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Abstract

Population-based multi-agent reinforcement learning (PB-MARL) encompasses a range of
methods that merge dynamic population selection with multi-agent reinforcement learning
algorithms (MARL). While PB-MARL has demonstrated notable achievements in complex
multi-agent tasks, its sequential execution is plagued by low computational efficiency due
to the diversity in computing patterns and policy combinations. We propose a solution
involving a stateless central task dispatcher and stateful workers to handle PB-MARL’s
subroutines, thereby capitalizing on parallelism across various components for efficient
problem-solving. In line with this approach, we introduce MALib, a parallel framework
that incorporates a task control model, independent data servers, and an abstraction of
MARL training paradigms. The framework has undergone extensive testing and is available
under the MIT license (https://github.com/sjtu-marl/malib).
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1. Introduction

Population-based multi-agent reinforcement learning has shown great potential in nontrivial
multi-agent tasks (Berner et al., 2019; Vinyals et al., 2019; McAleer et al., 2020; Jaderberg
et al., 2017) by coordinating dynamical population selection and MARL algorithms (Heinrich
and Silver, 2016; Salimans et al., 2017). However, the training of PB-MARL methods
is computationally expensive due to the increasing size of policy pools and interactions
among them. A feasible way to handle such a computationally expensive task is distributed
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computing, especially for reinforcement learning (RL) tasks with irregular training workloads
including optimization, rollout, planning (Liang et al., 2018) , etc.Despite the existing work
giving sophisticated distributed solutions for RL (Espeholt et al., 2018; Petrenko et al.,
2020), they primarily focus on single-agent cases and offer less consideration of multi-agent.
Furthermore, PB-MARL involves bi-level heterogeneity due to inner-loop MARL policy
optimization and outer-loop policy combinations generation. This bi-level heterogeneity
(see Figure 1) makes PB-MARL’s parallelism more complex than existing distributed MARL
frameworks, which typically focus on fixed policy combinations (Liang et al., 2018; Pretorius
et al., 2021). Specifically, because the outer-loop (see Figure 1(a)) involves a growing policy
population and flexible agent selection, the policy combinations can be heterogeneous and
difficult to solve. Additionally, because the inner-loop of PB-MARL involves executing
MARL tasks, it also inherits the computing heterogeneity of RL, which adds another layer
of complexity to the overall framework.
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Figure 1: A PB-MARL algorithm starts from n policy populations and runs simulations for
policy combinations (a), followed by evaluations to compute policy distribution for each of
populations (b). Parallel MARL procedures learn new policies by playing against policies
sampled from these populations (d), and then these new policies will be used to expand
populations (c). The algorithm executes (a) ~ (d) in a loop until convergence.

As a solution to these challenges, we present a parallel PB-MARL framework, MALib,
which considers the ability to handle bi-level heterogeneity in PB-MARL and the algorithm
abstraction. For the former, we decompose the controlling logic into different layers accord-
ing to the dependency and functionality, which are correspondingly responsible for parallel
control and policy interaction control. For the latter, we give the algorithm abstractions
from the perspective of multi-agent optimization paradigms. This provides full customiza-
tion for low-level training logic and reserved customization for mid-level interaction logic
with predefined templates, trading off between performance and ease of use.

2. Related Work

PB-MARL aims to address complex multi-agent learning tasks by simplifying the joint pol-
icy space, incorporating large-scale simulations, it combines population-based training and
metagame analysis (Wellman, 2006; Jaderberg et al., 2017; Carroll et al., 2019; Jaderberg
et al., 2019; Lanctot et al., 2017; Muller et al., 2020; Nieves et al., 2021; Vinyals et al.,
2019; Heinrich et al., 2015). One difficulty in PB-MARL is the quadratically increasing and
heterogeneous policy interactions, which results in expensive computing costs. As learned
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from existing research for improving the efficiency of large-scale tasks, distributed computing
is shown to be a promising solution. There are many distributed frameworks designed for
deep RL (Flajolet et al., 2022; Nair et al., 2015; Mnih et al., 2016; Stooke and Abbeel, 2018;
Babaeizadeh et al., 2017), but most of them focus on single-agent cases. Recently some
frameworks (Liang et al., 2018; Pretorius et al., 2021; Hu et al., 2022) have exploited paral-
lelism in accelerating deep MARL algorithms. However, their architectures and abstractions
do not offer efficient yet user-friendly interfaces to those population-based methods, mak-
ing them poorly fit for the research of PB-MARL. As for existing distributed frameworks
for population-based learning (Flajolet et al., 2022; Zhi et al., 2020), they have limited to
single-agent cases and lack specialist designs that address heterogeneous policy interactions.

3. Framework Description

The development of MALib is based on Python, Ray (Moritz et al., 2018) and PyTorch (Paszke
et al., 2019). Conceptually, MALib packs up hierarchical abstractions for PB-MARL pipelines,
where the essentials include: (1) a control model implementing a semipassive mechanism to
handle bi-level heterogeneity, (2) independent data servers supporting high data parallelism
and (3) unified abstractions for population selection and optimization paradigms. The fol-
lowing content introduces the critical components of MALib, also the philosophy to address
the bi-level heterogeneity. MALib opens up broad customization interfaces so that users can
easily customize the algorithms, environments, etc.
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Figure 2: The Coordinator dispatches tasks to workers (Actors and Learners), and the
workers coordinate with the Coordinator in semipassive, i.e., workers send task requests to
the Coordinator instead of waiting. Actors for simulation and data collection, Learners for
policy optimization. Managers are designed for worker coordination. All workers work in
parallel and exchange data via data servers.

Control Model & Task Dispatching. It is common to use decentralized or central-
ized control to handle heterogeneity and task dispatching for many existing distributed RL
frameworks (Liang et al., 2018; Espeholt et al., 2018; Petrenko et al., 2020). However, PB-
MARL’s bi-level heterogeneity, intensive computation, and complex module dependencies
result in a high cost for centralized and decentralized control to implement the control logic.
We address this problem by introducing a control model that executes semipassively. The
semipassive mode is a mix of conventional centralized control and decentralized control, in
which the control logic and the corresponding cost for computation and intermediate state
maintenance are offloaded from the central node (Coordinator), hierarchically split, and
assigned to workers (Actors, Learners), as illustrated in Figure 2. In this mechanism, the
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controller kicks in only when the subroutines have finished and further processing is required
from workers. Then, detailed task descriptions for information such as policy combination,
agents involved and etc., are generated and dispatched to the target workers. With this
mechanism, a learning task in MALib is decoupled into multiple rollout and optimization
tasks, which are delegated to Actors and Learners, respectively.

Independent Data Servers. We decouple the data flow from a task execution flow so
that the workers can execute fully asynchronously, which differs from existing frameworks
like MAVA (Pretorius et al., 2021). Specifically, there is a Parameter Server and Dataset
Server for parameters and training data coordination between the workers, respectively.
As the training of PB-MARL is highly concurrent, such centralized data servers create
an unbalance in data reading and writing, resulting in low data throughput and training
efficiency. Therefore, we use independent data pipelines/processes for concurrent tasks and
incorporate fine-grained locks for read-write balance, so that the data request can be further
executed asynchronously. Moreover, thanks to Ray’s Plasma (Robert, 2016), MALib can
further decrease the influence of data serialization on throughput 1.

Abstractions for Optimization and Population Selection. As the optimization of
MARL is miscellaneous, an ideal design is a unified optimization interface for code reuse. We
implement an AgentInterface that decouples the optimization pipeline as model-coordination,
data request, and optimization logic. With the model-coordination, users can easily im-
plement complex MARL optimization, such as centralized training (Rashid et al., 2018),
networked learning (Zhang et al., 2018), etc. The optimization can be distributed to multi-
ple parallel instances to perform asynchronous or synchronous gradient updates. Therefore,
MALIb can satisty different distributed training strategies, which opens up further research
on distributed MARL algorithms. We also provide the abstraction for population-selection
in Coordinator, which is a key to PB-MARL as it determines how to expand the policy
population and generate policy interactions.

Environments. MALib implements a unified environment interface to integrate typical
RL environments, e.g., OpenSpiel (Lanctot et al., 2019), Gym (Brockman et al., 2016),
StarCraftIl (Samvelyan et al.), Google Research Football (Kurach et al., 2020) and Petting-
Zoo (Terry et al., 2020). MALIib also considers environment vectorization, which enables
batch environment stepping.

4. Summary

MALIb is an open-source framework for PB-MARL that aims to address the bi-level het-
erogeneity by introducing a control model that executes in semipassive. Its independent
data servers decouple the data flow from task execution and allow the workers to main-
tain high parallelism. The abstractions of population-selection and optimization paradigms
are designed to prompt research on PB-MARL from an engineering-support perspective.
Moreover, MALib is attracting community interest in secondary development 2.

1. We list the performance comparison results that show our design outperforms the baseline framework in
throughput, see issue #35, also refer to the documentation for more details about the data servers.
2. https://github.com/Shanghai-Digital-Brain-Laboratory/DB-Football
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Appendices

This appendix introduces some of the key evaluation results of MALib, and more results can
be found on our project website (see issue #35). The evaluation focuses on both system and
algorithm performance, including the comparison of data throughput, training efficiency,
and algorithms’ convergence performance. All the experiment results are obtained with one
of the following hardware settings:

e System #1: a 32-core computing node with dual graphics cards;

o System #2: a two-node cluster with each node owning 128-core and a single graphics
card. All the GPUs mentioned are of the same model (NVIDIA RTX3090).

Appendix A. Throughput Comparisons

We conduct the throughput evaluation on MALib and compare the results with some of the
existing SOTA distributed RL frameworks, including RLIib (Liang et al., 2018), Sample-
Factory (Petrenko et al., 2020) and SEED RL (Espeholt et al., 2020). Especially, Sample-
Factory and SEED RL, which are highly tailored for TPU and GPU instances.

Task Settings. As the environment for throughput comparison, we adopt the multi-agent
version of Atari games (MA-Atari) from PettingZoo (Terry et al., 2020), a collection of 2D
video games with multiple agents. In our experiments, we use the two-player Pong, a video
game with RGB-image frames in 12 x 12 x 3 resolution. We compare MALib to other
high-throughput frameworks, including IMPALA (Espeholt et al., 2018) for SEED RL and
RLlib, APPO (Petrenko et al., 2020) for Sample-Factor and MALib. Considering the fair-
ness of comparison, the structure of the tested policy network in each framework is kept
the same. Specifically, it is constructed as a ConvNet with three convolutional layers, and
two fully-connected heads for the actor and critic. The evaluation of training throughput
was conducted in different worker configurations over three minutes of continuous training,
considering performance fluctuations caused by environment reset, data concatenation, and
other factors like threading lock. For each worker, we fixed the number of environments
as 100. The number of workers ranges from 1 to 128 to compare the upper bound and
bottleneck in the parallelism performance of different frameworks.
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Figure 3 shows the comparison results on System #1. With a unified resource limitation,
the maximum concurrency and peak performance that each framework can obtain is closely
related to its architecture. In the CPU-only setting, RLIib failed to launch with more than
32 workers, while the threshold for GPU-accelerated RLIib is 8 workers. Despite the extra
abstraction layer introduced for tackling PB-MARL problems, both the CPU and GPU
versions of MALib outperform other frameworks in the MA-Atari environment. Specifically,
MALib has achieved an average FPS at 25.9K with 128 workers in the CPU-only setting,
which is 80% more than that of the second place. And MALib achieves FPS at 39.6K (64
workers) and 40.6K (128 workers) with GPU acceleration, which are correspondingly 37.3%
and 61.8% more than FPS of Sample-Factory, a framework specially tailored for training
conventional RL algorithms on a single GPU node. We notice that Sample-Factory suffers
minor performance degradation in both settings with large concurrency, which may result
from the potential resource competition.

MA-Atari Throughput w/o GPU Acceleration MA-Atari Throughput w/ GPU Acceleration Cluster Throughput

25.0k] —*— RLIb(IMPALA) 40.0K{ —e— RLIib-GPU(IMPALA) [
Sample-Factory(APPO) Sample-Factory-GPU(APPO) 70.0K{ mE StarCraftll

—e— SEED RL(IMPALA) —e— SEED RL-GPU(IMPALA)

20.0K{ —e— MALib(APPO) —e— MALib-GPU(APPO)

60.0K

50.0K
15.0K
20.0K 40.0K

15.0K 30.0K
10,0k 20,0k
5.0k 10.0K
0.0k{ *

0.0K
1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128 32 64 128 256 512

# Workers # Workers # Workers

10.0K

Frames per Second(FPS)

w
o
=

o
o
=

Figure 3: Throughput comparison among the existing RL frameworks and MALib. Due
to resource limitation (32 cores, 256G RAM), RLIib fails under heavy loads (CPU case:
#workers>32, GPU case: #workers>8). MALib outperforms other frameworks with only
CPU and achieves comparable performance with the highly tailored framework Sample-
Factory with GPU despite the higher abstraction introduced. To better illustrate the scala-
bility of MALib, we show the MA-Atari and SC2 throughput on System #2 under different
worker settings; the 512-workers group on SC2 fails due to resource limitation.

Appendix B. Algorithm Implementation and Performance

A series of algorithms have been implemented in MALIib, including independent learning
algorithms like DQN, PPO, and SAC, along with MARL algorithms like MADDPG and
QMIX. Furthermore, these algorithms can be applied to Population-based Training (PBT)
and self-play, supported by MALib. For the algorithmic performance evaluation, we focus
on the convergence rate, which is derived from sample efficiency and training time consump-
tion. The tested algorithms cover both conventional MARL and PB-MARL algorithms.
Specifically, we tested PSRO (Muller et al., 2020) for PB-MARL and MADDPG and QMIX
for conventional MARL.

Evaluation of PB-MARL. We compared MALib with OpenSpiel(Lanctot et al., 2019)
on solving Leduc Poker, a common benchmark in Poker AI. To get a relatively accurate
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empirical payoff, we run 2,000 simulations for each policy combination, and the maximum
of population size is limited to 100.
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Figure 4: Comparisons of MALib and OpenSpiel on solving Leduc Poker with PSRO. (a)
MALib achieves the same performance on exploitability as OpenSpiel; (b) the convergence
rate of MALib is 3x faster than OpenSpiel; (¢) MALib achieves a higher execution efficiency
than OpenSpiel, since it costs less time consumption to iterate the same learning steps.

We evaluate the convergence of PSRO through the lens of exploitability (McAleer et al.,
2020). The lower the exploitability, the closer the algorithm is to an Nash Equilibrium. As
shown in Figure 4b, MALIib cuts 70% execution time while maintaining exploitability with
a similar quality as OpenSpiel (Figure 4). Furthermore, we also evaluate other PB-MARL
methods like Fictitious Self-Play (FSP) (Heinrich et al., 2015) and Self-Play (SP) (Heinrich
and Silver, 2016). Table 1 presents their comparison of execution time and population size
when the exploitability decreases to 0.5. The results show that PSRO outperforms the other
two methods on both metrics. We argue the reason why SP fails to converge is that Leduc
Poker is not a purely transitive game. Thus the SP will be trapped in non-transitivity.
As for FSP, it is more time-consuming than PSRO to achieve the same performance. It
might be that PSRO considers the interactions and meta-game between different policies
in populations and solves it to approximate the Nash Equilibrium of the underlying game,
which results in a faster convergence rate. Furthermore, when an exact meta-game solver
such as the LP-solver or the a-rank solver (Omidshafiei et al., 2019; Yang et al., 2020) is
used, PSRO will converge in a shorter time and with a smaller population size.

Table 1: Comparison of three typical PB-MARL in MALib.

Algorithm Time(sec) Population Size
Fictitious Self-Play 7562 60
PSRO(fictitious play) 4862 40
PSRO(a-rank) 1776 21

Evaluation of Conventional MARL. Multi-agent Particle Environments (MPE) (Lowe
et al., 2017) is a typical benchmark environment for the research of MARL. It offers plenty
of scenarios covering cooperative and competitive tasks. To investigate the performance of
conventional MARL algorithms implemented in MALib, we compared with RLlib’s imple-
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mentation of MADDPG (Lowe et al., 2017). For the evaluation, we considered various task
types and varying degrees of sampling parallelism. Specifically, the tasks for the evaluation
included cooperative, competitive, and mixed cooperative-competitive tasks; the concur-
rency of sampling ranges from 8 workers to 128 workers. Figure 5 shows the results on
simple adversary, a mixed cooperative-competitive task, and it indicates that MALib’s im-
plementation performs more steadily than RLIib’s. Especially when the worker number
increases, RLlib implementation shows high variance and even fails to converge under some
settings, while MALib does not. We argue the reason is due to the differences in the pipeline
scheduling between MALib and RLIib. MALib executes learning asynchronously, while RL-
lib, although equipped with parallel sampling, executes sequentially.
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Figure 5: Comparisons of MADDPG in simple adversary under different rollout worker
settings. Figures in the top row depict each agent’s episode reward w.r.t. the number of
sampled episodes indicates that MALib converges faster than RLIib with equal sampled
episodes. Figures in the bottom row show the average time and average episode reward at
the same number of sampled episodes, which indicates that MALib achieves 5x speedup
than RLIib.



MALIB: A PARALLEL FRAMEWORK FOR PB-MARL

References

Mohammad Babaeizadeh, Iuri Frosio, Stephen Tyree, Jason Clemons, and Jan Kautz. Re-
inforcement learning through asynchronous advantage actor-critic on a GPU. In 5th In-
ternational Conference on Learning Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemystaw Debiak,
Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota
2 with large scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Micah Carroll, Rohin Shah, Mark K. Ho, Tom Griffiths, Sanjit A. Seshia, Pieter Abbeel, and
Anca D. Dragan. On the utility of learning about humans for human-ai coordination. In
Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B.
Fox, and Roman Garnett, editors, Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada, pages 5175-5186, 2019.

Lasse Espeholt, Hubert Soyer, Rémi Munos, Karen Simonyan, Volodymyr Mnih, Tom
Ward, Yotam Doron, Vlad Firoiu, Tim Harley, lain Dunning, Shane Legg, and Koray
Kavukcuoglu. IMPALA: scalable distributed deep-rl with importance weighted actor-
learner architectures. In Jennifer G. Dy and Andreas Krause, editors, Proceedings of
the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmds-
san, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning
Research, pages 1406-1415. PMLR, 2018.

Lasse Espeholt, Raphaél Marinier, Piotr Stanczyk, Ke Wang, and Marcin Michalski. Seed
rl: Scalable and efficient deep-rl with accelerated central inference. In 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net, 2020.

Arthur Flajolet, Claire Bizon Monroc, Karim Beguir, and Thomas Pierrot. Fast population-
based reinforcement learning on a single machine. In International Conference on Machine
Learning, pages 6533-6547. PMLR, 2022.

Johannes Heinrich and David Silver. Deep reinforcement learning from self-play in imperfect-
information games. arXiv preprint arXiw:1603.01121, 2016.

Johannes Heinrich, Marc Lanctot, and David Silver. Fictitious self-play in extensive-form
games. In Francis R. Bach and David M. Blei, editors, Proceedings of the 32nd Inter-
national Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015,
volume 37 of JMLR Workshop and Conference Proceedings, pages 805-813. JMLR.org,
2015.

Siyi Hu, Yifan Zhong, Minquan Gao, Weixun Wang, Hao Dong, Zhihui Li, Xiaodan Liang,
Xiaojun Chang, and Yaodong Yang. Marllib: Extending rllib for multi-agent reinforce-
ment learning. arXiv preprint arXiw:2210.13708, 2022.



Zuou, WAN, WANG, WEN, WU, WEN, YANG, YU, WANG, AND ZHANG

Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki, Jeff Donahue,
Ali Razavi, Oriol Vinyals, Tim Green, lain Dunning, Karen Simonyan, et al. Population
based training of neural networks. arXiv preprint arXiv:1711.09846, 2017.

Max Jaderberg, Wojciech M Czarnecki, lain Dunning, Luke Marris, Guy Lever, Antonio Gar-
cia Castaneda, Charles Beattie, Neil C Rabinowitz, Ari S Morcos, Avraham Ruderman,
et al. Human-level performance in 3d multiplayer games with population-based reinforce-
ment learning. Science, 364(6443):859-865, 2019.

Karol Kurach, Anton Raichuk, Piotr Stanczyk, Michal Zajac, Olivier Bachem, Lasse Es-
peholt, Carlos Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, et al.
Google research football: A novel reinforcement learning environment. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 34, pages 4501-4510, 2020.

Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien
Pérolat, David Silver, and Thore Graepel. A unified game-theoretic approach to multi-
agent reinforcement learning. In Advances in Neural Information Processing Systems,
2017.

Marc Lanctot, Edward Lockhart, Jean-Baptiste Lespiau, Vinicius Zambaldi, Satyaki Upad-
hyay, Julien Pérolat, Sriram Srinivasan, Finbarr Timbers, Karl Tuyls, Shayegan Omid-
shafiei, et al. Openspiel: A framework for reinforcement learning in games. arXiv preprint
arXiv:1908.09453, 2019.

Eric Liang, Richard Liaw, Philipp Moritz, Robert Nishihara, Roy Fox, Ken Goldberg,
Joseph E Gonzalez, Michael I Jordan, and Ion Stoica. Rllib: Abstractions for dis-
tributed reinforcement learning. In Proceedings of the 35th International Conference on
Machine Learning, ICML 2018, Stockholmsmdssan, Stockholm, Sweden, July 10-15, 2018,
volume 80 of Proceedings of Machine Learning Research, pages 3059-3068. PMLR, 2018.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAl Pieter Abbeel, and Igor Mordatch.
Multi-agent actor-critic for mixed cooperative-competitive environments. In Advances in
Neural Information Processing Systems, pages 6379-6390, 2017.

Stephen McAleer, John B. Lanier, Roy Fox, and Pierre Baldi. Pipeline PSRO: A scalable
approach for finding approximate nash equilibria in large games. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors,

Advances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Volodymyr Mnih, Adria Puigdoménech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lil-
licrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for
deep reinforcement learning. In Maria-Florina Balcan and Kilian Q. Weinberger, editors,
Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New
York City, NY, USA, June 19-24, 2016, volume 48 of JMLR Workshop and Conference
Proceedings, pages 1928-1937. JMLR.org, 2016.

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric
Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan, and Ion Stoica.

10



MALIB: A PARALLEL FRAMEWORK FOR PB-MARL

Ray: A distributed framework for emerging Al applications. In Andrea C. Arpaci-Dusseau
and Geoff Voelker, editors, 13th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2018, Carlsbad, CA, USA, October 8-10, 2018, pages 561-577.
USENIX Association, 2018.

Paul Muller, Shayegan Omidshafiei, Mark Rowland, Karl Tuyls, Julien Pérolat, Siqi Liu,
Daniel Hennes, Luke Marris, Marc Lanctot, Edward Hughes, Zhe Wang, Guy Lever,
Nicolas Heess, Thore Graepel, and Rémi Munos. A generalized training approach for
multiagent learning. In 8th International Conference on Learning Representations, ICLR
2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory Fearon, Alessan-
dro De Maria, Vedavyas Panneershelvam, Mustafa Suleyman, Charles Beattie, Stig Pe-
tersen, et al. Massively parallel methods for deep reinforcement learning. arXiv preprint
arXiv:1507.04296, 2015.

Nicolas Perez Nieves, Yaodong Yang, Oliver Slumbers, David Henry Mguni, Ying Wen, and
Jun Wang. Modelling behavioural diversity for learning in open-ended games. In Marina
Meila and Tong Zhang, editors, Proceedings of the 38th International Conference on Ma-
chine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings
of Machine Learning Research, pages 8514-8524. PMLR, 2021.

Shayegan Omidshafiei, Christos Papadimitriou, Georgios Piliouras, Karl Tuyls, Mark Row-
land, Jean-Baptiste Lespiau, Wojciech M Czarnecki, Marc Lanctot, Julien Perolat, and
Remi Munos. a-rank: Multi-agent evaluation by evolution. Scientific reports, 9(1):1-29,
2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imper-
ative style, high-performance deep learning library. In Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 8024-8035,
2019.

Aleksei Petrenko, Zhehui Huang, Tushar Kumar, Gaurav Sukhatme, and Vladlen Koltun.
Sample factory: Egocentric 3d control from pixels at 100000 fps with asynchronous rein-

forcement learning. In International Conference on Machine Learning, pages 7652-7662.
PMLR, 2020.

Arnu Pretorius, Kale-ab Tessera, Andries P Smit, Claude Formanek, St John Grimbly, Kevin
Eloff, Siphelele Danisa, Lawrence Francis, Jonathan Shock, Herman Kamper, et al. Mava:
a research framework for distributed multi-agent reinforcement learning. arXiv preprint
arXiw:2107.01460, 2021.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent
reinforcement learning. In International conference on machine learning, pages 4295-4304.
PMLR, 2018.

11



Zuou, WAN, WANG, WEN, WU, WEN, YANG, YU, WANG, AND ZHANG

Nishihara Robert. GitHub - ray-project/plasma: A minimal shared memory object store
design — github.com. https://github.com/ray-project/plasma, 2016. |Accessed 21-
Nov-2022].

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strate-
gies as a scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864,
2017.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas
Nardelli, Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon
Whiteson. The starcraft multi-agent challenge.

Adam Stooke and Pieter Abbeel. Accelerated methods for deep reinforcement learning.
arXiw preprint arXiw:1803.02811, 2018.

Justin K Terry, Benjamin Black, Mario Jayakumar, Ananth Hari, Luis Santos, Clemens
Dieffendahl, Niall L. Williams, Yashas Lokesh, Ryan Sullivan, Caroline Horsch, and
Praveen Ravi. Pettingzoo: Gym for multi-agent reinforcement learning. arXiv preprint
arXiw:2009.14471, 2020.

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaél Mathieu, Andrew Dudzik,
Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk
Oh, Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cali,
John P. Agapiou, Max Jaderberg, Alexander Sasha Vezhnevets, Rémi Leblond, Tobias
Pohlen, Valentin Dalibard, David Budden, Yury Sulsky, James Molloy, Tom Le Paine,
Caglar Giilgehre, Ziyu Wang, Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama,
Dario Wiinsch, Katrina McKinney, Oliver Smith, Tom Schaul, Timothy P. Lillicrap, Ko-
ray Kavukcuoglu, Demis Hassabis, Chris Apps, and David Silver. Grandmaster level in
starcraft I using multi-agent reinforcement learning. Nat., 575(7782):350-354, 2019. doi:
10.1038/s41586-019-1724-7.

Michael P Wellman. Methods for empirical game-theoretic analysis. In AAAI pages 1552—
1556, 2006.

Yaodong Yang, Rasul Tutunov, Phu Sakulwongtana, and Haitham Bou Ammar. aa-rank:
Practically scaling a-rank through stochastic optimisation. In Proceedings of the 19th
International Conference on Autonomous Agents and MultiAgent Systems, pages 1575—
1583, 2020.

Kaiqing Zhang, Zhuoran Yang, and Tamer Basar. Networked multi-agent reinforcement
learning in continuous spaces. In 2018 IEEE conference on decision and control (CDC),
pages 2771-2776. IEEE, 2018.

Jiale Zhi, Rui Wang, Jeff Clune, and Kenneth O Stanley. Fiber: A platform for efficient
development and distributed training for reinforcement learning and population-based
methods. arXiv preprint arXiv:2003.11164, 2020.

12


https://github.com/ray-project/plasma

	Introduction
	Related Work
	Framework Description
	Summary
	Throughput Comparisons
	Algorithm Implementation and Performance

