arm (δ, η), such that the loss of each

arm is unbiased as E[̂̀i(δ, η)] = (1 − pi(δ, η)) × 0 + pi(δ, η) × `i(δ,η)
pi(δ,η) = `i(δ, η). Thus, the

problem is reduced to the full information setting, where the weights can be updated via
the multiplicative rule of Hedge:

pi+1(δ, η) ∝ pi(δ, η) exp(−ηmeta
̂̀
i(δ, η)), (4.11)

where ηmeta is the learning rate of the meta learner.
Equipping BOB with Exp3 and the switching-cost-regularized surrogate loss (4.9), along

with the base learners, forms our second algorithm, named Pronc-Select, whose details
are concluded in Algorithm 3. Inside an episode, a base learner updates via gradient descent
with the gradient estimator and the chosen parameters (δi, ηi) in Line 5 and Line 6. When
one episode ends, the meta learner receives the cumulative surrogate loss, constructs an
unbiased loss estimator, updates its weights, and chooses the arm of the next episode in
Lines 7-10. Finally, the mechanism restarts the decision randomly in Line 11.

At last, we consider the parameter configuration of base learners. We discretize the
optimal step size η? and perturbation magnitude δ? into candidate step size pool Hη =
{η1, . . . , ηNη} and candidate perturbation magnitude pool Hδ = {δ1, . . . , δNδ} using the
natural boundary of PT ∈ [0, 2RT ] such that Nη, Nδ ≈ log T . The specific values of η? and
δ? will be illuminated later. A natural idea is to group the possible values of the two variables
freely, resulting in Nδ×Nη ≈ (log T )2 base learners, which is not as time-efficient as Pronc-
Combine, since the latter only has O(log T ) base learners, as shown in (4.8). Fortunately,
we discover that the number of base learners can be reduced due to the inner connection
between the step size and the perturbation magnitude. Concretely speaking, Theorem 1
shows that given certain perturbation magnitude δi and step size ηj , the dynamic regret of

the base algorithm is related to 3H(7R2+RPT )
4ηj

+
3ηjd

2C2
fT

2δ2i
+ LeffδiT , telling that the optimal

perturbation magnitude and step size satisfy δi = (3d2C2
fηj/Leff)

1/3. As a result, we bind
each step size with a certain perturbation magnitude as above, reducing the number of base
learners from (log T )2 to log T . The following theorem shows the theoretical guarantee of
our proposed Pronc-Select, and its proof can be found in Appendix B.4.

Theorem 3. Under the same assumptions of Theorem 1, define the perturbation magnitude
δ?, the step size η?, the restarting period ∆ as

η? =

√
3

LeffdCf

(
H(7R2T

1
3 +RPT )

2T

)3/4

, δ? =

(
3d2C2

fη
?

Leff

)1/3

, ∆ = T
2/3, (4.12)

and the corresponding parameter pool H as

H =

(ηi, δi)

∣∣∣∣∣∣ ηi =

√
3R3

LeffdCfT

(
7H

2

)3/4

, δi =

(
3d2C2

fηi

Leff

)1/3

, i ∈ [N ]

 , (4.13)

19



Yan, Zhao, and Zhou

Algorithm 3 Pronc-Select

Input: Memory length H, dimension d, domain K, parameter pool H (4.13), learning rate
of meta learner ηmeta.

1 Initialize the corresponding variables.
2 Initialize w1, . . . ,wH , any feasible decisions for the first H rounds.

for t = H + 1, . . . , T do
3 Submit decision wt and receive cost ft(wt−H:t) + εt.
4 Draw a random bit bt ∼ Bernoulli(1/H).

if t ≥ H and bt
∏H−1
i=1 (1− bt−i) = 1 then

if inside episode i then
5 Estimate the gradient via (4.3) with perturbation magnitude δi.
6 Base-learner updates its decision to w̄t+1 via (4.4).

else
7 Receive surrogate loss `i(δi, ηi) via (4.9).

8 Construct unbiased loss vector ̂̀i via (4.10).
9 Meta-learner updates its weights via (4.11).

10 Choose the arm of the next episode as (δi+1, ηi+1) ∼ pi+1.
11 Restart decision w̄t+1 ∈ (1− α)K randomly.

end
12 Draw random unit vector st+1 ∈ S and perturb w̄t+1 to wt+1.

else
13 Maintain pt+1,i = pt,i, w̄t+1,i = w̄t,i,wt+1 = wt for i ∈ [N ].

end

end

where N = d3 log2((1 + 2T
2/3)/7)/4e+ 1 denotes the number of candidate parameters. Our

Pronc-Select (Algorithm 3) ensures that for any comparator sequence v1:T ∈ KT ,

E

[
T∑

t=H

ft(wt−H:t)−
T∑

t=H

ft(vt−H:t)

]

≤ 2(Cf + 2λR)

√
T∆ log T log log T

H
+

21R2T
∆ + 3HRPT

4η?
+

3d2C2
fη

?T

2δ?2

+
6dR

δ?
+
λdCfη

?T

Hδ?
+ Leffδ

?T +
T

H∆
+ λPT

= O(T
3/4(1 + PT )

1/4 + T
5/6(log T )

1/2).

Comparing Theorem 2 (Pronc-Combine) with Theorem 3 (Pronc-Select), we find
that the two algorithms are preferred in different situations:

• Pronc-Combine is better in mildly changing environments, specifically, path length
PT ≤ O(T

1/6). Consider a completely stationary environment, two algorithms attain
O(T

3/4) and Õ(T
5/6) static regret, respectively. The performance of Pronc-Select

is not ideal since it has to restart repeatedly, which is unnecessary in stationary
environments and thus leads to a degeneration in regret bound.
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Algorithm 4 Pronc (for PaRtial feedback Online Non-stochastic Control)

Input: Memory H, dimension d, domain M, Markov operator G.
1 Initialize corresponding variables.
2 Initialize u1, . . . ,uH , any feasible output control signals for the first H rounds.

for t = H + 1, . . . , T do
3 Observe yt.

4 Compute Nature’s ynat
t = yt −

∑H
i=1G

[i]ut−i.

5 Submit action ut(Mt) =
∑m−1

i=0 M
[i]
t ynat

t−i and receive a cost ct(yt,ut).
6 Update the policy parameter to Mt+1 with Pronc-Combine (Algorithm 2) or Pronc-

Select (Algorithm 3).
end

• Pronc-Select is preferred in environments with large non-stationarity (path length
PT ≥ Ω(T

1/6)) because intuitively it can just switch to the best base learner but not
has to take care of all of them simultaneously as Pronc-Combine does.

We finally remark that Theorem 3 also implies a new dynamic regret for standard
bandit convex optimization by setting the memory length as H = 1. Specifically, the result
gives an Õ(T

3/4(1 + PT )
1/4 + T

5/6) dynamic regret, improving upon the best known result
of O(T

3/4(1 + PT )
1/2) (Zhao et al., 2021a), whenever the environmental non-stationarity

measure PT is large. In particular, when PT ≥ Ω(T
1/6), our result is tighter than the

existing O(T
3/4(1+PT )

1/2) regret. Furthermore, when PT ≥ Ω(T
1/3), our result is essentially

O(T
3/4(1 +PT )

1/4), which is as good as Theorem 1 but does not require the path length PT
as the algorithm input. This byproduct might be of independent interest.

4.5 Back to Online Non-stochastic Control

In Section 4.3 and Section 4.4, we design two online ensemble algorithms for bandit convex
optimization with memory and inexact feedback. In this part, we apply these results back to
online non-stochastic control. For ease of understanding, we make some common notations
at the front of this part: denote by π1:T ∈ ΠDRP a sequence of time-varying DRP policies,
parameterized via M1:T and PT ,

∑T
t=2 ‖Mt −Mt−1‖F the corresponding path length.

Since the reduction from non-stochastic control to online learning is already solved,
applying the results back is straightforward, concluded in Algorithm 4. In each round,
the learner first gets a partial observation of the state in Line 3, computes the Nature’s
y in Line 4, submits a DRP action, and receives the corresponding cost in Line 5. After
that, the learner feeds the cost and other parameters into Pronc-Combine (Algorithm 2)
or Pronc-Select (Algorithm 3) for policy update in Line 6. Theorem 4 presents the
theoretical guarantees of our method for online non-stochastic control with partial feedback.
The proof is deferred to Appendix B.5.

Theorem 4. Under Assumptions 1 and 2, with memory length H = Θ(log T ),

• Our weighted combination method Pronc-Combine ensures

E

[
T∑
t=1

ct(yt,ut)−
T∑
t=1

ct(y
πt
t ,u

πt
t )

]
≤ Õ(min{T 3/4(1 + PT )

1/2, T});
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Algorithm 5 Unknown System Estimation

Input: Estimation rounds T0, memory length H.
for t = 1, . . . , T0 do

1 Submit random action ut = N (0, Idu×du).

end

2 Obtain estimated Markov operator Ĝ via (4.14) and send it to Algorithm 4.

• With restarting period ∆ = O(T
2/3), our optional selection Pronc-Select ensures

E

[
T∑
t=1

ct(yt,ut)−
T∑
t=1

ct(y
πt
t ,u

πt
t )

]
≤ Õ(T

3/4(1 + PT )
1/4 + T

5/6).

Remark 5. Similar to the discussions in Section 4.4, Pronc-Combine is better in slowly
changing environments, while Pronc-Select outperforms facing large non-stationarity.
Besides, in completely stationary environments (path length PT = 0), our results degenerate
to Õ(T

3/4) and Õ(T
5/6) respectively, between which, the Õ(T

3/4) static regret for online non-
stochastic control with partial feedback is also new. It is equal to the regret bound of fully
observed bandit linear control problem (Gradu et al., 2020; Cassel and Koren, 2020) and
can recover the result with full gradient information (Simchowitz et al., 2020). ¶

Extension to Unknown Systems. Besides known systems, we further extend our re-
sults to unknown ones, where the system transition matrices A,B,C in (3.1) are unknown.
This problem is usually encountered in real applications and thus motivates the related
methods with strong theoretical guarantees. Similar to many model-based reinforcement
learning methods, we follow the explore-then-exploit paradigm. Briefly speaking, we adopt
the way of Simchowitz et al. (2020), who use randomly generated actions to perturb the
system and estimate the Markov operator G (see Definition 2) via least mean square:

Ĝ = arg min
G∈(Rdy×du )H

T0∑
t=H+1

∥∥∥∥∥yt −
H∑
i=1

G[i]ut−i

∥∥∥∥∥
2

2

, (4.14)

where T0 is the estimation rounds and u1:T0 are random actions. Finally, we feed the esti-
mated Markov operator Ĝ into Algorithm 4 and obtain Algorithm 5 for unknown systems.

In known systems, the truncation error is ignorable (see Lemma 1). However, the issue
becomes harder in unknown systems due to the connection between the truncation error and
the quality of the gradient estimator. Specifically, the truncated cost ft is a function of DRPs
Mt−H:t parameterized by Markov operator G and Nature’s ynat

t−H−m+1:t (see Definition 3).
Thus in unknown systems, the truncated cost is a function with the the estimated Markov
operator and Nature’s ys as parameters, i.e., ft(·|Ĝ, ŷnat

t−H−m+1:t). It imports more bias in
the gradient estimator, which can further propagate in the online ensemble structure. With
careful analysis, we establish Theorem 5 to show that our method can handle unknown
systems with sound theoretical guarantees. The proof can be found in Appendix B.6.

Theorem 5. Under Assumptions 1 and 2, for sufficiently large T , with memory length
H = Θ(log T ) and estimation rounds T0 = O(T

4/5),
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• Our weighted combination Pronc-Combine ensures that

E [D-Reg(π1:T )] ≤ Õ(min{T 4/5(1 + PT )
1/2, T});

• With restarting period ∆ = O(T
2/3), our optional selection Pronc-Select ensures

E [D-Reg(π1:T )] ≤ Õ(T
3/4(1 + PT )

1/4 + T
5/6).

Remark 6. The two algorithms are also preferred in different cases. When PT ≤ O(T
1/15),

Pronc-Combine is better, when PT ≥ Ω(T
1/15), Pronc-Select outperforms the other,

and they are comparable when PT = Θ(T
1/15). ¶

Remark 7. The result of Pronc-Combine is not as good as that in Theorem 4 due to the
tradeoff between the estimation and truncation error. Similar dilemmas appear even in the
full and semi-partial feedback setting: (1) Õ(

√
T ) → Õ(T

2/3) emerges in the static regret
analysis under full feedback (Hazan et al., 2020); (2) Õ(poly(log T )) → Õ(

√
T ) appears

in partially observed systems with strongly convex, smooth losses and semi-non-stochastic
disturbances (Simchowitz et al., 2020). There seems to be no price of system estimation in
Pronc-Select because the degeneration is still dominated by the Õ(T

5/6) term caused by
the BOB mechanism. ¶

5. Experiment

In this section, we validate the performance of our proposed method in synthetic linear and
simulated nonlinear environments, aiming to answer the following three questions as well:

• whether online non-stochastic control can handle model misspecifications such as non-
linearity and non-stationarity;

• whether the meta-base aggregation helps in unknown non-stationary environments;

• whether the switching cost regularizer can deal with the memory issue raised in
decision-making problems;

Contenders and Configurations. Since this problem is newly introduced, there are no
existing methods to compete with. As a result, we design some baselines and skylines to ver-
ify the effectiveness of certain components. Concretely, we compare our algorithms, denoted
by PRONC.Combine and PRONC.Select, with two baselines: (a) BGD.Control is mainly
built on the work of Cassel and Koren (2020), which considers the static regret of ban-
dit linear control and runs a simple bandit gradient descent algorithm; (b) PBGD.Control
updates its policy using PBGD (Zhao et al., 2021a), an online ensemble method for ban-
dit convex optimization without switching cost regularizers. We equip the baselines with
disturbance-response policy to make them capable of dealing with partially observed states.
Furthermore, we adopt four skylines that receive full information to validate our method’s
capability for partial feedback. Specifically, (c) Grad.Combine and Grad.Select have full
information of the cost functions, served to measure the quality of the gradient estimator;
(d) Known.Combine and Known.Select have access to the true system transition dynam-
ics, regarded as a skyline for the system estimation procedure. Note that the skylines are
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actually infeasible in the partial feedback setting and are only employed to illustrate how
well our method can perform.

We report the average results with standard deviations of 5 independent runs to obtain
convincing results. Only the randomness of the perturbation is preserved. All hyper-
parameters are set to be theoretically optimal except the learning rate of the meta learners,
which are scaled by constants to speed up the learning process. To make PRONC.Select
more stable, we use a variant of the traditional Exp3 algorithm, called Exp3-IX (Neu, 2015),
which enjoys the same regret guarantee as Exp3, but holds with high probability.

The rest of this section is organized as follows. We investigate the performance and
robustness of our method in a synthetic time-varying linear dynamical system in Section 5.1
and three simulated nonlinear reinforcement learning tasks: pendulum, cartpole, and data
center cooling in Section 5.2. Section 5.3 reports the time efficiency of our method.

5.1 Synthetic Time-Varying LDS

In this part, we show that online non-stochastic control can deal with time-varying linear
dynamical systems with state transition function xt+1 = Atxt +Btut +ξt. Here we suppose
the disturbance ξt is Gaussian, the transition matrices At, Bt follow a semi-time-varying
style: At = A + ∆A

t , Bt = B + ∆B
t , where A,B are fixed and accessible, and ∆A

t ,∆
B
t are

changing, zero-mean Gaussian and unavailable, served as a kind of model misspecification.
Although this system is time-varying, it can still be modelled as a time-invariant one with
transition equation xt+1 = Axt + But + ξ′t, where ξ′t = ξt + ∆A

t xt + ∆B
t ut denotes the

adversarial disturbances. Such dynamical systems are more representative and thus more
challenging to control.

We design three changing patterns of the online cost functions to simulate the adversarial
nature of the non-stochastic control setting. Specifically, we use a changing quadratic cost
ct(yt,ut) = y>t Rtyt + u>t Ptut, where Rt, Pt are time-varying and can change gradually,
abruptly, or in a mixture of the former ways:

• Gradual change (large path length PT ): the parameters Rt, Pt follow the form of Rt =
atI, Pt = btI, where at = sin(t/(10π)), bt = sin(t/(20π)) are changing sinusoidally;

• Abrupt change (small path length PT ): the whole time horizon is split into 5 stages,
equipped with 5 fixed cost functions parameterized via {(Ri, Pi)}i∈[5].

• Mixture change (medium path length PT ): the parameters Rt, Pt are fully mixture of
the above changing styles.

We also conduct experiments in the unknown system setting, where A,B are unavailable.

Results. Figure 3 plots the cumulative cost curves of our method and the contenders.
Smaller cumulative cost indicates better performance. Results in different cases validate
the supremacy of our proposed PRONC.Combine and PRONC.Select. The comparison
with BGD.Control shows the strong adaptability and robustness of the two-layer online
ensemble framework, which answers the second question at the beginning of Section 5. The
comparison with PBGD.Control reveals that the switching cost regularizer indeed helps
obtain small switching costs, thus small cumulative costs, which answers the third question.
The comparison with the skylines Grad.Combine and Grad.Select shows that the one-point
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(d) Unknown, Gradual
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Figure 3: Cumulative costs of all methods in the synthetic time-varying LDS environment.
Smaller cumulative cost indicates better performance. BGD.Control is only equipped with
one base learner, PBGD.Control is equipped with the meta-base ensemble framework but
without the switching cost regularizer, PRONC.Combine and PRONC.Select are our pro-
posed algorithms. Four skyline methods, named by the keywords ‘Grad’ and ‘Known’, have
access to the true loss gradients or the true system transition matrices.

gradient estimator is not ideal due to its high variance, inversely proportional to the per-
turbation. However, as mentioned in Remark 2, designing implementable BCO algorithms
with tighter regret is still open. At last, the comparison with the skylines Known.Combine
and Known.Select validates the accuracy of the system estimation (Algorithm 5).

In addition, we observe that, in both known and unknown systems, PRONC.Select is
preferable when the cost functions are changing gradually (corresponding to large path
length PT ), Pronc-Combine is better when the cost functions follow an abrupt changing
style (small path length PT ), and the two algorithms are comparable in the mixture case
(medium path length PT ), matching our theoretical results in Section 4.4 and Remark 6.

More Structured Disturbances. Furthermore, we validate the robustness of our al-
gorithms under different kinds of structured disturbances. We first investigate the sinu-
soidal disturbances (wt = sin(t/(20π))) and Gaussian random walk disturbances (wt =
N (wt−1, 1/T )), and further consider the switch/mixture between them. ‘A-B Switch’ means
that the disturbances follow distribution A in the first half horizon and switch to B in the
remaining rounds. ‘A-B Mixture’ means the disturbance of each round is randomly cho-
sen between A and B. Figure 4 presents the results, where our algorithms outperform the
baselines when facing various kinds of disturbances, showing the robustness of our method.
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(d) Gaussian Random Walk
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(e) GRW-Gauss Switch
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Figure 4: Cumulative costs of all methods on different kinds of noises in the known synthetic
time-varying LDS with gradually changing cost functions. ‘Switch/Mixture’ means switch
or mixture of two kinds of disturbances. ‘Gauss’ stands for Gaussian noise, ‘Sin’ is the
sinusoidal noise, and ‘GRW’ denotes the Gaussian random walk noise. BGD.Control is only
equipped with one base learner, PBGD.Control is equipped with the meta-base ensemble
framework but without the switching cost regularizer, PRONC.Combine and PRONC.Select
are our proposed algorithms.

5.2 Simulated Nonlinear Environments

We further conduct experiments in simulated nonlinear environments in this part. Even
though our method and theory are designed for linear dynamical systems, we can approxi-
mate nonlinear systems with piecewise linear ones and then treat the approximation error
as system noises, so online non-stochastic control remains applicable. In this way, we restart
the algorithm periodically, treating the system inside each period as linear and estimating
the system transition matrices using Algorithm 5. By doing so, we have demonstrated the
modeling power of online non-stochastic control by applying it to nonlinear problems. In
the following, we conduct experiments in three simulated nonlinear tasks to examine the
effectiveness of our proposed method.

The first application is the simple frictionless pendulum environment, a nonlinear but
stable system. The goal is to make the pendulum stable in a vertical position. Its state
is a 2-dimensional vector xt = [θt, θ̇t]

>, where θt stands for the deviation angle normalized
between [−π, π] and θ̇t is the rotational velocity. The action is a scalar ut = θ̈t representing
the torque applied on the system. Denote by g the gravity, l,m the length and mass of the
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(a) Pendulum
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(b) Cartpole
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Figure 5: Cumulative costs of different methods in three simulated nonlinear tasks:
pendulum, cartpole and data center cooling. Smaller cumulative cost indicates better
performance. BGD.Control is only equipped with one base learner, PBGD.Control is
equipped with the meta-base ensemble framework but without the switching cost regu-
larizer, PRONC.Combine and PRONC.Select are our proposed algorithms.

pole, and τ the time between state updates, the dynamics of the pendulum follows:

θt+1 = θt + τ θ̇t, θ̇t+1 = θ̇t + τ

(
3g sin(θt + π)

2l
+

3θ̈t
ml2

)
.

The second application is the cartpole environment, also known as the inverted pendu-
lum, a commonly used benchmark consisting of a nonlinear and unstable system popularized
by OpenAI Gym (Brockman et al., 2016). Concretely, a pole is attached by an unactuated
joint to a cart, which moves along a frictionless track. The pole starts upright, and the
goal is to prevent it from falling over by increasing and reducing the cart’s velocity. The
state consists of 4 statistics: the cart’s position x, the cart’s velocity ẋ, the pole’s angle θ,
and the pole’s velocity at tip θ̇. The action u is a continuous value between [−1, 1] where
negative means pushing the cart to the left, and positive means the opposite direction. The
transition function of the cartpole is a complicated nonlinear equation set. Denote by g the
gravity, lp,mp the length and mass of the pole, mc the mass of the cart, and τ the time
between state updates, the dynamical function of the cartpole has the following form:

θacc =
g sin θ − cos θ · u+lpmpθ̇2 sin θ

mp+mc

lp

(
4
3 −

mp(cos θ)2

mp+mc

) , xacc =
u+ lpmpθ̇

2 sin θ

mp +mc
− mplpθacc cos θ

mp +mc
,

xt+1 = xt + τ ẋt, ẋt+1 = ẋt + τxacc, θt+1 = θt + τ θ̇t, θ̇t+1 = θ̇t + τθacc,

which is highly nonlinear and thus brings significant challenge to online control.
The last simulated application is the data center cooling. As mentioned in Section 1,

data center cooling is a natural application of online non-stochastic control with partial
feedback. The goal is to keep the data center’s temperature within an acceptable range
with the minimum electricity cost. The state consists of three statistics: the temperature
dt, the number of users nt and the data transmission rate rt. The control signal is a scalar
ranging from −3 to 3 (negative means cooling down and positive means heating up). For
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Figure 6: Comparisons of different algorithms in terms of running time.

simplicity, we use |ut| to represent the electricity cost. The number of users and the data
transmission rate vary randomly, and the temperature change is influenced by the intrinsic
temperature and the control signal. The current intrinsic temperature is related to the
atmospheric temperature of the current time (month), denoted by at, the current number
of users, and the current data transmission rate. Specifically, the transition function of the
temperature is

dt+1 = dt + (at+1 − at) + 1.25(nt+1 − nt) + 1.25(rt+1 − rt) + ut.

The time horizon consists of the seconds of the whole year (T ≈ 500000).

Results. Figure 5 plots the cumulative costs of our method and contenders in three
simulated nonlinear environments. Smaller cumulative cost indicates better performance.
To approximate the systems’ nonlinearity, we restart all methods 5, 5, and 12 times in
pendulum, cartpole, and data center cooling, respectively. The results show the supremacy
of our proposed PRONC.Combine and PRONC.Select and the modeling power of the online
non-stochastic control in simulated nonlinear reinforcement learning tasks.

5.3 Running Time

In the end, we compare the time efficiency of our proposed algorithms, PRONC.Combine
and PRONC.Select, with BGD.Control, the most time-efficient method due to only one base
learner. Figure 6 plots the average running time with standard deviations of 5 independent
runs. Overall, our method is almost as time efficient as BGD.Control. To be more rigorous,
BGD.Control is the best in terms of running time since it is equipped with only one base
learner. PRONC.Select is comparable because it updates serially, while PRONC.Combine
is relatively not that efficient since it has to consider all base learners simulated, that is, do
multiple projection operations, which is usually time-consuming.

6. Conclusion

This paper investigates online non-stochastic control with partial feedback, where the
learner can only receive bandit cost values and partially observed states. The problem
setup is ubiquitous in real-world decision-making and control applications and strictly gen-
eralizes exceptional cases studied disparately by previous works. We start by extending
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the work of Cassel and Koren (2020) to partially observed states through disturbance-
response policy parameterization and obtain the first online method for this problem with
Õ(T

3/4) static regret and Õ(T
3/4(1 + PT )

1/4) dynamic regret whenever the path length PT
is known a priori. To further adapt to unknown non-stationary environments, we design
a novel two-layer meta-base online ensemble method by treating the algorithm above as
the base learner. And on top of that, we design two meta-combiners to simultaneously
handle the unknown environmental variation and the memory issue arising from online con-
trol. Our algorithms, Pronc-Combine and Pronc-Select, enjoy Õ(T

3/4(1 + PT )
1/2) and

Õ(T
3/4(1 +PT )

1/4 + T
5/6) dynamic regret respectively without knowing the non-stationarity

in advance. As a byproduct, we give a new dynamic regret bound for standard bandit con-
vex optimization that is more advantageous than the best known result when facing large
environmental non-stationarity and might be of independent interest. We further extend
our results to unknown systems and obtain Õ(T

4/5(1 +PT )
1/2) and Õ(T

3/4(1 +PT )
1/4 +T

5/6)
dynamic regret. Finally, empirical studies in both synthetic linear and simulated nonlinear
environments validate the effectiveness and efficiency of our proposed method and support
our theoretical findings.

There are several questions worth for future research. The first one is to investigate the
optimality of our results. Specifically, using static regret as the performance measure, the
lower bound of bandit convex optimization shifts from Ω(

√
T ) to Ω(T 2/3) due to the presence

of the switching cost (Cesa-Bianchi et al., 2013; Dekel et al., 2014). This raises questions
about the optimality of the Õ(T 3/4) regret in our study. Moreover, even if achieving the
optimal static regret, it remains challenging to obtain an optimal dynamic regret, because
the unknown path length PT makes the problem essentially hard in the partial feedback
scenario. At last, though our results for Pronc-Combine becomes worse in unknown
systems, the guarantees for Pronc-Select remain constant, prompting us to question if
the Pronc-Combine results can be improved by more dedicated analysis or more refined
system estimation techniques.

Besides, recently there is a proposal called “Learnware” which advocates to exploit all
kinds of trained machine learning models, submitted by developers all over the world to a
learnware market, to enable future users not to build their own machine learning application
from scratch, without disclosing the data of developers and users (Zhou, 2016). The key is
a carefully designed Learnware specification which enables the identification and reassemble
of helpful models without data disclosure (Zhou and Tan, 2023). The helpful models may
be identified in an online fashion based on partially observed output (e.g., only output of
a small number of “anchor” learners rather than all learnwares on user data) and partial
information (e.g., only overall performance of these anchor learnwares rather than detailed
predictions on every data instances). Thus, some inspirations may be obtained from studies
of online non-stochastic control with partial feedback.
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Appendix A. Preliminaries

In this section, we introduce some preliminaries about the notations, some nice properties
of the disturbance response policy, and some projection issues.

A.1 Notations

In this part, we restate the definitions of norms and inner product and define some symbols
for abbreviation.

For vectors, ‖·‖ , ‖·‖∗ denote the general norm and its corresponding dual norm. For
matrices, ‖·‖F , ‖·‖op denote the Frobenius-norm and the operator norm. For tuple of ma-

trices, such as G ∈ (Rdy×du)H ,M ∈ (Rdu×dy)m, its ‖·‖`1,op norm is defined as ‖M‖`1,op =∑m
i=1

∥∥M [i]
∥∥

op
.

For any two vectors x,y ∈ Rd, their inner product is defined as 〈x,y〉 =
∑d

i=1 xiyi,
where xi denotes the i-th entry of x.

Recall thatG is a tuple of matrices, whereG[i] = CAi−1B for i ≥ 1 (see Definition 3). For
representation simplicity, we define the RG, Rnat to bound ‖G‖`1,op and ‖ynat‖2 respectively
using the T -independent variables defined in Assumptions 1-2, formally,

∥∥ynat
t

∥∥
2
≤

∥∥∥∥∥et +

t−1∑
i=1

CAi−1ξt−i

∥∥∥∥∥
2

≤W + κCW

t−1∑
i=1

κi−1
A ≤W +

κCW

1− κA
, Rnat,

1 + ‖G‖`1,op = 1 +

∞∑
i=1

∥∥CAi−1B
∥∥

op
≤ 1 +

κBκC
1− κA

, RG.

Let M ⊆ (Rdu×dy)m be the feasible domain for DRP parameter M . Without loss
of generality, we assume M contains the ball of radius rM centered at the origin and is
contained in the ball of radius RM , i.e., rM ≤ ‖M‖F ≤ RM holds for any M ∈ M.
Furthermore, using relationship between different norms, it holds that

‖M‖`1,op ≤
√
m ‖M‖F ≤

√
mRM , RM.

A.2 Disturbance Response Policy

In this part, we analyze the derivation of the Nature’s ynat
t and the relationship between

the true observation yt and ynat
t (see Lemma 3).

To analyze Nature’s y, we denote by xnat
t the state without any actions implemented

on the system, namely, xnat
t = Axnat

t−1 + ξt−1. The formulation of Nature’s ynat
t (see also

Definition 1) satisfies

ynat
t = Cxnat

t + et = C
(
Axnat

t−1 + ξt−1

)
+ et = CAxnat

t−1 + Cξt−1 + et

= CA2xnat
t−2 + CAξt−2 + Cξt−1 + et

= . . .

= CAtxnat
0 +

t−1∑
i=1

CAi−1ξt−i + et
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= et +
t−1∑
i=1

CAi−1ξt−i.

The above derivation shows that the Nature’s ynat
t is actually a combination of the past

system disturbances ξ1:t, e1:t. With the above result, Lemma 3 presents the following rela-
tionship between the observation yt and the Nature’s ynat

t .

Lemma 3. For any linear dynamical system with partial feedback (3.1) subject to actions
u1, . . . ,ut ∈ Rdu, it holds that yt = ynat

t +
∑t−1

i=1 CA
i−1But−i.

Proof We decompose the observation yt by the dynamics of linear dynamical system with
partial feedback (3.1),

yt = Cxt + et = C (Axt−1 +But−1 + ξt−1) + et

= CAxt−1 + CBut−1 + Cξt−1 + et

= CA (Axt−2 +But−2 + ξt−2) + CBut−1 + Cξt−1 + et

= CA2xt−2 + CABut−2 + CAξt−2 + CBut−1 + Cξt−1 + et

= . . .

= CAtx0 + et +
t−1∑
i=1

CAi−1ξt−i +
t−1∑
i=1

CAi−1But−i

= ynat
t +

t−1∑
i=1

CAi−1But−i,

where the last step is by assuming x0 = 0, without loss of generality.

Lemma 3 shows that the current observation yt is a combination of the impact of both
the past disturbances (Nature’s y) and the past actions u1:t−1.

A.3 Projection Issues

In bandit convex optimization, in order to have enough wiggle space for perturbation, we
project the decision to a shrunk set. In this part, we introduce some basic properties about
the relationship between a domain and its shrunk set.

Let K ⊆ Rd be a closed and convex domain, and without loss of generality, we assume
K contains the ball of radius r at the origin and is contained in the ball of radius R, i.e.,

rB ⊆ K ⊆ RB, (A.1)

where B = {x ∈ Rd : ‖x‖2 ≤ 1}. The following results hold. First, for any point y ∈ (1−α)K
where α ∈ (0, 1) denotes the shrinkage parameter, the ball of radius αr centered at y belongs
to domain K, i.e., (1 − α)K + αrB ⊆ (1 − α)K + αK ⊆ K holds since rB ⊆ K and K is
convex. In practice, we only have perturbation magnitude δ and radius r, and need to
compute the shrinkage via α = δ/r. Before presenting the second property, we define the
smoothed version of a Lipschitz continuous function.
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Definition 4 (Smoothed Function). Assuming that K satisfies (A.1), a smoothed function
of f , denoted by f̄ , is defined as f̄(y) = Es∈S [f(y + δs)] for any y ∈ (1 − α)K, where
α = δ/r and s is drawn from a uniform distribution over the unit sphere S ⊆ Rd.

The second property (Lemma 4) reveals the relationship between a function and its
smoothed version, which can be derived immediately using the Lipschitzness of f .

Lemma 4. If K satisfies (A.1) and f is L-Lipschitz, and let f̄ be the smoothed version of
f (Definition 4), then for any y ∈ (1− α)K,

∣∣f̄(y)− f(y)
∣∣ ≤ Lδ.

Appendix B. Analysis

In this section, we give detailed proofs of the results stated in Section 4, including the proof
of the gradient bias lemma, the regret bound of the base algorithm, theoretical guarantees
for Pronc-Combine and Pronc-Select in bandit convex optimization with memory
setting, as well as in online non-stochastic control in known and unknown systems.

B.1 Proof of Lemma 2

Proof We expand the gradient estimator g̃ using its definition

E [g̃] = E
[
d

δ
(f(w) + ε)s

]
= E

[
d

δ
f(w̄ + δs)s +

dεs

δ

]
= ∇f̄(w̄) + E

[
dεs

δ

]
,

where the last expression is due to the unbiased gradient estimation established in Flaxman
et al. (2005). The last term E [dεs/δ] does not simply equal to 0 because ε also has a
dependence on s. Finally, we finish the proof by

∥∥E [g̃]−∇f̄(w̄)
∥∥

2
≤
∥∥∥∥E [dεsδ

]∥∥∥∥
2

≤ dε

δ
,

where the second step holds due to Jensen’s inequality.

B.2 Proof of Theorem 1

Proof To begin with, using Lemma 9 to build a relationship between the time horizon T
and the mini-batching update rounds S, the dynamic regret can be written as

E[D-Reg(v1:T )] ≤ E

[
T∑
t=1

(f̃t(wt)− f̃t(vt)) + λ
T∑

t=H

‖wt −wt−1‖2 + λ
T∑
t=2

‖vt − vt−1‖2

]

≤ 3HE

[∑
t∈S

f̃t(wt)−
∑
t∈S

f̃t(vt)

]
+ λE

[∑
t∈S
‖wt −wt−1‖2

]
+ λPT ,

where the first inequality comes from (4.2), the second inequality is because of Lemma 9,
the property of mini-batches and the definition of path length PT . To be more rigorous,
we use the notation {wt(δ, η)} to denote the decision sequence generated by the algorithm
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given certain perturbation magnitude δ and step size η, and sometimes we will simplify
wt(δ, η) as wt for simplicity of representation. The base-regret can be decomposed as

E[D-Reg(v1:T )] ≤ 3H E

[∑
t∈S

f̄t(w̄t)−
∑
t∈S

f̄t(v̄t)

]
︸ ︷︷ ︸

term (a)

+λE

[∑
t∈S
‖w̄t − w̄t−1‖2

]
︸ ︷︷ ︸

term (b)

+ 3H E

[∑
t∈S

f̃t(wt)− f̄t(w̄t)

]
︸ ︷︷ ︸

term (c)

+3H E

[∑
t∈S

f̄t(v̄t)− f̃t(vt)

]
︸ ︷︷ ︸

term (d)

+2λ
∑
t∈S
‖wt − w̄t‖2︸ ︷︷ ︸
term (e)

+λPT ,

(B.1)
where f̄t denotes the smoothed version of f̃t (see Definition 4), w̄t, v̄t are the scaled decision
and comparator such that wt = w̄t + δst and v̄t = (1 − α)vt. In above, term (a) is the
regret on loss functions {f̄t}t∈S , term (b) is the switching cost of the decision sequence
{w̄t}t∈S , term (c) and term (d) are the gap between the unary losses {f̃t}t∈S and their
smoothed versions {f̄t}t∈S , and term (e) measures the gap between {wt}t∈S and {w̄t}t∈S .
Now we bound these terms one by one. First, using the Lipschitzness of f̃t and Lemma 4 to
bound the difference between a function and its smoothed version, term (c) satisfies that

term (c) = E

[∑
t∈S

(
f̃t(wt)− f̃t(w̄t) + f̃t(w̄t)− f̄t(w̄t)

)]
≤ 2LHδE[|S|] ≤ 2LδT,

where the last step uses E[|S|] ≤ dT/He (see Lemma 8). Similarly, the Lipschitzness of f̃t
gives the upper bound of term (d),

term (d) = E

[∑
t∈S

(
f̄t(vt)− f̃t(v̄t) + f̃t(v̄t)− f̃t(vt)

)]
≤ E

[∑
t∈S

(
L̃αR+ L̃δ

)]
= (R/r + 1)LHδE[|S|] ≤ (R/r + 1)LδT.

It is easy to verify that term (e) ≤ 2λδT/H. By the update rule (4.4), term (b) satisfies

term (b) = E

[∑
t∈S
‖w̄t(δ, η)− w̄t−1(δ, η)‖2

]
≤ E

[∑
t∈S
‖ηg̃t(δ, η)‖2

]
≤ dCfηT

Hδ
. (B.2)

At last, we investigate term (a), which can be further decomposed into two parts by ex-
ploiting the convexity of f̄t,

term (a) ≤ E

[∑
t∈S
〈∇f̄t(w̄t), w̄t − v̄t〉

]
= E

[∑
t∈S
〈g̃t, w̄t − v̄t〉

]

+ E

[∑
t∈S
〈∇f̄t(w̄t)− g̃t, w̄t − v̄t〉

]
.

(B.3)

Lemma 7 gives the upper bound of the first term above,

E

[∑
t∈S
〈g̃t, w̄t − v̄t〉

]
≤ 7R2 +RPS

4η
+
d2C2

fηT

2Hδ2
≤ 7R2 +RPT

4η
+
d2C2

fηT

2Hδ2
, (B.4)
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where PS denotes the path length upon S and the last step is due to PS ≤ PT . To bound
the second term in (B.3), we denote by Ft , {w1, f1, . . . ,wt, ft} the history up to round t.
Consequently, it holds that

E

[∑
t∈S
〈∇f̄t(w̄t)− g̃t, w̄t − v̄t〉

]
= E

[
E

[∑
t∈S
〈∇f̄t(w̄t)− g̃t, w̄t − v̄t〉

∣∣∣∣∣ Ft
]]

.

The inner expectation can be bounded as

E

[∑
t∈S
〈∇f̄t(w̄t)− g̃t, w̄t − v̄t〉

∣∣∣∣∣ Ft
]

=
∑
t∈S
〈∇f̄t(w̄t)− E[g̃t|Ft], w̄t − v̄t〉

≤ T

H
·max
t∈[T ]

∥∥∇f̄t(w̄t)− E[g̃t|Ft]
∥∥

2
· 2R ≤ 2dεRT

Hδ
,

where the last step is due to Lemma 2. Considering the outer expectation, the bias term
can be bounded by

E

[∑
t∈S
〈∇f̄t(w̄t)− g̃t, w̄t − v̄t〉

]
≤ 2dεRT

Hδ
. (B.5)

Plugging all the bounds into (B.1), we have

E[D-Reg(v1:T )] ≤ 3H(7R2 +RPT )

4η
+

3d2C2
fηT

2δ2
+

6dεRT

δ
+
λdCfηT

Hδ
+LeffδT +λPT , (B.6)

where Leff , (3L+RL/r + 2λ/H)δT denotes the effective Lipschitz constant.

B.3 Proof of Theorem 2

Proof The dynamic regret can be decomposed similarly as in Theorem 1,

E[D-Reg(v1:T )] ≤ 3HE

[∑
t∈S
〈g̃t, w̄t − v̄t〉

]
+ λE

[∑
t∈S
‖w̄t − w̄t−1‖2

]
︸ ︷︷ ︸

term (a)

+3H E

[∑
t∈S
〈∇f̄t(w̄t)− g̃t, w̄t − v̄t〉

]
︸ ︷︷ ︸

Bias-Term

+λPT + LeffδT,

where f̄t is the smoothed version of ft (see Definition 4), w̄t is a shrunk version of wt such
that wt = w̄t + δst ∈ K holds that any st ∈ S and Leff is the effective Lipschitz constant.
The bias term is at most 2dεRT/(δ?H) as in (B.5). term (a) can be further decomposed
into two parts by importing an intermediate term `t,i(w̄t,i) (4.5),

term (c) ≤
∑
t∈S

E[λ ‖w̄t − w̄t−1‖2 + 3H〈g̃t, w̄t〉 −
(
λ ‖w̄t,i − w̄t−1,i‖2 + 3H〈g̃t, w̄t,i〉

)︸ ︷︷ ︸
,Mt,i

]
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+
∑
t∈S

E[λ ‖w̄t,i − w̄t−1,i‖2 + 3H〈g̃t, w̄t,i − v̄t〉︸ ︷︷ ︸
,Bt,i

].

The term Mt,i can be further transformed by exploiting the structure of w̄t,

‖w̄t − w̄t−1‖2 =
∥∥∥ N∑
i=1

pt,iw̄t,i −
N∑
i=1

pt−1,iw̄t−1,i

∥∥∥
2

≤
∥∥∥ N∑
i=1

pt,iw̄t,i −
N∑
i=1

pt,iw̄t−1,i

∥∥∥
2

+
∥∥∥ N∑
i=1

pt,iw̄t−1,i −
N∑
i=1

pt−1,iw̄t−1,i

∥∥∥
2

=

N∑
i=1

pt,i ‖w̄t,i − w̄t−1,i‖2 +R ‖pt − pt−1‖1 . (B.7)

As a result, we have the following upper bound for Mt,i,

Mt,i = λ ‖w̄t − w̄t−1‖2 + 3H〈g̃t, w̄t〉 − λ ‖w̄t,i − w̄t−1,i‖2 − 3H〈g̃t, w̄t,i〉

≤ λ

(
N∑
i=1

pt,i ‖w̄t,i − w̄t−1,i‖2 +R ‖pt − pt−1‖1

)
+ 3H

N∑
i=1

pt,i〈g̃t, w̄t,i〉

− λ ‖w̄t,i − w̄t−1,i‖2 − 3H〈g̃t, w̄t,i〉
= λR ‖pt − pt−1‖1 + 〈pt, `t〉 − `t,i.

Summing Mt,i over the time horizon S, we can transform
∑

t∈SMt,i into∑
t∈S

Mt,i ≤ λR
∑
t∈S
‖pt − pt−1‖1 +

∑
t∈S
〈pt, `t〉 −

∑
t∈S

`t,i,

where pt = [pt,1, . . . , pt,N ]> and `t = [`t,1, . . . , `t,N ]>. Notice that

• E[
∑

t∈SMt,i] represents the meta-regret : the static regret of a Prediction with Expert
Advice (PEA) problem with switching cost;

• E[
∑

t∈S Bt,i] represents the base-regret : the dynamic regret of the i-th base learner
compared with a sequence of time-varying comparators v̄1:T with switching cost.

We start by analyzing the base-regret, which can be bounded intermediately by (B.4) and
(B.2) in the proof of Theorem 1,

E

[∑
t∈S

Bt,i

]
≤ 3H(7R2 +RPT )

4ηi
+

3d2C2
fηiT

2δ?2 +
λdCfηiT

Hδ?
.

By the construction of the step size pool (4.8), there must exist an index i? such that
ηi? ≤ η? ≤ 2ηi? , by choosing i = i?, the regret of the i?-th base learner can be bounded as

E

[∑
t∈S

Bt,i?

]
≤ 3H(7R2 +RPT )

4ηi?
+

3d2C2
fηi?T

2δ?2 +
λdCfηi?T

Hδ?

≤ 3H(7R2 +RPT )

2η?
+

3d2C2
fη

?T

2δ?2 +
λdCfη

?T

Hδ?
.

(B.8)
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Besides, it is easy to find that the index of the optimal base learner satisfies

ηi? ≤ η? ⇒ 2i
?−1 δ

?R

dCf

√
7H

T
≤ δ?

dCf

√
H(7R2 +RPT )

T
⇒ i? ≤ 1

2
log2

(
1 +

PT
7R

)
+ 1. (B.9)

The next lemma shows the regret of the meta learner of Pronc-Combine, and the proof
is deferred to the end of this part.

Lemma 5 (Meta Regret of Pronc-Combine). Suppose the domain’s radius is bounded by
R, and the `2-norm of the estimated gradient is bounded by Gf . By setting learning rate
ηmeta =

√
H/(2λRT ), the regret of the meta learner of Pronc-Combine satisfies

E

[∑
t∈S

Mt,i

]
≤ 20λ

3/2R
3/2Gf ln(i+ 1)

√
T

H
.

Thus we can upper bound the meta-regret by Lemma 5 and (B.9),

E

[∑
t∈S

Mt,i?

]
≤ 20λ

3/2dCfR
3/2

δ?

√
T

H
ln(i? + 1)

≤ 20λ
3/2dCfR

3/2

δ?

√
T

H
ln

(
1

2
log

(
1 +

PT
7R

)
+ 2

)
.

(B.10)

Plugging in the results from (B.10) and (B.8), we have

E

[
T∑

t=H

ft(wt−H:t)−
T∑

t=H

ft(vt−H:t)

]

≤ 20λ
3/2dCfR

3/2

δ?

√
T

H
ln

(
1

2
log

(
1 +

PT
7R

)
+ 2

)
+

3H(7R2 +RPT )

2η?

+
3d2C2

fη
?T

2δ?2 +
6εdRT

δ?
+
λdCfη

?T

Hδ?
+ Leffδ

?T + λPT .

(B.11)

By setting the optimal perturbation magnitude δ? and step size η? as

δ? =

√
3dCf
Leff

(
7HR2

T

)1/4

, η? =
δ?

dCf

√
H(7R2 +RPT )

T
,

the overall regret is about O(min{T 3/4(1 + PT )
1/2, T}).

Proof [of Lemma 5] Notice that meta-regret is the static regret of the prediction with expert
advice (PEA) problem with switching cost. Denote by Lmax = maxt∈[T ] ‖`t‖∞ the maximum
infinity norm of `t. For technical considerations, we adopt a non-uniform weight initializa-
tion by setting p1 ∈ ∆N with p1,i = (N + 1)/(i(i+ 1)N). Following the standard analysis of
Hedge (Freund and Schapire, 1997) and the non-uniform weight initialization (Cesa-Bianchi
and Lugosi, 2006, Exercise 2.5), the unary part of the meta-regret satisfies

ES

[∑
t∈S
〈pt, `t〉 −

∑
t∈S

`t,i

]
≤ Lmax

(
ln(1/p1,i)

ηmeta
+ ηmetaES [|S|]

)
, (B.12)
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where ES [·] is taken over the randomness of mini-batches S. Next, due to the stability
of mirror-descent/FTRL based methods (Shalev-Shwartz, 2012, Lemma 2.10) (Hedge is
actually an instance of FTRL with the negative-entropy regularizer), the one-step switching
cost of Hedge satisfies that

‖pt − pt−1‖1 ≤ ηmeta ‖`t−1‖∞ ≤ ηmetaLmax. (B.13)

Further, Lmax can be bounded as

Lmax = ‖`t‖∞ = max
t∈[T ]

max
i∈[N ]

|`t,i| ≤ max
t∈[T ]

max
i∈[N ]

(
λ ‖w̄t,i − w̄t−1,i‖2 + 3H|〈g̃t, w̄t,i〉|

)
≤ 2λR+ 3H max

t∈[T ]
‖g̃t‖2 max

i∈[N ]
‖w̄t,i‖2 ≤ 2λR+ 3HGfR ≤ 5λGfR.

Combining (B.12) and (B.13), we have that

ES

[∑
t∈S

Mt,i

]
≤ Lmax

(
ln(1/p1,i)

ηmeta
+ (1 + λR)ηmetaES [|S|]

)
≤ 5λGfR

(
ln(1 + i)

ηmeta
+

2λRηmetaT

H

)
= 20λ

3/2R
3/2Gf ln(i+ 1)

√
T

H
.

The last step holds by setting learning rate of meta learner as ηmeta =
√
H/(2λRT ).

B.4 Proof of Theorem 3

Proof Dividing the time horizon S into d|S|/∆e episodes, denoted by {∆i}d|S|/∆ei=1 , the
regret can be decomposed as

E[D-Reg(v1:T )] ≤ 3H · E

d|S|/∆e∑
i=1

∑
t∈∆i

f̃t(wt(δi, ηi))− f̃t(vt)


+ λE

d|S|/∆e∑
i=1

∑
t∈∆i

‖wt(δi, ηi)−wt−1(δi, ηi)‖2

+
E[|S|]

∆
+ λPT ,

where λ = L(H + 1)2/2 and {wt(δi, ηi)}t∈∆i is the decision sequence produced with pertur-
bation magnitude δi and step size ηi in episode ∆i. The E[|S|]/∆ term above is due to the
burn-in loss of the restart strategy. Note that the first two terms are the dynamic regret
with switching loss of our algorithm, which is in general hard to analyze due to the two-layer
online ensemble structure. We deal with this through a novel regret decomposition:

3H · E

d|S|/∆e∑
i=1

∑
t∈∆i

f̃t(wt(δi, ηi))− f̃t(vt)

+ λE

d|S|/∆e∑
i=1

∑
t∈∆i

‖wt(δi, ηi)−wt−1(δi, ηi)‖2


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≤ 3H · E

d|S|/∆e∑
i=1

∑
t∈∆i

f̃t(wt(δi, ηi))− f̃t(wt(δ
?, η?)) + f̃t(wt(δ

?, η?))− f̃t(vt)


+ λE

d|S|/∆e∑
i=1

∑
t∈∆i

‖wt(δi, ηi)−wt−1(δi, ηi)‖2


= E

d|S|/∆e∑
i=1

∑
t∈∆i

(
3Hf̃t(wt(δi, ηi) + λ ‖wt(δi, ηi)−wt−1(δi, ηi)‖2

)
︸ ︷︷ ︸

term (a-i)

− E

d|S|/∆e∑
i=1

∑
t∈∆i

(
3Hf̃t(wt(δ

?, η?) + λ ‖wt(δ
?, η?)−wt−1(δ?, η?)‖2

)
︸ ︷︷ ︸

term (a-ii)

+ 3H · E

d|S|/∆e∑
i=1

∑
t∈∆i

f̃t(wt(δ
?, η?))− f̃t(vt) + λ

d|S|/∆e∑
i=1

∑
t∈∆i

‖wt(δ
?, η?)−wt−1(δ?, η?)‖2


︸ ︷︷ ︸

term (b)

,

where δ?, η? denote the optimal perturbation magnitude and step size, which are unknown
to the algorithm. By defining a surrogate loss for the meta learner as

`i(δi, ηi) , 3H
∑
t∈∆i

f̃t(wt(δi, ηi)) + λ
∑
t∈∆i

‖wt(δi, ηi)−wt−1(δi, ηi)‖2 , (B.14)

term (a-i) along with term (a-ii) can be rewritten as

term (a) , E

d|S|/∆e∑
i=1

`i((δi, ηi))−
d|S|/∆e∑
i=1

`i((δ
?, η?))

 .
Notice that

• term (a) represents the meta-regret : the static regret of a Multi-Armed Bandit prob-
lem, where each arm is a tuple of perturbation magnitude and step size, and its loss
is the cumulative loss defined in (4.9). It measures the performance of the parameters
chosen by our algorithm against that of the best one in hindsight.

• term (b) represents the base-regret : the dynamic regret of the best base learner with
switching cost, compared to a sequence of time-varying comparators v1:T .

First we investigate the meta-regret. The lemma below states the regret bound of Exp3.

Lemma 6 (Theorem 3.1 of Auer et al. (2002)). With the optimal tuning, Exp3 ensures
E[RT ] ≤ 2

√
TN logN , where N denotes the number of arms.
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The above lemma gives the meta-regret an upper bound of

term (a) ≤ 2Lmax

√
E[|S|]

∆
N logN = 2(Cf + 2λR)

√
T∆ log T log log T

H
, (B.15)

where Lmax ≤ ∆(Cf + 2λR) is the maximum value of the surrogate loss (B.14). Plugging
δ = δ?, η = η?, T = ∆ into the regret of the base algorithm (B.6), the base-regret satisfies

term (b) = E

3H

d|S|/∆e∑
i=1

∑
t∈∆i

f̃t(wt(δ
?, η?))− f̃t(vt) + λ

∑
t∈∆i

‖wt(δ
?, η?)−wt−1(δ?, η?)‖2


≤ E

d|S|/∆e∑
i=1

3H(7R2 +RP∆i)

4η?
+

3d2C2
fη

?∆

2δ2
+

6dεR∆

δ
+
λdCfη∆

Hδ
+ Leffδ∆


≤

21R2T
∆ + 3HRPT

4η?
+

3d2C2
fη

?T

2δ2
+

6dεRT

δ
+
λdCfηT

Hδ
+ LeffδT,

where P∆i denotes the path length in the i-th episode. Plugging in term (a) and term (b),
the dynamic regret of Pronc-Select follows,

E

[
T∑

t=H

ft(wt−H:t)−
T∑

t=H

ft(vt−H:t)

]

≤ 2(Cf + 2λR)

√
T∆ log T log log T

H
+

21R2T
∆ + 3HRPT

4η?
+

3d2C2
fη

?T

2δ2

+
6dεRT

δ
+
λdCfηT

Hδ
+ LeffδT +

T

H∆
+ λPT .

(B.16)

Finally, by setting the parameters η?, δ?,∆ as

η? =

√
3

LeffdCf

(
H
(
7R2T

1/3 +RPT
)

2T

)3/4

, δ? =

(
3d2C2

fη
?

Leff

)1/3

, ∆ = T
2/3,

we obtain the final dynamic regret guarantee of Õ(T
3/4(1 + PT )

1/4 + T
5/6).

B.5 Proof of Theorem 4

Proof In known systems, we begin with the following regret decomposition:

E [D-Reg(π1:T )] = E

[
T∑
t=1

ct (yt,ut)−
T∑
t=1

ct (yπtt ,u
πt
t )

]

=

T1∑
t=1

ct (yt,ut)︸ ︷︷ ︸
term (a)

+
T∑

t=T1+1

ct (yt,ut)− ft (Mt−H:t)︸ ︷︷ ︸
term (b)

+E

[
T∑

t=T1+1

ft (Mt−H:t)− ft
(
M?
t−H:t

)]
︸ ︷︷ ︸

term (c)
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+
T∑

t=T1+1

f̃t
(
M?
t−H:t

)
− ct

(
yt(M

?
1:t−1),ut(M

?
1:t)
)

︸ ︷︷ ︸
term (d)

,

where T1 , 2H denotes the burn-in period and f1:T are the truncation cost functions (see
Definition 3). Using Lemma 10, we have term (a) ≤ O(H). With the truncation lemma (see
Lemma 1), and by setting H = Θ(log T ), we have term (a)+term (b)+term (d) ≤ Õ(1).

term (c) is actually the dynamic regret of bandit convex optimization with memory
and inexact feedback over the policy parameter domain M. Since the truncated cost func-
tions f1:T are convex and Lipschitz continuous, inherited from the control cost functions
c1:T (see Lemma 11), we leverage Theorem 2 and Theorem 3 to bound term (c) respec-
tively. For Pronc-Combine, term (c) ≤ Õ(T

3/4(1 + PT )
1/2), so the overall regret is of

order Õ(T
3/4(1 + PT )

1/2). For Pronc-Select, term (c) ≤ Õ(T
3/4(1 + PT )

1/4 + T
5/6), as a

result the overall regret is Õ(T
3/4(1 + PT )

1/4 + T
5/6).

B.6 Proof of Theorem 5

Proof In unknown systems, the regret can be decomposed as follows:

E

[
T∑
t=1

ct(yt,ut)− ct(yπtt ,u
πt
t )

]
= E

[
T∑
t=1

ct(yt,ut)− ct(yt(M?
0:t−1),ut(M

?
t ))

]

≤
T2∑
t=1

ct(yt,ut)︸ ︷︷ ︸
term (a)

+
T∑

t=T2+1

ct(yt,ut)− ft(Mt−H:t|Ĝ, ŷnat
1:t )︸ ︷︷ ︸

term (b)

+ E

[
T∑

t=T2+1

ft(Mt−H:t|Ĝ, ŷnat
1:t )− f̃t(M?

t−H:t|Ĝ, ŷnat
1:t )

]
︸ ︷︷ ︸

term (c)

+
T∑

t=T2+1

ft(M
?
t−H:t|Ĝ, ŷnat

1:t )− ct(yt(M?
0:t−1),ut(M

?
t ))︸ ︷︷ ︸

term (d)

,

where T2 , m+ 2H + T0 denotes the burn-in period. Leveraging Lemma 13 to bound the
burn-in cost (term (a)), and using Lemma 12 and Lemma 14 to analyze the truncation
error (term (b) and term (d)), it holds that

term (a) ≤ O(T0), term (b) + term (d) ≤ O
(

T√
T0

)
,

Pronc-Combine. Note that in unknown systems, the truncation error ε is no more
O(T−1) but O(T

−1/2
0 ) (see Lemma 12 and Lemma 14). Leveraging (B.11) with ε ≤ O(T

−1/2
0 ),
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along with the other three terms in the regret decomposition, we have

E [D-Reg(π1:T )] = O
(
T0 +

1 + PT
η?

+
η?T

δ?2 +
T

δ?
√
T0

+ δ?T + PT

)
.

By setting memory length H, estimation round T0, perturbation δ? and step size η? as

H = Θ(log T ), T0 = O(T
4/5), δ? = O(T−

1/5), η? = δ?
(

1 + PT
T

)1/2

,

we obtain an Õ
(
T

4/5(1 + PT )
1/2
)

regret guarantee.

Pronc-Select. The difference of analysis only lies in term (c). Leveraging (B.16) with

ε ≤ O(T
−1/2
0 ), along with the other three terms in the regret decomposition, it holds that

E [D-Reg(π1:T )] ≤ O

(
T0 +

T

δ?
√
T0

+
T
∆ + PT

η?
+
η?T

δ?2 +
√
T∆ +

T

∆
+ δ?T

)
.

By setting the memory length H, the restarting period ∆, the estimation round T0, the
perturbation magnitude δ? and the step size η? optimally as

H = Θ(log T ), ∆ = O(T
2/3), T0 = O(T

4/5),

δ? =

((
1

∆
+
PT
T

)1/2

+ T
−1/2
0

)1/2

, η? = δ?
(

1

∆
+
PT
T

)1/2

,

we obtain an Õ(T
3/4(1 + PT )

1/4 + T
5/6) expected dynamic regret guarantee. Note that in

the unknown setting, the relationship between the optimal step size η? and the optimal
perturbation magnitude δ? does not exist anymore, thus the number of the base learners
increases from O(log T ) to O((log T )2) in this case.

Appendix C. Supporting Lemmas

In this section, we list some basic supporting lemmas often used in online non-stochastic
control and online learning.

• Lemma 7 presents the dynamic regret of OGD.

• Lemma 8 describes the basic property of the mini-batching approach.

• Lemma 9 builds a relationship between the regret over the whole time horizon T and
the mini-batching update set S.

• Lemma 10 captures the cost before the algorithm attains meaningful regret guarantees
(referred to as burn-in cost).

• Lemma 11 bounds the domain diameter of DRP parameters and the Lipschitz constant
of the truncate cost functions.
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• Lemma 12 shows the relationship between the estimation rounds T0 and the estimation
accuracy εG;

• Lemma 13 gives an upper bound of the cost incurred in unknown systems when the
algorithm is not running due to insufficient memory, namely, burn-in cost;

• Lemma 14 depicts the gap between the true cost and the truncated cost on the es-
timated system transition matrices. This gap consists of not only the truncation
error but also the approximation error between the truncated cost of the true system
transition and the estimated one.

Lemma 7 (Dynamic Regret of OGD (Zinkevich, 2003)). Consider the online gradient de-
scent xt+1 = ΠX [xt − η∇ft(xt)]. Suppose the feasible domain K is bounded, i.e., ‖x− y‖2 ≤
D for any x,y ∈ K, and meanwhile, the gradients of the online functions are bounded, i.e.,
‖∇ft(·)‖2 ≤ G for any t ∈ [T ], then the dynamic regret is upper bounded by

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut) ≤
7D2 +DPT

4η
+
ηG2T

2
,

for any comparator sequence u1:T ∈ KT , whose path length is PT ,
∑T

t=2 ‖ut − ut−1‖2.

Lemma 8 (Lemma 10 of Cassel and Koren (2020)). Suppose random bits b1:T are drawn
in advance. Let t0 = 0 and ti = min{t ≥ ti−1 + H | bt

∏H−1
i=1 (1 − bt−i) = 1} for i ≥ 1.

Denoting by S = {ti|H ≤ ti ≤ T} the rounds indicating the mini-batching updates, we have
(i) |S| ≤ bT/Hc; and (ii) E[ti − ti−1] = E[t1] ≤ 3H,∀i ∈ [|S|].

Lemma 9 (Bridging Regrets over Two Time Horizons (Cassel and Koren, 2020, Lemma
11)). Suppose mini-batching method chooses random bits b1:T from Bernoulli(1/H) inde-
pendently, then for any function sequence fH:T , decision sequence wH:T and comparator
sequence vH:T , it holds that

E

[
T∑

t=H

ft(wt)−
T∑

t=H

ft(vt)

]
≤ 3H · E

[∑
t∈S

ft(wt)−
∑
t∈S

ft(vt)

]
,

where S stands for the set containing the rounds of mini-batching updates.

Lemma 10 (Burn-in Cost of Known Systems (Simchowitz et al., 2020, Lemma C.2)). Under
Assumption 2, the burn-in cost of the algorithm can be bounded by 4Lc(m+H)R2

GR
2
MR

2
nat.

Lemma 11 (Lipschitz/Diameter Bounds of Known Systems (Simchowitz et al., 2020,
Lemma C.5)). Under Assumption 2, denote by DM = maxM1,M2∈M ‖M1 −M2‖F, Lf the
Lipschitz constant of the surrogate cost ft, then it holds that

DM ≤ 2
√
dminRM, Lf = 2Lc

√
mR2

GRMR
2
nat,

where dmin = min{dy, du}.
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Lemma 12 (Guarantee for Algorithm 5 (Simchowitz et al., 2020, Theorem 7)). Let δ ∈
(e−T , T−1), T0, du ≤ T , and ψG(H) ≤ 1

10 . For universal constants c, Cest, define

εG(T0, δ) = Cest
h2Rnat√

T0

Cδ, where Cδ ,
√
dmax + log 1

δ + log(1 +Rnat).

and suppose that T0 ≥ ch4C4
δR

2
MR

2
G. Then with probability 1 − δ − T− log2 T0

0 , Algorithm 5
satisfies the following bounds

(i) For all t ∈ [T0], ‖ut‖2 ≤ Ru,est(δ) , 5
√
du + 2 log(3/δ);

(ii) The estimation error is bounded as∥∥∥Ĝ−G∥∥∥
`1,op

≤ ‖Ĝ[0:h] −G[0:h]‖`1,op +Ru,estψG(H) ≤ εG(T0, δ) ≤
1

2
max{RMRG, Ru,est}.

Lemma 13 (Burn-in Cost of Unknown Systems (Simchowitz et al., 2020, Lemma D.3)). Un-
der Assumption 2, suppose Lemma 12 holds, and define R̄u(δ) , 2 max{Ru,est(δ), RMRnat},
we have that

∑T ′

t=1 ct(yt,ut) ≤ 4LcT
′R2

GR̄
2
u, where T ′ denotes the burn-in period.

Lemma 14 (Approximation Lemma for Unknown System (Simchowitz et al., 2020, Lemma
D.5)). Under Assumption 2, suppose Lemma 12 holds, then it holds that

T∑
t=T ′+1

ct(yt,ut)−
T∑

t=T ′+1

ft(Mt−1−H:t|Ĝ, ŷnat
1:t ) . LcTRGR

2
MR

2
natεG,

where ft(Mt−1−H:t|Ĝ, ŷnat
1:t ) denotes the truncated cost based on the estimated Ĝ and ŷnat

1:t .
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