
Journal of Machine Learning Research 24 (2023) 1-42 Submitted 2/22; Revised 9/22; Published 3/23

Faith-Shap: The Faithful Shapley Interaction Index

Che-Ping Tsai chepingt@cs.cmu.edu
Department of Machine Learning
Carnegie Mellon University
PA 15213, USA

Chih-Kuan Yeh cjyeh@cs.cmu.edu
Department of Machine Learning
Carnegie Mellon University
PA 15213, USA

Pradeep Ravikumar pradeepr@cs.cmu.edu
Department of Machine Learning
Carnegie Mellon University
PA 15213, USA

Editor: Tommi Jaakkola

Abstract

Shapley values, which were originally designed to assign attributions to individual players in
coalition games, have become a commonly used approach in explainable machine learning
to provide attributions to input features for black-box machine learning models. A key
attraction of Shapley values is that they uniquely satisfy a very natural set of axiomatic
properties. However, extending the Shapley value to assigning attributions to interactions
rather than individual players, an interaction index, is non-trivial: as the natural set of
axioms for the original Shapley values, extended to the context of interactions, no longer
specify a unique interaction index. Many proposals thus introduce additional less “natural”
axioms, while sacrificing the key axiom of efficiency, in order to obtain unique interaction
indices. In this work, rather than introduce additional conflicting axioms, we adopt the
viewpoint of Shapley values as coefficients of the most faithful linear approximation to the
pseudo-Boolean coalition game value function. By extending linear to `-order polynomial
approximations, we can then define the general family of faithful interaction indices. We
show that by additionally requiring the faithful interaction indices to satisfy interaction-
extensions of the standard individual Shapley axioms (dummy, symmetry, linearity, and
efficiency), we obtain a unique Faithful Shapley Interaction index, which we denote Faith-
Shap, as a natural generalization of the Shapley value to interactions. We then provide some
illustrative contrasts of Faith-Shap with previously proposed interaction indices, and further
investigate some of its interesting algebraic properties. We further show the computational
efficiency of computing Faith-Shap, together with some additional qualitative insights, via
some illustrative experiments.
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1. Introduction

Explaining the prediction of a black-box machine learning model via attributions to its
features is an increasingly important task. Most approaches have focused on attributions to
individual features, which does not always suffice to provide insight into the model when there
are heavy feature interactions. For instance, when explaining models with text input, we
might also ask for attributions to phrases and sequences of words rather than just individual
words. Similarly, in Question Answering (QA) (Ye et al., 2021), it is of interest to measure
attributions to query answer tuples, rather than just individual entities associated with
answers. Such feature interactions are also salient with images as input, where instead of
attributions to individual pixels, we might prefer attributions to groups of pixels.

A large class of recent approaches for individual feature attributions reduces the task
to a cooperative game theory problem. Given a machine learning model, a test point, and
the underlying data distribution, one can devise a “set value function” that takes as input
a set of features and outputs the value of that set of features. There are many choices
for such a reduction to a set function (Lundberg and Lee, 2017; Sundararajan and Najmi,
2019; Frye et al., 2020; Chen et al., 2020). We can then relate this to a cooperative game
theory problem where the features are players, the set function above is the value function
of the coalition game that specifies the value of various player coalitions, and we wish to
derive feature attributions given such a value function. This meta-approach has led to a
slew of explanation approaches when the goal is to obtain individual feature attributions.
The key question we focus on in this paper is to obtain attributions to feature interactions
instead. In this setting, any feature interactions (up to a given order), along with each
individual feature, should get some attribution score. This question has attracted some
attention in the cooperative game theory and the explainable AI literature, with the broad
strategy of extending popular approaches for individual feature attributions, such as Shapley
and Banzhaf values (Shapley, 1953; Harsanyi, 1963), to the interaction context. But these
existing proposals come with many caveats.

Part of the attraction of the cooperative game theory based explanations above is that
for the case of individual feature attributions, if we stipulate some natural axioms such as
linearity, symmetry, dummy, and efficiency (detailed in a later section), there exist unique
attributions such as Shapley and Banzhaf (depending on the notion of efficiency). Thus we
have both a strong axiomatic foundation to the explanations, as well as a very compelling
uniqueness result that there can exist no other explanations that satisfy these axioms. These
have thus led to an explosion of Shapley value based explanations in the XAI literature that
assign attributions to features, data, and even concepts (Lundberg and Lee, 2017; Grömping,
2007; Lindeman, 1980; Owen, 2014; Owen and Prieur, 2017; Datta et al., 2016; Ghorbani
and Zou, 2019; Jia et al., 2019; Yeh et al., 2020). However, when we move to the context
of feature interactions, while the axioms above have natural extensions from the individual
feature to the feature interaction context, they no longer result in a unique feature attribution
value.

Approaches to address this have thus focused on adding additional less natural axioms
to ensure uniqueness. One set of unique feature attributions — Shapley interaction and
Banzhaf interaction indices (Grabisch and Roubens, 1999) — derive unique attributions via
a recursive axiom, which specifies how higher-order feature attributions be derived from
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lower order feature interaction attributions (all the way to individual feature attributions).
Thus, given the uniqueness at the level of individual feature attributions, we in turn get
uniqueness at all levels of interaction attributions. One major caveat of these Shapley
interaction and Banzhaf interaction indices is that they do not satisfy the efficiency axiom for
interaction feature attributions, and hence can no longer be viewed as distributing the total
contribution of the model prediction among all feature interactions. The other caveat is that
the recursive axiom, while convenient to extend uniqueness from individual to interaction
feature attributions, is much less “natural” when compared with the original Shapley axioms,
which specifically defined the forms of first-order indices for certain value functions. To
address these caveats, Sundararajan et al. (2020) proposed the interaction distribution axiom
that entails distributing higher-order interactions to the topmost interaction indices at the
expense of impoverished lower-order interactions. This makes the interaction attributions
unique for unanimity games (Shapley, 1953), and since these act as a basis for set value
functions, by linearity this ensures uniqueness of interaction attributions for general games.
The caveat however is that the specified attribution distribution inordinately favors the
topmost interactions, which in turn affects the usefulness of both the lower and highest-
order interactions as we show in our examples. And arguably, the interaction distribution
axioms too are much less natural when compared to the original Shapley axioms. Thus,
there remains an open problem to specify a “natural” restriction or axiom that allows for
unique interaction attributions.

An additional desideratum is that the feature interaction attributions be cognizant of
the maximum interaction order of the interaction attributions we require. For instance, with
individual feature attributions, the maximum interaction order is one, while with pairwise
feature attributions, the maximum interaction order is two. This would allow the explana-
tions to be tailored to the set of possible interactions and satisfy the relevant axioms with
respect to just these interactions, instead of all possible subsets of feature interactions.

In this work, rather than devising potentially less natural axioms to ensure uniqueness,
we work from yet another viewpoint of Shapley values, that they are faithful to the set value
function: for all subsets, the sum of individual feature attributions over a subset should
approximate the set value function evaluated on that subset. When formalized as a weighted
regression problem, this yields Shapley and Banzhaf values depending on the weights in
the weighted regression (Banzhaf III, 1964; Ruiz et al., 1996). We then extend the above
weighted regression to feature interactions up to a given maximum interaction order, which
then yields what we call Faith-Interaction indices. We show that when restricting to the
class of Faith-Interaction indices, together with the (interaction extensions of the individual)
Shapley axioms, we obtain a unique interaction index, which we term the Faith-Shap (for
Faithful Shapley Interaction) index, which reduces to the individual feature Shapley values
when the top interaction order is one. We thus posit Faith-Shap as the natural extension of
Shapley values from individual features to interaction indices. Similarly, when the efficiency
axiom is replaced by the generalized 2-efficiency axiom, we obtain a unique interaction
index, which we term Faith-Banzhaf (for Faithful Banzhaf Interaction) index. The latter
has also appeared in other guises in prior work (Hammer and Holzman, 1992; Grabisch
et al., 2000). Unlike the other restrictive axioms discussed earlier, here we only require
that the explanations be faithful to the model, which has always been a big attraction of
Shapley values in the explainable AI (XAI) context. We corroborate the usefulness of these
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Faith-Interaction indices by contrasting them with prior indices in two illustrative coalition
games, as well as real-world XAI applications. We then discuss the algebraic properties of
Faithful Shapley Interaction index by relating them to cardinal indices, i.e. indices that
can be expressed as a linear combination of marginal contributions, as well as in terms of
approximations to multilinear extensions of the coalition set value function. An additional
benefit of the Faith Interaction indices is that the estimation becomes much more efficient via
leveraging the weighted linear regression formulation, which we validate in our experiments.

2. Preliminaries

2.1 Notations

Suppose we are given a black-box model f : X 7→ R, with input domain X ⊆ Rd; and suppose
we wish to explain its prediction at a given test point x ∈ X . Suppose also given the tuple
f, x (and possibly with additional information about the underlying data distribution on
which f is trained on, and from which x is drawn), there is a well-defined set function
vx : 2d → R. We can interpret such a set function as specifying the value of a subset of
the set of d features. Many popular explanations employ such a reduction of the model and
its prediction context to set value functions; see Ribeiro et al. (2016); Lundberg and Lee
(2017); Sundararajan et al. (2020) for many examples. When clear from the context, and
for notational simplicity, we will often omit x and simply use v to denote the set function.
Such a reduction allows us to leverage results from cooperative game theory, by relating the
set of features to a set of players, and the set function above as specifying the values of
coalitions of players.

We are then interested in quantifying the importance of interactions between different
features up to some order ` ∈ [d]. Note that in this context, when we mean interactions
between features, we mean non-self interactions between distinct features, since self-self
interactions could simply be identified with the individual features. In other words, we
require an importance function E which for each coalition S ⊆ [d] where 0 ≤ |S| ≤ `,
outputs a scalar ES(v, `). Let S` denote the set of all subsets of [d] with size less than or
equal to `; the size of this set can be seen to be d`

def
=
∑`

j=0

(
d
j

)
. We then use the shorthand

E(v, `) = (ES(v, `))S∈S` ∈ Rd` . To simplify notation, we omit braces for small sets and write
T ∪ i to represent T ∪ {i}.

2.2 Definitions

We begin by recalling the concept of discrete derivatives.

Definition 1 (Discrete Derivative) Given a set function v : 2d 7→ R and two finite disjoint
coalitions S, T ⊆ [d] with S ∩ T = Ø, the S-derivative of v at T , ∆S(v(T )), is defined
recursively as follows:

∆iv(T ) = v(T ∪ i)− v(T ), ∀i ∈ [d], and (1)

∆S(v(T )) = ∆i[∆S\i(v(T ))] =
∑
L⊆S

(−1)|S|−|L|v(T ∪ L),∀i ∈ S. (2)
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The second equality in Eqn. (2) can be shown via induction on S (Fujimoto et al., 2006).
As an illustration of discrete derivatives, for a subset S of size 2, the discrete derivative can
be written as

∆{i,j}v(T ) = v(T ∪ {i, j})− v(T ∪ j)− v(T ∪ i) + v(T ).

∆{i,j}v(T ) captures the joint effect of features i and j co-occurring compared to the in-
dividual effects of i and j. If ∆{i,j}v(T ) > 0 (resp. < 0), we say i and j have positive
(resp. negative) interaction effect in the presence of T since the presence of i increases (resp.
decreases) the marginal contribution of j to coalition T . Following the intuition from the
two features example, the discrete derivative ∆S(v(T )) can be viewed as a measurement of
the marginal interaction of S in the presence of T . When a set of features have a positive
(negative) interaction effect, the discrete derivative is positive (negative). Discrete deriva-
tives play a fundamental role in measurement of interaction effects. As we will see in the
following section, the Shapley and Banzhaf interaction indices can be viewed as a weighted
average of S-derivatives over all subsets T ⊆ [d]\S.

Next, let us recall the concept of the Möbius transform.

Definition 2 (Möbius transform) Given set function v : 2d 7→ R, the Möbius transform of
v(·) is

a(v, S) =
∑
T⊆S

(−1)|S|−|T |v(T ) for all S ⊆ [d]. (3)

An important property (Shapley, 1953) of the Möbius transform is that any set function
v(·) can be expressed as:

v =
∑
R⊆[d]

a(v,R) vR, (4)

where vR for any R ⊆ [d] has the form vR(S) = 1 if S ⊇ R and 0 otherwise; and is also known
as a unanimity game value function in game theory. Eqn. (4) states that any set function
can be expressed as a linear combination of these unanimity game value functions (so that
{vR}R⊆[d] form a basis for real-valued set value functions), with the Möbius transforms
a(v,R) as their coefficients. Note that if an interaction index satisfies the interaction
linearity axiom (to be discussed in the sequel), the interaction index for general set value
functions can be expressed as a linear combination of the interaction indices for unanimity
games.

3. Background: Axioms for Interaction Indices

In this section, we present natural extensions of Shapley axioms for individual features to
the feature interactions (Grabisch and Roubens, 1999; Sundararajan et al., 2020). We then
discuss the key interaction indices proposed so far in the literature — the Shapley interaction
index, Banzhaf interaction index and Shapley-Taylor interaction index — with respect to
these axioms. In all these axioms, we allow for dependence on the maximum interaction
order ` ∈ [d]. A summarization of axioms that these interaction indices satisfy is in Table 1.
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Indices Interaction
linearity

Interaction
symmetry

Interaction
dummy

Interaction
efficiency

Interaction
recursive

Generalized
Interaction
2-efficiency

Interaction
distribution

Is
Faith-Interaction

Index
Shapley

Interaction X X X X

Banzhaf
Interaction X X X X X

Shapley
Taylor X X X X X

Faithful
Shapley X X X X X

Faithful
Banzhaf X X X X X

Table 1: A table of axioms that different interaction indices satisfy.

Axiom 3 (Interaction Linearity): For any maximum interaction order ` ∈ [d], and for any
two set functions v1 and v2, and any two scalars α1, α2 ∈ R, the interaction index satisfies:
E(α1v1 + α2v2, `) = α1E(v1, `) + α2E(v2, `).

The interaction linearity axiom states that the feature interaction index is a linear func-
tional of the set function v(·). It ensures that the corresponding indices scale with the value
function v(·).

Axiom 4 (Interaction Symmetry): For any maximum interaction order ` ∈ [d], and for
any set function v : 2d 7→ R that is symmetric with respect to elements i, j ∈ [d], so that
v(S∪i) = v(S∪j)for any S ⊆ [d]\{i, j}, the interaction index satisfies: ET∪i(v, `) = ET∪j(v, `)
for any T ⊆ [d]\{i, j} with |T | < `.

The interaction symmetry axiom entails that if the value function treats two features
the same, their corresponding feature interaction index values should be the same as well.

Axiom 5 (Interaction Dummy): For any maximum interaction order ` ∈ [d], and for any
set function v : 2d 7→ R such that v(S ∪ i) = v(S) for some i ∈ [d] and for all S ⊆ [d]\{i},
the interaction index satisfies: ET (v, `) = 0 for all T ∈ S` with i ∈ T .

The interaction dummy axiom entails that a dummy feature i ∈ [d] that has no influence
on the function v should have no interaction effect with the other features.

Axiom 6 (Interaction Efficiency): For any maximum interaction order ` ∈ [d], and for any
set function v : 2d → R, the interaction index satisfies:

∑
S∈S`\Ø ES(v, `) = v([d]) − v(Ø)

and EØ(v, `) = v(Ø).

The interaction efficiency ensures that the interaction index distributes the total value v([d])
among the different subsets in S`. This axiom lends itself a natural explanation of ES(v, `):
it represents the marginal contribution that the group S makes to the total value, which
has also been considered by Sundararajan et al. (2020). As we will detail in the sequel,
some of the recently proposed interaction indices do not satisfy such an efficiency axiom.
For instance, the chaining interaction and Shapley interaction indices only require the total
sum of individual feature importances to sum to v([d])− v(Ø), without consideration of the
higher-order interaction importances.
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Challenge: Lack of Uniqueness: These axioms are natural extensions to the interac-
tion setting of classical axioms for individual feature attributions; see Fujimoto et al. (2006);
Grabisch and Roubens (1999) for a counterpart of these interaction axioms without consider-
ation of the maximum interaction order ` ∈ [d]. As Sundararajan et al. (2020) note, though
the linearity, symmetry, dummy, and efficiency axioms uniquely specify a feature attribution
when the maximum interaction order ` = 1 (i.e. for individual feature attributions), they
no longer do when ` > 1. In other words, there could exist many interaction indices that
all satisfy the axioms specified above. A big attraction of the individual Shapley value was
its uniqueness given the corresponding individual attribution axioms. Accordingly, a line of
work has focused on specifying additional axioms that together specify a unique interaction
index.

Axiom 7 (Recursive Interaction): For any maximum interaction order 2 ≤ ` ≤ d, and for
any set function v : 2d → R, and for any j ∈ [d], let the reduced set functions v[d]\j , v[d]\j∪j :

2d−1 → R be defined as:

for all T ⊆ [d]\j, v[d]\j(T ) = v(T ), and v
[d]\j
∪j (T ) = v(T ∪ j)− v(j).

Then the interaction index satisfies: ES(v, `) = ES\j(v
[d]\j
∪j , `)−ES\j(v[d]\j , `), ∀S ∈ S` with |S| ≥

2.

The recursive axiom above is an extension of the recursive axiom of Grabisch and
Roubens (1999) to account for arbitrary maximum interaction orders. The axiom can be
informally interpreted as “how does the presence or absence of feature j influence the share
of feature set S”. But more importantly (and the reason it is termed the recursive ax-
iom) is that it specifies how higher-order interaction scores are uniquely determined given
lower-order interaction indices. By recursion, the higher-order interaction indices are thus
uniquely specified given just the singleton feature attributions. The reason this helps with
uniqueness is that so long as the axioms entail unique singleton attributions, together with
this recursive axiom, they would entail unique interaction attributions. Thus, we argue
that the recursive axiom is less “natural” compared to previously introduced axioms since
the recursive axiom only ensures the uniqueness property, at the potential expense of other
axiomatic properties.

Shapley Interaction Index: Grabisch and Roubens (1999) thus show that there is
a unique interaction index that satisfies the interaction linearity, symmetry, dummy, and
the recursive axioms (but not the interaction efficiency axiom), and whose restrictions to
singleton sets correspond to Shapley values. They term this interaction index Shapley
interaction index. This Shapley interaction index has the following closed form:

EShap
S (v, `) =

∑
T⊆[d]/S

|T |!(d− |S| − |T |)!
(d− |S|+ 1)!

∆S(v(T )), ∀S ∈ S`. (5)

A critical caveat of the resulting Shapley interaction value is that it no longer satisfies
the interaction efficiency axiom when the maximum interaction order ` > 1. Indeed, simply
summing the contributions to singleton sets (i.e. the classical individual attribution Shapley
values) is already equal to v([d])− v(Ø), so the only way for the interaction efficiency axiom
to be satisfied if all the other interaction attributions sum to zero, which they do not.
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Banzhaf Interaction Index: Grabisch and Roubens (1999) further show that there is
a unique interaction index that satisfies the interaction linearity, symmetry, dummy, and
recursive axioms (but not the interaction efficiency axiom), and whose restrictions to sin-
gleton sets correspond to the Banzhaf values. They term this interaction index Banzhaf
interaction index, which has the following closed form:

EBzf
S (v, `) =

∑
T⊆[d]/S

1

2d−|S|
∆S(v(T )), ∀S ∈ S`. (6)

It can be again shown that the Banzhaf interaction index does not satisfy the interaction
efficiency axiom even when ` = 1; though they do satisfy the generalized 2-efficiency axiom,
which can be stated as follows.

Axiom 8 (Generalized Interaction 2-Efficiency): Define the reduced function v[ij] : 2d−1 →
R given any i, j ∈ [d] as v[ij](S) = v(S) for all sets S containing both i and j, and v[ij](S ∪
[ij]) = v(S ∪ {i, j}) for all S containing neither i nor j. That is, the reduced function
considers features i and j together as a group [ij]. Then the interaction index satisfies:
ES∪[ij](v[ij], `) = ES∪i(v, `) + ES∪j(v, `) for all S ⊆ [d]\{i, j}, and ` = |S|+ 1.

The generalized interaction 2-efficiency axiom above is an extension of the generalized
2-efficiency axiom of Grabisch and Roubens (1999) to account for arbitrary maximum in-
teraction orders. It states that when features i, j form a group in the set function v[ij] with
d− 1 features, the importance of S ∪ [ij] equals the sum of importances of S ∪ i and S ∪ j
with respect to the original set value function. When S = Ø and ` = 1, it reduces to the
classical 2-efficiency axiom (Harsanyi, 1963) that indicates that the importance of [ij] as a
group should be equal to the sum of importances of individual features i and j.

Shapley Taylor Interaction Index: Sundararajan et al. (2020) stipulate an additional
interaction distribution (ID) axiom, which can be stated as follows.

Axiom 9 (Interaction distribution (Sundararajan et al., 2020)): Define vT parameterized
by a set T ⊆ [d] as vT (S) = 0 if T 6⊆ S and vT (S) = 1 otherwise. Then for all ` ∈ [d], and
for all S with S 6⊆ T and |S| < `, the interaction index satisfies: ES(vT , `) = 0.

The key idea behind the ID axiom is to uniquely specify an interaction index for una-
nimity games {vT }T⊆[d], given the interaction linearity, symmetry, dummy, and efficiency
axioms. Since unanimity games form a basis for the set of all games, in the presence of
interaction linearity axiom, we then get unique interaction indices. They thus show that
there exists a unique interaction index that satisfies interaction linearity, symmetry, dummy,
efficiency, and interaction distribution axioms and which they term Shapley Taylor index
(for reasons which will become clearer in a later section when we discuss algebraic properties
of various interaction indices). The Shapley Taylor interaction index has the following closed
form:

ETaylor
S (v, `) =

{
∆S(v(Ø)) , if |S| < `.∑

T⊆[d]/S
|T |!(d−|T |−1)!|S|

d! ∆S(v(T )) , if |S| = `.
(7)

A key advantage of this interaction index is that it depends on the maximum interaction
order `, in contrast to previously proposed interaction indices such as the Shapley interac-
tion and Banzhaf interaction indices. Indeed, in order for an interaction index to satisfy the
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interaction efficiency axiom for maximum interaction order `, it has to distribute the con-
tributions among subsets in S`, and hence has to be cognizant of the maximum interaction
order `. However, a key caveat of the interaction distribution axiom is that the specified
attribution distribution inordinately favors the topmost interaction. As can be seen from
Eqn.(7), the importance of a set S with |S| < ` is only specified by the marginal contribution
of S in the presence of the empty set, and not the presence of other subsets T ⊆ [d]\S. This
impoverishes lower-order interactions, which in turn hurts the meaningfulness of both lower
and highest-order interactions as we will show in Section 5.

Thus a key open question that this section has made salient is: how do we more naturally
constrain interaction indices beyond interaction linearity, symmetry, dummy, and efficiency
axioms, so as to obtain a unique interaction index?

4. Faith-Interaction Indices

In this section, in contrast to additional axioms, we draw from another viewpoint of singleton
Shapley feature attributions: that they are faithful to the underlying value function.

Faithfulness of Singleton Shapley Values: Given singleton feature attributions {Ei}i∈[d],
we can require that:

v(S) ≈
∑
i∈S
Ei, ∀S ⊆ [d].

Note that we can only ask for approximate rather than exact equality for all sets S, since
exact equality would entail we solve 2d linear equalities (corresponding to the subsets of [d])
with d variables (corresponding to the d singleton feature attributions {Ei}i∈[d]), which may
not always have a feasible solution. One approach to formalize such approximate equality
is via weighted regression:

min
E∈Rd+1

∑
S⊆[d]

µ(S)

(
v(S)− EØ −

∑
i∈S
Ei

)2

, (8)

where µ : 2[d] 7→ R+ ∪ {∞} is some weighting over the subsets S ⊆ [d] which can be
interpreted as the importance of different coalitions. Note that the range of µ is the extended
positive reals. When µ(S) = ∞ for some sets S, we can interpret the above as solving the
constrained problem:

min
E∈Rd+1

∑
S⊆[d] :µ(S)<∞

µ(S)

(
v(S)−

∑
i∈S
Ei

)2

s.t. v(S) =
∑
i∈S
Ei, ∀S : µ(S) =∞.

It has been shown that we can recover the singleton Shapley values as the solution of
the weighted regression problem above by setting µ(S) ∝ d−1

( d
|S|) |S| (d−|S|)

and µ(Ø) = µ([d]) =

∞ (Charnes et al., 1988). And we can recover singleton Banzhaf values by using the uniform
distribution µ(S) = 1/2d (Hammer and Holzman, 1992).
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From Singleton Attributions to Interaction Indices: In this section, we consider the
generalization of the above to interaction indices, so that we now require:

v(S) ≈
∑

T⊆S,|T |≤`

ET (v, `), ∀S ⊆ [d].

Again here we ask for approximate rather than exact equality since when the order of
interactions is less than the number of features, so that ` < d, the latter would entail we
solve 2d linear equalities with d` variables, which may not always have a feasible solution.
Accordingly, we consider the following weighted regression problem as a formalization of the
above:

E(v, `) = arg min
E⊆Rd`

∑
S⊆[d]

µ(S)

v(S)−
∑

T⊆S,|T |≤`

ET (v, `)

2

, (9)

where µ : 2d → R+ ∪ {∞} is a coalition weighting function. And as before of µ(S) =∞ for
some sets S, we can interpret above as solving the constrained problem:

E(v, `) = arg min
E⊆Rd`

∑
S⊆[d] :µ(S)<∞

µ(S)

v(S)−
∑

T⊆S,|T |≤`

ET (v, `)

2

s.t. v(S) =
∑

T⊆S,|T |≤`

ET (v, `), ∀S : µ(S) =∞. (10)

We note that the range of the weighting function µ is not allowed to include zero since it
is a necessary condition to ensure that there exists a unique minimizer (See Proposition 26
in the Appendix). This is not an issue in practice since we can always choose an arbitrary
small positive value instead of zero to approximate the intended constraint that µ(S) = 0
for some S ⊆ [d].

We can also see from Eqn. (9) that when the weighting function is infinite for many
subsets, this entails corresponding equality constraints on the interaction index, which may
not have a feasible solution. We thus consider the following set of what we term proper
weighting functions.

Definition 10 (Proper weighting function) We say that a weighting function µ : 2d 7→
R+ ∪ {∞} is proper if µ(S) is finite for all S ⊆ [d] with 1 ≤ S ≤ d− 1.

This then leads to our definition of Faith-interaction indices.

Definition 11 (Faith-Interaction Indices): We say that E is a Faith-Interaction index, given
any set value function v : 2d → R and any maximum interaction order ` ∈ [d], if there exists
a proper weighting function µ : 2d → R+∪{∞} such that E(v, `) minimizes the corresponding
weighted regression objective in Eqn.(10).

When the coalition weighting function µ is fully finite so that µ(S) are finite for all sets
S ⊆ [d], Faith-interaction indices have a simple closed-form expression as detailed in the
following proposition.

10
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Proposition 12 Any Faith-Interaction index E(v, `) with respect to a finite weighting func-
tion µ(·) has the form:

E(v, `) =

∑
S⊆[d]

µ(S)p(S)p(S)T

−1∑
S⊆[d]

µ(S)v(S)p(S), (11)

where p : 2[d] → {0, 1}d` is specified as: p(S)[T ] = 1[(T ⊆ S)] for any T ∈ S`.

When the coalition weighting function µ(·) is not fully finite, we have a linearly con-
strained least squares problem that does not have a closed form, but whose solution can be
characterized via its Lagrangian (see more details in Proposition 29 in the Appendix).

4.1 Axiomatic Characterization of Faith-Interaction Indices

In this section, we investigate the axiomatic properties of our class of Faith-Interaction
indices. We first show that all faith-interaction indices satisfy the interaction linearity axiom.

Proposition 13 Faith-Interaction indices E satisfy the interaction linearity axiom.

For Faith-Interaction indices corresponding to finite coalition, weighting functions µ(·), this
result easily follows from Proposition 12 that these are linear functionals of the set value
function v(·). For Faith-Interaction indices where the weighting function is no longer finite
for some sets S ∈ {Ø, [d]}, they solve a linearly constrained least squares problem which
does not have a closed-form solution. But by a more nuanced analysis of its Lagrangian, we
can again show that the interaction indices are linear functionals of the set value function
v(·).

We next show that Faith-Interaction indices also satisfy the interaction symmetry axiom
provided that the weighting functions are permutation invariant (“symmetric”), and hence
the weighting functions only depend on the size of the set.

Proposition 14 Faith-Interaction indices E satisfy the interaction symmetry axiom if and
only if the weighting functions are permutation invariant, and hence only depend on the size
of the set so that µ(S) is only a function of |S|.

We next consider the dummy axiom.

Proposition 15 Faith-Interaction indices E satisfy the interaction dummy axiom if the
features behave independently of each other when forming coalitions in the weighting function
so that the coalition weighting functions can be expressed as µ(S) ∝

∏
i∈S pi

∏
j 6∈S(1 − pj)

for all S ⊆ [d], where 0 < pi < 1 is the probability of the feature i to be present.

Proposition 15 implies that a dummy feature has no impact on other features when the
weighting function treats features independently.

So far, we have analyzed when Faith-Interaction indices satisfy the interaction linearity,
symmetry, and dummy axioms. When they satisfy all three simultaneously, and the coalition
weighting function is finite, then we can show that the latter has a specific algebraic form.

11
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Theorem 16 Faith-Interaction indices E with a finite weighting function satisfy the inter-
action linearity, symmetry, and dummy axioms if and only if the weighting function µ(·) has
the following form:

µ(S) ∝
d∑

i=|S|

(
d− |S|
i− |S|

)
(−1)i−|S|g(a, b, i), where g(a, b, i) =

{
1 if i = 0∏j=i−1

j=0
a(a−b)+j(b−a2)
a−b+j(b−a2) if 1 ≤ i ≤ d,

(12)

for some a, b ∈ R+ with a > b such that µ(S) > 0 for all S ⊆ [d].

Theorem 16 shows the surprising fact that Faith-Interaction indices satisfying the interac-
tion linearity, symmetry, and dummy axioms with finite weighting functions have only two
degrees of freedom: a, b ∈ R. Given these, we can fully specify the weighting function, and
hence the corresponding Faith-Interaction indices. In Appendix D, we additionally show
that the condition 1 > a > b ≥ a2 > 0 ensures that µ(·) is positive everywhere and also
provides generalized guidance on setting the values a, b.

Faith-Banzhaf Interaction Index: As a first application of this theorem, suppose in
addition to the three axioms above, we additionally require the Faith-Interaction indices to
satisfy generalized 2-efficiency. The following theorem shows that there is a unique Faith-
Interaction index satisfying these four axioms, which we term the Faith-Banzhaf index.

Theorem 17 (Faith-Banzhaf) For any d ≥ 3, there is a unique Faith-Interaction index that
satisfies the interaction linearity, symmetry, dummy, and generalized 2-efficiency axioms,
with its coalition weighting function given as µ(S) ∝ 1

2d
for all S ⊆ [d]. We term this unique

interaction index as Faithful Banzhaf Interaction index (Faith-Banzhaf), which has the
form:

EF-Bzf
S (v, `) = a(v, S) + (−1)`−|S|

∑
T⊇S,|T |>`

(
1

2

)|T |−|S|(|T | − |S| − 1

`− |S|

)
a(v, T ), ∀S ∈ S`,

(13)
where a(v, ·) is the Möbius transform of v(·). Moreover, its highest-order interaction terms
coincide with corresponding interaction terms from the Banzhaf interaction index introduced
earlier:

EF-Bzf
S (v, `) =

∑
T⊆[d]\S

1

2d−|S|
∆S(v(T )) for all S ∈ S` with |S| = `. (14)

Our derivation of Faith-Banzhaf indices follows the pseudo-Boolean function approximation
results from Grabisch et al. (2000).

Faith-Shapley Interaction Index: When moving from generalized 2-efficiency to the
more natural interaction efficiency axiom, we have the following proposition.

Proposition 18 Faith-Interaction indices satisfy the interaction efficiency axiom if and
only if the weighting functions satisfy µ(Ø) = µ([d]) =∞.

12
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That the condition in the proposition is sufficient is a straight-forward consequence of the
fact that µ(Ø) = µ([d]) = ∞ entails that the corresponding linear constraint be exactly
satisfied, so that:

∑
S∈S` ES(v, `) = v([d]) and EØ(v, `) = v(Ø), which is precisely the

interaction efficiency axiom. We now have the machinery to present our main result on
the unique Faith-Interaction index that satisfies the four (interaction counterparts of the)
standard axioms that the singleton Shapley value satisfies.

Theorem 19 (Faith-Shap) There is a unique Faith-Interaction index that satisfies the in-
teraction linearity, symmetry, dummy, and efficiency axioms, with its coalition weighting
function given as:

µ(S) ∝ d− 1(
d
|S|
)
|S| (d− |S|)

for all S ⊆ [d] with 1 ≤ |S| ≤ d− 1, and µ(Ø) = µ([d]) =∞.

(15)
We term this unique interaction index as the Faithful Shapley Interaction index (Faith-
Shap), which has the form:

EF-Shap
S (v, `) = a(v, S) + (−1)`−|S|

|S|
`+ |S|

(
`

|S|

) ∑
T⊃S,|T |>`

(|T |−1
`

)(|T |+`−1
`+|S|

)a(v, T ), ∀S ∈ S`, (16)

where a(v, ·) is the Möbius transform of v(·). Moreover, its highest-order interaction terms
can be expressed as a weighted average of discrete derivatives:

EF-Shap
S (v, `) =

(2`− 1)!

((`− 1)!)2

∑
T⊆[d]\S

(`+ |T | − 1)!(d− |T | − 1)!

(d+ `− 1)!
∆S(v(T )) for all S ∈ S` with |S| = `.

(17)

When the maximum interaction order ` = 1, so that we only require singleton feature
contributions, the explanation coincides with the classical singleton Shapley values. Thus
for larger orders with ` > 1, Faith-Shap can be seen to be a “natural” generalization of the
first-order Shapley value. Note that the set of axioms it satisfies are (interaction extensions
of) the classical linearity, symmetry, dummy, and efficiency axioms. As noted before in
an interaction context these axioms alone do not uniquely specify an interaction index. In
contrast to the less intuitive axioms such as recursive and interaction distribution axioms,
we merely require an interaction extension of the faithfulness property of singleton Shapley
values: that the interaction Shapley values approximate the given set value function for all
possible subsets.

5. Contrasting Faith-Interaction with other Interaction Indices

In this section, we compare our Faith-Interaction indices, specifically Faith-Shap, with the
other interaction indices introduced earlier.

Comparison with Shapley Interaction and Banzhaf Interaction Indices: As noted
earlier, the Shapley interaction and Banzhaf interaction indices do not satisfy the interaction
efficiency axiom, which states that the sum of interaction weights should equal the difference
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between the value function evaluated over the complete and empty sets. A critical advantage
of the interaction efficiency axiom is that it forces the interaction index to distribute a fixed
contribution (difference between the value function evaluated over the complete and empty
sets) among the different interactions; without such a distributive requirement, the resulting
weights can become quite non-intuitive. For instances of such non-intuitive behaviors, we
refer to Sundararajan et al. (2020), who provided many simple examples where the sum
of Shapley interaction values over all subsets diverges as the number of features increases,
even when the value function is bounded and v([d]) = 1. Another caveat with these two
interaction indices is that they are not cognizant of the maximum interaction order, and
hence we cannot compute Shapley values that differ with varying maximum interaction
orders.

Comparison with Shapley Taylor index: The Shapley Taylor index does satisfy the
four axioms of interaction linearity, symmetry, dummy, and efficiency. However, as noted
earlier these four axioms do not uniquely determine interaction indices. The fifth axiom
Shapley Taylor index then imposes for uniqueness is the interaction distribution axiom,
which has caveats of imbalanced distributions of values to coalitions of different orders,
namely, inordinately favoring the maximum interaction order. In particular, the interaction
distribution axiom states that higher than max-order interaction values (order > `) be
distributed to the max-order interactions (order = `), but these max-order terms end up
unable to solely explain all higher-order interactions. On the other hand, it entails lower
than max order interactions (order < `) that do not take into account sub-coalitions other
than the empty set, which can be contrasted for instance with singleton Shapley value that
explicitly takes into account even higher order coalitions that contain the single feature.
Thus the interaction distribution has the consequence of making both lower and max-order
interactions less faithful to the model.

In contrast, in our Faith-Interaction indices, even lower-order interaction weights take
into account all possible coalitions, and where the weights are balanced so that the overall set
of interaction indices optimally approximates the behavior of the underlying value function.

5.1 Examples

Example 1: We illustrate the difference between these interaction indices using a function
with diminishing marginal utility. Consider the following value function with 11 features:

v(S) =

{
0 , if |S| ≤ 1.

|S| − p×
(|S|

2

)
, otherwise.

(18)

This function represents the payoff when any subset of 11 people work on a task. Each person
contributes 1 unit to the overall payoff, and the task requires at least 2 people. However,
the marginal utility is diminishing in nature, since any two people also have a probability
of p of being non-cooperative. Given this payoff function, it is worth reflecting on what the
attributions to individuals should be. While it might seem that zero is a good value since
at least two people are needed for the task, this attribution would only correspond to the
marginal contribution of an individual player i.e. how much a player would contribute when
they are by themselves. Whereas we would like our attributions to also take into account
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larger coalitions, and marginal contributions to such larger coalitions: this is one of the
motivations for considering coalitional game-theoretic indices. Once we do so, then it can
be seen that an individual effect of one is much more reasonable. Similarly, we would expect
that the pairwise interaction effects be close to −p.

In Table 2, we list the values for different interaction indices for p = 0.1, 0.2. When
the maximum interaction order ` = 1, all indices are similar since their restrictions to
singleton are the Shapley/Banzhaf values. When the maximum interaction order ` = 2, our
Faith-Shap accurately captures individual contribution and pairwise interaction effects by
assigning 0.95/0.95 and −0.091/− 0.191 for order 1 and 2 and for p = 0.1/0.2 respectively,
which are very close to the intuitions we outlined earlier. However, the Shapley Taylor
index assigns the individual effect of i by using the marginal v({i}) − v(Ø), which can be
highly inaccurate since such a marginal contribution does not take into account marginal
contributions to larger coalitions.

For p = 0.1, Shapley Taylor along with Interaction Shapley assigns a positive/zero value
to the interaction effect, which suggests that forming groups has complimentary/no effects.
On the contrary, Banzhaf interaction and Faith-Banzhaf give negative values for interaction
between players, which correctly reflects the decrease in the marginal utility of this game.

For p = 0.2, the Shapley Taylor index is uniformly zero for any order. This highlights
the other drawback of the Shapley Taylor index: the impoverished lower-order interaction
indices make the max-order indices less faithful to the model. Specifically, for p = 0.2,
and with d = 11 players, we can see that v([d]) = v(∅) = 0. We have already seen that
ETaylor
{i} (v, `) = 0, for i ∈ [d]. For ` = 2, we then have that the summation of the max-

order (i.e. order two) indices equals v([d]) − v(∅) −
∑d

i=1 E
Taylor
{i} (v, `) = 0 by the efficiency

axiom. Since all max-order indices have the same value by the symmetry axiom, the max-
order indices are uniformly zero. In this case, the Shapley Taylor indices do not take into
account the function values v(S) with ` ≤ |S| < d, and can be arbitrarily unfaithful to these
orders. Here, the Banzhaf interaction and Faith-Banzhaf again correctly reflect the negative
interaction between players. However, the Banzhaf interaction value gives a value close to 0
for the first-order indices. Taken together with its negative interaction effects, it might seem
that coalitions can only be hurtful to the payoff, which is misleading since the total utility
is positive when 2 to 10 players are present. On the other hand, our Faith-Banzhaf gives a
positive value close to 1 for individual effects of order 1. Taken together with its negative
interaction effects, the value given by the Faith-Banzhaf seems more intuitive: every single
player contributes to the utility, while each pair of players hurts the utility.

Another instructive viewpoint for interaction values is by inspecting their utility for
approximating the overall payoff function. In Figure 1 and 2, we approximate the function
v(S) using

∑
T⊆S,|T |≤2 ET (v, `) for different interaction indices. We can see that our Faith-

Shap/Faith-Banzhaf are (almost) faithful to all orders except for |S| = 1. However, the
Shapley Taylor index is only fully faithful to the model when the order is 0, 1, 11, and curves
for other interaction indices are unfaithful.

Example 2: We provide another example, this time with increasing marginal utility. Con-
sider a family who is in the wind energy business, with d = 11 family members. Currently,
the family owns 1 wind turbine, and they can get 3 units of revenue per wind turbine they
own. Now, each family member is considering whether to manage a wind turbine. To build
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Indices
p = 0.1 p = 0.2

` = 1 ` = 2 ` = 1 ` = 2
Order 1 Order 1 Order 2 Order 1 Order 1 Order 2

Faith-Shap 0.5 0.95 -0.091 0 0.95 -0.191
Shapley Taylor 0.5 0 0.1 0 0 0

Interaction Shapley 0.5 0.5 0 0 0 -0.1
Banzhaf Interaction 0.51 0.51 -0.113 0.009 0.009 -0.213

Faith-Banzhaf 0.51 1.08 -0.113 0.009 1.08 -0.213

Table 2: Values for different interaction indices of different orders for p = 0.1, 0.2 with
different maximum interaction orders. Note that the value function is symmetric
with respect to players, so we use order 1 and 2 to denote importance scores of any
single player and interaction of any two players. Note that EF-Shap

Ø (v, `) = 0 and
EF-Bzf

Ø (v, `) = −0.24 for both p = 0.1 and p = 0.2.

Figure 1: Function approximation of
Eqn.(18) using different interac-
tion indices for p = 0.1 with the
maximum interaction order ` = 2.

Figure 2: Function approximation of
Eqn.(18) using different interac-
tion indices for p = 0.2 with the
maximum interaction order ` = 2.

x wind turbines, the cost is described by the function cost(x) = x + 2 log(x + 1), as they
may get a discount from the constructor to build more wind turbines at the same time. If
exactly one member chooses to manage a wind turbine, the building cost will be 0 since the
family already owns one wind turbine. The total revenue for the family when S is the set of
members that participate in building new wind turbines can be described by the following
function:

v(S) =


0 , if |S| = 0.

3 , if |S| ≤ 1.

3|S| − (|S| − 2 log(|S|+ 1)) , if 2 ≤ |S| ≤ 11.

(19)
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This function has an increasing marginal utility since the marginal cost is decreasing. There-
fore, we would expect the interaction effect to be positive. However, from Table 3, only
Faith-Shap, Faith-Banzhaf and Banzhaf interaction indices capture this effect.

Moreover, the Faith-Shap and Faith-Banzhaf indices have the following intuitive inter-
pretation: Having one more member joining the family business increases the total revenue
by 1.20/1.19 unit, with 0.07/0.09 additional unit of revenue when two members join together
since they are cooperative. In contrast, we can not interpret the Banzhaf interaction index
for orders 1 and 2 jointly since it is not cognizant of the maximum interaction order `.

Indices ` = 1 ` = 2
Order 1 Order 1 Order 2

Faith-Shap 1.55 1.20 0.07
Shapley Taylor 1.55 3 -0.29

Shapley Interaction 1.55 1.55 -0.12
Faith-Banzhaf 1.65 1.19 0.09

Banzhaf Interaction 1.65 1.65 0.09

Table 3: Values for different interaction indices of differ-
ent orders with the maximum interaction order
` = 2. Note that the value function is symmetric
with respect to players, so we use order 1 and 2
to denote importance scores of any single player
and interaction of any two players. Note that
EF-Shap
Ø (v, `) = 0 and EF-Bzf

Ø (v, `) = 0.48 for the
indices corresponding to empty sets.

Figure 3: Function approximation of
Eqn.(19) using different in-
teraction indices with the
maximum interaction order
` = 2.

6. Computation of Faithful Shapley Interaction Index

The exact computation of Faith-Shap indices via Eqn.(16) is intractable in general since
it involves computations of O(2d) Möbius transforms of different subsets. However, when
the value function is lower-order, the Faith-Shap interaction indices can be computed in
polynomial time.

Definition 20 (Order of value functions) A value function v has order `v ∈ N if `v is the
smallest integer such that a(v,R) = 0 for all R ⊆ [d] with |R| > `v.

From Eqn.(4), this entails the value function with order `v can be written as v =∑
R⊆[d],|R|≤`v a(v,R)vR. When a game only involves the cooperation of a small number

of players, its value function can usually be written as a summation of lower-order basis
functions. For instance, a basis function vR has order 1, example value functions in Section
5.1 have order 2, the value function (Garg et al., 2012) defined as summations of pairwise
distances within a coalition used in clustering also have order 2. When `v = O(`) > `, by
using Eqn.(16), the exact computation of Faith-Shap indices of a subset S only requires time
complexity O(dO(`)) since we only need to consider

(
d

`v−|S|
)

= O(dO(`)) Möbius transforms
of subsets.
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For the computation of the Faith-Shap for general functions, calculating the exact Faith-
Shap values requires 2d model evaluations. We sample each coalition S ⊆ [d] with probability
∝ d−1

( d
|S|)|S|(d−|S|)

, and solve

arg min
E⊆Rd`

1

n

n∑
i=1

v(S)−
∑

T⊆S,|T |≤`

ET (v, `)

2

, s.t.
∑

T⊆[d],|T |≤`

ET (v, `) = v([d]), and EØ(v, `) = v(Ø).

(20)

We empirically show the sampling approach provides more accurate estimates with fewer
model evaluations in Section 8.1. We defer deriving approximation results for sampling as
well as other approximation methods for computing Faith-Shap to future work. There is
a rich body of work on developing such approximation results for the first-order Shapley
values (see Mitchell et al. (2022); Covert and Lee (2020), which could be extended to the
Faith-Shap setting.

7. Algebraic Properties of Faith-Interaction Indices

In the following two sub-sections, we discuss how Faith-Shap can be represented as a cardinal
index, as well as through the lens of a multilinear approximation.

7.1 Cardinal Indices

Grabisch and Roubens (1999) show that any interaction index (they only consider the clas-
sical case with maximum interaction order ` = d) that satisfies the linearity, dummy, and
symmetry axioms necessarily has the following form:

ES(v, d) =
∑

T⊆[d]\S

p
|S|
|T |∆Sv(T ), ∀S ⊆ [d], (21)

and for some family of constants {pst}s∈[0:d],t∈[0:d−s]. They term this class of interaction
indices as cardinal interaction indices. Of course this is a large class, and it is not apriori
clear how to further constrain the indices so as to get specific values for the constants
{pst}. We remark in passing that Shapley and Banzhaf interaction indices impose additional
structure on the constants {pst}.

We can also consider the class of probabilistic interaction indices:

ES(v, d) =
∑

T⊆[d]\S

pST∆Sv(T ),

where for any S ⊆ [d], the constants {pST }T⊆[d]\S form a probability distribution on [d]\S.
We can then define cardinal-probabilistic indices as those indices that are both cardi-
nal and probabilistic interaction indices, so that pST = p

|S|
|T |, for some family of constants

{pst}s∈[1:d],t∈[0:d−s] that satisfy:
d−s∑
t=0

(
d− s
t

)
pst = 1.
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Fujimoto et al. (2006) shows that indices that satisfy certain additivity, monotonicity, sym-
metry, and dummy partnership axioms are necessarily cardinal probabilistic indices. As
Fujimoto et al. (2006) shows, Shapley and Banzhaf interaction indices do fall into this class.

One could of course extend these notions of cardinal, probabilistic, and cardinal-probabilistic
indices to be cognizant of the maximum interaction order ` ∈ [d]. It is an interesting open
question to investigate extensions of results of Fujimoto et al. (2006) to such a sub-class
of cardinal-probabilistic indices cognizant of the max-interaction order. In this section, we
provide a modest initial result along these lines, focusing on the top interaction level of the
interaction index.

Proposition 21 For any maximum interaction order 1 ≤ ` ≤ d, and for any set value
function v : 2d 7→ R, the top level of the Faithful Shapley Interaction index can be expressed
as a cardinal-probabilistic index:

EF-Shap
S (v, `) =

∑
T⊆[d]\S

p`|T |∆S(v(T )), ∀S ⊆ [d] with |S| = `, (22)

where p`t = (2`−1)!(`+t−1)!(d−t−1)!
((`−1)!)2(d+`−1)! . Moreover, it satisfies

∑d−`
t=0

(
d−`
t

)
p`t = 1.

Therefore, the top level of the Faithful Shapley Interaction index captures the interactions
of features in S in the presence of all subsets T ⊆ [d]\S.

7.2 Multilinear Formulation

Any set value function v : 2[d] 7→ R has a unique multi-linear extension g : [0, 1]d 7→ R, also
referred to the Owen multilinear extension (Owen, 1972), given as:

g(x) :=
∑
T⊆[d]

v(T )
∏
i∈T

xi
∏
i 6∈T

(1− xi), ∀x ∈ [0, 1]d.

For any set S ⊆ [d], with S = {i1, . . . , is}, denote its S-derivative as ∆Sg(x) := ∂sg(x)
∂xi1 ...∂xis

.

7.2.1 Path Integrals

Grabisch et al. (2000) show that Shapley interaction index can be written as:

EShap
S (v, d) =

∫ 1

x=0
∆Sg(x, . . . , x)dx, ∀S ⊆ [d].

That is, we can obtain the Shapley interaction index by integrating the S-derivative along
the diagonal of the unit hypercube.

On the other hand, the Banzhaf interaction index can be written as:

EBzf
S (v, d) =

∫
x∈[0,1]d

∆Sg(x)dx, ∀S ∈ Sd.

That is, we can obtain the Banzhaf interaction index by integrating the S-derivative over
the entire unit hypercube. In this case, it also has the closed form: ∆Sg(1/2, . . . , 1/2).
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Fujimoto et al. (2006) show that any cardinal probabilistic index E has the form:

ES(v, d) =

∫ 1

x=0
∆Sg(x, . . . , x)dF|S|(x), ∀S ∈ Sd,

for some family of CDFs {Fs}s∈[d]. That is, we can obtain any cardinal probabilistic index
by integrating the S-derivative along the diagonal of the unit hypercube with respect to
some distribution over [0, 1].

It is an interesting open question whether we could extend these results from Grabisch
et al. (2000) and Fujimoto et al. (2006) to interaction indices that are cognizant of the
maximum interaction order ` ∈ [d]. In this section, we provide a modest initial result along
these lines, focusing on the top interaction level of the interaction index.

Proposition 22 For any maximum interaction order 1 ≤ ` ≤ d, and for any set function
v : 2d 7→ R, the top level of the Faithful Shapley Interaction index value can be expressed as:

EF-Shap
S (v, `) =

∫ 1

x=0
∆Sg(x, · · · , x)dIx(`, `), ∀S ∈ S` with |S| = `, (23)

where Ix(`, `) is cumulative distribution function of the beta distribution B(x; `, `).

7.2.2 Taylor Expansion

In contrast to path integrals, Sundararajan et al. (2020) use the Taylor expansion of g(1) =
v([d]) around g(0) = v(Ø) Taylor derivations to derive their interaction index. Specifically,
they show that Shapley Taylor index ETaylor

S (v, `) is equal to the |S|th term of the (`− 1)th

order Taylor expansion of g(·) with Lagrange remainder:

g(1) =
`−1∑
j=0

g(j)(0)

j!
g(0) +

∫ 1

x=0

(1− x)`−1

(`− 1)!
g(`)(x, · · · , x)dx

=
`−1∑
j=0

∑
|S|=j

∆Sg(0) +
∑
|S|=`

∫ 1

x=0
`(1− x)`−1∆Sg(x, · · · , x)dx

(Sundararajan et al., 2020, Theorem 3)

=
`−1∑
j=0

∑
|S|=j

ETaylor
S (v, `) +

∑
|S|=`

ETaylor
S (v, `),

where g(j)(x) is the jth derivative of the function g(x, · · · , x), ETaylor
S (v, `) = ∆Sg(0) for

|S| < ` and ETaylor
S (v, `) =

∫ 1
x=0 `(1− x)`−1∆Sg(x, · · · , x)dx with |S| = `. This can be seen

to result in impoverished lower-order subset interactions, which now no longer take into
account higher-order coalitions that include that subset.

7.2.3 Pseudo-Boolean Function Approximation

While we have so far discussed the continuous multi-linear extension of a set value function
v : 2[d] 7→ R, we can also simply consider its equivalent pseudo-Boolean counterpart g ∈ F
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with F = {g : {0, 1}d 7→ R}:

g(x) :=
∑
T⊆[d]

v(T )
∏
i∈T

xi
∏
i 6∈T

(1− xi), ∀x ∈ {0, 1}d.

One can also derive the pseudo-Boolean function gE corresponding to interaction indices E ,
and ask for interaction indices with pseudo-Boolean counterparts gE that best approximate
the pseudo-Boolean counterpart g of the set value function. Specifically, given a maximum
interaction order ` ∈ [d] and an interaction index E ∈ Rd` , its pseudo-Boolean counterpart
gE ∈ F is defined as:

gE(x) :=
∑

T⊆[d],|T |≤`

ET (v, `)
∏
i∈T

xi, ∀x ∈ {0, 1}d.

Hammer and Holzman (1992) and Grabisch et al. (2000) consider solving for the best
`2-norm approximation by the function gE(·) with degree up to `. That is, ‖g − gE‖2 =√∑

x∈{0,1}d(g(x)− gE(x))2. Using this perspective, we can see that Faith-Banzhaf interac-
tion indices can in turn be related to such a function approximation:

EF-Bzf(v, `) = min
E∈Rd`

‖g(x)− gE(x)‖2 = min
E∈Rd`

∑
S⊆[d]

v(S)−
∑

T⊆S,|T |≤`

ET

2

,

and where the solution has the closed-form expression we detail in Theorem 16.
For the singleton attribution case, with max order ` = 1, Ding et al. (2008) and Ruiz et al.

(1998) consider µ-norm function approximations ‖g(x)−gE(x)‖µ =
√∑

x∈{0,1}d µ(x)(g(x)− gE(x))2,
but where µ only depends on ‖x‖1, and where µ(0) and µ(1) can both be infinity. Ding
et al. (2008) provide a closed-form expression for gE(x), while Ruiz et al. (1998) analyze its
axiomatic properties.

For the specific case where the probability of coalition S can be expressed as µ(x) =∏
i:xi=1 pi

∏
j:xj=0(1 − pj) for some 0 < pi < 1 indicating the probability of the feature i

being present, Ding et al. (2010) and Marichal and Mathonet (2011) considers solving the
best `th order polynomial approximation under ‖ · ‖µ norm.

In contrast to the above work, our developments could be cast as pseudo-Boolean ap-
proximations for the general weighted norm case ‖ · ‖µ, for general weighting functions µ(·)
without stringent structural assumptions, and while allowing for arbitrary maximum inter-
action orders ` ∈ [d].

8. Experiments

We first provide some experiments validating the relative computational efficiency of com-
puting our Faith-Interaction indices, followed by quantitative and qualitative demonstrations
of their use as explanations of ML models over a language dataset.

The language dataset we use throughout the experiment is the simplified IMDB (Maas
et al., 2011) dataset, where the model only uses the first two sentences of movie reviews as
input, and predicts the probability of the reviews being positive. The model being explained
is a BERT language model (Devlin et al., 2018) with 0.82 accuracy on the test set.
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8.1 Computational Efficiency

Exact computation of interaction indices that aggregate over all possible feature subsets
exactly typically requires 2d model evaluations (with d features) which is impractical in
most machine learning applications. A key advantage of our Faith-Interaction indices, as
compared to other recently proposed interaction indices such as the Shapley Taylor index
and Shapley Interaction index, is that they can be computed by solving a weighted least
squares problem. As we empirically show in this section, this enables us to provide more
accurate estimates with fewer model evaluations, compared to the other recent approaches
that employ permutation-based sampling methods.

Methods Simplified IMDB Bank marketing

Shapley Taylor 2781.2 7368.3

Shapley Interaction 3960.4 10421.7

Faith-Shap 887.4 893.7

Table 4: Run-time comparison of different
Shapley values. Each value represents
the number of evaluations required to
achieve averaged squared distance less
than 10−3.

Setup: To demonstrate the computa-
tional efficiency of Faith-Interaction in-
dices, we compare our proposed Faith-
Shap with Shapley interaction and Shap-
ley Taylor interaction indices using differ-
ent estimation methods. For the Faith-
Shap interaction index, We use Eqn.(20)
and solve the corresponding linear regres-
sion problem with `1 regularization, and
regularization parameter α = 10−3 and
α = 10−6 for the simplified IMDB dataset
and the bank dataset. For the Shapley
Taylor interaction and Shapley Interac-
tion indices, we use the permutation-based sampling methods ( see exact algorithms in
the Appendix B).

We compare these indices in two datasets: (1) language dataset: we randomly choose 50
samples with d = 15 words from the test set of simplified IMDB and set ` = 2. We treat
each word in each text sentence as an input feature and set the baseline to empty text so
that we simply remove a word if it does not appear in a coalition. We use BERT prediction
scores as outputs of the value function. (2) Portuguese marketing dataset (Moro et al.,
2014): this is a tabular dataset with d = 17 features. We train an xgboost model (Chen and
Guestrin, 2016) with 90.5% accuracy on the test set. We also compare them on synthetic
sparse functions in the Appendix.

To measure how close an interaction index is to its ground-truth value, we use two
evaluation metrics: (1) averaged squared distance of all top indices,

∥∥E − Eest
∥∥2
2
/
(
d
`

)
, and

(2) precision at 10, which we measure the proportion of top-10 feature interactions (with
respect to absolute value) in the top-10 ground-truth interactions as top interactions are
more critical when these indices are used in XAI. (3) We also report run-time, as measured
by the number of model evaluations required to achieve averaged squared distance to be
smaller than 10−3.

We also note that we drop the lower-order indices and only compare top-order indices
(order=`) since computing lower-order Shapley Taylor indices are trivial. We sampled all
2d different coalitions to compute the ground truth of each index. Each evaluation metric
is reported by averaging 50 different inputs with 20 different random seeds.
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Results: From Figure 4 and Table 4, we see that Faith-Shap can be estimated more
accurately and uses fewer model evaluations: in both language data and sparse settings, as
well as in terms of all evaluation metrics.

(a) Averaged squared
distance (language).

(b) Precision@10 (lan-
guage).

(c) Average squared
distance (bank).

(d) Precision@10
(bank).

Figure 4: Comparison of Faith-Shap, Shapley Taylor and Shapley interaction indices in
terms of computational efficiency in language data and synthetic sparse func-
tions. The shaded area indicates the total area between one standard deviation
above and below.

8.2 Explanations on a Language Dataset

In this section, we use our Faith-Shap interaction index to explain the BERT model on
the simplified IMDB dataset. The experimental setting is the same as described in Section
8.1 except that we set the maximum interaction order ` = 2, the regularization parameter
α = 10−3 for Lasso, and sample 4000 coalitions for each text in the simplified IMDB. Table
5 shows some of the interesting interactions we found.

Index Sentences (bold words are the interactions with the highest (absolute) impor-
tance values)

Model
Predic-
tion

Interaction
score

1 I have Never forgot this movie. All these years and it has remained in my life. Positive 0.818

2 TWINS EFFECT is a poor film in so many respects. The only good element
is that it doesn’t take itself seriously.. Negative -0.375

3 I rented this movie to get an easy, entertained view of the history of Texas. I
got a headache instead. Negative 0.396

4 Truly appalling waste of space. Me and my friend tried to watch this film to
its conclusion but had to switch it off about 30 minutes from the end. Negative 0.357

5 I still remember watching Satya for the first time. I was completely blown
away. Positive 0.283

Table 5: Top interactions of different examples on IMDB. See more results in Appendix B.

In the first two examples, we see non-complementary interaction effects. In the first ex-
ample, while the importance values of the individual words “Never” and “forgot” are negative
(as shown in Tables 8, 10 in the Appendix), their joint effect as shown in the table here is
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extremely positive. Similarly, for the second, the words “only” and “good” are individually
positive, while their joint effect is strongly negative. The fourth and fifth examples show
more subtle non-complementarity effects. In the fourth example, while the individual words
“headache” and “instead” have negative importance scores, their joint effect is positive, since
the total effect of the phrase is less than the sum of the individual importance of these two
words. The last example shows the effect of complementarity: words in a phrase are only
meaningful when all words are present, and hence have a positive interaction effect.

In Appendix B, we further show the top-15 important interactions and compare them
to those from Shapley Taylor index, Shapley interaction index, Integrated Hessian (Janizek
et al., 2021) and Archipelago (Michael et al., 2020).

We find that although Faith-Shap, Shapley Taylor index, and Shapley interaction index
capture similar feature interactions, the later two methods are not able to find meaningful
singleton features. The reasons are (1) the first-order terms of the Shapley Taylor indices are
trivial, which is the difference between predicted probabilities of a sentence containing only
one word and an empty sentence (a baseline) (2) importance scores for the first order Shapley
value and Shapley interaction index are not comparable since the Shapley interaction index
does not satisfy the efficiency axiom. For integrated Hessian, we empirically find that the
BERT model assigns higher values for self-interactions and punctuation marks.

9. Related work

Related work in cooperative theory: in cooperative game theory, a set function v(·)
with v(∅) = 0 corresponds to a transferable utility game (TU-game), and a set function with
order ≤ ` is called an `-additive TU-game (Grabisch et al., 2016). Therefore, our approach
can be viewed as a least squares approximation of a TU-game by an `-additive TU-game;
see for instance Eqn. (10). Variants and special cases of this least squares approximation
problem have been studied in the cooperative game theory field. For ` = 1, Charnes et al.
(1988) first give general solutions when the weighting function is symmetric and positive,
and show that the Shapley value results from a particular choice of the weighting function.
Ruiz et al. (1996, 1998) consider the same setting, and study the axiomatic properties
of the solutions of the least squares problems. Ding et al. (2008) further generalizes the
previous results by considering the cases where some weights are allowed to be zero. For the
case where maximum interaction order ` > 1, Hammer and Holzman (1992) and Grabisch
et al. (2000) solve the least squares problem when the weighting function is a constant, and
show that the top-level coefficients coincide with those of the Banzhaf interaction indices of
order `. Ding et al. (2010) and Marichal and Mathonet (2011) consider a certain weighted
version of the problem, and propose weighted Banzhaf interaction indices. Grabisch and
Rusinowska (2020) consider the approximation problem under the constraints that both
TU-games yield the same Shapley value. Marichal and Roubens (1999) extend the Shapley
value and propose the chaining interaction index whose definition is based on maximal chains
of ordered sets. For more details on this line of work, see the recent book (Grabisch et al.,
2016). From the lens of TU-game approximation, our work could be viewed as allowing
for general weighting functions µ(·) without stringent structural assumptions, as well as
arbitrary maximum interaction orders ` ∈ [d].
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While the Shapley value focuses on a fair allocation among players, there exist other
solution concepts in cooperative game theory that have different purposes. For example,
core (Gillies, 1953) allocates the total payoff in a stable manner, nucleolus (Schmeidler,
1969) is a solution lying in the core with unique axiomatic properties, and the Nash bar-
gaining solution (Nash Jr, 1950) focuses on two-player bargaining problems. Extending these
concepts to interaction contexts may lead to different solutions with different properties, and
are interesting topics for future work.

Feature attribution in XAI: When Faith-Shap is used in XAI, it can be seen as a
local and post-hoc approach that extracts singleton features and feature interaction im-
portances for a given prediction. It can be viewed as an order ` polynomial model, with
desired axiomatic properties, that explains how a black-box model behaves locally. Ex-
plaining complex models with an interpretable local surrogate model has been substantially
studied in XAI. LIME (Ribeiro et al., 2016) use a local linear model to describe a predic-
tion made by the model being explained. Model Agnostic Supervised Local Explanations
(MAPLE) (Plumb et al., 2018) utilize local linear modeling and dual interpretation of ran-
dom forests. AnchorLIME (Ribeiro et al., 2018) uses IF-THEN rules to generate expla-
nations. Model Understanding through Subspace Explanations (MUSE) (Lakkaraju et al.,
2019) explains how the model behaves in subspaces characterized by certain features of in-
terest. Kernel SHAP (Lundberg and Lee, 2017) can be viewed as first-order Faith-Shap.
These approaches assign credits to each individual feature based on how much it influences
the models’ prediction and do not aim to explain how feature interactions affect the model.

Feature interactions in XAI: Feature interactions have also been investigated in the
machine learning community. Tsang et al. (2017) detect feature interactions by examining
weight matrices of DNNs. Tsang et al. (2018) disentangle complex feature interactions
within DNNs by forcing the weights matrices to be block-diagonal. Singh et al. (2018) build
hierarchical explanations within a feed-forward neural network using hierarchical clustering
of features. Cui et al. (2019) and Janizek et al. (2021) explain pairwise interactions in neural
networks, and Bayesian neural networks respectively via second-order derivatives. Lundberg
et al. (2020) quantify feature interactions in tree-based models using the Shapley interaction
index. Tsang et al. (2020) proposes Archipelago, which quantifies the interaction within a
feature group S via the marginal importance v(S)− v(∅).

While these approaches have taken significant steps towards understanding feature in-
teractions, they are limited to a certain kind of model architecture. Tsang et al. (2017) and
Tsang et al. (2018) can only be applied to feed-forward neural network architectures, but
not LSTMs and CNNs. While Singh et al. (2018) can be applied to LSTMs and CNNs, it
is unclear how to apply it to recent innovations such as transformers. The approach of Cui
et al. (2019) can only be applied to Bayesian neural networks, and Janizek et al. (2021)
can only be applied to models where second-order derivatives exist everywhere. Lundberg
et al. (2020) only study tree-based models. While Archipelago (Tsang et al., 2020) is a
post-hoc explanation approach that can be applied to any model, Archipelago measures the
importance of a feature group as a whole, while Faith-Shap measures the marginal effects of
interaction among feature groups. Also, the Archipelago does not obey the dummy axiom
and satisfies the efficiency axiom only for certain kinds of functions.
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10. Conclusion

Deriving unique interaction indices that satisfy the interaction extensions of the individual
Shapley axioms has been a long-standing open problem. Existing approaches introduce
additional less natural axioms, with some even sacrificing natural ones such as efficiency,
in order to specify unique interaction indices. In this work, we take the alternate route
of considering the family of what we term faithful interaction indices, which similar to
individual Shapley values, aim to approximate the given set value function for all feature
subsets. We show that when restricting to the class of faithful interaction indices, we obtain
a unique interaction index that satisfies the interaction extensions of the individual Shapley
axioms, which we term the Faithful Shapley Interaction Index (Faith-Shap). We show
the benefits of the faithful Shapley interaction index via specific games of interest where
there is diminishing return and increasing return and connect the Faith-Shap to cardinal
probabilistic indices and multilinear approximations. Finally, we show that Faith-Shap is
efficient to estimate thanks to its connection to weighted linear regression in sparse settings,
and provide some qualitative results for their use as explanations of machine learning models
on a real language dataset.
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Appendix A. Organization

The Appendices contain additional technical content and are organized as follows: In Ap-
pendix B, we provide details for sampling algorithms for different indices and supplementary
results for different setups for the computational efficiency experiment in Section 8.1. In
Appendix C, we give experimental details and show the detailed results of Faithful Shapley
Interaction value and Shapley Taylor indices. In Appendix D, we provide additional guidance
on Theorem, where we clarify how to choose the parameters a, b to design Faith-Interaction
indices. In Appendix E, we provide auxiliary theoretical results of the Faith-Interaction
indices, which will be subsequently used in our proof of main theorems. We leave proof of
propositions and theorems to arxiv (https://arxiv.org/abs/2203.00870).

Appendix B. Experimental Details and Supplementary Results of
Computational Efficiency

In this section, we provide implementation details of the sampling algorithms for different
indices as well as supplementary experimental results for computational efficiency experi-
ments.

The sampling algorithms for the Shapley Taylor and Shapley interaction indices are
shown in Algorithm 1 and 2. These algorithms are based on the fact that these two indices
are the expected value of discrete derivatives over different ordering processes (Sundararajan
et al., 2020, Section 2.2). These algorithms are more efficient since they may use v(S) of
the same coalition S to compute indices of different subsets. Also, to measure the run-time
of each index, we measure its average squared distance every 200/300 model evaluation.

We also measure computation efficiency on the synthetic sparse functions, which is con-
structed as follows: we parameterize the synthetic sparse function v : {0, 1}d → R with∑N

i=1 ai
∏
j∈Si

xj , where x = {x1, · · · , xd} ∈ {0, 1}d are the input of the value function,
S1, S2, · · · , SN are subsets of [d] and a1, · · · , aN are coefficients. We set d = 70, N = 30,
` = 2 and d = 90, N = 10, ` = 2, sample each ai uniformly over [− i

10 ,
i
10 ]. Each Si is uni-

formly sampled over subsets of |S| with sizes ≤ 5 and ≤ 10, respectively. We use Eqn.(16) to
compute the ground truth of interaction indices for sparse synthetic functions. The results
are shown in Figure 5. We can see that Faith-Shap is more efficient in terms of all evaluation
metrics.
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(a) Averaged squared
distance for d = 70,
` = 2, N = 30, |S| ≤ 5.

(b) Precision@10 for
d = 70, ` = 2, N =
30, |S| ≤ 5.

(c) Averaged squared
distance for d = 90,
` = 2, N = 20, |S| ≤
10.

(d) Precision@10 for
d = 90, ` = 2, N =
20, |S| ≤ 10.

Figure 5: Comparison of Faith-Shap, Shapley Taylor and Shapley interaction indices in
terms of computational efficiency on synthetic sparse functions for d = 70,
` = 2, N = 30, |S| ≤ 5, and d = 90, ` = 2, N = 20, |S| ≤ 10.

Algorithm 1: Permutation-based sampling algorithm for the top-order Shapley
Taylor index
input : a value function v : 2d 7→ R, maximum order `.
begin

sum[S]← 0 for all sets S ⊆ [d] with size `.
count[S]← 0 for all sets S ⊆ [d] with size `.
for t = 1, 2, ... do

π ← {i1, · · · , id} be a random ordering of {1, 2, · · · , d}.
for all set S ⊆ [d] with size ` do

ik ← the leftmost element of S in the ordering π.
T ← {i1, · · · , ik−1} the set of predecessors of ik in π.
sum[S]← sum[S] + ∆S(v(T )).
count[S] = count[S] + 1.

end
end
indices[S]← sum[S]/count[S] for all sets S ⊆ [d] with size `.
return indices

end

Appendix C. Experimental details for Language Dataset

For the dataset, the Internet Movie Review Dataset (IMDb) (Maas et al., 2011) consists
of 50,000 binary labeled movie reviews. Each review is annotated as a positive or negative
review. We used 25,000 reviews for training and 25,000 reviews for evaluation.

Here, the set function v(x) represents the predicted probability of input texts being
positive sentiment, which is between 0 and 1. We remove a word in a text sequence if
the corresponding entry of the word in a binary perturbation variable x is 0. we use 4000
samples to estimate both Faithful Shapley Interaction indices and Shapley Taylor indices.
We use Lasso with regularization parameter α = 0.001 to estimate Faithful Shapley Interac-
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Algorithm 2: Permutation-based sampling algorithm for the Shapley Interaction
index.
input : a value function v : 2d 7→ R, maximum order `.
begin

sum[S]← 0 for all sets S ⊆ [d] with size `.
count[S]← 0 for all sets S ⊆ [d] with size `.
for t = 1, 2, ... do

π ← {i1, · · · , id} be a random ordering of {1, 2, · · · , d}.
for k = 1, · · · , d− `+ 1 do

S ← {ik, · · · , ik+`−1}.
T ← {i1, · · · , ik−1} the set of predecessors of ik in π.
sum[S]← sum[S] + ∆S(v(T )).
count[S] = count[S] + 1.

end
end
indices[S]← sum[S]/count[S] for all sets S ⊆ [d] with size `.
return indices

end

tion indices and permutation-based sampling method to estimate the highest order Shapley
Taylor indices (` = 2).

For comparison with other feature interactions methods in XAI, we provide top-15 im-
portant features (interactions) for Faith-Shap, Shapley Taylor interaction indices, Shapley
Interaction indices, Integrated Hessian (Janizek et al., 2021), and Archipelago (Michael et al.,
2020) in Table 6 to 10. We note that Archipelago is run with the number of interactions
k = 3, and its usage is slightly different than our methods: it constructs a feature hierarchy
as an explanation rather than measuring the importance scores of feature interactions.
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Index Sentences Predicted
Prob.

1

I have Never forgot this movie. All these years and it has remained in my life. 0.992

Faithful Shapley indices Shapley Taylor indices

Feature (interactions) Scores Feature (interactions) Scores

Never, forgot 0.818 Never, forgot 1.077

life 0.383 Never, life -0.211

forgot -0.254 remained, movie -0.177

and 0.168 Never, this -0.160

it 0.168 forgot, life -0.149

Never -0.163 and, forgot -0.149

years 0.156 in, life -0.143

All 0.132 Never, it -0.122

my 0.126 Never, movie -0.114

has 0.120 have, Never -0.110

have 0.112 I, have 0.106

Never, life -0.106 forgot, in -0.105

forgot, it -0.096 Never, All -0.104

my, life -0.086 years, life -0.101

this 0.081 it, forgot -0.101

Shapley interaction indices Integrated Hessian

Never, forgot 1.166 this, this 1.796

these, life -0.194 in, in -1.406

have, Never -0.164 my, my -1.357

Never, it -0.154 ., . 1.123

it, forgot -0.149 have, this 1.050

forgot, life -0.148 movie, movie 1.038

forgot, remained 0.146 it, it -0.972

have, forgot -0.139 never, this 0.820

and, Never -0.136 in, my 0.792

it, life -0.135 in, . 0.719

and, it 0.131 ., . -0.602

forgot, in -0.129 this, in 0.554

I, it -0.125 remained, remained -0.532

years, Never -0.121 this, life 0.526

forgot, my -0.119 remained, my 0.526

Archipalego

Table 6: Top-15 important feature (interactions) for different methods for language dataset.
The predicted probability is the out probability of the sentence having positive
sentiment. The archipalego algorithm is run with k = 3 interactions.
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Index Sentences Predicted
Prob.

2

TWINS EFFECT is a poor film in so many respects. The only good element is
that it doesn’t take itself seriously. 0.012

Faithful Shapley indices Shapley Taylor indices

Feature (interactions) Scores Feature (interactions) Scores

poor -0.341 only, good -0.450

respects 0.297 EFFECT, good -0.182

only, good -0.243 good, is -0.171

poor, only 0.206 poor, film -0.169

good 0.176 only, element -0.168

poor, respects -0.173 doesn’t, poor 0.151

doesn’t -0.169 only, poor 0.150

poor, good 0.122 respects, poor -0.149

only, doesn’t 0.115 itself, poor -0.142

poor, doesn’t 0.111 respects, good -0.137

many 0.095 it, doesn’t -0.108

it 0.084 it, only -0.098

itself 0.083 take, seriously 0.095

element 0.076 doesn’t, good -0.094

poor, many -0.070 doesn’t, only 0.093

Shapley interaction indices Integrated Hessian

only, good -0.280 ., . 19.441

a, only -0.259 is, . 3.506

only, poor 0.223 the, . 2.802

poor, good 0.171 only, . 2.374

doesn’t, poor 0.159 take, . 2.004

respects, poor -0.154 it, . 1.463

good, is -0.150 good, . 1.462

The, good -0.146 seriously, . 1.372

poor, element -0.146 doesn, . 1.282

doesn’t, only 0.142 is, . 1.226

doesn’t, take -0.130 that, . 1.169

respects, only -0.120 ’, ’ 1.143

good, element -0.119 ., . -1.001

it, take -0.117 is, is 0.996

so, that -0.112 itself, . 0.914

Archipalego

Table 7: Top-15 important feature (interactions) for different methods for language dataset.
The predicted probability is the out probability of the sentence having positive
sentiment. The archipalego algorithm is run with k = 3 interactions.
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Index Sentences Predicted
Prob.

3

I rented this movie to get an easy, entertained view of the history of Texas. I
got a headache instead. 0.026

Faithful Shapley indices Shapley Taylor indices

Feature (interactions) Scores Feature (interactions) Scores

instead -0.321 headache, instead 0.268

headache, instead 0.252 view, instead -0.178

headache -0.205 headache, Texas -0.139

easy 0.158 rented, instead 0.137

view 0.130 instead, easy -0.125

history 0.123 got, headache -0.118

rented -0.122 entertained, instead -0.115

Texas 0.101 rented, headache 0.109

entertained 0.095 got, easy -0.108

rented, instead 0.085 got, history -0.105

Texas, headache -0.069 a, I -0.100

history, instead -0.064 view, history 0.100

the 0.059 got, rented -0.100

entertained, instead -0.057 got, a -0.099

this 0.052 history, an 0.094

Shapley interaction indices Integrated Hessian

headache, instead 0.333 ., . -13.363

easy, I -0.248 i, . -2.441

movie, instead -0.226 ., a -2.117

history, to -0.162 ., . -1.420

Texas, an -0.135 texas, . 1.171

rented, easy -0.135 this, . -1.087

entertained, easy 0.130 ., i -1.056

to, easy -0.115 to, . -1.035

view, instead -0.114 of, . 0.843

entertained, instead -0.112 entertained, entertained -0.761

of, instead -0.102 headache, headache 0.753

an, easy 0.095 history, history -0.688

instead, easy -0.093 ., got -0.673

of, easy -0.087 view, . 0.657

get, easy -0.085 to, to -0.599

Archipalego

Table 8: Top-15 important feature (interactions) for different methods for language dataset.
The predicted probability is the out probability of the sentence having positive
sentiment. The archipalego algorithm is run with k = 3 interactions.
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Index Sentences Predicted
Prob.

4

Truly appalling waste of space. Me and my friend tried to watch this film to its
conclusion but had to switch it off about 30 minutes from the end. 0.002

Faithful Shapley indices Shapley Taylor indices

Feature (interactions) Scores Feature (interactions) Scores

waste -0.345 appalling, waste 0.298

appalling, waste 0.257 Truly, waste -0.296

appalling -0.251 switch, it -0.248

Truly 0.169 tried, waste 0.230

waste, tried 0.167 but, watch -0.210

friend 0.162 friend, waste -0.184

space 0.149 friend, tried -0.172

tried -0.134 friend, but -0.169

Truly, waste -0.118 Truly, but -0.145

watch 0.087 but, waste 0.145

off -0.086 waste, watch -0.140

and 0.078 waste, off 0.138

waste, friend -0.074 had, space -0.128

waste, space -0.058 Truly, film 0.126

of 0.055 30, waste 0.124

Shapley interaction indices Integrated Hessian

tried, watch -0.365 the, the -31.568

appalling, waste 0.293 the, end -13.784

tried, waste 0.259 the, . 9.472

from, end 0.230 end, end -5.719

conclusion, its 0.228 end, . 3.522

Truly, waste -0.210 from, the 3.390

waste, space -0.202 ., . 2.616

space, off -0.191 had, the 1.540

to, its -0.180 from, end 1.441

to, space 0.166 30, the -0.959

Me, its 0.162 its, the 0.941

Truly, of 0.155 minutes, . 0.821

the, Me -0.154 off, the 0.796

but, waste 0.148 ., . 0.779

had, space -0.146 to, the 0.737

Archipalego

Table 9: Top-15 important feature (interactions) for different methods for language dataset.
The predicted probability is the out probability of the sentence having positive
sentiment. The archipalego algorithm is run with k = 3 interactions.
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Index Sentences Predicted
Prob.

5

I still remember watching Satya for the first time. I was completely blown away. 0.994

Faithful Shapley indices Shapley Taylor indices

Feature (interactions) Scores Feature (interactions) Scores

remember 0.337 blown, away 0.345

blown, away 0.293 the, first 0.191

time 0.281 time, first 0.182

Satya 0.208 watching, for -0.169

remember, blown -0.158 time, away -0.167

watching 0.153 time, Satya -0.151

blown 0.146 time, still -0.145

time, away -0.127 still, watching -0.144

completely, away -0.101 I, watching -0.131

Satya, time -0.091 watching, first -0.128

remember, time -0.073 remember, away 0.118

I, watching -0.071 Satya, away -0.118

completely, blown 0.063 was, watching -0.115

first, blown -0.053 remember, blown -0.110

first 0.049 completely, away -0.107

Shapley interaction indices Integrated Hessian

blown, away 0.318 ., . 4.759

was, remember 0.237 was, . 1.866

remember, blown -0.180 blown, blown 1.552

time, Satya -0.167 i, . 1.185

the, first 0.144 was, was 1.105

blown, first -0.133 i, . 1.063

completely, blown 0.126 blown, away 0.889

time, away -0.119 satya, . 0.857

I, was 0.093 for, for -0.763

watching, blown 0.087 remember, remember -0.745

I, watching -0.083 for, time -0.745

time, blown 0.080 i, i -0.727

watching, away -0.078 ., . -0.616

remember, watching -0.076 watching, satya 0.592

remember, was -0.074 completely, . 0.579

Archipalego

Table 10: Top-15 important feature (interactions) for different methods for language
dataset. The predicted probability is the out probability of the sentence hav-
ing positive sentiment. The archipalego algorithm is run with k = 3 interactions.
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Appendix D. Additional Guidance on Theorem 16

In this section, we clarify how to use Theorem 16 to design Faith-Interaction indices satisfy-
ing interaction linearity, symmetry, and dummy axioms by first explaining Theorem 16 and
then providing some examples.

Theorem 16 states that the finite weighting function must be in the following form:

µ(S) ∝
d∑

i=|S|

(
d− |S|
i− |S|

)
(−1)i−|S|g(a, b, i), where g(a, b, i) =

{
1 , if i = 0.∏j=i−1
j=0

a(a−b)+j(b−a2)
a−b+j(b−a2) , if 1 ≤ i ≤ d.

for some a, b ∈ R+ with a > b such that µ(S) > 0 for all S ⊆ [d].
To better understand this formula, some questions need to be answered: (1) What kind

of a, b makes µ(S) > 0 for all S ⊆ [d]? (2) What is the physical meaning of the parameters
a and b?

To answer (1), we show that a simple condition 1 ≥ a > b ≥ a2 > 0 suffices to make
µ(S) > 0 for all S ⊆ [d].

Proposition 23 When a, b ∈ R+ such that 1 ≥ a > b ≥ a2 > 0, we have
d∑

i=|S|

(
d− |S|
i− |S|

)
(−1)i−|S|g(a, b, i) > 0 for all S ⊆ [d],

where g(a, b, i) is defined in Eqn.(12).

We delayed the proof of this proposition to arxiv. We note that it is only a sufficient
condition for selecting a and b: For some small d ∈ N, we may have some a, b such that
1 > a2 > b > 0 but makes µ(S) > 0 for all S ⊆ [d]. However, if a = µ̄1 and b = µ̄2
need to make the weighting function positive for all d ∈ N, we must have the condition
1 ≥ a > b ≥ a2 > 0.

For question (2), we show that µ̄i = g(a, b, i) =
∑

L⊇S µ(L) for subsets S ⊆ [d] with
|S| = i. Here, µ̄i is defined as the total weight of coalitions containing a group of features of
size i (any group with size i will work due to the interaction symmetry axiom). By plugging
in i = 1, 2, we get a = µ̄1 and b = µ̄2 are the total weights of coalitions containing a single
feature and a pair of features.

In the following, we give some special cases with particularly chosen a and b to provide
an intuition of Theorem 16,

Example 1 When a = 0.5 and b = 0.25, the weighting function µ(·) with respect to The-
orem 16 is µ(S) = 1/2d for all S ⊆ [d]. In this case, the explanations ET (v, `) equals the
Banzhaf Interaction value up to order ` for all |T | = `, which has the form ET (v, `) =∑

S⊆[d]\T ∆T v(S)/2d−|S|.

In this example, the Banzhaf interaction value satisfies interaction linearity, symmetry,
and dummy axioms Fujimoto et al. (2006), which coincides with Theorem 16. We also
provide another guideline to design the values of a, b based on the desired µd

µd−1
and µd−1

µd−2
,

where µi = µ(S) when |S| = i. 1

1. µi can be defined since the interaction symmetry axiom ensures that all coalitions with equal size have
equal weights.
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Proposition 24

Let
µd
µd−1

= r1 and
µd−1
µd−2

= r2 with r1 > r2 >
(d− 2)r1
d− 1 + r1

> 0,

then a and b can be represented as functions of r1 and r2:

a =
r1(r2 + 1)− (d− 1)(r1 − r2)

(r1 + 1)(r2 + 1)− (d− 1)(r1 − r2)
and b =

r1(r2 + 1)− (d− 2)(r1 − r2)
(r1 + 1)(r2 + 1)− (d− 2)(r1 − r2)

a.

(24)
In this case, a and b satisfy 1 > a > b ≥ a2 > 0, which implies µi > 0 for all 0 ≤ i ≤ d .

This proposition provides a guideline to design a unique interaction value that satisfies
interaction linearity, symmetry, dummy axioms based on given values of µd

µd−1
and µd−1

µd−2
. For

example, if the coalition µt has a higher probability to form when t is large, such as the case
when the features of an image are explained. As an example, we may set µd

µd−1
= 10. We

then have 10 > r2 >
d−2
d+910, and we can set r2 = 9 when d < 101. This narrows down a

unique interaction value that satisfies these three axioms and the conditions of µd
µd−1

= 10

and µd−1

µd−2
= 9.
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Appendix E. Auxiliary Theoretical Results

In this section, we provide auxiliary theoretical results of the Faith-Interaction indices. These
properties are useful in the proof of our main theorems. The proof are delayed to Appendix
arxiv.

First of all, we show that if the coalition weighting function µ(·) is finite, Eqn.(9) is
strictly convex.

Proposition 25 If the coalition weighting function µ(·) is finite such that µ(S) ∈ R+ for
all S ⊆ [d], Eqn.(9) is strictly convex.

Given that Eqn.(9) is strictly convex, we next show that the minimization problems have a
unique minimizer.

Proposition 26 The (constrained) regression problems defined in Eqn.(10) with a proper
weighting function µ ( Definition 10) have a unique minimizer.

This proposition is a straightforward application of the following fact: For a minimization
problem with linear constraints, if the objective is strictly convex, then it has a unique
minimizer.

Also, we note that having a positive measure for all subsets of [d] on the weighting
function µ(·) is necessary to ensure the uniqueness of the minimizer. Consider the case
when the maximum interaction order equals the number of features, i.e. ` = d, there are 2d

variables with 2d equalities. That is, v(S)−
∑

T⊆S ES(v, d) = 0 for all S ⊆ [d]. In this case,
we can not have any S ⊆ [d] such that µ(S) = 0 due to the lack of equations.

In this special case of ` = d, we have the following closed-form expression. We note that
these results are independent of the weighting function as long as we have µ(S) > 0 for all
S ⊆ [d].

Proposition 27 When the maximum interaction order ` = d, the minimizer of Eqn.(10)
the Möbius transform of v, i.e. ES(v, d) = a(v, S) =

∑
T⊆S(−1)|S|−|T |v(T ) for all subsets

S ⊆ [d].

Then we provide the expression of partial derivatives of the objective in Eqn.(9) with
respect to each variable EA(v, `) for all A ⊆ [d] with |A| ≤ `.

Proposition 28 The partial derivative of Eqn.(9) with respect to EA(v, `) is

−2
∑

S:S⊇A,
µ(S)<∞

µ(S)v(S) + 2
∑
S∈S`

ES(v, `)
∑

L:L⊇S∪A,
µ(L)<∞

µ(L) for all A ∈ S`. (25)

This proposition is frequently used in our proof as we solve the minimization problem.
Next, the following proposition illustrates how to solve the constrained regression problem
via Lagrangian.
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Proposition 29 Any Faith-Interaction index E(v, `) with respect to a proper weighting func-
tion µ(·) with µ(Ø) = µ([d]) =∞ has the form:

λØ
λ[d]
EØ(v, `)
· · ·

ES(v, `)
ET (v, `)
· · ·


=



0, 0, 1, · · · , 0, 0, · · ·
0, 0, 1, · · · , 1, 1, · · ·
− 1

2 , −
1
2 , µ̄(Ø), · · · , µ̄(S), µ̄(T ), · · ·

· · · , · · · , · · · , · · · , · · · , · · · , · · · ,
0, − 1

2 , µ̄(S), · · · , µ̄(S), µ̄(S ∪ T ), · · ·
0, − 1

2 , µ̄(T ), · · · , µ̄(S ∪ T ), µ̄(T ), · · ·
· · · , · · · , · · · , · · · , · · · , · · · , · · ·



−1

︸ ︷︷ ︸
M−1



v(Ø)
v([d])
v̄(Ø)
· · ·
v̄(S)
v̄(T )
· · ·


︸ ︷︷ ︸

y

, (26)

where λØ and λ[d] are Lagrange multipliers with respect to the constraints on the empty set
and the full set, µ̄(S) =

∑
L⊇S,µ(L)<∞ µ(L), and v̄(S) =

∑
L⊇S,µ(L)<∞ µ(L)v(L).

Formally, the matrix M ∈ R(d`+2)×(d`+2) and the vector y ∈ Rd`+2 have the following def-
initions: we overuse the notations λØ, λ[d] and let the rows and columns of M are indexed by
{λØ, λ[d],Ø, · · · , S, T, · · · }, which are corresponding to variables λØ, λ[d], EØ(v,`),··· ,ES(v,`),ET (v,`)

MS,T =



1 if S = (λØ) ∧ (T = Ø).

0 if (S = λØ) ∧ (T 6= Ø).

1 if (S = λ[d]) ∧ (T ⊆ S`).
0 if (S = λ[d]) ∧ (T ∈ {λØ, λ[d]}).
−1

2 if (S = ∅) ∧ (T = λ[d]).

0 if (S ∈ S`\Ø) ∧ (T = λØ).

−1
2 if (S ∈ S`) ∧ (T = λ[d]).

µ̄(S ∪ T ) , otherwise.

, and yS =


v(Ø) if S = λØ.

v([d]) if S = λ[d]

v̄(S) otherwise.

where we use MS,T to denote the entry of the intersection of Sth row and T th column.
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