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Abstract

Optimization problems with continuous data appear in, e.g., robust machine learning,
functional data analysis, and variational inference. Here, the target function is given as an
integral over a family of (continuously) indexed target functions—integrated with respect
to a probability measure. Such problems can often be solved by stochastic optimization
methods: performing optimization steps with respect to the indexed target function with
randomly switched indices. In this work, we study a continuous-time variant of the stochas-
tic gradient descent algorithm for optimization problems with continuous data. This so-
called stochastic gradient process consists in a gradient flow minimizing an indexed target
function that is coupled with a continuous-time index process determining the index. In-
dex processes are, e.g., reflected diffusions, pure jump processes, or other Lévy processes on
compact spaces. Thus, we study multiple sampling patterns for the continuous data space
and allow for data simulated or streamed at runtime of the algorithm. We analyze the
approximation properties of the stochastic gradient process and study its longtime behav-
ior and ergodicity under constant and decreasing learning rates. We end with illustrating
the applicability of the stochastic gradient process in a polynomial regression problem with
noisy functional data, as well as in a physics-informed neural network.
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1. Introduction

The training of a machine learning model is often represented through an optimization
problem, where the goal is to calibrate the model’s parameters to optimize its goodness-of-
fit with respect to training data. The goodness-of-fit is usually quantified through a loss
function that sums up the losses from the misrepresentation of every single training data
set, see, e.g., Goodfellow et al. (2016) for or, e.g., Hansen (2010); Cam (1990) for similar
optimization problems in imaging and statistics. In ‘big data’ settings, the sum of these loss
functions consists of thousands or millions of terms, making classical optimization methods
computationally infeasible. Thus, efficiently solving optimization problems of this form has
been a focus of machine learning and optimization research in the past decades. Here,
methods often build upon the popular stochastic gradient descent method.

Originally, stochastic gradient descent was proposed by Robbins and Monro (1951) to
optimize not only sums of loss functions, but also expectations of randomized functions.1

Of course, a normalized sum is just a special case of an expected value, making stochastic
gradient descent available for the kind of training problem described above. Based on
stochastic gradient descent ideas, improved algorithms have been proposed for optimizing
sums of loss functions, such as Chambolle et al. (2018); Defazio et al. (2014); Duchi et al.
(2011). Unfortunately, these methods often specifically target sums of loss functions and
can then be infeasible to optimize general expected values of loss functions.

The optimization of expected values of loss functions appears in the presence of count-
ably infinite and continuous data in functional data analysis and non-parametric statistics
(e.g., Sinova et al., 2018), physics-informed deep learning (e.g., Raissi et al., 2019), inverse
problems (e.g., Bredies and Lorenz, 2018), and continuous data augmentation/adversarial
robustness (e.g., Cohen et al., 2019; Shorten and Khoshgoftaar, 2019; Pinto et al., 2017).
Some of these problems are usually studied after discretising the data. As hinted above,
algorithms for discrete data sometimes deteriorate when approaching the continuum limit,
i.e. as the number of data sets goes to infinity. Thus, we prefer studying the continuum case
immediately. Finally, we note that ‘continuous data’ can also refer to optimization under
general noise models. Here, expected values are minimized in robust optimization (e.g.,
Nemirovski et al., 2009), variational Bayesian inference (e.g., Cherief-Abdellatif, 2019), and
optimal control (e.g., May et al., 2013). Overall, the optimization of general expected values
is a very important task in modern data science, machine learning, and related fields.

In this work, we study stochastic gradient descent for general expected values in a
continuous-time framework. We now proceed with the formal introduction of the optimiza-
tion problem, the stochastic gradient descent algorithm, its continuous-time limits, and
current research in this area.

1.1 Problem setting and state of the art

We study optimization problems of the form

min
θ∈X

Φ(θ) :=

∫

S
f(θ, y)π(dy), (1)

1. Actually, the ‘stochastic approximation method’ of Robbins and Monro (1951) aims at finding roots of
functions that are given as expectations of randomized functions. The method they construct resembles
stochastic gradient descent for a least squares loss function.
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where X := RK , S is a Polish space, f : S × X → R is a measurable function that
is continuously differentiable in the first variable, and π is a probability measure on S.
Moreover, we assume that the integral above always exists. We refer to X as parameter
space, S as index set, Φ as full target function, and f as subsampled target function. In
these optimization problems, it is usually impossible or intractable to evaluate the integral
Φ or its gradient ∇Φ.Hence, traditional optimization algorithms, such as steepest gradient
descent or Newton methods are not applicable.

As mentioned above, it is possible to employ stochastic optimization methods, such
as the stochastic gradient descent (SGD) method, see Kushner and Yin (2003); Robbins
and Monro (1951). The stochastic gradient descent method for (1) proceeds through the
following discrete-time dynamic that iterates over n ∈ N := {1, 2, . . .}:

θn = θn−1 − ηn∇θf(θn−1, yn), (2)

where y1, y2, . . . ∼ π independent and identically distributed (i.i.d.), (ηn)∞n=1 ∈ (0,∞)N is a
non-increasing sequence of learning rates, and θ0 ∈ X is an appropriate initial value. Hence,
SGD is an iterative method that employs only the gradient of the integrand f , but not Φ.
SGD converges to the minimizer of Φ, if ηn → 0, as n→∞, sufficiently slowly, and f(·, y)
is strongly convex and ∇f(·, y) is bounded (y ∈ S); see, e.g., Bubeck (2015). SGD is used
in practice also for non-convex optimization problems and with constant learning rate. The
constant learning rate setting is popular especially due to its regularizing properties; see
Ali et al. (2020); Smith et al. (2021).

To understand, improve, and study discrete-time dynamical systems, it is sometimes
advantageous to represent them in continuous time, see, e.g. the works by de Wiljes et al.
(2018); Kovachki and Stuart (2021); Trillos and Sanz-Alonso (2020). Continuous-time mod-
els allow us to concentrate on the underlying dynamics and omit certain numerical consid-
erations. Moreover, they give us natural ways to construct new, efficient algorithms.

The discrete-time dynamic in (2) is sometimes represented through a continuous-time
diffusion process, see Ali et al. (2020); Li et al. (2019, 2017); Mandt et al. (2016, 2017);
Wojtowytsch (2021):

dθt = −∇Φ(θt)dt+
√
η(t)Σ(θt)

1/2dWt,

where Σ(θ) =
∫

(∇θf(θ; y)−∇θΦ(θ))⊗ (∇θf(θ; y)−∇θΦ(θ))π(dy), (Wt)t≥0 is a K-dimen-
sional Brownian motion, and (η(t))t≥0 is an interpolation of the learning rate sequence.
While this diffusion approach is suitable to describe the dynamic of the moments of SGD,
it does not immediately allow us to construct new stochastic optimization algorithms, as
the system depends on the inaccessible ∇Φ.

A continuous-time representation of stochastic gradient descent that does not depend
on ∇Φ has recently been proposed by Latz (2021). This work only considers the discrete
data case, i.e., S is finite and π := Unif(S). SGD is represented by the stochastic gradient

process (θ†t )t≥0. It is defined through the coupled dynamical system

dθ†t = −∇θf(θ†t ; i(t))dt, (3)

where (i(t))t≥0 is a suitable continuous-time Markov process on S, which we call index

process. Hence, the process (θ†t )t≥0 represents gradient flows with respect to the subsampled
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Figure 1: Cartoon of the stochastic gradient process (θ†t )t≥0 with index process (i(t))t≥0 on
the discrete index set S := {−1,−0.6, . . . , 1}. The index process is a Markov pure

jump process on S. The process (θ†t )t≥0 aims at optimizing the Unif(S)-integral
of the subsampled target functional is f(θ, y) := 1

2(θ − y2)2 (θ ∈ X := R, y ∈ S).

target functions that are switched after random waiting times. The random waiting times
are controlled by the continuous-time Markov process (i(t))t≥0. We show an example of

the coupling of exemplary process (i(t))t≥0 and (θ†t )t≥0 in Figure 1. The setting is S :=
{−1,−0.6, . . . , 1}, π := Unif(S), X := R, and f(θ, y) := 1

2(θ − y2)2 (θ ∈ X, y ∈ S). There,

we see that the sample path of (θ†t )t≥0 is piecewise smooth, with non-smooth behavior at
the jump times of (i(t))t≥0.

If the process (i(t))t≥0 is homogeneous-in-time, the dynamical system represents a con-
stant learning rate. Inhomogeneous (i(t))t≥0 with decreasing mean waiting times, on the
other hand, model a decreasing learning rate. Under certain assumptions, the process
(θ†t )t≥0 converges to a unique stationary measure when the learning rate is constant or to
the minimizer of Φ when the learning rate decreases.

1.2 This work.

We now briefly introduce the continuous-time stochastic gradient descent methods that we
study throughout this work. Then, we summarize our main contributions and give a short
paper outline.

In the present work, we aim to generalize the dynamical system (3) to include more
general spaces S and probability measures π – studying the more general optimization
problems of type (1). We proceed as follows: We define a stationary continuous-time Markov
process (Vt)t≥0 on S that is geometrically ergodic and has π as its stationary measure. This
process (Vt)t≥0 is now our index process. Similarly to (3), we then couple (Vt)t≥0 with the
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Figure 2: Cartoon of the stochastic gradient process (θt)t≥0 with index process (Vt)t≥0,
with continuous index set S := [−1, 1]. The index process is a reflected Brownian
motion on S.

following gradient flow:

dθt = −∇θf(θt, Vt)dt. (4)

Note that the index process (Vt)t≥0 can be considerably more general than the Markov
jump processes studied by Latz (2021); we discuss examples below and in Section 2. As the
dynamical system (4) contains the discrete version (3) as a special case, we refer to (θt)t≥0

also as stochastic gradient process.

We give an example for (θt, Vt)t≥0 in Figure 2. There, we consider S := [−1, 1], π :=
Unif[−1, 1], X := R, and f(θ, y) := 1

2(θ − y2)2 (θ ∈ X, y ∈ S). A suitable choice for
(Vt)t≥0 is a reflected Brownian motion on [−1, 1]. Although it is coupled with (Vt)t≥0, the
process (θt)t≥0 appears to be relatively smooth. This may be due to the smoothness of
the subsampled target function f . Moreover, we note that the example in Figure 1 is a
discretized data version of the example here in Figure 2.

More similarly to the discrete data case (3), one could also choose (Vt)t≥0 to be a Markov
pure jump process on S that has π as a stationary measure. Indeed, the reflected Brownian
motion was constructed rather artificially. Sampling from Unif[−1, 1] is not actually difficult
in practice and we just needed a way to find a continuous-time Markov process that is
stationary with respect to Unif[−1, 1]. However, there are cases, where one may not be
able to sample independently from π. For instance, π could be the measure of interest
in a statistical physics simulation or Bayesian inference. In those cases, Markov chain
Monte Carlo methods are used to approximate π through a Markov chain stationary with
respect to it, see, e.g., Robert and Casella (2004). In other cases, the data might be
time series data that is streamed at runtime of the algorithm – a related problem has been
studied by Sirignano and Spiliopoulos (2017). Hence, in this work, we also discuss stochastic
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optimization in those cases or – more generally – stochastic optimization with respect to
data from arbitrary sources.

As the index process (Vt)t≥0 is stationary, the stochastic gradient process as defined
above would, again, represent the situation of a constant learning rate (ηn)∞n=1. However,
as before we usually cannot hope for convergence to a stationary point if there is not a sense
of a decreasing learning rate. Hence, we need to introduce an inhomogeneous variant of
(Vt)t≥0 that represents a decreasing learning rate. We now introduce a way to obtain such
a decreasing learning rate in our continuous setting.

We start with the stochastic process (V dc
t )t≥0 that represents the index process asso-

ciated to the discrete-time stochastic gradient descent dynamic (2) with constant learning
rate parameter η = 1. This index process is given by

V dc
t =

∞∑

n=1

yn1[t ∈ [n− 1, n)] =
∞∑

n=1

yn1[t− n+ 1 ∈ [0, 1)] (t ≥ 0),

where y1, y2, . . . ∼ π i.i.d. and 1[·] is the indicator function: 1[true] = 1 and 1[false] = 0.
We now want to turn the process (V dc

t )t≥0 into the index process (V dd
t )t≥0 that represents

a decreasing learning rate (ηn)∞n=1. It is defined through:

(V dd
t )t≥0 =

∞∑

n=1

yn1 [t ∈ [Hn−1, Hn)] =
∞∑

n=1

yn1

[
t−Hn−1

ηn
∈ [0, 1)

]
,

where we denote Hn :=
∑n

m=1 ηm. Hence, we can represent (V dd
t )t≥0 := (V dc

β(t))t≥0, where

β : [0,∞)→ [0,∞) is given by

β(t) =

∞∑

n=1

t+ n− 1−Hn−1

ηn
1 [t ∈ [Hn−1, Hn)] (t ≥ 0) (5)

is a piecewise linear, non-decreasing function with β(t)→∞, as t→∞.
Following this idea, we turn our homogeneous index process (Vt)t≥0 that represents a

constant learning rate into an inhomogeneous process with decreasing learning rate using a
suitable rescaling function β. In that case, we obtain a stochastic gradient process of type

dξt = −∇ξf(ξt, Vβ(t))dt,

which we will use to represent the stochastic gradient descent algorithm with decreasing
learning rate. Note that while we require β to satisfy certain conditions that ensure the
well-definedness of the dynamical system, it is not strictly necessary for it to be of the form
(5). Actually, we later assume that β is smooth.

The main contributions of this work are the following:

• We study stochastic gradient processes for optimization problems of the form (1) with
finite, countably infinite, and continuous index sets S.

• We give conditions under which the stochastic gradient process with constant learning
rate is well-defined and that it can approximate the full gradient flow dζt = −∇Φ(ζt)dt
at any accuracy. In addition, we study the geometric ergodicity of the stochastic
gradient process and properties of its stationary measure.
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• We study the well-definedness of the stochastic gradient process with decreasing learn-
ing rate and give conditions under which the process converges to the minimizer of Φ
in the optimization problem (1).

• In numerical experiments, we show the suitability of our stochastic gradient process for
(convex) polynomial regression with continuous data and the (non-convex) training of
physics-informed neural networks with continuous sampling of function-valued data.

This work is organized as follows. In Section 2, we study the index process (Vt)t≥0

and give examples for various combinations of index spaces S and probability measures π.
Then, in Sections 3 and 4, we analyze the stochastic gradient process with constant and
decreasing learning rate, respectively. In Section 5, we review discretization techniques that
allow us to turn the continuous dynamical systems into practical optimization algorithms.
We employ these techniques in Section 6, where we present numerical experiments regarding
polynomial regression and the training of physics-informed neural networks. We end with
conclusions and outlook in Section 7.

2. The index process: Feller processes and geometric ergodicity

Before we define the stochastic gradient flow, we introduce and study the class of stochastic
processes (Vt)t≥0 that can be used for the data switching in (4). Moreover, we give an
overview of appropriate processes for various measures π. For more background material
on (continuous-time) stochastic processes, we refer the reader to the book by Revuz and
Yor (2013), the book by Liggett (2010), and other standard literature.

Let S = (S,m) be a compact Polish space and

Ω = {ω : [0,∞)→ S | ω is right continuous with left limits.}.

We consider a filtered probability space (Ω,F , (Ft)t≥0, (Px)x∈S), where F is the smallest σ-
algebra on Ω such that the mapping ω → ω(t) is measurable for any t ≥ 0 and the filtration
Ft is right continuous. Let (Vt)t≥0 be a (Ft)t≥0 adapted stochastic process from Ω to S. We
assume that (Vt)t≥0 is Feller with respect to (Ft)t≥0. (Px)x∈S is a collection of probability
measures on Ω such that Px(V0 = x) = 1. For any probability measure µ on S, we define

Pµ(·) :=

∫

S
Py(·)µ(dy)

and denote expectations with respect to Px and Pµ by Ex and Eµ, respectively.

Below we give a set of assumptions on the process (Vt)t≥0. We need those to ensure that
a certain coupling property holds. We comment on these assumptions after stating them.

Assumption 1 Let (Vt)t≥0 be a Feller process on (Ω,F , (Ft))t≥0, (Px)x∈S). We assume
the following:

(i) (Vt)t≥0 admits a unique invariant measure π.
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(ii) For any x ∈ S, there exist a family (V x
t )t≥0 and a stationary version (V π

t )t≥0 de-

fined on the same probability space (Ω̃, F̃ , P̃) such that, (V x
t )t≥0

d
= (Vt)t≥0 in Px and

(V π
t )t≥0

d
= (Vt)t≥0 in Pπ, i.e. for any 0 ≤ t1 < · · · < tn,

P̃(V x
t1 ∈ A1, · · · , V x

tn ∈ An) = Px(Vt1 ∈ A1, · · · , Vtn ∈ An),

P̃(V π
t1 ∈ A1, · · · , V π

tn ∈ An) = Pπ(Vt1 ∈ A1, · · · , Vtn ∈ An),

where A1, · · · , An ∈ B(S).

(iii) Let T x := inf {t ≥ 0 | V x
t = V π

t } be a stopping time. There exist constants C, δ > 0
such that for any t ≥ 0,

sup
x∈S

P̃(T x ≥ t) ≤ C exp(−δt).

First, we assume that (Vt)t≥0 has a stationary measure π. Second, we assume that for
the process (Vt)t≥0 that starts from x with probability 1, we can find a coupled process
(V x
t )t≥0. Also, given that the process (Vt)t≥0 starts with its invariant measure π, we can

find a stationary version (V π
t )t≥0 of (Vt)t≥0. Here, the processes (V x

t )t≥0 and (V π
t )t≥0 are

defined on the same probability space. Third, we assume that the processes (V x
t )t≥0 and

(V π
t )t≥0 intersect exponentially fast. The exponential rate can be chosen uniformly in x

since S is compact. With Assumption 1, we have the following lemma.

Lemma 1 (Geometric Ergodicity) Under Assumption 1, there exist constants C, δ > 0
such that for any x ∈ S and t ≥ 0,

sup
A∈B(S)

|Px(Vt ∈ A)− π(A)| ≤ C exp(−δt),

where B(S) is the set of all Borel measurable sets of S.

Proof For any given x ∈ S, we construct the following process by coupling (V x
t )t≥0 and

(V π
t )t≥0:

Ṽ x
t =

{
V x
t , 0 ≤ t ≤ T x,
V π
t , t > T x.

By the strong Markov property, (Ṽ x
t )t≥0

d
= (V x

t )t≥0. For any A ∈ B(S), notice that

|Px(Vt ∈ A)− π(A)|
=|P̃(V x

t ∈ A)− P̃(V π
t ∈ A)|

=|P̃(Ṽ x
t ∈ A)− P̃(V π

t ∈ A)|
=|P̃(Ṽ x

t ∈ A, Ṽ x
t 6= V π

t ) + P̃(Ṽ x
t ∈ A, Ṽ x

t = V π
t )

− (P̃(V π
t ∈ A, Ṽ x

t 6= V π
t ) + P̃(V π

t ∈ A, Ṽ x
t = V π

t ))|
=|P̃(Ṽ x

t ∈ A, Ṽ x
t 6= V π

t )− P̃(V π
t ∈ A, Ṽ x

t 6= V π
t )|

≤2P̃(Ṽ x
t 6= V π

t )

≤2P̃(T x ≥ t) ≤ C exp(−δt).
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From the third assumption in Assumption 1, C and δ are independent of x and this com-
pletes the proof.

In the lemma above, we have shown geometric ergodicity of (Vt)t≥0 in the total variation
distance. Next, we show that the same rate of convergence of (Vt)t≥0 holds in the weak
topology.

Corollary 2 Under Assumption 1, there exist constants C, δ > 0 such that for any h ∈
C(S), i.e. the set of all continuous function on S, we have

sup
x∈S

∣∣∣∣Ex[h(Vt)]−
∫

S
h(y)π(dy)

∣∣∣∣ ≤ C ‖h‖∞ exp(−δt)

where ‖h‖∞ := supx∈S |h(x)|

Proof Rewrite Ex[h(Vt)] as

Ex[h(Vt)] =

∫

S
h(y)Px(Vt ∈ dy).

Then, we have

∣∣∣∣Ex[h(Vt)]−
∫

S
h(y)π(dy)

∣∣∣∣ =

∣∣∣∣
∫

S
h(y)[Px(Vt ∈ dy)− π(dy)]

∣∣∣∣
≤ ‖h‖∞ |Px(Vt)− π| (S),

where 1
2 |Px(Vt)− π| (S) is the total variation of the measure Px(Vt)− π. Notice that

|Px(Vt)− π| (S) = 2 sup
A∈B(S)

|Px(Vt ∈ A)− π(A)|.

By Lemma 1, we have

sup
x∈S

∣∣∣∣Ex[h(Vt)]−
∫

S
h(y)π(dy)

∣∣∣∣ ≤‖h‖∞ sup
x∈S
|Px(Vt)− π| (S)

≤2 ‖h‖∞ sup
x∈S

sup
A∈B(S)

|Px(Vt ∈ A)− π(A)|

≤C ‖h‖∞ exp(−δt),

which completes the proof.

We now study four examples for processes that satisfy our assumptions: Lévy pro-
cesses with two-sided reflections on a compact interval, continuous-time Markov processes
on finite and countably infinite spaces, and processes on rectangular sets with independent
coordinates.
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2.1 Example 1: Lévy processes with two-sided reflection

For any b > 0, we say a triplet ((Xt)t≥0, (Lt)t≥0, (Ut)t≥0) is a solution to the Skorokhod
problem of the Lévy process (Xt)t≥0 on the space S := [0, b] if for all t ≥ 0,

Vt = Xt + Lt − Ut, (6)

where (Lt)t≥0, (Ut)t≥0 are non-decreasing right continuous processes such that

∫ ∞

0
VtdLt =

∫ ∞

0
(b− Vt)dUt = 0.

In other words, (Lt)t≥0 and (Ut)t≥0 can only increase when (Vt)t≥0 is at the lower boundary
0 or the upper boundary b. From Andersen et al. (2015, Proposition 5.1), we immediately
see that the process (Vt)t≥0 in (6) satisfies Assumption 1. The geometric ergodicity follows
from Andersen et al. (2015, Remark 5.3). As an example, the standard Brownian Motion
(BM) reflected at 0 and 1 can be written as

Vt = Bt + L̃0
t − L̃1

t ,

where (Bt)t≥0 is a standard BM and (L̃at )t≥0 is the symmetric local time of (Vt)t≥0 at
a ∈ {0, 1}. Intuitively, a local time describes the time spent at a given point of a con-
tinuous stochastic process. The formal definition of symmetric local time of continuous
semimartingales can be found, for example, in Revuz and Yor (2013, Chapter VI). For the
optimization problem (1) with S = [0, 1] and π being the uniform measure on S, the corre-
sponding stochastic process in (4) can be chosen to be this Brownian Motion with two-sided
refection since its invariant measure is the uniform measure on [0, 1]. To see this, we employ
Andersen et al. (2015, Theorem 5.4) and have

π([x, 1]) = P(Bτx∧τx−1 = x) = P(τx < τx−1) = 1− x (x ∈ [0, 1]),

where τa = inf{t ≥ 0|Bt = a}.

2.2 Example 2: Continuous-time Markov processes with finite states

We consider a continuous-time Markov process Vt on state space I = {1, 2, . . . , N} with
transition rate matrix

AN = ΛN −NλIN ,

where λ > 0, ΛN is an N ×N matrix the entries of which are all equal to λ, and IN is the
identity matrix. From Latz (2021), we know that the transition probability is given by

P(Vt+s = i|Vs = j) =
1− exp(−λNt)

N
+ exp(−λNt)1[i = j].

The invariant measure π of Vt is the uniform measure on I, i.e. π(i) = 1/N for i ∈ {1, ..., N}.
To see that (Vt)t≥0 satisfies the rest of Assumption 1, consider a stationary version (V̂t)t≥0

that is independent of (Vt)t≥0. Let V0 = 1. We define T = inf{t ≥ 0, Vt = V̂t}. Moreover,
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for i, j ∈ N, we denote the i-th and j-th jump time of (Vt)t≥0 and (V̂t)t≥0 by Ti and T̂j ,
respectively. Then we have

P(T = 0) = P(V0 = 1, V̂0 = 1) = P(V0 = 1)P(V̂0 = 1) =
1

N
.

For any i, j ∈ N, since Ti and T̂j are independent, P(Ti = T̂j) = 0. Let (Yt)t≥0 = ((Vt, V̂t))t≥0

be a Markov process on I × I with transition probability:

P(Yt+s = (i, j)|Ys = (i0, j0)) =
1− exp(−2λNt)

2N

(
1[i = i0] + 1[j = j0]

)

+ exp(−2λNt)1[(i, j) = (i0, j0)].

Thus, T is the first time when (Yt)t≥0 hits {(i, i)|i = 1, ..., N}. Let the n-th jump time of
(Yt)t≥0 be τn, for t > 0, we have

P(T ≥ t) =
∑

n≥1

P(T = τn, τn ≥ t)

=
∑

n≥1

exp(−2(N − 1)nλt)
N − 1

N

1

N − 1

(N − 2

N − 1

)n−1

≤C exp(−2(N − 1)λt),

where the second equality follows from

P(T = τn) =
N − 1

N

1

N − 1

(N − 2

N − 1

)n−1

since there are 2N − 4 states available for the next jump. Thus, (Vt)t≥0 satisfies Assump-
tion 1.

2.3 Example 3: Continuous-time Markov processes with countable states

We consider a continuous-time Markov process (Vt)t≥0 on state space N0 := N ∪ {0} with
exponential jump times. At time t, if Vt ∈ N, it jumps to 0 with probability 1 at the next
jump time. Otherwise, if Vt = 0, it jumps to i with probability 1/2i. It is easy to verify that
the invariant measure π of (Vt)t≥0 is π({i}) = 1/2i+1. One may consider N as one state and
view (Vt)t≥0 as a Markov process with two states.

To verify that (Vt)t≥0 satisfies the rest of Assumption 1, similarly to the previous ex-
ample, we consider a stationary version (V̂t)t≥0 that is independent of (Vt)t≥0. Let V0 = 0
and T = inf{t ≥ 0, Vt = V̂t = 0}. For i, j ∈ N0, we denote the i-th and j-th jump time of
(Vt)t≥0 and (V̂t)t≥0 by Ti and T̂j , respectively. Then we have

P(T = 0) = P(V0 = 0, V̂0 = 0) = P(V0 = 0)P(V̂0 = 0) =
1

2
.

For any i, j ∈ N0, since Ti and T̂j are independent, P(Ti = T̂j) = 0. Let (Yt)t≥0 =
((Vt, V̂t))t≥0 be a Markov process on N0 × N0. Notice that T is the first time when (Yt)t≥0

11
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hits (0, 0). Let the n-th jump time of (Yt)t≥0 be τn, for t > 0, we have

P(T ≥ t) =
∑

n≥1

P(T = τn, τn ≥ t)

=
∑

k≥0

P(T = τ2k+1, τ2k+1 ≥ t)

=
∑

k≥0

exp(−2(2k + 1)t)
1

2k+2
≤ exp(−t),

where the second and the third equality follows from P(T = τ2k+1) = 2−k−1 and P(T =
τ2k) = 0 for k ≥ 1. Since inf{t ≥ 0, Vt = V̂t} is upper bounded by T , (Vt)t≥0 satisfies
Assumption 1.

2.4 Example 4: Multidimensional processes

For multidimensional processes, Assumption 1 is satisfied if each component satisfies As-
sumption 1 and all components are mutually independent. We illustrate this by discussing
the 2-dimensional case – higher-dimensional processes can be constructed inductively. Mul-
tidimensional processes arise, e.g., when the underlying space S is multidimensional. They
also arise when S is one-dimensional, but we run multiple processes in parallel to obtain a
mini-batch SGD instead of single-draw SGD.

Let (S1,m1) and (S2,m2) be two compact Polish spaces. We consider the probability
triples (Ω1, (F1

t ))t≥0, (P1
a)a∈S1) and (Ω2, (F2

t ))t≥0, (P2
b)b∈S2) with P1

a((V
1

0 = a) = P2
b(V

2
0 =

b) = 1. Let (V 1
t )t≥0 and (V 2

t )t≥0 be (F1
t ))t≥0 and (F2

t ))t≥0 adapted and from Ω1 to S1 and
Ω2 to S2 respectively. In the following proposition, we construct a 2-dimensional process
(V 1
t , V

2
t )t≥0 from Ω1 × Ω2 to (S1 × S2,m1 + m2) with a family of probability measures

(P(a,b))(a,b)∈S1×S2 such that P(a,b)(A×B) = P1
a(A)P2

b(B) for A ∈ F1 and B ∈ F2.

We now show that the joint process (V 1
t , V

2
t )t≥0 is Feller and satisfies Assumption 1, if

the marginals do.

Proposition 1 Let (V 1
t )t≥0 and (V 2

t )t≥0 be càdlàg and Feller with respect to (F1
t )t≥0 and

(F2
t )t≥0, respectively, and satisfy Assumption 1 with probability (P1

a)a∈S2 and (P2
b)b∈S2, re-

spectively. Then (V 1
t , V

2
t )t≥0 is also càdlàg and Feller with respect to σ(F1

t × F2
t )t≥0 and

satisfies Assumption 1 with (P(a,b))(a,b)∈S1×S2.

Proof It is obvious that the process (V 1
t , V

2
t )t≥0 is càdlàg and Markovian. To verify the

Feller property, we show that for any continuous function F on S1 × S2, E(x,y)[F (V 1
t , V

2
t )]

is continuous in (x, y). We shall prove this by showing this property for separable F and
approximate general continuous functions using this special case. Let f and g be continuous
functions on S1 and S2 respectively, then we have

E(x,y)[f(V 1
t )g(V 2

t )] = E1
x[f(V 1

t )]E2
y[g(V 2

t )], (7)

which implies E(x,y)[f(V 1
t )g(V 2

t )] is continuous in (x, y) since (V 1
t )t≥0 and (V 2

t )t≥0 are Feller.
By the Stone–Weierstrass theorem, for any k ≥ 1, any continuous function F on S1 × S2

12
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can be approximated as the following,

sup
(x,y)∈S1×S2

∣∣∣∣∣F (x, y)−
nk∑

i=1

fki (x)gki (y)

∣∣∣∣∣ ≤
1

k

where fki and gki are continuous. From (7), this implies E(x,y)[F (V 1
t , V

2
t )] is continuous on

S1 × S2.
Next, we prove that (V 1

t , V
2
t )t≥0 satisfies Assumption 1. Let π1 and π2 be the invariant

measures of (V 1
t )t≥0 and (V 2

t )t≥0, respectively. Then π1 × π2 is the invariant measure of
(V 1
t , V

2
t )t≥0 since (V 1

t )t≥0 and (V 2
t )t≥0 are independent. From Assumption 1, we know there

exist (Ω̃1, F̃1, P̃1), (Ω̃2, F̃2, P̃2), such that for any a ∈ S1 and b ∈ S2 , (V 1,a
t )t≥0

d
= (V 1

t )t≥0

in P1
a and (V 2,b

t )t≥0
d
= (V 2

t )t≥0 in P2
b . We define P̃ on Ω̃1 × Ω̃2 such that

P̃(A×B) = P̃1(A)P̃2(B), (A ∈ F̃1, B ∈ F̃2).

Then we have that ((V 1,a
t )t≥0)a∈S1 and (V 1,π1

t )t≥0 are independent of ((V 2,b
t )t≥0)b∈S2 and

(V 2,π2

t )t≥0 under P̃. Similar to the proof of Lemma 1, we construct the following processes
by the coupling method:

Ṽ 1,a
t =

{
V 1,a
t , 0 ≤ t ≤ T 1,a,

V 1,π1

t , t > T 1,a,

and

Ṽ 2,b
t =

{
V 2,b
t , 0 ≤ t ≤ T 2,b,

V 2,π2

t , t > T 2,b.

Then the distribution of (Ṽ 1,a
t , Ṽ 2,b

t )t≥0 under P̃ is the same as the distribution of (V 1
t , V

2
t )t≥0

under P(a,b); the distribution of (V 1,π1

t , V 2,π2

t )t≥0 under P̃ is the same as the distribu-

tion of (V 1
t , V

2
t )t≥0 under Pπ1×π2 . Moreover, (Ṽ 1,a

t , Ṽ 2,b
t )t≥0 intersects the invariant state

(V 1,π1

t , V 2,π2

t )t≥0 at time T 1,a ∨ T 1,b. For any (a, b) ∈ S1 × S2,

P̃(T 1,a ∨ T 1,b ≥ t) ≤ P̃(T 1,a ≥ t) + P̃(T 1,b ≥ t) ≤ C exp(−δt).

We have now discussed various index processes and their properties.We are ready to move
on to study the stochastic gradient process.

3. Stochastic gradient processes with constant learning rate

We now define and study the stochastic gradient process with constant learning rate. Here,
the switching between data sets is performed in a homogeneous-in-time way. Hence, it mod-
els the discrete-time stochastic gradient descent algorithm when employed with a constant
learning rate. Although, one can usually not hope to converge to the minimizer of the target
functional in this case, this setting is popular in practice.

13
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To obtain the stochastic gradient process with constant learning rate, we will couple the
gradient flow (4) with the an appropriate process (Vt/ε)t≥0. Here, (Vt)t≥0 is a Feller process
introduced in Section 2 and ε > 0 is a scaling parameter that allows us to uniformly control
a switching rate parameter. To define the stochastic process associated with this stochastic
gradient descent problem, we first introduce the following assumptions that guarantee the
existence and uniqueness of the solution of the associated dynamical system. After its
formal definition and the proof of well-definedness, we move on to the analysis of the
process. Indeed, we show that the process approximates the full gradient flow (9), as
ε ↓ 0. Moreover, we show that the process has a unique stationary measure to which it
converges in the longtime limit at geometric speed.

We commence with regularity properties of the subsampled target function f that are
necessary to show the well-definedness of the stochastic gradient process.

Assumption 2 Let f(θ, y) ∈ C2(RK × S,R).
1. ∇θf, Hθf are continuous,
2. ∇θf(θ, y) is Lipschitz in x and the Lipschitz constant is uniform for y ∈ S, and
3. f(θ, ·) and ∇θf are integrable w.r.t to the probability measure π(·), for θ ∈ RK .

Now, we move on to the formal definition of the stochastic gradient process.

Definition 1 For ε > 0, the stochastic gradient process with constant learning rate (SGPC)
is a solution of the following stochastic differential equation,

{
dθεt = −∇θf(θεt , Vt/ε)dt,

θε0 = θ0,
(8)

where f satisfies Assumption 2 and (Vt)t≥0 is a Feller process that satisfies Assumption 1.

Given these two assumptions, we can indeed show that SGPC is a well-defined Markov
process.

Proposition 2 Let Assumptions 1 and 2 hold. Then, equation (8) has a unique strong
solution, i.e. the solution (θεt )t≥0 is measurable with respect to Fεt := Ft/ε for any t ≥ 0.
For y ∈ S, (θεt , Vt/ε)t≥0 is a Markov process under Py with respect to (Fεt )t≥0.

Proof The existence and the uniqueness of the strong solution to the equation (8) can
be found in Kushner (1990, Chapter 2, Theorem 4.1). To prove the Markov property, we
define the operator (Qεt )t≥0 such that

Qεth(x, y) := Ey[h(θεt , Vt/ε)|θε0 = x],

for any function h bounded and measurable on RK × S. For any s, t ≥ 0, we want to show

E[h(θεt+s, V(t+s)/ε)|Fεs ] = Qεth(θεs, Vs/ε).

We set θ̂εt := θεt+s, F̂t := Fεt+s, V̂t/ε := V(t+s)/ε. Since

θεt+s = θεs −
∫ t+s

s
∇θf(θεm, Vm/ε)dm,

14
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we have

θ̂εt = θ̂ε0 −
∫ t

0
∇θf(θ̂εm, V̂m/ε)dm.

Hence θ̂εt is the solution of equation (8) with θ̂ε0 = θεs and V̂0 = Vs/ε. Moreover,

E[h(θεt+s, V(t+s)/ε)|Fεs ] = E[h(θ̂εt , V̂t/ε)|θ̂ε0 = θεs, V̂0 = Vs/ε]

= EV̂0 [h(θ̂εt , V̂t/ε)|θ̂ε0 = θεs]

= Qεth(θεs, Vs/ε),

where the second equality and third equality follow from the homogeneous Markov property
of (V ε

t )t≥0.

3.1 Approximation of the full gradient flow

We now let ε → 0 and study the limiting behavior of SGPC. Indeed, we aim to show that
here the SGPC converges to the full gradient flow

dζt = −
[ ∫

S
∇ζf(ζt, v)π(dv)

]
dt. (9)

We study this topic for two reasons: First, we aim to understand the interdependence
of (Vt)t≥0 and (θεt )t≥0. Second, we understand SGPC as an approximation to the full
gradient flow (9), as motivated in the introduction. Hence, we should show that SGPC can
approximate the full gradient flow at any accuracy.

We now denote g(·) :=
∫
S ∇ζf(·, v)π(dv) ∈ C1(RK ,RK). Then, we can define (ζt)t≥0

through the dynamical system dζt = −g(ζt)dt. Moreover, let C([0,∞) : RK) be the space
of continuous functions from [0,∞) to RK equipped with the distance

ρ
(

(ϕt)t≥0, (ϕ
′
t)t≥0

)
:=

∫ ∞

0
exp(−t)(1 ∧ sup

0≤s≤t

∥∥ϕs − ϕ′s
∥∥)dt,

where (ϕt)t≥0, (ϕ
′
t)t≥0 ∈ C([0,∞) : RK). We study the weak limit of the system (8) as

ε→ 0. Similar problems have been discussed in, for example, Kushner (1990) and Kushner
(1984).

Theorem 3 Let θε0 = θ0 and ζ0 = θ0. Moreover, let (θεt )t≥0 and (ζt)t≥0 solve (8) and (9),
respectively. Then (θεt )t≥0 under Pπ converges weakly to (ζt)t≥0 in C([0,∞) : RK) as ε→ 0,
i.e. for any bounded continuous function F : C([0,∞) : RK)→ R, we have

Eπ[F
(
(θεt )t≥0

)
]→ Eπ[F

(
(ζt)t≥0

)
] = F

(
(ζt)t≥0

)
.

Proof We first verify that (θεt )t≥0 is tight by checking:

1. sup
0<ε<1

‖θε0‖ < +∞;

2. For any fixed T > 0, lim
δ→0

sup
0<ε<1

sup
s,t∈[0,T ],|s−t|≤δ

‖θεt − θεs‖ → 0.
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The first condition follows from θε0 = θ0. For the second condition, by Assumption 2, let
C0 = supy∈S ‖∇θf(0, y)‖ and Lf be the Lipschitz constant of ∇θf(·, y), we have

d ‖θεt ‖2
dt

= −2
〈
θεt ,∇θf(θεt , Vt/ε)

〉

= −2
〈
θεt ,∇θf(θεt , Vt/ε)−∇θf(0, Vt/ε)

〉
− 2

〈
θεt ,∇θf(0, Vt/ε)

〉

≤ 2Lf ‖θεt ‖2 + 2C0 ‖θεt ‖
≤ 2Lf ‖θεt ‖2 + ‖θεt ‖2 + C2

0

= (2Lf + 1) ‖θεt ‖2 + C2
0 .

By Grönwall’s inequality,

‖θεt ‖2 ≤ (‖θ0‖2 + C2
0 )e(2Lf+1)t. (10)

Therefore, θεt is bounded on any finite time interval. For any fixed T > 0, let

CT,f,θ0 = sup
‖x‖≤(‖θ0‖2+C2

0 )e
(2Lf+1)T

, y∈S
‖∇θf(x, y)‖ .

Then for any s, t ∈ [0, T ],

‖θεt − θεs‖ ≤
∫ t

s

∥∥∇θf(θεm, Vm/ε)
∥∥dm ≤ CT,f,θ0 |t− s|.

Hence, (θεt )t≥0 is tight in C([0,∞) : RK). By Prokhorov’s theorem, let (θt)t≥0 be a weak
limit of (θεt )t≥0. We shall verify that (θt)t≥0 satisfies equation (9), which is equivalent to
show that for any bounded differentiable function ϕ, h

Eπ
[(
ϕ(θt)− ϕ(θs) +

∫ t

s
〈∇θϕ(θm), g(θm)〉dm

)
h
(

(θti)i=1,...,n

)]
= 0,

∀ 0 ≤ t1 < · · · < tn ≤ s. The case t = 0 is obvious. Since (θεt )t≥0 is a strong solution to
equation (8), for any 0 ≤ s < t,

ϕ(θεt ) = ϕ(θεs)−
∫ t

s

〈
∇θϕ(θεm),∇θf(θεm, Vm/ε)

〉
dm. (11)

Hence, we have

Eπ
[(
ϕ(θεt )− ϕ(θεs) +

∫ t

s

〈
∇θϕ(θεs),∇θf(θεm, Vm/ε)

〉
dm
)
h
(

(θεti)i=1,...,n

)]
= 0,

Moreover, when ε→ 0,

Eπ
[(
ϕ(θεt )− ϕ(θεs)

)
h
(

(θεti)i=1,...,n

)]
→ Eπ

[(
ϕ(θt)− ϕ(θs)

)
h
(

(θti)i=1,...,n

)]
.

Hence, all we need to show is the following

Eπ
[( ∫ t

s

〈
∇θϕ(θεm),∇θf(θεm, Vm/ε)

〉
dm−

∫ t

s
〈∇θϕ(θεm), g(θεm)〉 dm

)
h
(

(θεti)i=1,...,n

)]
→ 0,

(12)
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which is equivalent to prove that

Eπ
[ ∫ t

s

〈
∇θϕ(θεm),∇θf(θεm, Vm/ε)

〉
dm−

∫ t

s
〈∇θϕ(θεm), g(θεm)〉dm

∣∣∣Fεs
]
→ 0. (13)

Let ε̃ := 1/[1/
√
ε], where [x] is the greatest integer less than or equal to x. Then we have

the following decomposition

Eπ
[ ∫ t

s

〈
∇θϕ(θεm),∇θf(θεm, Vm/ε)

〉
dm−

∫ t

s
〈∇θϕ(θεm), g(θεm)〉 dm

∣∣∣Fεs
]

=ε̃

1/ε̃∑

i=0

ε̃−1Eπ
[ ∫ s+(i+1)(t−s)ε̃

s+i(t−s)ε̃

〈
∇θϕ(θεm),∇θf(θεm, Vm/ε)− g(θεm)

〉
dm
∣∣∣Fεs
]

=ε̃

1/ε̃∑

i=0

Eπ
[
ε̃−1Eπ

[ ∫ s+(i+1)(t−s)ε̃

s+i(t−s)ε̃

〈
∇θϕ(θεm),∇θf(θεm, Vm/ε)− g(θεm)

〉
dm
∣∣∣Fεs+i(t−s)ε̃

]∣∣∣Fεs
]
.

We claim that as ε→ 0,

sup
0≤r<t

ε̃−1Eπ
[ ∫ r+(t−s)ε̃

r
G(θεm, Vm/ε)dm

∣∣∣Fεr
]
→ 0, (14)

where G(x, y) := 〈∇θϕ(x),∇θf(x, y)− g(x)〉. Notice that for any fixed t > 0, (θεs)0≤s≤t is
uniformly equicontinuous. Hence, we have

sup
0≤r≤t

sup
r≤m≤r+(t−s)ε̃

‖θεm − θεr‖ = sup
0≤r≤t

sup
r≤m≤r+(t−s)ε̃

∫ r+(t−s)ε̃

r

∥∥∇θf(θεm, Vm/ε)
∥∥dm

≤ ε̃ sup
0≤m≤t

∥∥∇θf(θεm, Vm/ε)
∥∥ .

Therefore, as ε→ 0,

sup
0≤r<t

∣∣∣∣∣ε̃
−1Eπ

[ ∫ r+(t−s)ε̃

r
G(θεm, Vm/ε)dm

∣∣∣Fεr
]
− ε̃−1Eπ

[ ∫ r+(t−s)ε̃

r
G(θεr, Vm/ε)dm

∣∣∣Fεr
]∣∣∣∣∣→ 0.

Hence, (14) is equivalent to

sup
0≤r<t

∣∣∣∣∣ε̃
−1Eπ

[ ∫ r+(t−s)ε̃

r
G(θεr, Vm/ε)dm

∣∣∣Fεr
]∣∣∣∣∣→ 0. (15)
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By Corollary 2,

sup
0≤r<t

∣∣∣∣∣ε̃
−1Eπ

[ ∫ r+(t−s)ε̃

r
G(θεr, Vm/ε)dm

∣∣∣Fεr
]∣∣∣∣∣

= sup
0≤r<t

∣∣∣∣∣ε̃
−1EVr/ε,x=θεr

[ ∫ r+(t−s)ε̃

r
G(x, V(m−r)/ε)dm

]∣∣∣∣∣

= sup
0≤r<t

∣∣∣∣∣ε̃
−1EVr/ε,x=θεr

[ ∫ r+(t−s)ε̃

r

〈
∇θϕ(x),∇θf(x, V(m−r)/ε)− g(x)

〉
dm
]∣∣∣∣∣

= sup
0≤r<t

∣∣∣∣∣ε̃
−1

∫ r+(t−s)ε̃

r
EVr/ε,x=θεr

[ 〈
∇θϕ(x),∇θf(x, V(m−r)/ε)− g(x)

〉 ]
dm

∣∣∣∣∣

≤ sup
0≤r<t

ε̃−1

∫ r+(t−s)ε̃

r

∣∣∣EVr/ε,x=θεr

[ 〈
∇θϕ(x),∇θf(x, V(m−r)/ε)− g(x)

〉 ]∣∣∣ dm

≤ sup
0≤r<t

ε̃−1 ‖〈∇θϕ(θεr),∇θf(θεr, ·)〉‖∞
∫ r+(t−s)ε̃

r
e−δ(m−r)/εdm

= sup
0≤r<t

ε̃−1 ‖〈∇θϕ(θεr),∇θf(θεr, ·)〉‖∞
∫ (t−s)ε̃

0
e−δk/εdk

≤Ct,ϕ,f
ε

δε̃
≤ Ct,ϕ,f

√
ε

2δ
→ 0.

This completes the proof of (13). Hence, any weak limit of (θεt )t≥0 is a martingale solution
to equation (9). Since equation (9) is a deterministic ordinary differential equation and
θε0 = θ0 is independent of ε, we have (θεt )t≥0 converges weakly to (ζt)t≥0 as ε→ 0.

In general, the constant Ct,ϕ,f cannot be controlled since we only assume∇θf is Lipschitz
in θ. In this case, θt is not bounded uniformly in time. We shall study the convergence rate
under Wasserstein distance in Corollary 4, which is also not uniform in time, yet goes to 0
as ε → 0. In section 3.2, we shall show that with an additional assumption, this constant
can be controlled and we obtain a longtime result as t → ∞ with fixed ε. Moreover, the
obtained upper bound of the Wasserstein distance between the invariant states goes to 0 as
ε→ 0. See Proposition 3 for more details.

Before stating Corollary 4, we need to introduce some notation. Let ν and ν ′ be two
probability measures on (RK ,B(RK)). We define the Wasserstein distance between those
measures by

Wd(ν, ν
′) = inf

Γ∈H(ν,ν′)

∫

RK×RK
d(y, y′)Γ(dy,dy′),

where d(y, y′) := 1 ∧ ‖y − y′‖ and H(ν, ν ′) is the set of coupling between ν and ν ′, i.e.

H(ν, ν ′) = {Γ ∈ Pr(RK × RK) : Γ(A× RK) = ν(A),Γ(RK ×B) = ν ′(B), ∀A,B ∈ B(RK)}.

To simplify the notation, for B ∈ B(RK), θ ∈ RK , and y ∈ S, we denote

Cεt (B|θ, y) := Py(θεt ∈ B|θε0 = θ),
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Cεt (B|θ, π) := Pπ(θεt ∈ B|θε0 = θ),

where π is the invariant measure of (Vt)t≥0.
Now we study the approximation property of SGPC in the Wasserstein distance. Indeed,

the following corollary follows immediately from Theorem 3.

Corollary 4 There exists a function α : (0, 1)→ [0, 1], such that

Wd(C
ε
t (·|θ0, π), δ(· − ζt)) ≤ (exp(t)α(ε)) ∧ 1

and limε→0 α(ε) = 0.

Proof By Theorem 3, we have (θεt )t≥0 ⇒ (ζt)t≥0. By Skorokhod’s representation theorem,
there exists a sequence (θ̃εt )t≥0 such that

(θ̃εt )t≥0
d
= (θεt )t≥0 under Pπ,

ρ
(

(θ̃εt − ζt)t≥0, 0
)
→ 0 almost surely in Pπ.

This implies

Eπ[F ((θ̃εt − ζt)t≥0)]→ F (0),

for any bounded continuous function F on C([0,∞) : RK). By taking

F ((θ̃εt − ζt)t≥0)) = sup
t≥0

exp(−t)
(

1 ∧ sup
0≤s≤t

∥∥∥θ̃εt − ζt
∥∥∥
)

and

α(ε) := Eπ
[

sup
t≥0

exp(−t)
(

1 ∧ sup
0≤s≤t

∥∥∥θ̃εt − ζt
∥∥∥
)]
→ 0,

we have, for all t ≥ 0,

Eπ
[
1 ∧

∥∥∥θ̃εt − ζt
∥∥∥
]
≤ exp(t)α(ε).

Since 1 ∧
∥∥∥θ̃εt − ζt

∥∥∥ ≤ 1 and θ̃εt
d
= θεt , denoting the distribution of θ̃εt as Fθ̃εt

,

Wd(C
ε
t (·|θ0, π), δ(· − ζt)) ≤Wd(Fθ̃εt

, Cεt (·|θ0, π)) + Eπ
[
1 ∧

∥∥∥θ̃εt − ζt
∥∥∥
]

≤(exp(t)α(ε)) ∧ 1.

Finally in this section, we look at a technical result concerning the asymptotic behavior
of the full gradient flow (ζt)t≥0. First, we will additionally assume that the subsampled
target function f(·, y) in the optimization problem is strongly convex, with a convexity
parameter that does not depend on y ∈ S. We state this assumption below.
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Assumption 3 (Strong Convexity) For any x1, x2 ∈ RK ,

〈x1 − x2,∇θf(x1, y)−∇θf(x2, y)〉 ≥ κ ‖x1 − x2‖2

where κ > 0 and κ is independent of y ∈ S.

Strong convexity implies, of course, that the full target function g :=
∫
S ∇θf(·, y)π(dy)

has a unique minimizer θ∗. It also implies that the associated full gradient flow (ζt)t≥0

converges at exponential speed to this unique minimizer. We give a short proof of this
statement below.

Lemma 5 Let (ζt)t≥0 be the process that solves (9) with initial data θ0. Under Assumption
3, we have

‖ζt − θ∗‖2 ≤ ‖θ0 − θ∗‖2 exp(−κt),

where θ∗ is a stationary solution of (9).

Proof Since θ∗ is a stationary solution,

g(θ∗) = 0 and d(ζt − θ∗) = −(g(ζt)− g(θ∗))dt.

Therefore,

d ‖ζt − θ∗‖2
dt

= 2

〈
ζt − θ∗,

d(ζt − θ∗)
dt

〉
= −2 〈ζt − θ∗, g(ζt)− g(θ∗)〉 ≤ −2κ ‖ζt − θ∗‖2 .

By Grönwall’s inequality, we have ‖ζt − θ∗‖2 ≤ ‖θ0 − θ∗‖2 exp(−κt).

3.2 Longtime behavior and ergodicity

We now study the longtime behavior of SGPC, i.e. the behavior and distribution of (θεt , Vt/ε)
for t � 0 large. Indeed, the main result of this section will be the geometric ergodicity of
this coupled process and a study of its stationary measure. Initially, we study stability of
the stochastic gradient process (θεt )t≥0.

Lemma 6 Under Assumption 3, we have

‖θεt ‖2 ≤ ‖θε0‖2 exp(−κt) +
8K2

f

κ2
,

where Kf := supy∈S ‖∇θf(0, y)‖.

Proof By Itô’s formula, we have

d ‖θεt ‖2
dt

= 2 〈θεt , dθεt /dt〉 = −2
〈
θεt ,∇θf(θεt , Vt/ε)

〉
. (16)
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Assumption 3 implies,

〈
θεt ,∇θf(θεt , Vt/ε)

〉
=
〈
θεt − 0,∇θf(θεt , Vt/ε)−∇θf(0, Vt/ε)

〉
+
〈
θεt ,∇θf(0, Vt/ε)

〉

≥κ ‖θεt ‖2 − ‖θεt ‖
∥∥∇θf(0, Vt/ε)

∥∥

≥κ
2
‖θεt ‖2 −

4

κ

∥∥∇θf(0, Vt/ε)
∥∥2

≥κ
2
‖θεt ‖2 −

4K2
f

κ
.

Hence, (16) implies

d ‖θεt ‖2
dt

≤ −κ ‖θεt ‖2 +
8K2

f

κ
. (17)

Multiplying exp(κt) on both sides of (17), we get

d(‖θεt ‖2 exp(κt))

dt
≤

8K2
f exp(κt)

κ
,

that is

‖θεt ‖2 exp(κt)− ‖θε0‖2 ≤
8K2

f (exp(κt)− 1)

κ2
≤

8K2
f exp(κt)

κ2

and therefore,

‖θεt ‖2 ≤ ‖θε0‖2 exp(−κt) +
8K2

f

κ2
.

Using this lemma, we are now able to prove the first main result of this section, showing
geometric ergodicity of (θεt , Vt/ε)t≥0. First, we introduce a Wasserstein distance, on the space

on which (θεt , Vt/ε)t≥0 lives. Let Π and Π′ be two probability measures on (RK ×S,B(RK ×
S)). We define the Wasserstein distance between those measures by

W̃d̃(Π,Π
′) = inf

Γ̃∈H(Π,Π′)

∫

(RK×S)×(RK×S)
d̃((u, v), (u′, v′))Γ̃(dudv,du′dv′),

where d̃((u, v), (u′, v′)) := 1v 6=v′ + (1 ∧ ‖u− u′‖)1v=v′ . Intuitively, when the indices v and
v′ are different, the distance should be large regardless of the distance between u and u′;
when v = v′, the distance coincides with d(·, ·). For a ∈ S and m ∈ RK , let Hε

t (·|m, a) be
the distribution of (θεt , Vt/ε) under Pa with θε0 = m. Moreover, recall that (Vt)t≥0 is a Feller
process that satisfies Assumption 1. More specifically, it satisfies Assumption 1 (iii) with a
constant δ:

sup
x∈S

P̃(T x ≥ t) ≤ C exp(−δt),

where T x := inf {t ≥ 0 | V x
t = V π

t }. With δ defined in this way, we have the following
theorem.
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Theorem 7 Under Assumption 3, for any 0 < ε ≤ 1 ∧ (δ/2κ), the (coupled) process
(θεt , Vt/ε)t≥0 admits an unique stationary measure Πε on (RK × S,B(RK × S)). Moreover,

W̃2
d̃
(Hε

t (·|m, a),Πε) ≤ Cf exp(−κt)
∫

RK
(1 + ‖x−m‖2)Πε(dx, S), (18)

W̃2
d̃
(Hε

t (·|m,π),Πε) ≤ Cf exp(−κt)
∫

RK
‖x−m‖2 Πε(dx, S), (19)

where the constant Cf only depends on f .

Proof To obtain the existence of the invariant measure, we apply the weak form of Harris’
Theorem in Cloez and Hairer (2015, Theorem 3.7) by verifying the Lyapunov condition,
the d̃-contracting condition, and the d̃-small condition.
(i) Lyapunov condition: Let V (x, y) = ‖x‖2. To verify that it satisfies (2.1) in Cloez and
Hairer (2015, Definition 2.1), we take x = θε0 and (Pt)t≥0 to be the semi-group associated
with (θεt )t≥0. Then Lemma 6 yields that V (x, y) is a Lyapunov function. The existence of
the Lyapunov function especially prevents the coupled processes from going to infinity.
(ii) d̃-contracting condition: d̃-contracting states that there exists t∗ > 0 such that for
any t > t∗, there exists some α < 1 such that

W̃d̃(δ(m,a)P
ε
t , δ(n,b)P

ε
t ) ≤ αd̃((m, a), (n, b))

for any (m, a), (n, b) ∈ RK × S such that d̃((m, a), (n, b)) < 1. Here, (P εt )t≥0 is the semi-
group operator associated with (8). Notice that d̃((m, a), (n, b)) < 1 implies a = b. Let

(θ
(m,a)
t )t≥0, (θ

(n,a)
t )t≥0 solve the following equations:

θ
(m,a)
t = m−

∫ t

0
∇θf(θ

(m,a)
t , Ṽ a

s/ε)ds,

θ
(n,a)
t = n−

∫ t

0
∇θf(θ

(n,a)
t , Ṽ a

s/ε)ds,

where Ṽ a
t = V a

t for t ≤ T a and Ṽ a
t = V π

t for t > T a. Then by Itô’s formula and Assumption
3, we obtain

d
∥∥∥θ(m,a)

t − θ(n,a)
t

∥∥∥
2
/dt =− 2

〈
θ

(m,a)
t − θ(n,a)

t ,∇θf(θ
(m,a)
t , Ṽ a

s/ε)−∇θf(θ
(n,a)
t , Ṽ a

s/ε)
〉

≤− κ
∥∥∥θ(m,a)

t − θ(n,a)
t

∥∥∥
2
.

By Grönwall’s inequality, we have

∥∥∥θ(m,a)
t − θ(n,a)

t

∥∥∥
2
≤ exp(−κt) ‖m− n‖2 . (20)

Noticing that d̃((m, a), (n, b)) < 1 implies ‖m− n‖2 < 1, by choosing t ≥ 1
κ , we obtain

∥∥∥θ(m,a)
t − θ(n,a)

t

∥∥∥
2
≤ exp(−1) ‖m− n‖2

= exp(−1)(‖m− n‖2 ∧ 1) = exp(−1)d̃2((m, a), (n, a)).
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Therefore, with t∗ = 1/κ,

W̃d̃(H
ε
t (·|m, a), Hε

t (·|n, b)) ≤ Ẽ
[ ∥∥∥θ(m,a)

t − θ(n,a)
t

∥∥∥
]
≤ exp(−1)d̃((m, a), (n, b)),

where Ẽ is the expectation under P̃ (see Assumption 1).
(iii) d̃-small condition: We shall verify that there exists t∗ > 0 such that for any t > t∗,
the sublevel set V := {(x, y) ∈ RK×S | V (x, y) ≤ 32K2

f/κ
2} is d̃-small for (P εt )t≥0, meaning

that there exists a constant ζ such that

W̃d̃(δ(m,a)P
ε
t , δ(n,b)P

ε
t ) ≤ 1− ζ,

for all (m, a), (n, b) ∈ V . Let (θ
(m,a)
t )t≥0, (θ

(n,b)
t )t≥0 solve the following equations:

θ
(m,a)
t = m−

∫ t

0
∇θf(θ

(m,a)
t , Ṽ a

s/ε)ds,

θ
(n,b)
t = n−

∫ t

0
∇θf(θ

(n,b)
t , Ṽ b

s/ε)ds,

where Ṽ a
t = V a

t for t ≤ T a and Ṽ a
t = V π

t for t > T a; Ṽ b
t = V b

t for t ≤ T b and Ṽ b
t = V π

t for
t > T b. By Itô’s formula, Assumption 3, and the ε-Young inequality,

d
∥∥∥θ(m,a)

t − θ(n,b)
t

∥∥∥
2
/dt

=− 2
〈
θ

(m,a)
t − θ(n,b)

t ,∇θf(θ
(m,a)
t , Ṽ a

t/ε)−∇θf(θ
(n,b)
t , Ṽ b

t/ε)
〉

=− 2
〈
θ

(m,a)
t − θ(n,b)

t ,∇θf(θ
(m,a)
t , Ṽ a

t/ε)−∇θf(θ
(n,b)
t , Ṽ a

t/ε)
〉

− 2
〈
θ

(m,a)
t − θ(n,b)

t ,∇θf(θ
(n,b)
t , Ṽ a

t/ε)−∇θf(θ
(n,b)
t , Ṽ b

t/ε)
〉

≤− 2κ
∥∥∥θ(m,a)

t − θ(n,b)
t

∥∥∥
2

+ 2
∣∣∣
〈
θ

(m,a)
t − θ(n,b)

t ,∇θf(θ
(n,b)
t , Ṽ a

t/ε)−∇θf(θ
(n,b)
t , Ṽ b

t/ε)
〉∣∣∣

≤− κ
∥∥∥θ(m,a)

t − θ(n,b)
t

∥∥∥
2

+
4

κ

∥∥∥∇θf(θ
(n,b)
t , Ṽ a

t/ε)−∇θf(θ
(n,b)
t , Ṽ b

t/ε)
∥∥∥

2
.

Multiplying exp(κt) on both sides, we obtain

d
(

exp(κt)
∥∥∥θ(m,a)

t − θ(n,b)
t

∥∥∥
2 )
/dt ≤ 4 exp(κt)

κ

∥∥∥∇θf(θ
(n,b)
t , Ṽ a

t/ε)−∇θf(θ
(n,b)
t , Ṽ b

t/ε)
∥∥∥

2
,

that is

exp(κt)
∥∥∥θ(m,a)

t − θ(n,b)
t

∥∥∥
2
≤ ‖m− n‖2

+
4

κ

∫ t

0
exp(κs)

∥∥∥∇θf(θ(n,b)
s , Ṽ a

t/ε)−∇θf(θ(n,b)
s , Ṽ b

t/ε)
∥∥∥

2
ds.

Notice that Ṽ a
t = Ṽ b

t if t > T a ∨ T b. Hence, we have

exp(κt)
∥∥∥θ(m,a)

t − θ(n,b)
t

∥∥∥
2

≤ ‖m− n‖2 +
4

κ

∫ t∧ε(Ta∨T b)

0
exp(κs)

∥∥∥∇θf(θ(n,b)
s , Ṽ a

t/ε)−∇θf(θ(n,b)
s , Ṽ b

t/ε)
∥∥∥

2
ds.
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By Lemma 6, we have, for (m, a), (n, b) ∈ V × S,

∥∥∥∇θf(θ
(m,a)
t , Ṽ a

t/ε)
∥∥∥ and

∥∥∥∇θf(θ
(n,b)
t , Ṽ b

t/ε)
∥∥∥

are bounded by some constant Cf . This implies

∥∥∥θ(m,a)
t − θ(n,b)

t

∥∥∥
2
≤ exp(−κt) ‖m− n‖2 + 4Cf exp(−κt) exp(κε(T a ∨ T b)). (21)

Recall 0 < ε ≤ 1 ∧ δ
2κ . By (iii), Assumption 1,

Ẽ[exp(κε(T a ∨ T b))] =κε

∫ ∞

0
exp(κεx)P̃(T a ∨ T b ≥ x)dx

≤Cκε
∫ ∞

0
exp(κεx) exp(−δx)dx

≤Cδ
2

∫ ∞

0
exp

(
−δx

2

)
dx = C.

Therefore,

Ẽ
[ ∥∥∥θ(m,a)

t − θ(n,b)
t

∥∥∥
2 ]
≤ exp(−κt) ‖m− n‖2 + Cf exp(−κt).

Moreover,

P̃(Ṽ a
t/ε 6= Ṽ b

t/ε) = P̃(T a ∨ T b ≥ t/ε) ≤ C exp(−δt/ε) ≤ C exp(−2κt).

Hence for any (m, a), (n, b) ∈ V ×S, by taking t ≥ 1
κ [log(8Cf )+log(512K2

f/κ
2)+ 1

2 log(8C)],
we have

W̃2
d̃
(Hε

t (·|m, a), Hε
t (·|n, b)) ≤ P̃(Ṽ a

t/ε 6= Ṽ b
t/ε) + Ẽ

[ ∥∥∥θ(m,a)
t − θ(n,b)

t

∥∥∥
2 ]
≤ 1

2
.

We have verified all three conditions from Cloez and Hairer (2015, Theorem 3.7) and hence
conclude the existence and uniqueness of the invariant measure of (θεt , Vt/ε)t≥0 denoted as
Πε.

Next, we are going to prove (18) and (19). Define Θε such that (Θε, Ṽ π
0 ) ∼ Πε in P̃. Let

θΠε
t and θ

(m,π)
t solve following equations

θΠε

t = Θε −
∫ t

0
∇θf(θΠε

t , Ṽ π
t/ε)ds,

θ
(m,π)
t = m−

∫ t

0
∇θf(θ

(m,π)
t , Ṽ π

t/ε)ds.

Recall that from (21) and (20), we have

∥∥∥θ(m,a)
t − θΠε

t

∥∥∥
2
≤ exp(−κt) ‖m−Θε‖2 + 4Cf exp(−κt) exp(κεT a),

∥∥∥θ(m,π)
t − θΠε

t

∥∥∥
2
≤ exp(−κt) ‖m−Θε‖2 .
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Therefore, by (iii), Assumption 1 and since 0 < ε ≤ 1 ∧ (δ/2κ), we have

W̃2
d̃
(Hε

t (·|m, a),Πε) ≤P̃(Ṽ a
t/ε 6= Ṽ π

t/ε) + Ẽ
[ ∥∥∥θ(m,a)

t − θΠε

t

∥∥∥
2 ]

≤P̃(T a ≥ t

ε
) + exp(−κt)Ẽ[‖m−Θε‖2] + 4Cf exp(−κt)Ẽ[exp(κεT a)]

≤Cf exp(−κt)
∫

RK
(1 + ‖x−m‖2)Πε(dx, S),

W̃2
d̃
(Hε

t (·|m,π),Πε) ≤Ẽ
[ ∥∥∥θ(m,π)

t − θΠε

t

∥∥∥
2 ]

≤ exp(−κt)Ẽ[‖m−Θε‖2]

≤Cf exp(−κt)
∫

RK
‖x−m‖2 Πε(dx, S).

In the following corollaries, we study the integrals on the right-hand side of the inequalities
in Theorem 7. Moreover, we show that the result above immediately implies not only geo-
metric ergodicity of the coupled process (θεt , Vt/ε)t≥0, but also of its marginal, the stochastic
gradient process (θεt )t≥0.

Corollary 8 Under the same assumptions as Theorem 7, there exists a constant Cf,m that
depends only on f and the initial value m = θε0, such that

W̃d̃(H
ε
t (·|m, a),Πε) ≤ Cf,m exp

(
−κt

2

)
, (22)

W̃d̃(H
ε
t (·|m,π),Πε) ≤ Cf,m exp

(
−κt

2

)
, (23)

Wd(C
ε
t (·|m, a),Πε(·, S)) ≤ Cf,m exp

(
−κt

2

)
, (24)

Wd(C
ε
t (·|m,π),Πε(·, S)) ≤ Cf,m exp

(
−κt

2

)
. (25)

Proof By Lemma 6,
∫

‖x‖2≥ 8K2

κ2
+‖m‖2+1

Πε(dx, S) = lim
t→∞

P̃(
∥∥∥θ(m,a)

t

∥∥∥ ≥
8K2

f

κ2
+ ‖m‖2 + 1) = 0.

Let Cf,m = Cf (2 ‖m‖+
4Kf
κ + 2). From (18), we have

W̃d̃(H
ε
t (·|m, a),Πε) ≤Cf exp

(−κt
2

)(∫

RK
(1 + ‖x−m‖2)Πε(dx, S)

)1/2

=Cf exp

(−κt
2

)(∫

‖x‖2≤
8K2
f

κ2
+‖m‖2+1

(1 + ‖x−m‖2)Πε(dx, S)
)1/2

≤Cf,m exp

(−κt
2

)
.
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(23) can be derived similarly from (19). Moreover, notice that

Wd(C
ε
t (·|m, a),Πε(·, S)) ≤Ẽ

[ ∥∥∥θ(m,a)
t − θΠε

t

∥∥∥
]
, (26)

Wd(C
ε
t (·|m,π),Πε(·, S)) ≤Ẽ

[ ∥∥∥θ(m,π)
t − θΠε

t

∥∥∥
]
. (27)

(24) and (25) can be derived similarly from (26) and (27).

Combining (24) and (25), we immediately have:

Corollary 9 Under the same assumptions as Theorem 7,

Wd(C
ε
t (·|m, a), Cεt (·|m,π)) ≤ Cf,m exp

(
−κt

2

)
.

So far, we have shown that the stochastic gradient process (θεt )t≥0 converges to a unique
stationary measure Πε(·, S). It is often not possible to determine this stationary measure.
However, we can comment on its asymptotic behavior as ε→ 0. Indeed, we will show that
Πε(·, S) concentrates around the minimizer θ∗ of the full target function.

Proposition 3 Under Assumption 3, the measure Πε(·, S) on (RK ,B(RK)) approximates
δ(· − θ∗). In other words, we have

Wd(Π
ε(·, S), δ(· − θ∗)) ≤ ρ(ε)

where ρ : (0, 1)→ [0, 1] and limε→0 ρ(ε) = 0.

Proof By the triangle inequality,

Wd(Π
ε(·, S), δ(· − θ∗))

≤Wd(Π
ε(·, S), Cεt (·|m,π)) +Wd(C

ε
t (·|m,π), δ(· − ζt)) +Wd(δ(· − ζt), δ(· − θ∗)).

Let θ0 = θε0 = θ∗. Then by Lemma 5, we have the last term

Wd(δ(· − ζt), δ(· − θ∗)) ≤ ‖θ∗ − θ∗‖ exp(−κt) = 0.

By (22) and Corollary 4, for any t ≥ 0,

Wd(Π
ε(·, S), Cεt (·|m,π)) +Wd(C

ε
t (·|m,π), δ(· − ζt)) ≤ Cf,θ∗ exp

(
−κt

2

)
+ (exp(t)α(ε)) ∧ 1.

By choosing t = − log(1 ∧ α(ε))/2, we get

Wd(Π
ε(·, S), δ(· − θ∗)) ≤Cf,θ∗ exp

(
−κt

2

)
+ (exp(t)α(ε)) ∧ 1

≤Cf,θ∗(α(ε))
κ
4 + (α(ε))1/2.

Taking ρ(ε) :=
(
Cf,θ∗(α(ε))

κ
4 + (α(ε))1/2

)
∧ 1 completes the proof.
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4. Stochastic gradient processes with decreasing learning rate

Constant learning rates are popular in some practical situations, but the associated stochas-
tic gradient process usually does not converge to the minimizer of Φ. This is also true for
the discrete-time stochastic gradient descent algorithm. However, SGD can converge to
the minimizer if the learning rate is decreased over time. In the following, we discuss a
decreasing learning version of the stochastic gradient process and show that this dynamical
system indeed converges to the minimizer of Φ.

As discussed in Section 1.2, we obtain the stochastic gradient process with decreasing
learning rate by non-linearly rescaling the time in the constant-learning-rate index process
(Vt)t≥0. Indeed, we choose a function β : [0,∞) → [0,∞) and then define the decreasing
learning rate index process by (Vβ(t))t≥0. We have discussed an intuitive way to construct
a rescaling function β also in Section 1.2.

In the following, we define β through an integral β(t) =
∫ t

0 µ(s)ds, t ≥ 0. We commence
this section with necessary growth conditions on µ which allow us to then give the formal
definition of the stochastic gradient process with decreasing learning rate. Then, we study
the longtime behavior of this process.

Assumption 4 Let µ : [0,∞) → (0,∞) be a non-decreasing continuously differentiable
function with limt→∞ µ(t) =∞ and

lim
t→∞

µ′(t)t
µ(t)

= 0.

Assumption 4 implies that µ goes to infinity, but at a very slow pace. Indeed it says
that limt→∞ µ(t)/tγ = 0, γ > 0, that is µ grows slower than any polynomial.

Definition 2 The stochastic gradient process with decreasing learning rate (SGPD) is a
solution of the following stochastic differential equation,

{
dξt = −∇ξf(ξt, Vβ(t))dt,

ξ0 = θ0,
(28)

where f satisfies Assumption 2, (Vt)t≥0 is a Feller process that satisfies Assumption 1, and
β(t) =

∫ t
0 µ(s)ds with µ satisfying Assumption 4.

To see that (ξt)t≥0 is well-defined, consider the following: t 7→ β(t) is an increasing
continuous function. Thus, (Vβ(t))t≥0 is càdlàg and Feller with respect to (Fβ(t))t≥0. We
then obtain well-definedness of (ξt)t≥0 by replacing (Vt/ε)t≥0 by (Vβ(t))t≥0 in the proof of
Proposition 2.

We now move on to studying the longtime behavior of the SGPD (ξt)t≥0. In a first
technical result, we establish a connection between SGPD (ξt)t≥0 and a time-rescaled version
of SGPC (θεt )t≥0. To this end, note that β̇(t) = µ(t) > 0, β(t) is strictly increasing. Hence,
the inverse of β(t) exists and

β−1(t) =

∫ t

0

1

µ(β−1(s))
ds.

This gives us the following inequality.
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Proposition 4 For any 0 < ε < 1,
∥∥∥ξt − θεεβ(t)

∥∥∥
2
≤ Cf,θ0,µ

[
exp(−2εκ(β(t)− β( t2)))

ε
+

1

ε

( ∣∣∣∣
1

µ(t)
− ε
∣∣∣∣+

∣∣∣∣
1

µ( t2)
− ε
∣∣∣∣
)]

almost surely, where the constant Cf,θ0,µ depends only on f , the initial data θ0, and µ.

Proof From (28) and (8), we have

ξt =θ0 −
∫ β(t)

0
∇ξf(ξβ−1(s), Vs)dβ

−1(s),

θεt =θ0 − ε
∫ t

ε

0
∇θf(θεεs, Vs)ds.

Let bt := dβ−1(t)/dt = 1/µ(β−1(t)) > 0, we have

ξβ−1(t) =θ0 −
∫ t

0
∇ξf(ξβ−1(s), Vs)bsds

θεεt =θ0 − ε
∫ t

0
∇θf(θεεs, Vs)ds

Therefore, by Itô’s formula and Assumption 3,

d
∥∥θεεt − ξβ−1(t)

∥∥2
/dt =− 2

〈
θεεt − ξβ−1(t), ε∇θf(θεεt, Vt)− ε∇ξf(ξβ−1(t), Vt)

〉

− 2(ε− bt)
〈
θεεt − ξβ−1(t),∇ξf(ξβ−1(t), Vt)

〉

≤− 2εκ
∥∥θεεt − ξβ−1(t)

∥∥2
+ Cf,θ0 |bt − ε| ,

where the last step follows from the boundedness of θεεt, ξβ−1(t), and ∇ξf(ξβ−1(t), Vt). ξβ−1(t)

is bounded can be showed similarly to Lemma 6. Multiplying exp(2εκt) on both sides, we
obtain

d
(

exp(2εκt)
∥∥θεεt − ξβ−1(t)

∥∥2
)
/dt ≤Cf,θ0 |bt − ε| exp(2εκt),

which implies

∥∥θεεt − ξβ−1(t)

∥∥2 ≤Cf,θ0 exp(−2εκt)

∫ t

0
|bs − ε| exp(2εκs)ds.

Notice that bs is bounded and non-increasing, hence we have

∥∥∥ξt − θεεβ(t)

∥∥∥
2
≤Cf,θ0 exp(−2εκβ(t))

∫ β(t)

0
|bs − ε| exp(2εκs)ds

=Cf,θ0 exp(−2εκβ(t))
(∫ β( t

2
)

0
+

∫ β(t)

β( t
2

)

)
|bs − ε| exp(2εκs)ds

≤Cf,θ0,µ
exp(−2εκ(β(t)− β( t2)))

ε

+ Cf,θ0 exp(−2εκβ(t))

∫ β(t)

β( t
2

)
|bs − ε| exp(2εκs)ds

≤Cf,θ0,µ
[

exp(−2εκ(β(t)− β( t2)))

ε
+

1

ε

( ∣∣∣∣
1

µ(t)
− ε
∣∣∣∣+

∣∣∣∣
1

µ( t2)
− ε
∣∣∣∣
)]
.
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Now, we get to the main result of this section, where we show the convergence of (ξt)t≥0 to
the minimizer θ∗ of Φ. In the following, we denote

Dt(B|θ0, a) := Pa(ξt ∈ B|ξ0 = θ0),

Dt(B|θ0, π) := Pπ(ξt ∈ B|ξ0 = θ0) (B ∈ B(RK), θ0 ∈ RK),

where a ∈ S and π is the invariant measure of (Vt)t≥0, respectively.

Theorem 10 Under Assumption 3, given θ0 ∈ RK and a ∈ S, there exists T > 0 such that
for any t > T ,

Wd(Dt(·|θ0, π), δ(· − θ∗)) ≤ Cf,θ0,µA(t), (29)

Wd(Dt(·|θ0, a), δ(· − θ∗)) ≤ Cf,θ0,µA(t), (30)

where

A(t) := exp

(−κt
8

)
+

[
µ(t)− µ( t2)

µ(t)

]1/2

+ ρ

(
1

µ( t2)

)

and limt→∞A(t) = 0.

Proof To prove (29), by the triangle inequality,

Wd(Dt(·|θ0, π), δ(· − θ∗))
≤Wd(Dt(·|θ0, π), Cεεβ(t)(·|θ0, π)) +Wd(C

ε
εβ(t)(·|θ0, π),Πε(·, S)) +Wd(Π

ε(·, S), δ(· − θ∗)).

For the last two terms, by (25) and Proposition 3,

Wd(C
ε
εβ(t)(·|θ0, π),Πε(·, S)) +Wd(Π

ε(·, S), δ(· − θ∗)) ≤ Cf,m exp(−κεβ(t)/2) + ρ(ε).

For the first term, by Proposition 4,

Wd(Dt(·|θ0, π), Cεεβ(t)(·|θ0, π))

≤ Cf,θ0,µ
[

exp(−2εκ(β(t)− β( t2)))

ε
+

1

ε

( ∣∣∣∣
1

µ(t)
− ε
∣∣∣∣+

∣∣∣∣
1

µ( t2)
− ε
∣∣∣∣
)]1/2

.

Since limt→∞ µ(t) = ∞, there exists T > 0 such that 1/µ(T2 ) < δ
2κ . Let ε = 1/µ( t2),

t > T , we have

exp

(−κεβ(t)

2

)
= exp

(
−κ
∫ t

0 µ(s)ds

2µ( t2)

)
≤ exp

(−κt
8

)

and

exp
(
−2εκ(β(t)− β( t2))

)

ε
= µ

(
t

2

)
exp



−κ
∫ t
t
2
µ(s)ds

µ( t2)




≤ µ
(
t

2

)
exp

(−κt
2

)
≤ C exp

(−κt
8

)
.
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Therefore,

Wd(Dt(·|θ0, π), δ(· − θ∗)) ≤ Cf,θ0,µ
[

exp

(−κt
8

)
+

(
µ(t)− µ( t2)

µ(t)

)1/2

+ ρ

(
1

µ
(
t
2

)
) ]

From Assumption 4, by the mean value theorem,

µ(t)− µ( t2)

µ(t)
=
tµ′(τt)
2µ(t)

=
τtµ
′(τt)

µ(τt)

t

2τt

µ(τt)

µ(t)
≤ τtµ

′(τt)
µ(τt)

→ 0

where τt ∈ [ t2 , t]. Thus, (29) is obtained by taking

A(t) := exp

(−κt
8

)
+

[
µ(t)− µ( t2)

µ(t)

]1/2

+ ρ

(
1

µ( t2)

)
.

To prove (30), we have

Wd(Dt(·|θ0, a), δ(· − θ∗)) ≤ Wd(Dt(·|θ0, a), Cεεβ(t)(·|θ0, a))

+Wd(C
ε
εβ(t)(·|θ0, a), Cεεβ(t)(·|θ0, π))

+Wd(C
ε
εβ(t)(·|θ0, π),Πε(·, S))

+Wd(Π
ε(·, S), δ(· − θ∗)),

by the triangle inequality. By Corollary 9, we have

Wd(C
ε
εβ(t)(·|θ0, a), Cεεβ(t)(·|θ0, π)) ≤ Cf,m exp

(
−κεβ(t)

2

)
.

Notice that Cf,m exp(−κt
4 ) ≤ Cf,mA(t) when ε = 1/µ( t2). Similar to the proof of (29), we

have

Wd(Dt(·|θ0, a), Cεεβ(t)(·|θ0, a)) +Wd(C
ε
εβ(t)(·|θ0, π),Πε(·, S))+Wd(Π

ε(·, S), δ(· − θ∗))
≤ Cf,θ0,µA(t),

which completes the proof.

Thus, we have shown that the distribution of (ξt)t≥0 converges in Wasserstein distance
to the Dirac measure concentrated in the minimizer θ∗ of Φ. This result is independent of
whether we initialize the index process (Vβ(t))t≥0 with its stationary measure or with any
deterministic value.

5. From continuous dynamics to practical optimization.

So far, we have discussed the stochastic gradient process as a continuous-time coupling
of an ODE and a stochastic process. In order to apply the stochastic gradient process
in practice, we need to discretize ODE and stochastic process with appropriate time-
stepping schemes. That means, for a given increasing sequence (t(k))∞k=0, with t(0) := 0
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and limk→∞ t(k) = ∞, we seek discrete-time stochastic processes (V̂k, θ̂k)
∞
k=0, such that

(V̂k, θ̂k)
∞
k=0 ≈ (Vt(k), θ

ε
t(k))

∞
k=0 and analogous discretizations for (Vβ(t), ξt)t≥0.

In the following, we propose and discuss time stepping strategies and the algorithms
arising from them. We discuss the index process and gradient flow separately, which we
consider sufficient as the coupling is only one-sided.

5.1 Discretization of the index process

We have defined the stochastic gradient process for a huge range of potential index processes
(Vt)t≥0. The discretization of such processes has been the topic of several works, see, e.g.,
Gillespie (1977); Lord et al. (2014). In the following, we focus on one case and refer to those
previous works for other settings and details.

Indeed, we study the setting S := [−1, 1] and π := Unif[−1, 1] and discuss the discretiza-
tion of (Vt)t≥0 as a Markov pure jump process and as a reflected Brownian motion.

Markov pure jump process.

A suitable Markov pure jump process is a piecewise constant càdlàg process (Vt)t≥0 with
Markov transition kernel

Px(Vt ∈ ·) = exp(−λt)δ(· − x) + (1− exp(−λt))Unif[−1, 1] (t ≥ 0),

where λ > 0 is a rate parameter. We can now discretize the process (Vt)t≥0 just through
sampling from this Markov kernel for our discrete time points. We describe this in Algo-
rithm 1.

Algorithm 1 Discretized Markov pure jump process

1: initialize V̂0, λ > 0, and a sequence of points (t(k))∞k=0

2: for k = 1, 2, . . . do
3: sample U ∼ Unif[0, 1]
4: if U ≤ exp(−λ(t(k)− t(k − 1))) then
5: V̂k ← V̂k−1 {process stays at its current position}
6: else
7: sample V̂k ∼ Unif[−1, 1] {process jumps to a new position}
8: end if
9: end for

10: return (V̂k)
∞
k=0

Reflected Brownian motion.

We have defined the reflected Brownian Motion on a non-empty compact interval through
the Skorohod problem in Subsection 2.1.

Let σ > 0 and (Wt)t≥0 be a standard Brownian motion. Probably the easiest way
to sample a reflected Brownian motion is by discretizing the rescaled Brownian motion
(σ · Wt)t≥0 using the Euler–Maruyama scheme and projecting back to S, whenever the
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sequence leaves S. This scheme has been studied by Pettersson (1995). We describe the
full scheme in Algorithm 2.

Pettersson (1995) shows that this scheme converges at a rather slow rate. As we usually
assume that the domain on which we move is rather low-dimensional and the sampling is
rather cheap, we can afford small discretization stepsizes t(k)− t(k − 1), for k ∈ N. Thus,
the slow rate of convergence is manageable. Other schemes for the discretization of reflected
Brownian motions have been discussed by, e.g., Blanchet and Murthy (2018); Liu (1995).

Algorithm 2 Discretized Reflected Brownian motion on S

1: initialize V̂0, σ > 0, a sequence of points (t(k))∞k=0, and the projection operator projS
mapping onto S

2: for k = 1, 2, . . . do
3: V ′ ← Vk−1 + σ

√
t(k)− t(k − 1)ψ, ψ ∼ N(0, 12) {Euler-Maruyama update}

4: if V ′ 6∈ S then
5: V̂k ← projSV

′ {project back}
6: else
7: V̂k ← V ′ {accept Euler–Maruyama update}
8: end if
9: end for

10: return (V̂k)
∞
k=0

5.2 Discretization of the gradient flow

We now briefly discuss the discretization of the gradient flow in the stochastic gradient
process. Based on these ideas, we will conduct numerical experiments in Section 6.

Stochastic gradient descent

In stochastic gradient descent, the gradient flow is discretized with a forward Euler method.
This method leads to an accurate discretization of the respective gradient flow if the step-
size/learning rates are sufficiently small. In the presence of rather large stepsizes and stiff
vector fields, however, the forward Euler method may be inaccurate and unstable, see, e.g.,
Quarteroni et al. (2007).

Stability

Several ideas have been proposed to mitigate this problem. The stochastic proximal point
method, for instance, uses the backward Euler method to discretize the gradient flow; see
Bianchi (2015). Unfortunately, such implicit ODE integrators require us to invert a possibly
highly non-linear and complex vector field. In convex stochastic optimization this inversion
can be replaced by evaluating a proximal operator. For strongly convex optimization, on
the other hand, Eftekhari et al. (2021) proposes stable explicit methods.

32



Stochastic Gradient: Continuous Time and Data

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.0

0.5

0.0

0.5

1.0

Figure 3: True function Θ (red) and noisy observation g (grey) in the polynomial regression
example.

Efficient optimizers

Plenty of highly efficient methods for stochastic optimization methods are nowadays avail-
able, especially in machine learning. Those have often been proposed without necessarily
thinking of the stable and accurate discretization of a gradient flow: such are adaptive
methods (Kingma and Ba, 2015), variance reduced methods (e.g., Defazio et al., 2014), or
momentum methods (e.g., Kovachki and Stuart, 2021 for an overview), which have been
shown in multiple works to be highly efficient; partially also in non-convex optimization.
We could understand those methods also as certain discretizations of the gradient flow.
Thus, we may also consider the combination of a feasible index process (Vt)t≥0 with the
discrete dynamical system in, e.g., the Adam method (Kingma and Ba, 2015).

6. Applications

We now study two fields of application of the stochastic gradient process for continous data.
In the first example, we consider regularized polynomial regression with noisy functional
data. In this case, we can easily show that the necessary assumptions for our analysis hold.
Thus, we use it to illustrate our analytical results and especially to learn about the implicit
regularization that is put in place due to different index proccesses.

In the second example, we study so-called physics-informed neural networks. In these
continuous-data machine learning problems, a deep neural network is used to approximate
the solution of a partial differential equation. The associated optimization problem is usually
non-convex. Our analysis does not hold in this case: We study it to get more insights in
the behavior of the stochastic gradient process in state-of-the-art deep learning problems.

6.1 Polynomial regression with functional data

We begin with a simple polynomial regression problem with noisy functional data. We
observe the function g : [−1, 1]→ R which is given through

g(y) := Θ(y) + Ξ(y) (y ∈ [−1, 1]),
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Figure 4: Estimation results of the polynomial regression problem using stochastic gradient
descent with constant learning rate ⌘ = 0.1 (top row) and a version of stochastic
gradient descent that uses the implicit midpoint rule (bottom row). The figures
depict the mean over 100 runs (black solid line), mean ± standard deviation
(black dotted line). Left column: trajectory of the rel err over time; centre col-
umn: comparison of ⇥ (solid red line) and estimated polynomial; right column:
estimation error in terms of abs err.

where ⇥ : [�1, 1] ! R is a smooth function and ⌅ is a Gaussian process with highly
oscillating, continuous realizations. We aim at identifying the unknown function ⇥ subject
to the observational noise ⌅. Here, we represent the function ⇥ on a basis consisting of
a finite number of Legendre polynomials on [�1, 1]. We denote this basis of Legendre
polynomials by (`k)

K
k=1. To estimate the prefactors of the polynomials, we minimize the

potential

�(✓) :=
1

2

Z

[�1,1]

 
g(y)�

KX

k=1

✓k`k(y)

!2

dy +
↵

2
k✓k22 (✓ 2 X), (31)

where ↵ > 0 is a regularization parameter. This can be understood as a maximum-a-
posteriori estimation of the unknown ✓ with Gaussian prior under the (misspecified) as-
sumption that the data is perturbed with Gaussian white noise. We employ the following
associated subsampled potentials:

f(✓, y) :=
1

2

 
g(y)�

KX

k=1

✓k`k(y)

!2

+
↵

2
k✓k22 (✓ 2 X, y 2 [�1, 1]). (32)

Those subsampled potentials satisfy the strong convexity assumption, i.e., Assumption 3.
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Figure 4: Estimation results of the polynomial regression problem using stochastic gradient
descent with constant learning rate η = 0.1 (top row) and a version of stochastic
gradient descent that uses the implicit midpoint rule (bottom row). The figures
depict the mean over 100 runs (black solid line), mean ± standard deviation
(black dotted line). Left column: trajectory of the rel err over time; centre col-
umn: comparison of Θ (solid red line) and estimated polynomial; right column:
estimation error in terms of abs err.

where Θ : [−1, 1] → R is a smooth function and Ξ is a Gaussian process with highly
oscillating, continuous realizations. We aim at identifying the unknown function Θ subject
to the observational noise Ξ. Here, we represent the function Θ on a basis consisting of
a finite number of Legendre polynomials on [−1, 1]. We denote this basis of Legendre
polynomials by (`k)

K
k=1. To estimate the prefactors of the polynomials, we minimize the

potential

Φ(θ) :=
1

2

∫

[−1,1]

(
g(y)−

K∑

k=1

θk`k(y)

)2

dy +
α

2
‖θ‖22 (θ ∈ X), (31)

where α > 0 is a regularization parameter. This can be understood as a maximum-a-
posteriori estimation of the unknown θ with Gaussian prior under the (misspecified) as-
sumption that the data is perturbed with Gaussian white noise. We employ the following
associated subsampled potentials:

f(θ, y) :=
1

2

(
g(y)−

K∑

k=1

θk`k(y)

)2

+
α

2
‖θ‖22 (θ ∈ X, y ∈ [−1, 1]). (32)

Those subsampled potentials satisfy the strong convexity assumption, i.e., Assumption 3.
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Setup

In particular, we have produced artificial data g, by setting Θ := sin(π·) and choosing

Ξ(x) =
200∑

j=1

10

1000 + (πj)3/2
sin(2πj(x− 0.5))Ξj (x ∈ [−1, 1])

and i.i.d. random variables Ξ1, . . . ,Ξ200 ∼ N(0, 12). Note that Ξ is a Gaussian random field
given through the truncated Karhunen-Loève expansion of a covariance operator that is
related to the Matérn family, see, e.g., Lindgren et al. (2011).

We show Θ and g in Figure 3. For our estimation, we set α := 10−4 and use the
K = 9 Legendre polynomials with degrees 0, . . . , 8. We employ the stochastic gradient
process with constant learning rate, using either a reflected diffusion process or a pure
Markov jump process for the index process (Vt)t≥0. We discretize the gradient flow using
the implicit midpoint rule: an ODE z′ = q(z), z(0) = z0 is then discretized with stepsize
h > 0 by successively solving the implicit formula

zk = zk−1 +
h

2
q(zk) +

h

2
q(zk−1) (k ∈ N).

In our experiments, we choose h = 0.1. We use Algorithms 1 and 2 to discretize the index
processes with constant stepsize t(·)− t(· − 1) = 10−2. We perform J := 100 repeated runs
for each of the considered settings for N := 5 · 104 time steps and thus, obtain a family of
trajectories (θ(j,n))n=1,...,N,j=1,...,J . In each case, we choose the initial values V (0) := 0 and
the θ(j,0) := (0.5, . . . , 0.5).

We study the distance of the estimated polynomial to the true function Θ by the relative
error:

rel errn,j :=

∑L
l=1

(
Θ(xl)−

∑K
k=1 θ

(j,n)
k `k(xl)

)2

∑L
l′=1 Θ(xl′)2

,

for trajectory j ∈ {1, . . . , J} and time step n ∈ {1, . . . , N}. Here (xl)
L
l=1 are L := 103

equispaced points in [−1, 1]. Moreover, we compare the estimated polynomial to the true
function Θ by

abs errj,x :=

∣∣∣∣∣Θ(x)−
K∑

k=1

θ
(j,N)
k `k(x)

∣∣∣∣∣

for trajectory j ∈ {1, . . . , J} at position x ∈ [−1, 1]. In each case, we study mean and
standard deviation (StD) computed over the 100 runs.

Results and discussion

For the polynomial regression problem we now study:

• stochastic gradient descent, as given in (2), with constant learning rate η(·) = h = 0.1
(Figure 4 top row),

• stochastic gradient descent algorithm, for which the forward Euler update is replaced
by an implicit midpoint rule update, with constant learning rate η(·) = h = 0.1
(Figure 4 bottom row),
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Figure 5: Estimation results of the polynomial regression problem using the stochastic gra-
dient process with reflected Brownian motion process with � = 5 (top row),
� = 0.5 (centre row), and � = 0.05 (bottom row). The figures depict the mean
over 100 runs (black solid line), mean ± standard deviation (black dotted line).
Left column: trajectory of the rel err over time; centre column: comparison of
⇥ (solid red line) and estimated polynomial; right column: estimation error in
terms of abs err.

• the stochastic gradient process with reflected Brownian motion as an index process
with standard deviation � 2 {5, 0.5, 0.05} (Figure 5),

• the stochastic gradient process with Markov pure jump process as an index process
with rate parameter � 2 {10, 1, 0.1, 0.01} (Figure 6), and

• the quality of discretisation of the index processes (Vt)t�0 and their convergence (Fig-
ure 7).

In addition to those plots, we give means and standard deviations of the relative errors at
the terminal state of the iterations in Table 1. To compare the convergence behavior of the
di↵erent methods, we plot the rel err within the first 2000 discrete time steps in Figure 8.

We learn several things from these results. Unsurprisingly, the index processes with a
strong autocorrelation (� = 0.01, � = 0.05) lead to larger errors in the reconstruction: the
processes move too slowly to capture the index spaces appropriately, see also Figure 7. In
the other cases, we can assume that the processes have reached their stationary regime.
Thus, in the figures and table, we should learn about the implicit regularization that is
implicated by the di↵erent subsampling schemes, see Ali et al. (2020); Smith et al. (2021).
We especially see that the mean errors are reduced as � respectively � increases, which
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Figure 5: Estimation results of the polynomial regression problem using the stochastic gra-
dient process with reflected Brownian motion process with σ = 5 (top row),
σ = 0.5 (centre row), and σ = 0.05 (bottom row). The figures depict the mean
over 100 runs (black solid line), mean ± standard deviation (black dotted line).
Left column: trajectory of the rel err over time; centre column: comparison of
Θ (solid red line) and estimated polynomial; right column: estimation error in
terms of abs err.

• the stochastic gradient process with reflected Brownian motion as an index process
with standard deviation σ ∈ {5, 0.5, 0.05} (Figure 5),

• the stochastic gradient process with Markov pure jump process as an index process
with rate parameter λ ∈ {10, 1, 0.1, 0.01} (Figure 6), and

• the quality of discretisation of the index processes (Vt)t≥0 and their convergence (Fig-
ure 7).

In addition to those plots, we give means and standard deviations of the relative errors at
the terminal state of the iterations in Table 1. To compare the convergence behavior of the
different methods, we plot the rel err within the first 2000 discrete time steps in Figure 8.

We learn several things from these results. Unsurprisingly, the index processes with a
strong autocorrelation (λ = 0.01, σ = 0.05) lead to larger errors in the reconstruction: the
processes move too slowly to capture the index spaces appropriately, see also Figure 7. In
the other cases, we can assume that the processes have reached their stationary regime.
Thus, in the figures and table, we should learn about the implicit regularization that is
implicated by the different subsampling schemes, see Ali et al. (2020); Smith et al. (2021).
We especially see that the mean errors are reduced as σ respectively λ increases, which
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Figure 6: Estimation results of the polynomial regression problem using the stochastic gra-
dient process with pure jump index process with � = 10 (first row), � = 1 (second
row), � = 0.1 (third row), and � = 0.01 (fourth row). The figures depict the mean
over 100 runs (black solid line), mean ± standard deviation (black dotted line).
Left column: trajectory of the rel err over time; centre column: comparison of
⇥ (solid red line) and estimated polynomial; right column: estimation error in
terms of abs err.

illustrates the approximation of the full gradient flow as shown in Theorem 3. Although,
we should note that we compute the error to the truth ⇥, which is likely not the true
minimizer of the full optimization problem 31.

It appears that the stochastic gradient processes with reflected di↵usion index process
� 2 {0.5, 5} returns the best results. Looking at the error plots in the right column of Fig-
ure 5, we see that SGPC especially outperforms the other algorithms close to the boundary.
For � = 5 this could be seen as a numerical artefact due to the time step t� t(· � 1) being
too large. This though is likely not the case for � = 0.5, where we see a similar e↵ect, albeit
a bit weaker. Indeed, considering Figure 7, we see that the discretised processes oversample
the boundary considerably.

In the convergence plot, Figure 8, we see for di↵erent methods di↵erent speeds of con-
vergence to their respective stationary regime. Those speeds again depend on the autocor-
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Figure 6: Estimation results of the polynomial regression problem using the stochastic gra-
dient process with pure jump index process with λ = 10 (first row), λ = 1 (second
row), λ = 0.1 (third row), and λ = 0.01 (fourth row). The figures depict the mean
over 100 runs (black solid line), mean ± standard deviation (black dotted line).
Left column: trajectory of the rel err over time; centre column: comparison of
Θ (solid red line) and estimated polynomial; right column: estimation error in
terms of abs err.

illustrates the approximation of the full gradient flow as shown in Theorem 3. Although,
we should note that we compute the error to the truth Θ, which is likely not the true
minimizer of the full optimization problem 31.

It appears that the stochastic gradient processes with reflected diffusion index process
σ ∈ {0.5, 5} returns the best results. Looking at the error plots in the right column of Fig-
ure 5, we see that SGPC especially outperforms the other algorithms close to the boundary.
For σ = 5 this could be seen as a numerical artefact due to the time step t− t(· − 1) being
too large. This though is likely not the case for σ = 0.5, where we see a similar effect, albeit
a bit weaker. Indeed, considering Figure 7, we see that the discretised processes oversample
the boundary considerably.

In the convergence plot, Figure 8, we see for different methods different speeds of con-
vergence to their respective stationary regime. Those speeds again depend on the autocor-
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Method Parameters Mean of rel errN,(·) ± StD

SGD η(·) = 0.1 1.849 · 10−2 ±5.114 · 10−3

SGD implicit η(·) = 0.1 1.772 · 10−2 ±4.483 · 10−3

SGPC with
reflected diffusion
index process

σ = 5 1.502 · 10−2 ±3.339 · 10−3

σ = 0.5 1.627 · 10−2 ±3.729 · 10−3

σ = 0.05 5.933 · 10−2 ±1.153 · 10−1

SGPC with
Markov pure jump
index process

λ = 10 2.127 · 10−2 ±5.494 · 10−3

λ = 1 3.542 · 10−2 ±1.102 · 10−2

λ = 0.1 4.193 · 10−2 ±1.351 · 10−2

λ = 0.01 2.959 · 10−1 ±2.183 · 10−1

Table 1: Accuracy of the estimation in the polynomial regression model. Mean and stan-
dard deviation of the relative error of the methods at the final point of their trajec-
tory. In particular, sample mean and sample standard deviation of j 7→ rel errN,j ,
with N = 5 · 104, computed over 100 independent runs.

Figure 7: Histograms of single simulations of the index process (Vt)t≥0, given by the pure
jump process (top row) with λ ∈ {0.01, 0.1, 1, 10} and the reflected diffusion
process (bottom row) with σ ∈ {0.05, 0.5, 5}, increasing from left to right, respec-
tively. In each case, we simulated 5 · 104 time steps.
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Figure 8: Comparison of the mean rel err of the stochastic methods for time t ≤ 200.

relation of the processes. Interestingly, the SGPC with reflected diffusion index process and
σ = 5 appears to be the best of the algorithms.

6.2 Solving partial differential equations using neural networks (NNs)

Partial differential equations (PDEs) are used in science and engineering to model systems
and processes, such as: turbulent flow, biological growth, or elasticity. Due to the implicit
nature of a PDE and its complexity, the model they represent usually needs to be approxi-
mated (‘solved’) numerically. Finite differences, elements, and volumes have been the state
of the art for solving PDEs for the last decades. Recently, deep learning approaches have
gained popularity for the approximation of PDE solutions. Here, deep learning is particu-
larly successful in high-dimensional settings, where classical methods suffer from the curse
of dimensionality. See for example Raissi et al. (2019); Lu et al. (2021) for physics-informed
neural networks (PINNs). Integrated PyTorch-based packages are available for example see
Chen et al. (2020); Pedro et al. (2019). More recently, see Li et al. (2021) for state-of-the-art
performance results based on the Fourier neural operator.

Physics-informed neural networks are a very natural field of application of deep learning
with continuous data. Below we introduce PINNs, the associated continuous-data opti-
mization problem, and the state-of-the-art in the training of PINNs. Then we consider a
particular PDE, showcase the applicability of SGP, and compare its performance with the
standard SGD-type algorithm.

The basic idea of PINNs consists in representing the PDE solution by a deep neural
network where the parameters of the network are chosen such that the PDE is optimally
satisfied. Thus, the problem is reduced to an optimization problem with the loss function
formulated from differential equations, boundary conditions, and initial conditions. More
precisely, for PDE problems of Dirichlet type, we aim to solve a system of equations of type




L(u(t, x)) = s(t, x) (t ∈ [0,∞), x ∈ D)

u(0, x) = u0(x) (x ∈ D)
u(t, x) = b(t, x) (t ∈ [0,∞), x ∈ D)

(33)

where D ⊂ Rd is an open, connected, and bounded set and L is a differential operator
defined on a function space V (e.g. H1(D)). The unknown is u : D̄ → Rn. Functions
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s(t, x), b(t, x), and u0(x) are given. In numerical practice, we need to replace the infinite-
dimensional space V by a – in some sense – discrete representation. Traditionally, one
employs a finite-dimensional subspace of V , say span{ψ1, . . . , ψK}, where ψ1, . . . , ψK are
basis functions in a finite element method. To take advantage of the recent development of
machine learning, one could solve the problem on a set of deep neural networks contained
in V , say

{
ψ(·; θ) : ψ(x; θ) = (W (K)σ(·) + b(K)) ◦ · · · ◦ (W (1)σ(x) + b(1)), x ∈ [0,∞)×D,

θ =
(

(W (K), b(K)), . . . , (W (1), b(1))
)
∈

K∏

k=1

(
Rnk×nk−1 × Rnk

)
=: X

}
,

where σ : R→ R is an activation function, applied component-wise, n0 = d+ 1 and nK = 1
to match input and output of the PDE’s solution space, and n1, . . . , nK−1 determine the
network’s architecture.

In simpler terms, let u(·; θ) ∈ V be the output of a feedforward neural network (FNN)
with parameters (biases/weights) denoted by θ ∈ X. The parameters can be learned by
minimizing the mean squared error (MSE) loss

Φ(θ;L, s, u0, b) :=

∫ ∞

0
w(t)

∫

D
(L(u(t, x; θ))− s(x))2 dxdt+

∫

∂D
(u(0, x; θ)− u0(x))2 dx

+

∫ ∞

0
w(t)

∫

∂D
(u(t, x; θ)− b(t, x))2 dxdt,

where the first term is the L2 norm of the PDE residual, the second term is the L2 norm of
the residual for the initial condition, the third term is the L2 norm of the residual for the
boundary conditions, and w : [0,∞)→ [0,∞) is an appropriate weight function. The FNN
then represents the solution via solving the following minimization problem

min
θ∈X

Φ(θ;L, s, u0, b). (34)

Note that in physics-informed neural networks, differential operators w.r.t. the input x and
the gradient w.r.t the parameter θ are both obtained using automatic differentiation.

Training of physics-informed neural networks

In practice, the optimization problem (34) is often replaced by an optimization problem
with discrete potential

Φ̂(θ;L, s, u0, b) :=

K∑

k=1

(L(u(tk, xk; θ))− s(xk))2 +

K′∑

k′=1

(
u(0, x′k′ ; θ)− u0(x′k′)

)2

+

K′′∑

k′′=1

(
u(t′′k′′ , x

′′
k′′ ; θ)− b(t′′k′′ , x′′k′′)

)2
,

for appropriate continuous indices

(xk, tk)
K
k=1 ∈ [0,∞)K ×DK , (x′k′)

K′
k′=1 ∈ ∂DK , (x′′k′′ , t

′′
k′′)

K′′
k′′=1 ∈ [0,∞)K × ∂DK
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that may be chosen deterministically or randomly, see for example Pedro et al. (2019); Lu
et al. (2021).

Focusing the training on a fixed set of samples can be problematic: fixing a set of random
samples might be unreliable; a reliable cover of the domain will likely only be reached
through tight meshing, which scales badly. Sirignano and Spiliopoulos (2018) propose to
use SGD on the continuous data space. They employ the discrete dynamic in (2). Naturally,
we would like to follow Sirignano and Spiliopoulos (2018) and employ the SGP dynamic on
the continuous index set.

To train the PINNs with SGP, we again choose the reflected Brownian motion as an
index process, which we discretize with the Euler–Maruyama scheme in Algorithm 2. In
addition, we employ mini-batching to reduce the variance in the estimator: We sample M ∈
N independent index processes (V

(1)
t )t≥0, . . . , (V

(M)
t )t≥0 and then employ the dynamical

system

dθt = − 1

M

M∑

m=1

∇θf(θt, V
(m)
t )dt.

Hence, rather than optimizing with respect to a single data set, we optimize with respect
to M different data sets in each iteration. While we only briefly mention the mini-batching
throughout our analysis, one can easily see that it is fully contained in our framework.

In preliminary experiments, we noticed that the Brownian motion for the sampling on
the boundary is not very effective: possibly due to its localizing effect. Hence, we obtain
training data on the boundary by sampling uniformly, which we consider justified as a mesh
on the boundary scales more slowly as a mesh in the interior and as the boundary behavior
of the considered PDE is rather predictable.

PDE and results

We now describe the partial differential equation that we aim to solve with our PINN model.
After introducing the PDE we immediately outline the PINN’s architectures and show our
estimation results. We the train networks on Google Colab Pro using GPUs (often T4 and
P100, sometimes K80). We are certain that a more efficient PDE solution could be obtained
by classical methods, e.g., the finite element method. We do not compare the deep learning
methods with classical methods, as we are mainly interested in SGP and SGD in non-convex
continuous-data settings. Other methods that could approximate the PDE solution are not
our focus.

The PDE we study is a transport equation; which is a linear first order, time-dependent
model. One of the main advantages of studying this particular model is that we know an
analytical solution that allows us to compute a precise test error.

Example 1 (1D Transport equation) We solve the one-dimensional transport equation
on the space [0, 1] with periodic boundary conditions:





ut + ux = 0 (t ∈ [0,∞), x ∈ [0, 1])
u(0, x) = sin(2πx) (x ∈ [0, 1])
u(t, 0) = u(t, 1) (t ∈ [0,∞)).

(35)
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The neural network approximation of this PDE has already been studied by Pedro et al.
(2019), our experiments partially use the code associated to this work. The network ar-
chitecture is defined by a three-layer deep neural network with 128 neurons per layer and
a Rectified Linear Unit (ReLu) activation function. While theoretically the solution exists
globally in time, we restrict t to a compact domain and w.l.o.g, we assume t ∈ [0, 1]. From
the interior of the domain of time and space variables, i.e. (0, 1)×(0, 1), we use Algorithm 2
with σ = 0.5 to sample the train set of size 3 · 104 for SGPC and SGPD and we uniformly
sample 600 points for the train set of SGD. In addition, as a part of the train set for all
three methods, we sample uniformly 20 and 60 points for the initial condition and periodic
boundary condition, respectively.

The learning rate for SGD and SGPC is 0.01. The learning rate for SGPD is defined as

η(t) =
0.01

log(t+ 2)0.3
,

which is chosen such that the associated µ := 1/η satisfies Assumption 4. For all three
methods, we use Adam (see Kingma and Ba, 2015) as the optimizer to speed up the conver-
gence; we use an L2 regularizer with weight 0.1 to avoid overfitting. Each model is trained
over 600 iterations with batch size 50. The training process for SGPC and SGPD contains
only one epoch, while we train 50 epochs in the SGD case. We evaluate the models by
testing on a uniformly sampled test set of size 2 ·103 and compare the predicted values with
the theoretical solution

u(t, x) = sin(2π(x− t)).
We obtain the losses, the predicted solutions, and the test errors by averaging over 30
random experiments, i.e. 30 independent runs of SGD, SGPC, and SGPD, respectively.
We give the results in Figures 9, 10, and 11. Note that the timings are very similar for
each of the algorithms, the fact that SGPC and SGPD require us to first sample reflected
Brownian motions is negligible.

Figure 9: The plots of the loss vs iteration and its log scale for SGD, SGPC, and SGPD.
The losses are obtained by averaging over 30 random experiments.

From Figure 9, we notice that while SGD and SGPC behave similarly, SGPD does
converge faster. Here, Assumption 4 provides a way of designing a non-constant learning
rate in practice. On the test set, the mean squared errors for SGD, SGPC, and SGPD are
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Figure 10: The plots of the solutions at time t = 0.1, 0.5, 0.9. We evaluate the models at
30 uniformly sampled points. For each method, the predicted values are taken
by averaging over the predicted values from the best models (the model that
achieves the lowest training loss within the 600 iteration steps) in 30 random
experiments. The black curve is the theoretical solution.

Figure 11: The plots of the test error at time t = 0.1, 0.5, 0.9. We evaluate the models
at 2000 uniformly sampled points. For each method, the predicted values are
taken by averaging over the predicted values from the best models (the model
that achieves the lowest training loss within the 600 iteration steps) in 30 random
experiments. At each point x, the error calculated by taking the absolute value
of the difference between the predicted value and the true solution.

4.5 · 10−4, 3.5 · 10−4, and 2.8 · 10−4. These test errors refer to the averaged model output
of the 30 models from independent experiments. Combined with Figure 10 and Figure 11,
we observe that SGPC and SGPD generalize at least slightly better on the test set. This
improved generalization error might be due to the additional test data generated by the
Brownian motion, as compared to the fixed training set used in PINNs. The combination
with the reduction of the learning rate in SGPD, appears to be especially effective.

7. Conclusions and outlook

In this work we have proposed and analyzed a continuous-time stochastic gradient descent
method for optimization with respect to continuous data. Our framework is very flexible: it
allows for a whole range of random sampling patterns on the continuous data space, which
is particularly useful when the data is streamed or simulated. Our analysis shows ergodicity
of the dynamical system under convexity assumptions – converging to a stationary measure
when the learning rate is constant and to the minimizer when the learning rate decreases.
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In experiments we see the suitability of the method and the effect of different sampling
patterns on its implicit regularization.

We end this work by now briefly listing some interesting problems for future research in
this area. First, we would like to learn how the SGP sampling patterns perform in large-scale
(adversarially-)robust machine learning and in other applications we have mentioned but
not studied here. Moreover, from a both practical and analytical perspective, it would be
interesting to also consider non-compact index spaces S. Those appear especially in robust
optimal control and variational Bayes. Finally, we consider the following generalization of
the optimization problem (1) to be of high interest:

min
θ∈X

∫

S
f(θ, y)Π(dy|θ),

where Π is now a Markov kernel from X to S. Hence, in this case the probability distribution
and the sampling pattern itself depend on the parameter θ. Optimization problems of this
form appear in the optimal control of random systems (e.g., Deqing and Sergei, 2015) and
empirical Bayes (e.g., Casella, 2001) but also in reinforcement learning (e.g., Sutton and
Barto, 2018).
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