
Journal of Machine Learning Research 24 (2023) 1-40 Submitted 3/22; Revised 4/23; Published 9/23

Near-Optimal Weighted Matrix Completion
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Abstract

Recent work in the matrix completion literature has shown that prior knowledge of a ma-
trix’s row and column spaces can be successfully incorporated into reconstruction programs
to substantially benefit matrix recovery. This paper proposes a novel methodology that
exploits more general forms of known matrix structure in terms of subspaces. The work
derives reconstruction error bounds that are informative in practice, providing insight to
previous approaches in the literature while introducing novel programs with reduced sample
complexities. The main result shows that a family of weighted nuclear norm minimization
programs incorporating a M1r-dimensional subspace of n × n matrices (where M1 ≥ 1
conveys structural properties of the subspace) allow accurate approximation of a rank r
matrix aligned with the subspace from a near-optimal number of observed entries (within
a logarithmic factor of M1r). The result is robust, where the error is proportional to
measurement noise, applies to full rank matrices, and reflects degraded output when erro-
neous prior information is imposed. Numerical experiments are presented that validate the
theoretical behavior derived for several example weighted programs.

Keywords: Matrix completion, weighted matrix completion, low rank matrices, incoher-
ence, nuclear norm minimization, convex optimization

1. Introduction

Over the past two decades, matrix completion has evolved from an academic curiosity to
a common industrial tool (Recht et al. 2010; Candès and Recht 2009; Srebro and Jaakkola
2004; Foygel and Srebro 2011). Its utility includes seismic data acquisition (Aravkin et al.
2014; López et al. 2016; Yang et al. 2013), machine learning (Nguyen et al. 2018; Yi et al.
2012; Luo et al. 2015), collaborative filtering (Srebro and Salakhutdinov 2010), computer
vision (Tomasi and Kanade 1992), gene expression analysis (Troyanskaya et al. 2001) and
MRI (Zhao et al. 2010). In these applications, practitioners wish to estimate a data matrix
of interest D ∈ Cn1×n2 from a fraction of revealed noisy entries. The success of recent
approaches hinges on the underlying assumption that D can be well approximated by a
rank r matrix where r � min{n1, n2}, that is, D has low rank structure. This data model
is common in smooth signals, but pervasive simply by the sheer nature of large scale data
(Udell and Townsend 2019).

To elaborate, let Ω ⊆ {1, · · · , n1} × {1, · · · , n2} be a subset of size m ≤ n1n2 and
PΩ : Cn1×n2 7→ Cm the corresponding sampling operator that extracts the m values at the
entries specified by Ω from an input matrix (with |Ω| = m). Given PΩ(D) + d ∈ Cm, where
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d ∈ Cm encompasses measurement noise, the goal of matrix completion is to recover D as
accurately as possible. Under the low rank assumption, a well-studied method to estimate
the data matrix is via the nuclear norm minimization program (Fazel et al. 2001; Recht
et al. 2010; Candès and Recht 2009), which estimates D via

D1 := argmin
X∈Cn1×n2

‖X‖∗ subject to ‖PΩ(D) + d− PΩ(X)‖2 ≤ η, (1)

where ‖X‖∗ =
∑min(n1,n2)

k=1 σk(X) is the nuclear norm, σk(X) is the k-th largest singular
value of X and η is a program parameter chosen according to the noise level. The nuclear
norm penalty provides a convex surrogate for the rank objective function, in order to output
a low rank matrix that is viable for the noisy observations in a tractable manner.

As in previous work, a notion of incoherence is needed to quantify how evenly distributed
the information is throughout the data matrix. Ultimately, incoherence conditions ensure
that a set of observed entries Ω chosen uniformly at random provide an appropriate sampling
scheme for the array of interest.

Definition 1 Given D ∈ Cn1×n2 and r ≤ min{n1, n2}, consider the singular value decom-
position (SVD) D = UΣV >. The r-incoherence parameters of D are defined as the smallest
µ0, µ1 > 0 such that

max
1≤k≤n1

√√√√ r∑
j=1

∣∣Ukj∣∣2 ≤√µ0r

n1
, max

1≤`≤n2

√√√√ r∑
j=1

∣∣V`j∣∣2 ≤√µ0r

n2
(2)

and

max
k,`

√√√√ r∑
j=1

∣∣Ukj∣∣2∣∣V`j∣∣2 ≤√ µ1r

n1n2
. (3)

Definition (2) is common in the literature, know as the standard incoherence condition
(Chen 2015). The parameter µ1 is unique to this work, but similar to the joint incoherence
condition introduced in Recht 2011. This novel parameter will be elaborated in Section
3.2. Intuitively, small parameters (for example, µ0, µ1 ∼ log(max{n1, n2})) correspond to
data matrices whose information is not concentrated on a few set of entries. Such metrics
of “spikiness” are necessary when the observations are chosen without regard to the matrix
structure, in order to guarantee that the probed entries will supply a substantial amount
of information. However, incoherence conditions can be avoided if the sampling scheme is
modified according to prior knowledge of the matrix’s leverage scores (Chen et al. 2015,
2014; Eftekhari et al. 2018a).

The following result states the sample complexity and resulting error bound for program
(1), where without loss of generality it is henceforth assumed that n1 ≥ n2.

Theorem 2 Let D ∈ Cn1×n2 have r-incoherence parameters µ0, µ1 and suppose Ω ⊆ [n1]×
[n2] is generated by selecting a subset of size m ≤ n1n2 uniformly at random from all subsets
of size m. Define D1 as in (1) with ‖d‖2 ≤ η. There exist universal constants c0, c1, c2 > 0
such that if

m ≥ c0 max{µ0,
√
µ1}n1r log2(n1)
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then with high probability

‖D −D1‖F ≤ c1

√
n1n2 log(n1)

m

n2∑
k=r+1

σk(D) + c2
n1n2

√
r log(n1)

m
η.

The result matches previous work in terms of sample complexity required for exact matrix
completion (Chen 2015; Eftekhari et al. 2018a,b). However, a fair comparison is difficult
to make due to the dependence here on

√
µ1 whereas other authors only require µ0. Sec-

tion 3.2 will provide data matrices with
√
µ1 < µ0 as well as examples where

√
µ1 ≥ µ0

holds. Therefore, there is no strict relationship between these parameters and Theorem 2
is arguably on par with incoherence-optimal conditions (Chen 2015). These results state
that, when a practitioner is oblivious to the data matrix’s structure, n1r log2(n1) observed
entries are needed to robustly reconstruct an incoherent n1 × n2 rank r matrix.

1.1 Matrix Completion with Prior Knowledge: Approach and Overview of the
Main Results

In many applications, prior knowledge of the data’s structure is available. Incorporating
this information appropriately into a reconstruction program has been shown to signifi-
cantly improve the success of matrix recovery (Aravkin et al. 2014; Zhang et al. 2019, 2020;
Abernethy et al. 2009; Bayat and Daei 2020; Chiang et al. 2015; Eftekhari et al. 2018b;
Chen 2015; Xu et al. 2013; Yi et al. 2013; Jain and Dhillon 2013; Chen et al. 2015, 2014).
Inspired by these approaches, this paper proposes and analyzes a matrix reconstruction
framework that exploits prior knowledge of subspaces that align well with the matrix of
interest. This section introduces the approach and summarizes the results and novelties of
this paper.

The contribution of this work is in the generality of the proposed framework and anal-
ysis. The main result provides the ability to derive near-optimal sample complexities and
informative error bounds that express a trade-off when incorporating distinct subspaces
enforcing known matrix structure. The result applies to a variety of weighted nuclear norm
minimization programs, providing novel insight to previous approaches in the literature and
proposing new programs.

To introduce the approach and summarize the results, let T ⊂ Cn1×n2 be a linear sub-
space of matrices with orthogonal complement T⊥ and respective orthogonal projections
PT and PT⊥ . With weight parameter 0 ≤ ω ≤ 1, the family of weighted nuclear norm min-
imization programs proposed here approximate the data matrix via the following modified
version of (1)

Dω := argmin
X∈Cn1×n2

∥∥ωPT (X) + PT⊥(X)
∥∥
∗ subject to ‖PΩ(D) + d− PΩ(X)‖2 ≤ η. (4)

When ω < 1, program (4) favors matrices that align with the estimate subspace T while the
case ω = 1 reduces the program to unbiased nuclear norm minimization (1). The weight
parameter toggles how severely one wishes to penalize matrices that do not agree with
the prior information, thereby capturing the user’s confidence in T . The main novelty of
program (4) in contrast to previous approaches is in the ability to incorporate subspaces
with general structure and the flexibility of weight selection.

The theoretical contributions of this paper can be summarized as follows:
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López

• Theorem 4 analyzes program (4) in a general sense, applying to any subspace T
with elements of maximal rank r. The main result states that one can accurately
reconstruct a matrix nearly lying in T from m ≥ rM1 polylog(n1) observed entries,
where 1 ≤ M1 ≤ n1n2

r captures crucial dimensional and incoherence-based properties
of T . The result is robust, with error bound proportional to the measurement noise
level η, the error of the best rank r approximation

∑n2
k=r+1 σk, and a term that

quantifies the accuracy of T .

• Specific choices of T are presented in Section 2.1, demonstrating the applicability of
Theorem 4. The results derived therein showcase a variety of sample complexities
including m ∼ rpolylog(n1), m ∼ r2 polylog(n1), and m ∼ (n1r − r2)polylog(n1).
Furthermore, the derived error bounds express an informative trade-off between sam-
ple complexity and sensitivity to the accuracy of T . In other words, programs in-
corporating subspaces T that require less samples will in general exhibit error terms
that are more susceptible to inaccurate T (quantified via the principal angles between
subspaces, Ji-guang 1987). This behavior is validated numerically in Section 4.

• Some examples in Section 2.1 are related to approaches previously studied in the
literature: Yi et al. 2013; Bayat and Daei 2020; Chiang et al. 2015; Eftekhari et al.
2018b; Chen 2015; Xu et al. 2013; Jain and Dhillon 2013. Most of the methodologies or
results from these citations only apply in a high fidelity scenario, when T is error-free
or aligns sufficiently well with the data matrix. In contrast, the main contribution here
is the robustness of program (4) and the theoretical results. The error bounds derived
here provide novel insight to previous approaches, allowing inexact prior information
while roughly matching the sample complexity of related results in the literature. See
Section 3 for further discussion.

1.2 Organization and Notation

The remainder of the paper is organized as follows: Section 2 discusses a foundational
weighted matrix completion approach from the literature in order to elaborate on the in-
spiration for this work, its main result, and the improvements provided relative to the
literature. Section 2.1 applies the main result to example subspaces T , deriving a variety of
sample complexities and error bounds. Section 3 discusses related work in the literature and
the introduced incoherence parameter µ1 in order to fairly compare this work with other
results. Section 4 conducts numerical experiments, comparing example programs to the
original weighted program discussed in Section 2. The paper concludes with a discussion of
future work in Section 5 followed by the proofs in the Appendix.

Notation: for any integer n ∈ N, [n] denotes the set {` ∈ N : 1 ≤ ` ≤ n} and In is the
n×n identity matrix. For k, ` ∈ N, bk indicates the k-th entry of the vector b, Xk` denotes
the (k, `) entry of the matrix X and Xk∗ (X∗`) denotes its k-th row (resp. `-th column). For
vectors, ‖b‖2 is the Euclidean norm. For matrices, σk(X) denotes the k-th largest singular
value of X, ‖X‖ := σ1(X) is the operator norm, ‖X‖F := 〈X,X〉1/2 is the Frobenius norm,
‖X‖∗ :=

∑
k σk(X) is the nuclear norm, and ‖X‖∞ is the largest entry of X in absolute

value. S and Sop are the closed unit balls in Cn1×n2 with respect to the Frobenius and
operator norms respectively. The adjoint of a linear operator A is denoted by A∗, while X>
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will be used to denote the conjugate transpose of a matrix X. As previously mentioned, for
matrices X ∈ Cn1×n2 it is assumed that n1 ≥ n2 without loss of generality.

2. Weighted Matrix Completion

To the author’s best knowledge, the first version of a weighted nuclear norm minimization
program was proposed by Aravkin et al. 2014. To elaborate on this original approach, given
r ≤ n2, consider the SVD and decompose the data matrix of interest as

D = UΣV > = U rΣrV r> + U+Σ+V +>

where U rΣrV r> pertains to the largest r singular values of D along with the corresponding
singular vectors. Assume that Ũ ∈ Cn1×r, Ṽ ∈ Cn2×r with orthonormal columns are
available containing information of the range of U r ∈ Cn1×r, V r ∈ Cn2×r and define

Qω1
:= ω1Ũ Ũ

> + In1 − Ũ Ũ>, Wω2
:= ω2Ṽ Ṽ

> + In2 − Ṽ Ṽ >,

where ω1, ω2 ∈ [0, 1] are chosen weights. Notice that Q1,W1 are identity matrices and
otherwise, when ω1, ω2 < 1, these linear operators skew toward the orthogonal complement
of range(Ũ) and range(Ṽ ) respectively. The original weighted nuclear norm minimization
program approximates the data matrix via

Dω1,ω2 := argmin
X∈Cn1×n2

‖Qω1XWω2‖∗ subject to ‖PΩ(D) + d− PΩ(X)‖2 ≤ η. (5)

Analogous to this paper’s approach, with ω1, ω2 < 1 program (5) favors matrices that match
a certain structure while ω1 = ω2 = 1 is unbiased nuclear norm minimization (1). Notice
that (5) is nearly of the form (4), but the choice of two weights in the original formulation
will impede the results here from being directly applicable. However, a program of the form
(4) that is closely related to (5) will be considered in Section 2.1.

Spurring from the original program, similar methodologies have been proposed in the
literature (Eftekhari et al. 2018b; Zhang et al. 2019, 2020; Bayat and Daei 2020) but distinct
approaches have also been considered (Xu et al. 2013; Chiang et al. 2015; Yi et al. 2013;
Jain and Dhillon 2013; Abernethy et al. 2009; Chen 2015). To attempt producing a result
that provides some level of insight for many of these variations, a more general notion of
incoherence that applies to an entire subspace is required.

Definition 3 For a subspace T ⊂ Cn1×n2 and ρ ≤ n2, the subspace ρ-incoherence and joint
incoherence parameters of T are defined respectively as

M0 := max
X∈T∩Sop

n2

ρ
‖X‖2∞,2 (6)

and

M1 := max
X∈T∩S

n1n2

ρ
max
k,`
|Xk`|2, (7)

where ‖X‖∞,2 is the maximum of the row and column norms of X, see (24).
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The ensemble will be referred to as the ρ-subspace incoherence parameters or condition.
These parameters will provide crucial dimensional information of a given subspace T . Sec-
tion 2.1 will explore these parameters via example programs, with results that demonstrate
their role in deriving near-optimal sample complexities.

Henceforth, let ρ be defined as

ρ = max
X∈T

rank(X). (8)

The main result of the paper can now be presented:

Theorem 4 Let T ⊂ Cn1×n2 be a subspace with ρ-subspace incoherence parameters M0,M1.
Suppose Ω ⊆ [n1] × [n2] is generated by selecting a subset of size m ≤ n1n2 uniformly at
random from all subsets of size m. Let D ∈ Cn1×n2 and define Dω as in (4) with ‖d‖2 ≤ η.
There exist universal constants c0, c1, c2, c3, c4 > 0 such that if

m ≥ c0M1ρ log3(n1) and 0 < ω ≤
√
M1 log(n1 + n2)
√
n1n2

(9)

or

m ≥ c0 max
{
M0,

√
M1

}
ωn1ρ log2(n1) and

1

2
√

2ρ log(n1)
≤ ω ≤ 1, (10)

then

‖D −Dω‖F ≤ c1f(ω)

(√
n1n2 log(n1)

m
+

1

ω

)
n2∑

k=ρ+1

σk(D)

+ c2f(ω)

(
1

ω
+

√
n1n2 log(n1)

m

(
ω

√
n1n2ρ log(n1)

m
+ 1

))
η

+ c3f(ω)

(
1

ω
+

√
n1n2 log(n1)

m

)∥∥PT⊥(UρΣρV ρ>)
∥∥
∗ (11)

holds with probability greater than 1− c4
n1

, where

f(ω) := min

{
ω

√
n1n2 log(n1)

m
, 1

}
.

As in the beginning of the section, UρΣρV ρ> in (11) denotes the best rank ρ approxi-
mation of D via the SVD. The proof is postponed until Section A.3. The theorem implies
that faithful prior subspace knowledge (with elements of maximal rank ρ) can be used to
robustly approximate a nearly rank ρ matrix in the subspace from as few as M1ρ log3(n1)
observed entries. The result applies to two intervals for ω, with small and large weights
(ω ≈ 0 and ω ≈ 1 respectively). These ranges offer distinct sample complexities and error
bounds. The main focus of this paper will be in the regime of small weights, which produce
a substantial reduction in sample complexity. However, the interval of larger weights (10)
also generates interesting results (see end of Section 2.1).
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The result is robust to inexact subspaces, expressed in the term∥∥PT⊥(UρΣρV ρ>)
∥∥
∗

appearing in (11). This term quantifies the inaccuracy of the estimate subspace relative
to the best rank ρ approximation of the data, where ‖PT⊥(UρΣρV ρ>)‖∗ ≈ 0 implies that
T was chosen appropriately. Arguably, this term is quite raw and the result can be more
informative if a more general metric is used. The main convenience in presenting Theorem
4 with error bound (11) is that no restrictions are imposed on T .

To provide a more informative error bound (at the cost of restricting T ), the accuracy
of the estimate subspace can instead be quantified via the principal angle between subspaces
(PABS) Drmac 2000

sin(θT ) :=
∥∥PT⊥PTρ∥∥F→F . (12)

In (12), ‖ ◦ ‖F→F is the spectral norm for operators acting on matrices and PTρ is the
orthogonal projection onto a ρ-dimensional subspace of matrices that UρΣρV ρ> belongs to

Tρ := span
{
Uρ∗kV

ρ>
∗k

}ρ
k=1

.

Notice that the PABS lies in [0, 1], where sin(θT ) ≈ 0 implies accurate subspace estimate
and sin(θT ) ≈ 1 states that UρΣρV ρ> largely lies in T⊥. Since sin(θT ) 6= 1 only when
dim(T ) ≥ dim(Tρ) (see Drmac 2000), this restriction on T must now be enforced in order
to obtain the following modified version of Theorem 4 involving the PABS:

Corollary 5 Under the same conditions of Theorem 4, if dim(T ) ≥ ρ then

‖D −Dω‖F ≤ c1f(ω)

(√
n1n2 log(n1)

m
+

1

ω

)
n2∑

k=ρ+1

σk(D)

+ c2f(ω)

(
1

ω
+

√
n1n2 log(n1)

m

(
ω

√
n1n2ρ log(n1)

m
+ 1

))
η

+ c3f(ω) sin(θT )

(
1

ω
+

√
n1n2 log(n1)

m

)(
n2

ρ∑
k=1

σ2
k(D)

)1/2

holds with probability greater than 1− c4
n1

.

Corollary 5 provides a more standard error bound, since the PABS are well understood
metrics of signal alignment in the literature. However, aside from imposing dim(T ) ≥
ρ, notice that the last term in the error bound above now includes the avoidable factor√
n2. For this reason, the example results of Section 2.1 will apply Theorem 4 rather than

Corollary 5 since the latter seems to produce pessimistic error bounds in general.
To further understand the implications of the main results and demonstrate the crucial

role of the subspace incoherence parameters, it is instructive to consider specific choices of
T . This is the purpose of Section 2.1, where sample complexities will be supplied for various
estimate subspaces. The proofs of these results, which are corollaries of Theorem 4, consist
of lower and upper bounding M1. The lower bounds (presented in Appendix B) enforce
the sample complexity upholding the dimensionality of T . These examples illustrate the
importance of M1 and the near optimality of the main result.
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2.1 Matrix Completion with Prior Knowledge: Example Subspaces

This section provides example programs that enforce specific subspace structure on the
output estimate data matrix. Theorem 4 will be applied in the small weight regime (9) to
derive informative reconstruction error bounds and nearly optimal sample complexities. In
particular, the results will showcase a trade-off when incorporating distinct choices of T .
The examples will illustrate that subspaces allowing exact matrix completion from relatively
few samples will in general exhibit increased sensitivity to inaccurate prior information.

To elaborate in a concrete setting, decompose as before D = UΣV > = U rΣrV r> +
U+Σ+V +>, where U rΣrV r> is the best rank r approximation of D. Assume that Ũ ∈
Cn1×r, Ṽ ∈ Cn2×r with orthonormal columns are available containing information of U r, V r.
In this section, Ũ and Ṽ will specify T . The accuracy of the prior information will be mainly
quantified via the principal angle between subspaces (PABS) with respect to the range of
the left and right singular vectors. From the SVD, notice that the columns of U+ (V +

respectively) form an orthonormal basis for range(U r)⊥ (range(V r)⊥ respectively). The
PABS here are defined via the canonical correlation coefficients (Ji-guang 1987)

sin(θu) :=
∥∥Ũ>U+

∥∥ and sin(θv) :=
∥∥Ṽ >V +

∥∥, (13)

where ‖X‖ = σ1(X) denotes the operator norm of a matrix X. The PABS lie in [0, 1] and
provide a measure of the degree of alignment between the data’s main rank r component
and estimates specified in some sense by Ũ and Ṽ . The case sin(θu), sin(θv) ≈ 0 holds with
accurate knowledge, while sin(θu), sin(θv) ≈ 1 implies inappropriate prior information was
supplied.

With this in mind, simplified results for four programs of the form (4) with specific
choices of T are provided. Henceforth, program (4) incorporating a subspace T will be
refered to as program (4, T ). The following examples are presented in order of most to least
sensitive error bounds with respect to the inaccuracy of T , respectively exhibiting a trend
of increasing sample complexities.

Theorem 6 Let D ∈ Cn1×n2 have rank r, and consider estimates Ũ ∈ Cn1×r and Ṽ ∈
Cn2×r where Ũ Ṽ > has r-incoherence parameter µ1. Suppose Ω ⊆ [n1]× [n2] is generated by
selecting a subset of size m ≤ n1n2 uniformly at random from all subsets of size m. Define
Dω as in (4) with ‖d‖2 = η = 0 and estimate subspace

T1 := span
{
Ũ∗kṼ

>
∗k

}
k∈{1,··· ,r}

.

There exists universal constants c0, c3 > 0 such that if

m ≥ c0µ1r log3(n1) and 0 < ω ≤
√
µ1 log(n1 + n2)
√
n1n2

then with high probability

‖D −Dω‖F
‖D‖F

≤ c3

√
n1n2r log(n1)

m

sin(θu) + sin(θv) +

∑
k 6=`

∥∥U r>Ũ∗kṼ >∗`V r
∥∥2

F

1/2
 .

(14)

8



Near-Optimal Weighted Matrix Completion

To the author’s best knowledge, program (4, T1) provides a novel method by which to
exploit prior information of the data’s rank 1 components. The result states that, with
an appropriate weight and accurate projection onto the subspace spanned by data’s rank
1 components, program (4, T1) can faithfully estimate a rank r matrix with O(r log3(n1))
random samples. In a high fidelity scenario, there are roughly r degrees of freedom to
approximate U rΣrV r>. Therefore the derived sample complexity is within a quadratic
logarithmic factor of the optimal rate O(r log(n1)), where the logarithmic factor in the
optimal rate is unavoidable in matrix completion under random sampling models (see for
example Theorem 1.7 provided by Candes and Tao 2010). On the other hand, in the case of
unreliable information, the right hand side of (14) showcases high sensitivity to inaccurate
T1. Several elaborated remarks are in order:

• Incorporating accurate subspace T1 allows for frugal completion of matrices that do
not satisfy typical incoherence conditions. For example, with severe parameter µ0 ∼√
n1/r, since µ1 ≤ µ2

0r Theorem 6 guarantees reconstruction from O(n1 log3(n1))
random samples. Without prior information, such data matrices require a significant
amount of additional samples to be recovered according to Theorem 2 and similar
results in the literature.

• Program (4, T1) allows reconstruction of general full rank matrices in an underdeter-
mined scenario with prior information. With n2 trustworthy rank 1 components (or
an orthogonal projection onto the span), the result allows for an accurate estimate of
a full rank matrix from O(n2 log3(n1)) observed entries.

• In contrast to other approaches that will be considered, program (4, T1) is most
sensitive to inaccurate prior information. This observation will become clear due to
the final term in (14) involving the sum over all k 6= `, which is not present in the
remaining error bounds. This term requires that each matrix Ũ∗kṼ

>
∗` with k 6= ` be

unaligned with elements in

span
{
U r∗kV

r>
∗`

}
k,`∈{1,··· ,r}

.

This requisite is quite strict, since even a single inaccurate rank-1 component included
as prior knowledge can cause a significant error according to (14).

The next result involves a methodology related to many previously proposed in the
literature (Chen 2015; Xu et al. 2013; Chiang et al. 2015; Yi et al. 2013; Jain and Dhillon
2013; Abernethy et al. 2009). The result will render a less sensitive methodology at the
cost of higher sample complexity.

Theorem 7 Under the same setup as Theorem 6, let Ũ Ũ> and Ṽ Ṽ > have r-standard
incoherence parameters µL and µR respectively. Define Dω as in (4) with η = 0 and
subspace estimate

T2 := span
{
Ũ∗kṼ

>
∗`

}
(k,`)∈{1,··· ,r}×{1,··· ,r}

.

There exists universal constants c0, c3 > 0 such that if

m ≥ c0µLµRr
2 log3(n1) and 0 < ω ≤

√
µLµRr log(n1 + n2)

√
n1n2

9
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then with high probability

‖D −Dω‖F
‖D‖F

≤ c3 (sin(θu) + sin(θv))

√
n1n2r log(n1)

m
. (15)

This result considers a robust approach in contrast to program (4, T1), with a more
lenient requisite that the columns of U r and V r lie in the range of Ũ and Ṽ respectively.
This comparison is evident in the produced error bound (15), which is similar to (14) but
no longer exhibits the sensitive term that sums over k 6= `. However, the trade-off is an
increased sample complexity of O(r2 log3(n1)). When ω ≈ 0, this methodology and result
roughly agree with the work by Yi et al. 2013; Chen 2015; Xu et al. 2013; Jain and Dhillon
2013, but program (4, T2) is more flexible since it introduces a choice of weight and allows
for erroneous row and column subspaces (for further discussion on related work see Section
3.1).

Theorems 6 and 7 help illustrate the crucial role of the ρ-subspace incoherence param-
eters from Definition 3. Consider program (4, T2), where ρ = r. To obtain Theorem 7
from Theorem 4, it will be shown in Appendix B that M1(T2) = µLµRr. Since T2 is an r2

dimensional space, one should not expect exact matrix recovery via program (4, T2) with
less than r2 log(n1) randomly sampled entries. This sample complexity is enforced by the
lower bound µLµRr ≥ r, which illustrates the near optimality of the main result. Similarly,
for program (4, T1) it holds that M1(T1) = µ1 ≥ 1 which upholds the dimensionality of T1.

The next example involves only incorporating row or column span information.

Theorem 8 Under the same setup as Theorem 6, let Ũ Ũ> have r-standard incoherence
parameter µL. Define Dω as in (4) with η = 0 and subspace estimate

T3 :=
{
X ∈ Cn1×n2 | X = Ũ Ũ>X

}
.

There exists universal constants c0, c3 > 0 such that if

m ≥ c0µLn2r log3(n1) and 0 < ω ≤
√
µL log(n1 + n2)

n1

then with high probability

‖D −Dω‖F
‖D‖F

≤ c3 sin(θu)

√
n1n2r log(n1)

m
. (16)

In contrast to unbiased nuclear norm minimization (1), the result demonstrates that one
sided information can reduce the sample complexity for rectangular matrices with n2 �
n1. Analogously, for wide matrices one can incorporate information of the range instead.
Comparing to the previous examples (incorporating T1 and T2), notice that error bound
(16) is less sensitive to inaccurate subspaces as it only involves a single PABS term.

The final example attempts to provide some intuition for the original weighted nuclear
norm approach. Although Theorem 4 is not directly applicable to program (5) and vari-
ations, some intuition may be provided by considering the program of the form (4) with
estimate subspace

T4 :=
{
X ∈ Cn1×n2 | X = Ũ Ũ>XṼ Ṽ > + Ũ Ũ>XṼ ⊥Ṽ ⊥> + Ũ⊥Ũ⊥>XṼ Ṽ >

}
(17)

10
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where the orthonormal columns of Ũ⊥ (resp. Ṽ ⊥) span range(Ũ)⊥ (resp. range(Ṽ )⊥).
Arguably, among all programs considered here, this approach is most related to the original
weighted program. To gain insight, a new notion of incoherence is needed.

Definition 9 Given D ∈ Cn1×n2 and r ≤ min{n1, n2}, consider the singular value decom-
position (SVD) D = UΣV >. The r-complementary incoherence parameter of D is defined
as the largest µ2 such that

min
1≤k≤n1

√√√√ r∑
j=1

∣∣Ukj∣∣2 ≥√µ2r

n1
, min

1≤`≤n2

√√√√ r∑
j=1

∣∣V`j∣∣2 ≥√µ2r

n2
. (18)

This incoherence condition is strongly related with the standard incoherence parameter.
Notice that 1 = ‖Ũp∗‖22 + ‖Ũ⊥p∗‖22 for any p ∈ [n1] and the same observation holds for

Ṽ . Therefore, 0 ≤ µ2 ≤ 1 ≤ µ0 and for this reason the new condition is referred to as
complementary. This new parameter also quantifies how spiky a data matrix is, where
µ2 ≈ 0 holds for matrices with entire rows or columns containing very little information
and µ2 ≈ 1 implies an even distribution of non-zero entries throughout the matrix. The
result for the weighted program incorporating (17) now follows.

Theorem 10 Under the same setup as Theorem 6, let Ũ Ṽ > have r-standard and comple-
mentary incoherence parameters µ0 and µ2 (resp.). Define Dω as in (4) with η = 0 and
estimate subspace T4 from (17).

There exists universal constants c0, c3 > 0 such that if

m ≥ c0µ0 max{µ0r, n1 − µ2r}r log3(n1) and 0 < ω ≤
√
n1 − µ2r log(n1 + n2)

√
n1n2

then with high probability

‖D −Dω‖F
‖D‖F

≤ c3 sin(θu) sin(θv)

√
n1n2r log(n1)

m
. (19)

Under lenient conditions, it holds that max{µ0r, n1−µ2r} = n1−µ2r and therefore a n1×n2

rank r matrix can be recovered from ∼ µ0(n1r − µ2r
2) log3(n1) observed entries with prior

information. Notice that T4 is an n1r + n2r − r2 dimensional subspace, which is respected
by the complexity of the result. In contrast to unbiased nuclear norm minimization, this
approach provides a slight reduction in sample complexity by requiring µ0µ2r

2 log3(n1)
less samples. However, the current result exhibits a larger logarithmic dependency while
removing the incoherence condition related to µ1, so a fair comparison is difficult to make.

Relative to the other approaches considered in this section, program (4, T4) is most
robust to inaccurate prior information since it imposes less of a constraint on the search
space. This is exhibited in (19) via the term sin(θu) sin(θv), which is the smallest error
bound in the examples thusfar. However, this reduction in sensitivity to noise produces one
of the largest sampling requisites of this section. The trend expressed by these error bounds
will be explored numerically in Section 4, where decreasing susceptibility to inaccurate prior
information in general requires an increasing number of observed entries for exact matrix
completion.

11



López

The results in this section all apply Theorem 4 in the regime of small weights (9). The
context of larger weights (10) can also supply interesting results. For example, program (4,
T1) with ω = (r log(n1))−1/2 can be shown to require max{µ0,

√
µ1}n1

√
r log3/2(n1) samples

for accurate matrix estimation. Similarly, program (4, T2) would need µ0n1r log3/2(n1)
observed entries, mildly reducing the sample complexity in contrast to (1) by a logarithmic
factor. Intuitively, such larger weight choices would be most appropriate for less reliable
prior information while still reducing the number of samples.

3. Discussion

This section elaborates on the main result and the considered weighted programs. Compar-
ison to previous work is conducted in Section 3.1 and a discussion of the novel incoherence
parameters is provided in Section 3.2.

3.1 Related Work

Many authors have considered how to efficiently include prior information into matrix re-
construction problems. The papers by Aravkin et al. 2014; Zhang et al. 2019, 2020 focus
on applications to seismology and numerical aspects of the problem, adopting an approach
that spurred from program (5) first proposed by Aravkin et al. 2014. A distinct approach
is considered by Chen et al. 2015, 2014; Eftekhari et al. 2018a, where the prior information
is used to bias the sampling scheme according to the array’s leverage scores. Therein, the
authors show that O(n1r log2(n1)) revealed entries provide exact (noiseless) completion of
a rank r matrix with more lenient dependency on the standard incoherence parameter µ0.
Most relevant to the context of this paper, are the results by Yi et al. 2013; Bayat and
Daei 2020; Chiang et al. 2015; Eftekhari et al. 2018b; Chen 2015; Xu et al. 2013; Jain and
Dhillon 2013 which provide theoretical analysis related to program (5) or program (4, T2)
in Theorem 7.

The work by Eftekhari et al. 2018b applies directly to program (5) in the matrix comple-
tion case and general matrix sensing scenario. In the matrix completion setting the authors
obtain sample complexity |Ω| ∼ µ0n1r log(n1) under inexact prior information, thereby re-
ducing the number of samples by a logarithmic factor in contrast to unbiased nuclear norm
minimization. The sample complexity and error bounds produced therein depend on the
PABS (13), imposing a fidelity requisite on T for the results to be applicable. The results
in this paper are not directly comparable. Arguably, the result most related in this work
is provided in Theorem 10, where program (4, T4) requires |Ω| ∼ µ0(n1 − µ2r)r log3(n1)
samples. In contrast to the work by Eftekhari et al. 2018b, the result here does not require
PABS-based prior knowledge or requisites for applicability and the resulting error bounds
are more lenient in terms of the dependence on sin(θu) and sin(θv). The authors Bayat and
Daei 2020 consider a more flexible program than the original approach, where four weight
choices are allowed. Their results only apply to the matrix sensing scenario, where the
authors demonstrate an O(nr) sample complexity.

The remaining citations (Yi et al. 2013; Chen 2015; Xu et al. 2013; Jain and Dhillon
2013; Abernethy et al. 2009) consider approaches arguably similar in nature to program
(4, T2) with ω = 0 and exact prior information, while Chiang et al. 2015 allows for noisy

12



Near-Optimal Weighted Matrix Completion

side information. Among these, the smallest sample complexity is O(µ0r
2 log(n1) log(r))

provable in the setting of exact prior knowledge (in the analogous scenario where ρ = r for
simplicity). In this context, Theorem 7 presented here with small weights allows for accurate
estimation from O(µ2

0r
2 log3(n1)) sampled entries. This sampling condition is slightly worse

than what is derived by Yi et al. 2013; Chen 2015. However, the approach considered here is
a more flexible methodology with weight selection that allows for improved reconstruction
output (see Section 4 for numerical behaviour based on weight selection). Furthermore,
Theorem 7 applies to cases with inexact prior knowledge and derives error bounds that
provide insight when inaccurate estimates Ũ and Ṽ are incorporated in different ways.

3.2 Incoherence Parameter µ1

This section discusses the parameter µ1 defined in (3), comparing it to the standard and
joint incoherence parameters from the literature. To the best of the author’s knowledge, this
definition of incoherence has not appeared in the matrix completion literature. Previous
optimal results have sample complexity requiring only linear dependence on the standard
parameter µ0. The results here also depend on this parameter, but additionally introduce
µ1 with sub-linear and linear dependence.

Arguably, µ1 is reminiscent of the joint incoherence (or strong incoherence) condition
introduced by Recht 2011; Gross 2011. The joint incoherence parameter will be denoted
here as µ̃1. Given r ≤ n2 and recalling the SVD of D, the joint incoherence parameter of
D is defined as the smallest µ̃1 > 0 such that

max
(k,`)∈[n1]×[n2]

∣∣∣∣∣
r∑
j=1

Ukj V̄`j

∣∣∣∣∣ ≤
√

µ̃1r

n1n2
.

In particular, µ1 in definition (3) also depends jointly on the right and left singular vec-
tors. Furthermore, µ1 ≤ µ2

0r which is also a tight upper bound for the joint incoherence
parameter (Chen 2015). However, it is important to note that Recht 2011 and other au-
thors derived sample complexity m ∼ µ̃1n1r log2(n1). In contrast, the work here requires
m ∼ √µ1n1r log2(n1) in Theorem 2 and m ∼ µ1r log3(n1) in Theorem 6. Though it is
difficult to provide a fair comparison, this section will argue that the results here impose
relatively lenient incoherent conditions in a “joint” sense.

The author Chen 2015 discusses the exorbitant nature of the joint incoherence parameter
since it intuitively requires the rows of U r and V r to be unaligned, a requisite with no
reasonable explanation. In the current work, all results would also hold if µ1 were defined
as the smallest number such that

max
1≤k≤n1

 r∑
j=1

|Ukj |4
1/4

max
1≤`≤n2

 r∑
j=1

|V`j |4
1/4

≤
√

µ1r

n1n2
. (20)

This alternative definition alleviates the joint nature of the original definition. It is now
arguable that this condition requires the `4 norms of the rows of U r and V r to both be
small, thereby imposing an additional “non-spikiness” condition analogous to the requisite
of a small µ0 parameter with respect to the `2 norms. However, in contrast the adopted
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definition (3), the incoherence parameter given by (20) is pessimistic (see the second example
below) and for this reason the original definition is kept.

Notice that Theorem 2 only has sub-linear dependence on the introduced parameter√
µ1. This observation is crucial to properly compare some of the work here with previous

incoherence optimal results. To elaborate, specific data matrices are produced to compute
µ0,
√
µ1, and µ̃1.

• Case µ0 =
√
µ1: consider the random orthogonal model and the incoherent basis

model by Candès and Recht 2009. Therein, the authors show that a rank r matrix
M = UΣV > generated from the random orthogonal model obeys maxk,` |Uk`|2 ≤
10 log(n1)/n1 and maxk,` |Vk`|2 ≤ 10 log(n2)/n2 with high probability. From this, it
is easy to see that µ0,

√
µ1 ∼ log(n1). A similar conclusion holds trivially for the

incoherent basis model and any singular vectors obeying the size property 1.12 in the
same reference.

Joint incoherence: in this example, µ̃1 ∼ log2(n1) (see Candès and Recht 2009).

• Case µ0 >
√
µ1: let r < n2 and M = UV > where the columns of U and V consist of

any r columns of In1 (the n1×n1 identity matrix) and any r columns of F : Cn2 7→ Cn2

(the 1D Fourier transform) respectively. Then the r-incoherence parameters satisfy
µ0 = n1/r and

√
µ1 =

√
n1/r. Note that definition (20) would instead obtain

√
µ1 =√

n1/
√
r in this example, which demonstrates the improvement gained by the chosen

definition (3).

Joint incoherence: here µ̃1 ∼ n1/r.

• Case µ0 <
√
µ1: let M = UV > where the columns of U and V consist of any r

columns of In1 and any r columns of In2 respectively. This example gives the worst
case r-incoherence parameters µ0 = n1/r and

√
µ1 =

√
n1n2/r. In general, using (20)

shows that
√
µ1 ≤ µ0

√
r, which is sharp according to this example when n1 = n2.

Joint incoherence: µ̃1 ∼ n1n2/r.

From these examples, it is clear that there is no strict relationship between µ0 and
√
µ1.

Moreover, typical data matrices of interest from the literature seem to largely lie in the
regime where

√
µ1 ≤ µ0. In these cases, Theorem 2 intuitively reduces to solely depend on

µ0.

Moreover, the examples reveal that µ1 ∼ µ̃1 holds intuitively, though a proof of such
a statement is not provided in this work. The lenient joint incoherence conditions of this
paper are due to the sub-linear dependence

√
µ1 in Theorem 2, which is most comparable

to the work of Recht 2011. Notice that
√
µ1 ≤ µ̃1 holds in the examples above. However,

Theorem 6 does require linear dependence on µ1 (but removes the linear dependence on
n1). Since µ1 may be as large as rµ2

0, this may lead to the requisite m ∼ r2µ2
0 log3(n1)

which still offers a severe reduction in the number of observed entries comparable to the
result in Theorem 7.
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4. Numerical Experiments

This section numerically explores programs (4, T1) and (4, T2), comparing them to the
original weighted nuclear norm minimization program (5). The goal of this section is to
numerically validate the error bounds in Section 2.1. The experiments will reveal the
practicality of the derived analysis, agreeing with the theoretical observation that weighted
programs incorporating subspaces that require less samples will in general exhibit increasing
sensitivity of inaccurate prior information.

The setup of Eftekhari et al. 2018b is adopted to generate a data matrix and subspace
information. Let D = U rΣrV r> ∈ Rn1×n2 , where U r ∈ Rn1×r and V r ∈ Rn2×r are
constructed by orthogonalizing the columns of a standard random Gaussian matrix with
r columns and normalizing so that ‖D‖F = 1. To obtain prior knowledge, a perturbed
matrix is generated D̃ = D + N where the entries of N ∈ Rn1×n2 are i.i.d. Gaussian
random variables with variance σ2 that will be toggled to select a desired PABS. Then
Ũ ∈ Rn1×r and Ṽ ∈ Rn2×r are the leading r left and right singular vectors of D̃. The
dimensions are set to n1 = n2 = 500 and r = 50. The set of observed matrix entries is
selected uniformly at random from all subsets of the same cardinality |Ω| = λ(n1n2), where
λ ∈ [0, 1] will be varied to specify a desired sampling percentage. In each experiment, D,N
and Ω are generated independently and programs (4) and (5) are solved with ω = ω1ω2

varying in (0,1] (setting ω1 = ω2). The plots below present the average relative errors of
100 independent trials via trustworthy and relatively inaccurate subspace estimates.

Programs (4) and (5) are solved using the LR-BPDN implementation introduced by
Aravkin et al. 2014, which combines the Pareto curve methodology (van den Berg and
Friedlander 2009) with a matrix factorization approach. With ω > 0, (26) is solved in
lieu of (4), which is an equivalent formulation that trades off the objective function with
a modified projection operator in the constraint (see A.3). This allows LR-BPDN to be
directly applicable to (26), with output D̃ω = ωPT (Dω) +PT⊥(Dω) which gives the desired
solution as Dω = ω−1PT (D̃ω) + PT⊥(D̃ω). An analogous trick is used to solve (5) when
ω1ω2 > 0.

Varying weights: noiseless numerical results with varying weights ω, ω1ω2 ∈ (0, 1] are
shown in Figure 1. Two plots are provided, corresponding to reliable prior information
with |Ω|/n1n2 = .01 (left plot) and less accurate prior knowledge with |Ω|/n1n2 = .15 (right
plot). In these plots, the variance of N is chosen to provide PABS sin(θu), sin(θv) ≈ .1 and
sin(θu), sin(θv) ≈ .2 respectively.

In the case of good subspace estimates (left plot) it is clear that program (4, T1) greatly
outperforms the other approaches, obtaining a relative error ≈ .1 with only 1% of observed
entries. However, this approach is demonstrated to be relatively sensitive when less accurate
prior information is supplied. With relatively inaccurate prior information, the original
weighted program (5) exhibits the best reconstruction error in the right plot of Figure 1.
The numerical behavior illustrated in Figure 1 agrees with the derived error bounds and
discussion provided in Section 2.1, where Theorem 10 provides some insight for the robust
behavior of program (5) at the cost of higher sample complexity.

Varying sampling percentage: noiseless numerical results with varying percentages of
observed noiseless entries are shown in Figure 2. Applying the choice of weights from
Figure 1 that give the smallest reconstruction error for each program, two plots are shown
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Figure 1: Plots of weight choice versus average relative error of matrix reconstruction via
noiseless weighted nuclear norm minimization programs. The left plot applies
reliable prior information with sin(θu), sin(θv) ≈ .1 and %1 percent of observed
matrix entries. The right plot was obtained with sin(θu), sin(θv) ≈ .2, where %15
of the entries are observed.

with reliable subspaces (left plot) and less accurate prior knowledge (right plot). In the
case of accurate estimate subspaces, program (4, T1) obtains the smallest relative errors in
all shown sampling percentages. However, observe that programs (4, T2) and (5) obtain
comparable relative errors from as little as 8% of observed entries. As in Figure 1, in the
case of less accurate subspaces, the original weighted program exhibits the most flexibility
toward untrustworthy prior information. Therefore, Figure 2 also reflects the trade-off
behavior of sample complexity vs sensitivity to inaccurate prior information that agrees
with the theoretical conclusions of Section 2.1.

5. Conclusion

In this paper, a family of weighted matrix completion programs is proposed as a means to
incorporate prior knowledge into the matrix completion problem. The main result estab-
lishes the nearly optimal sampling rate O(M1r log3(n)) by which an n × n rank r matrix
can be accurately approximated when a subspace of rank r matrices is enforced (where M1

captures dimensional and incoherence-based properties of the subspace). The analysis al-
lows for robust matrix approximation in the case of inexact subspaces, measurement noise,
and full rank data matrices. The work provides novel intuition for previous methodologies
in the literature, while introducing novel approaches. Finally, the results and numerical
experiments showcase an insightful trade-off caused by incorporating distinct subspaces. In
general, it is observed that subspaces requiring less samples for exact matrix completion are
more susceptible to inaccurate prior information.

Several important limitations and potential improvements need to be elaborated and
explored as future work. The subspace incoherence parameter M1 may extract the parame-
ter µ1, which is distinct in comparison to results that only require the standard incoherence
condition. Modified analysis that only depends on the standard parameter µ0 would be
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Figure 2: Plots of sampling percentage versus average relative error of matrix reconstruction
via noiseless weighted nuclear norm minimization programs. The left plot applies
reliable prior information with sin(θu), sin(θv) ≈ .1 and weight choices of ω1ω2 =
.01 for program 5, ω = .02 for program (4, T2), and ω = .01 for program (4,
T1). The right plot was obtained with sin(θu), sin(θv) ≈ .2 and weight choices of
ω1ω2 = .06 for program 5, ω = .3 for program (4, T2), and ω = .2 for program
(4, T1).

most informative and align best with the existing literature. Furthermore, the main the-
oretical result does not seem to provide any insight for weight selection according to the
user’s confidence in the estimate subspace or any other variables. An error bound that
specifies the optimal weight choice in different scenarios would be of great value to practi-
tioners. As future work, it would be of interest to adapt the proof strategy and tools of this
work to further comprehend how to set the program parameters of the proposed method
and previously considered weighted approaches.

Another avenue to extend this work is to consider numerically efficient alternatives to
the nuclear norm approach presented here. Strong prior information may be sufficient to
alleviate sample complexity, potentially rendering the low rank assumption unnecessary for
matrix completion. For example, a least squares-based weighted program might arguably
produce comparable estimates while reducing computational complexity by avoiding rank
penalization terms. The tools developed here may be useful to analyze such approaches,
and help better understand the independent roles that prior information and data rank play
in the sample complexity.

Appendix A. Proof of the Main Results

This section provides proofs for the main results, only stating the required lemmas. These
lemmas will be proven in Appendix C.
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A.1 Dual Certificate

The first lemma establishes dual certificate conditions relative to T for recovery error
bounds. It is stated in general form, applicable to any linear operator. For the state-
ment, it is important to notice that for any X ∈ Cn1×n2 there exists a G ∈ T ∩ Sop such
that ‖PT (D)‖∗ = 〈D,G〉 by characterization of the nuclear norm via its dual norm (the
operator norm). Furthermore, for A : Cn1×n2 7→ Cm define

‖A‖F 7→2 := max
X∈S
‖A(X)‖2.

Lemma 11 Let A : Cn1×n2 7→ Cm be a linear operator, and

inf
X∈T∩S

‖A(X)‖2 ≥ β1 > 0, ‖APT⊥‖F 7→2 ≤ β2. (21)

Given D ∈ Cn1×n2 with ‖PT (D)‖∗ = 〈D,G〉 for some G ∈ T ∩ Sop, assume that there exist
Y,Z ∈ Cn1×n2 with Y = A∗A(Z) satisfying

‖PT (Y )−G‖F ≤ β3, ‖PT⊥(Y )‖ ≤ β4, ‖A(Z)‖2 ≤ β5 (22)

and β2β3
β1

+ β4 < 1. Let d ∈ Cm with ‖d‖2 ≤ η and

D] := argmin
X∈Cn1×n2

‖X‖∗ s.t. ‖A(X)−A(D)− d‖2 ≤ η.

Then
‖D −D]‖F ≤ C1‖PT⊥(D)‖∗ + C2η,

where C1, C2 depend on the βk’s.

The proof of this lemma is postponed until C.1, where the dependence of C1 and C2 on
the βk’s is specified. The main result will be obtained by establishing (21) and (22) for the
matrix completion sampling operator PΩ. With this in mind, the proof of Theorem 4 is
provided, from which the remaining theorems are corollaries (see Appendix B). The proof
considers the sampling with replacement model, discussed in detail in the next section.

A.2 Sampling Model

As in previous work, the work load will be simplified by considering the uniform sampling
with replacement model. In other words, let Ω̃ be generated by choosing m entries indepen-
dently and uniformly at random from [n1] × [n2] (this allows Ω̃ to have repeated entries).
Recht 2011 and Gross 2011 show that any upper bound on the probability of failure for
exact (noiseless) matrix completion via Ω̃ is also valid for uniform sampling without re-
placement. This strategy will apply in the scenario of this work, proceeding in a different
manner to include noisy observations, full rank matrices, and inexact subspace estimates.

With Ω̃ generated as above, let Ω ⊆ Ω̃ consist of the
∣∣Ω∣∣ ≤ m distinct samples in Ω̃ and

define the normalized operators

Ã =

√
n1n2

m
PΩ̃ and A =

√
n1n2

m
PΩ,
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which extract and scale an input matrix’s values in the entries specified by the subset in
the subscript. As shown by Gross 2011 (Section II), the distribution of Ω is the same as
the distribution of sampling

∣∣Ω∣∣ entries uniformly without replacement. Therefore, assume

Ω ⊆ Ω̃ WLOG, so that generating Ω̃ with m entries will generate Ω uniformly at random
and any lower bound requisite for |Ω| will also be satisfied by m (since m ≥ |Ω|).

Notice that for any X ∈ Cn1×n2 and (k, `) ∈ [n1]× [n2]

(P ∗ΩPΩ(X))k` =

{
Xk` if (k, `) ∈ Ω
0 otherwise

and (
P ∗

Ω̃
PΩ̃(X)

)
k`

=

{
multΩ̃(k, `)Xk` if (k, `) ∈ Ω̃
0 otherwise

where multΩ̃(k, `) ∈ N is the multiplicity of (k, `) ∈ Ω̃. Let multΩ̃(k, `) ≤ τ for all (k, `) ∈ Ω̃.
The quantity τ will be bounded using Proposition 3.3 by Recht 2011 with parameter β = 3/2
therein. For n1 ≥ 9, the proposition gives τ ≤ 4 log(n1) with probability exceeding 1−n−1

1 .
Then for any X ∈ Cn1×n2

‖Ã(X)‖2 ≤
√
τ‖A(X)‖2 ≤ 2

√
log(n1)‖A(X)‖2. (23)

The remainder will operate in this scenario so that (23) holds with high probability. There-
fore, using the lower bound

inf
X∈T∩S

‖Ã(X)‖2 ≥ β̃1

for some β̃1 > 0, allows to choose parameter β1 = β̃1

2
√

log(n1)
> 0 from Lemma 11. The

following lemma is crucial for this purpose, and will also be used to compute parameters β3

and β5 with an appropriate choice of dual certificate.

Lemma 12 Let T ⊂ Cn1×n2 be a subspace with subspace joint incoherence parameter M1

and ρ defined as in (8). With Ã as above and 0 < δ ≤ 1
4 , if

√
m ≥ C

√
M1ρ log3/2(n1 + n2)

δ

where C > 0 is an absolute constant, then

sup
X∈T∩S

∣∣∣〈(Ã∗Ã − I)(X), X〉
∣∣∣ < 2δ,

with probability exceeding

1− exp

(
− 6mδ2

19M1ρ

)
.

The proof can be found in C.2, which generalizes the approach of Rauhut 2008; Rudelson
and Vershynin 2008 (Rudelson-Vershynin Lemma via Dudley’s inequality) as done by Liu
2011. The following lemma by Chen 2015 is needed to compute β4.
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Lemma 13 Suppose Z ∈ Cn1×n2 is a fixed matrix. Then with probability greater than
1− 1

n1+n2

‖Ã∗Ã(Z)− Z‖ ≤ 4n1n2 log(n1 + n2)

3m
‖Z‖∞ + 2

√
2n1n2 log(n1 + n2)

m
‖Z‖∞,2.

The concentration inequality uses the norm

‖Z‖∞,2 := max
{

max
k

√∑
j

|Zkj |2,max
`

√∑
j

|Zj`|2
}

(24)

which is the maximum of the row and column norms of Z. The result appears as Lemma
2 in the work of Chen 2015, the proof is adapted here to the sampling with replacement
model (see C.3 for the proof). The parameters in (21) and (22) may now be computed to
establish the weighted matrix completion error bounds.

A.3 Proof of Theorem 4: Weighted Matrix Completion

With respect to the normalized operators, the output of (4) is equivalently given as

Dω := argmin
X∈Cn1×n2

∥∥ωPT (X) + PT⊥(X)
∥∥
∗ s.t.

∥∥∥∥∥A(D) +

√
n1n2

m
d−A(X)

∥∥∥∥∥
2

≤
√
n1n2

m
η.

Further note that

ωPT (Dω) + PT⊥(Dω) =

argmin
X∈Cn1×n2

‖X‖∗ s.t.

∥∥∥∥∥A(D) +

√
n1n2

m
d−A

(
1

ω
PT (X) + PT⊥(X)

)∥∥∥∥∥
2

≤
√
n1n2

m
η, (25)

where equality holds since ωPT (◦) +PT⊥(◦) is invertible when ω > 0, with inverse operator
ω−1PT (◦) + PT⊥(◦). Let

P̃ω(◦) = PT (◦) + ωPT⊥(◦).

Multiplying both sides of the constraint in (25) by ω gives

ωPT (Dω) + PT⊥(Dω) =

argmin
X∈Cn1×n2

‖X‖∗ s.t.

∥∥∥∥∥ωA(D) + ω

√
n1n2

m
d−A

(
P̃ω(X)

)∥∥∥∥∥
2

≤ ω
√
n1n2

m
η

= argmin
X∈Cn1×n2

‖X‖∗ s.t.

∥∥∥∥∥A(P̃ω(DT )
)

+ ω

√
n1n2

m
d−A

(
P̃ω(X)

)∥∥∥∥∥
2

≤ ω
√
n1n2

m
η, (26)

were the last line defines DT := ωPT (D) + PT⊥(D).
The dual certificate of Lemma 11 will be produced with respect to program (26) with

sampling operator AT := AP̃ω to obtain an upper bound for∥∥DT − ωPT (Dω) + PT⊥(Dω)
∥∥
F
,
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which will in turn will give an appropriate bound for ‖D −Dω‖F .
Proof [Proof of Theorem 4]

Using the notation above, notice that

inf
X∈T∩S

‖AT (X)‖2 = inf
X∈T∩S

‖A(X)‖2. (27)

The parameters in (21) and (22) from Theorem 11 with respect to AT , DT , Ũ and Ṽ will
now be bounded. Let G ∈ T ∩ Sop be such that ‖PT (DT )‖∗ = 〈DT , G〉. For the dual
certificate, choose

Y := A∗TAT (Z),

where
Z := P̃−1

ω

(
P ∗

Ω̃
PΩ̃(G)

)
.

Notice that
Y := A∗TA

(
P ∗

Ω̃
PΩ̃(G)

)
.

After bounding the βk’s, the proof will finish by applying Lemma 11.

• Parameter β1: using (27) and (23) will give β1 = (2
√

2 log(n1))−1. To show this,
Theorem 12 will be applied in two different ways below with δ ≤ 1/4 so that for any
X ∈ T ∩ S ∣∣∣〈(Ã∗Ã − I)(X), X〉

∣∣∣ < 2δ ≤ 1

2
(28)

and consequently ‖Ã(X)‖2 ≥
√

1− 2δ ≥ 1/
√

2 which gives β1 ≥ (2
√

2 log(n1))−1

with high probability.

• Parameter β2: this parameter is ‖ATPT⊥‖F→2 = ω‖APT⊥‖F→2. With the chosen
dual certificate, use the following calculation

ω
∥∥APT⊥∥∥F→2

≤ ω
√
n1n2

m
‖PΩ‖F→2‖PT⊥‖F→F ≤ ω

√
n1n2

m
:= β2,

where ‖PΩ‖F→2 ≤ 1 holds since Ω has no repeated entries.

• Parameter β3: this parameter can be computed using (28). Note that

PT (Y ) = PT ◦ A∗A
(
P ∗

Ω̃
PΩ̃(G)

)
= PT ◦ Ã∗Ã (G) .

Therefore,

‖PT (Y )−G‖F = ‖PT ◦ (Ã∗Ã − I) ◦ PT (G)‖F ≤ 2δ
√
ρ := β3,

since ‖G‖ = 1 gives ‖G‖F ≤
√

rank(G) ≤ √ρ and

sup
X∈T∩S

∣∣∣〈(Ã∗Ã − I)(X), X〉
∣∣∣ = ‖PT ◦ (Ã∗Ã − I) ◦ PT ‖F 7→F ≤ 2δ.

Later, δ will be chosen in two different ways (always satisfying δ ≤ 1/4) which will
change the value of β3 in each scenario.
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López

• Parameter β5: under the scenario mult(k, `) ≤ τ ≤ 4 log(n1) (see discussion in A.2),
it can be shown that β5 ≤

√
6ρ log(n1) as follows∥∥∥A(P ∗

Ω̃
PΩ̃(G))

∥∥∥
2

:=

√
n1n2

m

∥∥∥PΩ

(
P ∗

Ω̃
PΩ̃(G)

)∥∥∥
2

=

√
n1n2

m

∥∥∥P ∗
Ω̃
PΩ̃(G)

∥∥∥
F

≤
√
τn1n2

m

∥∥∥PΩ̃(Ũ Σ̃Ṽ >)
∥∥∥

2
:=
√
τ‖Ã(G)‖2 ≤

√
6 log(n1)‖G‖F .

The last inequality follows from (28) with 2δ ≤ 1/2, since G ∈ T .

The remaining parameter β4 is bounded by considering distinct ranges for ω and choices
for δ ≤ 1/4 (which will also determine β3).

Case ω ≤
√
M1 log(n1+n2)√

n1n2
: in this scenario, apply Lemma 12 with δ = 1/4, which holds if

√
m ≥ 4C

√
M1ρ log3/2(n1 + n2). (29)

With appropriate C, the probability of success exceeds 1 − (n1 + n2)−1. Notice that this
case gives β3 =

√
ρ/2.

• Parameter β4: to bound
∥∥PT⊥(Y )

∥∥, notice that∥∥PT⊥(Y )
∥∥ = ω

∥∥∥PT⊥ ◦ A∗A(P ∗Ω̃PΩ̃(G)
)∥∥∥ = ω

∥∥∥PT⊥ (A∗A(P ∗Ω̃PΩ̃(G)
)
−G

)∥∥∥
≤ ω

∥∥∥A∗A(P ∗
Ω̃
PΩ̃(G)

)
−G

∥∥∥ = ω
∥∥∥Ã∗Ã (G)−G

∥∥∥,
where the inequality holds since PT⊥ is an orthogonal projection. Using the bound
above and Lemma 13 gives

∥∥PT⊥(Y )
∥∥ ≤ 4ωn1n2 log(n1 + n2)

3m
‖G‖∞ + 2ω

√
2n1n2 log(n1 + n2)

m
‖G‖∞,2

with probability at least 1− (n1 + n2)−1. Using the subspace incoherence condition,
it is clear that

‖G‖∞,2 ≤
√
M0ρ

n2
and ‖G‖∞ ≤ ‖G‖F

√
M1ρ

n1n2
≤ ρ
√

M1

n1n2
. (30)

Using (29) and (30) gives

∥∥PT⊥(Y )
∥∥ ≤ ω

√
n1n2

12C2
√
M1 log2(n1 + n2)

+
ω
√
M0n1√

2C
√
M1 log(n1 + n2)

:= β4

and
β2β3

β1
=
ω
√

2n1n2ρ log(n1)√
m

≤
ω
√
n1n2

2C
√

2M1 log(n1 + n2)
.

Note that M0 ≤ n2, and therefore β2β3
β1

+ β4 < 1 if ω ≤
√
M1 log(n1+n2)√

n1n2
and Theorem

11 may now be applied.
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Case 1

2
√

2ρ log(n1+n2)
≤ ω ≤ 1: apply Lemma 12 with δ =

√
m/8ωn1

√
2ρ log(n1 + n2).

Using m ≤ n2
1 and the assumption on ω gives

δ =

√
m

8ωn1

√
2ρ log(n1 + n2)

≤ 1

8ω
√

2ρ log(n1 + n2)
≤ 1

4
,

as desired if

√
m ≥ C max{

√
M1,M0}

√
ρ log3/2(n1 + n2)

8ωn1

√
2ρ log(n1 + n2)√

m
. (31)

With an appropriate choice of C, the probability of success exceeds 1− (n1 + n2)−1. This
case gives β3 =

√
m/4ωn1

√
2 log(n1 + n2).

• Parameter β4: as in the previous range for ω, Lemma 13 along with (30) and (31)
gives that with high probability∥∥PT⊥(Y )

∥∥ ≤ 1

6
√

2C log(n1 + n2)
+

√
ω√

C
√

2 log(n1 + n2)
≤ 1

4
:= β4,

where the last inequality holds with ω ≤ 1 and an appropriate choice of C. Note that
β2β3
β1

=
√
n2

2
√
n1

, and therefore β2β3
β1

+β4 = 3/4 so that Theorem 11 can be applied in this

case as well.

This concludes the bounds for all βk parameters in (21) and (22) from Theorem 11. In
both considered weight ω ranges, Theorem 11 gives constants (considering only dominating
terms, see proof in C.1)

C1 ∼
β2

β1
+ 1 = ω

√
n1n2 log(n1)

m
+ 1,

C2 ∼
β2β5

β1
+ β5 =

√
log(n1)

(
ω

√
n1n2ρ log(n1)

m
+ 1

)
,

and error bound∥∥DT − ωPT (Dω)− PT⊥(Dω)
∥∥
F
≤ C1

∥∥PT⊥(DT )
∥∥
∗ + ω

√
n1n2

m
C2η

= C1

∥∥PT⊥(D)
∥∥
∗ + ω

√
n1n2

m
C2η. (32)

The desired error term ‖D −Dω‖F will be bounded in two different ways to introduce
f(ω) in (11) as the minimum of both bounds.

Bound 1 for ‖D −Dω‖F : notice that∥∥DT − ωPT (Dω)− PT⊥(Dω)
∥∥2

F
=
∥∥PT⊥(D −Dω) + ωPT (D −Dω)

∥∥2

F

=
∥∥PT⊥(D −Dω)

∥∥2

F
+ ω2

∥∥PT (D −Dω)
∥∥2

F

≥ ω2‖D −Dω‖2F + ω2‖D −Dω‖2F = ω2‖D −Dω‖2F ,
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so for some absolute constant

‖D −Dω‖F ≤ C

(√
n1n2 log(n1)

m
+

1

ω

)∥∥PT⊥(D)
∥∥
∗

+ C

√
n1n2 log(n1)

m

(
ω

√
n1n2ρ log(n1)

m
+ 1

)
η.

Bound 2 for ‖D −Dω‖F : use the derived properties of A to obtain

‖D −Dω‖2F = ‖PT (D −Dω)‖2F +
∥∥PT⊥(D −Dω)

∥∥2

F

≤ 1

β2
1

‖A (PT (D −Dω)) ‖22 +
∥∥PT⊥(D −Dω)

∥∥2

F

≤ 1

β2
1

(
‖A (D −Dω) ‖2 +

∥∥A (PT⊥(D −Dω))
∥∥

2

)2
+
∥∥PT⊥(D −Dω)

∥∥2

F

≤ 1

β2
1

(
2

√
n1n2

m
η +

√
n1n2

m

∥∥PT⊥(D −Dω)
∥∥
F

)2

+
∥∥PT⊥(D −Dω)

∥∥2

F
,

where the last inequality holds by feasibility of Dω for (4) and since A :=
√

n1n2
m PΩ contains

no repeated entries. The term in the final line can be bounded by (32) since∥∥PT⊥(D −Dω)
∥∥2

F
≤
∥∥PT⊥(D −Dω)

∥∥2

F
+ ω‖PT (D −Dω)‖2F

=
∥∥PT⊥(D −Dω) + ωPT (D −Dω)

∥∥2

F
=
∥∥DT − ωPT (Dω)− PT⊥(Dω)

∥∥2

F
.

This approach gives that for some absolute constant

‖D −Dω‖F ≤ C
√
n1n2 log(n1)

m

(
ω

√
n1n2 log(n1)

m
+ 1

)∥∥PT⊥(D)
∥∥
∗

+ Cω
n1n2 log(n1)

m

(
ω

√
n1n2ρ log(n1)

m
+ 1

)
η +

√
n1n2 log(n1)

m
η.

Notice that, in contrast to bound 1 for ‖D − Dω‖F , bound 2 includes the multiplica-
tive term ω

√
n1n2 log(n1)/m and the additive term

√
n1n2 log(n1)/m in the noise term.

Factoring out the multiplicative term and choosing the minimum defines f(ω).
To finish, bound

∥∥PT⊥(D)
∥∥
∗ as follows∥∥PT⊥(D)

∥∥
∗ ≤

∥∥PT⊥(UρΣρV ρ>)
∥∥
∗ +

∥∥PT⊥(U+Σ+V +>)
∥∥
∗

≤
∥∥PT⊥(UρΣρV ρ>)

∥∥
∗ + ‖U+Σ+V +>‖∗ =

∥∥PT⊥(UρΣρV ρ>)
∥∥
∗ +

n2∑
k=ρ+1

σk(D).

To establish Corollary 5 from the proof above, it suffices to bound
∥∥PT⊥(UρΣρV ρ>)

∥∥
∗ as

follows:∥∥PT⊥PTρ(UρΣρV ρ>)
∥∥
∗ ≤
√
n2

∥∥PT⊥PTρ(UρΣρV ρ>)
∥∥
F
≤
√
n2

∥∥PT⊥PTρ∥∥F→F ‖UρΣρV ρ>‖F .
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Appendix B. Proof of Theorems 2, 6, 7, 8, and 10

Theorems 6, 7, 8, and 10 are all corollaries of Theorem 4 with small ω while Theorem
2 applies ω = 1. To obtain these results, it is sufficient to bound the ρ-subspace inco-
herence parameters for the respective estimate subspaces (all with ρ = r) and the term∥∥PT⊥(U rΣrV r>)

∥∥
∗ in (11).

For Theorem 2, notice that with ω = 1 program (4) becomes the nuclear norm minimiza-
tion program (1). This makes T irrelevant, allowing the choice of subspace as in Theorem
6 with Ũ = U r and Ṽ = V r to provide

∥∥PT⊥(U rΣrV r>)
∥∥
∗ = 0. It only remains to upper

bound M0 in (6) and M1 (7) in this case.

• Theorem 7, program (4, T2): applying Theorem 4 with small weights requires upper
and lower bounding the subspace joint incoherence parameter M1. Recall that any
X ∈ T2 ∩ S satisfies X = Ũ Ũ>XṼ Ṽ >, so X can be written as X = ŨW> and
X = ZṼ > where range(W ) ⊂ range(Ṽ ) and range(Z) ⊂ range(Ũ).

To upper bound the subspace joint incoherence, write X = ŨW> and notice that
W = Ṽ α where α ∈ Cr×r and ‖α‖F = 1. Then,

∣∣∣(ŨW>)pq

∣∣∣ =

∣∣∣∣∣∑
k

ŨpkW qk

∣∣∣∣∣ =

∣∣∣∣∣∑
kj

ŨpkαjkṼ qj

∣∣∣∣∣
≤ ‖α‖F

∑
kj

|Ũpk|2|Ṽqj |2
1/2

≤

√
µ0(Ũ Ũ>)µ0(Ṽ Ṽ >)r

√
n1n2

.

Therefore M1(T2) ≤ µ0(Ũ Ũ>)µ0(Ṽ Ṽ >)r.

The lower bound will be obtained by a proper selection of α. Let p̃ ∈ [n1] obtain

the maximum row norm of Ũ and likewise q̃ ∈ [n2] for Ṽ . Then with αjk = cŨp̃kṼ q̃j

where c is a normalization constant (so that ‖α‖F = 1) gives

∣∣∣(ŨW>)p̃q̃

∣∣∣ = ‖Ũp̃∗‖2‖Ṽq̃∗‖2 =
r
√
µ0(Ũ Ũ>)µ0(Ṽ Ṽ >)
√
n1n2

to obtain M1(T2) = µ0(Ũ Ũ>)µ0(Ṽ Ṽ >)r.

Finally, to bound
∥∥PT⊥2 (X)

∥∥
∗ with X = U rΣrV r> gives∥∥PT⊥2 (X)

∥∥
∗ = ‖Ũ Ũ>XṼ ⊥Ṽ ⊥> + Ũ⊥Ũ⊥>X‖∗

≤
√
r‖Ũ Ũ>XṼ ⊥Ṽ ⊥>‖F +

√
r‖Ũ⊥Ũ⊥>X‖F ≤

√
r(sin(θv) + sin(θu))‖X‖F .

• Theorem 8, program (4, T3): notice that any X ∈ T3∩S can be written as X = ŨW>

where the columns of W are arbitrary. Then

∣∣∣(ŨW>)pq

∣∣∣ ≤ ‖Ũp∗‖2‖Wq∗‖2 ≤

√
µ0(Ũ Ũ>)r

n1
,
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and therefore, M1 ≤ µ0(Ũ Ũ>)n2. For a lower bound, let p̃ ∈ [n1] obtain the maximum
row norm of Ũ and choose each rowWq∗ = cŨp̃∗ were c is a proper normalizing constant
achieving ‖W‖F = 1. Then

M1 ≥
n1n2

r

∣∣∣(ŨW>)p̃q

∣∣∣2 =
n2‖Ũp̃∗‖22

r
=
µ0(Ũ Ũ>)n2

n1
.

∥∥PT⊥3 (U rΣrV r>)
∥∥
∗ can be bounded as∥∥PT⊥3 (U rΣrV r>)

∥∥
∗ = ‖Ũ⊥Ũ⊥>U rΣrV r>‖∗ ≤

√
r‖Ũ⊥Ũ⊥>U rΣrV r>‖F

≤
√
r sin(θu)‖U rΣrV r>‖F .

• Theorem 10, program (4, T4): any X ∈ T4 ∩ Sop can be written as X = X1 + X2 +

X3 where X1 ∈ T2, X2 = ŨW> with range(W ) ⊂ range(Ṽ ⊥), and X3 = ZṼ >

with range(Z) ⊂ range(Ũ⊥). As before, the largest entry of any X1 is bounded by
µ0r/

√
n1n2. For matrices of the form X3, write Z = Ũ⊥α where α ∈ Cn1−r×r has

orthogonal columns and ‖α‖F ≤ 1. Then,

∣∣∣(ZṼ >)pq

∣∣∣ ≤ ‖Zp∗‖2‖Ṽq∗‖2 ≤ ‖α‖‖Ũ⊥p∗‖2√µ0r

n2
≤

√
µ0r(n1 − µ2r)

n1n2
.

The last inequality holds since 1 = ‖Ũp∗‖2 + ‖Ũ⊥p∗‖22 and by definition (18). An
analogous argument for X2 and the triangle inequality gives

M1 ≤ µ2
0r + µ0(n1 − µ2r) + µ0(n2 − µ2r).

For the lower bound, consider matrices of the form X3 as before. Choose α with
‖α‖F = 1 in an analogous manner to the proof of Theorem 7. ThenM1 ≥ µ0(Ṽ Ṽ >)(n1−
µ2r) ≥ n1 − µ2r.

For
∥∥PT⊥4 (U rΣrV r>)

∥∥
∗, it follows that∥∥PT⊥4 (U rΣrV r>)
∥∥
∗ = ‖Ũ⊥Ũ⊥>U rΣrV r>Ṽ ⊥Ṽ ⊥>‖∗ (33)

≤
√
r‖Ũ⊥Ũ⊥>U rΣrV r>Ṽ ⊥Ṽ ⊥>‖F ≤

√
r sin(θu) sin(θv)‖U rΣrV r>‖F .

• Theorem 6, program (4, T1): recall that T1 = span{Ũk∗Ṽ >k∗}k∈[r], so every X ∈ T1 ∩ S
can be written as X = ŨΣṼ > for some diagonal matrix with ‖Σ‖F ≤ 1.

For the upper bound, it holds that for any p ∈ [n1] and q ∈ [n2]

∣∣∣(ŨΣṼ >)pq

∣∣∣ =

∣∣∣∣∣∑
k

σkŨpkṼ qk

∣∣∣∣∣ ≤
(∑

k

σ2
k

)1/2(∑
k

|Ũpk|2|Ṽqk|2
)1/2

≤

√
µ1(Ũ Ṽ >)r

n1n2
.

This gives M1(T1) ≤ µ1(Ũ Ṽ >).
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For the lower bound, notice that the singular values can be freely chosen. Let (p̃, q̃) ∈
[n1]× [n2] be such that(∑

k

|Ũp̃k|2|Ṽq̃k|2
)1/2

=

√
µ1(Ũ Ṽ >)r

n1n2
.

Then choosing σk = cŨ p̃kṼq̃k (possibly complex valued which will still be in T1) where
c is a normalization constant (so ‖Σ‖F = 1) gives

∣∣∣(ŨΣṼ >)p̃q̃

∣∣∣ =

√
µ1(Ũ Ṽ >)r

n1n2
,

and therefore M1(T1) ≥ µ1(Ũ Ṽ >) since it is defined as the maximum.

Finally, to bound
∥∥PT⊥1 (U rΣrV r>)

∥∥
∗ with X = U rΣrV r> notice that

PT⊥1 (X) = PT⊥2 (X) +
∑
k 6=`

Ũ∗kṼ
>
∗` 〈Ũ∗kṼ >∗` , X〉,

where T2 is as in Theorem 7 and the term ‖PT⊥2 (X)‖∗ can be bounded as in the proof
therein via a triangle inequality. To bound the remaining term, which is a rank r
matrix, we obtain∥∥∥∥∥∑

k 6=`
Ũ∗kṼ

>
∗` 〈Ũ∗kṼ >∗` , X〉

∥∥∥∥∥
∗

≤
√
r

∥∥∥∥∥∑
k 6=`

Ũ∗kṼ
>
∗` 〈Ũ∗kṼ >∗` , X〉

∥∥∥∥∥
F

=
√
r

∑
k 6=`
|〈Ũ∗kṼ >∗` , X〉|2

1/2

=
√
r

∑
k 6=`
|〈U r>Ũ∗kṼ >∗`V r,Σr〉|2

1/2

≤
√
r‖Σr‖F

∑
k 6=`

∥∥U r>Ũ∗kṼ >∗`V r
∥∥2

F

1/2

.

• Theorem 2, program (1): as discussed, choose T as T1 from Theorem 6 but with Ũ =

U r and Ṽ = V r. Then
∥∥PT⊥1 (U rΣrV r>)

∥∥
∗ = 0 and as in the previous case M1 =

µ1(D).

To upper bound M0, every X ∈ T ∩ Sop can be written as X = U rΣV r> for some
diagonal matrix with ‖Σ‖ ≤ 1. Then M0(T ) ≤ µ0(D), since

‖X‖2,∞ = max
k,`
{‖Xk∗‖2, ‖X∗`‖2} = max

k,`
{‖U rk∗ΣV r>‖2, ‖U rΣV r>

`∗ ‖2}

≤ max
k,`
{‖U rk∗‖2‖ΣV r>‖, ‖U rΣ‖‖V r

`∗‖2} ≤ max
k,`
{‖U rk∗‖2, ‖V r

`∗‖2} ≤

√
µ0(D)r

n2
,

where the second inequality holds since U r, V r with orthonormal columns and ‖Σ‖ ≤ 1
give that ‖U rΣ‖ and ‖ΣV r>‖ are bounded by 1.

27
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Appendix C. Proof of Required Lemmas

This section proves the main lemmas required for the proofs in Appendix A: Lemma 11 and
Lemma 12.

C.1 Proof of Lemma 11

Lemma 11 is essentially a generalization of dual certificate guarantees for sparse vector
recovery to the low-rank matrix recovery case (see Theorem 4.33 by Foucart and Rauhut
2013), and the proof will be similar.

Proof [Proof of Lemma 11] Denote W = D] −D, the goal is to bound ‖W‖F . Since D] is
feasible

‖A(W )‖2 ≤ ‖A(D])−A(D)− d‖2 + ‖d‖2 ≤ 2η.

This will be applied throughout the proof.

Let Q ∈ T⊥ be such that 〈D + W,Q〉 = ‖PT⊥(D + W )‖∗ and G ∈ T be such that
〈D,G〉 = ‖PT (D)‖∗. By optimality of D] and feasibility of D,

‖D‖∗ ≥ ‖D]‖∗ = ‖D +W‖∗ ≥ |〈D +W,G+Q〉|
=
∣∣〈D +W,G〉+

∥∥PT⊥(D +W )
∥∥
∗
∣∣

=
∣∣‖PT (D)‖∗ + 〈PT (W ), G〉+

∥∥PT⊥(D +W )
∥∥
∗
∣∣

≥‖PT (D)‖∗ − |〈PT (W ), G〉|+
∥∥PT⊥(W )

∥∥
∗ −

∥∥PT⊥(D)
∥∥
∗.

Where the second inequality holds by the variational characterization of the nuclear norm,
‖X‖∗ = sup‖Y ‖≤1〈X,Y 〉.

Using ‖D‖∗ ≤ ‖PT (D)‖∗ + ‖PT⊥(D)‖∗ and rearranging gives

‖PT⊥(W )‖∗ ≤ 2‖PT⊥(D)‖∗ + |〈PT (W ), G〉|. (34)

Introducing Y = A∗A(Z), the last term in (34) can be bounded as

|〈PT (W ), G〉| ≤ |〈PT (W ), G− PT (Y )〉|+ |〈PT (W ),PT (Y )〉|
≤β3‖PT (W )‖F + |〈PT (W ),PT (Y )〉|
=β3‖PT (W )‖F + |〈W − PT⊥(W ), Y − PT⊥(Y )〉|
=β3‖PT (W )‖F + |〈W,Y 〉 − 〈PT⊥(W ),PT⊥(Y )〉|
≤β3‖PT (W )‖F + |〈W,Y 〉|+ |〈PT⊥(W ),PT⊥(Y )〉|. (35)

The second equality applies 〈W,PT⊥(Y )〉 = 〈PT⊥(W ),PT⊥(Y )〉 = 〈PT⊥(W ), Y 〉.
The three terms in (35) are bounded next, beginning with ‖PT (W )‖F . The assumed

inequalities (21) give that ‖A(B)‖2 ≥ β1‖B‖F , and ‖A(H)‖2 ≤ β2‖H‖F for any B ∈ T and
H ∈ T⊥. Therefore,

‖PT (W )‖F ≤
1

β1
‖A(PT (W ))‖2 ≤

1

β1
‖A(W )‖2 +

1

β1

∥∥A(PT⊥(W ))
∥∥

2

≤2η

β1
+
β2

β1
‖PT⊥(W )‖F .

(36)

28



Near-Optimal Weighted Matrix Completion

The remaining terms in (35), |〈PT⊥(W ),PT⊥(Y )〉| and |〈W,Y 〉|, can be bounded by
assumptions (22)

|〈PT⊥(W ),PT⊥(Y )〉| ≤ ‖PT⊥(W )‖∗‖PT⊥(Y )‖ ≤ β4‖PT⊥(W )‖∗

and
|〈W,Y 〉| := |〈W,A∗A(Z)〉| = |〈A(W ),A(Z)〉| ≤ ‖A(W )‖2‖A(Z)‖2 ≤ 2ηβ5.

Using these inequalities to bound |〈PT (W ), G〉| in (34) gives

‖PT⊥(W )‖∗ ≤ 2‖PT⊥(D)‖∗ +
2ηβ3

β1
+
β2β3

β1
‖PT⊥(W )‖F + β4‖PT⊥(W )‖∗ + 2ηβ5

≤2‖PT⊥(D)‖∗ +

(
β2β3

β1
+ β4

)
‖PT⊥(W )‖∗ + 2

(
β3

β1
+ β5

)
η.

Since by assumption ρ := β2β3
β1

+ β4 < 1, rearrange to obtain

‖PT⊥(W )‖∗ ≤
2

1− ρ
‖PT⊥(D)‖∗ +

2
(
β3
β1

+ β5

)
η

1− ρ
.

From previous calculations, (36),

‖PT (W )‖F ≤
2η

β1
+
β2

β1
‖PT⊥(W )‖F ≤

2η

β1
+
β2

β1
‖PT⊥(W )‖∗,

so that both of these inequalities give

‖W‖F ≤ ‖PT (W )‖F + ‖PT⊥(W )‖F ≤ ‖PT (W )‖F + ‖PT⊥(W )‖∗

≤2η

β1
+

(
β2

β1
+ 1

)
‖PT⊥(W )‖∗ ≤ C1‖PT⊥(D)‖∗ + 2C2η,

with constants given as

C1 := 2

(
β2

β1
+ 1

)(
1− β2β3

β1
− β4

)−1

,

and

C2 :=
1

β1
+

(
β2

β1
+ 1

)(
β3

β1
+ β5

)(
1− β2β3

β1
− β4

)−1

.

C.2 Proof of Lemma 12

The proof of Lemma 12 requires two lemmas, stated here and proven in Section C.3. Before
continuing, some useful notation and observations are established for the sampling opera-
tors. Recall that M1 is the ρ-subspace incoherence parameter of T and that the operator
that samples with replacement has been normalized as

Ã :=

√
n1n2

m
PΩ̃,
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where m and Ω̃ (with possible repetitions) are defined as in Section A.2.
The operator Ã is as an ensemble of matrices {Ãk}k∈[m] ⊂ Cn1×n2 . Here the superscripts

order the matrices such that the action on X ∈ Cn1×n2 is given entry-wise as

Ã(X)k = 〈Ãk, X〉,

for k ∈ [m]. The scaling ensures that Ã∗Ã forms an isotropic ensemble, that is, for any
X ∈ Cn1×n2

EÃ∗Ã(X) =

m∑
k=1

EÃk〈Ãk, X〉 =

m∑
k=1

 1

n1n2

n1∑
p=1

n2∑
q=1

n1n2

m
Mp,qXpq

 = X, (37)

where {Mp,q}(p,q)∈[n1×n2] is the canonical n1 × n2 matrix basis. Therefore, each Ãk is a

random matrix that achieves
√

n1n2
m Mp,q with probability (n1n2)−1.

Next is a lemma that will be useful to establish Lemma 12, in order to apply a concen-
tration inequality. The proof is postponed until Section C.3 and is straightforward from the
subspace incoherence assumptions.

Lemma 14 Define Ã as above. Then for Z ∈ T and all k ∈ [m]

|〈Ãk, Z〉| ≤ ‖Z‖F

√
M1ρ

m
(38)

and

E

m∑
k=1

|〈Ãk, Z〉|4 ≤ ‖Z‖4F
M1ρ

m
,

where ρ is defined as in (8).

The next Lemma can be considered a generalization of Lemma 3.6 by Rudelson and
Vershynin 2008. The argument is due to Liu 2011, but has been tailored to the current
setting with a tighter bound in terms of the logarithm degree. Adopting the notation
therein, for a matrix A ∈ Cn1×n2 denote |A)(A| as the operator that maps X 7→ A〈A,X〉.

Lemma 15 Let m ≤ n1n2 and ε1, ..., εm be i.i.d. Rademacher random variables. Then

Eε sup
X∈T∩S

m∑
k=1

εk〈|Ãk)(Ãk|(X), X〉

≤ C̃
√
M1ρ log(n1 + n2) log1/2(m)√

m

(
sup

X∈T∩S

m∑
k=1

〈|Ãk)(Ãk|(X), X〉

)1/2

,

where C̃ > 0 is an absolute constant.

See Section C.3 for the proof. The proof of Lemma 12 follows.
Proof [Proof of Lemma 12] Let T = T ∩ S and

X := sup
X∈T

∣∣∣〈(Ã∗Ã − I)(X), X〉
∣∣∣ = sup

X∈T
〈(Ã∗Ã − I)(X), X〉,

30



Near-Optimal Weighted Matrix Completion

where the last equality holds since Ã∗Ã − I is a Hermitian operator.
The goal is to show

X ≤ 2δ,

which is achieved proceeding along the lines of Liu 2011; Rauhut 2008; Rudelson and Ver-
shynin 2008. Adopting the notation from Lemma 15 (and Liu 2011), where for a matrix
A ∈ Cn1×n2 the operator |A)(A| maps X 7→ A〈A,X〉 and write

X := sup
X∈T
〈(Ã∗Ã − I)(X), X〉 := ‖Ã∗Ã − I‖T

=

∥∥∥∥∥
m∑
k=1

(
|Ãk)(Ãk| − 1

m
I
)∥∥∥∥∥
T

=

∥∥∥∥∥
m∑
k=1

(
|Ãk)(Ãk| −E|Ãk)(Ãk|

)∥∥∥∥∥
T

,

where the last equality holds due to isotropy of the ensemble (37) with i.i.d. samples.
EX will be bounded first, and then a concentration inequality will be applied to show this
random variable is concentrated around its mean.

Using symmetrization (as in equation (42) of Liu 2011, which uses Lemma 6.3 by Ledoux
and Talagrand 1991, gives

EX ≤ 2EΩ̃Eε

∥∥∥∥∥
m∑
k=1

εk|Ãk)(Ãk|

∥∥∥∥∥
T

,

where εk are Rademacher random variables. Applying Lemma 15, which requires m ≤ n1n2,
gives

Eε

∥∥∥∥∥∑
k

εk|Ãk)(Ãk|

∥∥∥∥∥
T

≤ C1

∥∥∥∥∥∑
k

|Ãk)(Ãk|

∥∥∥∥∥
1/2

T

,

where

C1 :=
C̃
√
M1ρ log(n1 + n2) log1/2(m)√

m
,

and C̃ > 0 is an absolute constant given in Lemma 15. Summarizing and continuing these
calculations,

EX ≤ 2C1E

(∥∥∥∥∥∑
k

|Ãk)(Ãk|

∥∥∥∥∥
T

)1/2

≤2C1E

(∥∥∥∥∥∑
k

(
|Ãk)(Ãk| − 1

m
I
)∥∥∥∥∥
T

+ 1

)1/2

≤2C1

(
E

∥∥∥∥∥∑
k

(
|Ãk)(Ãk| − 1

m
I
)∥∥∥∥∥
T

+ 1

)1/2

=2C1 (EX + 1)1/2 .
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Therefore

EX√
EX + 1

≤ 2C̃
√
M1ρ log(n1 + n2) log1/2(m)√

m
≤ 2
√

2C̃
√
M1ρ log3/2(n1 + n2)√

m
,

where the last inequality holds since m ≤ (n1 + n2)2 by assumption. Given δ > 0, EX ≤ δ
if

2
√

2C̃
√
M1ρ log3/2(n1 + n2)√

m
≤ δ√

δ + 1
. (39)

A concentration inequality will show that X is close to its expected value with high
probability.

Theorem 16 (Theorem 8.42 in (Foucart and Rauhut 2013)) Let F be a countable
set of functions f : Cn1×n2 7→ R. Let Y1, ..., Ym be independent random matrices in Cn1×n2

such that Ef(Yk) = 0 and f(Yk) ≤ K almost surely for all k ∈ [m] and for all f ∈ F .
Define Z as the random variable

Z = sup
f∈F

m∑
k=1

f(Yk).

Let σ2 > 0 be such that E
∑m

k=1 f(Y`)
2 ≤ σ2 for all f ∈ F . Then for all δ ≥ 0

P (Z ≥ EZ + δ) ≤ exp

(
− δ2

2σ2 + 4KEZ + 2δK/3

)
.

To apply the theorem, let X ∈ T generate a set of functions fX : Cn1×n2 → R via

fX(Z) := |〈Z,X〉|2 − 1

m
.

Then notice that

X :=

∥∥∥∥∥∑
k

(
|Ãk)(Ãk| − 1

m
I
)∥∥∥∥∥
T

:= sup
X∈T

∑
k

〈(
|Ãk)(Ãk| − 1

m
I
)

(X), X
〉

= sup
X∈T

∑
k

fX

(
Ãk
)

= sup
X∈T̃

∑
k

fX

(
Ãk
)
,

where T̃ is a dense countable subset of T .

For all k ∈ [m] and X ∈ T , by the first part of Lemma 14

fX

(
Ãk
)
≤ |〈Ãk, X〉|2 ≤ M1ρ

m
,

and K = M1ρ
m from Theorem 16.
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Now for σ2, apply the second part of Lemma 14 and isometry of the ensemble to obtain

E

∑
k

fX

(
Ãk
)2
≤ E

∑
k

|〈Ãk, X〉|4 ≤ M1ρ

m
:= σ2.

To finish, assuming

√
m ≥ 2

√
2C̃
√
M1ρ log3/2(n1 + n2)

√
1 + δ

δ
, (40)

gives EX ≤ δ according to (39) and by Theorem 16

X ≤ EX + δ < 2δ

with probability of failure not exceeding

exp

(
− mδ2

2M1ρ+ 4M1ρδ + 2M1ρδ/3

)
≤ exp

(
− 6mδ2

19M1ρ

)
.

The last inequality holds assuming δ ≤ 1
4 , under which (40) holds if

√
m ≥

√
10C̃
√
M1ρ log3/2(n1 + n2)

δ
,

where the statement of the theorem absorbs all the absolute constants into C.

C.3 Proof of Additional Lemmas

This section supplies the proofs of Lemmas 13, 14 and 15.
Proof [Proof of Lemma 13] The main ingredient is a matrix Bernstein inequality (Theorem
1.6 by Tropp 2012). As in Section C.2, expand

Ã∗Ã(Z)− Z =
m∑
k=1

(
Ãk〈Ãk, Z〉 − 1

m
Z

)
which is a sum of independent and centered random matrices. In order to apply the Bern-
stein inequality, the operator norms of each summand and the matrix variance statistic
need to be bounded.

Notice that for any k ∈ [m]∥∥∥Ãk〈Ãk, Z〉 − 1

m
Z
∥∥∥ ≤ n1n2

m
‖Z‖∞ := R

and

E

∑
k

(
Ãk〈Ãk, Z〉 − 1

m
Z

)(
Ãk〈Ãk, Z〉 − 1

m
Z

)>
=
∑
k

(
EÃkÃk>|〈Ãk, Z〉|2 − 1

m2
ZZ>

)
=
n1n2

m
M1 −

1

m
ZZ>,
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where M1 ∈ Cn1×n1 is a diagonal matrix whose entries are the diagonal elements of ZZ>.
Therefore,∥∥∥E∑

k

(
Ãk〈Ãk, Z〉 − 1

m
Z

)(
Ãk〈Ãk, Z〉 − 1

m
Z

)> ∥∥∥ ≤ 1

m

(
n1n2‖M1‖+ ‖ZZ>‖

)
=

1

m

(
n1n2 max

1≤k≤n1

‖Zk∗‖22 + ‖ZZ>‖
)
≤ 2n1n2

m
‖Z‖2∞,2 := σ2.

The last inequality holds by Gershgorin circle theorem, which gives that for some k ∈ [n1]

‖ZZ>‖ ≤ |(ZZ>)kk|+
∑
6̀=k
|(ZZ>)k`| = ‖Zk∗‖22 +

∑
` 6=k
|〈Zk∗, Z`∗〉| ≤ n1‖Z‖2∞,2.

Analogously, bound∥∥∥E∑
k

(
Ãk〈Ãk, Z〉 − 1

m
Z

)>(
Ãk〈Ãk, Z〉 − 1

m
Z

)∥∥∥ ≤ σ2.

Apply Theorem 1.6 in by Tropp 2012 with R, σ2 above and

t =
4n1n2 log(n1 + n2)‖Z‖∞/3

2m
+√

16n2
1n

2
2 log2(n1 + n2)‖Z‖2∞/9 + 32mn1n2 log(n1 + n2)‖Z‖2∞,2

2m

to obtain the desired probability of success. The statement of the lemma simplifies the
upper bound on the operator norm by noting that

t ≤
4n1n2 log(n1 + n2)‖Z‖∞/3 + 2

√
2mn1n2 log(n1 + n2)‖Z‖∞,2

m
.

Lemma 14, which admits a straightforward proof.
Proof [Proof of Lemma 14] The inequality (38) is straightforward by definition and scaling.
For the remaining claim, if Z ∈ T then by (38)

E

m∑
k=1

|〈Ãk, Z〉|4 =
n1n2

m

n1∑
p=1

n2∑
q=1

|Zpq|4

≤ n1n2

m

(
max

(p,q)∈[n1]×[n2]
|Zpq|2

) n1∑
p=1

n2∑
q=1

|Zpq|2 ≤ ‖Z‖4F
M1ρ

m
.

The proof of Lemma 15 is due to Liu 2011, tailored here to fit the specific setting.
This modified argument results in a tighter bound in terms of the logarithmic dependency.
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Adopting the author’s notation, in what follows for a matrix A ∈ Cn1×n1 denote |A)(A| as
the operator that maps X 7→ A〈A,X〉.
Proof [Proof of Lemma 15] The argument will rely on the work of Liu 2011 for brevity,
referring the reader to the proof of Lemma 3.1 in Section A therein. With U2 defined by
Liu 2011, notice that T ∩ S ⊂ U2 since every matrix in T is rank ρ (where ρ is defined in
(8)). The result here is obtained in a similar manner, but considering non-square matrices
and linear subspace T as Banach space in its own right to compute its covering number.
To this end, it is important notice that T equipped with the Frobenius norm is a Banach
space and {Ãk}mk=1 ⊂ T ∗, where T ∗ denotes the dual space of T , have dual norm bounded
as

‖Ãk‖T ∗ = sup
X∈T∩S

∣∣∣〈Ãk, X〉∣∣∣ ≤√M1ρ

m
:=
√
ρK, ∀k ∈ [m] (41)

by Lemma 14. Notice that K :=
√
M1/m.

With this in mind, proceed as in the proof of Lemma 3.1 by Liu 2011 (with T∩S replacing
U2) up to equation (15) which is obtained via comparison principle to a Gaussian process
and Dudley’s inequality. Combined with bound (18) therein and a change of variables shows

Eε sup
X∈T∩S

m∑
k=1

εk〈|Ãk)(Ãk|(X), X〉 ≤ 48
√

2πR
√
ρ

∫ ∞
0

log1/2N
(

1
√
ρ

(T ∩ S) , ‖ · ‖X , ε
)
dε,

where N (B, ‖ · ‖, ε) is the number of balls of radius ε in a metric ‖ · ‖ needed to cover a set
B,

R :=

(
sup

X∈T∩S

m∑
k=1

〈|Ãk)(Ãk|(X), X〉

)1/2

and ‖ · ‖X is a semi-norm defined for Y ∈ Cn1×n2 as

‖Y ‖X = max
k∈[m]

|〈Ãk, Y 〉|.

To bound the integral, bound N
(

1√
ρ (T ∩ S) , ‖ · ‖X , ε

)
in two different ways. For Y ∈

1√
ρ (T ∩ S), notice that ‖Y ‖X ≤ K by (41) so that

N
(

1
√
ρ

(T ∩ S) , ‖ · ‖X , ε
)
≤ N (K ·BX , ‖ · ‖X , ε) , (42)

where BX is the unit ball in ‖ · ‖X . For small ε and with n1 ≥ n2, use (42) and equation
(20) by Liu 2011 to obtain

N
(

1
√
ρ

(T ∩ S) , ‖ · ‖X , ε
)
≤
(

1 +
2K

ε

)2n2
1

. (43)

For large ε, apply Lemma 3.2 by Liu 2011 (Lemma 1 by Guédon et al. 2008) with E = T
equipped with the Frobenious norm to obtain

N
(

1
√
ρ

(T ∩ S) , ‖ · ‖X , ε
)

= N (T ∩ S, ‖ · ‖X , ε
√
ρ) ≤ exp

(
C2

1K
2 log(m)

ε2

)
, (44)

35
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where C1 is an absolute constant given by Maurey’s empirical method. The inequality holds
by (41) and since T has modulus of convexity of power type 2 with constant λ(T ) = 1 and
dual space type 2 constant T2(T ∗) ≤ 1 due to the Frobenius norm (see Theorem A3 and A4
in the Appendix of Aubrun 2009).

To bound the integral, split it at A := K/n1 and use (43) for small ε to obtain∫ A

0
log1/2N

(
1
√
ρ

(T ∩ S) , ‖ · ‖X , ε
)
dε ≤

∫ A

0

√
2n1 log1/2

(
1 +

2K

ε

)
dε

≤
√

2n1

∫ A

0

(
1 + log

(
1 +

2K

ε

))
dε =

√
2n1

∫ ∞
1/A

(1 + log (1 + 2Ky))
dy

y2

≤
√

2n1

∫ ∞
1/A

(1 + log ((A+ 2K)y))
dy

y2
≤
√

2K(2 + log(1 + 2n1)),

where the final bound holds by integrating log ((A+ 2K)y) /y2 by parts.
Consider the remaining part of the integral up to K, since when ε > K by (42) it holds

that N
(

1√
ρ (T ∩ S) , ‖ · ‖X , ε

)
= 1. Using (44) gives∫ K

A
log1/2N

(
1
√
ρ

(T ∩ S) , ‖ · ‖X , ε
)
dε ≤

∫ K

A

C1K log1/2(m)

ε
dε = C1K log1/2(m) log(n1).

In conclusion

Eε sup
X∈T∩S

m∑
k=1

εk〈|Ãk)(Ãk|(X), X〉

≤ 48
√

2πR
√
ρ
(√

2K(2 + log(1 + 2n1)) + C1K log1/2(m) log(n1)
)

≤ C̃
√
M1ρ log1/2(m) log(n1 + n2)√

m

(
sup

X∈T∩S

m∑
k=1

〈|Ãk)(Ãk|(X), X〉

)1/2

,

for some absolute constant C̃.

The main difference in this proof as opposed to the proof of Lemma 3.1 by Liu 2011
is that the containment of 1√

ρ (T ∩ S) in the nuclear norm ball B1 is not considered here.

Rather, the linear subspace T is viewed as a Banach space with unit ball T ∩S. This allows
for a direct application of Lemma A.3, reducing the logarithmic dependency by a factor
of log3/2(n1). The same gain does not seem straightforward for the universal result of Liu
2011. Otherwise, using the arguments here, the sample complexity of Pauli measurements
can be reduced to O(n1ρ log3/2(n1)) when universality is not imposed (for example, via a
dual certificate instead of the restricted isometry property).
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Matemática Iberoamericana, 24(3):1075 – 1095, 2008. doi: rmi/1228834305. URL
https://doi.org/.

Prateek Jain and Inderjit S. Dhillon. Provable inductive matrix completion. CoRR,
abs/1306.0626, 2013. URL http://arxiv.org/abs/1306.0626.

Sun Ji-guang. Perturbation of angles between linear subspaces. Journal of Computational
Mathematics, 5(1):58–61, 1987. ISSN 02549409, 19917139. URL http://www.jstor.

org/stable/43692289.

M. Ledoux and M. Talagrand. Probability in Banach Spaces: Isoperimetry and Processes,
volume 23. Springer-Verlag, 1991.

Yi-Kai Liu. Universal low-rank matrix recovery from pauli measurements. NIPS’11 Pro-
ceedings of the 24th International Conference on Neural Information Processing Systems,
abs/1103.2816:1638–1646, 2011.

Yong Luo, Tongliang Liu, Dacheng Tao, and Chao Xu. Multiview matrix completion for
multilabel image classification. IEEE Transactions on Image Processing, 24(8):2355–2368,
2015. doi: 10.1109/TIP.2015.2421309.

Oscar López, Rajiv Kumar, Özgür Yılmaz, and Felix J. Herrmann. Off-the-grid low-rank
matrix recovery and seismic data reconstruction. IEEE Journal of Selected Topics in
Signal Processing, 10(4):658–671, 2016. doi: 10.1109/JSTSP.2016.2555482.

38

https://doi.org/10.1093/imaiai/iax020
https://doi.org/10.1093/imaiai/iax020
https://proceedings.mlr.press/v19/foygel11a.html
https://doi.org/
http://arxiv.org/abs/1306.0626
http://www.jstor.org/stable/43692289
http://www.jstor.org/stable/43692289


Near-Optimal Weighted Matrix Completion

Duc Minh Nguyen, Evaggelia Tsiligianni, and Nikos Deligiannis. Extendable neural matrix
completion. In 2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 6328–6332, 2018. doi: 10.1109/ICASSP.2018.8462164.

Holger Rauhut. Stability results for random sampling of sparse trigonometric polynomials.
IEEE Transactions on Information Theory, 54(12):5661–5670, 2008. doi: 10.1109/TIT.
2008.2006382.

Benjamin Recht. A simpler approach to matrix completion. Journal of Machine Learn-
ing Research, 12(104):3413–3430, 2011. URL http://jmlr.org/papers/v12/recht11a.

html.

Benjamin Recht, Maryam Fazel, and Pablo A. Parrilo. Guaranteed minimum-rank solutions
of linear matrix equations via nuclear norm minimization. SIAM Review, 52(3):471–501,
2010. doi: 10.1137/070697835. URL https://doi.org/10.1137/070697835.

Mark Rudelson and Roman Vershynin. On sparse reconstruction from fourier and gaussian
measurements. Communications on Pure and Applied Mathematics, 61(8):1025–1045,
2008. doi: https://doi.org/10.1002/cpa.20227. URL https://onlinelibrary.wiley.

com/doi/abs/10.1002/cpa.20227.

Nathan Srebro and Tommi S. Jaakkola. Learning with Matrix Factorizations. PhD thesis,
USA, 2004. AAI0807530.

Nathan Srebro and Russ R Salakhutdinov. Collaborative filtering in a non-uniform world:
Learning with the weighted trace norm. In J. Lafferty, C. Williams, J. Shawe-Taylor,
R. Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems,
volume 23. Curran Associates, Inc., 2010. URL https://proceedings.neurips.cc/

paper/2010/file/67d96d458abdef21792e6d8e590244e7-Paper.pdf.

Carlo Tomasi and Takeo Kanade. Shape and motion from image streams under orthography:
a factorization method. INTERNATIONAL JOURNAL OF COMPUTER VISION, 9(2):
137–154, 1992.

Joel A. Tropp. User-friendly tail bounds for sums of random matrices. Foundations of
Computational Mathematics, 12(4):389–434, 2012. doi: 10.1007/s10208-011-9099-z.

Olga Troyanskaya, Michael Cantor, Gavin Sherlock, Pat Brown, Trevor Hastie, Robert
Tibshirani, David Botstein, and Russ B. Altman. Missing value estimation methods for
DNA microarrays . Bioinformatics, 17(6):520–525, 06 2001. ISSN 1367-4803. doi: 10.
1093/bioinformatics/17.6.520. URL https://doi.org/10.1093/bioinformatics/17.

6.520.

Madeleine Udell and Alex Townsend. Why are big data matrices approximately low
rank? SIAM Journal on Mathematics of Data Science, 1(1):144–160, 2019. doi:
10.1137/18M1183480. URL https://doi.org/10.1137/18M1183480.

Ewout van den Berg and Michael P. Friedlander. Probing the pareto frontier for basis
pursuit solutions. SIAM Journal on Scientific Computing, 31(2):890–912, 2009. doi:
10.1137/080714488. URL https://doi.org/10.1137/080714488.

39

http://jmlr.org/papers/v12/recht11a.html
http://jmlr.org/papers/v12/recht11a.html
https://doi.org/10.1137/070697835
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.20227
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.20227
https://proceedings.neurips.cc/paper/2010/file/67d96d458abdef21792e6d8e590244e7-Paper.pdf
https://proceedings.neurips.cc/paper/2010/file/67d96d458abdef21792e6d8e590244e7-Paper.pdf
https://doi.org/10.1093/bioinformatics/17.6.520
https://doi.org/10.1093/bioinformatics/17.6.520
https://doi.org/10.1137/18M1183480
https://doi.org/10.1137/080714488
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