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Abstract

Reconstructing images from magnitude measurements is an important and difficult problem
arising in many research areas, such as X-ray crystallography, astronomical imaging and
more. While optimization-based approaches often struggle with the non-convexity and non-
linearity of the problem, learning-based approaches are able to produce reconstructions of
high quality for data similar to a given training dataset. In this work, we analyze a class of
methods based on conditional generative adversarial networks (CGAN). We show how the
benefits of optimization-based and learning-based methods can be combined to improve
reconstruction quality. Furthermore, we show that these combined methods are able to
generalize to out-of-distribution data and analyze their robustness to measurement noise.
In addition to that, we compare how the methods are impacted by missing measurements.
Extensive ablation studies demonstrate that all components of our approach are essential
and justify the choice of network architecture.

Keywords: Phase retrieval, conditional generative adversarial networks, image recon-
struction.

1. Introduction

Phase retrieval is the process of reconstructing images from magnitude-only measurements.
This is a relevant problem in different research areas, e.g., in X-ray crystallography (Mil-
lane, 1990), astronomical imaging (Fienup and Dainty, 1987), optics (Walther, 1963), array
imaging (Bunk et al., 2007), or microscopy (Zheng et al., 2013). For simplicity, we define
the problems for the one-dimensional case but all methods discussed in this work are also
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applicable to images with more dimensions. In this paper, we consider reconstructing an
image x from measurements

y = |Ax], (1)

where A is a known linear operator that depends on the specific application.
A relevant instance of this problem is Fourier phase retrieval, where the operator is the
discrete Fourier transform F. In that case, the measurements are given as

y = |Ful. (2)

For color images the Fourier transform is applied to each color-channel separately. In
typical real-world settings, such as X-ray crystallography, the Fourier measurements are
not oversampled, i.e., the image x is not zero-padded. Thus, the measurements y have the
same size as the unknown image x. This setup makes the Fourier phase retrieval problem
particularly difficult to solve, which is why we consider this setup in our work.

Another instance of the problem is compressive Gaussian phase retrieval, where the
measurements are obtained by multiplying the image with a random rectangular matrix M
that has entries sampled from a Gaussian distribution, i.e.,

y = [Mz|. 3)

Fourier measurements will be discussed in Section 7.1 and Gaussian measurements in
Section 7.7.

2. Our Contributions

Note that this paper extends our previous conference paper (Uelwer et al., 2021b). Our
contributions can be summarized as follows:

1. We describe the PRCGAN, which combines a conditional generative adversarial net-
work and a subsequent optimization to solve different phase retrieval problems.

2. We study three variants of the PRCGAN: (i) in an end-to-end mode (PRCGAN-D),
(ii) in combination with latent optimization (PRCGAN-L), and (iii) in combination
with weight optimization of the network (PRCGAN-W).

3. We extensively evaluate all variants of the PRCGAN on the Fourier phase retrieval
problem using openly available benchmark datasets.

4. We perform detailed ablation studies to examine the impact of each of the compo-
nents of our method. We also experiment with different loss functions and model
architectures.

5. We analyze how our trained models can generalize to out-of-distribution data. In
order to do so, we evaluate the performance of the models on datasets that differ from
the training set. Furthermore, we create a novel dataset that contains MNIST-like
symbols. We also use this dataset to evaluate our models.
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6. We investigate the robustness of the different models: we study the impact of Poisson
measurement noise and additive Gaussian measurement noise and analyze the impact
of missing measurement entries on the reconstruction process.

7. While this work focuses on Fourier phase retrieval, we show in additional experiments
that the proposed methods are also applicable to the Gaussian phase retrieval problem.

The remainder of this work is structured as follows: Section 3 gives an overview of ex-
isting optimization-based and learning-based phase retrieval methods. Section 4 discusses
baseline learning-based approaches that form the basis of our proposed method. In Sec-
tion 5 we propose our hybrid method that combines end-to-end learning with a subsequent
optimization. Furthermore, we discuss how to classify the learning-based approaches. In
Section 6 we discuss our experimental setup. Section 7 presents the results of our experi-
ments for the Fourier and Gaussian phase retrieval problem. Furthermore, we analyze the
out-of-distribution generalization of our method and perform an extensive ablation study.
Section 8 summarizes our method and results.

3. Related Work

Existing methods to solve the phase retrieval problem can be classified into two categories:
optimization-based and learning-based approaches. While optimization-based approaches
are especially appealing when the number of measurements is larger than the number of
pixels (i.e., the measurements are oversampled), these methods usually fail in the non-
oversampled regimes. Learning-based methods use additional information about the dis-
tribution of the target images to solve the phase retrieval problem (sometimes also in the
non-oversampled case).

There are several other setups that are related to phase retrieval, e.g., ptychography,
where we reconstruct an image given a sequence of magnitude measurements of many par-
tially overlapping frames (Xu et al., 2018). Solving ptychography with conditional gener-
ative adversarial networks has been done by Boominathan et al. (2018) and Kumar et al.
(2019). Another related problem is compressed sensing which asks to reconstruct images
from linear measurements. Kim et al. (2021) recently also proposed approaching the com-
pressed sensing problem with conditional GANs. Generative priors with sparsity constraints
for compressed sensing have been discussed by Killedar et al. (2021).

However, these are different from the problems discussed in this paper. To the best
of our knowledge, we are the first to apply the conditional GAN framework to solve the
Fourier and Gaussian phase retrieval problem.

3.1 Optimization-based Approaches

One of the first phase retrieval algorithms is the Gerchberg-Saxton (GS) algorithm (Ger-
chberg, 1972), which starts with a random image and iteratively enforces a magnitude
constraint in the Fourier domain and a positivity constraint of pixel intensities in the ob-
ject domain. Based on the GS algorithm Fienup (1982) proposed three extensions: the
input-output, the output-output and the hybrid input-output (HIO) algorithm, where the
last one is the most popular since it usually produces the best results among the three.
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Luke (2004) proposed another iterative phase retrieval algorithm which is based on relaxed
averaged alternating reflections (RAAR).

3.2 Learning-based Approaches

Learning-based methods are used for the oversampled Fourier phase retrieval problem and
for the non-oversampled Fourier phase retrieval problem.

3.2.1 OVERSAMPLED PROBLEM

Deep neural network approaches for the simpler oversampled Fourier phase retrieval problem
have, e.g., been discussed by Manekar et al. (2020), who propose a passive loss for end-to-
end learning which is invariant to symmetries, and by Cha et al. (2020), who formulate
a novel loss function based on the PhaseCut algorithm (Waldspurger et al., 2015). The
regularization-by-denoising framework for oversampled Fourier phase retrieval is discussed
by Metzler et al. (2018), Wu et al. (2019) and Wang et al. (2020).

3.2.2 NON-OVERSAMPLED PROBLEM

Deep neural networks for the non-oversampled Fourier phases retrieval problem have first
been studied by Nishizaki et al. (2020). Their end-to-end learning approach has later been
extended to a deep neural network cascade by Uelwer et al. (2021a).

Learning-based methods for the Gaussian phase retrieval problem include deep gener-
ative priors (Hand et al., 2018), deep generative priors with sparsity constraints (Killedar
and Seelamantula, 2022) and untrained neural network priors (Jagatap and Hegde, 2019).

4. Baseline Methods

In our experiments, we will compare against several baseline methods, including the well-
known HIO and the RAAR. In addition to these, there exist learning-based approaches,
which are the basis for our method PRCGAN. The idea of learning-based methods is that
ill-posed problems are easier to solve if properties of the particular application domain can
be exploited. Concretely, we assume to have access to example images x1,...,xy which
allow us to learn a specialized reconstruction procedure.

First, we formulate in Section 4.1 an end-to-end approach, that directly learns the
mapping Hy from magnitudes to the images. Next we discuss deep generative priors (DPR)
from Hand et al. (2018) who use a generative model G that was already trained on the
images x1,...,xN without using magnitude measurements. The image is reconstructed by
searching in the latent space.

For our method PRCGAN we combine both ideas and learn a conditional generative
model which has access to the magnitude information during training and is subsequently
used in an optimization procedure to recover the unknown image (similar to DPR).

4.1 End-to-End (E2E)

An end-to-end approach (E2E) to reconstruct images from their magnitude measurements
is to train a deep neural network H, with learnable parameters ¢ that maps from the space
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of the magnitudes directly to the image space. This is achieved by minimizing the error
between the true image (from the given dataset) and its reconstruction (from the neural
network)

N
Lrecld) = 5 D e = Ho( Azl (4)
i=1

where for p = 1 this is the mean absolute error (MAE) and for p = 2 it is the mean
squared error (MSE). At test time the reconstruction is performed using a single forward
pass through the network Hy. This approach has been studied by Nishizaki et al. (2020)
using a ResNet architecture and by Uelwer et al. (2021a) using a fully connected network.

4.2 Deep Generative Priors (DPR)

Hand et al. (2018) use a generative model G that was already trained on the example images,
and then use G to solve the phase retrieval problem by minimizing the error between the
measured magnitudes and the magnitudes of the reconstruction

2" = argmin [ly — |[AG(2)][3. ()

The generative model G restricts the search space to images that come from the distribu-
tion that G was trained on. Hand et al. (2018) solve the optimization problem stated in
Equation (5) by gradient descent and then obtain the reconstruction as & = G(z*). They
call their method deep phase retrieval (DPR).

5. PRCGAN: Combining End-to-End Learning and DPR

To increase the quality of the reconstructions we replace the generative model G of DPR with
a conditional GAN (CGAN) that is conditioned on the magnitude measurements. In that
way, our approach, called PRCGAN, is a hybrid between the E2E and the DPR approach.
By doing so, we learn a CGAN that is tailored to the phase retrieval reconstruction process.
The PRCGAN consists of a discriminator network Dy with parameters 6 and a generator
network Gy with parameters ¢. Both networks are conditioned on the given magnitude
measurement. For the latent variable z we choose a multivariate Gaussian with zero mean
and unit covariance matrix and denote the latent distribution by ¢. After training, the
generator network G takes the role of the reconstruction network.

5.1 PRCGAN: Training

The PRCGAN is trained by optimizing a combination of two losses: an adversarial loss

N N
1 1
Laav(0,0) = > “log Do(xi, i) + N > log (1 = Da(Gy(2i,yi), v:)) (6)
=1 =1
where y; = |Az;| and z; ~ ¢ for i = 1,..., N and a reconstruction loss
1 N
Lreld) =+ 3 llri = Gl w) L ()
i=1
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where p is either 1 or 2. During training the parameters 6 and ¢ of D and G are optimized
to solve the min-max-problem

mdin mgxx Laay(0,¢) + ALlrec (), (8)
where A > 0 is a hyperparameter that balances the two losses.

5.2 PRCGAN: Reconstructions

A trained PRCGAN gives us several options for the reconstruction which span the spectrum
between end-to-end learning-based and optimization-based image reconstruction. Besides
directly using the output of the PRCGAN, we can further enhance the results by optimizing
the latent variable or even the weights of the generator itself.

5.2.1 PRCGAN-D: DIRECT RECONSTRUCTION

The PRCGAN can be directly used to reconstruct images with a single forward pass. To
do so, the given magnitude measurement y and a randomly sampled value z from the latent
distribution are fed into the generator G4. This gives us the reconstruction

:%:G¢(z,y). (9)

While 7 is often a reasonable solution, we can greatly improve the reconstruction quality
by employing additional optimization procedures, as we will describe next.

5.2.2 PRCGAN-L: LATENT OPTIMIZATION

In addition to feeding the magnitude y into the generator network, we can tune the latent
variable z to ensure that the generated image has the correct magnitude ¥, or expressed as
an optimization problem, we solve

2* = argmin |y — |[AG4(2,y)||[5- (10)

Given an optimal z*, the reconstruction is the output of the generator = G4(2*,y). Note
that since the parameters of Gy are fixed, we can solve this optimization in parallel for
several magnitudes by passing batches through the generator. We denote this approach as
PRCGAN-L.

5.2.3 PRCGAN-W: WEIGHT OPTIMIZATION

Instead of optimizing the latent variable z, we can also search for optimal weights ¢* for the
generator network G to match the given magnitude y for a randomly sampled and fixed
z, i.e.,

9" Zarg;ninlly— [AG(z, )13 - (11)

A similar idea was used by Hussein et al. (2020) and Ulyanov et al. (2018) for linear inverse
problems. Plugging the fine-tuned weights ¢*, the fixed latent variable z and the given
magnitudes y into the generator G yields the reconstructed image & = Gy« (z,y). Different
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Figure 1: Learning-based approaches for phase retrieval: after training the learned-models
are used in different ways to reconstruct the image. We propose three variants of our method
which differ in the reconstruction process: PRCGAN-D, PRCGAN-L, and PRCGAN-W.

from the latent optimization the weight optimization can only be performed for a single
magnitude at a time which makes this approach computationally more expensive. However,
we hypothesize that the space of the network weights offers more flexibility to find a good
reconstruction. We denote this approach as PRCGAN-W.

5.3 Taxonomy of Learning-based Approaches for Phase Retrieval

The learning-based methods discussed in the previous sections can be divided into two
categories:

Unsupervised Learning: Some methods like DPR are only trained on images x1,...,znN.
Thus no retraining is necessary when the measurement process is changed. We call
these methods unsupervised.

Supervised Learning: In contrast to unsupervised methods, other methods are not only
trained on the images x1, ..., xy but also have access to the corresponding magnitude
measurements yi, ..., yy during training. This allows the model to specialize in that
measurement process and usually results in better image reconstruction quality. We
call these methods supervised. In this paper, E2E and all variants of the PRCGAN
are examples thereof.
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128 N

Figure 2: Architecture of the generator used to reconstruct the CelebA images with a
resolution of 64 x 64 from their magnitude.

Note that the term end-to-end learning is in this work exclusively used for methods that
reconstruct images in a single forward-pass through the network, having no additional
optimization step during reconstruction. Therefore, E2E and PRCGAN-D are considered
as end-to-end learning approaches. Figure 1 gives an overview of the different learning-based
methods discussed in this work.

6. Experimental Setup
6.1 Datasets

For our experiments, we consider six different datasets. Four of these datasets consist of
28 x 28 grayscale images, namely, MNIST (LeCun et al., 1998), FMNIST (Xiao et al.,
2017), EMNIST (Cohen et al., 2017) and KMNIST (Clanuwat et al., 2018). Although
these datasets are considered toy-datasets for classification tasks, solving phase retrieval on
these datasets is a non-trivial problem. The other two datasets consist of color-images: the
CelebA dataset (Liu et al., 2015) and the well-known CIFAR-10 dataset (Krizhevsky et al.,
2009). We rescaled both datasets to 64 x 64 resolution. Fourier magnitudes were calculated
without oversampling, i.e., the magnitudes had the same dimensionality as the images from
the dataset.

6.2 Architecture

For the grayscale image datasets (MNIST, FMNIST, KMNIST, and EMNIST) we use a
multilayer perceptron (MLP) consisting of five layers each having 2048 hidden units. Empir-
ically, we found out that the fully connected layers are better suited for the global structure
of the Fourier phase retrieval problem than convolutional layers, if the image size allow the
necessary computation. We use batch normalization (Ioffe and Szegedy, 2015) and ReLLU
nonlinearities for the intermediate layers and a sigmoid function for the final layer as the
pixel intensities of the images are assumed to be normalized between 0 and 1.

Since the MLP architecture is no longer feasible for the increased pixel count of the
color-image datasets CIFAR-10 and CelebA, we use a convolutional neural network (CNN)
with two fully connected intermediate layers for the generator network. Figure 2 gives an
overview of the used architecture.

For the DPR implementation, we follow Hand et al. (2018). That means a variational
autoencoder (VAE; Kingma and Welling, 2013) is used for the MNIST-like datasets, where
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the dimension of the latent variable z is chosen to be 128 and two ReLU activated fully con-
nected layers with 500 hidden units each are used. For the CelebA and CIFAR-10 datasets
a DCGAN architecture (Radford et al., 2015) is used with batch normalization (Ioffe and
Szegedy, 2015) and ReLU activation functions.

6.3 Baselines

We also compare our PRCGAN approach with classical methods that do not have a learning
component. The most commonly used phase retrieval algorithm is the hybrid-input-output
algorithm (HIO) which was proposed by Fienup (1982). The optimal hyperparameters of
HIO (1000 iterations and step size 8 = 0.8) were determined using a validation dataset,
and two random restarts (out of three reconstructions we used the one with the lowest
magnitude error). Another optimization-based method that we evaluate is the relaxed-
averaged-alternating-reflections algorithm (RAAR) proposed by Luke (2004). Here, we also
ran 1000 iterations with two random restarts. We set the step size to § = 0.87 which was
reported to perform best in the original work.

For the learning-based E2E approach, we considered different architectures for the gen-
erator and different loss functions. The best performance was obtained with the MSE for
the MNIST-like datasets, and with the MAE for the color-image datasets.

For the DPR approach, we tried a non-conditional GAN and a VAE for the generator.
For the MNIST-like datasets the VAE performed better, so we only report results for the
VAE-based DPR method. For the other datasets, we use a DCGAN (Radford et al., 2015) as
the underlying generative model which produced better results. After training each model,
we initialized the latent variable with samples from a standard Gaussian distribution and
performed 10,000 iterations of Adam with a step size of 0.1, which we found to perform
best. In order to get useful results, we allowed multiple restarts and used the reconstruction
with the lower magnitude error.

6.4 Training and Optimization

We determined all hyperparameters by using a separate validation dataset. We trained
all previously mentioned learning-based models with a batch size of 32 for the MNIST-like
datasets and 64 for the color-images, using the Adam optimizer (Kingma and Ba, 2014).
We trained the PRCGAN for 100 epochs for all datasets except for CIFAR-10, where we
increased the number of epochs to 250. We set A = 100 for MNIST, EMNIST, and KMNIST
and used A\ = 1000 for FMNIST, CelebA, and CIFAR-10.

Analogous to the DPR approach, we optimized the latent variable z using 10,000 steps
with a learning rate of 0.1. We observed that even without restarting, our approach out-
performed DPR, so we decided to eliminate the random restarts to keep the computational
effort limited. In the weight optimization of PRCGAN-W, we also used 10,000 steps but
with a decreased learning rate of 1076,

6.5 Evaluation

For grayscale datasets MNIST, FMNIST, EMNIST and KMNIST we compare the mean
squared error (MSE), the mean absolute error (MAE) and the structural similarity index



UELWER, KONIETZNY, OBERSTRASS, AND HARMELING

measure (SSIM; Wang et al., 2004). For datasets consisting of color-images (CelebA and
CIFAR-10) we report the MSE, the LPIPS (Zhang et al., 2018) and the SSIM. For the
grayscale images with black background, we observe that the reconstructions are some-
times flipped and translated after performing the latent optimization. This is to be ex-
pected as flipping and translating the image does not change the magnitudes in the case
of Fourier phase retrieval. Therefore, we tread these reconstructions to be equally correct
and perform image registration with the target image before calculating the errors. We use
cross-correlation (Guizar-Sicairos et al., 2008) to align the reconstruction and the flipped re-
construction with the target image and report the better metric. For the color images from
CelebA and CIFAR-10 datasets, we did not observe any flips or shifts and therefore omitted
the registration step. We use 1024 images in each test set to limit the computational time.

7. Experiments
7.1 Results for Fourier Phase Retrieval

In the following, we discuss the results of the optimization-based and learning-based meth-
ods for Fourier phase retrieval.

HIO. On the MNIST-like datasets, the HIO algorithm reconstructs images but creates
many artifacts. For the other datasets, HIO is not successful at all, resulting in fragmented,
blurry reconstructions. Furthermore, for the color-images of the CIFAR-10 and the CelebA
datasets, HIO does not produce any useful results.

RAAR. Overall, we observe similar results as when using HIO, sometimes even slightly
worse. For the color-image datasets RAAR also does not succeed at reconstructing the
images.

End-to-End. In comparison to the optimization-based methods, the E2E approach does
not produce fragmented parts. Although some reconstructions are still blurry, E2E performs
better in all six datasets than HIO and RAAR.

DPR. On MNIST, the latent optimization approach produces better visual appearance of
the digits. To avoid local optima, we did multiple random restarts as detailed in Section 6.3.
However, sometimes DPR still does not work as well as E2E, as can be seen in the first and
second image shown in Figure 4. While DPR got slightly better MNIST reconstructions
than the E2E approach, it is having difficulties with the other datasets.

PRCGAN. The PRCGAN combines end-to-end learning with a subsequent optimization,
so we are expecting better results than the E2E and the DPR approach. The most basic
PRCGAN-D achieves similar performance to the E2E method, as one can see in Table 1 and
2. However, due to the adversarial loss, the PRCGAN alleviates the problem of blurriness
and gets much more realistic reconstructions. As one can see in the second and eighth image
in Figure 4 (columns 2 and 8) the reconstructions show finer texture components like the
text and the checkered pattern on the shirts, respectively. Quantitatively, the blurry E2E
reconstructions are better than the reconstructions of PRCGAN-D, since the MSE, MAE,
and SSIM punish misplaced sharp edges more than blurriness.

10



LEARNING CONDITIONAL GENERATIVE MODELS FOR PHASE RETRIEVAL

et (2| 0[] g|0] 1 |5

H10 (Fienup, 1932) [ i K
RAAR (Luke, 2004) (58 CAFSEIEIEIER
A< |7 016170 1]5

DPR (Hand et al., 2018) [l Ed (] IECARIEIE
rrecaN-D (ouws) [ EAEEARNE
INSHENSE | 2| D[ 0| [ 0] J [ 5]
preGAN-W (ouws) [ DIIEICARIEE

Figure 3: Registered reconstructions from the Fourier magnitudes of samples from the
MNIST test dataset for each model.
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Figure 4: Registered reconstructions from the Fourier magnitudes of samples from the
FMNIST test dataset for each model.
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Figure 5: Registered reconstructions from the Fourier magnitudes of samples from the
EMNIST test dataset for each model.

The variations PRCGAN-L and PRCGAN-W, which optimize latent variables or weights
with respect to the magnitude, produce the best reconstructions regarding both qualitative
and quantitative performance on all datasets except for CIFAR-10. It is remarkable that on
FMNIST we were even able to reconstruct the text shown on the second image in Figure 4,
where all other baseline methods failed. While our presented optimization approaches do
not significantly differ in quality, we observe that PRCGAN-L with a few minor exceptions
achieves the best reconstructions. One exception are the results of PRCGAN-W, which
achieves a lower MAE for MNIST and EMNIST. CIFAR-10 shows the limits of learning-
based methods for phase-retrieval: due to the high variation of the dataset, none of the
methods recovers good images. Quantitatively, E2E is slightly better than the other ap-
proaches. E2E produced blurry images, while our PRCGAN-D is trying to create images
with edges.

7.2 Computational Runtime

Reconstructing a single image of shape 3x64x64 using RAAR or HIO takes approximately
3.70 seconds on an AMD EPYC 7742 CPU (including two restarts). The end-to-end ap-
proaches E2E and PRCGAN-D, which reconstruct the images in a single forward pass, are
the fastest methods discussed in this work. They take 0.16 and 0.02 seconds, respectively.
The latent optimization of the DPR approach takes 137.24 seconds, as it used two random
restarts. In contrast to that PRCGAN-L takes 85.76 seconds but does not use any restarts.
The weight optimization approach (PRCGAN-W) runs for 138.89 seconds to reconstruct a
single image. In contrast to DPR and PRCGAN-L, which can process a dataset of images
batchwise, PRCGAN-W needs to process each image separately. Thus it scales linearly
with the number of images and not with the number of batches as is the case for DPR

12
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Figure 6: Registered reconstructions from the Fourier magnitudes of samples from the
KMNIST test dataset for each model.
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Figure 7: Registered reconstructions from the Fourier magnitudes of samples from the
CelebA test dataset for each model.
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Table 1: Quantitative evaluation for MNIST, FMNIST, EMNIST and KMNIST for the
registered reconstructions from the Fourier magnitudes. MSE, MAE: lower is better. SSIM:
higher is better.

MNIST FMNIST
Method MSE MAE SSIM MSE MAE SSIM
HIO (Fienup, 1982) 0.0440  0.1016  0.5274 0.0649  0.1608  0.4019
RAAR (Luke, 2004) 0.0489  0.1150  0.4879 0.0668 0.1673  0.3491
E2E (ours) 0.0164  0.0429 0.8191 0.0129 0.0564 0.7400
DPR (Hand et al., 2018) 0.0139  0.0302  0.8685 0.0288  0.0855  0.6093
PRCGAN-D (ours) 0.0185  0.0415 0.8196 0.0149 0.0569 0.7414
PRCGAN-L (ours) 0.0009 0.0045 0.9890 0.0084 0.0403 0.8376
PRCGAN-W (ours) 0.0010  0.0034 0.9867 0.0090 0.0429  0.8266

EMNIST KMNIST
Method MSE MAE SSIM MSE MAE SSIM
HIO (Fienup, 1982) 0.0645 0.1364 0.4942 0.0920 0.1721  0.3592
RAAR (Luke, 2004) 0.0668  0.1425  0.4767 0.0931 0.1774 0.3773
E2E (ours) 0.0223  0.0656  0.7598  0.0538  0.1193  0.5510
DPR (Hand et al., 2018) 0.0326  0.0685  0.7480 0.0884  0.1446  0.4504
PRCGAN-D (ours) 0.0318  0.0692  0.7546  0.0694 0.1192  0.5535
PRCGAN-L (ours) 0.0066  0.0255  0.9416 0.0393 0.0775 0.7384
PRCGAN-W (ours) 0.0063 0.0218 0.9436 0.0402 0.0787  0.7259

Table 2: Quantitative evaluation for CelebA and CIFAR-10 for the reconstructions from
the Fourier magnitudes. Note that we do not register the reconstructions for these datasets.
MSE, LPIPS: lower is better. SSIM: higher is better.

CelebA CIFAR-10
Method MSE SSIM  LPIPS MSE SSIM LPIPS
HIO (Fienup, 1982) 0.1005 0.0510 0.8228 0.0814 0.0881 0.7827
RAAR (Luke, 2004) 0.1011  0.0537 0.8183 0.0808 0.0927 0.7779
E2E (Ours) 0.0123 0.6367 0.2683 0.0390 0.2735 0.5852
DPR (Hand et al., 2018) 0.0388  0.4185 0.3529  0.0707 0.1713 0.5819
PRCGAN-D (ours) 0.0155 0.5653 0.2655  0.0402 0.2297 0.5403
PRCGAN-L (ours) 0.0093 0.6846 0.2182 0.0489 0.2219 0.5401
PRCGAN-W (ours) 0.0115 0.6405 0.2835 0.0492 0.2173 0.5487
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Figure 8: Registered reconstructions from the Fourier magnitudes of samples from the
CIFAR-10 test dataset for each model.

and PRCGAN-L. The runtimes of the learning-based methods are measured on an NVIDIA
A100 GPU. In conclusion, PRCGAN-L gives excellent reconstructions in most cases and
has reasonable runtime.

7.3 Dissecting the PRCGAN: Ablation Experiments

In this section, we explain what the PRCGAN has learned by presenting the results of
different ablation experiments.

7.3.1 IS THE MAGNITUDE PASSED TO THE CGAN BEING USED FOR THE
RECONSTRUCTION?

In the basic PRCGAN-D approach, the magnitudes are processed by the CGAN to recover
the image. However, for the other PRCGAN variants we are also employing the magni-
tudes in the subsequent optimization. To evaluate the influence of these two roles of the
magnitude, we run experiments where we used wrong magnitudes as inputs to the model on
purpose while afterwards solving the optimization problem stated in Equation 10 with the
correct magnitudes. Table 3 shows that the performance completely drops, which shows
that for PRCGAN-L, the magnitude input to the generator is essential.

7.3.2 IS IT SUFFICIENT TO CONDITION ON THE LABEL?

Instead of feeding magnitudes to the CGAN, one could argue that just the labels should
be sufficient for successful reconstruction. To answer this question we train a CGAN con-
ditioned on the labels and attempt to reconstruct the image given the correct label infor-
mation. While the label might not be available in practice, this experiment helps us to
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Table 3: Quantitative evaluation of the different ablation experiments. MSE, MAE: lower
is better. SSIM: higher is better.

MNIST
Method MSE MAE  SSIM
PRCGAN-L 0.0009 0.0045 0.9890
PRCGAN-L (conditioned on labels) 0.0160  0.0361  0.8442

PRCGAN-L (trained on wrong magnitudes) 0.0244  0.0455  0.7801
PRCGAN-L (trained w/o adversarial loss) 0.0289  0.0523  0.7363

Table 4: Comparison of reconstruction performance for different choices of reconstruction
loss functions Lye.. MSE, LPIPS: lower is better. SSIM: higher is better.

CelebA CIFAR-10
Method Lrec MSE SSIM LPIPS MSE SSIM  LPIPS

PRCGAN-D MAE 0.0155  0.5653 0.2655  0.0402  0.2297 0.5403
PRCGAN-D MSE 0.0149  0.5535 0.3028  0.0422 0.2432 0.5878
PRCGAN-D LPIPS 0.0143 0.5856 0.2418 0.0385 0.2390 0.5409

PRCGAN-L MAE 0.0093 0.6846 0.2182  0.0489 0.2219 0.5401
PRCGAN-L MSE 0.0125  0.6110 0.2811  0.0534 0.2133  0.5692
PRCGAN-L LPIPS 0.0096  0.6804 0.2126 0.0479 0.2279 0.5359

understand what information is relevant. As in the previous study, the results of only using
label information are inferior to using the magnitude (see Table 3).

7.3.3 CAN WE DROP THE ADVERSARIAL LOSS?

Next, we train a PRCGAN by only minimizing the reconstruction loss L;e.. Note that
this approach is not identical to E2E since it has a latent noise variable and a subsequent
optimization of it. Again, the performance worsens (see Table 3).

7.3.4 WHICH IMPACT DOES THE CHOICE OF THE RECONSTRUCTION LOSS HAVE?

We are interested whether the choice of the reconstruction loss function L. impacts the
performance of the PRCGAN-D and PRCGAN-L model. In addition to the MAE and
the MSE we also consider LPIPS, which is a perceptual loss function. Results are shown
in Table 4. Overall, the performance of the PRCGAN-D is improved by using LPIPS
as reconstruction loss, however when considering PRCGAN-L the effect decreases. This
justifies our initial choice of the reconstruction loss.
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Table 5: Ablation study for the intermediate fully connected layer used in the neural network
architecture for the CelebA and CIFAR-10 dataset. MSE, LPIPS: lower is better. SSIM:
higher is better.

CelebA

with fully connected layer without fully connected layer
Method MSE SSIM LPIPS MSE SSIM LPIPS

PRCGAN-D 0.0155 0.2655 0.5653  0.0260 0.4902 0.2903
PRCGAN-L  0.0093 0.2182 0.6846  0.0153 0.5899 0.2697
PRCGAN-W 0.0115 0.2835 0.6405 0.0156 0.5834 0.3021

7.3.5 CAN WE DROP THE FULLY CONNECTED INTERMEDIATE LAYER?

For the color images, the PRCGAN consists of several convolutional layers, two intermediate
fully connected layers and several transposed convolutional layers (see Figure 2). The
motivation for the fully connected layers is that it helps to model the global structure of
the phase retrieval problem. To measure its influence, we train the same model without
the intermediate fully connected layers. The results are shown in Table 5 and confirm our
design choice to include a fully connected intermediate layer. Also, the model without it
was more difficult to train due to numerical instabilities.

7.4 Robustness Against Distributional Shifts

In real-world applications, we often do not have examples from the true image distribution.
Instead, we might be able to train a model on a dataset that is only similar to some degree.
To simulate this situation, we use models trained on the MNIST digits and compare to what
extent we can reconstruct letters from the EMNIST dataset. Since the MNIST dataset is
a subset of the EMNIST dataset, we ensure that only images showing letters are used for
evaluation. Table 6 shows that all three variants of the PRCGAN are the best approaches
for this setup. For several exemplary reconstructions refer to Figure 10. To further confirm
these generalization abilities, we expanded our experiments on the four grayscale datasets.
We evaluate E2E;, DPR, PRCGAN-D, PRCGAN-L, and PRCGAN-W trained on MNIST,
FMNIST, EMNIST and KMNIST images, respectively, with each of the other datasets.
Figure 9 summarizes the reconstruction performance of the learned methods on out-of-
distribution data. Note that PRCGAN-L and PRCGAN-W perform best in eight out of
twelve cases (only considering those where training and testing domains differ).

Carrying on the idea of reconstructing arbitrary shapes we have created a small dataset
consisting of 32 MNIST-like symbols and benchmark the different methods on this dataset.
Here, we consider models trained on MNIST and EMNIST, and evaluate both using Fourier
measurements. Refer to Table 7 and Figure 11. Note that although the results are generally
better for the models trained on EMNIST, the PRCGAN variants always perform better
than E2E and DPR.
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Table 6: Training on MNIST digits leads to reasonable results on letters of EMNIST.
Quantitative evaluation for the registered reconstructions from the Fourier magnitudes.
MSE, MAE: lower is better. SSIM: higher is better.

EMNIST (only letters)
Method (trained on MNIST) MSE MAE SSIM

E2E (ours) 0.0535  0.1026  0.5486
DPR (Hand et al., 2018) 0.0427  0.0814  0.6670
PRCGAN-D (ours) 0.0567  0.1025  0.5710
PRCGAN-L (ours) 0.0269 0.0604 0.7751
PRCGAN-W (ours) 0.0269 0.0636  0.7492

Table 7: Evaluation of 32 MNIST-like symbols for the registered reconstructions from the

Fourier magnitudes, with the specified methods trained on MNIST and EMNIST, respec-
tively. MSE, MAE: lower is better. SSIM: higher is better.

trained on MNIST trained on EMNIST
Method MSE MAE SSIM MSE MAE SSIM
E2E (ours) 0.0916 0.1583 0.3974 0.0653 0.1413 0.4812
DPR (Hand et al., 2018) 0.0712 0.1192 0.6221 0.0499 0.0940 0.7280
PRCGAN-D (ours) 0.1095 0.1610 0.3770 0.0967 0.1522 0.4422
PRCGAN-L (ours) 0.0498 0.0942 0.7337 0.0452 0.0902 0.7282
PRCGAN-W (ours) 0.0484 0.0930 0.7356 0.0347 0.0751 0.7910
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Figure 9: Generalization to out-of-distribution data: MSE of registered reconstructions
from noisy Fourier magnitudes from the grayscale datasets.

7.5 Robustness Against Noise

All learning-based phase retrieval approaches discussed in this work were trained on syn-
thetic noiseless measurements. However, in practice Fourier magnitude measurements often
exhibit different kinds of noise which may influence the reconstruction process. In this sec-
tion, we study the robustness of these models to different types of measurement noise. First,
we take a look at Poisson noise, which is the type of noise usually present in many phase
retrieval applications (Yeh et al., 2015). The noisy measurements are then given as

j = ay/s, with s ~ Poisson (y*/a?), (12)
where the parameter « controls the amount of noise (larger values for a correspond to
stronger noise). A similar measurement process has been used by Metzler et al. (2018).
Second, we consider additive white Gaussian noise, i.e., the measurements are given as

§=1vy+as, withs~N(0,1), (13)

where, again, « controls the amount of noise.
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Figure 10: Generalization to out-of-distribution data: registered reconstructions of the
letters from EMINST. All models were trained on MNIST.
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Figure 11: Generalization to out-of-distribution data: registered reconstructions of images
from our MNIST-like symbols dataset. All models were trained on EMNIST.
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Figure 12: Noise robustness: MSE of registered reconstructions from Fourier magnitudes
perturbated with Poisson noise. Larger a implies stronger noise.

Figure 12 compares the performance of all methods regarding the robustness against
noise in the measurements used for the reconstruction. More precisely, we plot the MSE
of 1024 reconstructions against different noise levels, i.e., values of @ on MNIST, FMNIST,
EMNIST and KMNIST. On MNIST, the proposed methods are robust to noise up to o = 3.
On FMNIST, however, PRCGAN-W is less robust compared to PRCGAN-L. While for
small amounts of noise our approaches give the best results, for larger amounts of noise,
DPR is equally good or even slightly better. This might be due to the fact, that DPR
uses random restarts, which might have helped coping with local optima in the large noise
regime. Also, PRCGAN-L and PRCGAN-W perform best on EMNIST and KMNIST.

7.6 Robustness Against Randomly Missing Measurements

Furthermore, we analyze how the different methods are impacted by missing measurements.
In this experiment, we consider measurements that are given as

y=>b0 |Fz|, (14)

where b is a binary mask which exhibits the same symmetries as the magnitude measure-
ment |Fz| and ® denotes elementwise multiplication. By multiplying the measurements
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Figure 16: Reconstruction from Gaussian measurements: comparison of the PRCGAN, the
E2E and generative prior approaches for different numbers of measurements m.

with the binary mask b, we randomly set some of the entries to zero to simulate missing
measurements.

Both unsupervised and supervised methods use the magnitudes for the reconstruction
error, where the terms of the missing entries are omitted, i.e., images were reconstructed by
minimizing the loss ||y — b ® |FG(2)]||3 for DPR and ||y — b ® | FGy(z,y)||3 for our method
PRCGAN-L. We used the models that were trained on complete magnitude measurements,
i.e., we did not retrain the models.

Figure 15 shows the MSE on the MNIST and the FMNIST dataset. Interestingly,
methods that get the measurements as input perform worse than the DPR approach. The
supervised methods are further affected by missing magnitudes since they also use them as
input for the network. Further training on masked Fourier magnitudes could help mitigating
this effect.
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Figure 17: Reconstructions from Gaussian measurements of images from FMNIST for a
varying number of measurements m.

7.7 Results for Compressive Phase Retrieval

Besides the Fourier phase retrieval problem, a commonly studied problem is compres-
sive Gaussian phase retrieval. For a vectorized image x € R™ the measurement ma-
trix M € R™*" is elementwise sampled from a Gaussian distribution N (0,1/m) for dif-
ferent numbers of measurements m. By increasing the number of measurements m we can
smoothly adjust the difficulty of the problem. For a comprehensive evaluation, we consider
eight different values for m. We start with a small number of 10 measurements and increase
it up to the dimension of the flattened image (m = 784, number of pixels in MNIST). We
sample a measurement matrix M for each m and we keep it fixed to train the different
approaches. Analogous to the Fourier phase retrieval, we take the same model architec-
tures as described in Section 6.2. In Figure 16 we plot the MSE of 1024 reconstructions
against different values of m. For the PRCGAN variants and the E2E approach, we retrain
the model for each value of m. Note that the training of the underlying VAE for DPR
is independent of the chosen measurement matrix M, so we can optimize the latent space
of the same VAE that we also use in the Fourier phase retrieval experiments. However,
for MNIST we observe worse results using the latent dimension of 128, so in this case we
keep the latent dimension of 20 from the original work (Hand et al., 2018). As expected,
reducing the number of measurements results in higher errors for all methods as one can
see from the plots in Figure 16. Note that DPR has the worst performance and is strongly
influenced by the number of measurements on both datasets. Lastly, we show an exam-
ple for the reconstruction performance of the proposed methods on FMNIST in Figure 17.
DPR completely fails to reconstruct the letters and E2E only achieves useful results for the
maximum number of measurements. In contrast to that, PRCGAN-L and PRCGAN-W
successfully reconstruct the images even for a small number of measurements.

8. Discussion and Conclusion

In this work, we propose the PRCGAN for solving Fourier phase retrieval and compressive
Gaussian phase retrieval problem. Our method can be seen as an end-to-end learning
approach augmented with an additional optimization procedure combining the best of both
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worlds. On the one hand, the learning component allows our method to reconstruct images
for particularly difficult instances of the phase retrieval problem, and on the other hand,
the subsequent latent or weight optimization produces high quality reconstructions. Our
ablation study shows that each of the components of our model is necessary to achieve this.
Furthermore, we show that our method is robust to Poisson noise and additive Gaussian
noise and (at least to some extent) generalizes better to out-of-distribution data than other
methods.
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