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Abstract

We study multi-player general-sum Markov games with one of the players designated as
the leader and the other players regarded as followers. In particular, we focus on the
class of games where the followers are myopically rational; i.e., they aim to maximize
their instantaneous rewards. For such a game, our goal is to find a Stackelberg-Nash
equilibrium (SNE), which is a policy pair (π∗, ν∗) such that: (i) π∗ is the optimal policy
for the leader when the followers always play their best response, and (ii) ν∗ is the best
response policy of the followers, which is a Nash equilibrium of the followers’ game induced
by π∗. We develop sample-efficient reinforcement learning (RL) algorithms for solving for
an SNE in both online and offline settings. Our algorithms are optimistic and pessimistic
variants of least-squares value iteration, and they are readily able to incorporate function
approximation tools in the setting of large state spaces. Furthermore, for the case with
linear function approximation, we prove that our algorithms achieve sublinear regret and
suboptimality under online and offline setups respectively. To the best of our knowledge,
we establish the first provably efficient RL algorithms for solving for SNEs in general-sum
Markov games with myopically rational followers.
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1. Introduction

Reinforcement learning (RL) has achieved striking empirical successes in solving real-world
sequential decision-making problems (Mnih et al., 2015; Duan et al., 2016; Silver et al.,
2016, 2017, 2018; Agostinelli et al., 2019; Akkaya et al., 2019). Motivated by these successes,
multi-agent extensions of RL algorithms have recently become popular in decision-making
problems involving multiple interacting agents (Busoniu et al., 2008; Hernandez-Leal et al.,
2018, 2019; OroojlooyJadid and Hajinezhad, 2019; Zhang et al., 2019). Multi-agent RL is
often modeled as a Markov game (Littman, 1994) where, at each time step, given the state
of the environment, each player (agent) takes an action simultaneously, observes her own
immediate reward, and the environment evolves into a next state. Here both the reward
of each player and the state transition depend on the actions of all players. From the
perspective of each player, the goal is to find a policy that maximizes their expected total
reward in the presence of other agents.

In Markov games, depending on the structure of the reward functions, the relationship
among the players can be either collaborative, where each player has the same reward
function, or competitive, where the sum of the reward function is equal to zero, or mixed,
which corresponds to a general-sum game. While most of the existing theoretical results
focus on the collaborative or two-player competitive settings, the mixed setting is often
more pertinent to real-world multi-agent applications.

Moreover, in addition to having diverse reward functions, the players might also have
asymmetric roles in the Markov game—the players might be divided into leaders and follow-
ers, where the leaders’ joint policy determines a general-sum game for the followers. Games
with such a leader-follower structure are popular in applications such as mechanism design
(Conitzer and Sandholm, 2002; Roughgarden, 2004; Garg and Narahari, 2005; Kang and
Wu, 2014), security games (Tambe, 2011; Korzhyk et al., 2011), incentive design (Zheng
et al., 1984; Ratliff et al., 2014; Chen et al., 2016; Ratliff and Fiez, 2020), and model-based
RL (Rajeswaran et al., 2020). Consider a simplified economic system that consists of a
government and a group of companies, where the companies purchase or sell goods, and
the government collects taxes from transactions. Such a problem can be viewed as a multi-
player general-sum game, where the government serves as the leader and the companies
are followers (Zheng et al., 2020). In particular, when the government sets a tax rate, the
companies play a general-sum game among themselves with a reward function that depends
on the tax rate. Each company aims to maximize its own revenue, and ideally they jointly
achieve a Nash equilibrium (NE) of the induced game. The goal of the government might be
to achieve maximum social welfare, which can be measured via appropriate fairness metrics
associated with the revenues of the companies.

In multi-player Markov games with such a leader-follower structure, symmetric solution
concepts such as Nash equilibria (NE), coarse correlated equilibria (CCE), and corrected
equilibria (CE) are not appropriate. Instead, the desired solution concept is the Stackelberg-
Nash equilibrium (SNE)—the leader’s optimal policy assuming that the followers execute
the best-response (NE) policy to the leader (Başar and Olsder, 1998). In the setting where
there is a single leader, SNE corresponds to a pair of a leader’s policy π∗ and the followers’
joint policy ν∗ that satisfies the following two properties: (i) when the leader adopts π∗, ν∗

is the best-response policy of the followers, i.e., ν∗ is a Nash equilibrium of the followers’
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subgame induced by π∗; and (ii) π∗ is the optimal policy of the leader assuming the followers
always adopt the best response.

We are interested in finding an SNE in a multi-player Markov game when the reward
functions and Markov transition kernel are unknown. In particular, we focus on the setting
with a single leader and multiple myopically rational followers. That is, at no step of the
game do the followers take into account the future rewards; rather, they only consider the
rewards at the current step. The formal definition of myopically rational followers is given in
§3.3. This setting is a natural formalization of many real-world problems such as marketing
and supply chain management. For example, in a market, the leader is an established firm
and the followers are entrants. The entrants are not sure whether the firm is going to exist
in the future, so they might just want to maximize instantaneous rewards. See Li and
Sethi (2017); Kańska and Wiszniewska-Matyszkiel (2021) and references therein for more
examples. For such a game, we are interested in the following question:

Can we develop sample-efficient reinforcement learning methods that provably find
Stackelberg-Nash equilibria in general-sum Markov games with myopically rational

followers?

To this end, we consider both online and offline RL settings, where in the former, we learn
the SNE in a trial-and-error fashion by interacting with the environment and generating
data, and in the latter, we learn the SNE from a given dataset that is collected a priori.
For the online setting, as the transition model is unknown, to achieve sample efficiency
the equilibrium-finding algorithm needs to take an exploration-exploitation tradeoff into
consideration. Although a similar challenge has been studied in zero-sum Markov game, it
seems unclear how to incorporate popular exploration mechanisms such as optimism in the
face of uncertainty (Sutton and Barto, 2018) into the SNE solution concept. Meanwhile,
in the offline setting, as the RL agent has no control of data collection, it is necessary to
design an RL algorithm with theoretical guarantees for an arbitrary dataset that might not
be sufficiently explorative.

Our contributions. Our contributions are three-fold. First, for the episodic general-
sum Markov game with myopically rational followers, under the online and offline settings
respectively, we propose optimistic and pessimistic variants of the least-squares value it-
eration (LSVI) algorithm. In particular, in our version of LSVI, we estimate the optimal
action-value function of the leader via least-squares regression and construct an estimate
of the SNE by solving for the SNE of the multi-matrix game for each state, whose payoff
matrices are given by the leader’s estimated action-value function and the followers’ reward
functions. Moreover, we add a UCB exploration bonus to the least-squares solution to
achieve optimism in the online setting. In the offline setting, pessimism is achieved by sub-
tracting a penalty function constructed using the offline data which is equal to the negative
bonus function. These algorithms are readily able to incorporate function approximators
and we showcase a version with linear function approximation. Second, in the online set-
ting, we prove that our optimistic LSVI algorithm achieves a sublinear Õ(H2

√
d3K) regret,

where K is the number of episodes, H is the horizon, d is the dimension of the feature
mapping, and Õ(·) omits logarithmic terms. Finally, in the offline setting, we establish
an upper bound on the suboptimality of the proposed algorithm for an arbitrary dataset
with K trajectories. Our upper bound yields a sublinear Õ(H2

√
d3/K) rate as long as the
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dataset has sufficient coverage over the trajectory induced by the desired SNE. In summary,
we first identify a concrete subclass of Markov games where the SNE solution concept is
tractable for learning in both the online and offline setting.

2. Related Work

In this section, we provide an overview of related work on a number of different topics in
game theory and machine learning.

RL for solving NE in Markov games. Our work contributes to the growing body
of literature on RL for finding Nash equilibria in Markov games. In particular, there is a
line of work that generalizes single-agent RL algorithms to Markov games under either a
generative model (Azar et al., 2013) or offline settings with well-explored datasets (Littman,
2001; Greenwald et al., 2003; Hu and Wellman, 2003; Lagoudakis and Parr, 2012; Hansen
et al., 2013; Perolat et al., 2015; Jia et al., 2019; Sidford et al., 2020; Cui and Yang, 2020;
Fan et al., 2020; Daskalakis et al., 2021; Zhao et al., 2021). These works all aim to find the
Nash equilibrium and their algorithms are generalizations of single-agent RL algorithms.
In particular, Littman (2001, 1994); Greenwald et al. (2003) and Hu and Wellman (2003)
generalize Q-learning (Watkins and Dayan, 1992) to Markov games and establish asymptotic
convergence guarantees. Jia et al. (2019); Sidford et al. (2020); Zhang et al. (2020a) and Cui
and Yang (2020) propose variants of Q-learning or value iteration (Shapley, 1953) algorithms
under a generative model setting. Also, Perolat et al. (2015) and Fan et al. (2020) study
the sample efficiency of fitted value iteration (Munos and Szepesvári, 2008) for zero-sum
Markov games in an offline setting. They assume the behavior policy is explorative in
the sense that the concentrability coefficients (Munos and Szepesvári, 2008) are uniformly
bounded. Under similar assumptions, Daskalakis et al. (2021) and Zhao et al. (2021) study
the sample complexity of policy gradient (Sutton et al., 1999) under the well-explored offline
setting.

In the online setting, there is a recent line of research that proposes provably efficient RL
algorithms for zero-sum Markov games. See, e.g., Wei et al. (2017); Bai et al. (2020); Bai
and Jin (2020); Liu et al. (2020a); Tian et al. (2020); Xie et al. (2020); Chen et al. (2021b)
and the references therein. These works propose optimism-based algorithms and establish
sublinear regret guarantees for finding NE. Among these works, our work is particularly
related to Xie et al. (2020) and Chen et al. (2021b), whose algorithms also incorporate
linear function approximation.

Compared with these aforementioned works, we focus on solving for Stackelberg-Nash
equilibria, which involve a bilevel structure and are fundamentally different from Nash
equilibria. Thus, our work is not directly comparable.

Learning Stackelberg games. Most of the existing results for Stackelberg-Nash equi-
libria focus on the normal form game, which is equivalent to our Markov game with H = 1.
Letchford et al. (2009); Blum et al. (2014) and Peng et al. (2019) study learning of Stack-
elberg equilibria with a best response oracle. Fiez et al. (2019) study the local convergence
of first-order methods for finding Stackelberg equilibria in general-sum games with differen-
tiable reward functions, and Ghadimi and Wang (2018); Chen et al. (2021a) and Hong et al.
(2020) analyze the global convergence of first-order methods for achieving global optimality
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of bilevel optimization. A more closely related paper is Bai et al. (2021), which studies
the matrix Stackelberg game with bandit feedback. This work also studies a bandit-RL
extension where the leader has a finite action set and the follower is faced with an MDP
specified by the leader’s action. In comparison, we consider the more challenging general-
sum Markov game where the leader acts throughout the entire game rather than at the
beginning of the game only as in Bai et al. (2021). Moreover, we allow multi-followers and
identify a concrete subclass of Markov games where SNE are tractable to learn. Due to
the difference in problem setups, our algorithm design and theoretical analysis are funda-
mentally different from those in Bai et al. (2021). Specifically, our algorithms leverage the
optimism/pessimism principle to find Stackelberg-Nash equilibria in the online/offline set-
ting, while Bai et al. (2021) use the empirical mean (or least-squares estimators) to estimate
the payoff matrix and then compute the approximate Stackelberg equilibria directly. Our
algorithms also involve novel mechanisms such as the ε-SNE routine; see Sections 4.2 and
5.2 for details. In terms of the theoretical analysis, we provide a new regret decomposition
result (Lemma 11) which relates the suboptimality to the computational error, statistical
error, and randomness, and then analyze these three types of errors using RL and multi-
armed bandit tools. This style of analysis is quite different from Bai et al. (2021). A
more directly relevant work is Bucarey et al. (2019b), who derive a Bellman equation and a
value iteration algorithm for solving for SNE in Markov games. In comparison, we establish
modifications of least-squares value iteration that are tailored to online and offline settings.

Learning general-sum Markov games. Liu et al. (2020a) present the first result of
finding correlated equilibrium (CE) and coarse correlated equilibrium (CCE) in general-sum
Markov games. However, their centralized algorithms suffer from the curse of many agents,
that is, their sample complexity scales exponentially in the number of agents. Recently,
Song et al. (2021); Mao and Başar (2021) and Jin et al. (2021) escape the curse of many
agents via the decentralized structure of the V-learning algorithm (Bai et al., 2020).

Related single-agent RL methods. Our work is also related to recent work that
achieves sample efficiency in single-agent RL under an online setting. See, e.g., Azar et al.
(2017); Jin et al. (2018); Yang and Wang (2019); Zanette and Brunskill (2019); Jin et al.
(2020b); Zhou et al. (2020); Ayoub et al. (2020); Yang and Wang (2020); Zanette et al.
(2020b,a); Zhang et al. (2020c,b); Agarwal et al. (2020) and the references therein. In
particular, following the optimism in the face of uncertainty principle, these works achieve
near-optimal regret under either tabular or function approximation settings. Meanwhile,
for offline RL with an arbitrary dataset, various recent works propose to utilize pessimism
for achieving robustness. See, e.g., Yu et al. (2020); Kidambi et al. (2020); Kumar et al.
(2020); Jin et al. (2020c); Liu et al. (2020b); Buckman et al. (2020); Rashidinejad et al.
(2021) and the references therein. These aforementioned works all focus on the single-agent
setting. We show that optimism and pessimism also play an indispensable role in achieving
sample efficiency in finding SNE.

Notation. We denote by ‖ · ‖2 the `2-norm of a vector or the spectral norm of a matrix.
We also let ‖ · ‖op denote the matrix operator norm. Furthermore, for a positive definite

matrix A, we denote by ‖x‖A the weighted norm
√
x>Ax of a vector x. Also, we denote

by ∆(A) the set of probability distributions on a set A. For some positive integer K, [K]
denotes the index set {1, 2, · · · ,K}. Moreover, for any non-negative integer h, we define
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the operator Πh as the projection onto [0, h]; i.e, Πh(x) = max{0,min{x, h}} for any real
number x.

3. Preliminaries

In this section, we present a formulation of general-sum simultaneous-move Markov games
and provide a formal definition of Stackelberg-Nash equilibrium. We also describe the linear
Markovian structure that we study in this paper.

3.1 General-Sum Simultaneous-Move Markov Games

In this setting, two levels of hierarchy in decision making are considered: a single leader
l and N followers {fi}i∈[N ]. Specifically, we define an episodic version of general-sum
simultaneous-moves Markov game by the tuple (S,Al,Af = {Afi}i∈[N ], H, rl, rf = {rfi}i∈[N ],P),
where S is the state space, Al and Af are the sets of actions of the leader and the followers,
respectively, H is the number of steps in each episode, rl = {rl,h : S×Al×Af → [−1, 1]}Hh=1

and rfi = {rfi,h : S × Al × Af → [−1, 1]}Hh=1 are reward functions of the leader and the
followers, respectively, and P = {Ph : S × Al × Af × S → [0, 1]}Hh=1 is a collection of
transition kernels. Here Al × Af = Al × Af1 × · · · × AfN . Throughout this paper, we
also let ? be some element in {l, f1, · · · , fN}. Finally, for any (h, x, a) ∈ [H] × S × Al
and b = {bi ∈ Afi}i∈[N ], we use the shorthand r?,h(x, a, b) = r?,h(x, a, b1, · · · , bN ) and
Ph(· |x, a, b) = Ph(· |x, a, b1, · · · , bN ).

Policy and Value Function. A stochastic policy π = {πh : S → ∆(Al)}Hh=1 of the leader
is a set of probability distributions over actions given the state. Meanwhile, a stochastic joint
policy of the followers is defined by ν = {νfi}i∈[N ], where νfi = {νfi,h : S → ∆(Afi)}Hh=1.
We use the notation πh(a |x) and νfi,h(bi |x) to denote the probability of taking action
a ∈ Al or bi ∈ Afi for state x at step h under policy π, νfi respectively. Throughout
this paper, for any ν = {νfi}i∈[N ] and b = {bi}i∈[N ], we use the shorthand νh(b |x) =
νf1,h(b1 |x)× · · · × νfN ,h(bN |x).

Given policies (π, ν = {νfi}i∈[N ]), the action-value (Q) and state-value (V) functions for
the leader and followers are defined by

Qπ,ν?,h(x, a, b) = Eπ,ν,h,x,a,b
[ H∑
t=h

r?,h(xt, at, bt)

]
, V π,ν?,h (x) = Ea∼πh(· | x),b∼νh(· | x)Q

π,ν
?,h(x, a, b), (1)

where the expectation Eπ,ν,h,x,a,b is taken over state-action pairs induced by the policies
(π, ν = {νfi}i∈[N ]) and the transition probability, when initializing the process with the
triplet (s, a, b = {bi}i∈[N ]) at step h. For notational simplicity, when h, x, a, b are clear from
the context, we omit h, x, a, b from Eπ,ν,h,x,a,b. By the definition in (1), we have the Bellman
equation

V π,ν
?,h = 〈Qπ,ν?,h , πh × νh〉Al×Af , Qπ,ν?,h = r?,h + PhV π,ν

?,h+1, ∀? ∈ {l, f1, · · · , fN}, (2)

where πh × νh represents πh × νf1,h × · · · × νfN ,h. Here Ph is the operator which is defined
by

(Phf)(x, a, b) = E[f(x′) |x′ ∼ Ph(x′ |x, a, b)] (3)

for any function f : S → R and (x, a, b) ∈ S ×Al ×Af .
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3.2 Stackelberg-Nash Equilibrium

Given a leader policy π, a Nash equilibrium (Nash, 2016) of the followers is a joint policy
ν∗ = {ν∗fi}i∈[N ], such that for any x ∈ S and (i, h) ∈ [N ]× [H], we have

V π,ν∗

fi,h
(x) ≥ V

π,νfi ,ν
∗
f−i

fi,h
(x), ∀νfi . (4)

Here −i represents all indices in [N ] except i. For each leader policy π, we denote the set
of best-response policies of the followers by BR(π), which is defined by

BR(π) = {ν | ν is the NE of the followers given the leader policy π}. (5)

Given the best-response set BR(π), we denote by ν∗(π) the best-case responses, which break
ties in favor of the leader. This is also known as optimistic tie-breaking (Breton et al., 1988;
Bucarey et al., 2019a). We will discuss pessimistic tie-breaking (Conitzer and Sandholm,
2006) in Appendix D. Specifically, we define ν∗(π) by

ν∗(π) = {ν ∈ BR(π) |V π,ν
l,h (x) ≥ V π,ν′

l,h (x), ∀x ∈ S, h ∈ [H], ν ′ ∈ BR(π)}. (6)

The Stackelberg-Nash equilibrium for the leader is the “best response to the best response.”
In other words, we want to find a leader policy π that maximizes the value function under
the assumption that the followers always adopt ν∗(π), i.e.,

SNEl = {π |V π,ν∗(π)
l,h (x) ≥ V π′,ν∗(π′)

l,h (x), ∀x ∈ S, h ∈ [H], π′} (7)

A Stackelberg-Nash equilibrium of the general-sum game is a policy pair (π∗, ν∗ = {ν∗fi}i∈[N ])
such that ν∗ ∈ ν∗(π∗) and π∗ ∈ SNEl.

Our goal is to find the Stackelberg equilibrium—the leader’s optimal strategy under the
assumption that the followers always play their best response (Nash equilibrium) to the
leader. Equivalently, we need to solve the following optimization problem:

max
π,ν

V π,ν
l,1 (x) s.t. ν ∈ BR(π). (8)

We study this challenging bilevel optimization problem in both the online setting (Section 4)
and the offline setting (Section 5) respectively.

3.3 Linear Markov Games with Myopically Rational Followers

Linear Markov Games. We study linear Markov games (Xie et al., 2020), where the
transition dynamics are linear in a feature map.

Assumption 1 (Linear Markov Games) Markov game (S,Al,Af = {Afi}i∈[N ], H, rl, rf =

{rfi}i∈[N ],P) is a linear Markov game if there exists a feature map, φ : S ×Al ×Af → Rd,
such that

Ph(· |x, a, b) = 〈φ(x, a, b), µh(·)〉

for any (x, a, b) ∈ S ×Al ×Af and h ∈ [H]. Here µh = (µ
(1)
h , µ

(2)
h , · · · , µ(d)

h ) are d unknown
signed measures over S. Without loss of generality, we assume that ‖φ(·, ·, ·)‖2 ≤ 1 and
‖µh(S)‖ ≤

√
d for all h ∈ [H].
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This linear Markov game is an extension of the linear MDP studied in Jin et al. (2020b)
for single-agent RL. Specifically, when the followers play fixed and known policies, the linear
Markov game reduces to the linear MDP. We also remark that Chen et al. (2021b) recently
studied another variant of linear Markov games. These two variants are incomparable in
the sense that one does not imply the other.

Myopically Rational Followers. Throughout this paper, we make the following assump-
tion.

Assumption 2 (Myopically Rational Followers) We assume that the followers are my-
opically rational. Specifically, the followers at any step of the game do not consider the future
rewards, but only the instantaneous rewards. Formally, given a leader’s policy π, the NE of
the myopically rational followers is defined by the joint policy ν∗ = {ν∗fi}i∈[N ], such that for
any x ∈ S and (i, h) ∈ [N ]× [H]

rπ,ν
∗

fi,h
(x) ≥ r

π,νfi ,ν
∗
f−i

fi,h
(x), ∀νfi . (9)

In other words, at each state x, the followers play a normal form game where the payoff
matrices are determined only by the immediate reward functions and the leader’s policy.
Then, with slight abuse of notation, the best response set of the leader’s policy π is

BR(π) = {ν | ν is the NE of the myopically rational followers given the leader policy π}.
(10)

The best-case response ν∗(π) and Stackelberg-Nash equilibria SNEl follow the definitions
in (6) and (7).

Leader-Controller Linear Markov Games. A special case of the Markov games with
myopically rational followers is leader-controller Markov games (Filar and Vrieze, 2012;
Bucarey et al., 2019a), where the future state only depends on the current state and the
leader’s action. Such a setting is also well-motivated; one can consider a game where the
leader is the government that dictates prices and the followers are companies. This is a
leader-controller Markov game because the future state (price) is determined by the current
state (price) and the leader (government). Formally, it holds that Ph(· |x, a, b) = Ph(· |x, a)
for any (x, a, b) ∈ S × Al × Af and h ∈ [H]. Hence, with slight abuse of notation, it is
natural to make the following assumption.

Assumption 3 (Leader-Controller Linear Markov Games) We say the Markov game
(S,Al,Af = {Afi}i∈[N ], H, rl, rf = {rfi}i∈[N ],P) is a leader-controller linear Markov game

if we assume the existence of a feature map φ : S ×Al → Rd such that

Ph(· |x, a, b) = 〈φ(x, a), µh(·)〉, (11)

for any (x, a, b) ∈ S ×Al ×Af , where ‖φ(·, ·)‖2 ≤ 1 and ‖µh(S)‖ ≤
√
d for all h ∈ [H].

Notably, Markov games with myopically rational followers subsume leader-controller
Markov games as a special case. Specifically, since the followers’ policies cannot affect the
following state, then the NE defined in (4) is the same as (9), which further implies that
the best-response set defined in (5) is the same as (10).

8
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4. Main Results for the Online Setting

In this section, we study the online setting, where a central controller controls one leader l
and N followers {fi}i∈[N ]. Our goal is to learn a Stackelberg-Nash equilibrium. In what fol-
lows, we formally describe the setup and learning objectives, and then present our algorithm
and provide theoretical guarantees.

4.1 Setup and Learning Objective

We consider the setting where the reward functions rl and rf = {rfi}i∈[N ] are revealed to the
learner before the game. This is reasonable since in practice the reward functions are often
artificially designed. Moreover, we focus on the episodic setting. Specifically, a Markov
game is played for K episodes, each of which consists of H timesteps. At the beginning
of the k-th episode, the leader and followers determine their policies (πk, νk = {νkfi}i∈[N ]),

and a fixed initial state xk1 = x1 is chosen. Here we assume a fixed initial state for ease of
presentation—our subsequent results can be readily generalized to the setting where xk1 is
picked from a fixed distribution. The game proceeds as follows. At each step h ∈ [H], the
leader and the followers observe state xkh ∈ S and pick their own actions akh ∼ πkh(· |xkh) and
bkh = {bki,h ∼ νkfi,h(· |xkh)}i∈[N ]. Subsequently, the environment transitions to the next state

xkh+1 ∼ Ph(· |xkh, akh, bkh). Each episode terminates after H timesteps.

Learning Objective. Let (πk, νk = {νkfi}i∈[N ]) denote the policies executed by the algo-
rithm in the k-th episode. By the definition of the bilevel optimization problem in (8), we

expect that νk ∈ BR(πk) and that V π∗,ν∗

l,1 (xk1)−V πk,νk

l,1 (xk1) is small for any k ∈ [K]. Hence,
we evaluate the suboptimality of our algorithm by the following form of regret:

Regret(K) =
K∑
k=1

V π∗,ν∗

l,1 (xk1)− V πk,νk

l,1 (xk1). (12)

The goal is to design algorithms with regret that is sublinear in K, and polynomial in d
and H. Here K is the number of episodes, d is the dimension of the feature map φ, and H
is the episode horizon.

4.2 Algorithm

Solving for SNE in Markov games is a challenging bilevel optimization problem. Even
under the myopically rational followers assumption, existing work only provides theoretical
results for the setting of known transitions (Bucarey et al., 2019a,b). Moreover, the rewards
depend on all players’ actions, and thus leader’s policy should take the followers’ policies
into consideration when improving her own policy. Hence our setting is much harder than
the single-agent MDP, even though the followers always execute the best-response policies.
Moreover, most existing work is limited to the tabular case and it remains elusive to incor-
porate function approximation. To tackle these challenges, we propose a novel algorithm
that adopts the optimistic estimation of the leader’s value function for exploration and
solves the bilevel optimization problem for policy optimization.

We now present our algorithm, Optimistic Value Iteration to Find Stackelberg-Nash
Equilibria (OVI-SNE), which is given in Algorithm 1.

9
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At a high level, in each episode our algorithm first constructs the policies for all players
through backward induction with respect to the timestep h (Line 4-11), and then executes
the policies to play the game (Line 12-16).

In detail, at the h-th step of the k-th episode, OVI-SNE estimates the leader’s Q-
function based on the (k − 1) historical trajectories. Inspired by previous optimistic least
square value iteration (LSVI) algorithms (Jin et al., 2020b), for any h ∈ [H], we estimate
the linear coefficients by solving the following ridge regression problem:

wkh ← argmin
w∈Rd

k−1∑
τ=1

[V k
h+1(xτh+1)− φ(xτh, a

τ
h, b

τ
h)>w]2 + ‖w‖22,

where V k
h+1(·) = 〈Qkh+1(·, ·, ·), πkh+1(· | ·)× νkh+1(· | ·)〉Al×Af .

(13)

This yields the following solution:

wkh = (Λkh)−1
(k−1∑
τ=1

φ(xτh, a
τ
h, b

τ
h) · V k

h+1(xτh+1)
)
,

where Λkh =
k−1∑
τ=1

φ(xτh, a
τ
h, b

τ
h)φ(xτh, a

τ
h, b

τ
h)> + I.

(14)

To encourage exploration, we additionally add a bonus function in estimating the leader’s
Q-function:

Qkh(·, ·, ·)← rl,h(·, ·, ·) + ΠH−h{φ(·, ·, ·)>wkh + Γkh(·, ·, ·)},

where Γkh(·, ·, ·) = β ·
√
φ(·, ·, ·)>(Λkh)−1φ(·, ·, ·),

(15)

where Γkh : S × Al → R is a bonus and β > 0 is a parameter which will be specified later.
This form of bonus function is common in the literature of linear bandits (Lattimore and
Szepesvári, 2020) and linear MDPs (Jin et al., 2020b).

Next, we construct policies for the leader and followers by the subroutine ε-SNE (Algo-
rithm 2). Specifically, let Qkh be the class of functions Q : S ×Al ×Af → R that takes the
form

Q(·, ·, ·) = rl,h(·, ·, ·) + ΠH−h
{
φ(·, ·, ·)>w + β ·

(
φ(·, ·, ·)>Λ−1φ(·, ·, ·)

)1/2}
, (16)

where the parameters (w,Λ) ∈ Rd × Rd×d satisfy ‖w‖ ≤ H
√
dk and λmin(Λ) ≥ 1. Let Qkh,ε

be a fixed ε-covering of Qkh with respect to the `∞ norm. By Lemma 23, we have Qkh ∈ Qkh,
which allows us to pick a Q̃ ∈ Qkh,ε such that ‖Q̃−Qkh‖∞ ≤ ε and calculate policies by

(πkh(· |x), {νkfi,h(· |x)}i∈[N ])← SNE(Q̃(x, ·, ·), {rfi,h(x, ·, ·)}i∈[N ]), ∀x. (17)

When there is only one follower, (17) requires finding a Stackelberg equilibrium in the matrix
game. Such a problem can be transformed to a linear programming (LP) problem (Conitzer
and Sandholm, 2006; Von Stengel and Zamir, 2010), and thus can be solved efficiently. For
the multi-follower case (i.e., N ≥ 2), however, solving such a matrix game in general is hard
(Conitzer and Sandholm, 2006; Basilico et al., 2017a,b; Coniglio et al., 2020). Given this
computational hardness, we focus on the sample complexity and explicitly assume access
to the following computational oracle:

10
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Assumption 4 We assume access to an oracle that implements Line 3 of Algorithm 2.

Finally, the leader and the followers play the game according to the obtained policies.

Algorithm 1 Optimistic Value Iteration to Find Stackelberg-Nash Equilibria

1: Initialize Vl,H+1(·) = Vf,H+1(·) = 0.
2: for k = 1, 2, · · · ,K do
3: Receive initial state xk1.
4: for step h = H,H − 1, · · · , 1 do
5: Λkh ←

∑k−1
τ=1 φ(xτh, a

τ
h, b

τ
h)φ(xτh, a

τ
h, b

τ
h)> + I.

6: wkh ← (Λkh)−1
∑k−1

τ=1 φ(xτh, a
τ
h, b

τ
h) · V k

h+1(xτh+1).

7: Γkh(·, ·, ·)← β · (φ(·, ·, ·)>(Λkh)−1φ(·, ·, ·))1/2.
8: Qkh(·, ·, ·)← rl,h(·, ·, ·) + ΠH−h{φ(·, ·, ·)>wkh + Γkh(·, ·, ·)}.
9: (πkh(· |x), {νkfi,h(· |x)}i∈[N ])← ε-SNE(Qkh(x, ·, ·), {rfi,h(x, ·, ·)}i∈[N ]), ∀x. (Alg. 2)

10: V k
h (x)← Ea∼πkh(· |x),b1∼νkf1,h(· |x),··· ,bN∼νkfN ,h(· |x)Q

k
h(x, a, b1, · · · , bN ), ∀x.

11: end for
12: for h = 1, 2, ·, H do
13: Sample akh ∼ πkh(· |xkh), bk1,h ∼ νkf1,h(· |xkh), · · · , bkN,h ∼ νkfN ,h(· |xkh).

14: Leader takes action akh; Followers take actions bkh = {bki,h}i∈[N ].

15: Observe next state xkh+1.
16: end for
17: end for

Algorithm 2 ε-SNE

1: Input: Qkh, x, and parameter ε.
2: Select Q̃ from Qkh,ε satisfying ‖Q̃−Qkh‖∞ ≤ ε.
3: For the input state x, let (πkh(· |x), {νkfi,h(· |x)}i∈[N ]) be the Stackelberg-Nash equilib-

rium for the matrix game with payoff matrices (Q̃(x, ·, ·), {rfi,h(x, ·, ·)}i∈[N ]).

4: Output: (πkh(· |x), {νkfi,h(· |x)}i∈[N ]).

We additionally explain the motivation for using the subroutine ε-SNE to construct poli-
cies instead of solving the matrix games with payoff matrices (Qkh(x, ·, ·), {rfi,h(x, ·, ·)}i∈[N ])

directly. By the definition of Qkh in (15), we know that Qkh relies on the previous data
via the estimated value function V k

h+1 and feature maps {φ(xτh, a
τ
h, b

τ
h)}k−1

τ=1. Similar to the
analysis for linear MDPs (Jin et al., 2020b), we need to use a covering argument to establish
uniform concentration bounds for all value V k

h+1. Jin et al. (2020b) directly construct an
ε-net for the value functions and establish a polynomial log-covering number for this ε-net.
This analysis, however, relies on an assumption that the policies executed by the players are
greedy (deterministic), which is not valid for our setting. To overcome this technical issue,
we construct an ε-net for Q-functions and solve an approximate matrix game. Fortunately,
by choosing a small enough ε, we can handle the errors caused by this approximation. See
Section 6.1 for more details. Moreover, as shown in Xie et al. (2020), this subroutine can
be implemented efficiently without explicitly computing the exponentially large ε-net.

11
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4.3 Theoretical Results

Our main theoretical result is the following bound on the regret incurred by Algorithm 1.
Recall that the regret is defined in (12) and T = KH is the total number of timesteps.

Theorem 5 Under Assumptions 1, 2, and 4, there exists an absolute constant C > 0 such
that, for any fixed p ∈ (0, 1), by setting β = C · dH

√
ι with ι = log(2dT/p) in Line 7 of

Algorithm 1 and ε = 1
KH in Algorithm 2, we have νk ∈ BR(πk) for any k ∈ [K]. Meanwhile,

with probability at least 1− p, the regret incurred by OVI-SNE satisfies

Regret(K) ≤ O(
√
d3H3Tι2).

Proof See Section 6.1 for a detailed proof.

Learning Stackelberg Equilibria. When there is only one follower, the Stackelberg-
Nash equilibrium reduces to the Stackelberg equilibrium (Simaan and Cruz, 1973; Conitzer
and Sandholm, 2006; Bai et al., 2021). Thus, we partly answer the open problem in Bai
et al. (2021) on how to learn Stackelberg equilibria in general-sum Markov games (with
myopically rational followers).

Optimality of the Bound. Assuming that the action of the follower won’t affect the
transition kernel and reward function, the linear Markov games reduces to the linear MDP
(Jin et al., 2020b). Meanwhile, the lower bound established in Azar et al. (2017) and Jin
et al. (2018) for tabular MDPs and the lower bound established in Lattimore and Szepesvári
(2020) for linear bandits directly imply a lower bound Ω(dH

√
T ) for the linear MDPs, which

further yields a lower bound Ω(dH
√
T ) for our setting. Ignoring the logarithmic factors,

there is only a gap of
√
dH between this lower bound and our upper bound. We also point

out that, by using the “Bernstein-type” bonus (Azar et al., 2017; Jin et al., 2018; Zhou
et al., 2020), we can improve our upper bound by a factor of

√
H. Here we do not apply

this technique for the clarity of the analysis.

4.4 Extension to Unknown Reward Setting

In this subsection, we extend our results to the unknown reward setting. In this setting,
even with the myopically rational followers assumption, the followers cannot obtain the
best-response policies by solving for the SNE of a matrix game.

Fortunately, we can extent our previous result to the unknown rewards setting by an
additional reward-free exploitation mechanism. At a high level, we first conduct a reward-
free exploration algorithm (Algorithm 3), a variant of Reward-Free RL-Explore algorithm
in Jin et al. (2020a), to obtain estimated reward functions {r̂l, r̂f1 , · · · r̂fN }. As asserted
before, we can use Algorithm 1 to find the SNE with respect to the known estimated
reward functions {r̂l, r̂f1 , · · · r̂fN }. Hence, we can obtain the approximate SNE if the value
functions of estimated value functions are good approximation of the true value functions.

We focus on the tabular case for simplicity, with the extension to the linear case left as
future work. We assume that S = |S|, Al = |Al| and Af = |Af | = |Af1 × · · · × AfN |. For
simplicity, we use the shorthand V π,ν

? = V π,ν
?,1 (x1), where x1 ∈ S is the fixed initial state.

We present the pseudocode of Reward-Free Explore algorithm (Jin et al., 2020a) below.

12
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Algorithm 3 Reward-Free Explore

1: Input: iteration number K0 and K.
2: Let policy class Φ = ∅.
3: for (x, h) ∈ S × [H] do
4: rh′(x

′, a′, b′)← 1 [x′ = x and h′ = h] for all (x′, a′, b′, h′) ∈ S ×Al ×Af × [H].
5: Φ(x,h) ← EULER (r,K0). 1

6: πh(· |x)← Uniform(Al) and νh(· |x)← Uniform(Af ) for all (π, ν) ∈ Φ(x,h).
7: Ψ← Ψ ∪ Φ(x,h).
8: end for
9: for k = 1, · · · ,K do

10: Sample policy (π, ν) ∼ Uniform(Ψ).
11: Play the game M using policy π and ν, and observe the trajectory {xkh, akh, bkh}h∈[H]

and rewards {r?,h(xkh, a
k
h, b

k
h)}h∈[H].

12: end for
13: Calculate the empirical reward as

r̂?,h(x, a, b) =

∑K
k=1 r?,h(x, a, b) · 1[xkh = x, akh = a, xkh+1 = x′]∑K

k=1 1[xkh = x, akh = a, xkh+1 = x′]
.

For Algorithm 3, we have the following theoretical guarantees to ensure that we obtain
good estimators of reward functions.

Lemma 6 Fix ε, p > 0. If we set K0 ≥ Ω(H7S4Al/ε) and K ≥ Ω(H3S2AlAf/ε
2) in

Algorithm 3, then we have that the empirical rewards {r̂l, r̂f1 , · · · r̂fN } and corresponding

value functions (V̂l, V̂f1 , · · · , V̂fN ) satisfy

sup
π,ν
|V̂ π,ν
? − V π,ν

? | ≤ ε,

with probability at least 1− p. Here Ω(·) hides some logarithmic factors.

Proof This lemma is an extension of Lemma D.1 in Bai et al. (2021). They focus on the
MDP setting and we consider the more complex setting of Markov games. For complete-
ness, we present a detailed proof in Appendix A.6.

Lemma 6 states that we can obtain estimated reward functions and the associated value
functions are an ε-approximation of the true value functions, which further implies that the
SNE with respect to the estimated reward functions is a good approximation of the SNE in
the original problem. We also remark that if we consider the Markov games with only one
follower and aim to find the Stackelberg equilibria, we can provide a more refined analysis.
See Appendix B for more details.

2. Here EULER is a single-agent RL algorithm proposed in Zanette and Brunskill (2019).
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5. Main Results for the Offline Setting

In this section, we study the offline setting, where the central controller aims to find a
Stackelberg-Nash equilibrium by analyzing an offline dataset. Below we describe the setup
and learning objective, followed by our algorithm and theoretical results.

5.1 Setup and Learning Objective

We now assume that the learner has access to the reward functions (rl, rf = {rfi}Ni=1) and a

dataset D = {(xτh, aτh, bτh = {bτi,h}Ni=1)}K,Hτ,h=1, which is collected a priori by some experimenter.
We make the following minimal assumption for the offline dataset.

Assumption 7 (Compliance of Dataset) We assume that the dataset D is compliant
with the underlying Markov game (S,Al,Af , H, rl, rf ,P), that is, for any x′ ∈ S at step
h ∈ [H] of each trajectory τ ∈ [K],

PD(xτh+1 = x′ | {xjh, a
j
h, b

j
h, x

j
h+1}

τ−1
j=1 ∪ {x

τ
h, a

τ
h, b

τ
h}) = P (xh+1 = x′ |xh = xτh, ah = aτh, bh = bτh).

Here the probability on the left-hand side is with respect to the joint distribution over the
dataset D and the probability on the right-hand side is with respect to the underlying Markov
game.

Assumption 7 is adopted from Jin et al. (2020c), and it indicates the Markov property
of the dataset D and that xτh+1 is generated by the underlying Markov game conditioned
on (xτh, a

τ
h, b

τ
h). As a special case, Assumption 7 holds when the experimenter follows fixed

behavior policies. More generally, Assumption 7 allows the experimenter to choose actions
aτh and bτh arbitrarily, even in an adaptive or adversarial manner. In particular, we can
assume that aτh and bτh are interdependent across each trajectory τ ∈ [K]. For instance, the
experimenter can sequentially improve the behavior policy using any online algorithm for
Markov games.

Learning Objective. Similar to the online setting, we define the following performance
metric

SubOpt(π, ν, x) = V π∗,ν∗

l,1 (x)− V π,ν
l,1 (x), (18)

which evaluates the suboptimality of policies (π, ν = {νfi}Ni=1) given the initial state x ∈ S.

5.2 Algorithm

While the challenge of managing the exploration-exploration tradeoff disappears in the
offline setting, another statistical challenge arises: we only have access to a limited data
sample. To tackle this challenge, we need add a penalty function to achieve statistical
efficiency and robustness. Such a penalty can be viewed as a form of “pessimism” (Yu
et al., 2020; Jin et al., 2020c; Liu et al., 2020b; Buckman et al., 2020; Kidambi et al.,
2020; Kumar et al., 2020; Rashidinejad et al., 2021). Here we simply flip the sign of bonus
functions defined in (15) to serve as pessimistic penalty functions. See Algorithm 4 for
details.
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Algorithm 4 Pessimistic Value Iteration to Find Stackelberg-Nash Equilibria

1: Input: D = {xτh, aτh, bτh = {bτi,h}i∈[N ]}
K,H
τ,h=1 and reward functions {rl, rf = {rfi}i∈[N ]}.

2: Initialize V̂H+1(·) = 0.
3: for step h = H,H − 1, · · · , 1 do
4: Λh ←

∑K
τ=1 φ(xτh, a

τ
h, b

τ
h)φ(xτh, a

τ
h, b

τ
h)> + I.

5: wh ← (Λh)−1
∑K

τ=1 φ(xτh, a
τ
h, b

τ
h) · V̂h+1(xτh+1).

6: Γh(·, ·, ·)← β′ · (φ(·, ·, ·)>(Λh)−1φ(·, ·, ·))1/2.
7: Q̂h(·, ·, ·)← rl,h(·, ·, ·) + ΠH−h{φ(·, ·, ·)>wh − Γh(·, ·, ·)}.
8: (π̂h(· |x), {ν̂fi,h(· |x)}i∈[N ])← ε-SNE(Q̂h(x, ·, ·), {rfi,h(x, ·, ·)}i∈[N ]), ∀x. (Alg. 2)

9: V̂h(x)← Ea∼π̂h(· |x),b1∼ν̂f1,h(· |x),··· ,bN∼ν̂fN ,h(· |x)Q̂h(x, a, b1, · · · , bN ), ∀x.
10: end for
11: Output: (π̂ = {π̂h}Hh=1, ν̂ = {ν̂fi = {νfi,h}Hh=1}Ni=1).

5.3 Theoretical Results

Suppose that (π̂ = {π̂h}Hh=1, ν̂ = {ν̂fi = {νfi,h}Hh=1}Ni=1) are the output policies of Algo-
rithm 4. We evaluate the performance of (π̂, ν̂) by establishing an upper bound for the
optimality gap defined in (18).

Theorem 8 Under Assumptions 1, 2, 4, and 7, there exists an absolute constant C > 0
such that, for any fixed p ∈ (0, 1), by setting β′ = C · dH

√
log(2dHK/p) in Line 6 of

Algorithm 4 and ε = d
KH in Algorithm 2, then it holds that ν̂ ∈ BR(π̂). Meanwhile, for

sufficiently large K, it holds with probability at least 1− p that

SubOpt(π̂, ν̂, x) ≤ 3β′
H∑
h=1

Eπ∗,ν∗,x
[(
φ(sh, ah, bh)>(Λh)−1φ(sh, ah, bh)

)1/2]
, (19)

where Eπ∗,ν∗,x is taken with respect to the trajectory incurred by (π∗, ν∗) in the underlying
Markov game when initializing the progress at x. Here Λh is defined in Line 4 of Algorithm 4.

Proof See Section 6.2 for a detailed proof.

We provide some discussion of the implications of Theorem 8:

Minimal Assumption Requirement: Theorem 8 only relies on the compliance of the
dataset with linear Markov games. Compared with existing literature on offline RL (Bert-
sekas and Tsitsiklis, 1996; Antos et al., 2007, 2008; Munos and Szepesvári, 2008; Farahmand
et al., 2010, 2016; Scherrer et al., 2015; Liu et al., 2018; Chen and Jiang, 2019; Fan et al.,
2020; Xie and Jiang, 2020), we impose no restrictions on the coverage of the dataset. Mean-
while, we need no assumption on the affinity between (π̂, ν̂) and the behavior policies that
induce the dataset, which is often employed as a regularizer (Fujimoto et al., 2019; Laroche
et al., 2019; Jaques et al., 2019; Wu et al., 2019; Kumar et al., 2019; Wang et al., 2020;
Siegel et al., 2020; Nair et al., 2020; Liu et al., 2020b).

Dataset with Sufficient Coverage: In what follows, we specialize Theorem 8 to the
setting where we assume the dataset with good “coverage.” Note that Λh is determined by
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the offline dataset D and acts as a fixed matrix in the expectation; that is, the expectation
in (19) is only taken with the trajectory induced by (π∗, ν∗). As established in the following
theorem, when the trajectory induced by (π∗, ν∗) is “covered” by the dataset D sufficiently
well, we can establish that the suboptimality incurred by Algorithm 4 diminishes at rate of
Õ(1/

√
K).

Corollary 9 Suppose it holds with probability at least 1− p/2 that

Λh � I + c ·K · Eπ∗,ν∗,x[φ(sh, ah, bh)φ(sh, ah, bh)>],

for all (x, h) ∈ S× [H]. Here c > 0 is an absolute constant and Eπ∗,ν∗,x is taken with respect
to the trajectory incurred by (π∗, ν∗) in the underlying Markov game when initializing the
progress at x. Under Assumptions 1, 2, 4 and 7, there exists an absolute constant C > 0
such that, for any fixed p ∈ (0, 1), by setting β′ = C · dH

√
log(4dHK/p) in Line 6 of

Algorithm 4 and ε = d
KH in Algorithm 2, then it holds with probability at least 1− p that

SubOpt(π̂, ν̂, x) ≤ C̄ · d3/2H2
√

log(4dHK/p)/K,

for all x ∈ S. Here C̄ is another absolute constant that only depends on c and C.

Proof See Appendix C.2 for a detailed proof.

Note that, unlike the previous literature which relies on a “uniform coverage” assumption
(Antos et al., 2007; Munos and Szepesvári, 2008; Farahmand et al., 2010, 2016; Scherrer
et al., 2015; Liu et al., 2018; Chen and Jiang, 2019; Fan et al., 2020; Xie and Jiang, 2020),
Corollary 9 only assumes that the dataset has good coverage of the trajectory incurred by
the policies (π∗, ν∗).

Optimality of the Bound: Fix x ∈ S. Assuming rl = rfi for any i ∈ [N ], we know
(π∗, ν∗) = argmaxπ,ν V

π,ν
l,1 (x). Then the information-theoretic lower bound for offline single-

agent RL (e.g., Theorem 4.7 in Jin et al. (2020c)) can imply the information-theoretic lower
bound Ω(

∑H
h=1 Eπ∗,ν∗,x[(φ(sh, ah, bh)>(Λh)−1φ(sh, ah, bh))1/2]) for our setting. In particu-

lar, our upper bound established in Theorem 8 matches this lower bound up to β′ and
absolute constants and thus implies that our algorithm is nearly minimax optimal.

6. Proof of Main Results

6.1 Proof of Theorem 5

Proof [Proof of Theorem 5] By the myopically rational followers assumption, we have the
following lemma.

Lemma 10 For any k ∈ [K], we have νk ∈ BR(πk). Here BR(·) is defined in (10).

Proof Combining the definition of (πk, νk) in Line 9 of Algorithm 1 and the definition of
the best response set in the Markov games with myopically rational followers in (10), we
conclude the proof.
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We now establish an upper bound for the regret defined in (12). Recall the regret takes
the following form

Regret(K) =
K∑
k=1

V π∗,ν∗

l,1 (xk1)− V πk,νk

l,1 (xk1). (20)

To facilitate our analysis, for any (k, h) ∈ [K]× [H] we define the model prediction error by

δkh = rl,h + PhV k
h+1 −Qkh. (21)

Moreover, for any (k, h) ∈ [K]× [H], we define ζ1
k,h and ζ2

k,h as

ζ1
k,h = [V k

h (xkh)− V πk,νk

l,h (xkh)]− [Qkh(xkh, a
k
h, b

k
h)−Qπ

k,νk

l,h (xkh, a
k
h, b

k
h)],

ζ2
k,h = [(PhV k

h+1)(xkh, a
k
h, b

k
h)− (PhV πk,νk

l,h+1 )(xkh, a
k
h, b

k
h)]− [V k

h+1(xkh+1)− V πk,νk

l,h+1 (xkh+1)].
(22)

Recall that (πk, νk = {νkfi}i∈[N ]) are the policies executed by the leader and the followers

in the k-th episode, which generate a trajectory {xkh, akh, bkh = {bki,h}i∈[N ]}h∈[H]. Thus, we

know that ζ1
k,h and ζ2

k,h characterize the randomness of choosing actions akh ∼ πkh(· |xkh)

and bkh ∼ νkh(· |xkh) and the randomness of drawing the next state xkh+1 ∼ Ph(· |xkh, akh, bkh),
respectively.

To establish an upper bound for (20), we introduce the following lemma, which decom-
poses this term into three parts using the notation defined above.

Lemma 11 (Regret Decomposition) We can decompose (20) as follows.

Regret(K) =
K∑
k=1

H∑
h=1

Eπ∗,ν∗ [〈Qkh(xkh, ·, ·), π∗h(· |xkh)× ν∗h(· |xkh)− πkh(· |xkh)× νkh(· |xkh)〉]︸ ︷︷ ︸
(l.1): Computational Error

+
K∑
k=1

H∑
h=1

(
Eπ∗,ν∗ [δkh(xh, ah, bh)]− δkh(xkh, a

k
h, b

k
h)
)

︸ ︷︷ ︸
(l.2): Statistical Error

+
K∑
k=1

H∑
h=1

(ζ1
k,h + ζ2

k,h)︸ ︷︷ ︸
(l.3): Randomness

,

where 〈Qkh(xkh, ·, ·), π∗h(· |xkh)×ν∗h(· |xkh)−πkh(· |xkh)×νkh(· |xkh)〉 = 〈Qkh(xkh, ·, ·, · · · , ·), π∗h(· |xkh)×
ν∗f1,h(· |xkh)× · · · ν∗fN ,h(· |xkh)− πkh(· |xkh)× νkf1,h(· |xkh)× · · · νkfN ,h(· |xkh)〉Al×Af .

Proof See Appendix A.1 for a detailed proof.

Remark 12 Similar regret decomposition results appear in the single-agent RL literature
(Cai et al., 2020; Efroni et al., 2020; Yang et al., 2020), and they can be regarded as the
special case of Lemma 11. Moreover, our regret decomposition lemma is independent of the
myopically rational followers assumption, and thus can be applied to more general settings.

17



Zhong, Yang, Wang and Jordan

Lemma 11 states that the regret has three sources: (i) computational error, which
represents the convergence of the algorithm with the known model, (ii) statistical error,
that is, the error caused by the inaccurate estimation of the model, and (iii) randomness, as
aforementioned, which comes from executing random policies and interaction with random
environment.

Returning to the main proof, we only need to characterize these three types of errors,
respectively. We first characterize the computational error by the following lemma.

Lemma 13 (Optimization Error) It holds that

K∑
k=1

H∑
h=1

Eπ∗,ν∗ [〈Qkh(xkh, ·, ·), π∗h(· |xkh)× ν∗h(· |xkh)− πkh(· |xkh)× νkh(· |xkh)〉] ≤ εKH.

Proof See Appendix A.2 for a detailed proof.

Next, we establish an upper bound for the statistical error. Due to the uncertainty that
arises from only observing limited data, the model prediction errors can be possibly large
for the triple (x, a, b) that are less visited or even unseen. Fortunately, however, we have
the following lemma which characterizes the model prediction errors defined in (21).

Lemma 14 (Optimism) It holds with probability at least 1− p/2 that

−2 min{H,Γkh(x, a, b)} ≤ δkh(x, a, b) ≤ 0

for any (k, h) ∈ [K]× [H] and (x, a, b) ∈ S ×Al ×Af .

Proof See Appendix A.3 a detailed proof.

Lemma 14 states that δkh(x, a, b) ≤ 0 for any (x, a, b) ∈ S × A × A. Combining the
definition of model prediction error in (21), we obtain

Qkh(x, a, b) ≥ rl,h(x, a, b) + (PhV k
h+1)(x, a, b),

which further implies that the estimated Q-function Qk?,h is “optimistic in the face of un-

certainty.” Moreover, Lemma 14 implies that −δkh(x, a, b) ≤ 2 min{H,Γkh(x, a, b)}. Thus we

only need to establish an upper bound for 2
∑K

k=1

∑H
h=1 min{H,Γkh(xkh, a

k
h, b

k
h)}, which is

the total price paid for the optimism. As shown in the following lemma, we can derive an
upper bound for this term by the elliptical potential lemma (Abbasi-Yadkori et al., 2011).

Lemma 15 For the bonus function Γkh defined in Line 7 of Algorithm 1, it holds that

2
K∑
k=1

H∑
h=1

min{H,Γkh(xkh, a
k
h, b

k
h)} ≤ O(

√
d3H3Tι2).

Here p ∈ (0, 1) and ι = log(2dT/p) are defined in Theorem 5.
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Proof See Appendix A.4 for a detailed proof.

It remains to analyze the randomness, which is the purpose of the following lemma.

Lemma 16 For the ζ1
k,h and ζ2

k,h defined in Lemma 11 and any p ∈ (0, 1), it holds with
probability at least 1− p/2 that

K∑
k=1

H∑
h=1

(ζ1
k,h + ζ2

k,h) ≤
√

16KH3 · log(4/p).

Proof See Appendix A.5 for a detailed proof.

Putting above lemmas together, we obtain

Regret(K) ≤ O(
√
d3H3Tι2) (23)

with probability at least 1− p, which concludes the proof of Theorem 5.

6.2 Proof of Theorem 8

To facilitate our analysis, we first define the prediction error

δh = rl,h + Q̂h − PhV̂h, (24)

for any h ∈ [H]. Then we show the proof of Theorem 8.

Proof [Proof of Theorem 8] Similar to Lemma 10, we have the following lemma.

Lemma 17 It holds that ν̂ ∈ BR(π̂). Here BR(·) is defined in (10).

Proof This is implied by the definitions of (π̂, ν̂) and the assumption that the followers
are myopic.

Recall that the definition of optimality gap defined in (18) takes the following form

SubOpt(π̂, ν̂, x) = V π∗,ν∗

l,1 (x)− V π̂,ν̂
l,1 (x). (25)

We decompose this expression by the following lemma.

Lemma 18 For the V̂1 defined in Line 9 of Algorithm 4 and any (π, ν), it holds that

V π,ν
l,1 (x)− V̂1(x) = Eπ,ν

[ H∑
h=1

〈Q̂h(xh, ·, ·), πh(· |xh)× νh(· |xh)− π̂h(· |xh)× ν̂h(· |xh)〉
]

+ Eπ,ν
[ H∑
h=1

δh(xh, ah, bh)

]
.
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Proof The proof of this lemma is contained in the proof of Lemma 11. See the derivation
of (39) in Appendix A.1 for details.

Applying Lemma 18 with (π, ν) = (π∗, ν∗), we have

V π∗,ν∗

l,1 (x)− V̂1(x) = Eπ∗,ν∗
[ H∑
h=1

〈Q̂h(xh, ·, ·), π∗h(· |xh)× ν∗h(· |xh)− π̂h(· |xh)× ν̂h(· |xh)〉
]

+ Eπ∗,ν∗
[ H∑
h=1

δh(xh, ah, bh)

]
. (26)

Similarly, applying Lemma 18 with (π, ν) = (π̂, ν̂) gives that

V̂1(x)− V π̂,ν̂
l,1 (x) = −Eπ̂,ν̂

[ H∑
h=1

δh(xh, ah, bh)

]
. (27)

Combining (26) and (27), we obtain

V π∗,ν∗

l,1 (x)− V π̂,ν̂
l,1 (x) = Eπ∗,ν∗

[ H∑
h=1

〈Q̂h(xh, ·, ·), π∗h(· |xh)× ν∗h(· |xh)− π̂h(· |xh)× ν̂h(· |xh)〉
]

+ Eπ∗,ν∗
[ H∑
h=1

δh(xh, ah, bh)

]
− Eπ̂,ν̂

[ H∑
h=1

δh(xh, ah, bh)

]
. (28)

As stated in Section 6.2, these two terms characterize the optimization error and the sta-
tistical error, respectively. Similar to Lemmas 13 and 14, we introduce the following two
lemmas to analyze these two errors.

Lemma 19 It holds that

Eπ∗,ν∗
[ H∑
h=1

〈Q̂h(xh, ·, ·), π∗h(· |xh)× ν∗h(· |xh)− π̂h(· |xh)× ν̂h(· |xh)〉
]
≤ εH.

Proof This proof is similar to the proof of Lemma 13, and we omit it to avoid repetition.

Lemma 20 It holds with probability at least 1− p/2 that

0 ≤ δh(x, a, b) ≤ 2Γh(x, a, b)

for any h ∈ [H] and (x, a, b) ∈ S ×Al ×Af .

Proof See Appendix C.1 for a detailed proof.
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Combining (28) and Lemmas 19 and 20, we further obtain that

V π∗,ν∗

l,1 (x)− V π̂,ν̂
l,1 (x) ≤ εH + 2Eπ∗,ν∗,x

[ H∑
h=1

Γh(xh, ah, bh)

]

≤ 3β′
H∑
h=1

Eπ∗,ν∗,x
[(
φ(sh, ah, bh)>(Λh)−1φ(sh, ah, bh)

)1/2]
, (29)

where the last inequality is obtained by the definition of Γh in Line 6 of Algorithm 4 and
the fact that ε = d/KH. Therefore, we conclude the proof of Theorem 8.

7. Conclusion

In this paper, we investigate the question of can we efficiently find SNE in general-sum
Markov games with myopically rational followers and linear function approximation. To the
best of our knowledge, our work provides the first sample-efficient reinforcement learning
algorithms for solving SNE in both online and offline settings. We believe our work opens
up many interesting directions for future work. For example, we can ask the following
questions: Can we find SNE in general-sum Markov games without the myopically rational
followers assumption? Can we design more computationally efficient algorithms for solving
SNE in general-sum Markov games? Can we find SNE in general-sum Markov games with
general function approximation?
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Appendix Appendix A. Missing Proofs for Online Setting

A.1 Proof of Lemma 11

First, we establish a more general regret decomposition lemma, which immediately implies
Lemma 11.

Lemma 21 (General Decomposition for One Episode) Fix k ∈ [K]. Suppose (πk, νk =
{νkfi}i∈[N ]) are the policies executed by the leader l and the followers {fi}i∈[N ] in the k-th

episode. Moreover, suppose that Qk?,h and V k
?,h = 〈Qk?,h, πkh×νkh〉 are the estimated Q-function

and value function for any ? ∈ {l, f1, · · · , fN} at h-th step of k-th episode. Then, for any
policies (π, ν = {νfi}i∈[N ]) and ? ∈ {l, f1, · · · , fN}, we have

V π,ν
?,1 (xk1)− V πk,νk

?,1 (xk1)

=

H∑
h=1

Eπ,ν [〈Qk?,h(xkh, ·, ·), πh(· |xkh)× νh(· |xkh)− πkh(· |xkh)× νkh(· |xkh)〉]︸ ︷︷ ︸
Computational Error

+
H∑
h=1

(
Eπ,ν [δk?,h(xh, ah, bh)]− δk?,h(xkh, a

k
h, b

k
h)
)

︸ ︷︷ ︸
Statistical Error

+
H∑
h=1

(ζ1
?,k,h + ζ2

?,k,h)︸ ︷︷ ︸
Randomness

,

where 〈Qk?,h, πkh × νkh〉 = 〈Qk?,h, πkh × νkf1,h × · · · × ν
k
fN ,h
〉Al×Af and 〈Qkh(xkh, ·, ·), π∗h(· |xkh) ×

ν∗h(· |xkh)−πkh(· |xkh)×νkh(· |xkh)〉 = 〈Qkh(xkh, ·, ·, · · · , ·), π∗h(· |xkh)×ν∗f1,h(· |xkh)×· · · ν∗fN ,h(· |xkh)−
πkh(· |xkh)×νkf1,h(· |xkh)×· · · νkfN ,h(· |xkh)〉Al×Af . Here δk?,h is the model prediction error defined
by

δk?,h = r?,h + PhV k
?,h+1 −Qk?,h, (30)

and ζ1
?,k,h and ζ2

?,k,h are defined by

ζ1
?,k,h = [V k?,h(xkh)− V π

k,νk

?,h (xkh)]− [Qk?,h(xkh, a
k
h, b

k
h)−Qπ

k,νk

?,h (xkh, a
k
h, b

k
h)],

ζ2
?,k,h = [(PhV k?,h+1)(xkh, a

k
h, b

k
h)− (PhV π

k,νk

?,h+1 )(xkh, a
k
h, b

k
h)]− [V k?,h+1(xkh+1)− V π

k,νk

?,h+1 (xkh+1)].
(31)

Proof [Proof of Lemma 21] To facilitate our analysis, for any ν = {νfi}i∈[N ] and (h, x) ∈
[H]×S, we denote νf1,h(· |x)×· · · νfN ,h(· |x) by νh(· |x). Moreover, we define two operators
Jh and Jk,h respectively by

(Jhf)(x) = 〈f(x, ·, ·), πh(· |x)× νh(· |x)〉,
(Jk,hf)(x) = 〈f(x, ·, ·), πkh(· |x)× νkh(· |x)〉

(32)

for any h ∈ [H] and any function f : S ×Al ×Af → R. Also, we define

ξk?,h(x) = (JhQk?,f )(x)− (Jk,hQk?,f )(x)

= 〈Qk?,h(x, ·, ·), πh(· |x)× νh(· |x)− πkh(· |x)× νkh(· |x)〉 (33)
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for any (h, x) ∈ [H]× S and ? ∈ {l, f1, · · · , fN}.
Using the above notation, we decompose the regret at the k-th episode into the following

two terms,

V π,ν
?,1 (xk1)− V πk,νk

1 (xk1) = V π,ν
?,1 (xk1)− V k

?,1(xk1)︸ ︷︷ ︸
(i)

+V k
?,1(xk1)− V πk,νk

1 (xk1)︸ ︷︷ ︸
(ii)

. (34)

Then we characterize these two terms respectively.

Term (i). By the Bellman equation in (2) and the definition of the operator Jh in (32),
we have V π,ν

?,h = JhQπ,ν?,h . Similar, by the definition of V k
?,h and the definition of the operator

Jk,h in (32), we have V k
?,h = Jk,hQk?,h. Hence, for any h ∈ [H], we have

V π,ν
?,h − V

k
?,h = JhQπ,ν?,h − Jk,hQk?,h = (JhQπ,ν?,h − JhQk?,h) + (JhQk?,h − Jk,hQk?,h)

= Jh(Qπ,ν?,h −Q
k
?,h) + ξk?,h, (35)

where the last inequality is obtained by the fact that Jh is a linear operator and the definition
of ξk?,h in (33). Meanwhile, by the Bellman equation in (2) and the definition of the prediction

error δk?,h in (21), we obtain

Qπ,ν?,h −Q
k
?,h = (r?,h + PhV π,ν

?,h+1)− (r?,h + PhV k
?,h+1 − δk?,h)

= Ph(V π,ν
?,h+1 − V

k
?,h+1) + δk?,h. (36)

Putting (35) and (36) together, we further obtain

V π,ν
?,h − V

k
?,h = JhPh(V π,ν

?,h+1 − V
k
?,h+1) + Jhδk?,h + ξk?,h (37)

for any h ∈ [H] and ? ∈ {l, f1, · · · , fN}. By recursively applying (37) for all h ∈ [H], we
have

V π,ν
?,1 − V

k
?,1 =

( H∏
h=1

JhPh
)

(V π,ν
?,H+1 − V

πk,νk

?,H+1) +
H∑
h=1

( h∑
i=1

JiPi
)
Jhδk?,h +

H∑
h=1

( h∑
i=1

JiPi
)
ξk?,h

=
H∑
h=1

( h∑
i=1

JiPi
)
Jhδk?,h +

H∑
h=1

( h∑
i=1

JiPi
)
ξk?,h, (38)

where the last equality follows from the fact that V π,ν
?,H+1 = V πk,νk

?,H+1 = 0. Thus, by utilizing

the definition of ξk?,h in (33), we further obtain

V π,ν
?,1 (xk1)− V k

?,1(xk1) = Eπ,ν
[ H∑
h=1

〈Qk?,h(xkh, ·, ·), πh(· |xkh)× νh(· |xkh)− πkh(· |xkh)× νkh(· |xkh)〉
]

+ Eπ,ν
[ H∑
h=1

δk?,h(xh, ah, bh)

]
(39)

for any k ∈ [K] and ? ∈ {l, f1, · · · , fN}.
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Term (ii). Recall that we denote {bkfi,h}i∈[N ] by bkh for any h ∈ [H]. Then, for any h ∈ [H]
and ? ∈ {l, f1, · · · , fN}, by the definition of model prediction error in (30), we have

δk?,h(xkh, a
k
h, b

k
h) = rk?,h(xkh, a

k
h, b

k
h) + (PhV k

?,h+1)(xkh, a
k
h, b

k
h)−Qk?,h(xkh, a

k
h, b

k
h)

= [rk?,h(xkh, a
k
h, b

k
h) + (PhV k

?,h+1)(xkh, a
k
h, b

k
h)−Qπ

k,νk

?,h (xkh, a
k
h, b

k
h)]

+ [Qπ
k,νk

?,h (xkh, a
k
h, b

k
h)−Qk?,h(xkh, a

k
h, b

k
h)]

= (PhV k
?,h+1 − PhV πk,νk

?,h+1 )(xkh, a
k
h, b

k
h) + (Qπ

k,νk

?,h −Qk?,h)(xkh, a
k
h, b

k
h), (40)

where the last equation is obtained by the Bellman equation in (2). Thus, by (40), we have

V k
?,h(xkh)− V πk,νk

?,h (xkh)

= V k
?,h(xkh)− V πk,νk

?,h (xkh) + (Qπ
k,νk

?,h −Qk?,h)(xkh, a
k
h, b

k
h)

+ (PhV k
?,h+1 − PhV πk,νk

?,h+1 )(xkh, a
k
h, b

k
h)− δk?,h(xkh, a

k
h, b

k
h)

= V k
?,h(xkh)− V πk,νk

?,h (xkh)− (Qk?,h −Q
πk,νk

?,h )(xkh, a
k
h, b

k
h)

+
(
Ph(V k

?,h+1 − V
πk,νk

?,h+1 )
)
(xkh, a

k
h, b

k
h)− (V k

?,h+1 − V
πk,νk

?,h+1 )(xkh)

+ (V k
?,h+1 − V

πk,νk

?,h+1 )(xkh)− δk?,h(xkh, a
k
h, b

k
h) (41)

for any h ∈ [H] and ? ∈ {l, f1, · · · , fN}. By the definitions of ζ1
?,k,h and ζ2

?,k,h in (31), (41)
can be written as

V k
?,h(xkh)− V πk,νk

?,h (xkh) = [V k
?,h+1(xkh)− V πk,νk

?,h+1 (xkh)] + ζ1
?,k,h + ζ2

?,k,h − δk?,h(xkh, a
k
h, b

k
h). (42)

For any ? ∈ {l, f1, · · · , fN}, recursively expanding (42) across h ∈ [H] yields

V k
?,1(xk1)− V πk,νk

?,1 (xk1)

= V k
?,H+1(xkH+1)− V πk,νk

?,H+1(xkH+1) +
H∑
h=1

(ζ1
?,k,h + ζ2

?,k,h)−
H∑
h=1

δk?,h(xkh, a
k
h, b

k
h)

=

H∑
h=1

(ζ1
?,k,h + ζ2

?,k,h)−
H∑
h=1

δk?,h(xkh, a
k
h, b

k
h), (43)

where the last equality follows from the fact that V k
?,H+1(xkH+1) = V πk,νk

?,H+1(xkH+1) = 0.
Plugging (39) and (43) into (34), we obtain

V π,ν
?,1 (xk1)− V πk,νk

?,1 (xk1)

=

H∑
h=1

Eπ,ν [〈Qk?,h(xkh, ·, ·), πh(· |xkh)× νh(· |xkh)− πkh(· |xkh)× νkh(· |xkh)〉]︸ ︷︷ ︸
Computational Error

+
H∑
h=1

(
Eπ,ν [δk?,h(xh, ah, bh)]− δk?,h(xkh, a

k
h, b

k
h)
)

︸ ︷︷ ︸
Statistical Error

+
H∑
h=1

(ζ1
?,k,h + ζ2

?,k,h)︸ ︷︷ ︸
Randomness
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for any (π, ν) and ? ∈ {l, f1, · · · , fN}. Therefore, we conclude the proof of Lemma 11.

Proof [Proof of Lemma 11] For any k ∈ [K], applying Lemma 21 with (π, ν) = (π∗, ν∗), we
obtain

V π∗,ν∗

l,1 (xk1)− V πk,νk

l,1 (xk1)

=

H∑
h=1

Eπ∗,ν∗ [〈Qkh(xkh, ·, ·), π∗h(· |xkh)× ν∗h(· |xkh)− πkh(· |xkh)× νkh(· |xkh)〉]

+

H∑
h=1

(
Eπ∗,ν∗ [δkh(xh, ah, bh)]− δkh(xkh, a

k
h, b

k
h)
)

+

H∑
h=1

(ζ1
k,h + ζ2

k,h).

Taking a summation over k ∈ [K], we decompose (20) as desired, which concludes the proof
of Lemma 11.

A.2 Proof of Lemma 13

Proof [Proof of Lemma 13] By the myopic followers assumption, we have that, for the
matrix game with payoff matrices (Q̃(xkh, ·, ·), {rkfi,h(xkh, ·, ·)}i∈[N ]), ν

∗
h(· |xkh) belongs to the

best response set of π∗h(· |xkh). Moreover, we define ν̃∗h(· |xkh) as the policy belongs to the
best response set of π∗h(· |xkh) and breaks ties in favor of the leader.

Recall that (πkh(· |xkh), νkh(· |xkh) = {νkfi,h(· |xkh)}i∈[N ]) is the Stackelberg-Nash equilib-

rium of the matrix game with payoff matrices (Q̃(xkh, ·, ·, ·), {rkfi,h(xkh, ·, ·, ·)}i∈[N ]), which

implies that πkh(· |xkh) is the “best response to the best response,” which further implies
that

〈Q̃(xkh, ·, ·), π∗h(· |xkh)× ν̃∗h(· |xkh)− πkh(· |xkh)× νkh(· |xkh)〉 ≤ 0 (44)

for any (k, h) ∈ [K]× [H]. Thus, for any (k, h) ∈ [K]× [H], we have

〈Qkh(xkh, ·, ·), π∗h(· |xkh)× ν∗h(· |xkh)− πkh(· |xkh)× νkh(· |xkh)〉
= 〈Q̃(xkh, ·, ·), π∗h(· |xkh)× ν∗h(· |xkh)− πkh(· |xkh)× νkh(· |xkh)〉

+ 〈Qkh(xkh, ·, ·)− Q̃(xkh, ·, ·), π∗h(· |xkh)× ν∗h(· |xkh)− πkh(· |xkh)× νkh(· |xkh)〉 (45)

≤ 〈Q̃(xkh, ·, ·), π∗h(· |xkh)× ν̃∗h(· |xkh)− πkh(· |xkh)× νkh(· |xkh)〉
+ 〈Qkh(xkh, ·, ·)− Q̃(xkh, ·, ·), π∗h(· |xkh)× ν∗h(· |xkh)− πkh(· |xkh)× νkh(· |xkh)〉

≤ ε, (46)

where the first inequality follows from the definition of ν̃kh(· |xkh) and the last inequality
uses (44) and the fact that ‖Qkh − Q̃‖∞ ≤ ε. By taking summation over (k, h) ∈ [K]× [H],
we conclude the proof of Lemma 13.
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A.3 Proof of Lemma 14

Proof [Proof of Lemma 14] Recall that the estimated Q-function Qkh defined in Line 8 of
Algorithm 1 takes the following form:

Qkh(·, ·, ·)← rl,h(·, ·, ·) + ΠH−h{φ(·, ·, ·)>wkh + Γkh(·, ·, ·)},

where wkh = (Λkh)−1
(k−1∑
τ=1

φ(xτh, a
τ
h, b

τ
h) · V k

h+1(xτh+1)
)
.

(47)

Here Λkh and Γkh are defined in Lines 5 and 7 of Algorithm 1, respectively. Meanwhile, by
Assumption 1, we have

(PhV k
h+1)(x, a, b) = φ(x, a, b)>〈µh, V k

h+1〉
= φ(x, a, b)>(Λkh)−1Λkh〈µh, V k

h+1〉 (48)

for any (k, h, x, a, b) ∈ [K] × [H] × S × Al × Af . Here 〈µh, V k
h+1〉 =

∫
S V

k
h+1(x′)dµh(x′).

Together with the definition of Λkh in Line 5 of Algorithm 1, we further obtain

(PhV k
h+1)(x, a, b) = φ(x, a, b)>(Λkh)−1

(k−1∑
τ=1

φ(xτh, a
τ
h, b

τ
h)φ(xτh, a

τ
h, b

τ
h)>〈µh, V k

h+1〉+ 〈µh, V k
h+1〉

)
= φ(x, a, b)>(Λkh)−1

(k−1∑
τ=1

φ(xτh, a
τ
h, b

τ
h) · (PhV k

h+1)(xτh, a
τ
h, b

τ
h) + 〈µh, V k

h+1〉
)
,

(49)

for any (k, h, x, a, b) ∈ [K] × [H] × S × Al ×Af . Here the last equality uses (48). Putting
(47) and (49) together, we have

φ(x, a, b)>wkh − (PhV k
h+1)(x, a, b)

= φ(x, a, b)>(Λkh)−1
(k−1∑
τ=1

φ(xτh, a
τ
h, b

τ
h) ·

(
V k
h+1(xτh+1)− (PhV k

h+1)(xτh, a
τ
h, b

τ
h)
))

︸ ︷︷ ︸
(i)

(50)

− φ(x, a, b)>(Λkh)−1〈µh, V k
h+1〉︸ ︷︷ ︸

(ii)

,

for any (k, h, x, a, b) ∈ [K]× [H]× S ×Al ×Af . Next we upper bound these two terms.

Term (i). By the Cauchy-Schwarz inequality, we have

|(i)| ≤ ‖φ(x, a, b)‖(Λkh)−1 ·
∥∥∥ k−1∑
τ=1

φ(xτh, a
τ
h, b

τ
h) ·

(
V k
h+1(xτh+1)− (PhV k

h+1)(xτh, a
τ
h, b

τ
h)
)∥∥∥

(Λkh)−1

(51)

for any (k, h, x, a) ∈ [K]× [H]×S×Al. Under the event E defined in Lemma 22, we further
have

|(i)| ≤ C ′dH
√

log(2dT/p) · ‖φ(x, a)‖(Λkh)−1 (52)
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for any (k, h, x, a) ∈ [K]× [H]× S ×Al.
Term (ii). Similarly, by the Cauchy-Schwarz inequality, we obtain

|(ii)| ≤ ‖φ(x, a, b)‖(Λkh)−1 · ‖〈µh, V k
h+1〉‖(Λkh)−1

≤ ‖φ(x, a, b)‖(Λkh)−1 · ‖〈µh, V k
h+1〉‖2 ≤

√
dH · ‖φ(x, a, b)‖(Λkh)−1 , (53)

for any (k, h, x, a, b) ∈ [K] × [H] × S × Al × Af . Here the second inequality follows from
the fact that Λkh � I and the last inequality is obtained by

‖〈µh, V k
h+1〉‖2 ≤ ‖µh(S)‖2 · ‖V k

h+1‖∞ ≤
√
dH.

Here we use the fact that ‖V k
h+1‖∞ ≤ H and Assumption 1, which assumes ‖µh(S)‖2 ≤

√
d.

Plugging (52) and (53) into (50), we obtain that

|φ(x, a, b)>wkh − (PhV k
h+1)(x, a, b)| ≤ CdH

√
log(2dT/p) · ‖φ(x, a, b)‖(Λkh)−1 , (54)

for any (k, h, x, a, b) ∈ [K]× [H]×S×Al×Af under the event E . Here C > 0 is a constant.
By setting

β = CdH
√

log(2dT/p) (55)

in Line 7 of Algorithm 1, (54) gives

|φ(x, a, b)>wkh − (PhV k
h+1)(x, a, b)| ≤ Γkh(x, a, b) (56)

for any (k, h, x, a, b) ∈ [K] × [H] × S × Al × Af under the event E . Meanwhile, by the
truncation in Line 8 of Algorithm 1 and the fact that rl,h ∈ [−1, 1], we have Qkh ∈ [−(H −
h+ 1), H − h+ 1], which further implies that

V k
h ∈ [−(H − h+ 1), H − h+ 1], (57)

for any (k, h) ∈ [K]× [H]. Hence, by (56), we have

φ(x, a, b)>wkh + Γkh(x, a, b) ≥ (PhV k
h+1)(x, a, b) ≥ H − h, (58)

for any (k, h, x, a, b) ∈ [K]× [H]×S ×Al×Af under the event E , where the last inequality
is obtained by (57). Thus, for the model prediction error defined in (21), we have

−δkh(x, a, b) = Qkh(x, a, b)− rl,h(x, a, b)− PhV k
h+1(x, a, b)

≤ φ(x, a, b)>wkh + Γkh(x, a, b)− PhV k
h+1(x, a, b)

≤ 2Γkh(x, a, b), (59)

for any (k, h, x, a, b) ∈ [K]×[H]×S×Al×Af under the event E . Moreover, by the definition
of the model prediction error, we have −δkh(·, ·, ·) ≤ 2H. Together with (59), we have

−δkh(x, a, b) ≤ 2 min{H,Γkh(x, a, b)}, (60)
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for any (k, h, x, a, b) ∈ [K]× [H]× S ×Al ×Af under the event E . On the other hand, by
(15), we have

δkh(x, a, b) = rl,h(x, a, b) + PhV k
h+1(x, a, b)−Qkh(x, a, b)

≤ PhV k
h+1(x, a, b)−min{φ(x, a, b)>wkh + Γkh(x, a, b), H − h}

= max{PhV k
h+1(x, a, b)− φ(x, a, b)>wkh − Γkh(x, a, b),PhV k

h+1(x, a, b)− (H − h)}
≤ 0, (61)

for any (k, h, x, a, b) ∈ [K]× [H]×S ×Al ×Af under the event E . Here the last inequality
follows from (56) and the fact that V k

h+1 ≤ H − h. Combining (60) and (61), we conclude
the proof of Lemma 14.

Lemma 22 For any p ∈ (0, 1], the event E that, for any (k, h) ∈ [K]× [H],

∥∥∥ k−1∑
τ=1

φ(xτh, a
τ
h, b

τ
h) ·

(
V k
h+1(xτh+1)− (PhV k

h+1)(xτh, a
τ
h, b

τ
h)
)∥∥∥

(Λkh)−1
≤ C ′dH

√
log(2dT/p)

happens with probability at least 1− p/2, where C ′ > 0 is an absolute constant.

Proof [Proof of Lemma 22] Fix (k, h) ∈ [K]× [H]. By Lemma 23, we have wkh+1 ≤ H
√
dk,

which implies that Qkh+1 ∈ Qkh+1,ε. Here Qkh+1,ε is defined in (16). Moreover, as shown

in Algorithm 2, we find a Q̃ in the ε-net Qkh+1,ε such that ‖Qkh+1 − Q̃‖∞ ≤ ε. For

any x ∈ S, let (π̃(· |x), ν̃ = {νfi}Ni=1) be the Stackelberg-Nash equilibrium of the ma-
trix game with payoff matrices (Q̃(x, ·, ·), {rfi,h+1(x, ·, ·)}Ni=1). Moreover, we define Ṽ (x) =
Ea∼π̂(· |x),b∼ν̂(· |x)[Q̃(x, a, b)] for any x ∈ S. Then, we have

∥∥∥ k−1∑
τ=1

φ(xτh, a
τ
h, b

τ
h) ·

(
V k
h+1(xτh+1)− (PhV k

h+1)(xτh, a
τ
h, b

τ
h)
)∥∥∥

(Λkh)−1

≤
∥∥∥ k−1∑
τ=1

φ(xτh, a
τ
h, b

τ
h) ·

(
Ṽ (xτh+1)− (PhṼ )(xτh, a

τ
h, b

τ
h)
)∥∥∥

(Λkh)−1︸ ︷︷ ︸
(i)

(62)

+
∥∥∥ k−1∑
τ=1

φ(xτh, a
τ
h, b

τ
h) ·

(
[V k
h+1(xτh+1)− Ṽ (xτh+1)]−

(
Ph(V k

h+1 − Ṽ )
)
(xτh, a

τ
h, b

τ
h)
)∥∥∥

(Λkh)−1︸ ︷︷ ︸
(ii)

.

By Lemma 30 and a union bound argument, it holds for any Q̃ ∈ Qkh+1,ε with probability
at least 1− p/2 that

|(i)| ≤ 4H2
(d

2
log(k + 1) + log

2Nε
p

)
, (63)
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where Nε is the covering number of Qh+1,ε. Moreover, by applying Lemma 32 with L =
H
√
dk and λ = 1, (63) gives that

|(i)| ≤ C ′dH
√

log(dT/p), (64)

with probability at least 1 − p/2. Here C ′ is a constant. Meanwhile, by the definition of
V k
h+1 in Line 10 of Algorithm 1, we have V k

h+1(x) = Ea∼π̂(· |x),b∼ν̂(· |x)[Q
k
h+1(x, a, b)], which

yields that

|V k
h+1(x)− Ṽ (x)| =

∣∣Ea∼π̂(· |x),b∼ν̂(· |x)[Q
k
h+1(x, a, b)− Q̃(x, a, b)]

∣∣
≤ Ea∼π̂(· |x),b∼ν̂(· |x)|Qkh+1(x, a, b)− Q̃(x, a, b)| ≤ ε,

for any x ∈ S, which further implies that

|(ii)| ≤ ε ·
k−1∑
τ=1

‖φ(xτh, a
τ
h, b

τ
h)‖(Λkh)−1 ≤ εk, (65)

where the last inequality follows from the fact that ‖φ(·, ·, ·)‖(Λkh)−1 ≤ ‖φ(·, ·, ·)‖2 ≤ 1 for any

(k, h) ∈ [K]× [H]. Plugging (64) and (65) into (62), together with the fact that ε = 1/KH,
we conclude the proof of Lemma 22.

Lemma 23 (Bounded Weight of Value Functions) For all (k, h) ∈ [K]× [H], the lin-
ear coefficient wkh defined in (14) satisfies ‖wkh‖ ≤ H

√
kd.

Proof [Proof of Lemma 23] By the definition of wkh in (14) and the triangle inequality, we
have

‖wkh‖ =
∥∥∥(Λkh)−1

(k−1∑
τ=1

φ(xτh, a
τ
h, b

τ
h) · V k

h+1(xτh+1)
)∥∥∥

≤
k−1∑
τ=1

‖(Λkh)−1φ(xτh, a
τ
h, b

τ
h) · V k

h+1(xτh+1)‖. (66)

Together with the fact that |V k
h (·)| ≤ H for any (k, h) ∈ [K]× [H], (66) gives

‖wkh‖ ≤ H ·
k−1∑
τ=1

‖(Λkh)−1φ(xτh, a
τ
h, b

τ
h)‖

≤ H ·
k−1∑
τ=1

‖(Λkh)−1/2‖ · ‖φ(xτh, a
τ
h, b

τ
h)‖(Λkh)−1

≤ H ·
k−1∑
τ=1

‖φ(xτh, a
τ
h, b

τ
h)‖(Λkh)−1 , (67)
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where the second inequality uses the Cauchy-Schwarz inequality and the last inequality
follows from the fact that Λkh � I for any (k, h) ∈ [K]× [H]. Then, by the Cauchy-Schwarz
inequality, we obtain

k−1∑
τ=1

‖φ(xτh, a
τ
h, b

τ
h)‖(Λkh)−1 ≤

√
k ·
(k−1∑
τ=1

φ(xτh, a
τ
h, b

τ
h)>(Λkh)−1φ(xτh, a

τ
h, b

τ
h)
)1/2

=
√
k ·
(k−1∑
τ=1

Tr
(
φ(xτh, a

τ
h, b

τ
h)>(Λkh)−1φ(xτh, a

τ
h, b

τ
h)
))1/2

=
√
k ·
(

Tr
(
(Λkh)−1

k−1∑
τ=1

φ(xτh, a
τ
h, b

τ
h)φ(xτh, a

τ
h, b

τ
h)>
))1/2

. (68)

Finally, recall that Λkh =
∑k−1

τ=1 φ(xτh, a
τ
h, b

τ
h)φ(xτh, a

τ
h, b

τ
h)> + I, we have

Tr
(

(Λkh)−1
k−1∑
τ=1

φ(xτh, a
τ
h, b

τ
h)φ(xτh, a

τ
h, b

τ
h)>
)
≤ Tr(I) = d. (69)

Plugging (68) and (69) into (67), we conclude the proof of Lemma 23.

A.4 Proof of Lemma 15

Proof [Proof of Lemma 15] Recall the definition of Γkh in Line 7 of Algorithm 1, we have

2

K∑
k=1

H∑
h=1

min{H,Γkh(xkh, a
k
h, b

k
h)} = 2β ·

K∑
k=1

H∑
h=1

min{H/β, ‖φ(xkh, a
k
h, b

k
h)‖(Λkh)−1}

≤ 2β ·
K∑
k=1

H∑
h=1

min{1, ‖φ(xkh, a
k
h, b

k
h)‖(Λkh)−1}. (70)

Here the last inequality uses the fact that β = CdH
√

log(2dT/p), where C > 1 is a constant.
By the Cauchy-Schwarz inequality, we further obtain that

K∑
k=1

H∑
h=1

min{1, ‖φ(xkh, a
k
h, b

k
h)‖(Λkh)−1} ≤

H∑
h=1

(
K ·

K∑
k=1

min{1, ‖φ(xkh, a
k
h, b

k
h)‖2

(Λkh)−1}
)

≤
H∑
h=1

√
K ·

(
2 log

(det(ΛK+1
h )

det(Λ1
h)

))1/2

, (71)

where the last inequality follows from Lemma 29. Moreover, Assumption 1 gives that

‖φ(x, a, b)‖2 ≤ 1,

for any (k, h, x, a, b) ∈ [K]× [H]× S ×A, which further implies that

ΛK+1
h =

K∑
k=1

φ(xkh, a
k
h, b

k
h)φ(xkh, a

k
h, b

k
h)> + I � (K + 1) · I, (72)
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for any h ∈ [H]. Combining (72) and the fact that Λ1
h = I, we obtain

2 log
(det(ΛK+1

h )

det(Λ1
h)

)
≤ 2d · log(K + 1) ≤ 4d · log(K). (73)

Combining (70), (71), (72) and (73), it holds that

2

K∑
k=1

H∑
h=1

min{H,Γkh(xkh, a
k
h, b

k
h)} ≤ 2β

√
dHT · log(K) ≤ O(

√
d3H3Tι2),

where ι = log(2dT/p). Therefore, we conclude the proof of Lemma 15.

A.5 Proof of Lemma 16

Proof [Proof of Lemma 16] First, we show that {ζ1
k,h, ζ

2
k,h}(k,h)∈[K]×[H] can be written as a

bounded martingale difference with respect to a filtration. Similar to Cai et al. (2020), we
construct the following filtration. For any (k, h) ∈ [K]× [H], we define σ-algebras F1

k,h and

F2
k,h as follows:

F2
k,h = σ

(
{xτi , aτi , bτ1,i, · · · , bτN,i}(τ,i)∈[k−1]×[h] ∪ {xki , aki , bk1,i, · · · , bkN,i}i∈[h]

)
,

F2
k,h = σ

(
{xτi , aτi , bτ1,i, · · · , bτN,i}(τ,i)∈[k−1]×[h] ∪ {xki , aki , bk1,i, · · · , bkN,i}i∈[h] ∪ {xkh+1}

)
,

(74)

where xH+1 is a null state for any k ∈ [K]. Here σ(·) denotes the σ-algebra generated by
a finite set. Moreover, for any (k, h,m) ∈ [K] × [H] × [2], we define the timestep index
t(k, h,m) as

t(k, h,m) = (k − 1) · 2H + (h− 1) · 2 +m. (75)

By the definitions of the σ-algebras in (74), we have Fmk,h ⊂ Fm
′

k′,h′ for any t(k, h,m) ≤
t(k′,m′, h′), which implies that the σ-algebra sequence {Fmk,h}(k,h,m)∈[K]×[H]×[2] is a filtra-

tion. Moreover, by the definitions of {ζ1
k,h, ζ

2
k,h}(k,h)∈[K]×[H] in (22), we have

ζ1
k,h ∈ F1

k,h, ζ2
k,h ∈ F2

k,h, E[ζ1
k,h | F2

k,h−1] = 0, E[ζ2
k,h | F1

k,h] = 0, (76)

for any (k, h) ∈ [K]× [H]. Here we identify F2
k,0 with F2

k−1,H for any k ≥ 2 and define F1,0,2

be the empty set. Hence, we can define the martingale

Mm
k,h =

{ ∑
k′,h′,m′

ζm
′

k′,h′ : t(k′, h′,m′) ≤ t(k, h,m)
}
. (77)

Such a martingale is adapted to the filtration {Fmk,h}(k,h,m)∈[K]×[H]×[2]. In particular, we
have

M2
K,H =

K∑
k=1

H∑
h=1

(ζ1
k,h + ζ2

k,h). (78)
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Moreover, note the fact that V k
h , Q

k
h, V

πk,νk

l,h , Qπ
k,νk

l,h ∈ [−H,H], we further obtain |ζmk,h| ≤
2H, for any (k, h,m) ∈ [K]× [H]× [2]. Finally, by applying the Azuma-Hoeffding inequality
to M2

K,H defined in (78), we have

K∑
k=1

H∑
h=1

(ζ1
k,h + ζ2

k,h) ≤
√

16H3K · log(4/p),

with probability at least 1− p/2, which concludes the proof of Lemma 16.

A.6 Proof of Lemma 6

Before our proof of Lemma 6, we present a useful lemma.

Lemma 24 We define the set of δ-significant states as

Sδh = {s : max
π,ν

Pπ,νh (x) ≥ δ}, (79)

where Pπ,νh (x) is the probability of visiting x at h-th step under policies (π, ν). Then we have

max
π,ν

Pπ,νh (x)
1
K0

∑
(π,ν)∈Φ(x,h) Pπ,νh (x)

≤ 2

for any s ∈ Sδh. Here Pπh(x, a) is the probability of visiting (x, a) at h-th step under policy
π.

Proof See the proof of Theorem 3.3 in Jin et al. (2020a) for more details.

Now, we are ready to prove Lemma 6.
Proof [Proof of Lemma 6] For any (π, ν), we denote Pπ,νh (x, a, b) as the probability of
visiting (x, a, b) at h-th step under policies (π, ν). Under this notion, by Lemma 24 and the
fact that all policies in Φ(x,h) are uniform at (x, h), we have

max
π,a,b

Pπ,νh (x, a, b)
1
K0

∑
π∈Φ(x,h) Pπ,νh (x, a, b)

≤ 2AlAf ,

where |Al| = Al and Af = |Af | = |Af1 × · · · × AfN |. Thus, for any δ-significant (x, h), we
have

max
π,ν,a,b

Pπ,νh (x, a, b)
1

K0SH

∑
(π,ν)∈∪{Φ(x,h)}(x,h) P

π,ν
h (x, a, b)

≤ 2SAlAfH.

Then the data obtained from Algorithm 3 is sampled i.i.d. from some distribution ζh, such
that

max
π,ν,a,b

Pπ,νh (x, a, b)

ζh(x, a, b)
≤ 2SAlAfH. (80)
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for any s ∈ Sδh. Back to our proof, we have

|V̂ π,ν
? − V π,ν

? | =
∣∣∣∣ H∑
h=1

∑
x,a,b

Pπ,νh (x, a, b) ·
(
r̂?,h(x, a, b)− r?,h(x, a, b)

)∣∣∣∣
=

∣∣∣∣ H∑
h=1

∑
x,a,b

Pπ,νh (x, a, b) ·
(
r̂?,h(x, a, b)− r?,h(x, a, b)

)∣∣∣∣
≤
∣∣∣∣ H∑
h=1

∑
x/∈Sδh,a,b

Pπ,νh (x, a, b) ·
(
r̂?,h(x, a, b)− r?,h(x, a, b)

)∣∣∣∣︸ ︷︷ ︸
(i)

+

∣∣∣∣ H∑
h=1

∑
x∈Sδh,a,b

Pπ,νh (x, a, b) ·
(
r̂?,h(x, a, b)− r?,h(x, a, b)

)∣∣∣∣︸ ︷︷ ︸
(ii)

. (81)

Clearly,

(i) ≤
H∑
h=1

∑
x/∈Sδh,a,b

Pπ,νh (s, a, b) =
H∑
h=1

∑
x/∈Sδh

Pπh(x) ≤ HSδ ≤ ε/2, (82)

where the second inequality uses the definition of δ-significant set in (79) and the last
inequality is implied by the fact that δ = ε/2H2S. Meanwhile, we have

(ii) ≤
H∑
h=1

∣∣∣∣ ∑
x∈Sδh,a,b

Pπ,νh (x, a, b) ·
(
r̂?,h(x, a, b)− r?,h(x, a, b)

)∣∣∣∣
≤

H∑
h=1

( ∑
x∈Sδh,a,b

Pπ,νh (x, a, b) ·
(
r̂?,h(x, a, b)− r?,h(x, a, b)

)2)1/2

︸ ︷︷ ︸
∆h

. (83)

Note that Pπ,νh (x, a, b) = Pπ,νh (x) · πh(a |x) · νh(b |x), together with the Cauchy-Schwarz
inequality, we further have

∆h ≤ max
π′:S→Al,ν′:S→Af

( ∑
x∈Sδh,a,b

Pπh(x) ·
(
r̂?,h(x, a, b)− r?,h(x, a, b)

)2
1[a = π′(s), b = ν ′(s)]

))1/2

≤ max
π′:S→Al,ν′:S→Af

( ∑
x∈Sδh,a,b

Pπh(x) ·
(
r̂?,h(x, a, b)− r?,h(x, a, b)

)2
1[a = π′(s), b = ν ′(s)]

))1/2

≤ max
π′:S→Al,ν′:S→Af

(2SAlAfH)1/2

×
( ∑
x∈Sδh,a,b

ζh(x, a, b) ·
(
r̂?,h(x, a, b)− r?,h(x, a, b)

)2
1[a = π′(s), b = ν ′(s)]

))1/2
, (84)
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where the last inequality follows from (80). Moreover, by the Hoeffding inequality and a
union bound for the reward estimates we have( ∑

x∈Sδh,a,b

ζh(x, a, b) ·
(
r̂?,h(x, a, b)− r?,h(x, a, b)

)2
1[a = π′(s), b = ν ′(s)]

))1/2

≤
( ∑
x∈Sδh,a,b

ζh(x, a, b) · Õ
( 1

Nh(s, a, b)

)
1[a = π′(s), b = ν ′(s)]

))1/2
. (85)

Choose δ = ε/2H2S. Together with (80), we have ζh(s, a, b) ≥ ε/4H3S2AlAf for any s ∈ Sδh.
Hence, we have K ≥ Ω(H3S2AlAf/ε) ≥ Ω(1/mins,a,b ζh(s, a, b)). Applying a multiplicative
Chernoff bound for the counter Nh(s, a, b) ∼ Bin(K, ζh(s, a, b)), we have( ∑

x∈Sδh,a,b

ζh(x, a, b) · Õ
( 1

Nh(s, a, b)

)
1[a = π′(s), b = ν ′(s)]

))1/2

≤
( ∑
x∈Sδh,a,b

ζh(x, a, b) · Õ
( 1

Kζh(s, a, b)

)
1[a = π′(s), b = ν ′(s)]

))1/2

= Õ
(√ S

K

)
. (86)

Plugging (84), (85), and (85) into (83), we have

(ii) ≤ Õ
(√H3S2AlAf

K

)
≤ ε/2, (87)

where the last inequality follows from our choice that K ≥ Ω(H3S2AlAf/ε
2). Combining

(81), (82) and (87), we have |V̂ π,ν
? − V π,ν

? | ≤ ε for any (π, ν), which concludes the proof of
Lemma 6.

Appendix Appendix B. Learning Stackelberg Equilibria

In this section, we analyze the sample efficiency of learning Stackelberg equilibria in two-
player tabular Markov games without the known reward assumption.

For simplicity, we use the shorthand f = f1 and V π,ν
? = V π,ν

?,1 (x1), where x1 ∈ S is
the fixed initial state. Meanwhile, for any ε > 0, we define the ε-approximate value of the
best-case response by

V π
ε = max

ν∈BRε(π)
V π,ν
l ,

BRε(π) = {ν : V π,ν
f ≥ max

ν′
V π,ν′

f − ε}.

We immediately obtain that BR(π) ⊆ BRε(π), which further implies V π
ε ≥ V

π,ν∗(π)
l . Thus

we can define the gap

gapε = max
π∈Πε

[V π
ε − V

π,ν∗(π)
l ], (88)

Πε = {π : V π
ε ≥ V π∗,ν∗ − ε}.

34



Find Stackelberg-Nash Equilibria in Markov Games with Myopically Rational Followers

B.1 Algorithm

As stated before, we first conduct a Reward-Free Explore algorithm (Algorithm 3) to obtain
the estimated rewards (r̂l, r̂f ). We also define (V̂l, V̂f ) as the corresponding value functions.
Then we use Algorithm 1 to solve the SNE with respect to the known reward functions
(r̂l, r̂f ). Specifically, we consider the following optimization problem of finding approxima-
tion Stackelberg equilibria with respect to the empirical rewards (r̂l, r̂f ):

argmax
π

V̂3ε/4(π) = argmax
π

V̂
π,ν(π)
l ,

ν(π) = argmax
ν∈B̂R3ε/4(π)

V̂ π,ν
l ,

B̂R3ε/4(π) =
{
ν : V̂ π,ν

f ≥ max
ν

V̂ π,ν
f − 3ε/4

}
.

(89)

Since (r̂l, r̂f ) are known to us, we can use Algorithm 1 to obtain the solution (π̂, ν̂ = ν(π̂)),
which is our approximate solution. See Algorithm 5 for more details.

Algorithm 5 Reward-Free Explore then Commit

1: Input: Accuracy coefficient ε > 0.
2: Run the Reward-Free Explore algorithm (Algorithm 3) with K0 ≥ Ω(H7S4Al/ε) and
K ≥ Ω(H3S2AlAf/ε

2), and obtain empirical rewards (r̂l, r̂f ).
3: Use Algorithm 1 as an oracle to solve the problem defined in (89) and obtain the solution

(π̂, ν̂ = ν(π)).
4: Output: (π̂, ν̂).

B.2 Theoretical Results

The performance of Algorithm 5 is guaranteed by the following theorem.

Theorem 25 Suppose Algorithm 5 outputs (π̂, ν̂). Then it holds with probability at least
1− p that

V
π̂,ν∗(π̂)
l ≥ V π∗,ν∗

l − gapε − ε, V π̂,ν̂
f ≥ V π̂,ν∗(π̂)

f − ε.

Proof A similar analysis appears in Bai et al. (2021). As stated earlier, however, their
setting is different from ours. For completeness, we provide a detailed proof here. First, we
show that

BRε/2(π) ⊆ B̂R3ε/4(π) ⊆ BRε(π). (90)

By choosing a large absolute constant in K, together with Lemma 6, it holds for any
? ∈ {l, f} that

sup
π,ν
|V̂ π,ν
? − V π,ν

? | ≤ ε/8. (91)
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Meanwhile, for the empirical rewards (r̂l, r̂f ), we define the best response of leader’s policy

π as ˆν∗(π). Using this notation, for any ν ∈ B̂R3ε/4(π), we have

V
π,ν∗(π)
f − V π,ν

f

= (V
π,ν∗(π)
f − V̂ π,ν∗(π)

f )︸ ︷︷ ︸
(i)

+ (V̂
π,ν∗(π)
f − V̂ π, ˆν∗(π)

f )︸ ︷︷ ︸
(ii)

+ (V̂
π, ˆν∗(π)
f − V̂ π,ν

f )︸ ︷︷ ︸
(iii)

+ (V̂ π,ν
fi
− V π,ν

f )︸ ︷︷ ︸
(iv)

≤ ε/8 + 0 + 3ε/4 + ε/8 ≤ ε. (92)

where (i) ≤ ε/8 and (iv) ≤ ε/8 is implied by the uniform convergence in (91), (ii) ≤ 0 uses

the definition of ˆν∗(π), and (iii) ≤ 0 follows from the fact that ν ∈ B̂R3ε/4(π).
Similarly, for any ν ∈ BRε/2(π), we can show that

V̂
π, ˆν∗(π)
f − V̂ π,ν

f

= (V̂
π, ˆν∗(π)
f − V π, ˆν∗(π)

f ) + (V
π, ˆν∗(π)
f − V π,ν∗(π)

f ) + (V
π,ν∗(π)
f − V π,ν

f ) + (V π,ν
f − V̂ π,ν

f )

≤ ε/8 + 0 + ε/2 + ε/8 = 3ε/4. (93)

Combining (92) and (93), we obtain BRε/2(π) ⊆ B̂R3ε/4(π) ⊆ BRε(π) as desired.

Back to our proof, by the fact that π̂ maximizes V̂ π
3ε/4 = maxν∈B̂R3ε/4(π) V̂l(π, ν), we have

max
ν∈B̂R3ε/4(π̂)

V̂ π̂,ν
l = V̂ π̂

3ε/4 ≥ V̂
π

3ε/4 = max
ν∈B̂R3ε/4(π)

V π,ν
l ≥ max

ν∈BRε/2(π)
V̂ π,ν
l , (94)

for any π. Here the last inequality uses the fact BRε/2(π) ⊆ B̂R3ε/4(π) in (90). Together
with the uniform convergence in (91), (94) yields

max
ν∈B̂R3ε/4(π̂)

V π̂,ν
l ≥ min

ν∈BRε/2(π)
V π,ν
l − ε/8 ≥ V π

ε/2 − ε. (95)

Meanwhile, by the fact B̂R3ε/4(π) ⊆ BRε(π) in (91), we have

V π̂
ε = min

ν∈BRε(π̂)
V π̂,ν
l ≥ min

ν∈B̂R3ε/4(π̂)
V π̂,ν
l . (96)

Combining (95) and (96), we have

V π̂
ε ≥ max

π
V π
ε/2 − ε ≥ max

π
V
π,ν∗(π)
l − ε, (97)

which implies that π̂ ∈ Πε. Furthermore, (97) is equivalent to

V
π̂,ν∗(π̂)
l ≥ V π∗,ν∗

l − [V π̂
ε − V

π̂,ν∗(π̂)
l ]− ε ≥ V π∗,ν∗

l − gapε − ε,

where the equality uses the definition of gapε in (88). as desired. Meanwhile, by the facts
that ν̂ ∈ B̂R3ε/4(π̂) and B̂R3ε/4(π̂) ⊆ BRε(π̂), we have

V π̂,ν̂
f ≥ V π̂,ν∗(π̂)

f − ε.

Therefore, we conclude the proof of Theorem 25.
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Appendix Appendix C. Missing Proofs for Offline Setting

C.1 Proof of Lemma 20

Proof [Proof of Lemma 20] Similar to (56), it holds with probability at least 1− p/2 that

|φ(x, a, b)>wh − (PhV̂h+1)(x, a, b)| ≤ Γh(x, a, b) (98)

for any h ∈ [H]. The only exception is that we use Lemma 31 instead of the classical
concentration lemma (Lemma 30) for the self-normalized process. We omit the detailed
proof.

By (98) and the fact that V̂h+1(·) ≤ H − h, we obtain

φ(x, a, b)>wh − Γh(x, a, b) ≤ (PhV̂h+1)(x, a, b) ≤ H − h. (99)

Thus, we have Q̂h ≥ φ>wh − Γh, which further implies that

δh(x, a, b) = rl,h(x, a, b) + PhV̂h+1(x, a, b)− Q̂h(x, a, b)

≤ PhV̂h+1(x, a, b)− φ(x, a, b)>wh + Γh(x, a, b)

≤ 2Γh(x, a, b), (100)

where the last inequality uses (98). Meanwhile, it holds that

δh(x, a, b) = rl,h(x, a, b) + PhV̂h+1(x, a, b)− Q̂h(x, a, b)

≥ PhV̂h+1(x, a, b)−max{φ(x, a, b)>wh − Γkh(x, a, b),−(H − h)}
= min{PhV k

h+1(x, a, b)− φ(x, a, b)>wkh + Γkh(x, a, b),PhV k
h+1(x, a, b) + (H − h)}

≥ 0, (101)

where the last inequality follows from (98). Combining (100) and (101), we conclude the
proof of Lemma 20.

C.2 Proof of Corollary 9

Proof [Proof of Corollary 9] The proof is an extension of Corollary 4.5 in Jin et al. (2020c).
For notational simplicity, we define

Σh(x) = Eπ∗,ν∗,x[φ(sh, ah, bh)φ(sh, ah, bh)>],

for all x ∈ S and h ∈ [H]. With this notation and the Cauchy-Schwarz inequality, we have

Eπ∗,ν∗,x
[√

φ(sh, ah, bh)>Λ−1
h φ(sh, ah.bh)

]
= Eπ∗,ν∗,x

[√
Tr
(
φ(sh, ah, bh)>Λ−1

h φ(sh, ah, bh)
)]

= Eπ∗,ν∗,x
[√

Tr
(
φ(sh, ah.bh)φ(sh, ah, bh)>Λ−1

h

)]
= Eπ∗,ν∗

[√
Tr
(
Σh(x)Λ−1

h

)]
. (102)
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Plugging (102) into Theorem 8, together with the assumption that Λh � I + c · K ·
Eπ∗,ν∗,x[φ(sh, ah, bh)φ(sh, ah, bh)>] with probability at least 1 − p/2 and a union bound
argument, we further with probability at least 1− p have

SubOpt(π̂, ν̂, x) ≤ 3β′
H∑
h=1

Eπ∗,ν∗
[√

Tr
(

Σh(x)
(
I + c ·K · Σh(x)

)−1
)]

= 3β′
H∑
h=1

√√√√ d∑
j=1

λh,j(x)

1 + cKλh,j(x)
(103)

for all x ∈ S. Here {λh,j(x)}dj=1 are the eigenvalues of Σh(x). Meanwhile, by Jensen’s
inequality, we obtain

‖Σh(x)‖op ≤ Eπ∗,ν∗,x[‖φ(sh, ah, bh)φ(sh, ah, bh)>‖op] ≤ 1, (104)

where the last inequality follows from the fact that ‖φ(·, ·, ·)‖2 ≤ 1. Combining (103) and
(104), it holds with probability at least 1− p that

SubOpt(π̂, ν̂, x) ≤ 3β′
H∑
h=1

√√√√ d∑
j=1

1

1 + cK

≤ C̄ · d3/2H2
√

log(4dHK/p)/K,

where C̄ = 3C/
√
c, which concludes the proof of Corollary 9.

Appendix Appendix D. Results with Pessimistic Tie-breaking

D.1 Stackelberg-Nash Equilibria in Pessimistic Tie-breaking Setup

For any leader policy π, we can define

ν†(π) = {ν ∈ BR(π) |V π,ν
l,h (x) ≤ V π,ν′

l,h (x), ∀x ∈ S, h ∈ [H], ν ′ ∈ BR(π)}, (105)

where BR(π) is the best-response set defined in (10). That is, ν†(π) is the worst-case
response in the set BR(π). Then we define the Stackelberg-Nash equilibria by

SNE†l = {π |V π,ν∗(π)
l,h (x) ≥ V π′,ν†(π′)

l,h (x),∀x ∈ S, h ∈ [H], π′}. (106)

We point out that finding the Stackelberg-Nash equilibria in the pessimistic tie-breaking
setting is harder. Specifically, compared with optimistic tie-breaking setting (cf. (8)), we
need to solve a more complicated constrained max-min optimization problem:

max
π

min
ν
V π,ν
l,1 (x) s.t. ν ∈ BR(π).

Under this more challenging setting, we focus on the leader-controller linear Markov games
setting (Assumption 3). Similar to Theorems 5 and 8, we obtain the following two theorems
in the online and offline settings respectively.
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D.2 Main Results for the Online Setting

Theorem 26 Under Assumptions 1, 3, and 4, there exists an absolute constant C > 0
such that, for any fixed p ∈ (0, 1), by setting β = C · dH

√
ι with ι = log(2dT/p) in Line

7 of Algorithm 6 and ε = 1
KH in Algorithm 7, then have νk = ν†(πk) for any k ∈ [K].

Meanwhile, with probability at least 1− p, the regret incurred by Algorithm 6 satisfies that

Regret(K) =
K∑
k=1

V π∗,ν∗

l,1 (xk1)− V πk,νk

l,1 (xk1) ≤ O(
√
d3H3Tι2).

Proof See Appendix D.4 for a detailed proof.

Misspecification. When the transitions do not ideally satisfy the leader-controller assump-
tion, we can potentially consider cases that transitions satisfy, for instance, |Ph(· |x, a, b)−
Ph(· |x, a)‖∞ ≤ % for any (h, x, a, b) ∈ [H] × S × Al × Af , Here % is the misspecification
error. We can still follow the above method to tackle the misspecified cases. However,
because of the misspecification error cumulated during T steps, an extra term O(%T ) will
appear in the final result. In particular, When % is small, that is the Markov games have
approximately leader-controller transitions, the extra term O(%T ) should be small, which
further indicates that we can find SNEs efficiently in some misspecified general-sum Markov
games.

Algorithm 6 Optimistic Value Iteration to Find Stackelberg-Nash Equilibria (pessimistic
tie-breaking version)

1: Initialize Vl,H+1(·) = Vf,H+1(·) = 0.
2: for k = 1, 2, · · · ,K do
3: Receive initial state xk1.
4: for step h = H,H − 1, · · · , 1 do
5: Λkh ←

∑k−1
τ=1 φ(xτh, a

τ
h)φ(xτh, a

τ
h)> + I.

6: wkh ← (Λkh)−1
∑k−1

τ=1 φ(xτh, a
τ
h) · V k

h+1(xτh+1).

7: Γkh(·, ·, ·)← β · (φ(·, ·)>(Λkh)−1φ(·, ·))1/2.
8: Qkh(·, ·, ·)← rl,h(·, ·, ·) + ΠH−h{φ(·, ·)>wkh + Γkh(·, ·)}.
9: (πkh(· |x), {νkfi,h(· |x)}i∈[N ])← ε-SNE(Qkh(x, ·, ·), {rfi,h(x, ·, ·)}i∈[N ]), ∀x. (Alg. 7)

10: V k
h (x)← Ea∼πkh(· |x),b1∼νkf1,h(· |x),··· ,bN∼νkfN ,h(· |x)Q

k
h(x, a, b1, · · · , bN ), ∀x.

11: end for
12: for h = 1, 2, ·, H do
13: Sample akh ∼ πkh(· |xkh), bk1,h ∼ νkf1,h(· |xkh), · · · , bkN,h ∼ νkfN ,h(· |xkh).

14: Leader takes action akh; Followers take actions bkh = {bki,h}i∈[N ].

15: Observe next state xkh+1.
16: end for
17: end for
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Algorithm 7 ε-SNE (pessimistic tie-breaking version)

1: Input: Qkh, x, and parameter ε.
2: Select Q̃ from Qkh,ε satisfying ‖Q̃−Qkh‖∞ ≤ ε.
3: For the input state x, let (πkh(· |x), {νkfi,h(· |x)}i∈[N ]) be the Stackelberg-Nash equi-

librium for the matrix game with payoff matrices (Q̃(x, ·, ·), {rfi,h(x, ·, ·)}i∈[N ]) in the
pessimistic tie-breaking setting.

4: Output: (πkh(· |x), {νkfi,h(· |x)}i∈[N ]).

D.3 Main Results for the Offline Setting

Theorem 27 Under Assumptions 1, 3, 4, and 7, there exists an absolute constant C > 0
such that, for any fixed p ∈ (0, 1), by setting β′ = C · dH

√
log(2dHK/p) in Line 6 of

Algorithm 8 and ε = d
KH in Algorithm 7, then we have ν̂ = ν†(π̂). Meanwhile, with

probability at least 1− p, we have

SubOpt(π̂, ν̂, x) = V π∗,ν∗

l,1 (x)− V π̂,ν̂
l,1 (x) ≤ 3β′

H∑
h=1

Eπ∗,x
[(
φ(sh, ah)>(Λh)−1φ(sh, ah)

)1/2]
,

where Eπ∗,x is taken with respect to the trajectory incurred by π∗ in the underlying leader-
controller Markov game when initializing the progress at x. Here Λh is defined in Line 4 of
Algorithm 8.

Proof Combining the proofs of Theorems 8 and 26, we can conclude the proof of Theo-
rem 27. To avoid repetition, we omit the detailed proof here.

Optimality of the Bound: Assuming dummy followers—that is, the actions taken by
the followers won’t affect the reward functions and transition kernels—the Markov game
reduces to a linear MDP (Jin et al., 2020b). Together with the information-theoretic lower
bound Ω(

∑H
h=1 Eπ∗,x[(φ(sh, ah)>(Λh)−1φ(sh, ah))1/2]) established in Jin et al. (2020c) for

linear MDPs, we immediately obtain the same lower bound for our setting. In particular,
our upper bound established in Theorem 27 matches this lower bound up to β′ and absolute
constants and thus implies that our algorithm is nearly minimax optimal.

40



Find Stackelberg-Nash Equilibria in Markov Games with Myopically Rational Followers

Algorithm 8 Pessimistic Value Iteration to Find Stackelberg-Nash Equilibria (pessimistic
tie-breaking version)

1: Input: D = {xτh, aτh, bτh = {bτi,h}i∈[N ]}
K,H
τ,h=1 and reward functions {rl, rf = {rfi}i∈[N ]}.

2: Initialize V̂H+1(·) = 0.
3: for step h = H,H − 1, · · · , 1 do
4: Λh ←

∑K
τ=1 φ(xτh, a

τ
h)φ(xτh, a

τ
h)> + I.

5: wh ← (Λh)−1
∑K

τ=1 φ(xτh, a
τ
h) · V̂h+1(xτh+1).

6: Γh(·, ·)← β′ · (φ(·, ·)>(Λh)−1φ(·, ·))1/2.
7: Q̂h(·, ·, ·)← rl,h(·, ·, ·) + ΠH−h{φ(·, ·)>wh − Γh(·, ·)}.
8: (π̂h(· |x), {ν̂fi,h(· |x)}i∈[N ])← ε-SNE(Q̂h(x, ·, ·), {rfi,h(x, ·, ·)}i∈[N ]), ∀x. (Alg. 7)

9: V̂h(x)← Ea∼π̂h(· |x),b1∼ν̂f1,h(· |x),··· ,bN∼ν̂fN ,h(· |x)Q̂h(x, a, b1, · · · , bN ), ∀x.
10: end for
11: Output: (π̂ = {π̂h}Hh=1, ν̂ = {ν̂fi = {νfi,h}Hh=1}Ni=1).

D.4 Proof of Theorem 26

Proof [Proof of Theorem 26] For leader-controller Markov games, we have a stronger version
of Lemma 10.

Lemma 28 For any k ∈ [K], we have νk = ν†(πk). Here ν†(·) is defined in (105).

Proof Fix k ∈ [K], by the definition of the best response in (5), we have

BR(πk) = {ν = {νfi}i∈[N ] | ν is the NE of the followers given the leader policy πk}

= {ν = {νfi}i∈[N ] | ν is the NE of {V πk,ν
fi,h

(x)}i∈[N ], ∀h ∈ [H] and x ∈ S}

= {ν = {νfi}i∈[N ] | ν is the NE of {rπ
k,ν
fi,h

(x)}i∈[N ], ∀h ∈ [H] and x ∈ S}, (107)

where rπ
k,ν
fi,h

(x) = 〈rfi,h(x, ·, ·, · · · , ·), πkh(· |x)× νf1,h(· |x)× · · ·× νfN ,h(· |x)〉Al×Af . Here the
last inequality uses Bellman equality (2) and the leader-controller assumption. Moreover,
by the definition of ν†(πk) defined in (6), we have that

ν†h(πk) = {ν†fi,h(πk)}i∈[N ] ∈ argmin
ν∈BR(πk)

V πk,ν
l,h (x) = argmin

ν∈BR(πk)

rπ
k,ν
l,h (x), (108)

where rπ
k,ν
l,h (x) = 〈rl,h(x, ·, ·, · · · , ·), πkh(· |x)× νf1,h(· |x)× · · · × νfN ,h(· |x)〉Al×Af . Here the

last equality uses the single-controller assumption.
Recall that, in the subroutine ε-SNE (Algorithm 2), we pick the function Q̃ ∈ Qkh,ε such

that ‖Qkh − Q̃‖∞ ≤ ε and solve the matrix game defined in (17). Here Qkh,ε is the class of
functions Q : S ×Al ×Af → R that takes form

Q(·, ·, ·) = rl,h(·, ·, ·) + ΠH−h
{
φ(·, ·)>w + β ·

(
φ(·, ·)>Λ−1φ(·, ·)

)1/2}
, (109)

where ‖w‖2 ≤ H
√
dk and λmin(Λ) ≥ 1. Thus, given the leader policy πk, the best response

of the followers for the matrix game defined in (17) takes the form

BR′(πk) = {ν | ν is the NE of {〈rfi,h(x, ·, ·), πkh(· |x)× νh(· |x)〉}i∈[N ],∀h ∈ [H] and x ∈ S}
= BR(πk) (110)
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where 〈rfi,h(x, ·, ·), πkh(· |x)×νh(· |x)〉 is the shorthand of 〈rfi,h(x, ·, ·, · · · , ·), πkh(· |x)×νf1,h(· |x)×
· · · × νfN ,h(· |x)〉Al×Af . Here the last equality uses (107). Similarly, by the definition of

Qkh,ε in (109), we can obtain that

argmin
νh

〈Q̃(x, ·, ·), πkh(· |x)× νh(· |x)〉 = argmin
νh

〈rl,h(x, ·, ·), πkh(· |x)× νh(· |x)〉, (111)

where 〈rl,h(x, ·, ·), πkh(· |x) × νh(· |x)〉 is the abbreviation of 〈rfi,h(x, ·, ·, · · · , ·), πkh(· |x) ×
νf1,h(· |x) × · · · × νfN ,h(· |x)〉Al×Af Together with (108) and (110), we have that, for the

matrix game with payoff matrices (Q̃(xkh, ·, ·), {rkfi,h(xkh, ·, ·)}i∈[N ]), the policy νkh(· |xkh) =

{νkfi,h(· |xkh)}i∈[N ] is also the best response of πkh(· |xkh) and breaks ties against favor of the

leader. Therefore, we have νk = ν†(πk) for any k ∈ [K], which concludes the proof of
Lemma 28.

Then we only need to bound the quantity
∑K

k=1

∑K
k=1 V

π∗,ν∗

l,1 (xk1)−V πk,νk

l,1 (xk1). By Lemma 11,
we have

Regret(K) =
K∑
k=1

H∑
h=1

Eπ∗,ν∗ [〈Qkh(xkh, ·, ·), π∗h(· |xkh)× ν∗h(· |xkh)− πkh(· |xkh)× νkh(· |xkh)〉]︸ ︷︷ ︸
(l.1): Computational Error

+

K∑
k=1

H∑
h=1

(
Eπ∗,ν∗ [δkh(xh, ah, bh)]− δkh(xkh, a

k
h, b

k
h)
)

︸ ︷︷ ︸
(l.2): Statistical Error

+

K∑
k=1

H∑
h=1

(ζ1
k,h + ζ2

k,h)︸ ︷︷ ︸
(l.3): Randomness

,

where 〈Qkh(xkh, ·, ·), π∗h(· |xkh)×ν∗h(· |xkh)−πkh(· |xkh)×νkh(· |xkh)〉 = 〈Qkh(xkh, ·, ·, · · · , ·), π∗h(· |xkh)×
ν∗f1,h(· |xkh)× · · · ν∗fN ,h(· |xkh)− πkh(· |xkh)× νkf1,h(· |xkh)× · · · νkfN ,h(· |xkh)〉Al×Af .

By the same argument of Lemma 28, we have that, for the matrix game with pay-
off matrices (Q̃(xkh, ·, ·), {rkfi,h(xkh, ·, ·)}i∈[N ]), ν

∗
h(· |xkh) belongs to the best response set of

π∗h(· |xkh) and breaks ties against favor of the leader. Recall that (πkh(· |xkh), νkh(· |xkh) =
{νkfi,h(· |xkh)}i∈[N ]) is the Stackelberg-Nash equilibrium of the matrix game with payoff ma-

trices (Q̃(xkh, ·, ·, ·), {rkfi,h(xkh, ·, ·, ·)}i∈[N ]) in the pessimistic tie-breaking setting, which im-

plies that πkh(· |xkh) is the “worst response to the best response,” which further implies
that

〈Q̃(xkh, ·, ·), π∗h(· |xkh)× ν∗h(· |xkh)− πkh(· |xkh)× νkh(· |xkh)〉 ≤ 0 (112)

for any (k, h) ∈ [K]× [H]. Thus, for any (k, h) ∈ [K]× [H], we have

〈Qkh(xkh, ·, ·), π∗h(· |xkh)× ν∗h(· |xkh)− πkh(· |xkh)× νkh(· |xkh)〉
= 〈Q̃(xkh, ·, ·), π∗h(· |xkh)× ν∗h(· |xkh)− πkh(· |xkh)× νkh(· |xkh)〉

+ 〈Qkh(xkh, ·, ·)− Q̃(xkh, ·, ·), π∗h(· |xkh)× ν∗h(· |xkh)− πkh(· |xkh)× νkh(· |xkh)〉
≤ ε, (113)

where the last inequality uses (44) and the fact that ‖Qkh− Q̃‖∞ ≤ ε. By taking summation
over (k, h) ∈ [K] × [H], we bound the computational error as desired. Moreover, we can
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characterize statistical error by Lemmas 14 and 15. The remaining randomness term can
be bounded by Lemma 16. Putting these together, we have Regret(K) ≤ O(

√
d3H3Tι2),

which concludes the proof of Theorem 26.

Appendix Appendix E. Supporting Lemmas

Lemma 29 (Elliptical Potential Lemma) Let {φt}∞t=1 be an Rd-valued sequence. Mean-
while, let Λ0 ∈ Rd×d be a positive-definite matrix and Λt = Λ0 +

∑t−1
j=1 φjφ

>
j . It holds for

any t ∈ Z+ that

t∑
j=1

min{1, ‖φj‖2Λ−1
j
} ≤ 2 log

(
det(Λt+1)

det(Λ1)

)
.

Proof See Lemma 11 of Abbasi-Yadkori et al. (2011) for a detailed proof.

Lemma 30 (Concentration of Self-Normalized Process) Let {F̃t}∞t=0 be a filtration
and {ηt}∞t=1 be an R-valued stochastic process such that ηt is F̃t-measurable for any t ≥ 0.
We also assume that, for any t ≥ 0, conditioning on F̃t, ηt is a zero-mean and σ-sub-
Gaussian random variable, that is,

E[ηt | F̃t] = 0, E[eληt | F̃t] ≤ eλ
2σ2/2, (114)

for any λ ∈ R. Let {Xt}∞t=1 be an Rd-valued stochastic process such that Xt is F̃t-measurable
for any t ≥ 0. Also, let Y ∈ Rd×d be a deterministic and positive-definite matrix. For any
t ≥ 0, we define

Y t = Y +
t∑

s=1

XsX
>
s , St =

t∑
s=1

ηs ·Xs.

For any δ > 0 and t ≥ 0., it holds with probability at least 1− δ that

‖St‖2
Y
−1
t

≤ 2σ2 · log

(
det(Y t)

1/2 det(Y )−1/2

δ

)
.

Proof See Theorem 1 of Abbasi-Yadkori et al. (2011) for a detailed proof.

Lemma 31 For any fixed h ∈ [H], let V : S → [0, H] be any fixed value function. Under
Assumption 7, for any fixed δ > 0, we have

PD

(∥∥∥ K∑
k=1

φ(xτh, a
τ
h, b

τ
h) ·

(
V (xτh+1)− PhV (xτh, a

τ
h, b

τ
h)
)∥∥∥

Λ−1
h

> H2 ·
(
2 log(1/δ) + d · log(1 +K)

))
≤ δ.

Proof See Lemma B.2 of Jin et al. (2020c) for a detailed proof.

43



Zhong, Yang, Wang and Jordan

Lemma 32 (Covering) Let Qh be the class of value functions Q : S ×Al ×Af → R that
takes the form

Q(·, ·, ·) = rl,h(·, ·, ·) + ΠH−h{(φ(·, ·, ·)>w + β ·
(
φ(·, ·, ·)>Λ−1φ(·, ·, ·)

)1/2},
which are parameterized by (w,Λ) ∈ Rd × Rd×d such that ‖w‖ ≤ L and λmin(Λ) ≥ λ. We
assume that β is fixed and satisfy that β ∈ [0, B], and the feature map φ : S × A → Rd
satisfies that ‖φ(·, ·)‖2 ≤ 1. We have that, for any L,B, ε > 0, there exists an ε-covering of
Qh with respect to the `∞ norm such that the covering number Nε satisfies

logNε ≤ d · log(1 + 4L/ε) + d2 · log
(
1 + 8B2

√
d/(ε2λ)

)
.

Proof See Jin et al. (2020b) for a detailed proof.
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