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Abstract

A ridge is a function that is characterized by a one-dimensional profile (activation) and
a multidimensional direction vector. Ridges appear in the theory of neural networks as
functional descriptors of the effect of a neuron, with the direction vector being encoded
in the linear weights. In this paper, we investigate properties of the Radon transform in
relation to ridges and to the characterization of neural networks. We introduce a broad
category of hyper-spherical Banach subspaces (including the relevant subspace of measures)
over which the back-projection operator is invertible. We also give conditions under which
the back-projection operator is extendable to the full parent space with its null space being
identifiable as a Banach complement. Starting from first principles, we then characterize
the sampling functionals that are in the range of the filtered Radon transform. Next, we
extend the definition of ridges for any distributional profile and determine their (filtered)
Radon transform in full generality. Finally, we apply our formalism to clarify and simplify
some of the results and proofs on the optimality of ReLU networks that have appeared in
the literature.

1. Introduction

A ridge is a multidimensional function x 7→ r(wTx) from Rd → R that is characterized
by a 1D profile r : R → R and a weight vector w ∈ Rd\{0} (Pinkus, 2015). Ridges
are ubiquitous in mathematics and engineering. Most significantly, the elementary unit
(neuron) in a neural network is a function of the form fk(x) = σ(wT

kx − tk), which is a
ridge with a shifted profile r = σ(· − tk), where σ : R → R is the activation function and
where tk ∈ R (bias) and wk ∈ Rd (linear weights) are the trainable parameters of the kth
neuron (Bishop, 2006). Variants of the universal-approximation theorem ensure that any
continuous function can be approximated as closely as desired by a weighted sum of ridges
with a fixed activation under mild conditions on σ (Cybenko, 1989; Hornik et al., 1989;
Barron, 1993).

Ridges are also intimately tied to the Radon transform (Logan and Shepp, 1975; Madych,
1990) under the condition that the weight vector w has a unit norm, so that w ∈ Sd−1 where
Sd−1 is the unit sphere in Rd whose generic elements will be denoted by ξ. This connection is
exploited in the ridgelet transform, which provides a wavelet-like representation of functions
where the basis elements are ridges (Murata, 1996; Rubin, 1998; Candès, 1999; Candès and
Donoho, 1999; Kostadinova et al., 2014). The expansion of a function in terms of ridgelets
is a precusor to sparse signal approximation. There, the idea is to represent a function by
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a linear combination of a small number of atoms taken within a dictionary (Elad, 2010;
Foucart and Rauhut, 2013). This paradigm, which is the basis for compressed sensing
(Donoho, 2006; Candès and Romberg, 2007), has been adapted to shallow neural networks
by considering a dictionary that consists of a continuum of neurons. Mathematically, this
can be implemented through the integral representation (infinite-width neural network)

f(x) =

∫
R×Sd−1

σ(ξTx− t)dµ(t, ξ), (1)

where µ is a measure on R × Sd−1 (hyper-spherical domain). This model is fitted to data
subject to a penalty on the total-variation norm of µ (Bach, 2017). Remarkably, this
infinite-dimensional convex optimization problem results in sparse minimizers of the form
µ =

∑K
k=1 akδzk with zk = (tk, ξk) ∈ R × Sd−1, which then map into standard two-layer

neural networks (Bach, 2017). Interestingly, we can relate (1) to the Radon transform by
identifying µ as the (generalized) function gµ (with dµ(t, ξ) = gµ(t, ξ)dtdξ) and by rewriting
the integral as

f(x) =

∫
Sd−1

(∫
R
σ(ξTx− t)gµ(t, ξ)dt

)
dξ = R∗Lrad{gµ}(x), (2)

where R∗ (the adjoint of the Radon transform) is the back-projection operator of computer
tomography (Natterer, 1984). Our “radial” operator Lrad : gµ 7→ σ ~ gµ on the right-hand
side of (2) implements the Radon-domain convolution with σ along the variable t.

While the synthesis approach to the learning problem proposed by Bach (2017) is in-
sightful, there is a strong incentive to make the connection with regularization theory in
direct analogy with the classical theory of learning that relies on reproducing-kernel Hilbert
spaces (Wahba, 1990; Poggio and Girosi, 1990; Schölkopf et al., 1997, 2001; Alvarez et al.,
2012; Unser, 2021). This is feasible provided that the linear relation between f and gµ
expressed by (2) be one-to-one. This requires that the operators Lrad and R∗ in (2) be both
invertible. Ongie et al. (2020) made an important step in that direction by showing that
ReLU networks are minimizers of a Radon-domain total-variation norm that involves the
Laplacian of f . Their optimality result was then generalized by Parhi and Nowak (2021)
who considered a broader class of differential operators inspired by spline theory (Unser
et al., 2017). The leading idea there is that the operator Lrad in (2) should implement some
variant of an nth-order integrator, with σ = ReLU being the solution for n = 2. Such an
Lrad can be formally inverted by applying an nth-order partial derivative (e.g., L−1

rad = ∂nt ),
which motivates the use of the latter as (filtered) Radon-domain regularization operator.

The proposed spline-based approach to the inversion of (2) is elegant and intuitively ap-
pealing. However, the formulation and resolution of the corresponding optimization problem
requires special care because the underlying function spaces have a nontrivial kernel (null
space) that needs to be factored out. The latter statement applies not only to the regular-
ization operator (e.g., Laplacian and/or Radon-domain radial derivatives) but also to R∗,
which is an aspect that has been overlooked. While there is a rich theory on the invertibility
of the Radon transform (Helgason, 2011; Rubin, 1998; Boman and Lindskog, 2009; Ramm
and Katsevich, 2020), there are comparatively fewer—and not as strong—results on the
invertibility of R∗, the problem being that this operator has a huge null space (Ludwig,
1966). The primary spaces on which R∗ is known to be injective, and hence invertible, are

2



Ridges, Neural Networks, and the Radon Transform

• S(Pd) (the even part of Schwartz’ hyper-spherical—or Radon-domain—test functions)
(Solmon, 1987);

• L∞,c(Pd) (the bounded even functions of compact support) (Ramm, 1996);

• S ′Liz(Pd) (the even Lizorkin distributions) (Kostadinova et al., 2014).

The space S ′Liz(Rd) of Lizorkin distributions, which is the topological dual of SLiz(Rd)
(the subspace of Schwartz functions that are orthogonal to all polynomials), is especially
attractive in that context. Indeed, the Radon transform being an homeomorphism from
S ′Liz(Rd) onto S ′Liz(Pd), the inversion process is straightforward (Kostadinova et al., 2014).
Lizorkin distributions also interact very nicely with the Laplace operator, which makes
then well suited to the investigation of fractional integrals (Samko et al., 1993) and of
wavelets (Saneva and Vindas, 2010). The Lizorkin framework, however, has one basic
limitation. The underlying objects—Lirzorkin distributions—are abstract entities, with
S ′Liz(Rd) being isomorphic to the quotient space S ′(Rd)/P, where S ′(Rd) and P are the
spaces of tempered distributions and polynomials, respectively. Thus, Lizorkin distributions
are generally identifiable only modulo some polynomial. Fortunately, this is not a problem
when dealing with ordinary functions f ∈ Lp(Rd) since Lp(Rd) is continuously embedded
in S ′Liz(Rd) for any p > 1 (Samko, 1982). This implies that the Lizorkin distribution
f +P ∈ S ′Liz(Rd) has a unique “concrete” representer f ∈ Lp(Rd), which amounts to simply
setting the polynomial to zero. The situation, however, is not as clearcut for functions and
ridge profiles that exhibit polynomial growth at infinity. To offer insights on the nature of the
problem, let us consider three distinct neuronal units f1(x) = (x− tk)+ (ReLU activation),
f2(x) = 1

2 |x−tk|, and f3(x) = x+(x−tk)+ (ReLU with skip connection), which are all valid
representers of the same Lizorkin distribution f = fi + P ∈ S ′Liz(R) for i = 1, 2, 3 (since
the fi’s only differ by a first-order polynomial). Suppose that a theoretical argument can
be made concerning the optimality of the announced f ∈ S ′Liz(R). The practical difficulty
then is to map this result into a concrete architecture. Should the choice be one of the fi,
if any? The least we can say is that the convenient rule of “setting the polynomial to zero”
is not applicable here because it is unclear what the underlying polynomial truly is. This
intrinsic ambiguity jeopardizes some of the conclusions regarding the connection between
ReLU neural networks, ridge splines, and the Radon transform that have been reported in
the literature (Sonoda and Murata, 2017; Parhi and Nowak, 2021). We are in the opinion
that adjustments are needed.

In this paper, we revisit the topic and extend the existing formulation so that it can
handle arbitrary ridge profiles, without (polynomial) ambiguity. Our four primary contri-
butions are as follows.

• A detailed investigation of the invertibility of the back-projection operator for a broad
family of Radon-compatible Banach subspaces X ′Rad ⊂ X ′, where X ′ is the topological
dual of some generic hyper-spherical parent space X .

• A constructive characterization of the extreme points of the space of Radon-compatible
hyper-spherical measures.

• The extension of ridges to distributional profiles r ∈ S ′(R) and the determination of
their Radon transform.
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• The application of the formalism to the investigation of a functional-optimization
problem that results in solutions that are parameterized by ReLU neural networks.
Our contribution there is to clarify the analysis of Parhi and Nowak (2021) and to
provide a characterization of the full solution set.

The paper is organized as follows: We start with notations and mathematical prelim-
inaries in Section 2. In particular, we recall the main properties of the classical Radon
transform and its adjoint, and show how to extend them to tempered distributions by dual-
ity. In Section 3, we develop a formulation that leads to the identification of a generic family
of Radon-compatible Banach spaces over which the back-projection operator is invertible.
Our results are summarized in Theorem 8, which can be viewed as the Banach counterpart
of the classical result for tempered distributions (Ludwig, 1966). In Section 4, we use our
framework to characterize the sampling functionals (Radon-compatible Diracs) that are in
the range of the filtered Radon transform (Theorem 9). In Section 5, we introduce a gen-
eral definition of a ridge with an arbitrary distributional profile and derive its (filtered)
Radon transform. Finally, in Section 6, we apply our formalism to the resolution of a mul-
tidimensional supervised-learning problem with a 2nd-order Radon-domain regularization
formulated by Parhi and Nowak (2021), the outcome being Theorem 12 on the optimality
of ReLU networks.

2. Mathematical Preliminaries

2.1 Notations

We shall consider multidimensional functions f on Rd that are indexed by the variable
x ∈ Rd. To describe their partial derivatives, we use the multi-index k = (k1, . . . , kd) ∈ Nd

with the notational conventions k!
M
=
∏d
i=1 ki!, |k|

M
= k1 + · · · + kd, x

k M
=
∏d
i=1 x

ki
i for any

x ∈ Rd, and ∂kf(x)
M
= ∂|k|f(x1,...,xd)

∂
k1
x1
···∂kdxd

. This allows us to write the multidimensional Taylor

expansion around x0 of an analytical function f : Rd → R explicitly as

f(x) =
∞∑
n=0

∑
|k|=n

∂kf(x0)(x− x0)k

k!
, (3)

where the internal summation is over all multi-indices k = (k1, . . . , kd) such that k1 + · · ·+
kd = n.

Schwartz’ space of smooth and rapidly decreasing test functions ϕ : Rd → R equipped
with the usual Fréchet-Schwartz topology is denoted by S(Rd). Its continuous dual is the
space S ′(Rd) of tempered distributions. In this setting, the Lebesgue spaces Lp(Rd) for p ∈
[1,∞) can be specified as the completion of S(Rd) equipped with the Lp-norm ‖·‖Lp ; that is,

Lp(Rd) = (S(Rd), ‖ · ‖Lp). For the end point p =∞, we have that (S(Rd), ‖ · ‖sup) = C0(Rd)
with ‖ϕ‖sup = supx∈Rd |ϕ(x)| = ‖ϕ‖L∞ , where C0(Rd) is the space of continuous functions
that vanish at infinity. Its continuous dual is the spaceM(Rd) = {f ∈ S ′(Rd) : ‖f‖M <∞}
of bounded Radon measures with

‖f‖M = sup
ϕ∈S(Rd):‖ϕ‖L∞≤1

〈f, ϕ〉.
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The latter is a superset of L1(Rd), which is isometrically embedded in it, meaning that
‖f‖L1 = ‖f‖M for all f ∈ L1(Rd).

The Fourier transform of a function ϕ ∈ L1(Rd) is defined as

ϕ̂(ω)
M
= F{ϕ}(ω) =

1

(2π)d

∫
Rd
ϕ(x)e−j〈ω,x〉dx. (4)

Since the Fourier operator F continuously maps S(Rd) into itself, the transform can be
extended by duality to the whole space S ′(Rd) of tempered distribution. Specifically, f̂ =
F{f} ∈ S ′(Rd) is the (unique) generalized Fourier transform of f ∈ S ′(Rd) if and only if
〈f̂ , ϕ〉 = 〈f, ϕ̂〉 for all ϕ ∈ S(Rd), where ϕ̂ = F{ϕ} is the “classical” Fourier transform of ϕ
defined by (4).

2.2 Polynomial Spaces and Related Projectors

The regularization operators (e.g., the Laplacian) that are of interest to us are isotropic and
have a growth-restricted null space formed by the polynomials of degree n0. This space is
denoted by Pn0 and is spanned by the monomial/Taylor basis

mk(x)
M
=
xk

k!
(5)

with |k| ≤ n0. Accordingly, we have that

Pn0 = {p0 =
∑
|k|≤n0

bkmk : ‖p0‖P <∞} with ‖p0‖P M
= ‖(bk)|k|≤n0

‖2, (6)

where we have chosen to equip the space with the `2-norm of the Taylor coefficients. The
important point here is that (6) specifies a finite-dimensional Banach subspace of S ′(Rd).
Its continuous dual P ′n0

is finite-dimensional as well, although it is composed of “abstract”
elements that do, in fact, admit infinitely many possible representers in S ′(Rd). Here,
we choose to identify every dual element p∗0 ∈ P ′n0

concretely as a function in S(Rd) by
selecting a particular dual basis {m∗k}|k|≤n0

such that 〈m∗k,mk′〉 = δk−k′ (Kroneker delta).
The existence of such a basis is guaranteed because Pn0 is a finite-dimensional subspace of
S ′(Rd) (Rudin, 1991, Theorem 3.5). Our specific choice is

m∗k = (−1)|k|∂kκiso ∈ S(Rd) (7)

with k ∈ Nd, where κiso is the isotropic function described below.

Lemma 1 There exists an entire isotropic function κiso ∈ S(Rd) with 0 ≤ κ̂iso(ω) ≤ 1 and
κ̂iso(ω) = 0 for ‖ω‖ ≥ 1 such that∫

Rd

xk

k!
(−1)|n|∂nκiso(x)dx = δk−n (8)

for all k,n ∈ Nd.

5



Unser

Proof We take κiso = F−1{κ̂rad(‖ · ‖)}, where the radial profile κ̂rad : R→ R is such that
κ̂rad ∈ S(R), κ̂rad(ω) = 1 for 0 ≤ |ω| ≤ R0 ≤ 1

2 , and κ̂rad(ω) = 0 for |ω| ≥ 1. A particular
construction with R0 = 1

2 is κ̂rad = rect ∗ ϕ, where ϕ ∈ S(R) is a symmetric, non-negative
test function (to avoid oscillations) with support(ϕ) ⊆ [−1

2 ,
1
2 ] and

∫
R ϕ(x)dx = 1. Next,

we observe that

〈mk, (−1)|n|∂nκiso〉 = 〈∂nmk, κiso〉 =

{
〈mk−n, κiso〉, k − n ≥ 0

〈0, κiso〉 = 0, otherwise.
(9)

We evaluate the duality product for the case m = (k − n) ≥ 0 in the Fourier domain as

〈mm, κiso〉 =
1

(2π)d
〈F{mm}, κ̂iso〉

= 〈 j
|m|

m!
δ(m), κ̂iso〉 =

−j|m|

m!
∂mκ̂iso(0) =

{
1, m = 0

0, otherwise,
(10)

where we have used the relation F{xm}(ω) = (2π)d j|m|δ(m)(ω). Finally, since κ̂iso is
compactly supported, its inverse Fourier transform κiso is an entire function of exponential-
type (by the Paley-Wiener theorem). This means that the function x 7→ κiso(x) is analytic
with a convergent Taylor series of the form (3) for any x,x0 ∈ Rd.

This allows us to describe the dual space explicitly as

P ′n0
= {p∗0 =

∑
|k|≤n0

b∗km
∗
k : ‖p∗0‖P ′

M
= ‖(b∗k)‖2 <∞} (11)

where each elements p∗0 has a unique representation in terms of its coefficients (b∗k)|k|≤n0
.

We also use the dual basis to specify the projection operator ProjPn0
: S ′(Rd)→ Pn0 as

ProjPn0
{f} =

∑
|k|≤n0

〈f,m∗k〉 mk, (12)

which is well-defined for any f ∈ S ′(Rd) since m∗k ∈ S(Rd). While the form of (12) is
generic, it must be emphasized that the resulting projector strongly depends upon our
specific choice of dual basis.

2.3 Radon Transform

The Radon transform integrates of a function of Rd over all hyperplanes of dimension (d−1).
These hyperplanes are indexed over R × Sd−1, where Sd−1 = {ξ ∈ Rd : ‖ξ‖2 = 1} is the
unit sphere in Rd. Specifically, the coordinates x of a hyperplane associated with an offset
t ∈ R and a normal vector ξ ∈ Sd−1 satisfy

ξTx = ξ1x1 + · · ·+ ξdxd = t. (13)

The transform is first described for ordinary (test) functions and then extended to tempered
distributions by duality.
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2.3.1 Classical Integral Formulation

The Radon transform of the function f ∈ L1(Rd) is defined as

R{f}(t, ξ) =

∫
Rd
δ(t− ξTx)f(x)dx, (t, ξ) ∈ R× Sd−1. (14)

The adjoint of R is the back-projection operator R∗. Its action on g ∈ L∞(R× Sd−1) yields
the function

R∗{g}(x) =

∫
Sd−1

g(ξTx︸︷︷︸
t

, ξ)dξ, x ∈ Rd, (15)

where dξ is a surface element on Sd−1.
Given the d-dimensional Fourier transform f̂ = F{f} ∈ C0(Rd) of f ∈ L1(Rd), one can

calculate R{f}(·, ξ0) for any ξ0 ∈ Sd−1 with the help of the Fourier-slice theorem. The
latter is usually stated as

Ft→ω
{

R{f}(t, ξ0)
}

(ω) =

∫
R

R{f}(t, ξ0)e−jωtdt = f̂(ωξ0), (16)

which tells us that the restriction of f̂ : Rd → C along the ray {ω = ωξ0 : ω ∈ R} is equal
to the 1D Fourier transform of R{f}(·, ξ0).

To describe the functional properties of the Radon transform, one needs the hyper-
spherical (or Radon-domain) counterparts of the spaces described in Section 2.1 where the
Euclidean indexing with x ∈ Rd is replaced by (t, ξ) ∈ R×Sd−1. The spherical counterpart
of S(Rd) is S(R × Sd−1). Correspondingly, an element g ∈ S ′(R × Sd−1) is a continuous
linear functional on S(R× Sd−1) whose action on the test function φ(t, ξ) is represented by
the duality product g : φ 7→ 〈g, φ〉Rad. When g can be identified as an ordinary function
g : (t, ξ) 7→ R, one has that

〈g, φ〉Rad =

∫
Sd−1

∫
R
g(t, ξ)φ(t, ξ)dtdξ, (17)

where dξ stands for a surface element on Sd−1 with ‖ξ‖2 = 1. For instance, for d = 2, we
parameterize S1 by setting ξ = (cos θ, sin θ) with dξ = dθ for θ ∈ [0, 2π], which then yields

〈g, φ〉Rad =

∫ 2π

0

∫
R
g(t, θ)φ(t, θ)dtdθ. (18)

Such explicit representations are also available in higher dimensions using hyper-spherical
polar coordinates. Of special importance to us is the translated and rotated hyper-spherical

Dirac distribution δ(t0,ξ0) = δ(·−t0)δ(·−ξ0) ∈ S ′(R×Sd−1), which is defined as 〈δz0 , φ〉Rad
M
=

φ(z0) for all φ ∈ S(R× Sd−1) and any offset z0 = (t0, ξ0) ∈ R× Sd−1. This Dirac impulse,
which is separable in the index variables t and ξ, is included in the Banach space M(R ×
Sd−1) (hyper-spherical Radon measures) with the property that ‖δz0‖M = 1.

The key property for analysis is that the Radon transform is continuous on S and
invertible (see (Ludwig, 1966; Helgason, 2011; Ramm and Katsevich, 2020) for details).
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Theorem 2 (Continuity and Invertibility of the Radon Transform on S(Rd)) The
Radon operator R continuously maps S(Rd)→ S(R×Sd−1). Moreover, R∗KradR = KR∗R =

R∗RK = Id on S(Rd), where K = (R∗R)−1 = cd(−∆)
d−1

2 with cd = 1
2(2π)d−1 is the so-called

“filtering” operator, and is Krad its one-dimensional radial counterpart that acts along the
Radon-domain variable t. These filtering operators are characterized by their frequency
response K̂(ω) = cd‖ω‖d−1 and K̂rad(ω) = cd|ω|d−1.

The image of S(Rd) through the Radon transform is the space SRad
M
= R

(
S(Rd)

)
: a

subset of the space of hyper-spherical test functions S(R× Sd−1) that can be characterized
explicitly.

Theorem 3 (Gelfand and Shilov (1966); Helgason (2011); Ludwig (1966)) A hyper-
spherical test function φ ∈ S(R × Sd−1) is a valid Radon transform in the sense that
φ ∈ SRad = {R{ϕ} : ϕ ∈ S(Rd)} if and only if

1. evenness: φ(t, ξ) = φ(−t,−ξ).

2. moment condition: for any k ∈ N, Φk(ξ) =
∫
R φ(t, ξ)tkdt is a homogeneous polynomial

in ξ ∈ Sd−1.

In particular, a function φ = R{ϕ} ∈ SRad must be symmetric and satisfy
∫
R R{ϕ}(t, ξ)dt =∫

Rd ϕ(x)dx for all ξ ∈ Sd−1.
While Theorem 2 implies that R is invertible on SRad, there is also a stronger version of

this property for SRad equipped with the Schwartz-Fréchet topology inherited from S(R×
Sd−1) (Helgason, 2011, p. 60) (Hertle, 1983).

Theorem 4 The operator R : S(Rd) → SRad is a continuous bijection, with a continuous
inverse given by R−1 = (R∗Krad) : SRad → S(Rd).

The bottom line is that the classical Radon transform is a homeomorphism S(Rd)→ SRad.

2.3.2 Distributional Extension

To extend the framework to distributions, we proceed by duality along the lines exposed
by Ludwig (1966). To that end, we first observe that the inversion formula for the Radon
transform on S(Rd) and the homeomorphism property in Theorem 4 imply that the in-
verse Radon transform R−1 = R∗Krad : SRad → S(Rd), as well as the back-projection
operator R∗ : Krad(SRad) → S(Rd), are endowed with the same property. The idea then
is to identify the adjoint of these operators which act on the dual spaces of distributions
S ′(Rd) =

(
S(Rd)

)′
, S ′Rad =

(
SRad

)′
, and S ′(R× Sd−1) =

(
S(R× Sd−1)

)′
in the unrestricted

scenario. The additional ingredient is the symmetry of the radial filtering operator Krad,
which translates into Krad = K∗rad.

Definition 5 (Generalized Radon transform, filtering and back-projection)

1. The distributional Radon transform

R : S ′(Rd)→
(
Krad(SRad)

)′
is defined as the dual map of the homeomorphism R∗ : Krad(SRad

)
→ S(Rd), where

R∗ is well-defined by (15) since Krad(SRad) ⊂ L∞(Rd).
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2. The distributional filtered projection

KradR : S ′(Rd)→ S ′Rad

is defined as the dual map of the homeomorphism R∗Krad : SRad → S(Rd).

3. The restricted distributional back-projection

R∗ : S ′Rad → S ′(Rd)

is defined as the dual map of the homeomorphism R : S(Rd) → SRad, where R is
well-defined by (14) since S(Rd) ⊂ L1(Rd).

4. The unrestricted distributional back-projection

R∗ : S ′(R× Sd−1)→ S ′(Rd)

is defined as the dual map of the continuous operator R : S(Rd)→ S(R×Sd−1), which
takes advantage of the property that SRad is continuously embedded in S(R× Sd−1).

Based on these definitions, one obtains the classical result on the invertibility of the
(filtered) Radon transform on S ′(Rd) (Ludwig, 1966), which is the dual of Theorem 4.

Theorem 6 (Invertibility of the Radon Transform on S ′(Rd)) It holds that R∗KradR =
Id on S ′(Rd). Moreover, the filtered Radon transform KradR : S ′(Rd) → S ′Rad is bicon-
tinuous and one-to-one, with its continuous inverse (KradR)−1 being the back-projection
operation R∗ : S ′Rad → S ′(Rd).

While Theorem 6 ensures that the filtered Radon transform is well-defined in the distri-
butional sense and invertible on S ′Rad, it is an abstract characterization because the range
of the operator is an equivalence class of distributions. In fact, one can show that S ′Rad

does not have a closed complement in S ′(R × Sd−1), which means that KradR{f} ∈ S ′Rad

cannot, in general, be identified as a unique element in S ′(R × Sd−1). The situation is
more favorable for the back-projection operator R∗, which admits the continuous exten-
sion S ′(R× Sd−1) → S ′(Rd) (see fourth item (unrestricted operator) in Definition 6). The
latter then yields a concrete characterization of the (generalized) back-projection of any
hyper-spherical distribution. Specifically, f = R∗{g} ∈ S ′(Rd) is the back-projection of
g ∈ S ′(R× Sd−1) if

∀ϕ ∈ S(Rd) : 〈R∗{g}, ϕ〉 = 〈g,R{ϕ}〉Rad. (19)

Likewise, we can specify the null space of this unrestricted operator as

NR∗ = {g ∈ S ′(R× Sd−1) : R∗{g} = 0 ⇔ 〈g, φ〉Rad = 0,∀φ ∈ SRad}. (20)

It is important to appreciate that this null space is huge: In addition to the odd hyper-
spherical distributions, it includes a sizeable subset of the even distributions because of the
moment condition in Theorem 3. Since NR∗ = null(R∗) is a closed subspace of S ′(R×Sd−1),
we can now identify S ′Rad as the abstract quotient space S ′(R×Sd−1)/NR∗ . In other words,

9
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if, for a given f ∈ S ′(Rd), we find a hyper-spherical distribution g0 ∈ S ′(R × Sd−1) such
that

∀φ ∈ SRad : 〈g0, φ〉Rad = 〈f,R∗Krad{φ}〉, (21)

then, strictly speaking, KradR{f} ∈ S ′Rad is the equivalence class (or coset) given by

KradR{f} = [g0] = {g0 + h : h ∈ NR∗}. (22)

The members of [g0] are interchangeable—we refer to them as “formal” filtered projections
of f to remind us of this lack of unicity.

To illustrate this ambiguity, we consider the Dirac ridge δ(ξT0x− t0) ∈ S ′(Rd) and refer
to Definition (14) of the Radon transform to deduce that, for all φ = R{ϕ} ∈ SRad with
ϕ ∈ S(Rd),

〈δ(ξT0 · −t0),R∗Krad{φ}〉 = 〈δ(ξT0 · −t0),

Id︷ ︸︸ ︷
R∗KradR{ϕ}〉

=

∫
Rd
δ(ξT0x− t0)ϕ(x)dx = R{ϕ}(−z0) = 〈δ−z0 , φ〉Rad, (23)

where z0 = (t0, ξ0), which shows that the Dirac impulse δ−z0 is a formal filtered projection
of δ(ξT0x− t0). Moreover, since δ(ξT0x− t0) = δ(−ξT0x+ t0), the same holds true for δz0 as
well as for 1

2

(
δz0 + δ−z0

)
. In fact, there is an infinity of potential “formal” solutions, which

is sumarized as

KradR{δ(ξT0 · −t0)} = [δ(t0,ξ0)] ∈ S ′Rad. (24)

The distributional extension of the Radon transform inherits most of the properties of
the “classical” operator defined in (14). Of special relevance to us is the quasi-commutativity
of R with convolution, also known as the intertwining property. Specifically, let h, f ∈ S ′(Rd)
be two distributions whose convolution h ∗ f is well defined in S ′(Rd). Then,

R{h ∗ f} = R{h}~ R{f} (25)

where the symbol “~” denotes a convolution along the radial variable t; that is, (u ~
g)(t, ξ) = 〈u(·, ξ), g(t − ·, ξ)〉. In particular, when h = L{δ} is the (isotropic) impulse re-
sponse of a linear shift-invariant (LSI) operator whose frequency response L̂(ω) = L̂rad(‖ω‖)
is purely radial, we get that

R{h ∗ f} = RL{f} = LradR{f}, (26)

where Lrad is the ~-convolution operator whose 1D frequency response is L̂rad(ω). Likewise,
by duality, for g ∈ S ′(R× Sd−1) we have that

LR∗{g} = R∗Lrad{g} (27)

under the implicit assumption that L{R∗g} and Lrad{g} are well-defined distributions. By
taking inspiration from Theorem 2, we may then use Relations (26) and (27) for L = K =

10
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(R∗R)−1 to show that R∗KradR{f} = R∗RK{f} = KR∗R{f} = f for a broad class of
distributions. While the first form is valid for all f ∈ S ′(Rd) (see Theorem 6), there is a
slight restriction with the second (resp., third), which requires that K{f}

(
resp., K{g} with

g = R∗R{f} ∈ S ′(Rd)
)

be well-defined in S ′(Rd). While the latter condition is always met
when d is odd, it can fail in even dimensions for distributions (e.g., polynomials) whose
Fourier transform is singular at the origin1.

The Fourier-slice theorem expressed by (16) also yields a unique (Fourier-based) charac-
terization of R{f}, which remains valid for f ∈ S ′(Rd) (Ramm and Katsevich, 2020). It is es-
pecially helpful when the underlying function or distribution is isotropic. An isotropic func-
tion ρiso : Rd → R is characterized by its radial profile ρ : R≥0 → R, with ρiso(x) = ρ(‖x‖).
The frequency-domain counterpart of this characterization is ρ̂iso(ω) = ρ̂rad(‖ω‖) where the
radial frequency profile can be computed as

ρ̂rad(ω) =
(2π)d/2

|ω|d/2−1

∫ +∞

0
ρ(t)td/2−1Jd/2−1(ωt)tdt, (28)

where Jν is the Bessel function of the first kind of order ν.

Proposition 7 (Radon Transform of Isotropic Distributions) Let ρiso be an isotropic
distribution whose radial frequency profile is ρ̂rad(ω). Then,

R{ρiso(· − x0)}(t, ξ) = ρrad(t− ξTx0) (29)

KradR{ρiso(· − x0)}(t, ξ} = ρ̃rad(t− ξTx0) (30)

R{∂mρiso}(t, ξ) = ξmD|m|{ρrad}(t) (31)

with ρrad(t) = F−1{ρ̂rad(ω)}(t) and ρ̃rad(t) = 1
2(2π)d−1F−1{|ω|d−1ρ̂rad(ω)}(t).

Proof These identities are direct consequences of the Fourier-slice theorem. For instance,
by setting ω = ωξ in the Fourier transform of ∂mρiso, we get that

∂̂mρiso(ωξ) = (jωξ)mρ̂rad(ω) = ξm(jω)|m|ρ̂rad(ω) (32)

which, upon taking the inverse 1D Fourier transform, yields (31).

Let us note that both ρrad and ρ̃rad, as inverse Fourier transform of a real-valued function,
are symmetric, which is consistent with the symmetry of the Radon transform and its filtered
version.

3. Radon-Compatible Banach Spaces

Our investigation of functional-optimization problems with Radon-domain regularization re-
quires some Banach counterparts of Theorems 4 and 6, preferably such that both R{f} and

1. For d = 2n even, K̂(ω) ∝ ‖ω‖2n−1 which is C∞ everywhere except at the origin, where it is only C2n−2,
meaning that K can only properly handle (and annihilate) polynomials up to degree (2n− 2).

11
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KRadR{f} have concrete representations as hyper-spherical functions or measures. In par-
ticular, we are interested in identifying specific Radon-domain Banach spaces—for instance,
an appropriate subspace of hyper-spherical measures—over which the back-projection op-
erator R∗ is guaranteed to be invertible.

To that end, we pick a “parent” hyper-spherical Banach space X = (X , ‖ · ‖X ) such

that S(R × Sd−1)
d.
↪−→ X d.

↪−→ S ′(R × Sd−1). This dense embedding hypothesis has several
implications.

1. The Banach space X is the completion of S(R× Sd−1) in the ‖ · ‖X norm; i.e.,

X =
(
S(R× Sd−1), ‖ · ‖X

)
. (33)

2. The dual space X ′ ↪−→ S ′(R× Sd−1) is equipped with the norm

‖g‖X ′ = sup
φ∈X : ‖φ‖X≤1

〈g, φ〉 = sup
φ∈S(R×Sd−1): ‖φ‖X≤1

〈g, φ〉, (34)

where the restriction of φ ∈ S(R× Sd−1) on the rightmost side of (34) is justified by
the denseness of S(R× Sd−1) in X .

3. The definition of ‖g‖X ′ found in the rightmost side of (34) is valid for any distribution
g ∈ S ′(R × Sd−1) with ‖g‖X ′ = ∞ for g /∈ X ′. Accordingly, we can specify the
topological dual of X ′ as

X ′ =
{
g ∈ S ′(R× Sd−1) : ‖g‖X ′ <∞

}
. (35)

Prototypical examples where those properties are met are (X ,X ′) =
(
Lp(R×Sd−1), Lq(R×

Sd−1)
)

with p ∈ [1,∞) and q = p/(p − 1) (conjugate exponent), as well as (X ,X ′) =(
C0(R× Sd−1),M(R× Sd−1)

)
for p =∞.

Likewise, by considering the dual pair (SRad,S ′Rad), we specify our Radon-compatible
Banach subspaces

XRad = (SRad, ‖ · ‖X ) (36)

X ′Rad =
(
XRad

)′
=
{
g ∈ S ′Rad : ‖g‖X ′Rad

<∞
}
, (37)

where the underlying dual norms have a definition that is analogous to (34) with S(R×Sd−1)
and X being instanciated by SRad and XRad. We now show that R∗ (resp., KradR∗) is
invertible on X ′Rad (resp., on XRad), which is the main theoretical contribution of this work.

Since R : S(Rd) → SRad is a homeomorphism and the ‖ · ‖X -norm is continuous in
the Fréchet topology of SRad

(
resp., of S(R × Sd−1)

)
, we can consider the normed space

(S(Rd), ‖ · ‖Y) with ‖ϕ‖Y M
= ‖R{ϕ}‖X and identify the operator R : (S(Rd), ‖ · ‖Y) →

(SRad, ‖ · ‖X ) as an isometry. We then invoke the BLT theorem (Reed and Simon, 1980)
to specify the unique extension R : Y → (SRad, ‖ · ‖X ) = XRad, where Y is a Banach space
isometric to XRad. More precisely, we have that

Y = (S(Rd), ‖ · ‖Y) = {R−1{g} : g ∈ XRad} (38)

with R−1 = R∗Krad on SRad and, by extension, on XRad. This then leads to the following
characterization.

12
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Theorem 8 (Radon-compatible Banach spaces) Let (XRad,X ′Rad) be a dual pair of
hyper-spherical Banach spaces induced by a norm ‖ · ‖X and specified by (36) and (37).
Then, the following properties hold.

1. The back-projection R∗ : X ′Rad → S ′(Rd) is injective and KradRR∗ = Id on X ′Rad.

2. The filtered back-projection R∗Krad : XRad → Y is an isometric bijection, with RR∗Krad =
Id on XRad.

3. The corresponding “range” spaces Y = R∗Krad(XRad) and Y ′ = R∗(X ′Rad) form a dual
Banach pair that is isomorphic to (XRad,X ′Rad).

Moreover, if there exists a complementary Banach space X c
Rad such that X = XRad ⊕X c

Rad,
then additional properties hold.

1’. The dual space is decomposable as X ′ = X ′Rad ⊕ (X c
Rad)′.

2’. The dual complement (X c
Rad)′ is the null space of R∗ : X ′ → Y ′.

3’. The complement space X c
Rad is the null space of R∗Krad : X → Y.

4’. The operators PRad = RR∗Krad : X → X ′Rad and P∗Rad = KradRR∗ : X ′ → XRad form
an adjoint pair of continuous projectors with PRad

(
X
)

= XRad and P∗Rad

(
X ′
)

= X ′Rad.

Proof

1. Since SRad is densely embedded in XRad, we have that X ′Rad ↪−→ S ′Rad by duality. Let V =
R∗(X ′Rad) ⊂ S ′(Rd) be the range of the restricted operator R∗|X ′Rad

. Clearly, this restriction

is a homeomorphism from X ′Rad → V, where we equip V with the norm ‖f‖V M
= ‖R∗−1f‖X ′Rad

so that R∗ : X ′Rad → V is an isometric isomorphism. This shows that R∗ : X ′Rad → S ′(Rd) is
an injection. Moreover, by Theorem 6, the inverse of R∗|X ′Rad

on V is given by the restriction
of KradR to V, denoted KradR|V . Therefore, KradRR∗ = Id on X ′Rad.

2. The continuity of KradR : V → X ′Rad from Item 1, together with the isometric embedding
of a Banach space in its bidual, implies the continuity of R∗Krad : XRad → V ′ (isome-
try). The condition R∗Krad{φ} = 0 can then be restated as ∀v ∈ V : 〈v,R∗Krad{φ}〉 =
〈KradR{v}, φ〉Rad = 0. Since X ′Rad = KradR

(
V
)
, this is equivalent to say that 〈g, φ〉Rad = 0

for all g ∈ X ′Rad, which leads to φ = 0 and proves that R∗Krad is injective on XRad. From
the characterization given by (38), we readily deduce that Y = R∗Krad(XRad) ⊆ V ′. Since
R∗Krad is continuous and injective on XRad, by the bounded inverse theorem (Rudin, 1991),
it has a continuous inverse that maps Y → XRad. Putting everything together, we get that
RKrad : Xrad → Y is an isometric bijection with inverse given by (R∗Krad)−1 = R : Y →
XRad, which also yields that RR∗Krad = Id on XRad.

3. From Item 2, we have that R∗Krad : XRad → Y and R : Y → XRad are homeomorphisms.
By duality, this implies that

KradR : Y ′ → X ′Rad

R∗ : X ′Rad → Y ′

13
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are homeomorphisms and, in particular, bijective isometries with Y ′ = R∗(X ′Rad). Moreover,
from the proof of Item 1, we know that X ′Rad is isometrically isomorphic to V = R∗(X ′Rad),
which allows us to identify Y ′ = V.

1’. This follows from the generic property that (X1 ⊕ X2)′ = X ′1 ⊕ X ′2, where the Banach
spaces X1 and X2 can be arbitrary.

2’. Item 1’ tells us that X ′Rad, (X c
Rad)′ ⊆ X ′ with the embedding being continuous. Moreover,

it implies that XRad is the annihilator of X ′Rad in X ′, with

(X c
Rad)′ = {g ∈ X ′ : 〈g, φ〉Rad = 0, ∀φ ∈ XRad}

= {g ∈ X ′ : 〈g, φ〉Rad = 0, ∀φ ∈ SRad}, (39)

where the substitution of XRad with SRad in (39) is legitimate because SRad is a dense
subspace of XRad. Since X ′ ⊂ S ′(R× Sd−1), this shows that (X c

Rad)′ ⊆ NR∗ .

3’. This is the dual of Item 1’.

4’. The null-space property implies that P∗Rad

(
(X c

Rad)′
)

= {0} and PRad

(
X c

Rad

)
= {0}. The

final element is the identity in Item 1 (resp., Item 2), which ensures that P∗Rad : X ′ → X ′Rad

(resp., PRad : X → XRad) is the canonical projector on X ′Rad (resp., on XRad). The existence
(unicity) and continuity of the latter is guaranteed for any pair of complemented Banach
spaces (see Appendix A).

The dual direct-sum decomposition in Theorem 8 has the following corollary: The Ba-
nach complement X c

Rad (resp., XRad) is the annihilator of X ′Rad in X (resp., of (X c
Rad)′ in

X ′), and vice versa. In particular, (X c
Rad)′ ↪−→ S ′(R × Sd−1) is specified by (39) (as a set),

which clearly shows that (X c
Rad)′ ⊆ NR∗ (see (20)).

The existence of the projection operator P∗Rad in the second part of Theorem 8 is espe-
cially useful when the “abstract” elements of the dual space X ′ can be identified as bona-fide
hyper-spherical functions or measures. It then enables us to convert any “formal” filtered
projection g̃ = KradR{f} ∈ X ′ ↪−→ S ′(R × Sd−1) (see (21) in Definition 5) into a concrete
representer P∗Rad{g̃} ∈ X ′Rad, which has a unique, unambiguous interpretation.

Since the members of SRad must be even (see Theorem 3), we readily deduce that

XRad ⊆ Xeven =
(
Seven(R× Sd−1), ‖ · ‖X

)
. In particular, when the inclusion is a set equality

and when X = Xeven ⊕ Xodd, then X ′Rad = X ′even and P∗Rad = PRad = Peven, which is the
self-adjoint projector that extracts the even part of a function.

4. Radon-Domain Sampling Functionals

The canonical sampling functional that acts on continuous functions expressed in hyper-
spherical coordinates is the shifted hyper-spherical Dirac distribution δz0 ∈ M(R × Sd−1)
with z0 = (t0, ξ0) ∈ R×Sd−1 and ‖δz0‖M = 1, which also happens to be a “formal” filtered
projection of δ(ξT0x− t0).

14
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We now show how we can describe [δz0 ] ∈ S ′Rad by its unique representer ez0 : g 7→ g(z0)
in MRad = (C0,Rad)′. We start with a theoretical investigation where ez0 is characterized
indirectly through its functional properties. We then provide an explicit construction that
allows us to identity ez0 as the limit of a normalized Radon-compatible distribution whose
unit mass gets concentrated at z = ±z0.

4.1 Abstract Characterization of Radon-Compatible Diracs

Since SRad ⊆ Seven(R × Sd−1) (see Theorem 3), we have that C0,Rad ⊆ C0,even(R × Sd−1),
which implies that all functions g ∈ C0,Rad are continuous and even. This ensures that the
evaluation functional ez0 : g 7→ 〈ez0 , f〉 = g(z0) is well-defined for any z0 ∈ R × Sd−1. We
now prove that ez0 is a continuous linear functional on C0,Rad—that is, ez0 ∈ (C0,Rad)′ =
MRad (the space of Radon-compatible measures)—and establish its basic properties, which
are compabible with those of the Dirac distribution. By the same token, we get a charac-
terization of the extreme points of the unit ball in MRad.

Theorem 9 (Properties of ez0) The Radon-domain functionals ez0 : C0,Rad → R with
z0 = (t0, ξ0) ∈ R× Sd−1 have the following properties.

1. Definition (sampling at z0)

∀φ ∈ C0,Rad : 〈e(t0,ξ0), φ〉Rad = φ(t0, ξ0). (40)

2. Symmetry: ez0 = e−z0.

3. Continuity: ez0 ∈MRad with ‖ez0‖MRad
= sup

φ∈C0,Rad: ‖φ‖L∞≤1
〈ez0 , φ〉 = 1.

4. Let {zk} be any finite set of distinct points. Then, ‖∑k akezk‖MRad
=
∑

k |ak|.

5. R∗{e(t0,ξ0)}(x) = δ(ξT0x− t0) ⇔ e(t0,ξ0) = KradR{δ(ξT0x− t0)} in MRad.

6. If e ∈ ExtBMRad
, then e = ±ezk for some zk ∈ R× Sd−1.

Proof Let ι be the canonical inclusion from C0,Rad into C0(R × Sd−1) and ι∗ : M(R ×
Sd−1) → MRad the canonical projection from M(R × Sd−1) into MRad. For any z0 ∈
R × Sd−1, we can then identify ez0 = ι∗{δz0} where δ(t0,ξ0) ∈ M(R × Sd−1) is the hyper-
spherical Dirac distribution. Indeed, for all φ ∈ C0,Rad, we have that 〈ez0 , φ〉 = 〈δz0 , ι{φ}〉 =
〈δz0 , φ〉 = φ(z0), from which we readily deduces Items 1, 2, and 3.

To prove Item 4, we consider f =
∑K

k=1 akezk , which is such that ‖f‖MRad
≤∑K

k=1 |ak| =
‖a‖`1 , by the triangle inequality. In addition, since the zk are distinct, there exits some
ε0 > 0 such that ‖zk − zk′‖ < ε0 for all k 6= k′. To prove that ‖f‖MRad

= ‖a‖`1 , we shall
construct a conjugate function f∗ ∈ SRad ⊂ C0,Rad with ‖f∗‖L∞ = 1. To that end, we use
the functions

φε,xk =
1

dε(0, e1)
dε(t− ξTxk,Ukξ) ∈ Srad,

where dε(t, ξ) is specified by (44) and where xk ∈ Rd and the rotation matrix Uk ∈ Rd×d are
chosen such that ξTkxk = tk and e1 = Ukξk. The function φε,xk with ε ∈ (0, 1) is symmetric,
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nonnegative and bounded by 1: It achieves its maximum at z = zk and is decreasing toward
zero as z moves away from ±zk, the speed of decay becoming arbitrarily fast as ε→ 0 (see
Figure 1). Consequently, one can always find some ε > 0 such that |φε,xk(z)| < 1/K for

all z ∈ R × Sd−1 with ‖z ± zk‖ > ε0. Then, f∗ =
∑K

k=1 sign(ak)φε,xk ∈ SRad is such that
‖f∗‖L∞ = 1 and 〈f∗, f〉 =

∑
k=1 |ak|. The latter implies that ‖f‖MRad

≥ ‖a‖`1 , which
proves the claim.

Item 5: Theorem 8 with X = C0(R × Sd−1) ensures that the adjoint pair of operators
KradR∗ : C0,Rad → Y and KradR : Y ′ → MRad are continuous. This Banach setting also
allows us to specify the corresponding back-projection operator R∗ = (KradR)−1 :MRad →
Y ′ by extending the scope of Definition (19) for ϕ ∈ Y = R∗Krad(C0,Rad). We then use
the same manipulations as in (23) with φ ∈ C0,Rad (resp., ϕ ∈ Y) to prove that: (i)
δ(ξT0x− t0) = R∗{e(t0,ξ0)} ∈ Y ′, and (ii) KradR{δ(ξT0x− t0)} = e(t0,ξ0) in MRad.

Item 6: The abstract interpretation of Items 1 and 2 is that the evaluation functionals

on C0,Rad are spanned (with a double covering) by ez with z ∈ Z M
= R× Sd−1. Since C0,Rad

is a closed subspace of C0(Z), we can invoke Lemma 17 in the Appendix, which tells us
that the extreme points of the unit ball in MRad =

(
C0,Rad

)′
are all of the form ±ez for

some z ∈ Z.

4.2 Constructive Description of Radon-Compatible Dirac

In complement to the abstract characterization of ez0 in Theorem 9, we now describe the
underlying distribution concretely. We consider the d-dimensional Gaussian density function

gε(x) =
εd−1

(2π)d/2
exp

(
−1

2

(x2
1

ε2
+ ε2(x2

2 + · · ·+ x2
d)
))
∈ S(Rd) (41)

whose Fourier transform is

ĝε(ω) = exp

(
−1

2

(
ε2ω2

1 +
ω2

2 + · · ·+ ω2
d

ε2
))

. (42)

The parameter ε < 1 controls the degree of ellipticity. When ε is small, gε(x) gets narrow
along the x1 axis, while it spreads out along the other directions. Setting ω = ωξ, we
rewrite (42) as

ĝε(ωξ) = exp

(
−ω

2

2
σ2
ε (ξ)

)
with σ2

ε (ξ) = ε2ξ2
1 +

ξ2
2 + · · ·+ ξ2

d

ε2
. (43)

From (16), we obtain the Radon transform of gε as

dε(t, ξ) = R{gε}(t, ξ) =
1√

2πσ2
ε (ξ)

exp

(
− t2

2σ2
ε (ξ)

)
∈ SRad, (44)

which is a radial Gaussian with a spherical dependence on the variance. For 0 < ε < 1,
dε(t, ξ) attains its maximum at (t, ξ) = (0,±e1). As ε gets smaller, the maximum increases
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Figure 1: Localization effect of the parameter ε for the approximation of e(2,e1) for d = 2,

displayed as the sinogram of the functions dε(t− ξTx0, θ) with ξ = (cos θ, sin θ),
x0 = (2, 2), and ε = 1, 1

2 ,
1
4 ,

1
8 .

while the distribution becomes peakier and more and more localized around z = (0, e1).
However, the integral of the function is preserved since

∫
Sd−1

∫
R dε(t, ξ)dtdξ =

∫
Sd−1 dξ =

2πd/2

Γ(d/2) for any ε > 0. This allows us to identify our Radon-compatible sampling functional
as

e(t0,ξ0)(t, ξ) = lim
ε→0+

dε(t− ξTx0,U0ξ), (45)

where U0 ∈ Rd×d is a rotation matrix such that e1 = U0ξ0 and x0 ∈ Rd is such that
ξTx0 = t0. Examples of such functions for d = 2, ξ0 = e1 = (1, 0), and x0 = (2, 2) are
shown in Figure 1.

While this construction reminds us of the description of a Dirac as the limit of a Gaussian
distribution whose standard deviation tends to zero, there is one important difference: unlike
a conventional Gaussian, the functions dε on the left hand side of (45) all satisfy the range
conditions of the Radon transform, which are stated in Theorem 3 below.

5. Ridges Revisited

A 1D profile along the direction e1 = (1, 0, . . . , 0) is a generalized function of the form
re1(x) = r(x1) × 1 with r ∈ S ′(R). Since the latter is separable, its generalized Fourier
transform is

F{re1}(ω) = r̂(ω1)

d∏
k=2

2πδ(ωk) = r̂(ω1)(2π)d−1δ(ω2, . . . , ωd), (46)
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which is a weighted Dirac mass localized along the ω1 axis. An equivalent formulation of
(46) that involves test functions is

∀ϕ ∈ S(Rd) : 〈re1 , ϕ〉 =
1

2π

∫
R
r̂(ω)ϕ̂(ωe1)dω (47)

where ϕ̂ ∈ S(Rd) is the d-dimensional Fourier transform of ϕ. The argument remains valid
when we rotate the coordinate system, which allows us to consider more general ridges of

the form rξ0
(x)

M
= r(ξT0x); that is, 1D profiles along the direction ξ0 ∈ Sd−1.

5.1 Generalized Ridges

By identifying ϕ̂(ωe1) in (47) as the 1D Fourier transform of R{ϕ(·, e1)} and by substituting
e1 by ξ0, we obtain the general signal-domain relation:

∀ϕ ∈ S(Rd) : 〈rξ0
, ϕ〉 = 〈r,R{ϕ}(·, ξ0)〉, (48)

which will be referred to as the ridge identity. Under the assumption that r is a locally
integrable function, we can establish (48) by making the change of coordinates y = Ux,
where U ∈ Rd×d is any rotation matrix such that y1 = ξT0x. We then rewrite the integral
explicitly as ∫

Rd
ϕ(x)rξ0

(x)dx =

∫
Rd
ϕ(y)r(y1)dy1 . . . dyd

=

∫
R

(∫
Rd−1

ϕ(y)dy2 . . . dyd

)
︸ ︷︷ ︸

Rϕ(y1,ξ0)

r(y1)dy1.

Otherwise, when r ∈ S ′(R) has no pointwise interpretation, we simply use (48) as definition
for the ridge distribution rξ0

∈ S ′(Rd), which is legitimate since R{ϕ}(·, ξ0) ∈ S(R).

Note that the special case of (48) with r(t) = e−jωt and rξ(x) = e−jωξTx = e−jωTx yields
the Fourier-slice theorem (16). Likewise, we can rely on the ridge identity (48) to delineate
the range of the Radon transform. For instance, we obtain the second item in Theorem 3
by taking r(t) = tk and by defining

Φk(ξ) =

∫
R

R{ϕ}(t, ξ) tkdt =

∫
Rd
ϕ(x)(ξTx)kdx =

∑
|k|=k

akξ
k

with ak = k!
∫
Rd

xk

k! ϕ(x)dx.

The most basic version of a ridge is δ(ξT0x − t0) with r = δ(· − t0), which is a Dirac
ridge along ξ0 with offset t0. Since the Fourier transform of such ridges is entirely localized
along the ray {ω = ωξ0 : ω ∈ R}, we can expect their Radon transform to vanish away
from ±ξ0. The latter can be readily identified as follows, where the square bracket notation
[g] with g ∈ S ′(R × Sd−1) reminds us that the members of S ′Rad (resp., of KradR

(
S(Rd)

)′
)

are equivalence classes of distributions.
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Proposition 10 (Radon transform of ridge distributions) Let (t0, ξ0) = z0 ∈ R ×
Sd−1 and r ∈ S ′(R). Then,

KradR{δ(ξT0x− t0)}(t, ξ) = [δ(· − t0)δ(· − ξ0)] ∈ S ′Rad

R{δ(ξT0x)}(t, ξ) = [qd(t)δ(ξ − ξ0)] ∈ KradR
(
S(Rd)

)′
KradR{r(ξT0x)}(t, ξ) = [r(t)δ(ξ − ξ0)] ∈ S ′Rad

R{r(ξT0x)}(t, ξ) = [(qd ∗ r)(t)δ(ξ − ξ0)] ∈ KradR
(
S(Rd)

)′
where qd(t) = 2(2π)d−1F−1{1/|ω|d−1}(t) is the 1D impulse response of the Radon-domain
inverse filtering operator K−1

rad.

Proof The fact that δz0 = δ(t− t0)δ(ξ − ξ0) is a formal filtered projection of δ(ξT0x− t0)
has already been mentioned in the text—it is a direct consequence of Definition (14).

To derive the third identity, we observe that, for all ϕ ∈ S(Rd), one has that

〈r(·)δ(· − ξ0),R{ϕ}〉Rad =

∫
R
r(t)R{ϕ}(t, ξ0)dt = 〈r,R{ϕ}(·, ξ0)〉

=

∫
Rd
r(ξT0x)ϕ(x)dx = 〈r(ξT0 ·),R∗Krad{Rϕ}〉,

where we have made use of (48). By setting φ = R{ϕ} ∈ Srad, we then refer to (21) to deduce
that r(t)δ(ξ− ξ0) is a formal filtered projection of r(ξT0x). This then also yields the second
and fourth identities by substituting r with qd(·−t0) and qd ∗r, respectively. The additional
element there is r(ξT0x) = KK−1{r(ξT0x)}(x) = K{r̃(ξT0x)}(x) with r̃(t) = (qd∗r)(t), which
is readily verified in the Fourier domain.

An equivalent form of the first identity in Proposition 10 is

δ(ξT0x− t0) = R∗{δ(t0,ξ0)}(x), (49)

which results from R∗KradR = Id on S ′(Rd). Likewise, when the back-projection in (49) is
followed by an isotropic operator L whose radial frequency response is L̂rad : R → R, we
use the intertwining property to show that

LR∗{δ(t0,ξ0)}(x) = R∗{Lradδ(t0,ξ0)}(x) = r(ξT0x− t0) (50)

where r(t) = F−1{L̂rad}(t).

5.2 Connection with Prior Works

Most authors who use the Radon transform in connection with neural networks do not
distinguish “formal” from “range-compatible” Radon transforms of distributions (Candès,
1999; Sonoda and Murata, 2017; Ongie et al., 2020; Parhi and Nowak, 2021). They bypass
the difficulty by focusing their analysis on some appropriate subspace of S ′Rad over which
the backpropagation operator R∗ is known to be invertible, for instanceMeven(R×Sd−1) =
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M(Pd) and/or S ′Liz,even. To specify their norm for Radon-domain measures, Ongie et al.

(2020) consider the subspace of test functions Seven = {φ ∈ S(R×Sd) : φ(t, ξ) = φ(−t,−ξ)}
for which the validity of the inversion formula KradRR∗ = Id has been established by Solmon
(1987). The caveat is that the functions f ∈ R∗(Seven) that are in the range of R∗ can decay
as badly as O(1/‖x‖) (Ramm and Katsevich, 2020, Corollary 3.1.1, p. 73), meaning that
their “classical” Radon transform specified by (14) can be ill-defined. Parhi and Nowak
(2021) follow a different path and identify Meven(R × Sd−1) as a subspace of the space of
even Lizorkin distributions S ′Liz,even, which is the topological dual of SLiz,even = {φ ∈ Seven :∫
R φ(t, ξ)tk = 0,∀k ∈ N, ξ ∈ Sd−1}. Implicit in the calculation of Example 1 in (Ongie et al.,

2020) is the property that

KradR{δ(ξT0x− t0)}(t, ξ) =
1

2

(
δ(t− t0)δ(ξ − ξ0) + δ(t+ t0)δ(ξ + ξ0)

)
, (51)

which needs to be related to the “abstract” description of ez0 in Theorem 9. As it turns out,
the two forms are equivalent. The abstract version, combined with the properties in Theo-
rem 9, conveys the same information as (51). In complement is the concrete representation
of e(t0,ξ0)(t, ξ) given by (45), which gives us a sense of how and why the Radon-domain
mass concentrates around the points ±z0 as the Gaussian “blob” gε gets thinner along the
primary axis and elongates in the perpendicular directions.

Even though the test functions used in the listed works are different from ours with
SLiz ⊂ SRad ⊂ Seven, the approaches are reconciled by invoking the property that

C0,even = (Seven, ‖ · ‖L∞) = (SLiz, ‖ · ‖L∞) = (SRad, ‖ · ‖L∞) = C0,Rad (52)

where the domain of all underlying spaces is (R×Sd−1) (Neumayer and Unser, 2022, Lemma
1). While Proposition 10 gives the filtered Radon transform of ridges with the greatest
possible level of generality, the caveat is that KradR{rξ0

} ∈ S ′Rad is an abstract equivalence
class. As complement, we are providing the “concrete” version of the main result for the
case where the profile is a measure.

Corollary 11 (Filtered Radon Transform of Ridge Measures) Let rξ0
= r(ξT0x) be

the ridge with profile r ∈ S ′(R) and direction ξ0 ∈ Sd−1. If r ∈M(R), then the equality

KradR{rξ0
}(t, ξ) =

1

2

(
r(t)δ(ξ − ξ0) + r(−t)δ(ξ + ξ0)

)
(53)

holds in MRad =Meven(R× Sd−1).

Indeed, we know that r(t)δ(ξ − ξ0) is a formal filtered Radon transform of rξ0
and that it

is included in M(R × Sd−1) if r ∈ M(R). Moreover, Theorem 8 with X = C0(R × Sd−1),
together with (52), implies that MRad = (C0,even)′ = Meven, whose Banach complement
in M(R × Sd−1) is Modd. This ensures the validity of the second part of Theorem 8 with
P∗Rad = Peven, where Peven{g}(t, ξ) = 1

2

(
g(t, ξ) + g(−t,−ξ)

)
. Accordingly, we can identify

Peven{r(t)δ(ξ − ξ0)} as the unique representer in MRad of KradR{rξ0
} = [r(t)δ(ξ − ξ0)] ∈

S ′Rad.
The argument also suggests that (53) is likely to be extendable to broader families of

distributions. The condition for its validity is that r(t)δ(ξ − ξ0) be included in a space
X ′ =

(
XRad ⊕ X c

Rad

)′
with XRad = (SRad, ‖ · ‖X ) = (Seven, ‖ · ‖X ), so that the underlying

projector can be readily identified as P∗Rad = Peven : X ′ → X ′Rad.
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6. Variational Optimality of ReLU Networks

As application of the proposed formalism, we shall now link ReLU neural networks with
functional optimization, revisiting the energy-minimization property uncovered in (Ongie
et al., 2020) as well as the general variational-learning problem investigated in (Parhi and
Nowak, 2021).

6.1 Learning with Radon-Domain Regularization

In order to state the relevant optimization problem, we consider the regularization operator

∆R = KradR∆ :M∆R
(Rd)→M(R× Sd−1) (54)

that was first proposed by Ongie et al. (2020, Lemma 2 p. 6), where ∆ is the d-dimensional
Laplace operator. The M-norm (a.k.a. total variation) of this “Radonized” Laplacian is
then used as regularization. Informally, the corresponding native space M∆R

(Rd) is the
largest subspace of continuous functions f : Rd → R such that: (i) f does not grow faster
than a polynomial of degree 1, and (ii) the seminorm ‖∆Rf‖M is well-defined and finite.
The latter is a Banach space whose structure will be made explicit after the statement of
the main theorem.

Theorem 12 (Optimality of Shallow ReLU Networks) Let E : R × R → R be a
strictly convex loss function, (xm, ym) ∈ Rd × R with m = 1, . . . ,M a given set of dis-
tinct data points, and λ > 0 some fixed regularization parameter. Then, for M > d+ 1, the
solution set

S =

{
arg min

f∈M∆R
(Rd)

(
M∑
m=1

E(ym, f(xm)) + λ‖∆Rf‖M
)}

, (55)

of the functional optimization problem is nonempty and weak* compact. It is the weak*
closure of the convex hull of its extreme points, which all take the form

fridge(x) = b0 + b>x+

K0∑
k=1

akReLU(ξTkx− τk) (56)

with (b0, b) ∈ R×Rd, and a number K0 < M of adaptive ridges with weight, direction, and
offset parameters (ak, ξk, τk) ∈ R× Sd−1 ×R. The corresponding regularization cost, which
is common to all solutions, is ‖∆Rfridge‖M =

∑K0
k=1 |ak|.

The key here is that the search spaceM∆R
(Rd) is isometrically isomorphic toMRad×P1,

where MRad =
(
C0,Rad

)′
(see Section 3 with ‖ · ‖X = ‖ · ‖L∞ and XRad = C0,Rad) and

P1 = {bkmk}|k|≤1 is the space of affine functions on Rd (see (6) in Section 2.2 with n0 = 1).

An equivalent representation of the latter is P1 = {b0 + bTx} with b0 = b0 ∈ R and
b = (bei) ∈ Rd, which matches the leading term in (56).

The crucial element for this construction is the pseudoinverse operator

∆†R
M
= (Id− ProjP1

)∆−1R∗ :MRad →M∆R
(Rd), (57)
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where ProjP1
: S ′(Rd)→ P1 is the projector defined by (12) with n0 = 1. The native space

is then given by

M∆R
(Rd) = ∆†R

(
MRad

)
⊕ P1

= {∆†R{w}+ p0 : (w, p0) ∈MRad × P1} (58)

equipped with the composite norm induced by MRad ×P1. Equivalently, given the generic
form of f in (58), it is possible to retrieve the components (w, p0) with the help of suitable

linear maps. Specifically, letting f = ∆†R{w}+ p0, one verifies that

∆R{f} = ∆R{∆†Rw}+ ∆R{p0}
= KradR∆(Id− ProjP1

)∆−1R∗{w}+ 0

= KradR∆∆−1R∗{w} −KradR ∆{ProjP1
∆−1R∗w}︸ ︷︷ ︸
0

= KradRR∗{w} = w ∈MRad (by Theorem 8, Item 1)

and

ProjP1
{f} = ProjP1

{∆†Rw}+ ProjP1
{p0}

= ProjP1
(Id− ProjP1

)∆−1R∗{w}+ p0 = 0 + p0 ∈ P1,

where the annihilation of the w-component follows from the idempotence of the projector.

Since we have not yet identified M∆R
(Rd) as a “concrete” space of functions, we also

need to interpret the sample values of f in (55) as linear functionals; that is, f(xm) =
〈δ(· − xm), f〉. This is enabled by the property that, for any xm ∈ Rd, the sampling
functional δ(· − xm) :M∆R

(Rd)→ R is weak*-continuous (see remark after Theorem 13).

Proof [Proof of Theorem 12] Theorem 8 with X = C0(R × Sd−1) ensures that the back-
projection operator R∗ is invertible on X ′Rad =MRad = (C0,Rad)′. This is the fundamental
ingredient that makes M∆R

(Rd) isometrically isomorphic to MRad × P1 via the reversible
mapping w = ∆R{f} ∈ MRad and p0 = ProjP1

{f} ∈ P1. This equivalent representation of
f enables us to derive the result as a corollary of the third case of the abstract representer
theorem for direct sums in (Unser and Aziznejad, 2022, Theorem 3). This representer
theorem gives the generic form of the extreme points of the solution set S as fextreme =
p0 +

∑K0
k=1 akek, where p0 ∈ P1 is a null-space component and where the ek are extreme

points of the unit ball BU ′ of the primary-component space U ′ = ∆†R
(
MRad

)
. Based

on the form of the extreme points of MRad given by Theorem 9 and the property that
ExtBU ′ = ∆†R

(
ExtBMRad

)
(since ∆†R is an isometry), we deduce that any ek ∈ ExtBU ′ can

be written as

ek = ±∆†R{e(tk,ξk)} = (Id− ProjP1
)∆−1R∗{e(tk,ξk)}

= ±(Id− ProjP1
){1

2 |ξTk · −tk|}
= ±1

2 |ξTk · −tk| ± pk with pk ∈ P1,
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where we have used (50) with L = ∆−1 and L̂rad(ω) = 1/ω2 to evaluate the back-projection.
Since 1

2 |t| = (t)+ − 1
2 t, we can also write ek as

ek = ±(ξ>k · −tk)+ ± p̃k,

where p̃k = pk − 1
2

(
ξ>k ·+tk

)
∈ P1. We then obtain (56) by forming the linear combination

of extreme points and by grouping all polynomial components in a single term b0 + bTx.
Since ∆R{fridge} =

∑K0
k=1 ake(tk,ξk), we also deduce that ‖∆R{fridge}‖M =

∑K0
k=1 |ak| by

invoking Theorem 9.

6.2 Concrete Characterization of the Native Space

As complement to Theorem 12, we now make the construction of M∆R
(Rd) explicit by

identifying the parent space MRad × P1 and by providing the integral representation of
the inverse operator ∆†R in (58). To that end, we first introduce the space C0,∆R

(Rd) =
∆∗R
(
C0,even

)
⊕ P ′1 with P ′1 = span{m∗k}|k|≤1 and

C0,even = {φ : φ ∈ C0(R× Sd−1) and φ(z) = φ(−z)}.

The underlying operator ∆∗R = ∆R∗Krad (the adjoint of ∆R) is injective on C0,even so
that C0,∆R

can be equipped with the norm induced by the parent space C0,even × P ′1.
Since C0,even = C0,Rad

(
see (52)

)
, C0,∆R

(Rd) is the predual of M∆R
(Rd), which is itself

isomorphic to MRad × P1 =
(
C0,Rad × P ′1)′. The required left inverse of ∆∗R is ∆†∗R =

R∆−1(Id − ProjP ′1) : C0,∆R
(Rd) → C0,Rad (the adjoint of ∆†R), where we have made the

identification (Id − ProjP1
)∗ = (Id − ProjP ′1). These operators are such that ∆†∗R ∆∗R = Id

(left-inverse property) on C0,even and ∆†∗R {p∗0} = 0 for all p∗0 ∈ P ′1. We then invoke the Riesz-
Markov-Kakutani representation theorem (Rudin, 1973) to identify the space of Radon-
compatible measures as MRad =

(
CRad

)′
=
(
Ceven

)′
=Meven = Peven

(
M(R× Sd−1)

)
.

The next step is to obtain the explicit expression of ∆†R{w} = (Id− ProjP1
)∆−1R∗{w}

for w ∈Meven and, by extension, for w ∈M(R×Sd−1) because the null space of ∆†R :M(R×
Sd−1) → M∆R

(Rd)
(
and of R∗ : M(R × Sd−1) → S ′(Rd)

)
is precisely the complementary

space Mc
Rad =Modd (see second part of Theorem 8). A direct calculation yields

∆†R{w}(x) =

∫
R

∫
Sd−1

h(x; t, ξ)w(t, ξ)dξdt, (59)

with a “Schwartz kernel” h : Rd × (R× Sd−1)→ R that is given by

h(x; t, ξ) = 1
2 |ξTx− t| −

∑
|k|≤1

xk

k!
qk(t, ξ), (60)

where qk(t, ξ) = 〈12 |ξT ·−t|,m∗k〉 and where the dual basis (m∗k)|k|≤1 is specified by (7). This
formula can be further simplified to obtain an analytical characterization of the Schwartz
kernel of ∆†R.
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Theorem 13 (Explicit characterization of ∆†R) The generalized impulse response h(x; t, ξ) =

∆†R{δ(t,ξ)}(x) of the inverse operator defined by (57) is given by

h(x; t, ξ) = 1
2 |t− ξTx| − (κrad ∗ 1

2 | · |)(t) + (ξTx)(κrad ∗ 1
2sign)(t). (61)

Moreover, there exists a constant C ≥ 1 such that∣∣h(x; t, ξ)
∣∣ ≤ C(1 + ‖x‖), (62)

while h(x0; ·, ·) = ∆†∗R {δ(· − x0)} ∈ C0,even(R× Sd−1) for any x0 ∈ Rd.

Proof One obtains (61) by invoking the ridge identity (48) together with (31) to evaluate
〈12 |ξT · −t|, (−1)k∂kκiso〉 and by then regrouping the first-order correction terms in (60).

To investigate the growth behavior of h, we first consider the non-mollified kernel

h0(x; t, ξ) = 1
2 |t− ξTx| − 1

2 |t|+ 1
2(ξTx)sign(t), (63)

which is obtained by setting κrad = δ in (61). If we fix t, ξ, then x 7→ h0(x; t, ξ) grows
like O(|ξTx|) with the correction terms contributing a first-order polynomial. The effect of
the correction is more radical along the radial variable t, as it neutralizes the growth of the
leading term 1

2 |t−ξTx| = O(|t|) and produces a profile t 7→ h0(x; t, ξ) that is compactly sup-

ported with a maximal value of |ξTx| at the origin. This remarkable behavior is illustrated
in Figure 2. Since |ξTx| ≤ ‖x‖ (Cauchy-Schwarz), it also holds that |h0(x; t, ξ)| ≤ ‖x‖. To
show that this growth profile applies to h as well, we rewrite the kernel as

h(x; t, ξ) = g0(t− ξTx) +
(
κrad ∗ h0(x; ·, ξ)

)
(t) (64)

with g0(t) = (1 − κrad) ∗ 1
2 |t|. Next, we observe that the Fourier transform of g0, ĝ0(ω) =

1−κ̂rad(ω)
ω2 , is bounded. Indeed, the numerator has a multiple-order zero at the origin that

cancels the singularity in the denominator. We readily deduce that ĝ0 ∈ L1(R), which
implies that g0 ∈ C0(R) with |g0(t)| ≤ ‖ĝ0‖L1 (Riemann-Lebesgue Lemma). As for the
second convolution term, it is bounded by ‖κrad‖L1 supt∈R |h0(x; t, ξ)| ≤ ‖κrad‖L1‖x‖. This
proves that (62) holds with C = ‖ĝ0‖L1 + ‖κrad‖L1 .

Since κrad ∈ S(R) and h0(x; ·, ξ) is compactly supported, we have that κrad∗h0(x; ·, ξ) ∈
S(R) as well. The final claim then follows for the observation that the functions g0, κrad

and h0(x; ·, ·) that appear in (64) are all symmetric, bounded, and decaying towards zero.

An important consequence of the last statement in Theorem 13 is that δ(· − x0) ∈
C0,∆R

(Rd) for any x0 ∈ Rd, which is equivalent to the sampling functional δ(· − x0) :

f 7→ f(x0) being weak*-continuous on M∆R
=
(
C0,∆R

)′
. The proof of the theorem is

enlightening is that respect: The convolution with κrad ∈ S(R) in (64) acts as a mollifier that
wipes out the discontinuities of h0. We also note that the whole argumentation (smoothing
and pole cancellation) remains valid if κrad is substituted with any other symmetric kernel
with a unit integral, such as a Gaussian with an arbitrarily small standard deviation.

The functional implications of Theorem 13 are as follows.
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Figure 2: Visualization of h0(x; t, ξ). (a) Plot of x 7→ h0(x; t0, ξ0) along the direction of the ridge
with t0 ranging from 0 (blue) to 2 (red). (b) Plot of t 7→ h0(x0; t, ξ0) for ξT0x0 = Const
varying between 0 and 2 (red).

Corollary 14 (Explicit characterization of the native space)
The statement f ∈M∆R

(Rd) is equivalent to

f(x) = b0 + bTx+

∫
R

∫
Sd−1

h(x; t, ξ)w(t, ξ)dξdt (65)

for some b ∈ Rd, b0 ∈ R, and w ∈ M(R × Sd−1), with the integral representation being
unique if w = weven ∈ Meven. In addition, the function specified by (65) is endowed with
the following properties.

1. Norm and seminorm

‖f‖M∆R
= ‖∆R{f}‖M + ‖(b, b0)‖2 < +∞ (66)

‖∆R{f}‖M = ‖Peven{w}‖M = ‖weven‖M < +∞. (67)

2. Linear growth

∀x ∈ Rd : |f(x)| ≤ C(1 + ‖x‖) ‖f‖M∆R
. (68)

3. Continuity, with the function f : Rd → R also being differentiable with

∀x ∈ Rd : ‖∇f(x)‖2 ≤ C ′‖f‖M∆R
. (69)

Proof The first statement and Item 1 are recapitulations, the latter re-expressing the
isometric isomorphism with Meven × P1. Item 2 is a direct consequence of (62), as

∣∣∆†R{f}(x) + bTx+ b0
∣∣ ≤ ∫

R

∫
Sd−1

|h(x; t, ξ)| |w(t, ξ)|dξdt+ ‖b‖2‖x‖+ |b0|

≤ C(1 + ‖x‖)‖weven‖M + ‖(b, b0)‖2.
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Likewise, we observe that the partial derivative

∂xih(x; t, ξ) = −ξi
2 sign(t− ξTx)− ξi

2 (κrad ∗ sign)(t),

is bounded. We then apply the same technique to get the estimate |∂xif(x)| ≤ |bi| +
‖κrad‖L1‖weven‖M.

While the precise form of the kernel h depends on the specific choice of the dual basis, this
has only an incidence of the definition of the norm, but not on the specification ofM∆R

(Rd)
as a set. In other words, switching to another κrad will only change the way in which a
given f ∈M∆R

(Rd) is decomposed into a sum of a primary term plus a polynomial.

6.3 Discussion

Our formulation of Theorem 12 owes a lot to the pioneering works of Ongie et al. (2020)
and Parhi and Nowak (2021) (PN). Ours is merely a refinement of the results published
by these authors together with a clarification of the underlying mathematics. The inter-
esting outcome is that the solution of the functional-optimization problem in (55) can be
implemented by a 2-layer ReLU network.

In their work which pulls together ideas from Unser et al. (2017) and Ongie et al. (2020),
PN restrict the domain of the test functions to the so-called Lizorkin functions

SLiz(Rd) = {ϕ ∈ S(Rd) :

∫
Rd
xmϕ(x)dx = 0,∀m ∈ Nd}, (70)

which are orthogonal to the polynomials. This choice is motivated by the property that
the Radon transform is a homeomorphism R : SLiz(Rd)→ SLiz,even, where SLiz,even denotes
the even part of the Radon-domain Lizorkin space SLiz(R × Sd−1) with R∗RKrad = Id on
SLiz,even, as well as on S ′Liz,even, by duality (Helgason, 2011; Kostadinova et al., 2014).

While the adoption of this formalism leads to a well-defined functional-optimization
problem, PN’s derivation/interpretation of Lemmas 17, 18, and 21 is flawed because they
implicitly assume that there is a systematic, one-to-one association between a “concrete”
spline ridge ρm(ξT0x− t0) with ρm(t) = 1

2sign(t) tm−1

(m−1)! and some abstract Lizorkin distribu-

tion ρm(ξT0x− t0) + P ∈ S ′Liz(Rd), which is unlikely to be the case for the reasons exposed
in the introduction. We have recent evidence that such an association can be made, but
that it requires a specific polynomial correction that depends on the shift t0 (Neumayer
and Unser, 2022). That said, it remains that the main results and conclusions reported
by Parhi and Nowak (2021) are qualitatively correct and in agreement with Theorem 12
(up to the mentioned technicalities). Also, the mathematical arguments proposed by these
authors can easily be corrected/upgraded by extending their space of test functions to SRad

and by using our results in Theorems 8 and 9. The same holds true for PN’s higher-order
generalizations (ridge splines). In fact, PN’s definition of the native space of the mth-order
ridge splines is equivalent to that of M∆R

(Rd) for m = 2.
Now, the one aspect where Theorem 12 improves upon Parhi and Nowak (2021, Theorem

1 with m = 2) is that it contains the characterization of the full solution set. The theorem
tells us that all extreme points of the optimization problem in (55) have the same parametric
form (56), which is a much stronger statement than the existence of one such neural-network-
like solution. Ideally, one would like to identify the sparsest solution within the solution
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set, in other words, the one with the fewest neurons. While there is a direct algorithm that
will find the sparsest solution for d = 1 (Debarre et al., 2022), it is not known yet if this
can be generalized to a larger number of dimensions.

In addition to commuting with rotation, the regularization operator ∆R defined by (54)
inherits the scale invariance of the Laplacian. Specifically, we can use a direct Fourier
calculation to show that

∀x ∈ Rd : ∆{f}(sx) = s2∆{f(s·)}(x) (71)

∀(t, ξ) ∈ R× Sd−1 : ∆R{f}(st, ξ) = s2∆R{f(s·)}(t, ξ) (72)

for any scaling factor s ∈ R+. This, in turn, translates into the functional-learning problem
in (55) being invariant to similarity transformations of the data points xm.

Proposition 15 The regularization functional in (55) is translation-, scale-, and rotation-
invariant in the sense that

‖∆R{f(sU · −b)}‖M = s‖∆R{f}‖M (73)

for any f ∈ M∆R
(Rd), and any scaling factor s ∈ R+, offset b ∈ Rd, and rotation matrix

U ∈ Rd×d with UTU = I.

This is to say that any such transformation of the data characterized by a scale s can be
accounted for via a proper rescaling of the regularization parameter λ→ sλ.

The form of the kernel given by (59) is compatible with (Parhi and Nowak, 2021, Lemma
21) and has been interpreted as an infinite-width neural network. There has been concern
about the well-posedness of the generative model used in (Parhi and Nowak, 2021) and

summarized by f = ∆†R{w} with w ∈ MRad = Meven in the present formulation. This
point is addressed explicitly by the stability bound (62) in Theorem 13, which is new to the
best of our knowledge.

The availability of the integral formulation (65) also allows us to make the connection
with the work of (Bartolucci et al., 2023). These authors consider the same type of gener-
ative model with some “tempered” kernel of the form hβ(x; t, ξ) = 1

2 |ξTx − t|β(t), where
β(t) > 0 is a weighting function (e.g., β(t) = 1

1+|t|2+ε ) that compensates the linear growth

of the first factor2(Bartolucci et al., 2023). In effect, this mechanism, whose stability is
intrinsically guaranteed, reduces the size of the native space. Interestingly, the correspond-
ing optimization problem admits the same form of solution—a neural network with one
hidden ReLU layer (Bartolucci et al., 2023)—with the caveat that the underlying regu-
larization is no longer translation-invariant. In this modified scenario, the optimal cost is
‖∆Rfridge‖M1/β

=
∑K0

n=1 |ak| 1
|β(τk)| , which tends to favor smaller biases τk. This also means

that one then loses the invariance to similarity transformations of the data (Proposition
15).

2. The first factor can also be replaced by (ξTx − t)+ modulo some adjustments in β, as shown by the
authors.
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Appendix A. Direct-Sum Topologies

There are two standard ways to define direct sums: explicitly, via the use of projectors; or
abstractly, via the use of quotient spaces. The two methods are equivalent whenever one
can explicitly identify the underlying quotient space as a (concrete) complemented subspace
of the original space.

A.1 Projectors

Let X be a topological vector space. A continuous linear operator P : X → X with the
property that P = P ◦P = P2 (idempotence) on X is called a projection operator (Dunford
and Schwartz, 1988, p 480). In particular, when X is a Banach space or a Fréchet space,
the range U = P(X ) of P is necessarily a closed subspace of X . In that case, P = ProjU
is a projector from X onto U , and X = U ⊕ V where V = kerP is the null space of P or,
equivalently, the range of the complementary projector ProjV = (Id− P).

More generally, when X is a topological vector space, the space P(X ) equipped with the
topology induced by X is a topological space as well, with the same properties as the original
space X (e.g., completeness). Likewise, if (X ,X ′) is a dual pair of topological spaces, then

so is
(

P(X ),P∗(X ′)
)
, where P∗ : X ′ → X ′ is the dual projection operator.

A.2 Direct Sums

1) Direct-sum decomposition of a vector space X : Let U and V be two (complementary)
closed subspaces of X . The notation X = U ⊕ V indicates that every element x ∈ X has a
unique decomposition as x = u+v with (u, v) ∈ U×V. The underlying projection operators
are

x = u+ v 7→ ProjU{x} = u

x 7→ ProjV{x} = (Id− ProjU ){x} = v.

To summarize, given a (closed) subspace U of a normed vector space X , the search of a
complement V for U in X is equivalent to the search of a (continuous) projection operator
P on X (with P2 = P) whose range is U . Then, V = ProjV(X ) with ProjV = (Id− P).

2) Annihilator: Let U be a closed subset of X . One then defines U⊥ as the annihilator of U
in X ′, which is the subset

U⊥ = {f ∈ X ′ : 〈f, u〉 = 0 for all u ∈ U} ⊆ X ′.

3) Dual space: The dual of the direct sum X = U ⊕V is X ′ = U ′⊕V ′, where U ′ = P∗(X ′) =
V⊥ and V ′ = U⊥.

4) Quotient space: Under the assumption that V is a closed subset of X , one defines
the quotient space X/V whose elements are equivalence classes (or cosets) denoted by
[x] = x + V. The corresponding quotient map q : X → X/V is linear and its kernel (null
space) is V. When X is a Banach space, the quotient norm is

‖[x]‖X/V = inf
v∈V
‖x+ v‖X ,
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which measures the distance from x to V. The quotient space X/V equipped with the
quotient norm is a Banach space as well. Moreover, there is a natural isomorphism between
(X/V)′ (the dual of the quotient of X by V) and V⊥ (the annihilator of V in X ′), so that
(X/V)′ ↪−→ X ′.

Also of relevance is the property that the bounded operators on X that annihilate the
elements of V “factor through” X/V. Let T : X → Y with V ⊆ kerT. Then, there exists a
unique linear operator Tq : X/V → Y such that Tqq(x) = T(x) and ‖Tq‖ = ‖T‖.

The kernel of any bounded operator T : X → Y is a closed subspace of X (Markin,
2020, Proposition 4.2, p. 172). Hence, the quotient space X/ker(T) is a vector space that
is isomorphic to T(X ).

Appendix B. Extreme Points

Definition 16 (Extreme Points) Let C be a convex set of a Banach space X . The ex-
treme points of C are the points x ∈ C such that, if there exist x1, x2 ∈ C and θ ∈ (0, 1)
such that x = θx1 + (1− θ)x2, then it necessarily holds that x1 = x = x2. The set of these
extreme points is denoted by Ext(C).

We now present a classical result that gives the explicit form of the extreme points of the
dual X ′ of any closed subspace X ⊆ C(Z), where C(Z) is the space of continuous functions
z 7→ f(z) on some compact Hausdorff space Z equipped with the norm ‖f‖ = supz∈Z |f(z)|.

Lemma 17 ((Dunford and Schwartz, 1988, p. 441)) Let X be a closed linear mani-
fold of the Banach space C(Z) of all real continuous functions on the compact Hausdorff
space Z. For each z ∈ Z, let the evaluation functional ez ∈ X ′ be defined by

〈ez, f〉 = f(z), f ∈ X . (74)

Then, every extreme point of the closed unit ball in X ′,

BX ′ = {x∗ ∈ X ′ : ‖x∗‖X ′ = sup
f∈X :|f(z)|≤1

〈x∗, f〉 ≤ 1}, (75)

is of the form ±ez with z ∈ Z. If X = C(Z), then the converse is true as well; that is,
ExtBM(Z) = {±ez : z ∈ Z} with M(Z) =

(
C(Z)

)′
.

Lemma 17 generalizes to C0(Z), where Z is a locally compact Hausdorff space, which covers
the case that is of interest to us: Z = R× Sd−1. The scenario X = C0(Z) is well-known
and covered, for instance, by (Bredies and Carioni, 2020, Proposition 4.1). The result can
then be transferred to any closed subspace X by identifying X ′ asM(Z)/X⊥ and applying
the canonical projection operator with the help of (Bredies and Carioni, 2020, Lemma 3.2).
Since the direct proof of the extended version of Lemma 17 is reasonably short, we are
including it here to be self-contained.

Proof Let E be the set of all points in X ′ of the form ±ez with z ∈ Z. The space X ′
is equipped with its weak∗ (or X ) topology for the Krein-Milman theorem to apply. As
‖ez‖X ′ ≤ 1, E ⊆ BX ′ . Since BX ′ is convex, weak*-compact and, hence, weak*-closed, the
inclusion also holds for the closed convex hull, with cchE ⊆ BX ′ . Next, we invoke a variant
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of the Hahn-Banach theorem (Rudin, 1991, Theorem 3.5, p. 59). For any x∗ /∈ cchE, there
exists a linear functional f ∈ X that separates x∗ ∈ X ′ from the closed convex set cchE.
This means that there are a constant c > 0 and some ε > 0 such that

±f(z) ≤ c− ε < c ≤ 〈x∗, f〉

for all z ∈ Z. Hence, ‖f‖ ≤ (c− ε) which, when combined with ‖x∗‖X ′‖f‖ ≥ c, gives that
‖x∗‖X ′ > 1. Thus, cchE ⊇ BX ′ , from which we conclude that cchE = BX ′ . Finally, since
E is compact, the extreme points of cchE necessarily lie in E (see (Rudin, 1991, Milman’s
theorem, p. 76)).

For the converse implication, we invoke the Riesz-representation theorem, which allows
us to represent any unit-norm functional on C0(Z) by a real-valued measure µ ∈ M(Z) of
total variation 1. If the support of µ consists of one point, it is a signed multiple of a Dirac
mass. Otherwise, suppµ contains two distinct points z1 6= z2. Let U, V ⊂ Z be disjoint
neighborhoods of z1 and z2. By the definition of the support, |µ|(U) > 0 and |µ|(V ) > 0.
Define t = |µ|(U), which is such that 0 < t < 1. Now let λ = t−1µ|U and ν = (1− t)−1µ|Uc .
Then, both λ and ν are unit-norm functionals and µ = tλ + (1− t)ν, which proves that µ
is not extreme.
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