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Abstract
Decentralization is a promising method of scaling up parallel machine learning systems. In
this paper, we provide a tight lower bound on the iteration complexity for such methods
in a stochastic non-convex setting. Our lower bound reveals a theoretical gap in known
convergence rates of many existing decentralized training algorithms, such as D-PSGD. We
prove by construction this lower bound is tight and achievable. Motivated by our insights,
we further propose DeTAG, a practical gossip-style decentralized algorithm that achieves
the lower bound with only a logarithm gap. While a simple version of DeTAG with plain
SGD and constant step size suffice for achieving theoretical limits, we additionally provide
convergence bound for DeTAG under general non-increasing step size and momentum.
Empirically, we compare DeTAG with other decentralized algorithms on multiple vision
benchmarks, including CIFAR10/100 and ImageNet. We substantiate our theory and show
DeTAG converges faster on unshuffled data and in sparse networks. Furthermore, we study
a DeTAG variant, DeTAG*, that practically speeds up data-center-scale model training.
This manuscript is the extended version for (Lu and De Sa, 2021).
Keywords: decentralization, parallel learning, non-convex optimization, lower bound,
stochastic optimization

1. Introduction

Parallelism is a ubiquitous method to accelerate model training (Abadi et al., 2016; Alistarh,
2018; Alistarh et al., 2020; Lu et al., 2020). A parallel learning system usually consists
of three layers (Table 1): an application to solve, a communication protocol deciding
how parallel workers coordinate, and a network topology determining how workers are
connected. Traditional design for these layers usually follows a centralized setup: in the
application layer, training data is required to be shuffled and shared among parallel workers;
while in the protocol and network layers, workers either communicate via a fault-tolerant
single central node (e.g. Parameter Server) (Li et al., 2014a,b; Ho et al., 2013) or a fully-
connected topology (e.g. AllReduce) (Gropp et al., 1999; Patarasuk and Yuan, 2009).
This centralized design limits the scalability of learning systems in two aspects. First, in
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Table 1: Design choice of centralization and decentralization in different layers of a parallel
machine learning system. The protocol specifies how workers communicate. The
topology refers to the overlay network that logically connects all the workers.

Layer Centralized Decentralized

Application Shuffled (Homogeneous) Data Unshuffled (Heterogeneous) Data
(e.g. Data Center Training) (e.g. Federated Learning)

Protocol AllReduce/AllGather GossipParameter Server

Network Complete- Arbitrary GraphTopology (Bipartite) Graph

many scenarios, such as Federated Learning (Koloskova et al., 2019a; McMahan et al.,
2016) and Internet of Things (IOT) (Kanawaday and Sane, 2017), a shuffled dataset or a
complete (bipartite) communication graph is not possible or affordable to obtain. Second, a
centralized communication protocol can significantly slow down the training, especially with
a low-bandwidth or high-latency network (Lian et al., 2017b; Tang et al., 2019b; Yu et al.,
2018).

The rise of decentralization. To mitigate these limitations, decentralization comes to
the rescue. Decentralizing the application and network allows workers to learn with unshuffled
local datasets (Li et al., 2019) and arbitrary topologies (Seaman et al., 2017; Shanthamallu
et al., 2017). Furthermore, the decentralized protocol, i.e. Gossip, helps to balance load, and
has been shown to outperform centralized protocols in many cases (Lian et al., 2017a; Yu
et al., 2019; Nazari et al., 2019; Lu and De Sa, 2020).

Understanding decentralization with layers. Many decentralized training designs
have been proposed, which can lead to confusion as the term “decentralization” is used
inconsistently in the literature. Some works use “decentralized” to refer to approaches that
can tolerate non-iid or unshuffled datasets (Li et al., 2019), while others use it to mean gossip
communication (Lian et al., 2017a), and still others use it to mean a sparse topology graph
(Wan et al., 2020). To eliminate this ambiguity, we formulate Table 1, which summarizes the
different “ways” a system can be decentralized. Note that the choices to decentralize different
layers are independent, e.g., the centralized protocol AllReduce can still be implemented on
a decentralized topology like the Ring graph (Wan et al., 2020).

The theoretical limits of decentralization. Despite the empirical success, the best
convergence rates achievable by decentralized training—and how they interact with different
notions of decentralization—remains an open question. Previous works often show complexity
of a given decentralized algorithm with respect to the number of iterations T or the number
of workers n, ignoring other factors including network topologies, function parameters
or data distribution. Although a series of decentralized algorithms have been proposed
showing theoretical improvements—such as using variance reduction (Tang et al., 2018b),
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Figure 1: Figure illustrating how decentralization in different layers lead to different learning
systems. From left to right: 1©: A fully centralized system where workers sample
from shared and shuffled data; 2©: Based on 1©, workers maintain their own data
sources, making it decentralized in the application layer; 3©: Based on 2©, workers
are decentralized in the topology layer; 4©: A fully decentralized system in all three
layers where the workers communicate via Gossip. Our framework and theory are
applicable to all kinds of decentralized learning systems.

acceleration (Seaman et al., 2017), or matching (Wang et al., 2019)—we do not know how
close they are to an “optimal” rate or whether further improvement is possible.

In light of this, a natural question is: What is the optimal complexity in decentralized
training? Has it been achieved by any algorithm yet? Previous works have made initial
attempts on this question, by analyzing this theoretical limit in a non-stochastic or (strongly)
convex setting (Seaman et al., 2017; Scaman et al., 2018; Koloskova et al., 2020; Woodworth
et al., 2018; Dvinskikh and Gasnikov, 2019; Sun and Hong, 2019). These results provide great
heuristics but still leave the central question open, since stochastic methods are usually used
in practice and many real-world problems of interest are non-convex (e.g. deep learning). In
this paper we give the first full answer to this question: our contributions are as follows.

• In Section 4, we prove the first (to our knowledge) tight lower bound for decentralized
training in a stochastic non-convex setting. Our results reveal an asymptotic gap
between our lower bound and known convergence rates of existing algorithms.

• In Section 5, we prove our lower bound is tight by exhibiting an algorithm called
DeFacto that achieves it—albeit while only being decentralized in the sense of the
application and network layers.

• In Section 6, we propose DeTAG, a practical algorithm that achieves the lower bound
with only a logarithm gap and is decentralized in all three layers. While we show plain
SGD and constant step size suffice for optimality, we provide the convergence guarantee
for DeTAG under general non-increasing step size and momentum.

• In Section 7, we experimentally evaluate DeTAG on the CIFAR benchmark and show it
converges faster compared to decentralized learning baselines. We additionally propose
DeTAG*, a practical version that allows speed up on data-center-scale model training.
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2. Related Work

Decentralized Training. In the application layer, decentralized training usually denotes
federated learning (Zhao et al., 2018). Research on decentralization in this sense investigates
convergence where each worker samples only from a local dataset which is not independent
and identically distributed to other workers’ datasets (Bonawitz et al., 2019; Tran et al., 2019;
Yang et al., 2019; Konečnỳ et al., 2016). Another line of research on decentralization focuses
on the protocol layer—with average gossip (Boyd et al., 2005, 2006), workers communicate by
averaging their parameters with neighbors on a graph. D-PSGD (Lian et al., 2017a) is one of
the most basic algorithms that scales SGD with this protocol, achieving a linear parallel speed
up. Additional works extend D-PSGD to asynchronous and variance-reduced cases (Lian
et al., 2017b; Tang et al., 2018b; Tian et al., 2020; Zhang and You, 2019b; Hendrikx et al.,
2019; Xin et al., 2021a). After those, Zhang and You (2019c); Xin et al. (2019, 2021b) propose
adding gradient trackers to D-PSGD. Other works discuss the application of decentralization
on specific tasks such as linear models or deep learning (He et al., 2018; Assran et al., 2018).
Zhang and You (2019a) treats the case where only directed communication can be performed.
Wang et al. (2019) proposes using matching algorithms to optimize the gossip protocol.
Multiple works discuss using compression to decrease communication costs in decentralized
training (Koloskova et al., 2019b,a; Lu and De Sa, 2020; Tang et al., 2019a, 2018a), and
other papers connect decentralized training to other parallel methods and present a unified
theory (Lu et al., 2020; Koloskova et al., 2020; Wang and Joshi, 2018). In some even earlier
works like (Nedic and Ozdaglar, 2009; Duchi et al., 2010), full local gradients on a convex
setting is investigated.

Lower Bounds in Stochastic Optimization. Lower bounds are a well studied topic
in non-stochastic optimization, especially in convex optimization (Agarwal and Bottou, 2014;
Arjevani and Shamir, 2015; Lan and Zhou, 2018; Fang et al., 2018; Arjevani and Shamir,
2017). In the stochastic setting, Allen-Zhu (2018) and Foster et al. (2019) discuss the
complexity lower bound to find stationary points on convex problems. Other works study the
lower bound in a convex, data-parallel setting (Diakonikolas and Guzmán, 2018; Balkanski
and Singer, 2018; Tran-Dinh et al., 2019), and Colin et al. (2019) extends the result to a
model-parallel setting. In the domain of non-convex optimization, Carmon et al. (2017, 2019)
propose a zero-chain model that obtains tight bound for a first order method to obtain
stationary points. Zhou and Gu (2019) extends this lower bound to a finite sum setting,
and Arjevani et al. (2019) proposes a probabilistic zero-chain model that obtains tight lower
bounds for first-order methods on stochastic and non-convex problems.

3. Setting

In this section, we introduce the notation and assumptions we will use. Throughout the
paper, we consider the standard data-parallel training setup with n parallel workers. Each
worker i stores a copy of the model x ∈ Rd and a local dataset Di. The model copy and
local dataset define a local loss function (or empirical risk) fi. The ultimate goal of the
parallel workers is to output a target model x̂ that minimizes the average over all the local
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Table 2: Complexity comparison among different algorithms in the stochastic non-convex
setting on arbitrary graphs. The blue text are the results from this paper. Definitions
to all the parameters can be found in Section 3. Other algorithms like EXTRA
(Shi et al., 2015) or MSDA (Scaman et al., 2017) are not comparable since they
are designed for (strongly) convex problems. Additionally, Liu and Zhang (2021)
provides alternative complexity bound for algorithms like D-PSGD which improves
upon the spectral gap. However, the new bound would compromise the dependency
on ε, which does not conflict with our comparison here. In the table, L.B. stands
for lower bound while U.B. stands for upper bound.

Source Protocol Term with σ Term with D,λ Gap to L.B.

L.B.
Theorem 1 Central Ω

(
∆Lσ2

nBε4

)
Ω
(

∆LD
ε2

)
/

Corollary 2 Decentral Ω
(

∆Lσ2

nBε4

)
Ω
(

∆L
ε2
√

1−λ

)
/

U.B.

DeFacto Central O
(

∆Lσ2

nBε4

)
O
(

∆LD
ε2

)
O(1)(Theorem 4)

DeTAG Decentral O
(

∆Lσ2

nBε4

)
O

(
∆L log

(
ς0n

ε
√

∆L

)
ε2
√

1−λ

)
O
(

log
(

ς0n

ε
√

∆L

))
(Theorem 5)

D-PSGD Decentral O
(

∆Lσ2

nBε4

)
O
(

∆Lnς
ε2(1−λ)2

)
O

(
nς

(1−λ)
3
2

)
(Lian et al., 2017a)

SGP Decentral O
(

∆Lσ2

nBε4

)
O
(

∆Lnς
ε2(1−λ)2

)
O

(
nς

(1−λ)
3
2

)
(Assran et al., 2019)

D2

Decentral O
(

∆Lσ2

nBε4

)
O
(
λ2∆Lnς0
ε2(1−λ)3

)
O

(
λ2nς0

(1−λ)
5
2

)
(Tang et al., 2018b)

DSGT Decentral O
(

∆Lσ2

nBε4

)
O
(
λ2∆Lnς0
ε2(1−λ)3

)
O

(
λ2nς0

(1−λ)
5
2

)
(Zhang and You, 2019c)

GT-DSGD Decentral O
(

∆Lσ2

nBε4

)
O
(
λ2∆Lnς0
ε2(1−λ)3

)
O

(
λ2nς0

(1−λ)
5
2

)
(Xin et al., 2021b)

loss functions, that is,

x̂ = arg min
x∈Rd

f(x) =
1

n

n∑
i=1

Eξi∼Difi(x; ξi)︸ ︷︷ ︸
fi(x)

 . (1)

Here, ξi is a data sample from Di and is used to compute a stochastic gradient via some oracle,
e.g. back-propagation on a mini-batch of samples. The loss functions can (potentially) be
non-convex so finding a global minimum is NP-Hard; instead, we expect the workers to output
a point x̂ at which f(x̂) has a small gradient magnitude in expectation: E‖∇f(x̂)‖ ≤ ε, for

5



Lu and De Sa

some small ε.1 The assumptions our theoretical analysis requires can be categorized by the
layers from Table 1: in each layer, “being decentralized” corresponds to certain assumptions
(or lack of assumptions). We now describe these assumptions for each layer separately.

3.1 Application Layer

Application-layer assumptions comprise constraints on the losses fi from (1) and the gradient
oracle via which they are accessed by the learning algorithm, as these are constraints on the
learning task itself.

Function class (∆ and L). As is usual in this space, we assume the local loss functions
fi : Rd → R are L-smooth,

‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖, ∀x,y ∈ Rd, (2)

for some constant L > 0, and that the total loss f is range-bounded by ∆ in the sense that
f(0) − infx f(x) ≤ ∆. We let the function class F∆,L denote the set of all functions that
satisfy these conditions (for any dimension d ∈ N+).

Oracle class (σ2). We assume each worker interacts with its local function fi only
via a stochastic gradient oracle g̃i, and that when we query this oracle with model x, it
returns an independent unbiased estimator to ∇fi(x) based on some random variable z with
distribution Z (e.g. the index of a mini-batch randomly chosen for backprop). Formally,

Ez∼Z [g̃i(x, z)] = ∇fi(x), ∀x ∈ Rd. (3)

As per the usual setup, we additionally assume the local estimator has bounded variance:
for some constant σ > 0,

Ez∼Z‖g̃i(x, z)−∇fi(x)‖2 ≤ σ2, ∀x ∈ Rd. (4)

We let O denote a set of these oracles {g̃i}i∈[n], and let the oracle class Oσ2 denote the class
of all such oracle sets that satisfy these two assumptions.

Data shuffling (ς2 and ς2
0). At this point, an analysis with a centralized application

layer would make the additional assumption that all the fi are equal and the g̃i are identically
distributed: this roughly corresponds to the assumption that the data all comes independently
from a single centralized source. We do not make this assumption, and lacking such an
assumption is what makes an analysis decentralized in the application layer. Still, some
assumption that bounds the fi relative to each other somehow is needed: we now discuss
two such assumptions used in the literature, from which we use the weaker (and more
decentralized) one.

One commonly made assumption (Lian et al., 2017a; Koloskova et al., 2019b,a; Lu and
De Sa, 2020; Tang et al., 2018a) in decentralized training is

1

n

n∑
i=1

‖∇fi(x)−∇f(x)‖2 ≤ ς2, ∀x ∈ Rd, (5)

1. There are many valid stopping criteria. We adopt ε-stationary point as the success signal. E‖∇f(x̂)‖2 ≤ ε2
is another commonly used criterion; we adopt the non-squared one following (Carmon et al., 2019). Other
criterions regarding stationary points can be converted to hold in our theory.
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for some constant ς, which is said to bound the “outer variance” among workers. This is
often unreasonable, as it suggests the local datasets on workers must have close distribution:
in practice, ensuring this often requires some sort of shuffling or common centralized data
source. We do not assume (5) but instead adopt the much weaker assumption

1

n

n∑
i=1

‖∇fi(0)−∇f(0)‖2 ≤ ς2
0 , (6)

for constant ς0 > 0.2 This assumption only requires a bound at point 0, which is, to the
best of our knowledge, the weakest assumption of this type used in the literature (Tang
et al., 2018b; Zhang and You, 2019c). Requiring such a weak assumption allows workers to
(potentially) sample from different distributions or vary largely in their loss functions (e.g.
in a federated learning environment).

3.2 Protocol Layer

Protocol-layer assumptions comprise constraints on the parallel learning algorithm itself, and
especially on the way that the several workers communicate to approach consensus.

Algorithm class (B). We consider algorithms A that divide training into multiple
iterations, and between two adjacent iterations, there must be a synchronization process
among workers (e.g. a barrier) such that they start each iteration simultaneously.3 Each
worker running A has a local copy of the model, and we let xt,i ∈ Rd denote this model on
worker i at iteration t. We assume without loss of generality that A initializes each local
model at zero: x0,i = 0 for all i. At each iteration, each worker makes at most B queries to
its gradient oracle g̃i, for some constant B ∈ N+, and then uses the resulting gradients to
update its model. We do not make any explicit rules for output and allow the output of the
algorithm x̂t at the end of iteration t (the model that A would output if it were stopped at
iteration t) to be any linear combination of all the local models, i.e.

x̂t ∈ span({xt,j}j∈[n]) = {
∑n

j=1 cjxt,j | cj ∈ R}. (7)

Beyond these basic properties, we further require A to satisfy the following “zero-respecting”
property from Carmon et al. (2017). Specifically, if z is any vector worker i queries its
gradient oracle with at iteration t, then for any k ∈ [d], if e>k z 6= 0, then there exists a s ≤ t
and a j ∈ [n] such that either j = i or j is a neighbor of i in the network connectivity graph
G (i.e. (i, j) ∈ {(i, i)} ∪ G) and (e>k xs,j) 6= 0. More informally, the worker will not query
its gradient oracle with a nonzero value for some weight unless that weight was already
nonzero in the model state of the worker or one of its neighbors at some point in the past.
Similarly, for any k ∈ [d], if (e>k xt+1,i) 6= 0, then either there exists an s ≤ t and j such that
(i, j) ∈ {(i, i)} ∪ G and (e>k xs,j) 6= 0, or one of the gradient oracle’s outputs v on worker
i at iteration t has e>k v 6= 0. Informally, a worker’s model will not have a nonzero weight
unless either (1) that weight was nonzero on that worker or one of its neighbors at a previous

2. As we only use ς0 for upper bounds, not lower bounds, we do not define a “class” that depends on this
parameter.

3. We consider synchronous algorithms only here for simplicity of presentation; further discussion of extension
to asynchronous algorithms is included in the supplementary material.
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iteration, or (2) the corresponding entry in one of the gradients the worker sampled at that
iteration was nonzero.

Intuitively, we are requiring that algorithm A will not modify those coordinates that
remain zero in all previous oracle outputs and neighboring models.4 This lets A use a
wide space of accessible information in communication and allows our class to cover first-
order methods including SGD (Ghadimi and Lan, 2013), Momentum SGD (Nesterov, 1983),
Adam (Kingma and Ba, 2014), RMSProp (Tieleman and Hinton, 2012), Adagrad (Ward
et al., 2018), and AdaDelta (Zeiler, 2012). We let algorithm class AB denote the set of all
algorithms A that satisfy these assumptions.

So far our assumptions in this layer cover both centralized and decentralized protocols.
Decentralized protocols, however, must satisfy the additional assumption that they commu-
nicate via gossip (see Section 2) (Boyd et al., 2005, 2006). A single step of gossip protocol
can be expressed as

zt,i ←
∑

j∈Ni yt,jW ji, ∀i ∈ [n] (8)

for some constant doubly stochastic matrix W ∈ Rn×n called the communication matrix
and y and z are the input and output of the gossip communication step, respectively. The
essence of a single Gossip step is to take weighted average over the neighborhood specified
by a fixed matrix. To simplify later discussion, we further define the gossip matrix class Wn

as the set of all matrices W ∈ Rn×n, where W is doubly stochastic and W ij 6= 0 only if
(i, j) ∈ G. We call every W ∈ Wn a gossip matrix and we use λ = max{|λ2|, |λn|} ∈ [0, 1) to
denote its general second-largest eigenvalue, where λi denotes the i-th largest eigenvalue of
W . We let gossip algorithm class AB,W denote the set of all algorithms A ∈ AB that only
communicate via gossip using a single matrix W ∈ Wn. It trivially holds that AB,W ⊂ AB.

3.3 Topology Layer

Topology-layer assumptions comprise constraints on how workers are connected topologically.
We let the graph class Gn,D denote the class of graphs G connecting n workers (vertices)
with diameter D, where diameter of a graph measures the maximum distance between two
arbitrary vertices (so 1 ≤ D ≤ n− 1). A centralized analysis here typically will also require
that G be either complete or complete-bipartite (with parameter servers and workers as the
two parts): lacking this requirement and allowing arbitrary graphs is what makes an analysis
decentralized in the topology layer.

3.4 Complexity Measures

Now that we have defined the classes we are interested in, we can use them to define the
complexity measures we will bound in our theoretical results. Given a loss function f ∈ F∆,L,
a set of underlying oracles O ∈ Oσ2 , a graph G ∈ Gn,D, and an algorithm A ∈ AB, let
x̂A,f,O,Gt denote the output of algorithm A at the end of iteration t under this setting. Then

4. On the other hand, it is possible to even drop the zero-respecting requirement and extend A to all the
deterministic (not in the sense of sampling but the actual executions) algorithms. At a cost, we would
need the function class to follow an “orthogonal invariant” property, and the model dimension needs to
be large enough. We leave this discussion to the appendix.
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the iteration complexity of A solving f under O and G is defined as

Tε(A, f,O,G) = min
{
t ∈ N

∣∣∣E∥∥∥∇f(x̂A,f,O,Gt )
∥∥∥ ≤ ε} ,

that is, the least number of iterations required by A to find a ε-stationary-in-expectation
point of f .

4. Lower Bound

Given the setup in Section 3, we can now present and discuss our lower bound on the iteration
complexity. Note that in the formulation of protocol layer, the algorithm class AB only
specifies the information available for each worker, and thus AB covers both centralization
and decentralization in the protocol layer. Here, we show our lower bound in two parts: first
a general bound where an arbitrary protocol that follows AB is allowed, and then a corollary
bound for the case where only decentralized protocol is allowed.

4.1 Lower Bound for Arbitrary Protocol

We start from the general bound. We expect this lower bound to show given arbitrary setting
(functions, oracles and graph), the smallest iteration complexity we could obtain from AB,
i.e.

inf
A∈AB

sup
f∈F∆,L

sup
O∈Oσ2

sup
G∈Gn,D

Tε(A, f,O,G), (9)

it suffices to construct a hard instance containing a loss function f̂ ∈ F∆,L, a graph Ĝ ∈ Gn,D
and a set of oracles Ô ∈ Oσ2 and obtain a valid lower bound on infA∈AB Tε(A, f̂ , Ô, Ĝ) since
Equation (9) is always lower bounded by infA∈AB Tε(A, f̂ , Ô, Ĝ).

For the construction, we follow the idea of probabilistic zero-chain model Carmon et al.
(2017, 2019); Arjevani et al. (2019); Zhou and Gu (2019), which is a special loss function
where adjacent coordinates are closely dependent on each other like a “chain.” Our main
idea is to use this function as f and split this chain onto different workers. Then the workers
must conduct a sufficient number of optimization steps and rounds of communication to
make progress.5 From this, we obtain the following lower bound.

Theorem 1 For function class F∆,L, oracle class Oσ2 and graph class Gn,D defined with
any ∆ > 0, L > 0, n ∈ N+, D ∈ {1, 2, . . . , n− 1}, σ > 0, and B ∈ N+, there exists f ∈ F∆,L,
O ∈ Oσ2 , and G ∈ Gn,D, such that no matter what A ∈ AB is used, Tε(A, f,O,G) will always
be lower bounded by

Ω

(
∆Lσ2

nBε4
+

∆LD

ε2

)
. (10)

Dependency on the parameters. The bound in Theorem 1 consists of a sample
complexity term, which is the dominant one for small ε, and a communication complexity
term. We can see the increase of query budget B will only reduce the sample complexity.
On the other hand, as the diameter D of a graph will generally increase as the number of

5. For brevity, we leave details in the supplementary material.
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vertices n increases, we can observe a trade-off between two terms when the system scales up:
when more workers join the system, the communication complexity will gradually become
the dominant term.

Consistency with the literature. Theorem 1 is tightly aligned with the state-of-
the-art bounds in many settings. With n = B = D = 1, we recover the tight bound for
sequential stochastic non-convex optimization Θ(∆Lσ2ε−4) as shown in Arjevani et al. (2019).
With σ = 0, D = 1, we recover the tight bound for sequential non-stochastic non-convex
optimization Θ(∆Lε−2) as shown in Carmon et al. (2019). With B = 1, D = 1, we recover
the tight bound for centralized training Θ(∆Lσ2(nε4)−1) given in Li et al. (2014b).

Improvement upon previous results. Previous works like Seaman et al. (2017);
Scaman et al. (2018) provide similar lower bounds in a convex setting which relates to the
diameter. However, these results treat D as a fixed value, i.e., D = n−1, and thus makes the
bound to be only tight on linear graph. By comparison, Theorem 1 allows D to be chosen
independently to n.

4.2 Lower Bound for Decentralized Protocol

The bound in Theorem 1 holds for both centralized and decentralized protocols. A natural
question is: How would the lower bound adapt if the protocol is restricted to be decentralized?
i.e., the quantity of

inf
A∈AB,W

sup
f∈F∆,L

sup
O∈Oσ2

sup
G∈Gn,D

Tε(A, f,O,G),

we can extend the lower bound to Gossip in the following corollary.

Corollary 2 For every ∆ > 0, L > 0, n ∈ {2, 3, 4, · · · }, σ > 0, and B ∈ N+, there exists a
loss function f ∈ F∆,L, a set of underlying oracles O ∈ Oσ2 , a gossip matrix W ∈ Wn with
second largest eigenvalue being λ = cos(π/n), and a graph G ∈ Gn,D, such that no matter
what A ∈ AB,W is used, Tε(A, f,O,G) will always be lower bounded by

Ω

(
∆Lσ2

nBε4
+

∆L

ε2
√

1− λ

)
. (11)

Gap in the existing algorithms. Comparing this lower bound with many state-of-the-art
decentralized algorithms (Table 2), we can see they match on the sample complexity but
leave a gap on the communication complexity. In many cases, the spectral gap significantly
depends on the number of workers n and thus can be arbitrarily large. For example, when
the graph G is a cycle graph or a linear graph, the gap of those baselines can increase by up
to O(n6) Brooks et al. (2011); Gerencsér (2011)!

Extended Discussion on the Graph Type. Notice that in Corollary 2, the lower
bound holds on the linear graph, which follows our definition since the we need to choose the
"hardest" graph from the class. In a recent work (Yuan et al., 2022), the authors discuss
leveraging the Ring-Lattice graph to admit general weight matrices (λ ∈ [0, cos(π/n)]) while
maintaining the optimal relation between the graph diameter and weight matrix connectivity.
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Algorithm 1 Decentralized Stochastic Gradient Descent with Factorized Consensus Matrices
(DeFacto) on worker i
Input: initialized model x0,i, a copy of model x̃0,i ← x0,i, gradient buffer g = 0, step size {αk}k≥0,

a sequence of communication matrices {W r}1≤r≤R of size R, number of iterations T , neighbor
list Ni

1: for t = 0, 1, · · · , T − 1 do
2: k ← bt/2Rc.
3: r ← t mod 2R.
4: if 0 ≤ r < R then
5: Spend all B oracle budgets to compute stochastic gradient g̃ at point xk,i and accumulate

it to gradient buffer: g ← g + g̃.
6: else
7: Update model copy with the r-th matrix in {W r}1≤r≤R:

x̃t+1,i ←
∑

j∈Ni∪{i}

x̃t,j [W r]ji (12)

8: end if
9: if r = 2R− 1 then
10: Update Model: xt+1,i ← x̃t+1,i − αkg/R.
11: Reinitialize gradient buffer: g ← 0.
12: Copy the current model: x̃t+1,i ← xt+1,i.
13: end if
14: end for
15: return x̂ = 1

n

∑n
i=1 xT,i

5. DeFacto: Optimal Complexity in Theory

In the previous section we show the existing algorithms have a gap compared to the lower
bound. This gap could indicate the algorithms are suboptimal, but it could also be explained
by our lower bound being loose. In this section we answer this by proposing DeFacto, an
example algorithm showing the lower bound is achievable, which verifies the tightness of our
lower bound—showing that (10) would hold with equality and Θ(·), not just Ω(·).

We start with the following insight on the theoretical gap: the goal of communication is
to let all the workers obtain information from neighbors. Ideally, the workers would, at each
iteration, perform (8) with W ∗ = 1n1

>
n /n, where 1n is the n-dimensional all-one vector.

We call this matrix the Average Consensus matrix. The Average Consensus is statistically
equivalent to centralized communication (All-Reduce operation). However, due to the graph
constraints, we can not use this W ∗ unless workers are fully connected; instead, a general
method is to repeatedly apply a sequence communication matrices in consecutive iterations
and let workers achieve or approach the Average Consensus. Previous work uses Gossip
matrix W and expect

∏R
r=1 W ≈ 1n1

>
n /n for some R. This R is known to be proportional to

the mixing time of the Markov Chain W defines Lu et al. (2020); Lu and De Sa (2020), which
is related to the inverse of its spectral gap Levin and Peres (2017). This limits convergence
depending on the spectrum of the W chosen. The natural question to ask here is: can we do
better? What are the limits of how fast we can reach average consensus on a connectivity
graph G? This question is answered by the following lemma.
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Algorithm 2 Decentralized Stochastic Gradient Tracking with By-Phase Accelerated Gossip
(DeTAG) on worker i
Input: initialized model x0,i, a copy of model x̃0,i ← x0,i, gradient tracker y0,i, gradient buffer

g(0) = g(−1) = 0, step size {αk}k≥0, a gossip matrix W , number of iterations T , neighbor list Ni
1: for t = 0, 1, · · · , T − 1 do
2: k ← bt/Rc.
3: r ← t mod R.
4: Perform the r-th step in Accelerated Gossip:

x̃t+1,i ← AG(x̃t,i,W ,Ni, i) (13)
yt+1,i ← AG(yt,i,W ,Ni, i) (14)

5: Spend all B oracle budgets to compute stochastic gradient g̃ at point xk,i and accumulate it
to gradient buffer: g(k) ← g(k) + g̃/R.

6: if r = R− 1 then
7: Update gradient tracker and model:

xt+1,i ← x̃t+1,i − αkyi (15)
yt+1,i ← yt+1,i + g(k) − g(k−1) (16)

8: Reinitialize gradient buffer: g(k−1) ← g(k) and then g(k) ← 0.
9: Copy the current model: x̃t+1,i ← xt+1,i.
10: end if
11: end for
12: return x̂ = 1

n

∑n
i=1 xT,i

Algorithm 3 Accelerated Gossip (AG) with R steps
Input: z0,i, W , Ni, i
1: z−1,i ← z0,i

2: η ← 1−
√

1−λ2

1+
√

1−λ2

3: for r = 0, 1, 2, · · · , R− 1 do
4: zr+1,i ← (1 + η)

∑
j∈Ni∪{i} zr,jW ji − ηzr−1,i

5: end for
6: return zR,i

Lemma 3 For any G ∈ Gn,D, let WG denote the set of n × n matrices such that for all
W ∈ WG, W ij = 0 if edge (i, j) does not appear in G. There exists a sequence of R matrices
{W r}r∈[R] that belongs to WG such that R ∈ {D,D + 1, · · · , 2D} and

WR−1WR−2 · · ·W 0 =
1n1

>
n

n
= W ∗.

Lemma 3 is a classic result in the literature of graph theory. The formal proof and detailed
methods to identify these matrices can be found in many previous works Georgopoulos
(2011); Ko (2010); Hendrickx et al. (2014). Here we treat this as a black box procedure.6

Lemma 3 shows that we can achieve the exact average consensus by factorizing the
matrix 1n1

>
n /n, and we can obtain the factors from a preprocessing step. From here, the

path to obtain an optimal rate becomes clear: starting from t = 0, workers first spend

6. We cover specific algorithms and details in the supplementary.
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R iterations only computing stochastic gradients and then another R iterations to reach
consensus communicating via factors from Lemma 3; they then repeat this process until a
stationary point is found. We call this algorithm DeFacto (Algorithm 1).

DeFacto is statistically equivalent to centralized SGD operating T/2R iterations with
a mini-batch size of BR. It can be easily verified that DeFacto holds membership in AB.
A straightforward analysis gives the convergence rate of DeFacto shown in the following
Theorem.

Theorem 4 Let A1 denote Algorithm 1. For F∆,L, Oσ2 and Gn,D defined with any ∆ > 0,
L > 0, n ∈ N+, D ∈ {1, 2, . . . , n − 1}, σ > 0, and B ∈ N+, the convergence rate of A1

running on any loss function f ∈ F∆,L, any graph G ∈ Gn,D, and any oracles O ∈ Oσ2 is
bounded by

Tε(A1, f, O,G) ≤ O
(

∆Lσ2

nBε4
+

∆LD

ε2

)
. (17)

Comparing Theorem 1 and Theorem 4, DeFacto achieves the optimal rate asymptotically.
This shows that our lower bound in Theorem 1 is tight.

6. DeTAG: Optimal Complexity in Practice

In previous section, we propose DeFacto that achieves the lower bound. Despite its optimality,
the design of DeFacto is unsatisfying in three aspects: (1) It compromises the throughput7

by a factor of two because in each iteration, a worker either communicates with neighbors or
computes gradients but not both. This fails to overlap communication and computation and
creates extra idle time for the workers. (2) It needs to iterate over all the factor matrices
before it can query the gradient oracle at subsequent parameters. When diameter D increases,
the total time to finish such round will increase proportionally. (3) DeFacto works with
decentralized data and arbitrary graph, achieving decentralization in both application and
topology layers. However, the matrices used in Lemma 3 are not Gossip matrices as defined
in Wn, and thus it fails to be decentralized in the protocol-layer sense.

6.1 Towards Optimality with Three-Layer Decentralization

To address the limitations of DeFacto, a natural idea is to replace all the factor matrices
in Lemma 3 with a gossip matrix W . The new algorithm after this mild modification is
statistically equivalent to a D-PSGD variant: every R iterations, it updates the model the
same as one iteration in D-PSGD with a mini-batch size of BR and communicate with a
matrix W ′ whose second largest eigenvalue λ′ = λR, with T/R iterations in total. However,
even with arbitrarily large R, the communication complexity in this “updated D-PSGD” is
still O(∆Lnςε−2) (Table 2), leaving an O(nς) gap compared to our lower bound.

To close this gap, we adopt two additional techniques:8 one is a gradient tracker y
that is used as reference capturing gradient difference in the neighborhood; the other is
using acceleration in gossip as specified in Algorithm 3. Modifying DeFacto results in
Algorithm 2, which we call DeTAG. DeTAG works as follows: it divides the total number of

7. The number of stochastic gradients computed per iteration.
8. Note that neither of these techniques is our original design, and we do not take credit for them. Our

main contribution here is to prove their combination leads to optimal complexity.
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iterations T into several phases where each phase contains R iterations. In each iteration,
the communication process calls Accelerated Gossip to update a model replica x̃ and the
gradient tracker (line 4) while the computation process constantly computes gradients at the
same point (line 5). At the end of each phase, model x, its replica x̃ and gradient tracker
y are updated in line 7-10 and then DeTAG steps into the next phase. Aside from the
two additional techniques, the main difference between DeTAG and DeFacto is that the
communication matrix in DeTAG is a fixed gossip matrix W , which allows DeTAG to benefit
from decentralization in the protocol layer as well as to adopt arbitrary R ≥ 1 in practice
(allowing R to be tuned independently of G).

Improvement on design compared to baselines. Comparing with other baselines
in Table 2, the design of DeTAG improves in the sense that (1) It removes the dependency
on the outer variance ς. (2) It drops the requirement9 on the gossip matrix assumed in
Tang et al. (2018b). (3) The baseline DSGT Zhang and You (2019c) and GT-DSGD Xin
et al. (2021b) can be seen as special cases of taking R = 1 and η = 0 in DeTAG. That
implies in practice, a well tuned DeTAG can never perform worse than the baseline DSGT
or GT-DSGD.

The convergence rate of DeTAG is given in the following theorem.

Theorem 5 For F∆,L, Oσ2 and Gn,D defined with any ∆ > 0, L > 0, n ∈ N+, λ ∈ [0, 1),
σ > 0, and B ∈ N+, under the assumption of Equation (6), if we adopt a non-increasing step
size scheme {αk}k≥0 that fulfills

α0 ≤
(1− ρ)2

32L
the convergence rate of Algorithm 2 running on any loss function f ∈ F∆,L, any graph
G ∈ Gn,D, and any oracles O ∈ Oσ2 is bounded by

T/R−1∑
k=0

αkE
∥∥∇f (Xk

)∥∥2

≤O

∆ +
σ2L

nBR

T/R−1∑
k=0

α2
k +

ρ2α3
0L

2Tς2
0

(1− ρ)3R
+

ρ4σ2L2

(1− ρ)3BR

T/R−1∑
k=0

α3
k +

σ2L2

nBR

T/R−1∑
k=0

α3
k

 ,

where ρ =
(
1−
√

1− λ
)R.

Based on Theorem 5, the optimality statement is then given in the following corollary.

Corollary 6 Let A2 denote Algorithm 2. Based on Theorem 5, if we set the phase length R
to be

R =
max

(
1
2 log(n), 1

2 log
(
ς20T
∆L

))
√

1− λ
,

and set step size to be a constant α with

α =
1√

σ2TL
BR2n∆

+
ρ

2
3L

2
3 ς

2
3
0 T

1
3

R
1
3 ∆

1
3 (1−ρ)

+ 32L
(1−ρ)2

,

9. Tang et al. (2018b) requires the gossip matrix to be symmetric and its smallest eigenvalue is lower
bounded by − 1

3
.
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where ρ =
(
1−
√

1− λ
)R, the convergence rate of A2 running on any loss function f ∈ F∆,L,

any graph G ∈ Gn,D, and any oracles O ∈ Oσ2 is bounded by

Tε(A2, f, O,G) ≤ O

∆Lσ2

nBε4
+

∆L log
(
n+ ς0n

ε
√

∆L

)
ε2
√

1− λ

 .

Comparing Theorem 1 and Corollary 6, DeTAG achieves the optimal complexity with
only a logarithm gap.

Improvement on complexity. Revisiting Table 2, we can see the main improvement
of DeTAG’s complexity is in the two terms on communication complexity: (1) DeTAG only
depends on the outer variance term ς0 inside a log, and (2) It reduces the dependency on the
spectral gap 1− λ to the lower bound of square root, as shown in Corollary 2.

Understanding the phase length R. In DeTAG, the phase length R is a tunable
parameter. Theorem 5 provides a suggested value for R. Intuitively, the value of R
captures the level of consensus of workers should reach before they step into the next phase.
Theoretically, we observe R is closely correlated to the mixing time of W : if we do not use
acceleration in Gossip, then R will become Õ

(
1

1−λ

)
, which is exactly the upper bound on

the mixing time of the Markov Chain W defines Levin and Peres (2017).

6.2 DeTAG with Momentum

In previous subsection, we show a plain version of DeTAG, where only SGD and constant
step size are used, is sufficient to achieve the theoretical lower bound. In this section, we
discuss a variant of DeTAG as specified in Algorithm 4 where momentum is used.

Comparing Algorithm 2 and 4, the main difference is in the update of model parameters
at the end of phase – Algorithm 4 now used the momentum buffer instead of the stochastic
gradient itself to update the gradient tracker. Comparing this design to previous decentralized
algorithms with momentum such as (Yu et al., 2019), the gradient tracker eliminates the
requirement on communicating the momentum buffer. The convergence rate of Algorithm 4
is given in the following theorem.

Theorem 7 Let A4 denote Algorithm 4. If in A4, we set the phase length R to be

R =
max

(
1
2 log(n), 1

2 log
(
ς20T
∆L

))
√

1− λ
,

set the momentum parameter β2

1−β ≤ γ̃ where γ̃ is a constant and set step size to be a constant
α with

α =
1√

σ2TL
(1−β)2BR2n∆

+
ρ

2
3L

2
3 ς

2
3
0 T

1
3

(1−β)
2
3R

1
3 ∆

1
3 (1−ρ)

+ 32(1+γ̃)L
(1−β)2(1−ρ)2

,

where ρ =
(
1−
√

1− λ
)R, the convergence rate of A4 running on any loss function f ∈ F∆,L,

any graph G ∈ Gn,D, and any oracles O ∈ Oσ2 is bounded by

Tε(A4, f, O,G) ≤ O

∆Lσ2

nBε4
+

∆L log
(
n+ ς0n

ε
√

∆L

)
(1− β)ε2

√
1− λ

 .
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Algorithm 4 DeTAG with Momentum Acceleration (DeTAGM) on worker i
Input: initialized model x0,i, a copy of model x̃0,i ← x0,i, gradient tracker y0,i, gradient buffer

g(0) = 0, momentum buffer v(0) = v(−1) = 0, momentum constant β, step size {αk}k≥0, a gossip
matrix W , number of iterations T , neighbor list Ni

1: for t = 0, 1, · · · , T − 1 do
2: k ← bt/Rc.
3: r ← t mod R.
4: Perform the r-th step in Accelerated Gossip:

x̃t+1,i ← AG(x̃t,i,W ,Ni, i) (18)
yt+1,i ← AG(yt,i,W ,Ni, i) (19)

5: Spend all B oracle budgets to compute stochastic gradient g̃ at point xk,i and accumulate it
to gradient buffer: g(k) ← g(k) + g̃/R.

6: if r = R− 1 then
7: Update gradient tracker, model and momentum buffer:

v(k+1) ← βv(k) + g(k) (20)

xt+1,i ← x̃t+1,i − αkyi (21)
yt+1,i ← yt+1,i + v(k) − v(k−1) (22)

8: Reinitialize gradient buffer: g(k−1) ← g(k) and then g(k) ← 0.
9: Copy the current model: x̃t+1,i ← xt+1,i.
10: end if
11: end for
12: return x̂ = 1

n

∑n
i=1 xT,i

Comparison with Related Algorithms. From Theorem 7 we observe that momentum-
enabled DeTAG has an additional factor (1 − β) only on the non-dominant term O(ε−2).
This dependency is better than the one shown in (Yu et al., 2019). On the other hand,
Algorithm 4 (DeTAGM) improves upon the recent state-of-the-art decentralized momentum
SGD (Lin et al., 2021) in three aspects: (1) DeTAGM obtains the same convergence guarantee
without averaging the momentum buffer, this suggests the usage of gradient tracker implicitly
makes all the workers reach consensus on the momentum buffer. (2) DeTAGM gives a
better dependency on the spectral gap, improving it from 1 − λ (as shown in (Lin et al.,
2021) Theorem 3.1) to

√
1− λ. (3) DeTAGM allows a more relaxed condition on β. More

concretely, Lin et al. (2021) requires β/(1 − β) ≤ (1 − λ)/21 which does not allow the β
to be chosen freely with respect to the mixing matrix. In contrast, DeTAGM only requires
β2/(1− β) ≤ γ̃ with a constant γ̃.

7. Experiments

In this section we empirically evaluate DeTAG and baseline algorithms10: D-PSGD Lian
et al. (2017a), D2 Tang et al. (2018b), DSGT Zhang and You (2019c) and DeTAG. Note
that GT-DSGD Xin et al. (2021b) and DSGT Zhang and You (2019c) are essentially the
same algorithm so we omit the comparison to GT-DSGD. Also note that SGP Assran et al.

10. Since DeFacto is a only a "motivation" algorithm and in practice we observe it performs bad, we do not
include the discussion of that.
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Figure 2: Fine tuned results of training LeNet on CIFAR10 with different shuffling strategies.

(2019) reduces to D-PSGD for symmetric mixing matrices in undirected graphs. As shown
in Table 2, the main improvement of DeTAG are on the two parameters outer variance ς0
and spectral gap 1− λ. In Subsection 7.1, we train LeNet and Resnet20 on CIFAR10/100
under different values of ς0 and 1− λ. We use 8-GPU ring graph there and uses each GPU
as an individual worker. Subsequently, in Subsection 7.2, we extend the system to a 32-GPU
ring graph and train Resnet18 on ImageNet. We propose a new variant of DeTAG, DeTAG*,
that allows larger-batch training in data centers. Hyperparameters can be found in the
supplementary material.

7.1 Validation on Theory

Convergence over different outer variance. In the first experiments, we investigate
the correlation between convergence speed and the outer variance ς(ς0). We train LeNet on
CIFAR10 using 8 workers, which is a standard benchmark experiment in the decentralized
data environment Tang et al. (2018b); Zhang and You (2019c). To create the decentralized
data, we first sort all the data points based on its labels, shuffle the first X% data points
and then evenly split to different workers. The X controls the degree of decentralization, we
test X = 0, 25, 50, 100 and plot the results in Figure 2.
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(c) κ = 0.05 (1− λ ≈ 2e-3)
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Figure 3: Fine tuned results of training Resnet20 on CIFAR100 with different spectral gaps.
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Figure 4: Results of Resnet18 on Imagenet among different algorithms.

We can see in Figure 2(a) when the dataset is fully shuffled, all the algorithms converge at
similar speed while D-PSGD converges a little slower than other variance reduced algorithms.
From Figure 2(b) to Figure 2(d) we can see when we shuffle less portion of the dataset, i.e.,
the dataset becomes more decentralized, D-PSGD fails to converge even with fine-tuned
hyperparameter. Meanwhile, among D2, DSGT and DeTAG, we can see DeTAG converges
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Figure 5: We compare DeTAG with hyperparameter R and its naive version – single round
with R times large mini-batch size. The difference between them is that the
former additionally includes R− 1 Gossip rounds. We show from this experiment
that multi-rounds Gossip helps enabling larger-batch training, which is critical in
data-center-scale model training.

the fastest. When dataset becomes more decentralized, DSGT seems to receive more stable
performance than D2.

Convergence over different spectral gaps. In the second experiments, we proceed to
explore the relation between convergence speed and spectral gap 1− λ of the gossip matrix
W . We use 16 workers connected with a Ring graph to train Resnet20 on CIFAR100, and
we generate a W 0 on such graph using Metropolis method. Then we adopt the slack matrix
method to modify the spectral gap Lu et al. (2020): W κ = κW 0 + (1− κ)I, where κ is a
control parameter. We test κ = 1, 0.1, 0.05, 0.01 and plot the results in Figure 3. We can see
with different κ, DeTAG is able to achieve faster convergence compared to baselines. When
the network becomes sparse, i.e., κ decreases, DeTAG enjoys more robust convergence.

7.2 DeTAG*: Practical Version of DeTAG in Data-Center-Scale Model
Training

In previous sections, our theory indicates that under the same oracle and communication
budget, simply rearranging the communication rounds allows us to achieve optimality on
iteration complexity. Such a strategy not only benefits statistically, but also provides
significant flexibility in system optimization. One obvious optimization is parallelism:
since now gradients are computed consecutively on the same model parameters, the back
propagation across multiple oracle queries can be carried out in parallel; with the same
rationale, messages sent in different communication rounds can now share the same connection
– reducing fixed costs of initializing a new round.

Motivated by these insights, in this section we evaluate another variant of DeTAG –
instead of overlapping the oracle queries and communication rounds, we now let them operate
separately. Concretely, in Algorithm 2, the communication is performed on a stale version
of model parameters x̃; now we let it communicate over x. Note that this does not require
additional gradient oracles or communication rounds, only reordering them. We call this
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variant DeTAG* and compare this simple variant with other baselines in a large-scale setting.
We use 32 GPUs with a Ring graph to train Resnet18 on Imagenet11. We plot the results
in Figure 4 where we use R = 4 and η = 0 for DeTAG*. We can see DeTAG* consistently
converges faster compared to other baselines in terms of oracle queries and communication
rounds.

On the other hand, the main idea of DeTAG* seems to be increasing the mini-batch size
via reordering the gradient queries. However, the design of multiple rounds of Gossip also
plays a crucial role. We perform an ablation study in Figure 5, comparing DeTAG* with
naively increasing mini-batch size but not communication rounds with same phase length.
We can see that with multi-round Gossip, DeTAG* generally allows larger-batch training
with less drop on the model accuracy.

8. Conclusion

In this paper, we investigate the tight lower bound on the iteration complexity of decentralized
training. We propose two algorithms, DeFacto and DeTAG, that achieve the lower bound
in terms of different decentralization in a learning system. DeTAG uses Gossip protocol,
and is shown to be empirically competitive to many baseline algorithms, such as D-PSGD.
We additionally study two DeTAG variants – DeTAG with momentum acceleration and
DeTAG*. In the future, we plan to investigate the variants of the complexity bound with
respect to communication that are compressed, asynchronous, etc.
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Supplementary Material
Appendix A. Experimental Details

A.1 Hyperparameter Tuning

In the experiment of training LeNet on CIFAR10, we tune the step size using grid search
inside the following range: {5e-3, 1e-3, 5e-4, 2.5e-4, 1e-4, 5e-5}. Note that this range is in
general smaller than the one chosen in Zhang and You (2019c), since here we are working
with unshuffled data, and we found original range in baselines causes algorithms to diverge
easily. Following Tang et al. (2018b), we let each run warm up for 10 epochs with step size
1e-5. For DeTAG, we further tune the accelerated gossip parameter η within {0, 0.1, 0.2,
0.4} and phase length R within {1, 2, 3}. We fix the momentum term to be 0.9 and weight
decay to be 1e-4.

In the experiment of training Resnet20 on CIFAR100, we tune the step size using grid
search inside the following range: {0.5, 0.1, 0.05, 0.01, 0.005}. For DeTAG, we further tune
the accelerated gossip parameter η within {0, 0.1, 0.2, 0.4} and phase length R within {1, 2,
3}. We fix the momentum term to be 0.9 and weight decay to be 5e-4.

The hyperparameters adopted for each runs are shown in Table 3 and Table 4.

A.2 Techniques of Running DeTAG

We can see in the main loop of DeTAG, several gradient queries are made at the same
point. This essentially is equivalent to a large mini-batch size. In practice, however, we can
modify this to use local-steps and get better empirical results Lin et al. (2018). Another
technique is to use warm-up epochs when data is decentralized. We observe it ensures a
smooth convergence in practice. Last but not least, since at first the noise in the algorithms
is generally large, we can use a dynamic phase length to obtain better results. That is, we
start from phase length 1 for the first few epochs, and let DeTAG follow the special case
of DSGT. Then we can gradually increase the phase length following given policies. The
intuition is that as algorithm converges, we would need less noise from communication, and
thus a longer phase length can benefit.

Table 3: (Initial) Step size α used for each experiments.

Experiment Setting Algorithm

D-PSGD D2 DSGT DeTAG

LeNet/CIFAR10

100% Shuffled 5e-3 5e-3 5e-3 5e-3
50% Shuffled 5e-5 2.5e-4 2.5e-4 5e-4
25% Shuffled 5e-5 1e-4 2.5e-4 5e-4
0% Shuffled 5e-5 1e-4 2.5e-4 5e-4

Resnet20/CIFAR100

κ = 1 0.5 0.5 0.5 0.5
κ = 0.1 0.5 0.5 0.5 0.5
κ = 0.05 0.5 0.5 0.5 0.5
κ = 0.01 0.5 0.5 0.5 0.5
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Table 4: DeTAG-specific hyperparameters used for each experiments.
Experiment Setting Accelerate Factor η Phase Length R

LeNet/CIFAR10

100% Shuffled 0 1
50% Shuffled 0.2 2
25% Shuffled 0.2 2
0% Shuffled 0.2 2

Resnet20/CIFAR100

κ = 1 0 1
κ = 0.1 0.2 2
κ = 0.05 0.2 2
κ = 0.01 0.4 2
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Appendix B. Technical Proof

B.1 Proof to Theorem 1

Proof To prove this theorem, it suffices for us to provide two examples, each has a (set of)
loss function f ∈ F∆,L, a set of underlying oracles O ∈ Oσ2 , a graph G ∈ Gn,D, such that
infA∈AB Tε(A, f,O,G) is lower bounded by Ω

(
∆Lσ2

nBε4

)
and Ω

(
∆LD
ε2

)
iterations on these two

examples, respectively. Then we will obtain the final bound as max
{

Ω
(

∆Lσ2

nBε4

)
,Ω
(

∆LD
ε2

)}
,

i.e., Ω
(

∆Lσ2

nBε4
+ ∆LD

ε2

)
as desired. For simplicity, we denote z(i) as the i-th coordinate of

vector z ∈ Rd.
For each setting, our constructions contain three main steps.
(1) The first step is to follow the construction of a zero chain function model Carmon

et al. (2017, 2019). Following Arjevani et al. (2019) and define

prog(z) = max{i ≥ 0|z(i) 6= 0}, ∀z ∈ Rd.

A zero chain function f has the following property:

prog(∇f(x)) ≤ prog(x) + 1,

that means, for a model start from x = 0, a single gradient evaluation can only make at
most one more coordinate to be non-zero. The name of "chain" comes from the fact that
the adjacent coordinates are linked like a chain and only if the previous coordinate becomes
non-zero that the current coordinate can become non-zero via a gradient update. Consider a
model with d dimension, if we show that ‖∇f(x)‖ ≥ ε for any x ∈ Rd with x(d) = 0, we will
obtain d as a lower bound on the gradient calls to obtain the ε-stationary point. We refer
such sequential lower bound as T0.

(2) Step two is to construct a graph G ∈ Gn,D and a set of oracle O ∈ Oσ2 . To do this,
our basic idea is to follow Arjevani et al. (2019) and introduce randomness on the prog(x),
and thus the whole chain only make progress with probability p. As will be shown later, this
requires Ω(T0/p) iterations in total.

(3) The third and last step is to rescale the function and distribution so as to make it
belong to the function and oracle classes we consider. In other words, this step is to guarantee
the result is shown in terms of ∆, L, σ, n and D.

We start from a smooth and (potentially) non-convex zero chain function f̂ Carmon et al.
(2019) as defined below:

f̂(x) = −Ψ(1)Φ(x(1)) +

T−1∑
i=1

[Ψ(−x(i))Φ(−x(i+1))−Ψ(x(i)Φ(x(i+1))], (23)

where for ∀z ∈ R

Ψ(z) =

{
0 z ≤ 1/2

exp
(

1− 1
(2z−1)2

)
z > 1/2

, Φ(z) =
√
e

∫ z

−∞
e

1
2
t2dt.

This function, as shown in previous works Carmon et al. (2019); Arjevani et al. (2019), is
a zero-chain function and thus is generally "hard" to optimize: it costs at least T gradient
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evaluations to find a stationary point. We summarize some properties of Equation (23) as
the following (Proof can be found in Lemma 2 in Arjevani et al. (2019)):

1. f̂(x)− infx f̂(x) ≤ ∆0T , ∀x ∈ Rd, where ∆0 = 12.

2. f̂ is l1-smooth, where l1 = 152.

3. ∀x ∈ RT , ‖∇f̂(x)‖∞ ≤ G∞, where G∞ = 23.

4. ∀x ∈ RT , if prog(x) < T , then ‖f̂(x)‖∞ ≥ 1.

(Setting 1) Next we discuss the first setting with lower bound Ω
(

∆Lσ2

nBε4

)
. (Setting 1, Step

1) The loss functions are defined as

f̂i(x) = f̂(x),

note that 1/n
∑n

i=1 f̂i = f̂ . It can be seen from Property 2 that all the f̂i are l1-smooth.
(Setting 1, Step 2) For this setting we consider complete graph. We construct the oracle on
worker i as the following:

[ĝi(x)]j = ∇j f̂i(x) ·
(

1 + 1{j > prog(x)}
(
z

p
− 1

))
,

where z ∼ Bernoulli(p). It can be seen that

E[ĝi(x)] = ∇f̂i(x),

and from Property 3 we know

E‖ĝi(x)−∇f̂i(x)‖2 =|∇prog(x)+1f̂(x)|2E
(
z

p
− 1

)2

≤‖∇f̂i(x)‖2∞(1− p)
p

≤‖∇f̂(x)‖2∞(1− p)
p

≤G
2
∞(1− p)
p

.

(Setting 1, Step 3) Finally we rescale each function as fi = Lλ2/l1f̂i(x/λ) where λ is a
parameter subject to change. For L: note that all fi are L

l1
· l1 = L-smooth. For the ∆,

f − f∗ =
Lλ2

l1
(f̂ − f̂∗) =

Lλ2∆0T

l1
≤ ∆. (24)

For the oracle, to be consistent with fi, we rescale it as gi(x) = Lλ/l1ĝi(x/λ), and we have

E‖gi(x)−∇fi(x)‖2 ≤ L2λ2

l21
E
∥∥∥gi (x

λ

)
−∇fi

(x
λ

)∥∥∥2
≤ L2λ2G2

∞(1− p)
l21p

≤ σ2. (25)
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Figure 6: Illustration graph for setting 2 to in the proof of Theorem 1.

We assign λ = 2l1ε/L, then Equation (24) and (25) are fulfilled with

T =

⌊
∆

∆0l1(2ε)2

⌋
,

p = min{(2G∞ε)2/σ2, 1}.

Take δ = 1/2 in Lemma 8, we have for probability at least 1/2, ‖∇f(x̂(t))‖ ≥ ε for all
t ≤ T+log(δ)

min{nBp,1}(e−1) . Use Property 4, for any x ∈ RT such that prog(x) < T it holds that
‖∇f(x)‖ ≥ 2ε, therefore,

E‖∇f(x̂T )‖ > ε.

Then with small ε it follows that

Tε(A, f,O,G) ≥ T − 1

nBp(e− 1)
≥ Ω

(
∆Lσ2

nBε4

)
,

and that completes the proof for setting 1.
(Setting 2) We proceed to the prove second bound Ω

(
∆LD
ε2

)
.

(Setting 2 Step 1 & Step 2) We assign all the workers with index from 1 to n, we first
define two indices set

I0 = {1, · · · , |I0|} ,
I1 = {n, n− 1, · · · , n− |I1|+ 1} .

where | · | denotes a cardinality of a set. Consider the construction of G in Figure 6:
If D ≥ n− 2dn/3e+ 2, then it implies the number of nodes between A and B is larger

than dn/3e. In this case, denote A’ and B’ as a sub linear graph where its number of nodes
is exactly dn/3e. Let all the nodes on the left of A’ be in I0 and all the nodes on the right of
B’ be I1 We define all the local functions f̂i(x) on such graph as following:
when i ∈ I0,

f̂i(x) =− 2n

n− dn/3e
Ψ(1)Φ(x(1))

+
∑

i=2k,k∈{1,2,··· },i<T

2n

n− dn/3e
[Ψ(−x(i))Φ(−x(i+1))−Ψ(x(i))Φ(x(i+1))];
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when i ∈ I1,

f̂i(x) =
∑

i=2k−1,k∈{1,2,··· },i<T

2n

n− dn/3e
[Ψ(−x(i))Φ(−x(i+1))−Ψ(x(i))Φ(x(i+1))];

when i 6∈ I0, I1,

f̂i(x) = 0.

If D < n− 2dn/3e+ 2, the distance between node A and node B is D − 2 and the sub
linear graph whose end points are A and B contains D − 1 nodes. We let the number of
nodes on the left of A be

⌈
n−D+1

2

⌉
, we denote the set of indices of all such nodes as I0; and

then we let the number of nodes on the right of B be
⌊
n−D+1

2

⌋
, we denote the set of indices

of all such nodes as II . Since D < n− 2dn/3e+ 2, this implies |I0|, |I1| > n/3. We define all
the local functions on such graph as following:
when i ∈ I0,

f̂i(x) =− n

|I0|
Ψ(1)Φ(x(1))

+
∑

i=2k,k∈{1,2,··· },i<T

n

|I0|
[Ψ(−x(i))Φ(−x(i+1))−Ψ(x(i))Φ(x(i+1))];

when i ∈ I1,

f̂i(x) =
∑

i=2k−1,k∈{1,2,··· },i<T

n

|I1|
[Ψ(−x(i))Φ(−x(i+1))−Ψ(x(i))Φ(x(i+1))];

when i 6∈ I0, I1,

f̂i(x) = 0.

In both cases discussed based on D, we can see that f̂(x) = 1
n

∑n
i=1 f̂i(x), and we are

splitting hard zero-chain function into two main different part: the even components of the
chain and the odd components of the chain. It is easy to see that for the zero chain function
to make progress, it takes at least dn/3e, i.e., Ω(D) number of iterations in the first case
(since here D = γ̃n for some γ̃ > 1/3) and D number of iterations in the seconds case. Then
the total number of iterations is lower bounded by Ω(TD).

For the oracle, we let oracle on worker i as

[ĝi(x)]j = ∇j f̂i(x).

(Setting 2, Step 3) The last step is to rescale the parameters. Compared to setting 1, we
know here all the f̂i are 3l1-smooth, as before we let

fi(x) =
Lλ2

3l1
f̂i

(x
λ

)
, λ =

6l1ε

L
.

For the ∆ bound we have

Lλ2∆0T/3l1 ≤ ∆
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to fulfill this it suffices to set

T =

⌊
∆L

∆0l1(12ε)2

⌋
.

It also can be seen that f is L-smooth. So in this setting,

Tε(A, f,O,G) ≥ Ω(TD) = Ω

(
∆LD

ε2

)
.

Combining Setting 1 and 2 we complete the proof.

Lemma 8 In setting 1 in the proof of Theorem 1, with probability at least 1−δ, ‖∇f(xt)‖ ≥ ε
for all t ≤ T+log(δ)

min{nBp,1}(e−1) .

Proof Define a filtration at iteration t as the sigma field of all the previous events happened
before iteration t. Let i(t)j = prog(xt,j), ∀j ∈ [n] and i(t) = maxj i

(t)
j . And we denote

E(t,m,j) as the event of the i
(t)
m + 1-th coordinate of output of j-th query on worker

m at iteration t is non-zero. Based on the independent sampling, these events are
independent. Thus we know:

P[i(t+1) − i(t) = 1|U (t)] = P

 ⋃
i∈[n]
j≤B

E(t,i,j)|U (t)

 ≤ ∑
i∈[n],j≤B

P
[
E(t,i,j)|U (t)

]
≤ min{nBp, 1}.

Let q(t) = i(t+1) − i(t), with Chernoff bound, we obtain

P[i(t) ≥ T ] = P[e
∑t−1
j=0 q

(j)

≥ eT ] ≤ e−TE[e
∑t−1
j=0 q

(j)

].

For the expectation term we know that

E[e
∑t−1
j=0 q

(j)

] = E

t−1∏
j=0

E
[
eq

(j) |U (j)
] ≤ (1−min{nBp, 1}+ min{nBp, 1}e)t ≤ emin{nBp,1}t(e−1).

Thus we know

P[i(t) ≥ T ] ≤ e(e−1) min{nBp,1}t−T ≤ δ,

for every t ≤ T+log(δ)
min{nBp,1}(e−1) .
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B.2 Proof to Corollary 2

Proof Different from Theorem 5, in this corollary we do not choose D and n separately, so
that our construction can just use the linear graph as follows:

(Linear graph, Step 1) We first let |I0| = |I1| = dn/3e in the proof of Theorem 1, meaning
I0 denotes the first dn/3e workers and I1 denotes the last dn/3e workers. We define all the
local functions f̂i(x) as following:
when i ∈ I0,

f̂i(x) =− n

dn/3e
Ψ(1)Φ(x(1))

+
∑

i=2k,k∈{1,2,··· },i<T

n

dn/3e
[Ψ(−x(i))Φ(−x(i+1))−Ψ(x(i))Φ(x(i+1))];

when i ∈ I1,

f̂i(x) =
∑

i=2k−1,k∈{1,2,··· },i<T

n

dn/3e
[Ψ(−x(i))Φ(−x(i+1))−Ψ(x(i))Φ(x(i+1))];

when i 6∈ I0, I1,

f̂i(x) = 0.

We can see that f̂(x) = 1
n

∑n
i=1 f̂i(x). (Linear graph, Step 2) We consider linear graph in

this setting and from one end to the other, the worker’s index is 1 to n, without the loss
of generality. It is easy to see that for the zero chain function to make progress, it takes at
least n− 2dn/3e+ 1 number of iterations. Note that in linear graph n− 1 = D, the total
number of iterations is at least

Ω (TD) .

For the oracle, we let oracle on worker i as

[ĝi(x)]j = ∇j f̂i(x)

(Linear graph, Step 3) The last step is to rescale the parameters. Compared to setting 1, we
know here all the f̂i are 3l1-smooth, as before we let

fi(x) =
Lλ2

3l1
f̂i

(x
λ

)
, λ =

6l1ε

L
.

For the ∆ bound we have

Lλ2∆0T/3l1 ≤ ∆,

to fulfill this it suffices to set

T =

⌊
∆L

∆0l1(12ε)2

⌋
.
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It also can be seen that f is L-smooth. So in this setting,

Tε(A, f,O,G) ≥ Ω(TD) ≥ Ω

(
∆LD

ε2

)
.

Given the bound, we use two additional results on linear graph as Berthier et al. (2020): the
random walk matrix W rw on linear graph with λ fulfilling

1√
1− λ

= O(D).

Then we can rewrite the lower bound in the form of λ as shown in Corollary 2.
Finally, using the conclusion of λ = cos(π/n) for n ∈ {2, 3, · · · , } on linear graph we

complete the proof.

B.3 Proof to Theorem 4

Proof As (partially) discussed in the paper, DeFacto is statistically equivalent to centralized
SGD. Specifically, it conduct K = T/2R gradient steps where each step contains a mini-batch
of R at the point of xk,i, ∀i ∈ [n]. Take the well-known convergence rate for centralized SGD:

1

T

T−1∑
t=0

‖∇f(x̂)‖2 ≤ O
(

∆Lσ√
nBT

+
∆L

T

)
.

The convergence rate of DeFacto can be expressed as:

1

T

T−1∑
t=0

‖∇f(x̂)‖2 ≤ O

(
∆Lσ/

√
R√

nBK
+

∆L

K

)
= O

(
∆Lσ√
nBT

+
∆LR

T

)
= O

(
∆Lσ√
nBT

+
∆LD

T

)
,

then we obtain for DeFacto, when T = O(∆Lσ2(nBε4)−1 + ∆LDε−2),

min
t=0,1,··· ,T−1

E ‖∇f (x̂)‖ ≤
√

min
t=0,1,··· ,T−1

E ‖∇f (x̂)‖2 ≤

√
O

(
∆Lσ√
nBT

+
∆LD

T

)
≤ ε,

that completes the proof.

B.4 Proof to Theorem 5

Proof In this proof, we adopt an updated version of notation: we denote at the beginning
of phase k (k ≥ 0), the three quantities of interests are Xk, Y k and G̃k, and the update
rule becomes (for any k ≥ 0 with G̃−1 = 0 by convention and X0 = 0, Y 0 = 0 and G̃0 = 0
following initialization):

Y k+1 =M(Y k + G̃k − G̃k−1),
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Xk+1 =M(Xk − αkY k),

with

G̃k+1 =
[
∇f̃1(xk,1), · · · ,∇f̃n(xk,n)

]
∈ Rd×n,

Gk+1 = [∇f1(xk,1), · · · ,∇fn(xk,n)] ∈ Rd×n,
Xk = [xk,1, · · · ,xk,n] ∈ Rd×n,
Y k =

[
yk,1, · · · ,yk,n

]
∈ Rd×n,

where ∇f̃i denotes the stochastic gradient oracle on worker i, and ∇fi denotes the full
gradient oracle on worker i. We use X denote X 1

n for any matrix X with appropriate
shape. We use λi(W ) to denote the i-th general largest eigenvalue of matrix W . Under such
notation, λ in the main paper is equavilent to λ2(W ). We useM(·) to denote the R-step
accelerated gossip which has the following property Liu and Morse (2011):

‖M(X)−X‖ ≤ ρ‖X −X‖; M(X)
1

n
= X

1

n
, (26)

where ρ =
(

1−
√

1− λ2(W )
)R

. The proof to the statement of Equation (26) can be found
in Ye et al. (2020).

For the stochastic oracle, based on the oracle class assumption, we have

E‖∇f̃i(x)−∇fi(x)‖2 ≤ σ2,

and we denote σ̃2 = σ2

BR as the variance of mini-batch of B ·R.
First, from the update rule of DeTAG,

Y k =M(Y k−1 + G̃k−1− G̃k−2)
1

n
= Y k−1 + G̃k−1− G̃k−2 = Y 0 +

k−1∑
j=0

(G̃j− G̃j−1) = G̃k−1

(27)
and

Xk+1 =M(Xk − αkY k)
1

n
= Xk − αkY k. (28)

By Taylor Theorem, we obtain for any k ≥ 0

Ef
(
Xk+1

)
=Ef

(
Xk − αkY k

)
≤Ef

(
Xk

)
− αkE

〈
∇f

(
Xk

)
,Y k

〉
+
α2
kL

2
E
∥∥Y k

∥∥2

(27)
= Ef

(
Xk

)
− αkE

〈
∇f

(
Xk

)
,Gk−1

〉
+
α2
kL

2
E
∥∥∥G̃k−1

∥∥∥2
.
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For the last term, we have

E
∥∥∥G̃k−1

∥∥∥2
=E

∥∥Gk−1

∥∥2
+ E

∥∥∥Gk−1 − G̃k−1

∥∥∥2
+ 2E

〈
Gk−1,Gk−1 − G̃k−1

〉
=E

∥∥Gk−1

∥∥2
+ E

∥∥∥Gk−1 − G̃k−1

∥∥∥2

=E
∥∥Gk−1

∥∥2
+

1

n2

n∑
i=1

E
∥∥∥Gk−1ei − G̃k−1ei

∥∥∥2

≤E
∥∥Gk−1

∥∥2
+
σ̃2

n
,

(29)

where in the second step, we use the fact that the sampling noise is independent of the
gradient itself. Note that this inequality still holds when k = 0,−1 as long as we slightly
abuse the notations and define G0 = G−1 = 0. Putting it back we obtain

Ef
(
Xk+1

)
≤Ef

(
Xk

)
− αkE

〈
∇f

(
Xk

)
,Gk−1

〉
+
α2
kL

2
E
∥∥Gk−1

∥∥2
+
α2
kσ̃

2L

2n

=Ef
(
Xk

)
− αk

2
E
∥∥∇f (Xk

)∥∥2 −
αk − α2

kL

2

∥∥Gk−1

∥∥2
+
α2
kσ̃

2L

2n
+
αk
2
E
∥∥Gk−1 −∇f

(
Xk

)∥∥2
,

where the last step we use the fact that for any a and b, 2〈a, b〉 = ‖a‖2 + ‖b‖2 − ‖a− b‖2.
Expand the last term,

E
∥∥Gk−1 −∇f

(
Xk

)∥∥2

≤2E
∥∥Gk−1 −Gk+1

∥∥2
+ 2E

∥∥Gk+1 −∇f
(
Xk

)∥∥2

=2E

∥∥∥∥∥ 1

n

n∑
i=1

∇fi(xk,i)−
1

n

n∑
i=1

∇fi(xk−2,i)

∥∥∥∥∥
2

+ 2E

∥∥∥∥∥ 1

n

n∑
i=1

∇fi(xk,i)−
1

n

n∑
i=1

∇fi(Xk)

∥∥∥∥∥
2

≤ 2

n

n∑
i=1

E ‖∇fi(xk,i)−∇fi(xk−2,i)‖2 +
2

n

n∑
i=1

E
∥∥∇fi(xk,i)−∇fi(Xk)

∥∥2

≤2L2

n
E ‖Xk −Xk−2‖2F +

2L2

n
E
∥∥∥Xk −Xk1

>
n

∥∥∥2

F
,

where in the third step we use the Jensen’s Inequality and in the fourth step we apply the
smoothness assumption.

With the assumption of f(0)− f∗ ≤ ∆, we obtain

K−1∑
k=0

αk(1− αkL)
∥∥Gk

∥∥2
+

K−1∑
k=0

αkE
∥∥∇f (Xk

)∥∥2

≤2∆ +
σ̃2L

n

K−1∑
k=0

α2
k +

2L2

n

K−1∑
k=0

αkE
∥∥∥Xk −Xk1

>
n

∥∥∥2

F
+

2L2

n

K−1∑
k=0

αkE ‖Xk −Xk−2‖2F

≤2∆ +
σ̃2L

n

K−1∑
k=0

α2
k +

16L2

n

K−1∑
k=0

αkE
∥∥∥Xk −Xk1

>
n

∥∥∥2

F
+

6L2

n

K−1∑
k=0

αkE
∥∥∥Xk1

>
n −Xk−21

>
n

∥∥∥2

F
,
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where in the last step we use

E ‖Xk −Xk−2‖2F ≤ 3E
∥∥∥Xk −Xk1

>
n

∥∥∥2

F
+ 3E

∥∥∥Xk−2 −Xk−21
>
n

∥∥∥2

F
+ 3E

∥∥∥Xk1
>
n −Xk−21

>
n

∥∥∥2

F
.

In addition, for the last term we have

6L2

n

K−1∑
k=0

αkE
∥∥∥Xk1

>
n −Xk−21

>
n

∥∥∥2

F

=
6L2n

n

K−1∑
k=0

αkE
∥∥Xk −Xk−2

∥∥2

≤6L2n

n

K−1∑
k=0

αk

(
2E
∥∥Xk −Xk−1

∥∥2
+ 2E

∥∥Xk−1 −Xk−2

∥∥2
)

(28)
=

24L2n

n

K−1∑
k=0

α3
kE
∥∥∥G̃k

∥∥∥2

(29)

≤ 24L2
K−1∑
k=0

α3
kE
∥∥Gk

∥∥2
+

24σ̃2L2

n

K−1∑
k=0

α3
k,

where in the third step we use the fact that {αk} is non-increasing with respect to k. Push
it back we have

K−1∑
k=0

αk(1− αkL− 24α2
kL

2)
∥∥Gk

∥∥2
+
K−1∑
k=0

αkE
∥∥∇f (Xk

)∥∥2

≤2∆ +
σ̃2L

n

K−1∑
k=0

α2
k +

16L2

n

K−1∑
k=0

αkE
∥∥∥Xk −Xk1

>
n

∥∥∥2

F
+

24σ̃2L2

n

K−1∑
k=0

α3
k.

(30)

The rest of the proof is to bound 16L2

n

∑K−1
k=0 αkE

∥∥Xk −Xk1
>
n

∥∥2

F
.

First from Lemma 9 we obtain the dynamics of Xk and Y k are as follows:

E
∥∥∥Xk+1 −Xk+11

>
n

∥∥∥2

F

≤ 2ρ2

(1 + ρ2)
E
∥∥∥Xk −Xk1

>
n

∥∥∥2

F
+

2ρ2α2
k

1− ρ2
E
∥∥∥Y k − Y k1

>
n

∥∥∥2

F

E
∥∥∥Y k+1 − Y k+11

>
n

∥∥∥2

F

≤
(

2ρ2

1 + ρ2
+

16α2
kρ

4L2

1− ρ2

)
E
∥∥∥Y k − Y k1

>
n

∥∥∥2

F
+

16ρ2(1 + ρ2)L2

1− ρ2
E
∥∥∥Xk −Xk1

>
n

∥∥∥2

F

+
16α2

kρ
2nL2

1− ρ2
E
∥∥Y k

∥∥2
+

4ρ2

1− ρ2
E ‖Gk+2 −Gk+1 −Gk + Gk−1‖2F + 8nρ2σ̃2.

(31)
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The dynamics of
∥∥Xk −Xk1

>
n

∥∥2

F
and

∥∥Y k − Y k1
>
n

∥∥2

F
follow a linear system. By solving

this linear system (details in Lemma 10), we obtain the following:
K−1∑
k=0

αkE
∥∥∥Xk −Xk1

>
n

∥∥∥2

F

≤2ρ2α3
0(1 + ρ)nKς2

0

(1− ρ)(1−√ρ)2
+

32ρ4nL2

(1− ρ)2(1−√ρ)2

K−1∑
k=0

α5
kE
∥∥Gk

∥∥2
+

8ρ4

(1− ρ)2(1−√ρ)2

K−1∑
k=0

α3
kE‖Uk‖2F

+
16ρ4nσ̃2(1 + ρ)

(1− ρ)(1−√ρ)2

K−1∑
k=0

α3
k,

(32)
where Uk = Gk+2 − Gk+1 − Gk + Gk−1. From here we need to additionally bound∑K−1

k=0 α3
kE‖Uk‖2F .

Start by its definition,
K−1∑
k=0

α3
kE ‖Uk‖2F

=
K−1∑
k=0

α3
kE ‖Gk+2 −Gk+1 −Gk + Gk−1‖2F

≤2
K−1∑
k=0

α3
kE ‖Gk+2 −Gk+1‖2F + 2

K−1∑
k=0

α3
kE ‖Gk −Gk−1‖2F

≤4

K−1∑
k=0

α3
kE ‖Gk+2 −Gk+1‖2F

=4
K−1∑
k=0

α3
k

n∑
i=1

E ‖∇f(xk+1,i)−∇f(xk,i)‖2

≤4L2
K−1∑
k=0

α3
k

n∑
i=1

E ‖xk+1,i − xk,i‖2

=4L2
K−1∑
k=0

α3
kE ‖Xk+1 −Xk‖2F

(28)
= 4L2

K−1∑
k=0

α3
kE ‖M(Xk)−Xk − αkM(Y k)‖2F

=4L2
K−1∑
k=0

α3
kE
∥∥∥M(Xk −Xk1

>
n )− (Xk −Xk1

>
n )− αkM(Y k)

∥∥∥2

F

≤4L2
K−1∑
k=0

α3
k·(

4E
∥∥∥M(Xk)−Xk1

>
n

∥∥∥2

F
+ 4E

∥∥∥Xk −Xk1
>
n

∥∥∥2

F
+ 4α2

kE
∥∥∥M(Y k)− Y k1

>
n

∥∥∥2

F
+ 4α2

knE
∥∥Y k

∥∥2
)
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≤16(1 + ρ2)L2
K−1∑
k=0

α3
kE
∥∥∥Xk −Xk1

>
n

∥∥∥2

F
+ 16ρ2L2

K−1∑
k=0

α5
kE
∥∥∥Y k − Y k1

>
n

∥∥∥2

F

+ 16nL2
K−1∑
k=0

α5
kE
∥∥Y k

∥∥2
.

The bound depends both on Xk and Y k. Revisit Lemma 10, we obtain the following
two bounds:

K−1∑
k=0

α3
kE
∥∥∥Xk −Xk1

>
n

∥∥∥2

F

≤2ρ2α5
0(1 + ρ)nKς2

0

(1− ρ)(1−√ρ)2
+

32ρ4nL2

(1− ρ)2(1−√ρ)2

K−1∑
k=0

α7
kE
∥∥Gk

∥∥2

+
8ρ4

(1− ρ)2(1−√ρ)2

K−1∑
k=0

α5
kE‖Uk‖2F +

16ρ4nσ̃2(1 + ρ)

(1− ρ)(1−√ρ)2

K−1∑
k=0

α5
k,

and

K−1∑
k=0

α5
kE‖Y k − Y k1

>
n ‖2

≤(1 + ρ)α5
0nKς

2
0

1−√ρ
+

8α7
0ρ

4(1 + ρ)L2nKς2
0

(1− ρ)(1−√ρ)2
+
K−1∑
k=0

α5
k

(
1 + ρ

1−√ρ
+

8α2
kρ

4(1 + ρ)L2

(1− ρ)(1−√ρ)2

)
·(

4ρ2

1− ρ2
E ‖Uk‖2F +

16α2
kρ

2nL2

1− ρ2
E
∥∥Gk

∥∥2
+

16α2
kρ

2σ̃2L2

1− ρ2
+ 8nρ2σ̃2

)
.

Put both bounds back,

K−1∑
k=0

α3
kE ‖Uk‖2F ≤

32ρ2α5
0(1 + ρ)2nKς2

0L
2

(1− ρ)(1−√ρ)2
+

512ρ4(1 + ρ)nL4

(1− ρ)2(1−√ρ)2

K−1∑
k=0

α7
kE
∥∥Gk

∥∥2

+
256ρ4(1 + ρ)L2

(1− ρ)2(1−√ρ)2

K−1∑
k=0

α5
kE‖Uk‖2F +

256ρ4nσ̃2(1 + ρ)2L2

(1− ρ)(1−√ρ)2

K−1∑
k=0

α5
k

+
16α5

0ρ
2(1 + ρ)nKς2

0L
2

1−√ρ
+

128α7
0ρ

6(1 + ρ)L4nKς2
0

(1− ρ)(1−√ρ)2

+

K−1∑
k=0

4ρ2

1− ρ2

(
16α5

kρ
2(1 + ρ)L2

1−√ρ
+

128α8
kρ

6(1 + ρ)L4

(1− ρ)(1−√ρ)2

)
E ‖Uk‖2F

+
K−1∑
k=0

(
16α5

kρ
2(1 + ρ)L2

1−√ρ
+

128α8
kρ

6(1 + ρ)L4

(1− ρ)(1−√ρ)2

)
·(

16α4
kρ

2nL2

1− ρ2
E
∥∥Gk

∥∥2
+

16α4
kρ

2σ̃2L2

1− ρ2
+ 8nρ2σ̃2

)
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+ 16nL2
K−1∑
k=0

α5
kE
∥∥Y k

∥∥2

≤64ρ2α5
0(1 + ρ)2nKς2

0L
2

(1− ρ)(1−√ρ)2
+

512ρ4(1 + ρ)L2

(1− ρ)2(1−√ρ)2

K−1∑
k=0

α5
kE‖Uk‖2F

+
512ρ4nσ̃2(1 + ρ)2L2

(1− ρ)(1−√ρ)2

K−1∑
k=0

α5
k + 32nL2

K−1∑
k=0

α5
kE
∥∥Gk

∥∥2
,

where we repeatedly use Equation (37) and Equation (29), solve it we obtain

K−1∑
k=0

α3
kE ‖Uk‖2F ≤

128ρ2α5
0(1 + ρ)2nKς2

0L
2

(1− ρ)(1−√ρ)2
+

1024ρ4nσ̃2(1 + ρ)2L2

(1− ρ)(1−√ρ)2

K−1∑
k=0

α5
k

+ 64nL2
K−1∑
k=0

α5
kE
∥∥Gk

∥∥2
,

where again we use Equation (37), combine it with Equation (32) we obtain

K−1∑
k=0

αkE
∥∥∥Xk −Xk1

>
n

∥∥∥2

F

≤4ρ2α3
0(1 + ρ)nKς2

0

(1− ρ)(1−√ρ)2
+

544ρ4nL2

(1− ρ)2(1−√ρ)2

K−1∑
k=0

α5
kE
∥∥Gk

∥∥2
+

32ρ4nσ̃2(1 + ρ)

(1− ρ)(1−√ρ)2

K−1∑
k=0

α3
k,

where we use Equation (37). Put this result back to Equation (30), rearrange the terms and
eliminate the numerical constants, we obtain

K−1∑
k=0

αkE
∥∥∇f (Xk

)∥∥2

≤O

(
∆ +

σ̃2L

n

K−1∑
k=0

α2
k +

ρ2α3
0L

2Kς2
0

(1− ρ)3
+
ρ4σ̃2L2

(1− ρ)3

K−1∑
k=0

α3
k +

σ̃2L2

n

K−1∑
k=0

α3
k

)
.

Fit in T = KR and σ̃2 = σ2/BR, we obtain

T/R−1∑
k=0

αkE
∥∥∇f (Xk

)∥∥2

≤O

∆ +
σ2L

nBR

T/R−1∑
k=0

α2
k +

ρ2α3
0L

2Tς2
0

(1− ρ)3R
+

ρ4σ2L2

(1− ρ)3BR

T/R−1∑
k=0

α3
k +

σ2L2

nBR

T/R−1∑
k=0

α3
k


That completes the proof.
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B.5 Proof to Corollary 6

Proof Let αk = α in Theorem 5, we obtain,

1

K

K−1∑
k=0

E
∥∥∇f (Xk

)∥∥2 ≤ O
(

∆

αK
+
ασ̃2L

n
+
ρ2α2L2ς2

0

(1− ρ)3
+
ρ4α2σ̃2L2

(1− ρ)3
+
α2σ̃2L2

n

)
,

where we omit the numerical constants. Set

α =
1

σ̃
√
KL/n∆ +

ρ
2
3L

2
3 ς

2
3
0 K

1
3

∆
1
3 (1−ρ)

+ 32L
(1−ρ)2

=
1√

σ2TL
BR2n∆

+
ρ

2
3L

2
3 ς

2
3
0 T

1
3

R
1
3 ∆

1
3 (1−ρ)

+ 32L
(1−ρ)2

,

we obtain

1

K

K−1∑
k=0

E
∥∥∇f (Xk

)∥∥2 ≤ O

(√
∆Lσ̃√
nK

+
(ρ∆Lς0)

2
3

(1− ρ)K
2
3

+
ρ2n∆L

(1− ρ)3K
+

∆L

(1− ρ)2K

)
.

Fit in T = KR and σ̃2 = σ2/BR, we obtain

1

K

K−1∑
k=0

E
∥∥∇f (Xk

)∥∥2 ≤ O

(√
∆Lσ√
nBT

+
(ρ∆Lς0R)

2
3

(1− ρ)T
2
3

+
ρ2nR∆L

(1− ρ)3T
+

R∆L

(1− ρ)2T

)
,

set

R =
1√

1− λ2(W )
max

(
1

2
log(n),

1

2
log

(
ς2
0T

∆L

))
,

we first have ρ ≤ 1/
√

2 since

R ≥ log(n)

2
√

1− λ2(W )
≥ − log(n)

2 log(1−
√

1− λ2(W ))
⇒
(

1−
√

1− λ2(W )
)R
≤ 1√

n
≤ 1√

2
,

this implies

1

K

K−1∑
k=0

E
∥∥∇f (Xk

)∥∥2 ≤ O

(√
∆Lσ√
nBT

+
(ρ∆Lς0R)

2
3

T
2
3

+
ρ2nR∆L

T
+
R∆L

T

)

≤ O

(√
∆Lσ√
nBT

+
(ρς0
√
TR/
√

∆L)
2
3 ∆L

T
+
ρ2nR∆L

T
+
R∆L

T

)
,

with the assignment of R, ρ2n < 1 and ρς0
√
T/
√

∆L < 1, so since it also holds that R ≥ 1
(and so R2/3 ≤ R),

min
t
‖∇f

(
Xt

)
‖2 ≤ 1

K

K−1∑
k=0

E
∥∥∇f (Xk

)∥∥2
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≤O

(√
∆Lσ√
nBT

+
(R)

2
3 ∆L

T
+
R∆L

T
+
R∆L

T

)

≤O

(√
∆Lσ√
nBT

+
R∆L

T

)

=O

(√
∆Lσ√
nBT

+
∆L

T
√

1− λ2(W )
·max

(
log(n), log

(
ς2
0T

∆L

)))
,

when

T ≤ O
(

∆Lσ2

nBε4

)
,

we have
√

∆Lσ√
nBT

≤ O(ε2).

On the other hand, when

T ≤ O

(
max

(
log(n)∆L

ε2
√

1− λ2(W )
,

∆L

ε2
√

1− λ2(W )
log

(
ς2
0

ε2∆L

)))
,

we have

∆L

T
√

1− λ2(W )
·max

(
log(n), log

(
ς2
0T

∆L

))
≤ O(ε2),

to see this, note that

∆L

T
√

1− λ2(W )
log

(
ς2
0T

∆L

)
=ε2

log
(

ς20
ε2∆L

log
(

ς20
ε2∆L

))
log
(

ς20
ε2∆L

) ≤ O(ε2).

Finally, we can obtain the upper bound

T ≤O

(
∆Lσ2

nBε4
+ max

(
log(n)∆L

ε2
√

1− λ2(W )
,

∆L

ε2
√

1− λ2(W )
log

(
ς2
0

ε2∆L

)))

=O

(
∆Lσ2

nBε4
+

∆L

ε2
√

1− λ2(W )
log

(
n+

ς0n

ε
√

∆L

))
,

as desired. That completes the proof.
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B.6 Proof to Theorem 7

Proof In this proof, we reuse the definition for Xk, Y k and G̃k as adopted in the proof to
Theorem 5, and additionally define V k as the momentum matrix, which is

V k = [vk,1, · · · ,vk,n] ∈ Rd×n,

and the update of DeTAG with momentum becomes

V k+1 = βV k + G̃k

Y k+1 =M(Y k + V k − V k−1),

Xk+1 =M(Xk − αY k).

From this update rule, we first know that

Y k =M(Y k−1 + V k−1 − V k−1)
1

n
= Y k−1 + V k−1 − V k−2 = Y 0 +

k−1∑
j=0

(V j − V j−1) = V k−1

(33)

and

Xk+1 =M(Xk − αY k)
1

n
= Xk − αY k. (34)

From Lemma 12, we obtain

1

K

K−1∑
k=0

E
∥∥∇f (Xk

)∥∥2
+

1

K

K−1∑
k=0

(
1− 4α(1 + γ̃)L

1− β
− 54α3L2

(1− β)3

)
E
∥∥Gk

∥∥2

≤2(1− β)∆

αK
+

4αγ̃σ̃2L

(1− β)n
+

(
2L2

nK
+

12αL2

(1− β)nK

)K−1∑
k=0

E
∥∥∥Xk −Xk1

>
n

∥∥∥2

F
+

54α3σ̃2L2

(1− β)3n
.

(35)
Similar to the proof of Theorem 5, we bound

∑K−1
k=0 E

∥∥Xk −Xk1
>
n

∥∥2

F
via solving a

linear system. With minor modification12 on Lemma 9 we obtain∥∥∥Xk+1 −Xk+11
>
n

∥∥∥2

F
≤ 2ρ2

(1 + ρ2)

∥∥∥Xk −Xk1
>
n

∥∥∥2

F
+

2ρ2α2

1− ρ2

∥∥∥Y k − Y k1
>
n

∥∥∥2

F
.

and

E
∥∥∥Y k+1 − Y k+11

>
n

∥∥∥2

F

≤
(

2ρ2

1 + ρ2
+

16α2ρ4L2

1− ρ2

)
E
∥∥∥Y k − Y k1

>
n

∥∥∥2

F
+

16ρ2(1 + ρ2)L2

1− ρ2
E
∥∥∥Xk −Xk1

>
n

∥∥∥2

F

+
16α2ρ2nL2

1− ρ2
E
∥∥Y k

∥∥2
+

4ρ2

1− ρ2
E ‖Gk+2 −Gk+1 − V k + V k−1‖2F .

12. Since the main updates to DeTAG and DeTAGM only differs in using V and G̃.
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We now obtain the linear system with momentum version and can perform a similar analysis
as in Lemma 10 with

Uk =Gk+2 −Gk+1 − V k + V k−1

uk =

[
0

4ρ2

1−ρ2E ‖Uk‖2F + 16α2ρ2nL2

1−ρ2 E
∥∥Y k

∥∥2

]
.

And we can get the following two bounds:

K−1∑
k=0

E
∥∥∥Xk −Xk1

>
n

∥∥∥2

F

≤2ρ2α2(1 + ρ)nKς2
0

(1− ρ)(1−√ρ)2
+

32ρ4α4nL2

(1− ρ)2(1−√ρ)2

K−1∑
k=0

E
∥∥Gk

∥∥2
+

8ρ4α2

(1− ρ)2(1−√ρ)2

K−1∑
k=0

E‖Uk‖2F ,

(36)
and

K−1∑
k=0

E‖Y k − Y k1
>
n ‖2

≤(1 + ρ)nKς2
0

1−√ρ
+

8α2ρ4(1 + ρ)L2nKς2
0

(1− ρ)(1−√ρ)2

+

(
1 + ρ

1−√ρ
+

8α2ρ4(1 + ρ)L2

(1− ρ)(1−√ρ)2

)K−1∑
k=0

(
4ρ2

1− ρ2
E ‖Uk‖2F +

16α2ρ2nL2

1− ρ2
E
∥∥Gk

∥∥2
)
.

We next solve ‖Uk‖F , from the definition of Uk:

K−1∑
k=0

E ‖Uk‖2F =
K−1∑
k=0

E ‖Gk+2 −Gk+1 − V k + V k−1‖2F

≤2

K−1∑
k=0

E ‖Gk+2 −Gk+1‖2F + 2

K−1∑
k=0

E ‖V k − V k−1‖2F .

For the second term,

K−1∑
k=0

E ‖V k − V k−1‖2F

=

K−1∑
k=0

E

∥∥∥∥∥∥
k−1∑
j=0

βk−j−1G̃j −
k−2∑
j=0

βk−j−2G̃j

∥∥∥∥∥∥
2

F

=

K−1∑
k=0

E

∥∥∥∥∥∥
k−2∑
j=0

βk−j−2G̃j+1 −
k−2∑
j=0

βk−j−2G̃j

∥∥∥∥∥∥
2

F
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=
1

(1− β)2

K−1∑
k=0

E

∥∥∥∥∥∥
k−2∑
j=0

(1− β)βk−j−2G̃j+1 −
k−2∑
j=0

(1− β)βk−j−2G̃j

∥∥∥∥∥∥
2

F

≤ 1

1− β

K−1∑
k=0

k−2∑
j=0

βk−j−2E
∥∥∥G̃j+1 − G̃j

∥∥∥2

F

≤ 1

(1− β)2

K−1∑
k=0

E
∥∥∥G̃k+1 − G̃k

∥∥∥2

F

=
1

(1− β)2

K−1∑
k=0

(
E ‖Gk+1 −Gk‖2F + E

∥∥∥G̃k+1 −Gk+1

∥∥∥2

F
+ E

∥∥∥G̃k −Gk

∥∥∥2

F

)

≤ 1

(1− β)2

K−1∑
k=0

E ‖Gk+1 −Gk‖2F +
2σ̃2nK

(1− β)2
.

Put it back to the previous inequality,

K−1∑
k=0

E ‖Uk‖2F ≤2
K−1∑
k=0

E ‖Gk+2 −Gk+1‖2F + 2
K−1∑
k=0

E ‖V k − V k−1‖2F

≤
(

2 +
2

(1− β)2

)
L2

K−1∑
k=0

E ‖Xk+1 −Xk‖2F +
4σ̃2nK

(1− β)2

≤ 4L2

(1− β)2

K−1∑
k=0

E ‖Xk+1 −Xk‖2F +
4σ̃2nK

(1− β)2

Multiplying (1− β)2 on both sides for simplicity,

(1− β)2
K−1∑
k=0

E ‖Uk‖2F

≤4L2
K−1∑
k=0

E ‖Xk+1 −Xk‖2F + 4σ̃2nK

≤4σ̃2nK + 4L2
K−1∑
k=0

(
4E
∥∥∥M(Xk)−Xk1

>
n

∥∥∥2

F
+ 4E

∥∥∥Xk −Xk1
>
n

∥∥∥2

F

)

+ 4L2
K−1∑
k=0

(
4α2E

∥∥∥M(Y k)− Y k1
>
n

∥∥∥2

F
+ 4α2nE

∥∥Y k

∥∥2
)

=16(1 + ρ2)L2
K−1∑
k=0

E
∥∥∥Xk −Xk1

>
n

∥∥∥2

F
+ 16α2ρ2L2

K−1∑
k=0

E
∥∥∥Y k − Y k1

>
n

∥∥∥2

F

+ 16α2nL2
K−1∑
k=0

E
∥∥Y k

∥∥2
+ 4σ̃2nK
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≤32ρ2α2(1 + ρ)2nKς2
0L

2

(1− ρ)(1−√ρ)2
+

512ρ4(1 + ρ)α4nL4

(1− ρ)2(1−√ρ)2

K−1∑
k=0

E
∥∥Gk

∥∥2

+
256ρ4(1 + ρ)α2L2

(1− ρ)2(1−√ρ)2

K−1∑
k=0

E‖Uk‖2F

+ 16α2ρ2L2

(
(1 + ρ)nKς2

0

1−√ρ
+

8α2ρ4(1 + ρ)L2nKς2
0

(1− ρ)(1−√ρ)2

)
+

(
16α2ρ2(1 + ρ)L2

1−√ρ
+

128α4ρ6(1 + ρ)L4

(1− ρ)(1−√ρ)2

)K−1∑
k=0

4ρ2

1− ρ2
E ‖Uk‖2F

+

(
16α2ρ2(1 + ρ)L2

1−√ρ
+

128α4ρ6(1 + ρ)L4

(1− ρ)(1−√ρ)2

)K−1∑
k=0

16α2ρ2nL2

1− ρ2
E
∥∥Gk

∥∥2

+ 16α2nL2
K−1∑
k=0

E
∥∥Y k

∥∥2
+ 4σ̃2nK

≤64ρ2α2(1 + ρ)2nKς2
0L

2

(1− ρ)(1−√ρ)2
+ 4σ̃2nK +

512ρ4(1 + ρ)α2L2

(1− ρ)2(1−√ρ)2

K−1∑
k=0

E‖Uk‖2F

+ 32α2nL2
K−1∑
k=0

E
∥∥Gk

∥∥2
,

where we repeatedly use step size requirement and Equation (29), solve it we obtain

K−1∑
k=0

E ‖Uk‖2F ≤
128ρ2α2(1 + ρ)2nKς2

0L
2

(1− β)2(1− ρ)(1−√ρ)2
+

8nσ̃2K

(1− β)2
+

64α2nL2

(1− β)2

K−1∑
k=0

E
∥∥Gk

∥∥2
,

combine it with Equation (36) we obtain

K−1∑
k=0

E
∥∥∥Xk −Xk1

>
n

∥∥∥2

F

≤4ρ2α2(1 + ρ)nKς2
0

(1− ρ)(1−√ρ)2
+

544ρ4α4nL2

(1− ρ)2(1−√ρ)2

K−1∑
k=0

E
∥∥Gk

∥∥2
+

64ρ4α2nσ̃2K

(1− β)2(1− ρ)2(1−√ρ)2
.

Recall from Equation (35) that

1

K

K−1∑
k=0

E
∥∥∇f (Xk

)∥∥2
+

1

K

K−1∑
k=0

(
1− 4α(1 + γ̃)L

1− β
− 54α3L2

(1− β)3

)
E
∥∥Gk

∥∥2

≤2(1− β)∆

αK
+

4αγ̃σ̃2L

(1− β)n
+

(
2L2

nK
+

12αL2

(1− β)nK

)K−1∑
k=0

E
∥∥∥Xk −Xk1

>
n

∥∥∥2

F
+

54α3σ̃2L2

(1− β)3n
.

We obtain

1

K

K−1∑
k=0

E
∥∥∇f (Xk

)∥∥2
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≤O
(

(1− β)∆

αK
+

ασ̃2L

(1− β)n
+

ρ2α2L2ς2
0

(1− β)(1− ρ)3
+

ρ4α2σ̃2L2

(1− β)3(1− ρ)4
+

α2σ̃2L2

(1− β)3n

)
,

where we omit the numerical constants. Set

α =
1

σ̃
√

KL
(1−β)2n∆

+
ρ

2
3L

2
3 ς

2
3
0 K

1
3

(1−β)
2
3 ∆

1
3 (1−ρ)

+ 32(1+γ̃)L
(1−β)2(1−ρ)2

=
1√

σ2TL
(1−β)2BR2n∆

+
ρ

2
3L

2
3 ς

2
3
0 T

1
3

(1−β)
2
3R

1
3 ∆

1
3 (1−ρ)

+ 32(1+γ̃)L
(1−β)2(1−ρ)2

,

we obtain

1

K

K−1∑
k=0

E
∥∥∇f (Xk

)∥∥2

≤O

(√
∆Lσ̃√
nK

+
(ρ∆Lς0)

2
3

(1− ρ)K
2
3

+
ρ2n∆L

(1− ρ)4K
+

∆L

(1− β)(1− ρ)2K

)
.

By performing a similar analysis as in Corollary 6 (we omit it here for brevity), we obtain

T ≤ O

(
∆Lσ2

nBε4
+

∆L

ε2(1− β)
√

1− λ2(W )
log

(
n+

ς0n

ε
√

∆L

))
,

that completes the proof.

B.7 Technical Lemmas

Lemma 9 Given the update formula of DeTAG (and DeTAGM), we have the following two
bounds:∥∥∥Xk+1 −Xk+11

>
n

∥∥∥2

F
≤ 2ρ2

(1 + ρ2)

∥∥∥Xk −Xk1
>
n

∥∥∥2

F
+

2ρ2α2
k

1− ρ2

∥∥∥Y k − Y k1
>
n

∥∥∥2

F
,

and

E
∥∥∥Y k+1 − Y k+11

>
n

∥∥∥2

F

≤
(

2ρ2

1 + ρ2
+

16α2
kρ

4L2

1− ρ2

)
E
∥∥∥Y k − Y k1

>
n

∥∥∥2

F
+

16ρ2(1 + ρ2)L2

1− ρ2
E
∥∥∥Xk −Xk1

>
n

∥∥∥2

F

+
16α2

kρ
2nL2

1− ρ2
E
∥∥Y k

∥∥2
+

4ρ2

1− ρ2
E ‖Gk+2 −Gk+1 −Gk + Gk−1‖2F + 8nρ2σ̃2.

Proof∥∥∥Xk+1 −Xk+11
>
n

∥∥∥2

F
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(28)
=
∥∥∥M(Xk − αkY k)− (Xk − αkY k)1

>
n

∥∥∥2

F

=
∥∥∥M(Xk)−Xk1

>
n

∥∥∥2

F
− 2αk

〈
M(Xk)−Xk1

>
n ,M(Y k)− Y k1

>
n

〉
+ α2

k

∥∥∥M(Y k)− Y k1
>
n

∥∥∥2

F

(26)

≤ ρ2
∥∥∥Xk −Xk1

>
n

∥∥∥2

F
+
ρ2(1− ρ2)

1 + ρ2

∥∥∥Xk −Xk1
>
n

∥∥∥2

F
+
ρ2(1 + ρ2)α2

k

1− ρ2

∥∥∥Y k − Y k1
>
n

∥∥∥2

F

+ α2
kρ

2
∥∥∥Y k − Y k1

>
n

∥∥∥2

F

=
2ρ2

(1 + ρ2)

∥∥∥Xk −Xk1
>
n

∥∥∥2

F
+

2ρ2α2
k

1− ρ2

∥∥∥Y k − Y k1
>
n

∥∥∥2

F
,

where in the third step we use the fact that for any a and b,

−2〈a, b〉 ≤ 1− ρ2

1 + ρ2
‖a‖2 +

1 + ρ2

1− ρ2
‖b‖2.

For Y k, we have

E
∥∥∥Y k+1 − Y k+11

>
n

∥∥∥2

F

(27)
= E

∥∥∥M(Y k + G̃k − G̃k−1)− (Y k + G̃k − G̃k−1)1>n

∥∥∥2

F

=E
∥∥∥M(Y k)− Y k1

>
n

∥∥∥2

F
+ E

∥∥∥M(G̃k − G̃k−1)− (G̃k − G̃k−1)1>n

∥∥∥2

F

+ 2E
〈
M(Y k)− Y k1

>
n ,M(G̃k − G̃k−1)− (G̃k − G̃k−1)1>n

〉
(26)

≤ ρ2E
∥∥∥Y k − Y k1

>
n

∥∥∥2

F
+ ρ2E

∥∥∥Gk −Gk−1 − (Gk −Gk−1)1>n

∥∥∥2

F

+
(1− ρ2)ρ2

1 + ρ2
E
∥∥∥Y k − Y k1

>
n

∥∥∥2

F
+

(1 + ρ2)ρ2

1− ρ2
E
∥∥∥Gk −Gk−1 − (Gk −Gk−1)1>n

∥∥∥2

F

+ 2ρ2E‖Gk − G̃k‖2F + 2ρ2E‖Gk−1 − G̃k−1‖2F + 2ρ2E‖Gk1
>
n − G̃k1

>
n ‖2F

+ 2ρ2E‖Gk−11
>
n − G̃k−11

>
n ‖2F

≤ 2ρ2

1 + ρ2
E
∥∥∥Y k − Y k1

>
n

∥∥∥2

F
+

4ρ2

1− ρ2
E ‖Gk+2 −Gk+1‖2F

+
4ρ2

1− ρ2
E ‖Gk+2 −Gk+1 −Gk + Gk−1‖2F + 8nρ2σ̃2,

where in the last step we use ‖I − 11>

n ‖ ≤ 1 and ‖AB‖F ≤ ‖A‖F ‖B‖.
For the second term, we have

E ‖Gk+2 −Gk+1‖2F

=

n∑
i=1

E ‖∇f(xk+1,i)−∇f(xk,i)‖2
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≤L2
n∑
i=1

E ‖xk+1,i − xk,i‖2

=L2E ‖Xk+1 −Xk‖2F
(28)
= L2E ‖M(Xk)−Xk − αkM(Y k)‖2F

=L2E
∥∥∥M(Xk −Xk1

>
n )− (Xk −Xk1

>
n )− αkM(Y k)

∥∥∥2

F

≤4L2E
∥∥∥M(Xk)−Xk1

>
n

∥∥∥2

F
+ 4L2E

∥∥∥Xk −Xk1
>
n

∥∥∥2

F
+ 4α2

kL
2E
∥∥∥M(Y k)− Y k1

>
n

∥∥∥2

F

+ 4α2
knL

2E
∥∥Y k

∥∥2

≤4(1 + ρ2)L2E
∥∥∥Xk −Xk1

>
n

∥∥∥2

F
+ 4α2

kρ
2L2E

∥∥∥Y k − Y k1
>
n

∥∥∥2

F
+ 4α2

knL
2E
∥∥Y k

∥∥2
.

Putting it back we obtain

E
∥∥∥Y k+1 − Y k+11

>
n

∥∥∥2

F

≤
(

2ρ2

1 + ρ2
+

16α2
kρ

4L2

1− ρ2

)
E
∥∥∥Y k − Y k1

>
n

∥∥∥2

F
+

16ρ2(1 + ρ2)L2

1− ρ2
E
∥∥∥Xk −Xk1

>
n

∥∥∥2

F

+
16α2

kρ
2nL2

1− ρ2
E
∥∥Y k

∥∥2
+

4ρ2

1− ρ2
E ‖Gk+2 −Gk+1 −Gk + Gk−1‖2F + 8nρ2σ̃2.

That completes the proof.

Lemma 10 Given the update formula of DeTAG, if we use non-increasing step size with
the constraint

α0 ≤
(1− ρ)2

32L
,

then for any positive integer p = 1, 2, · · · , the following two bounds hold

K−1∑
k=0

αpkE
∥∥∥Xk −Xk1

>
n

∥∥∥2

F

≤2ρ2αp+2
0 (1 + ρ)nKς2

0

(1− ρ)(1−√ρ)2
+

32ρ4nL2

(1− ρ)2(1−√ρ)2

K−1∑
k=0

αp+4
k E

∥∥Gk

∥∥2

+
8ρ4

(1− ρ)2(1−√ρ)2

K−1∑
k=0

αp+2
k E‖Uk‖2F +

16ρ4nσ̃2(1 + ρ)

(1− ρ)(1−√ρ)2

K−1∑
k=0

αp+2
k ,

and

K−1∑
k=0

αpkE‖Y k − Y k1
>
n ‖2
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≤(1 + ρ)αp0nKς
2
0

1−√ρ
+

8αp+2
0 ρ4(1 + ρ)L2nKς2

0

(1− ρ)(1−√ρ)2
+
K−1∑
k=0

αpk

(
1 + ρ

1−√ρ
+

8α2
kρ

4(1 + ρ)L2

(1− ρ)(1−√ρ)2

)
·(

4ρ2

1− ρ2
E ‖Uk‖2F +

16α2
kρ

2nL2

1− ρ2
E
∥∥Gk

∥∥2
+

16α2
kρ

2σ̃2L2

1− ρ2
+ 8nρ2σ̃2

)
.

Proof Given the update formula of DeTAG and Lemma 9, the algorithm induces the
following linear system: for any k ≥ 0,[

E
∥∥Xk+1 −Xk+11

>
n

∥∥2

F

E
∥∥Y k+1 − Y k+11

>
n

∥∥2

F

]
�
[
P k,11 P k,12

P k,21 P k,22

][
E
∥∥Xk −Xk1

>
n

∥∥2

F

E
∥∥Y k − Y k1

>
n

∥∥2

F

]

+

[
0

4ρ2

1−ρ2E ‖Uk‖2F +
16α2

kρ
2nL2

1−ρ2 E
∥∥Y k

∥∥2
+ 8nρ2σ̃2

]
,

where � is element-wise and

P k,11 =
2ρ2

1 + ρ2

P k,12 =
2ρ2α2

k

1− ρ2

P k,21 =
16ρ2(1 + ρ2)L2

1− ρ2

P k,22 =
2ρ2

1 + ρ2
+

16α2
kρ

4L2

1− ρ2

Uk =Gk+2 −Gk+1 −Gk + Gk−1.

For simplicity, define

zk =

[
E
∥∥Xk −Xk1

>
n

∥∥2

F

E
∥∥Y k − Y k1

>
n

∥∥2

F

]

uk =

[
0

4ρ2

1−ρ2E ‖Uk‖2F +
16α2

kρ
2nL2

1−ρ2 E
∥∥Y k

∥∥2
+ 8nρ2σ̃2

]
,

then we can write this linear system as

zk � P k−1zk−1 + uk−1 � P k
0z0 +

k−1∑
t=0

P k−t
t ut,

where we use the fact that P k � P t,∀k ≥ t ≥ 0 since step size is non-increasing. For any
t ≥ 0, let λ1(P t), λ2(P t) denote the two eigenvalues of P t (without the loss of generality, we
denote λ1(P t) < λ2(P t)), define

Ψ =
√

(P t,11 − P t,22)2 + 4P t,12P t,21,
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then with eigendecomposition, we obtain

λ1(P t) =
P t,11 + P t,22 −Ψ

2

λ2(P t) =
P t,11 + P t,22 + Ψ

2
=

2ρ2

1 + ρ2
+

8α2
t ρ

4L2

1− ρ2
+

16αtρ
2L
√
α2
t ρ

4L2 + (1 + ρ2)

1− ρ2

P k
t �

[
λk1(P t)+λk2(P t)

2 +
(P t,11−P t,22)(λk2(P t)−λk1(P t))

2Ψ
P t,12

Ψ (λk2(P t)− λk1(P t))
P 21
Ψ (λk2(P t)− λk1(P t))

λk1(P t)+λk2(P )
2 +

(P t,11−P t,22)(λk1(P t)−λk2(P t))
2Ψ

]
,

Applying the step size requirement that

α0L <
(1− ρ)2

32
, (37)

it can be verified that λ2(P t) ≤ λ2(P 0) ≤
√
ρ+ρ

1+ρ . Next we can compute the E‖Xk−Xk1
>
n ‖2F

and E‖Y k − Y k1
>
n ‖2F : we use X[1 :] to denote the first row of matrix X. First for Xk, we

obtain:

P k
0z0[1 :] ≤ P 0,12kλ

k−1
2 (P 0)E‖Y 0 − Y 01

>
n ‖2F =

2ρ2α2
0k

1− ρ2
λk−1

2 (P 0)E‖Y 0 − Y 01
>
n ‖2F

where we use the property that for any matrix P ,

λk2(P )− λk1(P ) = (λ2(P )− λ1(P ))

k−1∑
l=0

λ2(P )lλ1(P )k−1−l = Ψkλk−1
2 (P ).

And similarly,

P k−t
t ut[1 :]

≤2ρ2α2
t (k − t)

1− ρ2
λk−t−1

2 (P t)

(
4ρ2

1− ρ2
E ‖U t‖2F +

16α2
t ρ

2nL2

1− ρ2
E
∥∥Y t

∥∥2
+ 8nρ2σ̃2

)
=

2ρ2α2
t (k − t)

1− ρ2
λk−t−1

2 (P t)

(
4ρ2

1− ρ2
E ‖U t‖2F +

16α2
t ρ

2nL2

1− ρ2
E
∥∥∥G̃t−1

∥∥∥2
+ 8nρ2σ̃2

)
(29)

≤ 2ρ2α2
t (k − t)

1− ρ2
λk−t−1

2 (P t)

(
4ρ2

1− ρ2
E ‖U t‖2F +

16α2
t ρ

2nL2

1− ρ2
E
∥∥Gt−1

∥∥2
+

16α2
t ρ

2σ̃2L2

1− ρ2
+ 8nρ2σ̃2

)
,

then from the linear system, we obtain

E
∥∥∥Xk −Xk1

>
n

∥∥∥2

F

≤2ρ2α2
0k

1− ρ2
λk−1

2 (P 0)E‖Y 0 − Y 01
>
n ‖2F

+

k−1∑
t=0

2ρ2α2
t (k − t)

1− ρ2
λk−t−1

2 (P t)·(
4ρ2

1− ρ2
E ‖U t‖2F +

16α2
t ρ

2nL2

1− ρ2
E
∥∥Gt−1

∥∥2
+

16α2
t ρ

2σ̃2L2

1− ρ2
+ 8nρ2σ̃2

)
.
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Summing over k = 0 to K − 1 we obtain for any positive integer p = 1, 2, · · · ,
K−1∑
k=0

αpkE
∥∥∥Xk −Xk1

>
n

∥∥∥2

F

≤ 2ρ2αp+2
0

(1− ρ2)(1− λ2(P 0))2

K−1∑
k=0

E‖Y 0 − Y 01
>
n ‖2F

+
2ρ2

(1− ρ2)(1− λ2(P 0))2

K−1∑
k=0

αp+2
k ·(

4ρ2

1− ρ2
E ‖Uk‖2F +

16α2
kρ

2nL2

1− ρ2
E
∥∥Gk

∥∥2
+

16α2
kρ

2σ̃2L2

1− ρ2
+ 8nρ2σ̃2

)
≤2ρ2αp+2

0 (1 + ρ)nKς2
0

(1− ρ)(1−√ρ)2
+

32ρ4nL2

(1− ρ)2(1−√ρ)2

K−1∑
k=0

αp+4
k E

∥∥Gk

∥∥2

+
8ρ4

(1− ρ)2(1−√ρ)2

K−1∑
k=0

αp+2
k E‖Uk‖2F +

32ρ4σ̃2L2

(1− ρ)2(1−√ρ)2

K−1∑
k=0

αp+4
k

+
8ρ4nσ̃2(1 + ρ)

(1− ρ)(1−√ρ)2

K−1∑
k=0

αp+2
k

≤2ρ2αp+2
0 (1 + ρ)nKς2

0

(1− ρ)(1−√ρ)2
+

32ρ4nL2

(1− ρ)2(1−√ρ)2

K−1∑
k=0

αp+4
k E

∥∥Gk

∥∥2

+
8ρ4

(1− ρ)2(1−√ρ)2

K−1∑
k=0

αp+2
k E‖Uk‖2F +

16ρ4nσ̃2(1 + ρ)

(1− ρ)(1−√ρ)2

K−1∑
k=0

αp+2
k ,

where in the first step we applied Lemma 11, in the second step we used 1
1−λ2(P 0) <

1+ρ
1−√ρ

since λ2(P 0) ≤
√
ρ+ρ

1+ρ . And the third step holds due to Equation (37). We proceed to analyze
the case in Y k: we first have for any t ≥ 0,

[P k
t ]22 =

λk1(P t) + λk2(P t)

2
+

(P t,11 − P t,22)(λk1(P t)− λk2(P t))

2Ψ

≤λk2(P t) +
8α2

t ρ
4L2kλk−1

2 (P t)

1− ρ2
,

then we can have

P k
0z0[2 :] ≤

(
λk2(P 0) +

8α2
0ρ

4L2kλk−1
2 (P 0)

1− ρ2

)
E‖Y 0 − Y 01

>
n ‖2F ,

and

P k−t
t ut[2 :]

≤

(
λk−t2 (P t) +

8α2
t ρ

4L2(k − t)λk−t−1
2 (P t)

1− ρ2

)
·
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(
4ρ2

1− ρ2
E ‖U t‖2F +

16α2
t ρ

2nL2

1− ρ2
E
∥∥Y t

∥∥2
+ 8nρ2σ̃2

)
≤

(
λk−t2 (P t) +

8α2
t ρ

4L2(k − t)λk−t−1
2 (P t)

1− ρ2

)
·(

4ρ2

1− ρ2
E ‖U t‖2F +

16α2
t ρ

2nL2

1− ρ2
E
∥∥Gt−1

∥∥2
+

16α2
t ρ

2σ̃2L2

1− ρ2
+ 8nρ2σ̃2

)
.

Using Lemma 11, and summing over k = 0 to K − 1, we obtain for any positive integer
p = 1, 2, · · · ,

K−1∑
k=0

αpkE‖Y k − Y k1
>
n ‖2

≤(1 + ρ)αp0nKς
2
0

1−√ρ
+

8αp+2
0 ρ4(1 + ρ)L2nKς2

0

(1− ρ)(1−√ρ)2
+

K−1∑
k=0

αpk

(
1 + ρ

1−√ρ
+

8α2
kρ

4(1 + ρ)L2

(1− ρ)(1−√ρ)2

)
·(

4ρ2

1− ρ2
E ‖Uk‖2F +

16α2
kρ

2nL2

1− ρ2
E
∥∥Gk

∥∥2
+

16α2
kρ

2σ̃2L2

1− ρ2
+ 8nρ2σ̃2

)
.

That completes the proof.

Lemma 11 (Zhang and You, 2019c) Let {bk} be a non-negative sequence, θ be a constant
in (0, 1), and ak =

∑k
t=1 st(k − t)θk−t−1, it holds that

k∑
t=1

at =
1

(1− θ)2

k∑
t=1

st.

Lemma 12 If β2

1−β < γ̃ where γ̃ is the constant given in Theorem 7, then we have

1

K

K−1∑
k=0

E
∥∥∇f (Xk

)∥∥2
+

1

K

K−1∑
k=0

(
1− 4α(1 + γ̃)L

1− β
− 54α3L2

(1− β)3

)
E
∥∥Gk

∥∥2

≤2(1− β)∆

αK
+

4αγ̃σ̃2L

(1− β)n
+

(
2L2

nK
+

12αL2

(1− β)nK

)K−1∑
k=0

E
∥∥∥Xk −Xk1

>
n

∥∥∥2

F
+

54α3σ̃2L2

(1− β)3n
.

Proof We follow (Yu et al., 2019) and define an auxiliary sequence

Zk =


Xk k = 0,

1
1−βXk − β

1−βXk−1 k ≥ 1

We start from applying Taylor Theorem to f(Zk). Before that, we transform two terms as
below. In the following analysis, we first bound all the terms with k ≥ 4 to prevent negative
subscripts. We will give the bounds for k = 0, 1, 2, 3 in the end.
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First, for any k ≥ 4,

Zk+1 −Zk =
1

1− β
(
Xk+1 −Xk

)
− β

1− β
(
Xk −Xk−1

)
(34)
= −

(
α

1− β
Y k −

αβ

1− β
Y k−1

)
(33)
= −

(
α

1− β
V k−1 −

αβ

1− β
V k−2

)
=−

[
α

1− β

(
βV k−2 + G̃k−2

)
− αβ

1− β
V k−2

]
=− α

1− β
G̃k−2.

Additionally, note that for any k ≥ 4,

K−1∑
k=4

∥∥Zk −Xk

∥∥2
=
K−1∑
k=4

∥∥∥∥ β

1− β
(
Xk −Xk−1

)∥∥∥∥2

=

K−1∑
k=4

∥∥∥∥ αβ

1− β
V k−2

∥∥∥∥2

=
α2β2

(1− β)2

K−1∑
k=4

∥∥∥∥∥∥G̃k−3 +

k−4∑
j=0

βk−3−jG̃j

∥∥∥∥∥∥
2

≤ 2α2β2

(1− β)2

K−1∑
k=4

∥∥∥G̃k−3

∥∥∥2
+

2α2β2

(1− β)2

K−1∑
k=4

∥∥∥∥∥∥
k−4∑
j=0

βk−3−jG̃j

∥∥∥∥∥∥
2

≤ 2α2β2

(1− β)2

K−1∑
k=4

∥∥∥G̃k

∥∥∥2
+

2α2β2

(1− β)2

K−1∑
k=4

k−4∑
j=0

βk−3−j
∥∥∥G̃j

∥∥∥2

≤ 2α2β2

(1− β)2

K−1∑
k=4

∥∥∥G̃k

∥∥∥2
+

2α2β2

(1− β)2

K−1∑
k=4

∥∥∥G̃j

∥∥∥2

 ∞∑
j=0

βj


≤ 4α2β2

(1− β)3

K−1∑
k=4

∥∥∥G̃k

∥∥∥2
.

Now we can apply Taylor Theorem, for any k ≥ 4,

Ef
(
Zk+1

)
≤Ef

(
Zk

)
+ E

〈
∇f

(
Zk

)
,Zk+1 −Zk

〉
+
L

2
E
∥∥Zk+1 −Zk

∥∥2

=Ef
(
Zk

)
− α

1− β
E
〈
∇f

(
Zk

)
, G̃k−2

〉
+

α2L

2(1− β)2
E
∥∥∥G̃k−2

∥∥∥2

=Ef
(
Zk

)
− α

1− β
E
〈
∇f

(
Zk

)
−∇f

(
Xk

)
,Gk−2

〉
− α

1− β
E
〈
∇f

(
Xk

)
,Gk−2

〉
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+
α2L

2(1− β)2
E
∥∥∥G̃k−2

∥∥∥2

≤Ef
(
Zk

)
+

(1− β)L

2β2
E
∥∥Zk −Xk

∥∥2
+

α2β2L

2(1− β)3
E
∥∥∥G̃k

∥∥∥2
− α

2(1− β)
E
∥∥∇f (Xk

)∥∥2

− α

2(1− β)
E
∥∥Gk−2

∥∥2
+

α

2(1− β)
E
∥∥∇f (Xk

)
−Gk−2

∥∥2
+

α2L

2(1− β)2
E
∥∥∥G̃k−2

∥∥∥2

≤Ef
(
Zk

)
+

(1− β)L

2β2
E
∥∥Zk −Xk

∥∥2
+

α2β2L

2(1− β)3
E
∥∥∥G̃k

∥∥∥2
− α

2(1− β)
E
∥∥∇f (Xk

)∥∥2

− α

2(1− β)
E
∥∥Gk−2

∥∥2
+

α

1− β
E
∥∥∇f (Xk

)
−Gk+1

∥∥2
+

α

1− β
E
∥∥Gk+1 −Gk−2

∥∥2

+
α2L

2(1− β)2
E
∥∥∥G̃k−2

∥∥∥2
,

where in the fourth step, we apply for any a, b, it holds that 〈a, b〉 ≤ c
2‖a‖

2 + 1
2c‖b‖

2 (for
any c > 0) and −2〈a, b〉 = −‖a‖2 − ‖b‖2 + ‖a− b‖2.

Similar to the analysis of Equation (29), we obtain for any k ≥ 0,

E
∥∥∥G̃k

∥∥∥2
≤ E

∥∥Gk

∥∥2
+
σ̃2

n
.

The gradient difference term in the Taylor Theorem above can be written as
α

1− β
E
∥∥Gk+1 −Gk−2

∥∥2

=
α

1− β
E

∥∥∥∥∥ 1

n

n∑
i=1

∇fi(xk,i)−
1

n

n∑
i=1

∇fi(xk−3,i)

∥∥∥∥∥
2

≤ α

(1− β)n

n∑
i=1

E ‖∇fi(xk,i)−∇fi(xk−3,i)‖2

≤ 3αL2

(1− β)n
E
∥∥∥Xk −Xk1

>
n

∥∥∥2

F
+

3αL2

(1− β)n
E
∥∥∥Xk−3 −Xk−31

>
n

∥∥∥2

F

+
3αL2

(1− β)n
E
∥∥∥Xk1

>
n −Xk−31

>
n

∥∥∥2

F
.

Put them back, and sum over from k = 4 to K − 1,

α

2(1− β)

K−1∑
k=4

E
∥∥∇f (Xk

)∥∥2
+

α

2(1− β)
E
K−1∑
k=4

∥∥Gk−2

∥∥2

≤
K−1∑
k=4

(
Ef
(
Zk

)
− Ef

(
Zk+1

))
+

(1− β)L

2β2

K−1∑
k=4

E
∥∥Zk −Xk

∥∥2
+

α2β2L

(1− β)3

K−1∑
k=4

E
∥∥∥G̃k

∥∥∥2

+
α

1− β

K−1∑
k=4

E
∥∥∇f (Xk

)
−Gk+1

∥∥2
+

α

1− β

K−1∑
k=4

E
∥∥Gk+1 −Gk−2

∥∥2

≤f(Z4)− f∗ +
2α2(1 + γ̃)L

(1− β)2

K−1∑
k=4

E
∥∥Gk

∥∥2
+
α2γ̃σ̃2L(K − 4)

(1− β)2n
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+
αL2

(1− β)n

K−1∑
k=4

E
∥∥∥Xk −Xk1

>
n

∥∥∥2

F
+

6α2L2

(1− β)2n

K−1∑
k=4

E
∥∥∥Xk −Xk1

>
n

∥∥∥2

F

+
3α2L2

(1− β)2

K−1∑
k=4

E
∥∥Xk −Xk−3

∥∥2

≤f(Z4)− f∗ +
2α2(1 + γ̃)L

(1− β)2

K−1∑
k=4

E
∥∥Gk

∥∥2
+
α2γ̃σ̃2L(K − 4)

(1− β)2n

+

(
αL2

(1− β)n
+

6α2L2

(1− β)2n

)K−1∑
k=4

E
∥∥∥Xk −Xk1

>
n

∥∥∥2

F

+
3α4L2

(1− β)2

K−1∑
k=4

E
∥∥V k−2 + V k−3 + V k−4

∥∥2
.

To deal with the last term, note that

E
∥∥V k

∥∥2
=E

∥∥∥∥∥βV k−1 + (1− β)
G̃k−1

1− β

∥∥∥∥∥
2

≤βE
∥∥V k−1

∥∥2
+

1

1− β
E
∥∥∥G̃k−1

∥∥∥2

Summing from k = 0 to K − 1, we obtain

K−1∑
k=0

E
∥∥V k

∥∥2 ≤β
K−1∑
k=0

E
∥∥V k−1

∥∥2
+

1

1− β

K−1∑
k=0

E
∥∥∥G̃k−1

∥∥∥2

≤β
K−1∑
k=0

E
∥∥V k

∥∥2
+

1

1− β

K−1∑
k=0

E
∥∥∥G̃k

∥∥∥2
.

Rearrange the terms, we obtain

K−1∑
k=0

E
∥∥V k

∥∥2 ≤ 1

(1− β)2

K−1∑
k=0

E
∥∥∥G̃k

∥∥∥2
.

Combining with Lemma 13 and rearrange the terms we obtain

1

K

K−1∑
k=0

E
∥∥∇f (Xk

)∥∥2
+

1

K

K−1∑
k=0

(
1− 4α(1 + γ̃)L

1− β
− 54α3L2

(1− β)3

)
E
∥∥Gk

∥∥2

≤2(1− β)∆

αK
+

4αγ̃σ̃2L

(1− β)n
+

(
2L2

nK
+

12αL2

(1− β)nK

)K−1∑
k=0

E
∥∥∥Xk −Xk1

>
n

∥∥∥2

F
+

54α3σ̃2L2

(1− β)3n
.

That completes the proof.
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Lemma 13 When k = 0, 1, 2, 3, in Lemma 12 it fulfills that:

α

2(1− β)

3∑
k=0

E
∥∥∇f (Xk

)∥∥2 ≤f(0)− f∗ +
2α2(1 + γ̃)L

(1− β)2

3∑
k=0

E
∥∥Gk

∥∥2
+

4α2γ̃σ̃2L

(1− β)2n

+

(
αL2

(1− β)n
+

6α2L2

(1− β)2n

) 3∑
k=0

E
∥∥∥Xk −Xk1

>
n

∥∥∥2

F
.

Proof For simplicity, it’d be helpful to see how sequences {Xk}, {Y k}, {V k} and {Zk}
change at k = 0, 1, 2, 3, 4.

Following their definitions, we can get when k = 0,

V 0 =0

Y 0 =0

X0 =0

Z0 =X0 = 0.

We additionally define G̃0 = 0 and V −1 = 0 for simplicity.
Then when k = 1,

V 1 =βV 0 + G̃0 = 0

Y 1 =Y 0 + V 0 − V −1 = 0

X1 =X0 − αY 0 = 0

Z1 =
1

1− β
X1 −

β

1− β
X0 = 0.

When k = 2,

V 2 =βV 1 + G̃1 = G̃1

Y 2 =Y 1 + V 1 − V 0 = 0

X2 =X1 − αY 1 = 0

Z2 =
1

1− β
X2 −

β

1− β
X1 = 0.

When k = 3,

V 3 =βV 2 + G̃2 = βG̃1 + G̃2

Y 3 =Y 2 + V 2 − V 1 = G̃1

X3 =X2 − αY 2 = 0

Z3 =
1

1− β
X3 −

β

1− β
X2 = 0.

Finally, when k = 4,

V 4 =βV 3 + G̃3 = β2G̃1 + βG̃2 + G̃3
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Y 4 =Y 3 + V 3 − V 2 = βG̃1 + G̃2

X4 =X3 − αY 3 = −αG̃1

Z4 =
1

1− β
X4 −

β

1− β
X3 = − α

1− β
G̃1.

Fitting these values into the analysis of Lemma 12, it is not hard to verify that

α

2(1− β)

3∑
k=0

E
∥∥∇f (Xk

)∥∥2 ≤f(0)− f∗ +
2α2(1 + γ̃)L

(1− β)2

3∑
k=0

E
∥∥Gk

∥∥2
+

4α2γ̃σ̃2L

(1− β)2n

+

(
αL2

(1− β)n
+

6α2L2

(1− β)2n

) 3∑
k=0

E
∥∥∥Xk −Xk1

>
n

∥∥∥2

F
.

We omit the derivation for brevity. That completes the proof.

Appendix C. Details to footnotes

C.1 Asynchronous Algorithm (Footnote 2)

In the full paper, we focus on the synchronous algorithms, i.e., we assume the existence of a
synchronization process among workers between two adjacent iterations. We now extend
our formulation to asynchronous algorithms. Since workers now update and communicate
asynchronously, we define any gradient update that took place on a randomly chosen worker
as one iteration. This randomness depends on system implementation, stochastic events,
etc. This is a commonly adopted definition in the analysis of (decentralized) asynchronous
algorithms Lian et al. (2017b). To obtain a lower bound in such case, consider the two
settings as shown in the proof of Theorem 1. In setting 1, it can be easily verified that the
lower bound for sample complexity is

Ω

(
∆Lσ2

Bε4

)
. (38)

This holds because in the extreme case, only one worker is making contributions to the
optimization. And since we have not made any assumption on how workers are sampled to
conduct the next iteration, this is a valid bound for arbitrary distribution. On the other
hand, considering setting 2, the lower bound is still Ω(T0D) where T0 = Ω(∆Lε−2) is the
lower bound in the sequential case, since the systems need at least Ω(D) iterations for the
workers in I0 and I2 to contact. The lower bound for communication complexity is then

Ω

(
∆LD

ε2

)
. (39)

Combining them together, we can get the final lower bound as:

Ω

(
∆Lσ2

Bε4
+

∆LD

ε2

)
. (40)

Note that this bound holds with probability 1. It is possible to propose finer-grained
assumption on how workers are chosen (e.g. uniformly random) and use concentration
inequalities (e.g. Hoeffding’s inequality) to get tighter bounds, we leave this as future work.
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C.2 Relax zero-respecting assumption (Footnote 3)

To relax the zero-respecting assumption, we can use the technique proposed by Carmon
et al. (2019) (See their proofs to Proposition 1 and 2). The basic idea is that to adversarially
construct the loss function and rotate the non-zero coordinates in t-th iterations, such that
when the algorithm operates on the rotated function, the first t iterations match with that of
the old function. However, the new rotated function is still zero-respecting to the algorithm
after t-th iteration so is generally hard to optimize. The details can be found in Carmon
et al. (2019).

C.3 Specific algorithm for Average Consensus (Footnote 8)

Many algorithms have been proposed on solving the Average Consensus problem, readers can
find details in many previous works on graph theory such as Georgopoulos (2011); Hendrickx
et al. (2014); Ko (2010). A straightforward algorithm is the Minimum Spanning Tree, that is,
we first generate a spanning tree of the graph, and then the workers send and receive message
using propagation on the tree. Specifically, starting from the leaves, all the children nodes of
the tree send its accumulated value to the parents and the root compute the averaged value
after gathering the information from the graph. And then reversely, the parent nodes send
the value back to the child nodes and eventually all the nodes will get the averaged value.
This algorithm is also known as the GATHER-PROPAGATE algorithm as discussed in Ko (2010),
section 3. We include the detailed pseudo-code13 in Algorithm 5.

13. This code is proposed by Ko (2010), we do not intend to take credit for this.
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Algorithm 5 GATHER-PROPAGATE (Spanning Tree) for a single coordinate
Input: communication graph G, a single coordinate on workers (all the coordinates follow the same

instructions) to be communicated X ∈ Rn.
1: d← vector of 1’s indexed by V (G) (vertices set of graph G).
2: I ← a spnning tree of G with root r arbitrarily picked.
3: for v ∈ V (I) do
4: lv ← D̄(r, v) (the distance between r and v)
5: end for
6: for α = maxv lv, · · · , 1 do
7: for v with lv = α do
8: v gives all its value onto its parents u:[

Xu

Xv

]
←
[
1 1
0 0

] [
Xu

Xv

]
9: du ← du + dv
10: end for
11: end for
12: for α = 0, · · · ,maxv lv − 1 do
13: for u with lu = α do
14: {v1, · · · , vβ} ← set of children of u
15: re-distribute the results:

Xu

Xv1

...
Xvβ

← 1

du


du − du − · · · − dvβ

dv1

...
dvβ

Xu

16: end for
17: end for
18: return X 11>

n
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