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Abstract

Formal models of learning from teachers need to respect certain criteria to avoid collusion. The
most commonly accepted notion of collusion-avoidance was proposed by Goldman and Mathias
(1996), and various teaching models obeying their criterion have been studied. For each model M
and each concept class C, a parameter M-TD(C) refers to the teaching dimension of concept class
C in model M —defined to be the number of examples required for teaching a concept, in the worst
case over all concepts in C.

This paper introduces a new model of teaching, called no-clash teaching, together with the
corresponding parameter NCTD(C). No-clash teaching is provably optimal in the strong sense
that, given any concept class C and any model M obeying Goldman and Mathias’s collusion-
avoidance criterion, one obtains NCTD(C) < M-TD(C). We also study a corresponding notion
NCTD™ for the case of learning from positive data only, establish useful bounds on NCTD and
NCTD™, and discuss relations of these parameters to other complexity parameters of interest in
computational learning theory.

We further argue that Goldman and Mathias’s collusion-avoidance criterion may in some set-
tings be too weak in that it admits certain forms of interaction between teacher and learner that
could be considered collusion in practice. Therefore, we introduce a strictly stronger notion of
collusion-avoidance and demonstrate that the well-studied notion of Preference-based Teaching is
optimal among all teaching schemes that are strongly collusion-avoiding on all finite subsets of a
given concept class.

Keywords: machine teaching, collusion-freeness, VC dimension, teaching dimension, sample
compression
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1. Introduction

Models of machine learning from carefully chosen examples, i.e., from teachers, have gained in-
creased interest in recent years, due to various application areas, such as robotics (Argall et al.,
2009), trustworthy Al (Zhu et al., 2018), and pedagogy (Shafto et al., 2014). Machine teaching
is also related to inverse reinforcement learning (Ho et al., 2016), to sample compression (Moran
et al., 2015; Doliwa et al., 2014), and to curriculum learning (Bengio et al., 2009).

The paper at hand is concerned with abstract notions of teaching, as studied in computational
learning theory. In particular, it assumes that the learning problem is given by a fixed concept class
C, of which an unknown target concept C'is chosen and has to be identified by a learner from partial
information about C. A teacher and a learner are viewed as two mappings defined on the basis
of the given concept class C. The teacher compresses each concept C' in C into a set or sequence
of correctly labelled examples, i.e., of pairs (x,C(x)), where x is an element of the underlying
domain and C'(z) is a binary label indicating whether or not = belongs to C'. The learner in return is
presented with a set or sequence of such labelled examples and outputs a concept in C. By contrast
with models of learning from randomly chosen examples, the examples presented to the learner are
more helpful, as the teacher is assumed to be benevolent.

A variety of formal models of teaching have been proposed in the literature, for example, the
classical teaching dimension model (Goldman and Kearns, 1995), the optimal teacher model (Bal-
bach, 2008), recursive teaching (Zilles et al., 2011), or preference-based teaching (Gao et al., 2017).
In each of these models, the teacher mapping 7" assigns a finite set 7'(C') of correctly labelled ex-
amples to a concept C' in a concept class C in a way that the learner can reconstruct C' from 7'(C').
In particular, they are models of batch teaching, i.e., of teaching and learning using sets of labeled
examples, and stand in contrast with models of sequential teaching (Mansouri et al., 2019), in which
concepts are encoded in sequences of examples.

An interesting variant of all of these models is obtained when disallowing negative examples in
teaching. Learning from positive examples only has been studied extensively in the computational
learning theory literature, see, e.g., (Denis, 2001; Angluin, 1980) and is motivated by studies on
language acquisition (Wexler and Culicover, 1980) or, more recently, by problems of learning user
preferences from a user’s interactions with, say, an e-commerce system (Schwab et al., 2000), as
well as by problems in bioinformatics (Wang et al., 2006).

Intuitively, unfair collusion between the teacher and the learner should not be allowed in any
formal model of teaching. For example, one would not want the teacher and learner to agree on
a total order over the domain and a total order over the concept class and then to simply use the
ith instance in the domain for teaching the ith concept, irrespective of the actual structure of the
concept class. However, there is no general definition of what constitutes collusion, and of what
constitutes desirable or undesirable forms of learning. In this manuscript, we focus on two notions
of collusion-avoidance. The first, which we refer to as weak collusion-avoidance, is the property
proposed by Goldman and Mathias (1996) that has served as a foundation for a majority of the
teaching models studied in the literature. The second, more restrictive, notion we refer to as strong
collusion-avoidance. In a nutshell, weak collusion-avoidance demands of a teacher mapping 7 that
it admits a learner L that is persistent in the sense that L(S) = C for all sets .S of labelled examples
that include 7'(C') and are consistent with C. (In other words, adding more information about C'
to T'(C') will not divert the learner to a different hypothesis.) Strong collusion-avoidance on a set
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C of concepts demands that, in addition, the teacher mapping 7" admits a unique injective learner
mapping L on T'(C) such that L(T'(C)) C C.

Most existing abstract models of machine teaching are known to satisfy the Goldman-Mathias
(weak) collusion-avoidance criterion. Historically, some of these models were designed in order to
overcome weaknesses of the previous models. For example, the optimal teacher model by Balbach
(2008) is designed to overcome limitations of the classical teaching dimension model, and was
likewise superseded by the recursive teaching model (Zilles et al., 2011). The latter again failed
to capture teachability of many interesting infinite concept classes, which gave rise to the model
of preference-based teaching (Gao et al., 2017). Each model strictly dominates the previous one
in terms of the feaching complexity, i.e., the worst-case number of examples needed for teaching
a concept in the underlying concept class C. In this context, one quite natural question has been
ignored in the literature to date: what is the smallest teaching complexity that can be achieved
while respecting the Goldman-Mathias’s collusion-avoidance criterion? This is one of the central
questions addressed in this paper.

1.1 Overview of Results

Our first contribution is the formal definition of a teaching model that has, for every concept class
C, the provably smallest teaching complexity among all teaching models that satisfy the Goldman-
Mathias collusion-avoidance criterion. We call this model no-clash teaching, since its core property,
which turns out to be characteristic for the Goldman-Mathias collusion-avoidance criterion, requires
that no pair of concepts are consistent with the union of their teaching sets. A similar property was
used once in the literature in the context of sample compression schemes (Kuzmin and Warmuth,
2007), and dubbed the non-clashing property.

For example, consider a concept class (i.e., set system) C4 over the instance space {0, 1, 2, 3},
consisting of the four concepts of the form {7, (i + 1) mod 4} for 0 < ¢ < 3. Then no-clash
teaching is possible by assigning the singleton set { (4, 1) } (interpreted as the information “i belongs
to the target concept”) as a teaching set to the concept {i, (i + 1) mod 4}; no two distinct concepts
are consistent with the union of their assigned teaching sets. Thus, in the no-clash setting, each
concept in C4 can be taught with a single example. By comparison, consider the classical teaching
dimension model, in which a teaching set for a given concept is required to be inconsistent with all
other concepts in the concept class (Goldman and Kearns, 1995). It is not hard to see that, under
such constraints, no concept in C4 can be taught with a single example; a smallest teaching set for
concept {7, (i + 1) mod 4} would then be {(7,1), (( + 1) mod 4, 1)}.

We call the worst-case number of examples needed for non-clashing teaching of any concept C'
in a given concept class C the no-clash teaching dimension of C, abbreviated NCTD(C), and we
study a variant NCTD™ (C) in which teaching uses only positive examples. In the example above,
NCTD(C4) = NCTD"(C4) = 1, while the classical teaching dimension is 2.

As additional examples consider the infinite concept classes Cp (respectively, Cg+, Cg-) over
the real numbers consisting of concepts which are half-open (respectively, closed, fully open) in-
tervals of the form [z, z + 1) (respectively, [x,x + 1], (x,x + 1)), where z € R. In the classical
teaching dimension model no concept in Cp can be taught with finitely many examples. However,
both Cp+ and Cp- have finite classical teaching dimension (two and three, respectively). In the
no-clash setting, concepts in all three classes can be taught with just a single example.
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The value NCTD(C) being the smallest teaching complexity parameter of C satisfying the
Goldman-Mathias collusion-avoidance criterion makes it interesting for several reasons.

(1) NCTD represents the limit of data efficiency in teaching when respecting Goldman and
Mathias’s weak notion of collusion-avoidance. Therefore the study of NCTD has the potential to
further our understanding how collusion-avoidance constrains teaching. It will also serve to compare
other notions of collusion-avoidance (see, e.g., (Zilles et al., 2011)) to that of Goldman and Mathias.

(2) An open question in computational learning theory is whether the VC-dimension (VCD),
(Vapnik and Chervonenkis, 1971), which characterizes the sample complexity of learning from
randomly chosen examples, also characterizes teaching complexity for some reasonable notion of
batch teaching. Over the past decade, the first strong connections between batch teaching and VCD
were established, culminating in an upper bound on the recursive teaching dimension (RTD) that
is quadratic in VCD (Hu et al., 2017), but it remains open whether this bound can be improved to
be linear in VCD. Obviously, now NCTD is a much stronger candidate for a linear relationship
with VCD than RTD is. In fact, there is no concept class known yet for which NCTD exceeds
VCD. The only known teaching complexity notion that is bounded from above by VCD (and also
the only one known to be bounded from above by a function linear in VCD) stems from a model of
sequential teaching and was introduced by Mansouri et al. (2019). Thus, NCTD is to date the only
known candidate for a batch teaching parameter that has an upper bound in O(VCD).

(3) The problem of relating teaching complexity to VCD is connected to the long-standing open
problem of determining whether VCD is an upper bound on the size of the smallest possible sample
compression scheme (Littlestone and Warmuth, 1986; Floyd and Warmuth, 1995) of a concept class.
Some interesting relations between sample compression and teaching have been established for
RTD (Moran et al., 2015; Doliwa et al., 2014; Darnstédt et al., 2016). The study of NCTD can
potentially strengthen such relations.

To sum up, our new notion of non-clashing teaching, while respecting the Goldman-Mathias
collusion-avoidance criterion, is of relevance to the study of important problems in computational
learning theory.

Interestingly, non-clashing teaching also reveals a weakness of Goldman and Mathias’s no-
tion of collusion-avoidance. Consider for example the concept class C4 from above, i.e., the class
consisting of the concepts {i, (i + 1) mod 4}, 0 < ¢ < 3, over the instance space {0, 1,2, 3}.
As stated above, an optimal non-clashing teacher is obtained when assigning the singleton set
{(i,1)} to the concept {i, (i + 1) mod 4}. Now it is not hard to see that the mapping that assigns
{((+ 1) mod 4,1)} to the concept {i, (i + 1) mod 4} is also an optimal non-clashing teacher for
Ca. A learner will first have to disambiguate between various potential teachers in order to be able
to successfully decode a given teaching set. Arguably, the information exchange required for this
disambiguation could be considered some form of collusion—in particular, a form of collusion not
forbidden by Goldman-Mathias collusion-avoidance.

This is where the stronger notion of collusion-avoidance comes into play. For a teacher T" over
finite concept class C, it stipulates that no alternate teacher for C has the same range as 7. A major
result is that the preference-based teaching dimension (PBTD, (Gao et al., 2017)), which is a well-
known complexity parameter of batch teaching and coincides with RTD on finite concept classes, is
exactly the complexity of teacher mappings that are strongly collusion-avoiding on all finite subsets
of the given concept class.

1. For infinite concept classes, the definition is just slightly more involved—see Section 5.
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Thus, two major contributions of our paper are (i) to characterize the optimal complexity of
weakly collusion-avoiding teaching by introducing non-clashing teaching, and (ii) to address weak-
nesses of this notion by introducing strong collusion-avoidance, which in turn serves as a character-
ization of preference-based teaching (and, in the finite case, of recursive teaching).

1.2 A Guide to What Follows

Section 2 provides background on formal models of teaching that satisfy the weak (Goldman-
Mathias) collusion-avoidance criterion, together with their associated teaching complexity (teaching
dimension) parameters. This motivates the question: what is the most permissive (and hence lowest
complexity) teaching model that satisfies the weak collusion avoidance constraints.

This is answered in Section 3 with the introduction of non-clashing teaching and its associated
teaching complexity parameter NCTD. Some the basic properties of this complexity parameter,
including lower bounds, are developed within Subsection 3.2. Section 4 explores the relationship
between non-clashing teaching and other learning-theoretic notions, including VC-dimension and
sample compression.

Section 5 introduces strong collusion avoidance and establishes its close relationship with pref-
erence-based teaching.

Finally, Section 6 revisits all of the formal teaching notions that we have considered, includ-
ing non-clashing teaching, under the unifying frameworks of constrained preferences, constrained
bipartite matchings, and broadened recursion.

2. Preliminaries

Given a domain X, a concept over X is a subset C' C X. We usually denote by C a concept class
over X, i.e., a set of concepts over X. Implicitly, we identify a concept C' over X with a mapping
C:X —{0,1}, where C(z) = 1liffx € C.

Definition 1 A labelled example is a pair (z,¢) € X x {0,1}. An example with the label { = 1
is a positive example, while ¢ = 0 is the label of a negative example. Let S be any finite set of
labelled examples over X, and C any concept class over X. Then S and concept C' € C are said to
be (mutually) consistent, if for every pair (z,0) € S, { = C(x). If S is consistent with at least one
concept in C then S is called a C-sample.

Intuitively, the notion of teaching refers to compressing any concept C' in a given concept class
C to a C-sample consistent with C', by means of an invertible mapping.

Definition 2 (Teacher Mapping) Letr C be a concept class over a domain X. A teacher mapping
for C is an injective mapping T from C to the set of C-samples such that, for all C € C, T(C)
is consistent with C. The order of T on C, denoted by ord(T,C), is then defined by ord(T,C) =
max{|T(C)| | C € C}. A teacher mapping T is called positive on C if T(C') C X x {1} for all
CecC.

Definition 3 (Learner Mapping) A learner mapping for C is a partial function L on the set of C-
samples to concepts in C such that if L is defined on S then S is consistent with L(S). A learner
mapping L is persistent on C if, for any C-sample S in the domain of L and any superset S" of
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S that is consistent with L(S), L(S") = L(S).2 A learner mapping L for C, forms a successful
teacher-learner pair with the teacher mapping T on the subset C' C C if L(T(C)) = C, for all
cec.

While there is no objective measure of how “reasonable” a formal model of teaching is, the
literature offers some notions of what constitutes an “acceptable” model of teaching, i.e., one in
which the teacher and learner do not collude. So far, the property of collusion-avoidance that found
the most positive resonance in the literature is the one defined by Goldman and Mathias. Intuitively,
Goldman and Mathias’s criterion captures the idea that a learner conjecturing concept C' will not
change its mind when given additional information consistent with C'.

Definition 4 (Weak Collusion-Avoidance (Goldman and Mathias, 1996)) A teacher mapping T
for a concept class C is said to be weakly collusion-avoiding on C if there exists a persistent learner
mapping L that forms a successful teacher-learner pair with T on C.

Remark 5 This definition deliberately does not require the persistent learner mapping L to be de-
fined on all C-samples. For illustration, consider the concept class Ps, the power set over a domain
{x1,x2} of size 2. This class has a teacher mapping T satisfying the weak collusion-avoidance
property, with ord(7", P2) = 1; for example, 7" can map the empty concept to {(z1, 0)}, the concept
{z1} to {(x2,0)}, the concept {x2} to {(x2,1)}, and finally the concept {x1,z2} to {(z2,1)}. A
persistent learner can form a successful teacher-learner pair with this teacher if it is not required to
produce an output on the empty sample.

By contrast, weakly collusion-avoiding teaching of P2 is no longer possible with an order of
1 if, in addition, the persistent mapping L is required to be defined on all C-samples. To see this,
suppose, without loss of generality, that a persistent learner L for Py returns the empty concept on
input of the empty sample. When fed {(z1,0)} or {(z2,0)}, this learner would have to output the
empty concept as well, to be successful with a weakly collusion-avoiding teacher. Hence, L would
need to see at least the example (1, 1) to output the concept {z1 }, and it would need to see at least
{(x2,1)} to output the concept {z2}. Thus, at least one of the three concepts {z1}, {z2}, {z1, 22}
would need to be taught using two examples, for L to allow for weakly collusion-avoiding teaching.

In the following we describe a natural normal form for teacher mappings that satisfy the weakly
collusion-avoiding property. A teacher mapping 7" is said to be an extension of T if T'(C') C T'(C)
holds for every C' € C. Clearly, if T" is an extension of 7" and T is weakly collusion-avoiding then
so to is T”. It follows immediately that:

Proposition 6 [f teacher mapping T is weakly collusion-avoiding then there is a weakly collusion-
avoiding teacher mapping T' for which |T'(C)| = ord(T,C), for all C € C.

We will find it helpful to exploit this normal form as follows: if Békgv denotes the bipartite
graph, with vertices associated with elements of C (black vertices) and C-samples of size k over X
(white vertices), and an edge from C; € C to C-sample S; whenever C; is consistent with .S;, then
any weakly collusion-avoiding teacher mapping of order k£ can be expressed as a matching in the

bipartite graph Békzv that saturates all of the black vertices.

2. In the context of recursion-theoretic learning theory (Lange et al., 2008), persistent learner mappings are sometimes
called conservative.
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2.1 Definitive Teaching

The first model of teaching that was proposed in the literature required from a teacher mapping
T that the concept C' € C be the only concept in C that is consistent with 7'(C'), for any C' € C
(Shinohara and Miyano, 1991; Goldman and Kearns, 1995). This led to the definition of the well-
known teaching dimension® parameter. The following presents this definition in a modified, but
equivalent, form:

Definition 7 (DTD (Shinohara and Miyano, 1991; Goldman and Kearns, 1995)) Fix a concept
class C over a domain X, and let C € C be a concept. A definitive teaching set for C (with
respect to the concept class C) is a C-sample S for which C' is the only consistent concept in C. By
DT®*) (C) we denote the subset of C consisting of concepts with definitive teaching sets (with respect
to C) of size at most k. The definitive teaching dimension of C, denoted DTD(C), is then defined as
min{k | DT®*)(C) = C} (with DTD(C) = oc if, for every k, there is some concept whose smallest
definitive teaching set S has size greater than k). Further, we define

DTD i (C) = min{k | DT®)(C) £ 0} .

The positive definitive teaching dimension of C, denoted by DTD™(C), is defined analogously to
DTD(C), where the sets S are required to contain only positive examples.

As we have already seen, there is no relationship between the size of a concept class and its
definitive teaching dimension: clearly there exist uncountably large concept classes C, each with
uncountably many elements, with DTD(C) = 1. It is not hard to construct concept classes for
which DTD™ is an arbitrarily large multiple of DTD, for example the set of concepts that include
all but one instance from the underlying domain.

For example, let Cp be a concept class over a domain X of exactly m elements, containing the
empty concept, all singleton concepts over X', and no other concepts (Goldman and Kearns, 1995).
Then DT™(Cp) consists of all of the singleton concepts, since {(z,1)} serves as a teaching set
for {z}. However, DTD(Cp) = m, since any set of up to m — 1 negative examples is consistent
with some singleton concept and hence any teaching set for the empty concept must include all m
negative examples. Similarly, the concept class Cg over N, containing the empty concept and all
singleton concepts, but no others, has DTD(Cg) = oo.

Note that implicit in the definition above is the existence of a weakly collusion-avoiding teacher
mapping 7" of order at most DTD(C).

2.2 Recursive Teaching

As mentioned in the introduction, several relaxations of the notion of definitive teaching have been
proposed in the literature.

The RTD, short for “recursive teaching dimension”, is a well-studied teaching parameter defined
by Zilles et al. (2011). It is determined by removing from the concept class C all those concepts
that admit definitive teaching sets of size DTDy,;, and then recursing on the remaining concepts.
The largest DTD,y;,, value thus encountered is the RTD. The following provides an equivalent
definition to that of Zilles et al. (2011):

3. In the following, in order to avoid confusion with other notions of teaching dimension, we have chosen to refer to
this notion as the definitive teaching dimension.



FALLAT, KIRKPATRICK, SIMON, SOLTANI, AND ZILLES

Definition 8 (RTD) Let C be a concept class. The largest subset RTgnk) (C) of C for which a re-
cursive teacher mapping, using C-samples of size at most k, can be formulated with at most r
recursive steps, is defined as follows: RT[()k)(C) = DT®™(C) and for all i € N, RTETI C) =
RT™(c)u DT® ¢\ RT¥ (C)).

Let RTM(€) = U,5oRTY (C). The recursive teaching dimension of C, denoted RTD(C) is defined
as min{k | RT® (C)=C}.

The positive recursive teaching dimension of C, denoted by RTD™ (C), is defined analogously, when
the C-samples are required to contain only positive examples.

Note that implicit in the definition of RTSJC) (C) is the existence of a weakly collusion-avoiding
teacher mapping 7', called a minimum depth recursive teaching plan for RT (C) of order k, that
assigns to each element of C' € DT®)(C\ RTgk) (C)) a definitive teaching set for C' with respect to
C\ RTEk) (C), of size at most k.

As with DTD, it is not hard to construct concept classes for which RTD™ is an arbitrarily
large multiple of RTD. Further, it should be clear from the definition that, for all k, DT®) ) =
RT" (€) € RTM(C), and hence RTD(C) < DTD(C). In fact, RTD™(Cp) = RTD(Cp) = 1,
illustrating the fact that, for some concept classes, RTD™ can be an arbitrarily small fraction of
DTD. If we define the concept classes Cr = {{i,i+ 1} | i € N} and Cq = {{i,i + 1} | i € Z}, as
well as Cp+ = Cp U {0} and Cq+ = Ci U {0}, it is straightforward to confirm that RTD(Cr) = 1,
RTD(Cg) = 2, and RTD(Cp+) = RTD(Cq+) = oo. Note, however, that if we generalize the
notion of recursive teaching to 2-recursive teaching in which maximal size recursive teaching sets
are taught in successive rounds, then the recursive teaching dimension of the concept class Cp+ is
reduced to 1.

2.3 Preference-Based Teaching

In the model of preference-based teaching, a preference relation > on C, known to both the teacher
and the learner, is used to reduce the size of teaching sets. As with the recursive teaching model,
a concept C' need not be be the only concept consistent with its teaching set 7'(C); to resolve
ambiguity, C' is chosen by the learner as the unique most preferred concept in C that is consistent
with T'(C'). While it is natural to express preferences among concepts using a strict order on C, in
order to ensure that the teacher mapping 7" is injective, it suffices that the preference relation > is
asymmetric on C .

Let C be a concept class over a domain X and > any asymmetric binary relation on C. We say
that concept C' is preferred over concept C’ (with respect to ), if C = C’. A =-distinguished
teaching set for C' over C is a C-sample .S such that

1. Sis consistent with C', and
2. C = C'forall C" € C\ {C} such that S is consistent with C".

We define the set PBT*) (C,>) to be the set of all concepts C' € C that have a ~-distinguished

teaching set of size at most k over C. The preference-based teaching dimension of C with respect to
>, denoted by PBTD(C, ), is given by min{k | PBT®*)(C, ~) = C}.
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Definition 9 (PBTD (Gao et al., 2017)) Let C be a concept class. The preference-based teaching
dimension of C, denoted by PBTD(C), is defined by

PBTD(C) = min{PBTD(C, ) | =C C x C and - forms a strict order on C} .

The positive preference-based teaching dimension of C, denoted by PBTD™ (C), is defined analo-
gously to PBTD(C), where the sets S are required to contain only positive examples.

Note that implicit in the definition of PBT®*) (C,>) is the existence of a weakly collusion-
avoiding teacher mapping 7' on PBT(*)(C, »-) that has order at most k.

The following property is crucial when relating PBTD and RTD. Its proof, only a slight gen-
eralization of the proof by Gao et al. (2017) for the case of finite concept classes (cf. Lemma 7),
asserts essentially that any “least preferred” concept must be taught definitively. Recall that a strict
order on C is well-founded if for every element of C' € C the descending chains starting from C' are
all finite. We say that a strict order on C is strongly well-founded if for every element of C' € C the
descending chains starting from C' are all bounded in length by some constant (depending on C').

Proposition 10 (Gao et al. (2017)) Let C be any concept class and > any binary relation that forms
a well-founded strict order over C. Then, PBTD(C,>) > DTDyin(C) and PBTD+(C, -) >
DTDin ™ (C).

It follows immediately that if >~ is a strongly well-founded strict order, then PBTD(C, >) >
RTD(C).

On the other hand, suppose C is any concept class and > is the binary relation on C in
which C' =, C'if and only if C € RTY(C) and ' € RTW(C) for some ' < r. Then it
is straightforward to confirm that (i) > is a strongly well-founded strict order on RTSfC) (C), and
i) RT™(c) ¢ PBT®)(C, ~;). Hence, if RTD(C) = k then PBTD(C, =) < RTD(C) and
PBTD"(C, 1) < RTD (C).

It was shown in Gao et al. (2017) (cf. Corollary 9) that if C is a finite concept class, then
PBTD(C) and RTD(C) coincide, as do PBTD™(C) and RTD™(C). From the remarks above, it
follows immediately that the same relationships hold, even if C is infinite, provided PBTD(C) =
PBTD(C, >-), for some strongly well-founded strict order > on C (cf. Lemma 8, in Gao et al.
(2017)).

Proposition 11 (Gao et al. (2017)) If PBTD(C) = PBTD(C, ), for some strongly well-founded
strict order = on C, then PBTD(C) = RTD(C). (Similarly for PBTD™(C) and RTD™(C).)

Note that the concept class Cp, described in the introduction, has DTD(Cg) = RTD(Cp) = o
but PBTD"(Cg) = 1. In addition, for the concept classes Cp+ and Cq+ defined above, it is
straightforward to confirm that PBTD " (Cp+) = PBTD™(Cq+) = 1. These illustrate the fact that
PBTD™ can be an arbitrarily small fraction of RTD.

3. The Limit of Weakly Collusion-Avoiding Teaching

As we have already noted, teacher-learner pairs following the classical teaching dimension model,
the recursive teaching model, or the preference-based teaching model are all collusion-avoiding
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according to the weak (Goldman-Mathias) criterion (cf. Definition 4). Of these models, the classical
teaching dimension model is the one imposing the most constraints on the mapping 7°, followed
by recursive teaching, and preference-based teaching in that order. Consequently, the “teaching
complexity” among these models is lowest for preference-based teaching; if every concept in a
concept class C can be taught with at most k& examples in any of these models, then every concept
in C can be taught with at most k& examples in the preference-based model.

One could still argue that the preference-based model is unnecessarily constraining. Preference-
based teaching of a concept class C relies on a preference relation that induces a strict order on C.
However, this strict order is used by the learner only after the teaching set has been communicated,
since the learner chooses the unique most preferred concept among those consistent with the set of
examples provided by the teacher. One might consider loosening the constraints by, for example,
demanding only that the set of concepts consistent with any chosen teaching set be ordered under
the chosen preference relation (rather than requiring acyclic preferences over the whole concept
class). In the same vein, one could relax more conditions—every relaxation might result in a more
powerful model of teaching satisfying the weakly collusion-avoiding criterion. In fact, we have
already seen in Remark 5 that weakly collusion-avoiding teachers of order 1 exist for the powerset
P5 on two elements, while clearly PBTD(P,) = 2.

In the following, we will define the provably most powerful model of teaching that is collusion-
avoiding as defined in Definition 4.

3.1 Non-clashing Teaching

Before we define this model formally, we introduce a crucial property that was originally proposed
by Kuzmin and Warmuth (2007) in the context of unlabeled sample compression.

Definition 12 (Non-Clashing Teacher) Let C be a concept class and T be a teacher mapping on
C. We say that T is non-clashing (on C) if there are no two distinct C, C" € C such that both T (C)
is consistent with C" and T (C") is consistent with C.

Prior to Kuzmin and Warmuth (2007), de la Higuera (1997) used the non-clashing property
in the context of grammatical inference, with the added constraint that the size of the sample sets
(i.e., of the sets T'(C) in our definition) be bounded from above by a polynomial in the size of the
underlying representation of C', which in de la Higuera’s work would be a generator or an acceptor
for a formal language. It turns out that, for a teacher mapping 7', the non-clashing property coincides
with the weak collusion-avoidance criterion:

Theorem 13 Let C be a concept class over the instance space X. Let T be a teacher mapping on
C. Then the following two conditions are equivalent:

1. T is non-clashing on C.

2. T satisfies the weak collusion-avoidance criterion on C.

Proof In essence, the proof is the same as that used by de la Higuera (1997) for a similar statement.

First, suppose 1" is a non-clashing teacher mapping, and define L as follows. Given any set S
of labelled examples as input, L returns an arbitrary concept C' € C such that T(C') C S and C'is
consistent with S. If no such concept exists then L is undefined on S.

10
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Suppose there is some concept C' € C such that a given set S of labelled examples is consistent
with C' and contains 7'(C'). We claim that then such C' is uniquely determined. For if there were
two distinct concepts C, C" € C consistent with .S such that 7'(C) U T(C") C S, then T'(C"), being
a subset of S, would be consistent with C' and, likewise, 7'(C') would be consistent with C'—in
contradiction to the non-clashing property of 7. From the definition of L, it then follows that T’
satisfies the weak collusion-avoidance criterion.

Second, suppose 1" is a teacher mapping and there is a mapping L witnessing the fact that T’
satisfies the weak collusion-avoidance criterion, i.e., for all C' € C, we have L(S) = L(T(C)) = C
whenever S is consistent with C' and contains 7'(C'). To see that 7" is non-clashing, suppose two con-
cepts C, C" € C are both consistent with T(C)UT(C"). Then C = L(T(C)) = L(T(C)UT(C")) =
L(r(ch)) =" |

Consequently, teaching with non-clashing teacher mappings is, in terms of the worst-case num-
ber of examples required, the most efficient model that satisfies the weak collusion-avoidance crite-
rion. Hence we define the notion of no-clash teaching dimension as follows:

Definition 14 (NCTD) Let C be a concept class over the instance space X. Let T be a teacher
mapping on C of order k. Denote by NCT®) (C,T) the largest subset C' C C such that T is non-
clashing on C'. The No-Clash Teaching Dimension of C with respect to T', denoted by NCTD(C, T),
is defined as min{k | NCT®*)(C, T') = C}. Finally, the No-Clash Teaching Dimension of C, denoted
NCTD(C), is defined by

NCTD(C) = min{NCTD(C,T) | T is a non-clashing teacher mapping for C} .

It is immediate from Theorem 13 that NCTD(C) corresponds to the order of the minimum order
teaching mapping 7" that satisfies the weak collusion-avoidance criterion.

As with earlier teaching notions, it is natural to study a variant of non-clashing teaching that
uses positive examples only.

Definition 15 (NCTD™) Let C be a concept class over the domain X. We define NCTD™(C) =
min{ord(7,C) | T is a positive non-clashing teacher mapping for C}.

Furthermore, for finite concept classes, it will be helpful to have the notion of average no-clash
teaching dimension:

Definition 16 (NCTD,,,) Let C be a finite concept class. The Average No-Clash Teaching Dimen-
sion of C, denoted by NCTD g (C), is defined as

NCTD,g(C) = min { |cly S r(e))

T is a non-clashing teacher mapping for C } .
ceC

Remark 17 It follows immediately from the pigeonhole principle that

NCTD(C) > [NCTDayg(C)] .

11
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3.2 Properties of NCTD and NCTD™

Since NCTD refers to the optimal teaching complexity among those studied in this paper, and char-
acterizes the complexity of teaching without collusion in the weaker sense (as defined by Goldman
and Mathias), we will now turn to a deeper study of this parameter.

3.2.1 LOWER BOUNDS ON NCTD AND NCTD™"

To establish lower bounds on NCTD and NCTD™ for finite concept classes, we first show that
NCTD(C) must be at least as large as the smallest d satisfying |C| < 2d(|)d(|). This bound actually
applies to any teacher mapping that uses teaching sets of size at most d. A similar statement then
follows for NCTD™. In fact, we prove a slightly stronger result, replacing |X’| with a potentially
smaller value:

Definition 18 We define X1 C X as the set of instances that are part of a labelled example in a
teaching set T'(C) for some C € C. Moreover, we define

X (C) = min{|X7| : T is a non-clashing teacher mapping for C with ord(C,T) = NCTD(C)}.

Intuitively, X (C) is the smallest number of instances that must be employed by any optimal non-
clashing teacher mapping for C. Likewise, we define X ™ (C) for positive non-clashing teaching.

Theorem 19 Let C be any concept class.
X(C
1. IfNCTD(C) = d, then |C| < 2¢(*(9)).
d +(C
2. IFNCTD*(C) = d, then |C] < S0 (X1,

Proof To prove statement 1, let X’ be a subset of size X (C) of X. Let C' — T'(C) C X’ x {0,1}
be a consistent and non-clashing mapping which witnesses that NCTD(C) = d, and let L be the
mapping such that L(7T'(C)) = C for all C' € C. By Proposition 6, one may assume without loss
of generality that |T(C')| = d for all C' € C. Since T is an injective mapping and there are only
2d (X ((16)) labelled teaching sets at our disposal, the claim follows.

Statement 2 is proven analogously, taking into consideration that, in the NCTD™ case, we do
not have an analogous statement to Proposition 6, since a concept does not in general contain d or
more elements. Note that the formula has no factors 2¢ since there are no options for labelling the
instances in any set 7'(C'). [

We will next establish a useful lower bound on NCTD(C), as well as as a related lower bound
on NCTD™(C), based on the number of neighbors of any concept in C.

Definition 20 (One-Inclusion Graph (Haussler et al., 1994)) Let C be a concept class over a do-
main X. The one-inclusion graph G(C) is the (undirected) graph given by the vertex set C and the
edge set {(C,C") | |CAC'| = 1}, where CAC" := (C'\ C")U (C"\ C). Any edge (C,C") in this
graph is labeled with the unique element x € X for which C(x) # C'(z).

12
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A concept C' € C is a neighbor of concept C' € C if (C,C") is an edge of G(C). If C" C C then
the degree of C' € C’, with respect to C’, denoted as dege/ (C), is defined as the number of neighbors
of C' in the subgraph of G(C) induced on the vertices in C’. The average induced degree of concepts
in the subset C' C C is then denoted by

1
deg,,,(C") == I : Z dege (C) .
Cec’

The dominance of C' € C, denoted as dom¢(C'), is defined as the number of smaller neighbors of
C in C, i.e. neighbors that contain exactly one fewer instance than C.

Theorem 21 Every concept class C over a finite domain satisfies (i) NCTDgye(C) > % ~deg,,,(C)
and (ii) NCTD(C) > maxcrce| 5 - deg,,,(C')].

Proof For assertion (i), let 7' be any non-clashing teacher mapping for C. If C; and C5, both in C’,
are neighbors, and C (z) # Ca(x), then at least one of the sets 7'(C), T'(C2) must contain z. We
obtain Y e [T(C)] > 4 -3 cordege ©) = |C'] - 5 - deg,,,,(C"). Assertion (ii) is immediate
from (i), by Remark 17. |

Theorem 22 Every concept class C over a finite domain satisfies

NCTD™(C) > maxdome(C) .
ceC
Proof If the smaller neighbor C’ of C' € C differs from C on instance x;, then (z;, 1) must be used
in teaching C'. Hence, every C' € C must have a positive teaching set of size at least dom¢(C'). W

Although the lower bounds in Theorems 21 and 22 are not expected to be attained very often,
the following Remark shows that they are sometimes tight:

Remark 23 Let P, be the powerset over the domain {z1,...,z,,}. Since every concept in P,
has degree m, clearly deg,,,,(Pm) = m. It follows from Theorem 21 that NCTDayg(Pp) > m/2
and hence NCTD(P,,) > [m/2]. Furthermore, since domp, ({z1,...,2m}) = m, it follows
from Theorem 22 that NCTD™(P,,) > m. But the positive mapping 7' that maps S € P, to
S x {1} is trivially non-clashing, and hence NCTD"(P,,,) = m and NCTDyyg(Pr,) = m/2.
By Remark 5, we have NCTD(P2) = 1. As we shall see in Theorem 29, this generalizes to
NCTD(P,,) = [m/2].

We note that the maximum degree of a concept in C is in general not an upper bound on
NCTD(C). For example, if we consider the concept class C consisting of subsets of size & of some
domain of size n, then all concepts in C have degree zero yet, for n sufficiently large, NCTD(C) = k
(since for large enough n the size of C exceeds the number of possible teaching sets in a normal-form
teaching mapping 7 for C with ord(7,C) < k.)

The degree lower bounds for NCTD,,, and NCTD in Theorem 21 can be generalized by taking
into consideration the fact that all concept pairs, not just neighbours need to be distinguished by their
teaching sets. Specifically, if we construct the complete graph on the set of concepts C and (i) label

13
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the edge joining concept C' and concept C’ with C AC’, and (ii) label each concept C by its teaching
set T'(C) then the no-clash condition requires that each edge label C AC’ must intersect the union
of the labels of its endpoints T'(C') U T'(C").

Thus NCTD(C) corresponds to the minimum, over all such labelings, of the maximum size
vertex label used. We can lower bound NCTD,,, (and hence NCTD) by observing a lower bound
on the fotal size of the vertex labels (teaching sets). One such bound arises by choosing a subset
C' of C and a subset M of the edges joining vertices in C’. If the labels of the edges in M are all
incidence-disjoint, meaning they do not intersect the labels of incident edges in M, then each edge
in M creates a demand on the labels of its endpoints that cannot be satisfied by a vertex label that is
used to satisfy the demand of any other edge in M. Hence,

Theorem 24 [fC' C C and M is any subset of the edges joining vertices in C' whose associated
labels are incidence-disjoint, then NCTD ., (C) > |M|/|C'| and (ii) NCTD(C) > [|M|/|C'|].

Note that this generalizes Theorem 21 since the edges joining neighbors have labels that are inci-
dence disjoint. It is easy to construct examples, such as the set {al, a} x {a?, a2} x ... x {a¥, a5}
(or the set of all subsets of a fixed size k) for which Theorem 21 gives only a trivial lower bound,
yet an optimal lower bound (of k) follows easily from Theorem 24.

3.2.2 SUB-ADDITIVITY OF NCTD AND NCTD*

In this section, we will show that the NC'TD is sub-additive with respect to the free combination of
concept classes. As an application of this result, we will determine the NCTD of the powerset over
any finite domain &X'. While the powerset is a rather special concept class, knowing its NCTD will
turn out useful to obtain a variety of further results.

Definition 25 (Free Combination of Concept Classes) Let Ci and Co be concept classes over dis-

Jjoint domains X1 and Xs, respectively. Then the free combination Cy LI Co of C1 and Cs is a concept
class over the domain X, U Xs defined by C1 11 Co = {C1 U Cs| C1 € Cy and Cy € Ca}.

Lemma 26 Let C = C1UCs be the free combination of C1 and Co. Moreover, fori = 1,2, let T; be a
non-clashing mapping for C;. Then, for T'(C1UC2) defined by setting T'(C1UCo) = T1(C1)UT2(Cs),
we have that T is a non-clashing teacher mapping for C11Co. Moreover, as witnessed by T, NCTD
acts sub-additively on L], i.e.,

Proof Suppose that concepts C;,, Cj, € C1 and C;,, Cj, € Co giverise to distinct concepts C;, UC;,
and C;, U Cj, € C; U Cy that clash under T'. (Without loss of generality we can assume that
i1 # j1.) Then Cj, U Cj, is consistent with 77 (Cj, ) U T»(Cj,) and Cj, U Cy, is consistent with
T1(Cj,) UTy(C},). Hence Cj, is consistent with 77 (C}, ) and Cj; is consistent with T’ (C}, ), that
is concepts C;, and C}, in C; clash under the mapping 7. |

As we shall see NCTD sometimes acts strictly sub-additively on U; in particular, the composition
of optimal mappings for C; and C» is not necessarily an optimal mapping for C; LI Cs. In contrast,
ANCTD acts additively on LI

14
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Lemma 27 Let C = C1UCs be the free combination of C1 and Co. Moreover, fori = 1,2, let T} be a
non-clashing mapping for C;. Then, for T'(C1UC2) defined by setting T'(C1UC2) = T1(C1)UT2(Cy),
we have that T is a non-clashing teacher mapping for C1 LI Co. Moreover, as witnessed by T,
NCTDayg acts additively on L, i.e.,

NCTDayg(C1 U Cs) = NCTD,yg(C1) + NCTD,yg (Ca) - )

Proof The proof of Lemma 26 above shows that ANCTD acts sub-additively on LJ, that is
NCTDayg(C1 UC2) < NCTDayg(C1) + NCTD,yg(C2). It remains to show that

NCTDayg(C1 U Cs) > NCTD,yg(C1) + NCTD,yg (C) - 3)

To this end, let A} (resp. X3) be the domain of concept class C; (resp. Cz) and suppose that 1" is
a non-clashing teacher mapping on C such that NCTD,,(C) = ﬁ Y cec |T(C)|. The following
calculation makes use of the fact, for every fixed choice of Cy € Ca, the mapping C; — T'(Cy U
C3) N X is a non-clashing teacher mapping on C; (and an analogous remark holds, for reasons of
symmetry, when the roles of C; and Cs are exchanged):

1
NCTDug(C) = e . . IT(C1UCY|)
’Cl| ’ |C2’ C1eC1 CreCo

1 1
= Y T(CLUCo) N |

C2 CeCs 1 cecy

4 ! > IT(CLUCo) N &y
TA T TA T 1 2 2
1l cety C2| Cels

v

NCTD g (C1) + NCTDoyg(Ca) -

Remark 28 In Lemma 26, if 77 and 75 are positive non-clashing mappings, then the same proof
shows that T' (a positive non-clashing mapping) witnesses the fact that NCTD™ also acts sub-
additively on L, i.e.,

NCTD™(C; UCs) < NCTD™(C;) + NCTD'(Cy). )

Furthermore, since LI is associative, it follows immediately that, for any concept class C, if C* :=
CiU...UCk, where C; := {C x {i}| C € C} fori =1,...,k, then

NCTDayg(C*) = k - NCTD,ye(C) (5)
and

NCTD(C*) < k-NCTD(C) and NCTD*(C*) < k- NCTD*(C). (6)

We have already seen, in Remark 23, that NCTDaye(Py,) = m/2, NCTDT(P,,) = m and
NCTD(P,,) > [m/2], where P, denotes the powerset over the domain {z1,..., %, }. The sub-
additivity results above can be applied in order to determine NCTD(P,,) exactly as well.

15
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Theorem 29 Let P, be the powerset over the domain {x1, ...,z }. Then NCTD(P,,) = [m/2].

Proof It remains to show that NCTD(P,,) < [m/2]. It suffices to verify this upper bound for

even m. But, when m is even, NCTD(P,,,) = NCTD(P?/Q) < m/2 follows from (6) and the fact
that NCTD(P2) = 1 (cf. Remark 23). [

Since the NCTD of any concept class over a domain &’ is trivially upper bounded by the NCTD
of the powerset over X', this result in particular implies that [|X'| /2] is an upper bound on the NCTD
of any concept class over a domain X.

A further consequence of Theorem 29 is that NCTD is sometimes strictly subadditive with
respect to the operation of free combination, i.e., that inequality (1) is sometimes strict. An example
for that is the free combination P, LI P, of two copies of P, for odd m. Since the domain of
P U Py, has size 2m, we obtain NCTD(P,,, U Py,) = m, while NCTD(P,,) + NCTD(P,,) =
2[2] =22 = m + 1.

Another situation (that we will exploit later) where NCTD™ acts strictly additively on LJ, is

captured in the following:

Lemma 30 Ler P, be the powerset over the domain {x1, ...,y } and let C be a concept class
with domain X disjoint from {x1, ...,z }. Then,

NCTD" (P, UC) = NCTD*(P,,) + NCTD*(C).

Proof By (4) it suffices to show that NCTD™*(P,,, UC) > NCTD™(P,,) + NCTD"(C). Theo-
rem 22 implies that, for each C; € C, any positive non-clashing mapping 1" for P, LI C must use
m = NCTD™(P,,) examples from {z1,...,z,,} to teach the single concept {x1, ..., T} U C;
within the concept class P, LI C;. So the only way that 7" could use fewer than m + NCTD™(C)

examples in total for each concept in {x1, . ..,z } LC is if each such concept is taught with exactly
m examples from {z1, ..., T, }, and hence fewer than NCTD™ (C) examples from X, a contradic-
tion. |

Furthermore, it is easily seen that the average degree acts additively on LI:

Lemma 31 Let C; and Co be concept classes over disjoint and finite domains. Then the following
holds:

degavg (Cl U 62) = degavg (Cl) + degavg (CQ) : (7

Proof Let C := C; U Cs. The concepts in C that are neighbors of Cy U Cy € C are precisely the
concepts of the form C U CY, or C] U C where C4 is a neighbor of C5 in C; and C] is a neighbor
of C'1 in C1. Hence

dege(C1 U Ca) = dege, (C1) + dege, (C2) .

Moreover |C| = |C1] - |C2|. It follows that

Zdegc((}') = Z Z dege(C1UCy) = |Cal - Z dege, (C1) + [Cy - Z dege, (Ca) .

ceC Ch1€Cy CaeCy Cieh CareCo

Division by |C1| - |C2| immediately yields (7). [ |
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The free combination of classes with a tight degree lower bound is again a class with a tight
degree lower bound:

Corollary 32 Let Cy and Co be two concept classes over disjoint and finite domains, and let C =
C1 UCq. Then NCTD(C;) = % - deg,,,(C;) fori = 1,2 implies that NCTD(C) = % - deg gy, (C).

Proof The assertion is evident from the chain of inequalities:

(1)
NCTD(C) < NCTD(C;) + NCTD(Cy) = % - degay, (C1) + % + gy (Ca) 2

N

: degavg (C)

and Theorem 21. |

4. Relation Between NCTD and Other Learning-theoretic Parameters

In this section, we set NCTD in relation to PBTD and VCD, as well as to the smallest possible
size of a sample compression scheme for a given concept class.

While most of the statements made in this section are immediate consequences of known results
on PBTD and VCD, we consider it worthwhile gathering these results for the sake of providing a
complete picture of how NCTD relates to other important complexity parameters. Moreover, we
provide non-trivial new results towards the so far unresolved question of how large the gap between
NCTD and PBTD can be.

4.1 PBTD

While we have already seen that
NCTD(C) < PBTD(C) and NCTD*(C) < PBTD"(C),

for any concept class C, it is far more intricate to determine the ratios by which the individual
parameters in these inequalities can differ.

4.1.1 EXAMPLES OF CONCEPT CLASSES WITH NCTD < PBTD

The inequality NCTD(C) < PBTD(C) is sometimes strict, as witnessed by Theorem 29, which
states that NCTD(P,,,) = [m/2]. By comparison, PBTD(P,;,) = m. In particular, this yields a
family of concept classes of strictly increasing NCTD for which PBTD exceeds NCTD by a factor
of 2. The fact that the inequality NCTD™(C) < PBTD™(C) is sometimes strict is witnessed by
the simple class C4 described in the introduction, with NCTD™(C4) = 1. Since no concept in C4
has a positive teaching set of size 1, Proposition 10 implies PBTD"(C4) = 2. In particular, these
examples witness that Proposition 10 does not hold for non-clashing teaching.

Appendix A shows two interesting examples of concept classes for which NCTD™ equals 1
while PBTD equals 3. The main result of this subsection is that Sylvester-Hadamard matrices can
be used to define a natural family of finite concept classes, for which PBTD and DTD,,,;,, exceed
NCTD by a factor of at least 4.
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Example 1 In this example, as usual, we associate a binary matrix with a concept class in which the
rows are concepts and the columns are instances. Sylvester’s standard construction of Hadamard
matrices (with zeroes replacing the -1 entries) can then be used to construct concept classes of
interest to our study.

Define the 1 x 1-matrix Hy to consist of only the entry 1. In general, for n € N\ {0}, define the

2™ x 2"-matrix H,, as
<Hn1 Hn1>
anl anl ’

where H results from H by flipping every 1 to a 0 and vice versa.
It is well known that Hp,4r, = H,, ® H,, where ® denotes the Kronecker product (where 0
operates as —1).

The recursive structure of H,,, n > (0, makes possible a straightforward inductive proof of the
following:

Observation 33 If we consider the 2"~ rows Y; of H,, that contain a fixed value (0 or 1) in column
i > 1 then there is an associated set of 2"~ columns X; such that the entries belonging to rows Y;
and columns X; form either H,,_1 or H,_1. It follows immediately from this that if we fix the value
of any s < n instances then provided there is at least one consistent concept there must be at least
25 consistent concepts. Hence, DTD,,;,(Hy,) = n.

Note that the rows of a Sylvester-Hadamard matrix are called Walsh functions, and are an
equivalent representation of parity functions. In particular, the concept class consisting of the
rows of H,, is equivalent to the class II,, of parity functions over the domain X,, = {0,1}", i.e.,
II,, = {xw | w € {0,1}"} where, for every x € {0,1}",

Xw(T) = (w,z) =wi1x1 & ... O Wy, .

Here @ denotes addition modulo 2 and (-, -) denotes the inner product modulo 2. This equivalence
can be exploited to show that, for all n > 1, we have NCTD(Hy,) < n.

Theorem 34 Foralln > 1, we have NCTD(Hy,,) < n.

Proof We will show that NCTD(Ily,) < n.
Fix a teaching mapping

Xu = {(@, Xu (@)} ®)
which witnesses that NCTD(II4) = 1. Such a mapping exists; an example is given in Table 1.
A vector @ € Xy, can be decomposed into vectors uj,...,u, € X4. Let T be the teacher

mapping which assigns to x the instances
(41,0,...,0),...,(0,...,0,y)

together with their xg-labels. Consider another parity function x5 # X and its teaching set con-
sisting of the instances
(01,0,...,0),...,(0,...,0,0y)
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and their xz-labels. Suppose that xz is consistent with the teaching set of yg. Fix some j € [n]
such that u; # v;. It follows that

Xv; (15) = x5(0,...,0,4;,0,...,0) = x@(0,...,0,%;,0,...,0) = Xu, () -
Since (8) is a teacher mapping that witnesses NCTD(II4) = 1, it follows that
Xu; (D) 7 Xo; (05) -
Hence
xa(0,...,0,95,0,...,0) = Xu, (V5) # Xv,; (V) = x5(0,...,0,94,0,...,0),

which shows that x 3 is not consistent with the teaching set of . Thus 7' is a valid teacher mapping

of order n in the no-clash model, which concludes the proof. |
1 T2 T3 T4 X5 Te X7 X8 | X9 T10 T11 T12 T13 T14 T15 T16
Cr |1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1
cC; (1 0 1 O 1 O 1 011 0 1 0 1 0 1 0
cs(1 1 0 O 1 1 0 0]1 1 0 0 1 1 0 0
cy 1 0 O 1 1T O 0 171 0 0 1 1 0 0 1
Cs(1 1 1 1 0 O 0 O0]1 1 1 1 0 0 0 0
C¢é |1 0 1 O O 1 0 1]1 0 1 0 0 1 0 1
c;(1 1 0 O O O 1 111 1 0 0 0 0 1 1
Cg |1 0 0O 1 0 1 1 0] 1 0 0 1 0 1 1 0
Cy [ 1 1 1 1 1 1 1 110 0 0 0 0 0 0 0
Cpl|1 O 1 0 1 0 1 0]0 1 0 1 0 1 0 1
Cu| 1 1 0 0 1 1 0 0]O0 0 1 1 0 0 1 1
Col|1 0 O 1 1 0 0 1]0 1 1 0 0 1 1 0
Cis | 1 1 1 1 0 0 O 010 0 0 0 1 1 1 1
Cyl| 1 0 1 0 0 1 0 1]0 1 0 1 1 0 1 0
Ci5 | 1 1 0 0 0 0 1 110 0 1 1 1 1 0 0
Cgl| 1 0O O 1 O 1 1 0]0 1 1 0 1 0 0 1

Table 1: The concept class Hy (= II4) with a non-clashing teacher mapping of order 1 shown
with highlighted entries. Note that the subset {xg . .., 216} of domain instances is already
sufficient for defining this non-clashing teacher. In particular, the “right half” of the matrix
H, yields a concept class of 16 instances over a domain of size 8 for which PBTD equals
4 while NCTD equals 1.

Corollary 35 Foralln € N, we have PBTD(H,,) = n, while NCTD(Hy,) < n.

Recently, a family of concept classes was constructed for which the gap between NCTD and
PBTD becomes unbounded (Simon, 2022). However, the natural examples provided here may
provide further insights into the intricate relationship between these two parameters under certain
constraints on the structure of the underlying concept class.
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4.1.2 SHORTEST-PATH-CLOSED CONCEPT CLASSES

The notion of one-inclusion graph (Haussler et al., 1994) is helpful in studying teaching complexity
parameters, since, for any so-called shortest-path-closed concept class C, the one-inclusion graph
provides a simple representation of all smallest definitive teaching sets of any concept in C.

Recall from Definition 20 that the one-inclusion graph G(C) of a concept class C is the (undi-
rected) graph given by the vertex set C and the edge set {(C,C") | |CAC’| = 1}, where CAC" :=
(c\cHu (e o).

Definition 36 (Shortest-Path-Closed Concept Class) Suppose that edge (C,C") in G(C) is la-
beled with the unique element x € X for which C(x) # C'(z). The concept class C is called
shortest-path-closed if; for any k and any two concepts C,C" € C with |CAC'| = k, there is a path
of length k in G(C) from C to C".

It is obvious that P,,, the powerset over the domain {z1, ..., z,,}, is shortest-path-closed.

As noted by Doliwa et al. (2014), in a shortest-path-closed class, the set of edge labels incident
to any concept C corresponds to the unique smallest definitive teaching set of C'. Now consider
a non-clashing teacher mapping 7" on a shortest-path-closed class C. Since no two concepts can
be consistent with one another’s teaching sets, for every edge (C,C”) in G(C), at least one of the
concepts C, C’ must use the label of (C, C”) in its teaching set under 7.

The following simple characterization of shortest-path-closed classes whose NCTD equals 1
follows directly:

Theorem 37 Let C be shortest-path-closed. Then the following statements are equivalent:
1. NCTD(C) = 1;
2. The one-inclusion graph G(C) corresponding to C has at most one cycle.

Proof (Sketch) If G(C) has more than one cycle then, following iterated removal of vertices of
degree one, which preserves the property of being shortest path closed, the resulting graph has
minimum degree 2. Since the resulting graph has average degree greater than 2 (otherwise, since it
must be connected, it is a simple cycle), it follows, by Theorem 21, that NCTD(C) > 1.

If G(C) is acyclic, then it is a tree; this implies RTD(C) = 1 (Doliwa et al., 2014), and thus
clearly NCTD(C) = 1.

If G(C) has exactly one cycle, then this cycle has even length, and each edge label occurring
on the cycle occurs exactly twice. Shortest-path-closedness further implies that the two occur-
rences of any edge label on the cycle are directly opposite to one another, i.e., there are instances
x1,...,x, € X and a vertex Cy on the cycle, such that the edge labels following the cycle in one
direction, starting from CY, occur in order x1, ..., z, T1,.. ., Z. Note that any vertex on the cycle
may also be the root of a subtree of G(C). Shortest-path-closedness can again be used to show that
(1) none of the instances x7, ...,z occur as edge labels in any of these subtrees; and (ii) every
instance z € X' \ {x1,...,x} occurs at most once as an edge label in G(C). Now a non-clashing
teacher mapping of order 1 can be defined as follows. First, all edges on the cycle are directed away
from Cj in the direction of the edge labeled z; incident to Cyy. Then Cy is taught with (x1, Cp(z1)),
and subsequent concepts on the directed cycle are taught with the instance of their outgoing edge,
labeled accordingly. (Clearly, the two occurrences of any instance x;, for 1 < ¢ < k, occur with
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opposite binary labels in the corresponding teaching sets.) Second, every non-root concept C' in a
subtree is taught using only the pair (z, C'(x)), where x is the label of the edge pointing from C' in
the direction of the root of the tree containing C. It is easy to verify that this teacher mapping is
non-clashing. Thus NCTD(C) = 1. [ |

Corollary 38 Let C be a shortest-path-closed concept class. If NCTD(C) = 1, then RTD(C) < 2.

Proof (Sketch.) We know from Theorem 37 that G(C) has at most one cycle. If G(C) has no cycle,
then a result by Doliwa et al. (2014) implies that RTD(C) = 1. If G(C) has a cycle, then each
vertex not on that cycle belongs to a tree; using the same result by Doliwa et al. (2014), we can
assign (recursive) teaching sets of size 1 to all non-root vertices of any sub-tree of G(C). Finally,
only the vertices on the cycle remain. These all have degree 2, i.e., definitive teaching sets of size 2
with respect to the class of all concepts on the cycle. Thus RTD(C) = 2. |

4.2 VCD

It is well known that for any £ € N, k > 1, there exists a finite concept class C such that
DTD'(C) = DTD(C) = 1 and VCD(C) = k (Goldman and Kearns, 1995). Hence, trivially,
VCD cannot be upper-bounded by a function that depends only on NCTD.

Hu et al. (2017) proved that, when VCD(C) = d, the recursive teaching dimension of C is no
larger than 39.3752 - d*> — 3.6330 - d. Obviously, the same upper bound applies to NCTD, i.e.,
NCTD(C) is upper-bounded by a function quadratic in VCD(C).

So far, there is no concept class for which NCTD is known to exceed VCD. Note that any
such concept class would have to fulfill PBTD > VCD as well. We tested those classes for which
PBTD > VCD is known from the literature, but found that all of them satisfy NCTD < VCD.

As an example, here we present “Warmuth’s class.” This concept class, shown in Table 2,
was communicated by Manfred Warmuth and proven by Darnstidt et al. (2016) to be the smallest
concept class for which PBTD exceeds VCD. In particular, VCD(Cy ) =2 while PBTD(Cy) =3.

T T2 T3 Ty T5 X1 T2 T3 T4 Ty
cil1 o o o 1[cl1 o 1 0 1
C|1 1 0 0 O0]Ci|1 1 0 1 0
;0 11 0 ofcilo 1 1 0 1
;0 0 1 1 ofCc,l1 0 1 1 0
Cs/0 0 0 1 1|ctlo 1 0 1 1

Table 2: Warmuth’s class Cyy, with the highlighted entries (in bold) corresponding to the images of
a positive non-clashing teacher mapping. The domain of this class is {x1,...,z5}, and it
contains 10 concepts, named C through C and C' through CY.

Proposition 39 NCTD(Cy) = NCTD (Cyy) = 2.
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Proof The highlighted labels in Table 2 correspond to a positive non-clashing mapping for Cyy,
which immediately shows that NCTD™"(Cy) < 2 and thus NCTD(Cy) < 2. To show that
NCTD(Cyw) > 2, suppose by way of contradiction that NCTD(Cy,) = 1. Then there is a non-
clashing teacher mapping 7 that assigns every concept in Cyy a teaching set of size 1.

Since C; and C differ only on the instance x3, the mapping 7" must fulfill either 7'(Cy) =
{(2,0)} or T(C}) = { (w3, 1)}.

Case 1. T'(Cy) = {(x3,0)}. Since Cs is consistent with 7'(C ), the teaching set for C must be
inconsistent with Cy. In particular, T'(C3) # {(z4,0)}. This implies T'(C%) = {(z4,1)}, since x4
is the only instance on which C and CY, disagree. By an analogous argument concerning C5 and
Ci, one obtains T'(Cf) = {(x2,1)}. Now T has a clash on C and C%, which is a contradiction.

Case 2. T(C7) = {(x3,1)}. One argues as in Case 1, with C§ and C) in place of C and Cs,
yielding T'(C3) = {(x5,0)} and T(Cy) = {z1,0)}. This is a clash, resulting in a contradiction.

As both cases result in a contradiction, we have NCTD(Cy) > 1 and thus NCTD(Cy) = 2.
Since NCTD™ is an upper bound on NCTD, we also have NCTD™ (Cyy) = 2. [

While the general relationship between the parameters NCTD and VCD remains open, it turns
out that NCTD(C) is upper-bounded by VCD(C) when C is a finite maximum class. For a finite
instance space X, a concept class C of VC dimension d is called maximum if its size |C| meets
Sauer’s upper bound E?:o ('f') (Sauer, 1972) with equality. Recently, Chalopin et al. (2022)
showed that every finite maximum class C admits a so-called representation map, i.e., a function
r that maps every concept in C to a set of at most d(= VCD(C)) instances, in a way that no two
distinct concepts C,C’ € C both agree on all the instances in r(C) U r(C"). By definition, any
representation map is, translated into our setting, simply a non-clashing teacher mapping of order
d for C. Therefore, the result by Chalopin et al. implies that NCTD(C) < VCD(C) for finite

maximum C.

4.3 A Note on Sample Compression

Intuitively, a sample compression scheme (Littlestone and Warmuth, 1986) for a (possibly infinite)
concept class C provides a lossless compression of every set .S of labeled examples for any concept
in C in the form of a subset of S. It was proven that the existence of a finite upper bound on the
size of the compression sets is equivalent to PAC-learnability, i.e., to finite VC-dimension (Moran
and Yehudayoff, 2016; Littlestone and Warmuth, 1986). Open for over 30 years now is the question
how closely such an upper bound can be related to the VC-dimension.

Formally, a sample compression scheme of size k for a concept class C over X is a pair (f, g)
of mappings, where, for every sample set S consistent with some concept C' € C, (i) f maps S to a
subset f(S) C S with |f(S)| < k; and (ii) g(f(S)) maps the compressed set to a concept C’ over
A (not necessarily in C) that is consistent with S. By CN(C) we denote the size of the smallest-size
sample compression scheme for C. The open question then is whether CN(C) is upper-bounded by
(a function linear in) VCD(C).

Some connections between sample compression and teaching have been established in the liter-
ature (Doliwa et al., 2014; Darnstédt et al., 2016). The non-clashing property bears some similarities
to sample compression and has in fact been used in the context of unlabelled sample compression
(in which f(.9) is an unlabelled set) (Kuzmin and Warmuth, 2007; Chalopin et al., 2022). It is thus
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natural to ask whether CN is an immediate upper or lower bound on NCTD. Using results from the
literature, this question is answered negatively in a straightforward manner.

Proposition 40

1. Forevery k € N, k > 1, there is a concept class C such that NCTD(C) = PBTD(C) =1
but CN(C) > k.

2. Let P,, be the powerset over a domain of size m, where m > 5 is odd. Then CN(P,,) <
NCTD(P,,) and 2CN(P,,) < PBTD(Pp,).

Proof Statement 1 is due to the existence of a concept class C with NCTD(C) = DTD(C) =1
and VCD(C) = 5k, see also Goldman and Kearns (1995). The fact that CN(C) > k follows from
a result by Floyd and Warmuth (1995) that states that no concept class of VC-dimension d has a
sample compression scheme of size at most %.

Statement 2 follows from the obvious fact that PBTD(P,,) = m, in combination with Theo-
rem 29, as well as with a result* by Darnstidt et al. (2016) that shows CN(P,,) < [2], for any
m > 4. |

Note that the compression function f in a sample compression scheme for C trivially induces a
teacher mapping 7y defined by 7¢(C) = f({(z,C(x)) | + € X}). The decompression mapping
g then satisfies g(7¢(C)) = C for all C' € C. Hence (7%, g) is a successful teacher-learner pair.
Proposition 40.2 now states that there are concept classes for which the teacher-learner pairs (7', g)
induced by any optimal sample compression scheme necessarily display collusion. In other words,
optimal sample compression yields collusive teaching. An interesting problem is to find more ex-
amples of concept classes for which optimal sample compression yields collusive teachers and to
determine necessary or sufficient conditions on the structure of such classes. Moreover, at present
we do not know how large the gap between sample compression scheme size and NCTD can be.

As mentioned above, representation maps, which were proposed by Kuzmin and Warmuth
(2007) and Chalopin et al. (2022), yield non-clashing teacher mappings. Clearly, in an unlabelled
compression scheme, the representation map that compresses any concept in a class C to a subset
of X must be injective, so that any two concepts in C remain distinguishable after compression. In
other words, the non-clashing teacher mappings induced by representation maps are repetition-free,
i.e., they do not map any two distinct concepts C,C’ € C to labelled samples T'(C),T(C") for
which

{x e X | (z,1) € T(C)forsomel € {0,1}} # {z € X | (z,I') € T(C") for some I' € {0,1}}.

Requiring no-clash teacher mappings to be repetition-free would be a limitation, as the example of
the powerset over any set of m instances, m > 2, shows. In this case, no-clash teaching can be done
with teacher mappings of order [ %], but it is not hard to see that the best possible repetition-free
no-clash teacher mapping is of order m.

4. When m = 5k for some k > 1, Darnstidt et al. (2016) even show that CN(P,,,) < 2k; hence there is a family of
concept classes with CN < NCTD for which the gap between CN and NCTD grows linearly with the size of the
instance space.
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S. Strongly Collusion-Avoiding Teaching

Non-clashing teaching, while satisfying weak collusion-avoidance, displays a property that might
be undesirable in practical settings, namely that a concept class may have two distinct non-clashing
teacher mappings with exactly the same range. For example, consider the concept class Cg =
{{i,i+ 1} | ¢ € Z} and the teacher mappings 77 and 75 defined by 71 ({é,7 + 1}) = {(¢,1)} and
To({i,i +1}) = {(i + 1,1)}. Clearly both mappings are non-clashing and of order 1. However,
the range of 77 is equal to the range of 75, and yet T and 75 are distinct; in fact there is not even
a single concept that these two teachers teach the same way. A learner, to be successful, will have
to disambiguate between these two teachers, which could intuitively be considered some form of
collusion.

For infinite concept classes, even preference-based teaching admits this kind of ambiguity. Con-
sider for example the concept classes Cp = {{i,i + 1} | i« € N} and Cq = {{i,i + 1} | i € Z}
which were already introduced above. There are multiple preference-based teacher mappings real-
izing PBTD(Cr) = 1 and PBTD(C¢;) = 1—in the latter case with identical ranges.

We are motivated to consider a strengthened notion of collusion avoidance that rules out this
kind of ambiguity by insisting that teacher mappings have a unique inverse (restricted to their range).
More precisely,

Definition 41 (Strong Collusion-Avoidance) Ler C be a concept class over a domain X and T a
teacher mapping for C. The teacher mapping T is strongly collusion-avoiding on a subset C' of C,
if there does not exist a different teacher mapping T for C with T(C') C T"(C’).

Remark 42 Note that (i) the concept class {[z,z + 1) | z € Q} admits a teacher mapping of order
1 that is strongly collusion-avoiding on all finite subsets, but no finite order teacher mapping that is
strongly collusion-avoiding on the full class; and more generally (ii) if there exists a subset ' C C
such that no concept in C’ has a definitive teaching set (with respect to C’) of size k, then there is no
teacher mapping of order k that is strongly collusion-avoiding on C’.

We now state the main result of this section.

Theorem 43 Let C be any concept class. There is a teacher mapping of order k that is strongly
collusion-avoiding on all finite subsets of C if and only if PBTD(C) < k.

Proof Consider the bipartite graph Békgv, with elements of C (black vertices) and C-samples of size
k over X’ (white vertices), and an edge from C; € C to Sj whenever Cj; is consistent with S;. (Recall

that any normal-form teacher mapping T" of order k£ can be viewed as a matching M7 in Békg( that
saturates all of the black vertices and a subset of the white vertices.)

Suppose that the teacher mapping 7" of order k is strongly collusion-avoiding on all finite subsets
of C. Let =7 denote the relation on C in which C' =7 C’ if there is an alternating path in Bgfg(,
from the vertex corresponding to C' to the vertex corresponding to C’, starting with an edge of M.
Then > is a strict order on C, since the vertices of C belonging to any alternating cycle in Bék/)Y
would correspond to a finite subset of of C on which 7" is not strongly collusion-avoiding. Hence,
T(C) provides a >7-distinguished teaching set for C, and so PBT*)(C, =7) = C, which implies
PBTD(C) < k.

On the other hand, suppose that PBTD(C) < k, i.e., PBT®)(C, =) = C for some strict order

>, and let T" be a teacher mapping that assigns a >-distinguished teaching set to each element of
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C. Let C’ be any finite subset of C and suppose that 7” is another teacher mapping on C that has
T'(C") = T(C'). Then there must be a cycle in B((:k;( restricted to vertices associated with C" and
T(C'), that alternates edges in the matching M associated with T and the matching M’ associated
with 7”. But since any vertex C’ reached by an alternating path starting at a vertex C' in C’ using an
edge of M must satisfy C' = C” (by the transitivity of =), a contradiction. Hence, no such mapping
T exists, and thus 7' is a strongly collusion-avoiding teacher mapping of order k on all finite subsets

of C. [ |

An immediate corollary is that, for finite concept classes, recursive teaching realizes the optimal
complexity of strongly-collusion avoiding teaching:

Corollary 44 Let C be any finite concept class. There is a teacher mapping of order k that is
strongly collusion-avoiding on all of C if and only if RTD(C) < k.

Recall that the concept class Cp+ = Cp U {0} has RTD(Cp+) = co. Nevertheless, the teacher
mapping T of order 1 in which T'({i,7 + 1}) = (4, 1) and T'(()) = 0 is strongly collusion-avoiding
on all of Cp+. It follows that Corollary 44 does not extend to all infinite concept classes.

Nevertheless, an argument similar to that used in the proof of Theorem 43 shows that there is a
teacher mapping of order k that is strongly collusion-avoiding on all of C if and only if there is a
well-founded strict order > on C such that PBT*)(C, ») = C.

Theorem 45 Let C be any concept class. There is a teacher mapping of order k that is strongly
collusion-avoiding on all of C if and only if there is a well-founded strict order = on C such that
PBT®(C,~) =C.

Proof Consider again the bipartite graph Békg( Suppose that the teacher mapping 7" of order k is
strongly collusion-avoiding on all of C. Let 7 denote the relation on C in which C' =7 C” if there
is an alternating path in B((:k/.),( from the vertex corresponding to C' to the vertex corresponding to
(', starting with an edge of the matching My. Since the vertices of C belonging to any alternating
cycle in Bék/,)v would correspond to a finite subset of of C on which T is not strongly collusion-
avoiding (since replacing the matched edges on such a cycle with the unmatched edges would give
rise to a new teacher mapping with the same range as T'), it follows that > is a strict order on C
with PBT*) (C,>) = C. Furthermore, let C' € C be any concept, and suppose there is an infinite
alternating path P from C in Bg?( starting with the edge of M that saturates C. If there is an

infinite alternating path from C' in Bék;( starting with an unmatched edge, let P’ be any such path.

Alternatively, let P’ be any alternating path from C in Békg( starting with an unmatched edge and
ending at an unsaturated white vertex. In either case, replacing matched edges with unmatched
edges in the alternating path formed by concatenating P and P’ would give rise to a new teacher
mapping 7" whose range contains the range of T'. Since T is strongly collusion-avoiding on all of
C, there can be no such path P, and so > is also well-founded.

On the other hand, suppose that PBT®) (C, =) = C for some well-founded strict order >, and
let T" be a teacher mapping of order k that assigns a >-distinguished teaching set to each element
of C. Suppose that 7" is another teacher mapping of order k on C that has 7"(C) C T'(C), and let
C'={CeC|T(C)£T(C)}.

25



FALLAT, KIRKPATRICK, SIMON, SOLTANI, AND ZILLES

Let C € C’ and consider paths in Bék/)‘g starting at C' and alternating edges from Mr and M.
Since > is well-founded all such paths that start with an edge of M7 are finite in length. Thus any
such path must contain an alternating cycle, contradicting the fact that >~ is a strict order on C.

Hence, no such teacher mapping 7" exists, and thus 7" is strongly collusion-avoiding on all of C.

|

6. Unifying Characterizations of Collusion-Avoiding Teaching Notions

6.1 Constrained Preference-Based Teaching and Matchings

The frameworks of preference-based teaching and bipartite matching provide natural and comple-
mentary bases for understanding the differences between the various forms of batch teaching dis-
cussed in earlier sections.

6.1.1 CONSTRAINED PREFERENCES

Let > be any relation on C. For any C' € C, denote by ~-preferred, (C) the set of C-samples of size
k that form >-distinguished teaching sets for C'. The relation > is an order k teacher-basis for C if
—-preferred, (C') £ 0, for all C' € C. Associated with any order k teacher-basis > for C is a family
of order k teacher mappings in which each concept C' is mapped to an element of >-preferred, (C').

Suppose that > is an order & teacher basis for C and 7% is any teacher mapping associated with
>. Then
(1) if > is asymmetric, then 7% is non-clashing (equivalently, weakly collusion-free) teacher map-
ping, so NCTD(C) < k (cf. Theorem 13);
(ii) if > is acyclic, then 7L is a preference-based teacher mapping, so PBTD(C) < k;
(iii) if > is well-founded, then 7. is a strongly collusion-free teacher mapping (cf. Theorem 45);
(iv) if > is strongly well-founded, then 7 is a recursive teacher mapping, so RTD(C) < k (cf.
Proposition 11); and
(v) if > is empty, then T is a definitive teacher mapping.

Note that for finite concept classes, implications (ii), (iii), and (iv) collapse to:
(vi) if > is acyclic, then T\ is a recursive teacher mapping.

In the context of these characterizations, it should be noted that our paper is not the first to
express teaching models by means of preference relations. Mansouri et al. (2019) formulated a
framework of sequential teaching with preference relations. Depending on the constraints on the
preference relation, this framework permits the re-expression of various notions of batch teaching
studied in our paper, at least for concept classes over finite domains.

6.1.2 CONSTRAINED MATCHINGS
(k)

Consider once more the bipartite graph B}, with elements of C (black vertices) and C-samples of
size k over X’ (white vertices), and an edge from C; € C to S; whenever Cj is consistent with S;.
Recall that if 7" is any order k teacher mapping (in normal form) for C, then there is an associated
full matching M7 in Bék%{ Any full matching M in Békg  induces a transitive relation >,; on C,
where C' = C' if there is an alternating path with respect to M in Békg +» from C'to C’, starting with
an edge of M.
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Suppose that T' is any order k teacher mapping (in normal form) for C. Then
(i) if NCTD(C) < k is certified by the non-clashing mapping 7', then > .. is asymmetric (equiva-
lently, Bék)  contains no alternating cycle of length 4 with respect to Mr);
(ii) if PBTD (C) < k is certified by the preference-based teacher mapping 7', then >y, is a strict

order on C (equivalently, Békzx contains no alternating cycle with respect to My, i.e. My is a
uniquely restricted matching (Golumbic et al., 2001); cf. Theorem 43);
(iii) if 7" is strongly collusion-free, then >j,. is a well-founded strict-order on C (equivalently,

Bék)  contains no unbounded alternating path with respect to Mr);
(iv) if RTD(C) < k is certified by the recursive teacher mapping 7, then >y, is a strongly well-
founded strict-order on C (equivalently, every alternating path with respect to Mt in Békc) » Starting
from a concept C, is bounded in length by some constant (depending on C); and
(v) if if RTD(C) < k is certified by the recursive teacher mapping 7, then >y, is empty (equiva-
lently, the matching M7 is an induced matching in Békg ¥)

Note that for finite concept classes, implications (ii), (iii), and (iv) collapse to:
(vi) if RTD(C) < k is certified by the recursive teacher mapping 7', then >, is a strict order on C
(equivalently, Békz y contains no alternating cycle with respect to M.

These characterizations in terms of constrained bipartite matching problems have implications
on the computational complexity of decision problems relating to teaching complexity parameters;

the interested reader is referred to (Kirkpatrick et al., 2019) for more details.

6.2 Broadened Recursion

Recall, from Subsection 2.2, that the notion of Recursive Teaching, which involves the iterative
removal of maximal Definitive Teaching sets, has a natural generalization involving the iterative
removal of Recursive Teaching sets.

In Recursive Teaching, in the first iteration, one removes all concepts with smallest definitive
teaching dimension from the concept class. In the next iteration, one removes all concepts with
smallest definitive teaching dimension from the remainder of the concept class. This process is
repeated for as long as there are concepts remaining.

We can now view Recursive Teaching as the first layer of a hierarchy of teaching notions. In
the (d + 1)st layer, one again proceeds iteratively, always removing all concepts with smallest “dth
layer recursive teaching dimension”.

We make this notion of Doubly-Recursive Teaching more precise in the following:

Definition 46 Let C be a concept class and let 2- RT(k) (€) =DTW®(C). Foralli,d € N define

k k
2RI, 4(C) = 2RTY(C)

and
k
2-RT}, .., (€) =2-RT{), .(C)u 2-RT{)(C\ 2-RTYY, (C))
where 2-RT{), .(C) = Ui=02-RT?, ,(C).

Note that 2-RT{")(C) = DT®(C) and 2-RT"(C) = RT{"(C) (and hence 2-RT{")(C) =
RT ( ), for all C. Furthermore, 2- RT(k)( C) = 0 if and only if DT*)(C) = 0. It is straightfor-
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ward to confirm that 2—RT§1,2 (Cp+) = Cp+, that is Cp+ has a teaching mapping of order 1, realized
by a doubly-recursive scheme of depth 2. More generally, the same is true of the concept class
Crro which consists of infinitely many infinite size concepts (over the ground set 2Y*N) given by
Cr2 ={Si; | i,j € N}, where S; ; = {{(4,7), (j + 1,4)} UN x {i + 1}}. The reader should have
no difficulty generalizing the concept class Cg to a class Cpq (over the ground set 2Nd) and to note
that Cp4 has a teaching mapping of order 1, realized by a doubly-recursive scheme of depth d, but
no finite order teacher mapping using doubly-recursive schemes of depth less than d.

Observe that the teacher mapping implicit in the definition of 2—RT£;2 (C) is strongly collusion-
avoiding. This is an immediate consequence of the fact that every 2-recursive teaching plan is
made up of a succession of maximal size recursive teaching sets, which themselves are made up
of a succession of definitive teaching sets. However, there exist concept classes C with strongly

collusion-avoiding teacher mappings of order & for which 2—RT((1k>z (C) #C,foralld > 0.

7. Conclusions

No-clash teaching represents the limit of data efficiency that can be achieved in batch teaching
settings obeying Goldman and Mathias’s criterion for collusion-avoidance. Therefore, it is the sole
most promising such teaching model to shed light on two open problems in computational learning
theory, namely (i) to find a teaching complexity parameter that is upper-bounded by a function linear
in VCD, and (ii) to help establish new results towards an upper bound on the size of smallest sample
compression schemes that is linear in VCD. If any teaching model that satisfies the weak collusion-
avoiding criterion yields a complexity upper-bounded by (a function linear in) VCD, then no-clash
teaching does. Likewise, if any such teaching model is powerful enough to compress concepts as
effectively as sample compression schemes do, then no-clash teaching is. The most fundamental
open question resulting from our paper is probably whether NCTD is upper-bounded by VCD in
general.

An interesting related question is how NCTD relates to PBTD and RTD. With the parity
functions, we have found a family of concept classes for which PBTD and RTD exceed NCTD by
a factor of four, but so far we have not found a family of concept classes for which PBTD and RTD
exceed any function linear in NCTD. Whether or not such a family exists is another open problem.

Our paper also raises the question how various notions of collusion-avoidance constrain the
interaction between teacher and learner and thus affect the teaching complexity. We have demon-
strated that weak collusion-avoidance is a defining property of non-clashing teaching, as is strong
collusion-avoidance for preference-based teaching. Likewise, other notions of collusion-avoidance
may give rise to new teaching models or characterize existing teaching complexity notions. In this
sense, our results might be a stepping stone for a broader study on collusion-avoidance in teaching.
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Appendix A. Examples of Concept Classes Satisfying NCTD = 1 and PBTD = 3

Example 2 The concept class C3/1 shown in Table 3 satisfies NCTD™(Cq /1) = 1, as witnessed
by the entries highlighted in bold corresponding to non-clashing teaching sets. Consequently, one
also obtains NCTD(C3/1) = 1. By contrast, we have PBTD(C3,1) > 3, which can be verified by
observing that every labeled pair of instances occurs in two concepts in C3 /1.

When restricting this concept class to the instances x1 through x4, as shown in Table 4, the
RTD (and thus PBTD) remains 3. While NCTD™ increases to 2, one still obtains an NCTD of 1,
again witnessed by the highlighted entries.

r1 T2 X3 X4 X3 Xg 7 T8
ci:|1r 1 O 1 O 1 0 O
C;1 0 1 0 O O 1 1 1
Cs| 1 1 1 0 O O 0 1
cy,/]0 1 1 1 0 0 1 O
Cs| 1 0 1 1 1. 0 0 O
C¢s O 0 O 1 1 1 1 O
c:1o0 o0 1 0 1 0 1 1
Csgf1 0 0O O 1 1 0 1

Table 3: The concept class C3/; with NCTD™(C3/;) = 1 and PBTD(Cs1) = 3.

I T2 I3 Ty
cCi]1 1 0 1
Co| 0 1 0 O
Cs| 1 1 1 0
Cy| 0 1 1 1
Cs| 1 0 1 1
Cé| O 0 0 1
C:10 0 1 0
Cg| 1 0 0 0

Table 4: The concept class C3/; restricted to the first four instances, which results in an NCTD of
1 and a PBTD of 3.

One can argue that any finite concept class with NCTD = 1 and PBTD = 3 must have at
least eight concepts and four instances: If a concept class has seven or fewer concepts, then its
VC-dimension is at most 2, and a simple argument will show that its PBTD is at most 2 as well.?
If it has only three instances, yet eight concepts, it is the powerset and thus has an NCTD of 2.

5. The smallest concept class for which PBTD exceeds VCD has 10 concepts (Doliwa et al., 2014).
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Thus, C3/; restricted to the first four instances is a smallest concept class with NCTD = 1 and
PBTD = 3.

An additional example of a concept class with NCTD = 1 and PBTD = 3 that is interesting
due to its connection with the theory of combinatorial designs, is the so-called Kummer configura-
tion.

Example 3 The Kummer configuration is a configuration of 16 points and 16 planes such that
(i) each point lies on exactly 6 planes,
(ii) each plane contains exactly 6 of the points,
(iii) each pair of planes intersects in exactly 2 of the points, and
(iv) and each pair of points is contained in exactly two of the planes.

As described by Assmus and Sardi 1981, this configuration can be interpreted as a concept class
Cx of 16 concepts over 16 instances. Each Kummer instance (point) can be thought of as a pair
(4,7) for 0 < 4,5 < 3, while each Kummer concept (plane) C, , for 0 < a,b < 3 contains the three
instances (a, 3) for 3 # b as well as the three instances (1,b) for 1 # a. (See Figure 1 (left) for an
illustration of the Kummer concept C1 1.)

[ ] @ [ ] [ ] I l
OJR00 ] ]
[ ] [ ] [ ]
[ ] [ ] [ ] I l
Figure 1: The Kummer concept C'y ;1 (left) and teacher mapping (right)

It is easy to see that each Kummer concept can be uniquely determined by three labelled in-
stances: for example, C; ; is uniquely determined by the set
{((4,5),—), (i + 1) mod 4,5),+),((¢,(j +1) mod 4),+)}. Furthermore, no two labelled in-
stances suffice, since (i) every pair of positively labelled instances is consistent with two concepts,
and (ii) every other pair of labelled instances is consistent with zero or (at least) two concepts.
Thus, PBTD(Cx) = DTD(Ck) = 3.

To see that NCTD ™ (Cx) = 1 we define a symmetric matching between concepts and instances
(if T((Ci;) = (i, ") then T((Cy j) = (i,7)). One such matching is represented in Figure 1
(right), with the edge corresponding to the symmetric pair T'((C11) = (1,3) and T((C13) = (1,1)
highlighted in bold. That this mapping is non-clashing follows as an immediate consequence of the
fact that no two edges span the same rows or columns.
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