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Abstract

Offline policy evaluation is a fundamental statistical problem in reinforcement learning that
involves estimating the value function of some decision-making policy given data collected
by a potentially different policy. In order to tackle problems with complex, high-dimensional
observations, there has been significant interest from theoreticians and practitioners alike in
understanding the possibility of function approximation in reinforcement learning. Despite
significant study, a sharp characterization of when we might expect offline policy evaluation
to be tractable, even in the simplest setting of linear function approximation, has so far
remained elusive, with a surprising number of strong negative results recently appearing in
the literature.

In this work, we identify simple control-theoretic and linear-algebraic conditions that
are necessary and sufficient for classical methods, in particular Fitted Q-iteration (FQI) and
least squares temporal difference learning (LSTD), to succeed at offline policy evaluation.
Using this characterization, we establish a precise hierarchy of regimes under which these
estimators succeed. We prove that LSTD works under strictly weaker conditions than
FQI. Furthermore, we establish that if a problem is not solvable via LSTD, then it cannot
be solved by a broad class of linear estimators, even in the limit of infinite data. Taken
together, our results provide a complete picture of the behavior of linear estimators for
offline policy evaluation, unify previously disparate analyses of canonical algorithms, and
provide significantly sharper notions of the underlying statistical complexity of offline policy
evaluation.

Keywords: Offline policy evaluation, function approximation, fitted Q-iteration, LSTD

1. Introduction

A central component of a practical sequential decision making system is its ability to cope
with high-dimensional and complex data sources. While feature engineering or discretiza-
tion techniques can in principle be used to address the challenges associated with com-
plex data, these approaches require significant domain expertise and suffer from a curse-of-
dimensionality phenomenon that limit their practical relevance. Instead, the use of more
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general function approximation methods for reinforcement learning (RL) promises to avoid
these drawbacks. Consequently, understanding these methods has long been a topic of
interest to theoreticians and practitioners alike.

While the use of nonlinear methods is by now common in the empirical reinforcement
learning literature, the much simpler linear function approximation setting remains some-
what poorly understood theoretically, despite decades of study. Indeed, recently there has
been a surge of research effort focusing on necessary and sufficient conditions for rein-
forcement learning with linear function approximation, including the first provably efficient
algorithms for online exploration (Yang and Wang, 2020; Jin et al., 2020) and a number of
surprising statistical lower bounds that hold even under strong assumptions (Wang et al.,
2021c; Weisz et al., 2021a,b). This line of work represents substantial progress, yet we still
lack a clear picture as to precisely when and why RL with linear function approximation is
tractable.

As a step towards providing this clarity, in this paper we focus on the simpler offline
policy evaluation problem (OPE) in infinite horizon, discounted MDPs, under the assump-
tion that the action-value function is linearly realizable in some known features. Here,
rather than interacting with an environment to maximize reward as in the standard RL
formulation, the goal is to estimate the performance of a given decision-making policy by
leveraging an observational dataset collected by a potentially different policy. OPE is per-
haps the simplest, non-trivial setting in which to study function approximation in RL. It
is also practically relevant in its own right: both OPE and the closely-related offline policy
optimization problem represent a promising avenue toward applying RL in safety-critical
domains where active exploration is infeasible. Moreover, the principles developed for OPE
are routinely used in online RL algorithms.

Fitted Q-iteration (FQI) (Ernst et al., 2005; Riedmiller, 2005) and least squares temporal
difference learning (LSTD) (Bradtke and Barto, 1996; Boyan, 1999; Nedić and Bertsekas,
2003) are canonical algorithms for offline policy evaluation with function approximation.
These simple, moment-based methods are some of the most popular approaches in practice
and have served as inspiration for recent empirical breakthroughs in RL (Mnih et al., 2015).
They have also been the subject of intense theoretical investigation, with early results
on convergence and instability described by Bertsekas and Tsitsiklis (1995); Tsitsiklis and
Van Roy (1996) as well as several more recent results (Antos et al., 2008; Chen and Jiang,
2019; Lazaric et al., 2012). Nevertheless, a sharp finite sample characterization of the
behavior of FQI and LSTD, even in the linear realizability setting, remains undeveloped.

In this paper, we identify necessary and sufficient conditions for FQI and LSTD to
succeed at offline policy evaluation under linear realizability. In doing so, we establish a
precise hierarchy of conditions under which these methods work; in particular, we prove
that LSTD succeeds under strictly weaker assumptions than FQI. Moreover, if an offline
policy evaluation problem is not solvable via LSTD, then it cannot be solved by any linear,
moment-based method (see Definition 21) even in the limit of infinite data. Our characteri-
zation draws upon ideas from the theory of Lyapunov stability and provides a new, unifying
perspective on the statistical complexity of offline policy evaluation.

In particular, we show how traditional quantities, such as the “effective horizon”, fail
to capture the true complexity of the problem (Sections 3.1 and 4.1) and propose instance-
dependent measures which are significantly sharper. Furthermore, our results unify previ-
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ously disparate analyses for FQI and LSTD as our conditions are implied by prior assump-
tions (Sections 3.2 and 4.2). Taken together, our results provide a complete picture of the
possibilities and limitations of linear estimators for offline policy evaluation under linear
realizability.

1.1 Linear estimators & the offline policy evaluation problem

Let M := (S,A, P,R, γ) denote an infinite horizon, γ-discounted MDP where S is the set
of states, A is the set of actions, R : S×A → ∆([−1, 1]) is the random reward function, and
P : S × A → ∆(S) is the transition operator, which defines a distribution over states for
every pair (s, a). The action-value function Qπ captures the expected total reward achieved
by a randomized policy π : S → ∆(A) from an initial state-action pair (s, a) when the
trajectory is generated such that for each time step h, ah ∼ π(sh) and sh+1 ∼ P (· | sh, ah).

Qπ(s, a) := E

[ ∞∑
h=0

γhr(sh, ah) | (s0, a0) = (s, a), π

]
. (1)

In the OPE problem, we are given a policy π and a dataset {(si, ai, ri(si, ai), s′i, a′i)}ni=1

of observed transitions and rewards, where the initial pair (si, ai) is sampled from some
arbitrary distribution D, ri(si, ai) ∼ R(si, ai), the next state is sampled from the transition
operator s′i ∼ P (· | si, ai), and the next action a′i ∼ π(s′i) is sampled according to π. 1

Our goal is to return an estimate Q̂π of Qπ. For concreteness, we measure performance via
E(s,a)∼D|Q̂π(s, a)−Qπ(s, a)| and we ask that this quantity is vanishingly small with high
probability over the draw of the dataset. For simplicity, we assume that samples are drawn
i.i.d. via the procedure described above.2

As we would like to develop methods that scale to settings where the cardinalities of
the sets S and A are large or infinite, our focus is on understanding policy evaluation using
linear function approximation, as per the following definition:

Assumption 1 (Linear Realizability) Qπ is linearly realizable 3 in a known feature map
φ : S ×A → Rd if there exists a vector θ?γ ∈ Rd such that for all (s, a) ∈ S ×A,

Qπ(s, a) = φ(s, a)>θ?γ .

where Qπ is again defined as in Equation 1.

Fitted Q-iteration. As mentioned previously, fitted Q-iteration is one of the most popu-
lar algorithms for policy evaluation in practice and can in principle work with any function
approximation method. In the linear case, given a dataset {(si, ai, ri(si, ai), s′i, a′i)}ni=1 and

1. We “augment” the dataset to include the next state action a′ ∼ π(s′) purely for notational convenience.
2. In particular, extensions to Markovian data, where samples are drawn from an ergodic chain, are fairly

well-understood, see e.g., Mou et al. (2021); Nagaraj et al. (2020). Overall, the statistical rates in the
Markovian setting mimic those obtained under i.i.d assumptions, up to mixing time factors.

3. Note that realizability of Qπ does not imply that the rewards are linearly realizable. We say that rewards
are linearly realizable in a feature mapping φ : S × A → Rd if there exists θ?r ∈ Rd such that for all
(s, a) ∈ S ×A, φ(s, a)>θ∗r = Er(s, a).
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an initial vector θ̂0, FQI iteratively solves least squares regression problems of the form

θ̂t+1 ∈ arg min
θ

n∑
i=1

(
φ(si, ai)

>θ − r(si, ai)− γφ(s′i, a
′
i)
>θ̂t

)2
, (2)

for some number of rounds T and returns the estimator Q̂π(s, a) := φ(s, a)>θ̂T .

Least squares temporal difference learning. In the linear function approximation
setting, the vector θ?γ which realizes Qπ in the feature mapping φ satisfies the fixed point
equation,4

Σcovθ
?
γ = γΣcrθ

?
γ + θφ,r. (3)

Here, Σcov if the offline feature covariance matrix, Σcr is the cross-covariance matrix between
time-adjacent features, and θφ,r is the mean feature-reward vector. (see Equations 5 and 8
for formal definitions). LSTD tries to approximate θ?γ by computing the plug-in estimate
to the closed-form solution to the equation above,

θ̂LS := (I − γΣ̂−1
covΣ̂cr)

†Σ̂−1
covθ̂φ,r = (Σ̂cov − γΣ̂cr)

†θ̂φ,r. (4)

and returns Q̂π(s, a) := φ(s, a)>θ̂LS (Bradtke and Barto, 1996). We focus on the unregular-
ized variant of both of these algorithms. However, similar insights apply to the regularized
cases (see Section A.7).

1.2 Our contributions

The main result of our work is that we identify simple linear algebraic conditions which
exactly characterize when (and why) linear estimators will succeed at offline policy evalua-
tion under linear realizability of Qπ. Under these conditions, which we introduce below, we
establish upper bounds on the sample complexity of offline policy evaluation which scale
with: (1) for FQI, the operator norm of the solution to a particular discrete-time Lyapunov
equation, and (2) for LSTD, the minimum singular value of an instance-dependent matrix.
In both cases, we illustrate how our results unify previously disparate analyses of these
algorithms, and demonstrate how our new instance-dependent quantities provide sharper
notions of the statistical complexity of OPE when compared to bounds that explicitly de-
pend on traditional parameters such as the “effective horizon”, i.e., 1/(1− γ).

Our conditions can be introduced rather succinctly. For FQI, the key definitions and
assumptions are:

Σcov := E
(s,a)∼D

[
φ(s, a)φ(s, a)>

]
, Σcr := E

(s,a)∼D
s′∼P (·|s,a), a′∼π(s′)

[
φ(s, a)φ(s′, a′)>

]
. (5)

Assumption 2 (Stability) The matrix Σcov is full rank and ρ(γΣ−1
covΣcr) < 1.

4. This fixed point relationship comes from examining the definition of Qπ(s, a) which satisfies, Qπ(s, a) =
Er(s, a) + γ · EQπ(s′, a′) point-wise over (s, a). The precise equation follows from substituting in Qπ =
φ(s, a)>θ?γ .
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Here, Σcov is the offline state-action covariance, Σcr is the cross-covariance, γΣ
−1/2
cov ΣcrΣ

−1/2
cov

is the whitened cross-covariance,5 and ρ(A) = maxi |λi(A)| is the spectral radius of the
matrix A. The assumption that Σcov is full rank is not fundamental and is included primarily
to simplify the presentation.6 If Assumption 2 holds, we let Pγ be the unique solution (over
X) to the Lyapunov equation,

X = (γΣ−1/2
cov ΣcrΣ

−1/2
cov )>X(γΣ−1/2

cov ΣcrΣ
−1/2
cov ) + I.

Our first main result is that, under stability, FQI satisfies the following error guarantee:

Informal Theorem 1 (see 5) Let Q̂π(s, a) = φ(s, a)>θ̂T , where θ̂T is the T -step FQI
solution. Under Assumptions 1 and 2, as well as standard regularity assumptions for linear
regression, for n large enough,

ED|Qπ(s, a)− Q̂π(s, a)| . cond(Pγ)‖Pγ‖2op

√
d log(1/δ)

n
+O(exp(−T )),

with probability 1 − δ. Here, cond(·) and ‖ · ‖op denote the condition number and operator
norm.

For the sake of clarity, we have suppressed dependence on universal constants and other
quantities which arise from standard analysis of linear regression in the informal statement
of the upper bound. Since Pγ � I, cond(Pγ) can always be crudely upper bounded by
the operator norm, so that the primary factor, beyond the standard

√
d/n term for lin-

ear regression, is the dependence on ‖Pγ‖op. We show in Section 3.2 that, for settings
where FQI was previously shown to succeed (e.g., under low distribution shift or Bellman
completeness (Wang et al., 2021a)), stability always holds and ‖Pγ‖op is never much larger
than 1/(1− γ), demonstrating how our bound recovers and unifies prior results. However,
we also find that, in general, this quantity provides a much sharper notion of complexity
for OPE. Indeed, there are simple instances where ‖Pγ‖op is O(1) for all γ ∈ (0, 1), but of
course, 1/(1− γ) can be arbitrarily large.

The key insight behind this result is that, in the linear setting, FQI can be written
as a power series in the empirical versions of the second moment matrices described in
Equation 5. More precisely, θ̂T =

∑T
k=0(γΣ̂−1

covΣ̂cr)
kΣ̂−1

covθ̂φ,r where θ̂φ,r is obtained by
solving a regression for the rewards. The behavior of the algorithm is governed by the
growth of these matrix powers. Using ideas from Lyapunov theory, we show that if stability
holds, then these decay at a geometric rate governed by ‖Pγ‖op and FQI succeeds. On
the other hand, if the spectral radius is greater than one, then these matrix powers grow
exponentially, and FQI will drastically amplify any estimation errors. This leads to the
necessity of stability for FQI:

Informal Proposition 1 (see 12) If ρ(γΣ−1
covΣcr) > 1, the variance of the FQI solution

grows exponentially with the number of regression rounds T .

5. For any matrix A and invertible matrix L, the eigenvalues of A and L−1AL are identical. Therefore, one
could equivalently state Assumptions 2 and 3 in terms of γΣ

−1/2
cov ΣcrΣ

−1/2
cov .

6. For example, the results carry over if all features φ(s, a) lie in a low dimensional subspace.
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Turning to LSTD, while the solution is defined in terms of similar moment quantities
to those relevant for FQI, it solves for θ?γ in a more direct manner and hence its behavior is
somewhat different. We prove that LSTD succeeds if the following condition holds:

Assumption 3 (Invertibility) The matrices Σcov and I − γΣ−1
covΣcr are both full rank.

Our main result for LSTD is that under invertibility, θ?γ is identifiable via LSTD as per
the following informal theorem statement:

Informal Theorem 2 (see 13) Let Q̂π(s, a) = φ(s, a)>θ̂LS, where θ̂LS is the LSTD so-
lution. Under Assumptions 1 and 3, as well as standard regularity assumptions for linear
regression, if n is large enough,

ED|Qπ(s, a)− Q̂π(s, a)| . 1

σmin(I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov )2

√
d log(1/δ)

n
,

with probability 1− δ. Here, σmin(·) denotes the minimum singular value of a matrix.

This result follows somewhat directly from an perturbation analysis of approximate so-
lutions to the fixed point equation (3). Perhaps surprisingly, we will see that invertibility
is strictly weaker than stability (Assumption 2), which highlights a fundamental distinc-
tion between these two methods. This comparison also reveals that stability cannot be a
necessary condition in any algorithm-independent sense, since LSTD can succeed without
stability. However, complementing Theorem 13, we prove that invertibility is necessary for
a large class of natural estimators, specifically those that rely on low-order moments of the
features and the regression function between features and the rewards (this includes FQI
and LSTD). The following lower bound shows that the value function is unidentifiable by
these linear estimators if invertibility does not hold.

Informal Theorem 3 (see 22) Even in the limit of infinite data, any OPE problem for
which invertibility does not hold cannot be solved by a broad class of linear estimators,
including FQI and LSTD.

Together with our previous results, this result completes our analysis of linear estimators
for offline policy evaluation under linear realizability. We remark that our results are sharp
in the sense that they stipulate exactly which problems are solvable by linear estimators.
They are not necessarily sharp in the sense that the associated statistical rates for each
problem are optimal. We believe that establishing appropriate lower bounds for these
problems is an important direction for future work.

1.3 Related work

RL with function approximation. Analyses of function approximation in reinforce-
ment learning can be traced to the seminal papers of Bellman and Dreyfus (1959); Bellman
(1961), as well as Reetz (1977) and Whitt (1978). Schweitzer and Seidmann (1985) were
one of the first to consider approximating value functions using linear combinations of some
known set of features. More recently, a number of modeling assumptions—typically in-
volving strong representational conditions on both the MDP and the features—that enable
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statistically efficient online RL with linear function approximation have been proposed,
along with corresponding algorithms (Zanette et al., 2020; Yang and Wang, 2020; Jin et al.,
2020).

FQI. Introduced by Ernst et al. (2005) and extended by Riedmiller (2005), fitted Q-
iteration has been analyzed several times in the context of offline policy evaluation. Building
off previous studies of approximate methods in dynamic programming (Antos et al., 2008;
Munos, 2007; Gordon, 1999), Chen and Jiang (2019) establish sample complexity upper
bounds for FQI assuming that the corresponding distributions and MDP satisfy concen-
trability (Munos, 2003) and Bellman completeness (Szepesvári and Munos, 2005). While
concentrability conditions are orthogonal to realizability assumptions, completeness is sig-
nificantly stronger than mere realizability of value functions. More recent work by Wang
et al. (2021a,b) adapts these results to the linear setting and additionally shows that a “low
distribution shift” condition suffices for linear FQI.

LSTD. Initial analysis of least squares temporal difference learning (LSTD) date back to
the work of Baird (1995); Bradtke and Barto (1996); Boyan (1999) and Nedić and Bertsekas
(2003). Since then, the finite sample performance of the algorithm has been analyzed by
Lazaric et al. (2012); Bhandari et al. (2018); Duan et al. (2021) and its behavior in the
offline setting studied by Yu (2010); Li et al. (2021); Mou et al. (2020, 2021); Pires and
Szepesvari (2012). Tu and Recht (2018) analyze on-policy LSTD for the LQR setting.
Miyaguchi (2021) studies the behavior of LSTD for OPE in settings where the value function
is only approximately linearly realizable in a known feature mapping φ. We evaluate our
contributions in light of these previous works in Section 4.2.

Other OPE estimators. Apart from these methods, researchers have studied “min-max”
algorithms for OPE which estimate the value of the underlying policy using ideas from the
importance sampling literature (Liu et al., 2018; Uehara et al., 2020; Yin and Wang, 2020).
Xie and Jiang (2021) establish formal guarantees for the BVFT algorithm which carries
out policy evaluation for general nonlinear function classes assuming realizability, albeit
under stronger notions of data coverage (see Assumption 23). Recent work by Zhan et al.
(2022) extends this line of research. They introduce a new algorithm which works under
weaker data coverage assumptions than those in Xie and Jiang (2021). However, to do so
they require additional assumptions on the expressivity of the underlying class of function
approximators. In particular, Zhan et al. (2022), and the class of minimax algorithms
more broadly, rely on a function class that can (at a minimum) realize the state-occupancy
density ratio between the distribution induced by the policy π and the offline distribution
D, which is a distinct condition from linear realizability of Qπ.

Lower bounds under linear realizability. For the finite horizon, policy evaluation
setting, Wang et al. (2021a) illustrate how exponential dependence on the horizon is un-
avoidable, even if the offline covariance matrix is robustly full rank. Since then, these bounds
have been extended to the discounted, infinite horizon case by Amortila et al. (2020) and
Zanette (2021). Importantly, Amortila et al. (2020) establish that OPE can be information-
theoretically intractable, even if: 1) all features are bounded, 2) Σcov is full rank, and 3)
the learner has access to infinitely many samples drawn as in Section 1.1. Analogous neg-
ative results for online or generative-model settings have been shown to hold even in the
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presence of a constant suboptimality gap (Wang et al., 2021c) or polynomially large action
sets (Weisz et al., 2021a,b). Duan et al. (2020) prove lower bounds for OPE which hold for
general function classes. Foster et al. (2021) illustrate that polynomially many samples in
the size of the state space are necessary for offline policy evaluation, even if concentrability
and realizability both hold. In summary, a clean characterization of when offline policy
evaluation is tractable using linear function approximation has, so far, proven to be quite
elusive.

2. Preliminaries

Before delving into our main results, we review some of the relevant definitions and prelim-
inaries.

Notation. We use s ∈ S and a ∈ A to denote states and actions, > to denote vector
or matrix transposes, and † to denote pseudoinverses. For a matrix X, we let cond(X) :=
σmax(X)/σmin(X) denote its condition number, the ratio between the largest and smallest
singular values σ(·). For symmetric matrices, A and B, we use A � B if A− B is positive
semidefinite. We let ρ(X) := maxi |λi(X)| be the spectral radius of a matrix X where
λi are the eigenvalues.7 We say that a matrix is stable if its spectral radius is strictly
smaller than 1. For square, stable matrices A, we let dlyap(A) be the solution, over X,
to the discrete-time Lyapunov equation: X = A>XA + I. This equation has a solution
if and only if ρ(A) < 1 (Callier and Desoer, 2012). If the solution exists, it admits the
closed-form expression dlyap(A) =

∑∞
j=0(A>)jAj . Lastly, we say a . b if a ≤ c · b for some

universal constant c. We define the next state-action covariance Σnext and the distribution
shift coefficient Cds as

Σnext := E
(s,a)∼D

s′∼P (·|s,a), a′∼π(s′)

[
φ(s′, a′)φ(s′, a′)>

]
, Cds := inf{β > 0 : Σnext � βΣcov}. (6)

Note that Cds is guaranteed to be finite if Σcov is full rank. Given a dataset of n i.i.d. data
points {(si, ai, r(si, ai), s′i, a′i)}ni=1 drawn according to the data generating process described
in Section 1.1, we define the empirical counterparts of the second-moment matrices defined
in Equation 5,

Σ̂cov :=
1

n

n∑
i=1

φ(si, ai)φ(si, ai)
>, Σ̂cr :=

1

n

n∑
i=1

φ(si, ai)φ(s′i, a
′
i)
>, (7)

as well as the true, and empirical, mean feature-reward vectors:

θφ,r := EDφ(s, a)r(s, a), θ̂φ,r :=
1

n

n∑
i=1

φ(si, ai)r(si, ai). (8)

Linear regression. Next, we introduce moment-type quantities that arise in our anal-
ysis of linear regression. Here, we adopt the approach from Hsu et al. (2012), however,

7. Recall that for square, but non-symmetric matrices A, it is in general not true that ρ(A) = σmax(A).
However, ρ(A) ≤ σmax(A) does always hold.
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other approaches for analyzing linear regression will yield the same qualitative results. In
particular, we make use of the statistical leverages ρs and ρs′ . These quantities correspond
to the maximum length of features, φ(s, a) and φ(s′, a′), when measured in the (inverse)
covariance norm. Intuitively, they capture the worst-case coverage of the offline distribution
D over directions in feature space.

ρs := sup
(s,a)∈supp(D)

‖Σ−1/2
cov φ(s, a)‖2, ρs′ := sup

(s,a)∈supp(D),
s′∈supp(P (·|(s,a)), a′∈supp(π(s′))

‖Σ−1/2
cov φ(s′, a′)‖2.

(9)

In addition, we define the variances σ2
cov, σ

2
r , and σ2

cr where,

σ2
cov := ‖E(Σ−1/2

cov φ(s, a)φ(s, a)>Σ−1/2
cov )2 − I‖op, (10)

σ2
r := E‖Σ−1/2

cov φ(s, a)r(s, a)‖22 − ‖Σ−1/2
cov θφ,r‖22, (11)

and σ2
cr is the maximum of the following two quantities,

sup
‖v‖2=1

E
(
v>Σ−1/2

cov φ(s′, a′)
)2
‖Σ−1/2

cov φ(s, a)‖22 − ‖Σ−1/2
cov Σ>crΣ

1/2
covv‖22 (12)

sup
‖v‖2=1

E
(
v>Σ−1/2

cov φ(s, a)
)2
‖Σ−1/2

cov φ(s′, a′)‖22 − ‖Σ−1/2
cov ΣcrΣ

1/2
covv‖22. (13)

In Section C.3, we prove that σ2
cr and σ2

cov can always be upper bounded in terms of the
statistical leverages and the coefficient Cds.

8 However, they can be much smaller in some
settings.9 Therefore, for the sake of generality, we opt to state our bounds in terms of these
quantities. Informally, these variance terms measure how much the corresponding matrices

or vectors vary from their means, in the Σ
−1/2
cov geometry.

Throughout our analysis of methods for offline policy evaluation, we will repeatedly
make use of the following concentration result:

Lemma 4 For all n & ρ2
s log(d/δ), define the estimation errors,

εop := ‖Σ1/2
cov(γΣ̂−1

covΣ̂cr)Σ
−1/2
cov − γΣ−1/2

cov ΣcrΣ
−1/2
cov ‖op, (14)

εr := ‖Σ1/2
cov(Σ̂−1

covθ̂φ,r − Σ−1
covθφ,r)‖2. (15)

With probability 1− δ, Σ̂cov is full rank and εr, εop satisfy the following inequalities:

εop .

√
max(σ2

cr, σ
2
covCds) log(d/δ)

n
+

max(C1/2
ds ρ

2
s, ρsρs′) log(d/δ)

n

εr .

√
max(‖Σ−1/2

cov θφ,r‖22σ2
cov, σ

2
r ) log(d/δ)

n
+
‖Σ−1/2

cov θφ,r‖2ρ2
s log(d/δ)

n
.

Later on, we state our upper bounds on the policy evaluation error of FQI and LSTD in
terms of these regression errors εop, εr, with the understanding that they satisfy the high
probability upper bounds above.

8. On the other hand, σ2
r is always upper bounded by d.

9. For example, tighter bounds can be achieved if the distributions are hypercontractive, see Section C.3.
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3. Fitted Q-Iteration

In this section, we present our first set of results illustrating how stability (Assumption
2) characterizes the success of fitted Q-iteration for OPE under linear realizability of Qπ.
Following some initial remarks regarding the functional form of the FQI solution, in Section
3.1, we present our upper bound on the estimation error of FQI. Later on, in Section 3.2, we
illustrate how our Lyapunov stability analysis unifies previous studies of when FQI succeeds
and conclude by discussing lower bounds and limitations of the algorithm in Section 3.3.

FQI preliminaries. From examining the definition of FQI in Equation 2, we see that, at
the population level, the algorithm develops the recursion:

θt+1 = γΣ−1
covΣcrθt + Σ−1

covθφ,r.

Unrolling the recursion above, and setting θ0 = 0, the T -step regression vector is equal to:10

θT =
T∑
k=0

(γΣ−1
covΣcr)

kΣ−1
covθφ,r. (16)

Linear realizability of Qπ (Assumption 1) implies that the true weight vector θ?γ satisfies
the equation,

Σcovθ
?
γ = θφ,r + γΣcrθ

?
γ . (17)

Hence, if I − γΣ−1
covΣcr is invertible, then θ?γ = (I − γΣ−1

covΣcr)
−1Σ−1

covθφ,r. We now recall the
following fact:

Fact 1 If ρ(A) < 1, then the matrix (I−A) is invertible. Moreover, (I−A)−1 =
∑∞

k=0A
k.

Using this, along with the observation that the spectrum of a matrix is invariant to the
choice of basis, we see that if stability (Assumption 2) holds, then the vector θ?γ can also be
written as a power series:

θ?γ =
∞∑
k=0

(γΣ−1
covΣcr)

kΣ−1
covθφ,r. (18)

One of the key insights tying stability and FQI is that, regardless of whether γΣ−1
covΣcr

is stable, the FQI solution at the population level is always equal to the power series in
Equation 16. If stability holds, performing infinitely many exact FQI updates converges to
θ?γ . However, θ?γ is (in general) only equal to this power series if stability holds, which hints at
the necessity of this condition. With these connections between stability and the functional
forms of FQI and θ?γ in mind, we now present our upper bounds on the performance of this
algorithm.

10. We initialize at 0 for simplicity, but this is not fundamental for the overall analysis of FQI.
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3.1 Stability is sufficient for fitted Q-iteration

Theorem 5 Assume that Qπ is linearly realizable (Assumption 1) and that stability holds
(Assumption 2). For εop, εr defined as in Equation 14, if n & ρ2

s log(d/δ) and εop ≤
1/(6‖Pγ‖2op), T -step FQI satisfies,

‖Σ1/2
cov(θ̂T − θ?γ)‖2 . cond(Pγ)1/2‖Pγ‖op · εr + cond(Pγ)‖Pγ‖2op · ‖Σ−1/2

cov θφ,r‖2 · εop

+ cond(Pγ)‖Pγ‖op · ‖Σ1/2
covθφ,r‖2 · exp

(
− T + 1

2‖Pγ‖op

)
. (19)

Let Q̂π(s, a) := φ(s, a)>θ̂T . Much like in standard analyses of linear regression, from Theo-
rem 5 we immediately obtain: (1) a bound on ED|Qπ(s, a)− Q̂(s, a)| via Jensen’s inequality

since ED(Qπ(s, a)− Q̂π(s, a))2 = ‖Σ1/2
cov(θ̂T − θ?γ)‖22 and (2) a bound on |Qπ(s, a)− Q̂π(s, a)|

for any (s, a) pair since |Qπ(s, a)−Q̂π(s, a)| ≤ ‖Σ−1/2
cov φ(s, a)‖2‖Σ1/2

cov(θ̂T −θ?γ)‖2 via Cauchy-
Schwarz.

We defer the full proof to Section A.1 and instead summarize the key steps here. The
theorem is essentially a perturbation bound which distinguishes between two sources of
error in policy evaluation for FQI: εr which captures errors in learning the rewards, and the
dominant error, εop, which comes from estimating the transitions. Since under stability, we
can write the true vector θ?γ as a power series in second moment matrices (see Equation 18),

and since θ̂T is by definition a truncated power series in the empirical counterparts of these
matrices, we can show that the error between θ?γ and θ̂T is bounded by the operator norm of

two power series: one in (γΣ
−1/2
cov ΣcrΣ

−1/2
cov )k and the other in (γΣ̂

−1/2
cov Σ̂crΣ̂

−1/2
cov )k. Lyapunov

arguments directly show that the powers of (γΣ
−1/2
cov ΣcrΣ

−1/2
cov ) decay exponentially in k since

the matrix is stable. For the empirical version, we use the fact that any stable matrix A
has nontrivial stability margin: for small enough perturbations ∆, matrices of the form
A+ ∆ satisfy similar decay rates to A. Thus, we can bound the two power series by simple
geometric series and the perturbation bound follows.

We now highlight some of the salient aspects of the bound.

Coordinate invariance. The bound in Theorem 5 is coordinate-free, in the sense that all
problem quantities are invariant to the basis in which one chooses to represent the features.
Linear realizability states that Qπ(s, a) = φ(s, a)>θ?γ . Consequently, for any invertible

matrix L, it also holds that Qπ(s, a) = φ̃(s, a)>θ̃?γ where,

φ̃(·) = Lφ(·) and θ̃?γ = L−1θ?γ .

Observe that the regression errors (εr and εop) in the data norm, the geometry induced
by Σcov, do not depend on the choice of matrix L, since the variances and statistical leverages
are invariant to the coordinate system (see Lemma 4). The invariance of ‖Pγ‖op and
cond(Pγ) is perhaps less straightforward, but verified in the following proposition:

Proposition 6 Let L ∈ Rd×d be an invertible matrix and let φ̃(·) = Lφ(·) be the feature

mapping in the new coordinates. Now, define P̃γ := dlyap(γΣ̃
−1/2
cov Σ̃crΣ̃

−1/2
cov ), where

Σ̃cov := E(s,a)∼Dφ̃(s, a)φ̃(s, a)>, and Σ̃cr := E
(s,a)∼D

s′∼P (·|s,a), a′∼π(s′)

φ̃(s, a))φ̃(s′, a′)>. (20)

11
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Then, ‖Pγ‖op = ‖P̃γ‖op and cond(Pγ) = cond(P̃γ). Furthermore,

γΣ̃−1/2
cov Σ̃crΣ̃

−1/2
cov = γUΣ−1/2

cov ΣcrΣ
−1/2
cov U>,

where U ∈ Rd×d is an orthogonal matrix.

Sharpness of ‖Pγ‖op vs 1/(1 − γ). Apart from showing how stability is sufficient for
offline policy evaluation under linear realizability, another highlight of Theorem 5 is that it
introduces a new measure of problem complexity, ‖Pγ‖op, which is in general significantly
sharper than previous complexity measures traditionally considered in the literature, such
as the effective horizon, 1/(1 − γ). The difference between these two quantities is evident
even in very simple settings:

Consider the following MDP (with no actions), where arrows denote transition proba-
bilities:

s0 s1 1
1− p

p
(21)

If Er(s0) 6= 0 and Er(s1) = 0, realizability holds with 1 dimensional features: φ(s0) = 1
and φ(s1) = 0. For D supported just on s0, then γΣ−1

covΣcr = pγ, and Pγ = 1/(1− (pγ)2). If
p ≤ 0.7, then for all γ ∈ (0, 1), ‖Pγ‖op ≤ 2, but (1− γ)−1 can be arbitrarily large as γ → 1.

This example illustrates how there are problems for which ‖Pγ‖op is significantly smaller
than 1/(1 − γ). In the next subsection, we complement this result by illustrating how for
settings where FQI was previously shown to succeed, ‖Pγ‖op is in fact never much worse
than 1/(1 − γ). Taken together, these results demonstrate how ‖Pγ‖op provides a sharper
notion of the statistical complexity of OPE than 1/(1− γ).

3.2 Contextualizing Lyapunov stability

Having presented our analysis of fitted Q-iteration through the lens of Lyapunov stability,
we now illustrate how this perspective unifies previously disparate analyses of FQI for offline
policy evaluation. The central message of this subsection is that previous conditions which
guarantee that FQI will succeed at OPE directly imply that γΣ−1

covΣcr is stable.
Before discussing these connections, we present the following lemma which is closely

related to Theorem 5. It upper bounds the error of FQI assuming particular decay rates on

the powers of γΣ
−1/2
cov ΣcrΣ

−1/2
cov . Although the proof is essentially identical, we can obtain

sharper results assuming particular rates of decay, which will be helpful for later compar-
isons.

Lemma 7 Assume n & ρ2
s log(d/δ) and let εop and εr be defined as in Equation 14. Under

the same assumptions as Theorem 5, if there exist α > 0 and β ∈ (0, 1) such that for all
k ≥ 0,

‖(γΣ−1/2
cov ΣcrΣ

−1/2
cov )k‖op ≤ α · βk, (22)

then the T -step FQI solution satisfies the following guarantee: with probability 1 − δ, if
εop ≤ (1−β)

2α ,

‖Σ1/2
cov(θ̂T − θ?γ)‖2 . εr ·

α

1− β
+ εop · ‖Σ1/2

covθ
?
0‖2

α2

(1− β)2
+ ‖Σ1/2

covθ
?
0‖2

α2

1− β
· βT+1. (23)

12
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Throughout this section, we will present corollaries of this result, which can be viewed as
specializations of Theorem 5 to particular settings. In each case, we will focus on discussing
variants of the perturbation bound, Equation 23, which hold under the specific assumptions.

3.2.1 Low distribution shift implies stability

Recent work by Wang et al. (2021b) shows that FQI succeeds at OPE for infinite horizon,
discounted problems if there is low distribution shift. More formally, they prove offline
evaluation is tractable if the offline covariance Σcov has good coverage over the next state
covariance Σnext as per the following assumption.

Assumption 8 (Low Distribution Shift) There is low distribution shift if Cds < 1/γ2.

Note that if D is the stationary measure for π, then Σcov = Σnext and Assumption 8 holds
with Cds = 1 (recall the definition of Cds in Equation 6). Under this low distribution shift
condition, we prove:

Corollary 9 If there is low distribution shift (Assumption 8) and if Σcov is full rank, then
for all j ≥ 0,

‖(γΣ−1/2
cov ΣcrΣ

−1/2
cov )j‖op ≤ (

√
Cdsγ2)j . (24)

Hence, ‖Pγ‖op ≤ 1/(1 − γ
√
Cds), Assumption 2 holds,11. Furthermore, , for γds := γ

√
Cds,

if Qπ is linearly realizable (Assumption 1), n & ρ2
s log(d/δ), and εop ≤ 1/2(1− γds), T -step

FQI satisfies:

‖Σ1/2
cov(θ̂T − θ?γ)‖2 .

1

1− γds
εr +

1

(1− γds)2
‖Σ−1/2

cov θφ,r‖2 · εop +
1

1− γds
γT+1

ds .

While low distribution shift implies stability, the converse is not true. It is not hard to come

up with examples where γΣ
−1/2
cov ΣcrΣ

−1/2
cov is stable, yet the distribution shift coefficient is

larger than 1/γ2.

3.2.2 Bellman completeness implies stability

In addition to the low-distribution shift setting, FQI is known to succeed in both finite
horizon and discounted, infinite horizon settings under a representational condition known
as Bellman completeness (Szepesvári and Munos, 2005; Wang et al., 2021a,b):

Assumption 10 (Bellman completeness) A feature map φ is Bellman complete for an
MDP M, if for all θ ∈ Rd, there exists a vector θ′ such that for all (s, a) ∈ S ×A,

φ(s, a)>θ′ = E [r(s, a)] + γ E
s′∼P (·|s,a)

φ(s′, π′(s))>θ.

Intuitively, completeness asserts that Bellman backups of linear functions of the features
again lie in the span of the features. It has previously been observed (Wang et al., 2021a,b)
that completeness implies a certain “non-expansiveness” of Bellman backups. This non-
expansiveness is the key step towards establishing the connection to stability and is formal-
ized in the following result:12

11. A matrix A is stable if and only if limk→∞A
k = 0.

12. Completeness implies realizability of rewards which in turn implies ‖Σ−1/2
cov θφ,r‖22 ≤ 1, see Lemma 31.

13
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Corollary 11 If φ is Bellman complete (Assumption 10) and Σcov is full rank, then for all
j ≥ 0,

‖(γΣ−1/2
cov ΣcrΣ

−1/2
cov )j‖op ≤ ρsγj . (25)

Hence, ‖Pγ‖op ≤ ρs/(1 − γ), and Assumption 2 holds. Furthermore, if Qπ is linearly
realizable (Assumption 1), n & ρ2

s log(d/δ), and εop ≤ (1− γ)/(2ρs), T -step FQI satisfies:

‖Σ1/2
cov(θ̂T − θ?γ)‖2 .

ρs
1− γ

· εr +
ρ2
s

(1− γ)2
εop +

ρ2
s

1− γ
γT+1.

As with low distribution shift, the converse is not true. It is not hard to find examples
where stability holds yet Bellman completeness does not.

3.3 Stability is necessary for fitted Q-iteration

We conclude our analysis of FQI by showing that our characterization of when the algo-
rithm succeeds is exactly sharp, in an instance-dependent sense. If stability fails that is,
ρ(γΣ−1

covΣcr) > 1, then estimation procedures of this sort are guaranteed to have exponen-
tially large variance.

Proposition 12 LetM be any infinite horizon, discounted MDP with corresponding offline
distribution D which satisfies the following properties: Σcov is full rank and γΣ−1

covΣcr has
an eigenvalue λ with |λ| > 1. Then, approximations of the T -step FQI solution, Q̂π(s, a) =
φ(s, a)>θ̂T where,

θ̂T :=
T∑
k=0

(γΣ−1
covΣcr)

kΣ−1
covθ̂φ,r, θ̂φ,r := θ?φ,r + z,

and z is a zero-mean, random vector satisfying Λ := Ezz> � 0, have exponentially large
variance,

E‖θ̂T − Eθ̂T ‖22 ≥ σmin(Λ) ·
(
λT+1 − 1

λ− 1

)2

.

This proposition corroborates empirical findings on the instability of FQI by Wang et al.
(2021b) and shows that an idealized variant of FQI incurs exponentially large variance (in
the number of rounds T ) for an instance that results in an unstable “backup operator”
γΣ−1

covΣcr. By standard bias-variance decomposition, this directly implies exponentially
large error for estimating θ?γ . Although, note that since stability does not hold, there is
no guarantee that θ?γ can be written as a power series, so it may not even be the limiting
solution of population FQI as discussed at the beginning of this section.

The algorithm is idealized in two senses, both of which are relatively minor. First, it
has perfect knowledge of Σcov and Σcr which does not happen in practice, but is favorable
to the algorithm, resulting in a stronger lower bound. Second, the error in estimating the
reward is assumed to have a full-rank covariance; this arises naturally whenever rewards are
perturbed with centered Gaussian noise since Σcov is full rank. Thus, the result shows that

14
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even when the dynamics are known, errors in estimating the rewards will be exponentially
magnified, resulting in overall divergence of the algorithm.

While the theorem does not consider the marginally stable case where ρ(γΣ−1
covΣcr) = 1,

we note in the proof that if the spectral radius is exactly one, the variance can grow at least
linearly with T . However, marginal stability introduces other issues as we illustrate later
on.

At this point, it is natural to wonder whether stability is necessary not just for the success
of this algorithm, but rather for the success of any algorithm at offline policy evaluation. It
turns out that this is is not the case. As we will show in the following section, least squares
temporal difference learning works under strictly weaker conditions than fitted Q-iteration.

4. Least Squares Temporal Difference Learning

Building on our analysis of FQI, we now analyze how a closely related algorithm, least
squares temporal difference learning, overcomes some of its shortcomings in the context
of offline policy evaluation. Similarly to the previous section, we start by illustrating how
invertibility is sufficient for LSTD in Section 4.1, and discuss connections to previous suf-
ficient conditions in Section 4.2. Lastly, we conclude in Section 4.3 by presenting lower
bounds which show that if invertibility does not hold, then the offline policy evaluation
problem cannot be solved using linear estimators (FQI and LSTD being special cases), even
asymptotically.

4.1 Invertibility is sufficient for LSTD

Theorem 13 Assume that realizability and invertibility (Assumptions 1 and 3) both hold
and let εr, εop be defined as in Equation 14. If n & ρ2

s log(d/δ) and εop ≤ σmin(I −
γΣ
−1/2
cov ΣcrΣ

−1/2
cov )/2, then the LSTD solution,

θ̂LS := (I − γΣ̂−1
covΣ̂cr)

†Σ̂−1
covθ̂φ,r,

satisfies the following error guarantee:

‖Σ1/2
cov(θ?γ − θ̂LS)‖2 .

1

σmin(I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov )

· εr+

1

σmin(I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov )2

‖Σ−1/2
cov θφ,r‖2 · εop. (26)

As per our discussion immediately following Theorem 5, the upper bound on ‖Σ1/2
cov(θ?γ−

θ̂γ)‖2 again directly implies guarantees on |Qπ(s, a) − Q̂π(s, a)|, both pointwise and in

expectation, where now Q̂π(s, a) = φ(s, a)>θ̂LS. On a technical level, the proof follows from
standard perturbation bounds on matrix inverses.

Our upper bound for LSTD has qualitatively similar properties to that presented for
FQI in Theorem 5.

A sharper notion of problem complexity. Much like ‖Pγ‖op for FQI, the magnitude
of our upper bound for the policy evaluation error of LSTD is determined by an instance-

dependent quantity: 1/σmin(I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov ). As before this term is: (1) never much
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larger than 1/(1− γ) for settings where OPE was previously shown to be tractable (see the
next subsection for further discussion of this point), and (2) is often significantly smaller. For

example, for the OPE instance detailed in (21), if p ≤ .7, then 1/σmin(I−γΣ
−1/2
cov ΣcrΣ

−1/2
cov ) ≤

4 for all γ ∈ (0, 1).

Coordinate invariance. From Proposition 6, we know that for any choice of full rank
matrix L and features φ̃(·) = Lφ(·), the whitened cross-covariance in these new features,

γΣ̃
−1/2
cov Σ̃crΣ̃

−1/2
cov (see definition in Equation 20) is equal to γUΣ

−1/2
cov ΣcrΣ

−1/2
cov U> for some

orthogonal matrix U . Since conjugating by an orthogonal matrix preserves singular values,

1/σmin(I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov ) is invariant to the choice of coordinates.

4.2 Contextualizing Invertibility

Paralleling our discussion of stability for FQI, we now discuss how our notion of invertibility
relates to previous conditions analyzed in the literature. Furthermore, we will present how
stability implies invertibility, establishing a precise “nesting” between the classes of OPE
problems which satisfy each condition.

4.2.1 Stability ( Invertibility

Proposition 14 If Σcov is full rank and γΣ
−1/2
cov ΣcrΣ

−1/2
cov is stable (Assumption 2), then

I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov is invertible (Assumption 3). Furthermore,

1

σmin(I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov )

. cond(Pγ)1/2‖Pγ‖op. (27)

The main message of this proposition is twofold. First, for the case of linear function
approximation, any OPE problem that is solvable via FQI, must also be solvable via LSTD.
Second, from Equation 27 we see that main complexity measure for Theorem 13, 1/σmin(I−
γΣ
−1/2
cov ΣcrΣ

−1/2
cov ) is never larger than the corresponding upper bound for FQI in Theorem

5, cond(Pγ)1/2‖Pγ‖op.
Interestingly enough, while stability implies invertibility, the converse is not true. There

exist problems for which I−γΣ
−1/2
cov ΣcrΣ

−1/2
cov is invertible, but γΣ

−1/2
cov ΣcrΣ

−1/2
cov is not stable.

For example, consider the following 2 state MDP, with no actions:

s0 s1 1
1

If we set R(s0) = R(s1) = Unif({±1}), and φ(s0) = 1, φ(s1) = 2, then this OPE instance
is trivially linearly realizable with θ?γ = 0. If the offline distribution D places mass p on s0

and 1− p on s1, it is easy to see that I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov is invertible for all p, γ ∈ (0, 1).

However, for p = γ = .9, γΣ
−1/2
cov ΣcrΣ

−1/2
cov is at least 3/2, hence stability does not hold and

FQI will necessarily diverge. Together, these results establish a separation between the set
of problems solvable via FQI and those solvable via LSTD.13

13. The careful reader might observe that the main reason why FQI fails in this example is that the algorithm
is sensitive to the scale of the next state features. For instance, stability (and realizability) would hold
if |φ(s1)| < 1.
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Moreover, for the set of previously analyzed settings where stability holds, we can es-

tablish quantitative upper bounds on 1/σmin(I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov ) illustrating how this

quantity is comparable to 1/(1− γ).

Corollary 15 Assume Σcov � 0. If there is low distribution shift (Assumption 8), then for
γds := γ

√
Cds,

1

σmin(I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov )

≤ 1

1− γds
.

Moreover, if Bellman completeness holds (Assumption 10), then

1

σmin(I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov )

≤ ρs
1− γ

.

This result follows from observing that

1/σmin(I − γΣ−1/2
cov ΣcrΣ

−1/2
cov ) = ‖(I − γΣ−1/2

cov ΣcrΣ
−1/2
cov )−1‖op.

Since stability holds for both of these settings, we can use Fact 1 to write (I−γΣ
−1/2
cov ΣcrΣ

−1/2
cov )−1

as an infinite power series in γΣ
−1/2
cov ΣcrΣ

−1/2
cov . Applying the triangle inequality and the

bounds from Equations 25 and 24 on the powers of γΣ
−1/2
cov ΣcrΣ

−1/2
cov finishes the proof of

this corollary.

4.2.2 Other connections

Recent work by Mou et al. (2020) analyzes oracle inequalities for solving projected fixed
point equations, of which the Bellman equation (Equation 17) is a special case. For the
offline policy evaluation setting, they prove that a stochastic approximation variant of LSTD
succeeds if the following condition holds:

Assumption 16 (Symmetric Stability) The matrix Σcov is full rank, and γΣ
−1/2
cov ΣcrΣ

−1/2
cov

satisfies

κ :=
1

2
λmax(γΣ−1/2

cov ΣcrΣ
−1/2
cov + (γΣ−1/2

cov ΣcrΣ
−1/2
cov )>) < 1.

Here, λmax denotes the maximal eigenvalue of a matrix.14 In their paper, the authors remark

how Assumption 16 directly implies that I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov is invertible. Amongst other

quantities, their bounds scale with 1/(1 − κ). This quantity is always at least as large as

1/σmin(I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov ).

Proposition 17 If Assumption 16 holds, then I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov is invertible and

1

σmin(I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov )

≤ 1

1− κ
.

14. The matrix in Assumption 16 is symmetric so all eigenvalues are real and the maximum is well defined.
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Recent work by Li et al. (2021) extends the stochastic approximation analysis from Mou
et al. (2020) to incorporate variance reduction techniques. Their upper bounds directly
assume invertibility, but also have explicit dependence 1/(1 − γ) which can be quite loose
in certain settings as detailed earlier.

Apart from these analyses, Kolter (2011) proves that LSTD succeeds in the offline setting
if a certain linear matrix inequality holds:

Assumption 18 (Contractivity) The matrix Σcov is full rank and together with Σcr sat-
isfies, [

Σcov Σcr

Σ>cr Σcov

]
� 0.

A simple Schur complement argument illustrates that this assumption from Kolter (2011)
implies that the whitened cross covariance has operator norm strictly less than 1. Since the
spectral radius of a matrix is always smaller than its operator norm, this condition directly

implies that γΣ
−1/2
cov ΣcrΣ

−1/2
cov is stable (Assumption 2) and that I − γΣ

−1/2
cov ΣcrΣ

−1/2
cov is

invertible (Assumption 3).

Proposition 19 If Assumption 18 holds, then ‖γΣ
−1/2
cov ΣcrΣ

−1/2
cov ‖op < 1 and stability holds.

As in the case of FQI, we see how our characterization of LSTD in terms of invertibility
neatly unifies previous analyses of when this algorithm succeeds in the offline setting. Fur-
thermore, our invertibility-based analysis strictly subsumes these previous studies. There
exist problems for which stability and invertibility hold but these other conditions (e.g., low
distribution shift, Bellman completeness, etc.) do not.

Proposition 20 For each of the following cases, there exists an offline policy evaluation
problem defined by an MDP M, an offline distribution D, and a target policy π such that
Qπ is linearly realizable in a feature mapping φ (Assumption 1 holds) where:

• Stability and invertibility both hold, yet low distribution shift (Assumption 8) does not.

• Stability and invertibility both hold, yet Bellman completeness (Assumption 10) does
not.

• Stability and invertibility both hold, yet symmetric stability (Assumption 16) does not.

• Stability and invertibility both hold, yet contractivity (Assumption 18) does not.

In short, there is a nontrivial gap between the problems we knew could be solved via
previous analyses and the ones we know we can solve in light of our work.

4.3 Invertibility is necessary for all linear estimators

We finish our presentation of LSTD by proving that invertibility is not just sufficient, it is
also strictly necessary for LSTD, as well as for a broad class of “linear” estimators. To do
so, we first formally define what we mean by linear estimators:
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Definition 21 (Population Linear Estimator) Let Alg be a deterministic algorithm which
given an infinite horizon, discounted MDP M, a distribution D over S ×A, and a policy π
returns a function Q̂π : S ×A → R. Furthermore, let (M,D, π) and (M,D, π) be two OPE
instances such that:

• The corresponding action value functions Qπ, Q̄π are both linearly realizable in a fea-
ture map φ.

• The covariance, cross-covariance and mean feature-reward vectors (as defined in Equa-
tions 5 and eq:thetaphir) are identical in (M,D, π) and (M,D, π):

Σ̄cov = Σcov, Σ̄cr = Σcr, θ̄φ,r = θφ,r, EDr(s, a) = EDr(s, a).

We say that Alg is a population linear estimator if Alg(M,D, π) = Alg(M,D, π).

While our focus has been on studying the finite sample performance of estimators for
OPE, in this definition we choose to catalogue algorithms based on their asymptotic behav-
ior so as to neatly abstract technical modifications like variance reduction. These techniques
introduce differences in finite sample behaviors, but are not essential to the overall identi-
fiability concerns that are the focus of this subsection.

Intuitively, linear estimators are those whose population-level solution depends on the
low-order moments of the data. These moments correspond to the quantities which appear
in the solution to the projected Bellman equation:

Σcovθ
?
γ = θφ,r + γΣcrθ

?
γ .

From their definitions in Equations 4 and 16, we see that common estimators such as LSTD
and FQI both satisfy this definition. Interestingly, not all known, or least-squares-like,
estimators are linear (e.g Bellman Residual Minimization). We will discuss these after
presenting the lower bound.

Theorem 22 Let M = (S,A, P,R, γ) be any MDP with associated offline distribution D
with rewards uniformly bounded by 1 (i.e., sup(s,a)∈S×A |r(s, a)| ≤ 1) such that:

• Qπ(s, a) is linearly realizable in φ.

• Σcov is full rank.

• I − γΣ−1
covΣcr is rank deficient.

Then, there exists a different MDP M = (S,A, P,R, γ), with identical states, actions, and
transitions, and whose reward distribution R is uniformly bounded by 2, such that for the
same offline distribution D:

• The Q-function for π in M, Q̄π, is linearly realizable in the same feature mapping φ.

• The covariance, cross-covariance, next state covariance, and mean feature-reward vec-
tor in M are identical to their counterparts in M:

Σ̄cov = Σcov, Σ̄cr = Σcr, Σ̄next = Σnext, θ̄φ,r = θφ,r.
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• However, the Q functions are different:

ED(Qπ(s, a)− Q̄π(s, a))2 & σmin(Σcov) / sup
(s,a)∈S×A

‖φ(s, a)‖22.

Consequently, if we define LE as the set of population linear estimators which satisfy Defi-
nition 21, we have that

inf
Alg∈LE

sup
(M′,D′,π′)∈N

ED(Q′π(s, a)− Q̂π(s, a))2 & σmin(Σcov) / sup
(s,a)∈S×A

‖φ(s, a)‖22.

where Q̂π = Alg(M′,D′, π′) and N = {(M,D, π), (M,D, π)}

In other words, this theorem states that for any OPE instance where I − γΣ−1
covΣcr, or

equivalently, I−γΣ
−1/2
cov ΣcrΣ

−1/2
cov , is rank deficient, we can perturb the rewards to construct

an alternative instance with matching low order moments. Consequently, any population
linear estimator, such as LSTD or FQI, will return the same estimate Q̂π in both cases. Yet,
since the Q-functions are distinct, they will necessarily converge to the wrong answer in one
case. Note that the alternative instance M has identical states, actions, and transitions.
Therefore, any function of these quantities, not just the ones explicitly listed above, will be
the same in M and M. Together with Theorem 13, this result illustrates how our charac-
terization of the settings where LSTD succeeds is exactly sharp in an instance-dependent
(local) sense.

4.3.1 Going beyond linear estimators

Bellman residual minimization. Bellman residual minimization attempts to estimate
the value of a decision making policy by solving the following optimization problem, defined
here at the population level:

θBRM ∈ arg min
θ

E
(s,a)∼D,s′∼P (·|s,a),a′∼π(s′)

(φ(s, a)>θ − r(s, a)− γ · φ(s′, a′)>θ)2.

In the linear function approximation setting, the BRM solution is equal to

θBRM = (Σcov − γΣcr − γΣ>cr + γ2Σnext)
†(θφ,r − γEφ(s′, a′)r(s, a)).

The key difference with regards to previously analyzed estimators is that BRM depends on
the correlation between the next state feature vector φ(s′, a′) and the reward. However,
FQI and LSTD only depend on the correlation θφ,r = Eφ(s, a)r(s, a) between the current
state and the reward.

To the best of our knowledge, there is no exact characterization of when BRM succeeds
at offline policy evaluation under linear realizability. In particular, it is not sufficient for
the matrix,

Σcov − γΣcr − γΣ>cr + γ2Σnext,

to be invertible. On the other hand, it is well-known that BRM can be inconsistent if the
dynamics of the MDP are not deterministic. In general, this algorithm requires use of the
double sampling trick and the ability to reset the environment to particular states via a
simulator. We provide a more detailed discussion of these issues in Section B.6 and refer
the interested reader to (Baird, 1995; Saleh and Jiang, 2019).
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Minimax algorithms One can avoid the double sampling issue of BRM via the so-called
“minimax algorithm” . Given a function class F , the algorithm estimates the action value
function Qπ(s, a) by solving:

min
f∈F

max
g∈F

E
(s,a)∼D,s′∼P (·|s,a)a′∼π(s′)

[(f(s, a)− r(s, a)− γf(s′, a′))] −

E
(s,a)∼D,s′∼P (·|s,a),a′∼π(s′)

[(g(s, a)− r(s, a)− γf(s′, a′))].

This algorithm is in general non-linear for essentially the same reasons as BRM. More
specifically, in the linear function approximation setting, if Bellman completeness holds, a
direct calculation shows that the minimax solution θmin max is equal to:

θmin max = (Σcov − γΣcr − γΣ>cr + γ2Σnext)
†(θφ,r − γE[E[r(s, a) | s, a]E[φ(s′, a′) | s]]).

Zanette (2023) studied this algorithm under violations of Bellman completeness, but
to the best of our knowledge, it is still unknown what the exact necessary and sufficient
conditions are for minimax algorithms to succeed at offline policy evaluation.

Algorithm independent limits of OPE Given the negative result from Theorem 22, a
natural question to ask is: what are the algorithm-independent limits for OPE under linear
realizability? We close this section with a brief discussion of how our work provides insight
into this question.

We start by pointing out that there are settings where invertibility fails and for which
offline policy evaluation is information-theoretically impossible. That is, OPE is not solvable
regardless of the choice of estimator or the number of samples observed. This observation
follows from the construction in Amortila et al. (2020). We reproduce their result for the
sake of completeness:

s0 s1 1
1

There are 2 states and no actions. The feature map is defined as φ(s0) = γ and φ(s1) = 1.
The rewards are Er(s0) = 0 and Er(s1) = r? 6= 0. Realizability holds for any choice r? with
θ?γ = r?/(1−γ). If the offline distribution D is supported just on s0, then Σcov = γ2, Σcr = γ
and I − γΣ−1

covΣcr = 0. Hence, invertibility fails for this problem. Furthermore, because the
nonzero reward r? is never observed under the offline distribution D, OPE is impossible even
in the limit of infinite data. 15 In short, this example shows that if invertibility fails, then
OPE cannot be solved in the worst case. However, there are problems where invertibility
fails, yet offline policy evaluation is still possible via nonlinear estimators.

Introduced by Xie and Jiang (2021), the BVFT algorithm is a statistically, but not
computationally, efficient algorithm for offline policy evaluation using a general function
class F under two assumptions: (1) Qπ is realizable by a function in the class F and (2)
the offline distribution D and the MDP dynamics satisfy a strong data coverage condition
referred to as pushforward concentrability.

15. We can check that invertibility holds if the distribution D places nonzero mass on the second state s1.
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Assumption 23 (Pushforward Concentrability, Xie and Jiang (2021)) An MDPM
and offline distribution D satisfy pushforward concentrability if:

• The offline distribution D has strictly positive mass on all (s, a) ∈ S×A: PD(s, a) > 0.

• There exists a constant 1 ≤ CA < ∞ such that for any (s, a) ∈ S × A, PD(a | s) ≥
1/CA.

• The exists a constant 0 < CS <∞ such that for all s, s′ ∈ S and a ∈ A.16

P (s′ | s, a)

PD(s′)
≤ CS .

In the linear function approximation setting, realizability of Qπ in F reduces to our
realizability condition (Assumption 1). However, pushforward concentrability is in general
distinct from stability or invertibility. That is, for problems that are linearly realizable,
pushforward concentrability does not imply, nor is implied by, the assumption that σmin(I−
γΣ
−1/2
cov ΣcrΣ

−1/2
cov ) > 0. Therefore, there exist settings where linear estimators may fail, yet

BVFT can succeed and vice versa.

To see this, we consider a variation of the MDP defined just above. The dynamics are
identical, but we alter the reward function and the feature mapping. In particular, here we
choose the feature map φ(s0) = 1 and φ(s1) = 2/γ. If we set the rewards to have nonzero
variance and satisfy Er(s1) = r?, Er(s0) = −γ

2(1−γ)r
?, then this MDP is linearly realizable

with θ?γ = γ
2(1−γ)r

?. For any γ ∈ (0, 1), a simple continuity argument proves that there

always exists a p ∈ (0, 1) such that if the offline distribution places mass p on s0 and 1− p
on s1, Σcov is full rank and γΣ

−1/2
cov ΣcrΣ

−1/2
cov = 1. Therefore, realizability and pushforward

concentrability both hold, but invertibility does not. For the converse direction, it is not
hard to see how one might construct examples where linear realizability and invertibility
both hold, but Assumption 23 does not. The first condition asserting that D be supported
on all states and actions is particularly stringent.17

Recall from the construction in Theorem 22, that for any OPE instance where invert-
ibility fails, the alternative M has exactly the same states and transitions. Therefore, any
estimator that outperforms linear methods must necessarily consider nonlinear or higher-
order interactions between features and rewards. Interestingly enough, a simple tabular
method, which ignores the feature mapping φ and directly estimates the rewards, success-
fully approximates the value function in this example.

5. Offline Policy Evaluation without Realizability

Throughout our presentation thus far, our main focus has been on understanding exactly
when and why various popular estimators succeed at offline policy evaluation, under the

16. We omit the last assumption on the initial state distribution from Xie and Jiang (2021) as it is not
essential for the purposes of our discussion.

17. In this construction, we have departed from our assumption that sups,a |r(s, a)| < 1 since Er(s, a) is on

the order of Ω((1− γ)−1). However, the magnitude of the rewards should not affect the identifiability of
Qπ, only the estimation rate for quantities like εop and εr.
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assumption that the action value function exactly satisfies the linear realizability condition.
Of course, in practice, we might not expect linear realizability to hold exactly, but rather
only approximately.

As a sanity check, we therefore investigate how the performance of FQI and LSTD de-
grade if the relevant function approximation guarantees are weakened. Relative to previous
results in this paper, the results in this section are more exploratory and speculative. We
leave the problem of generating a more complete understanding of OPE under misspecifica-
tion to future work. For simplicity, here we analyze the behavior of these estimators under
an `∞ guarantee on the error of the feature mapping φ.

Definition 24 (Approximate Realizability) We define θ?∞ as the vector that minimizes
the worst-case error with respect to Qπ. Formally, θ?∞ is the solution to the following
optimization problem, where φ : S ×A → Rd:

θ?∞ ∈ arg min
θ∈Rd

sup
(s,a)∈S×A

|Qπ(s, a)− φ(s, a)>θ| (28)

We define the approximation error of θ?∞ as, ε∞ := minθ∈Rd sup(s,a)∈S×A |Qπ(s, a)−φ(s, a)>θ|.

Since the rewards are always bounded, ε∞ is trivially always bounded by 1/(1 − γ).
On the other hand, if ε∞ = 0, Assumption 1 holds, and we recover the linear realizability
setting that has been the main focus of this paper. Values of ε∞ interpolating between
these two extremes measure the extent to which the value function Qπ can be expressed as
a linear function of the features φ, in a worst case sense.

Using this definition, we prove the following proposition which, together with Theorems
5 and 13, bounds the error of FQI and LSTD under misspecification.

Proposition 25 Assume that invertibility (Assumption 3) holds and let Q̂π(s, a) = φ(s, a)>θ̂
be an estimator satisfying,

‖Σ1/2
cov(θ?fp − θ̂)‖2 ≤ εfp for θ?fp := (I − γΣ−1/2

cov ΣcrΣ
−1/2
cov )−1Σ1/2

covθφ,r.

Then, for any (s, a) ∈ S ×A,

|Qπ(s, a)− Q̂π(s, a)| . ‖Σ−1/2
cov φ(s, a)‖2(εfp +

1

σmin(I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov )

ρsε∞) + ε∞. (29)

The main message of this proposition, is that if linear realizability fails, but invertibility
still holds, then the performance of LSTD and other linear estimators degrades gracefully
with the level of misspecification.

To help parse the result, we can walk through each of the terms appearing on the right
hand side of Equation 29. The first source of error, captured in εfp, is statistical in nature.
It arises from bounding the statistical error inherent in estimating Qπ by approximating
the fixed point solution to the (projected) Bellman equation, θ?fp. Note that controlling this
term is the precisely the main focus on the previous results upper bounding the error of
LSTD and FQI.
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Because θ?γ , as defined in Equation 3, equals θ?fp, if invertibility holds, then for large
enough n, Theorem 13 establishes that LSTD return a vector such that, with probability
1− δ,

εfp .
1

σmin(I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov )

· εr +
1

σmin(I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov )2

‖Σ−1/2
cov θφ,r‖2 · εop.

Likewise, Theorem 5 shows that if stability holds, then for large enough n, performing
T -steps of FQI return a solution θ̂T such that with probability 1− δ,

εfp . cond(Pγ)1/2‖Pγ‖op · εr + cond(Pγ)‖Pγ‖2op · ‖Σ−1/2
cov θφ,r‖2 · εop +O(exp(−T )).

As we might expect, this statistical error, εfp becomes vanishingly small as the number of
samples goes to infinity, regardless of whether Qπ is linearly realizable.

The second set of terms in Proposition 25, depending on ε∞, come from the fact that
Qπ cannot be expressed as a linear function of the features φ. Consequently, this term
does not go to zero as the number of samples becomes large. This approximation error is

amplified by a factor of ρs/σmin(I−γΣ
−1/2
cov ΣcrΣ

−1/2
cov ). Since this is only an upper bound, we

cannot assert that these multiplicative factors are necessary. However, the dependence on
the statistical leverage ρs is reminiscent of previous upper bounds from the linear bandits
literature (Lattimore et al., 2020) where the approximation error is also amplified by a factor
of
√
d.18 Du et al. (2019) and Van Roy and Dong (2019) provide similar lower bounds under

approximate misspecification of the relevant feature mappings.
In any case, beyond the specific scaling on the various error sources, the main take away

message from this result is that FQI and LSTD are reasonable estimators to use beyond the
linear realizability setting. Under the necessary assumption that invertibility (or stability)
hold, the extent to which these methods estimate the underlying value functions is only
mildy affected by the approximation error ε∞. As alluded to previously, the results in this
section are not the focus of our work. We primarily view them as a first step towards a
more complete understanding of offline policy evaluation in the absence of realizability.
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Appendix A. Supporting Arguments for Section 3: FQI

A.1 Proof of Theorem 5: stability is sufficient for FQI

The existence of Σ̂cov and the upper bounds on the regression errors εr and εop are guaran-
teed by Lemmas 35 and 36. To analyze the error of FQI, we introduce the shorthand,

A := γΣ−1
covΣcr, Â = γΣ̂−1

covΣ̂cr, θ?t :=
t∑

k=0

Akθ?0, θ̂t :=
t∑

k=0

Âkθ̂0,

wt := θ̂t − θ?t , ∆ := Â−A,

where θ̂0 = Σ̂−1
covθ̂φ,r and θ?0 = Σ−1

covθφ,r. Using this notation, by stability, we observe that
θ?γ = θ?∞, and we can write the errors vectors of the t-step FQI solution as,

Σ1/2
cov(θ?γ − θ̂t) = Σ1/2

cov

∞∑
k=t+1

Akθ?0 + Σ1/2
covwt. (30)

Next, we develop the recursion in wt,

wt+1 =

t+1∑
j=0

Âj θ̂0 −
t+1∑
j=0

Ajθ?0

= Âθ̂t + θ̂0 −Aθ?t − θ?0
= Âwt + ∆θ?t + w0.

Unrolling the recursion and multiplying on the left by Σ
1/2
cov , we get that

Σ1/2
covwt+1 =

t+1∑
j=0

(
Σ1/2

covÂΣ−1/2
cov

)j
Σ1/2

covw0 +
t∑

j=0

(
Σ1/2

covÂΣ−1/2
cov

)j (
Σ1/2

cov∆Σ−1/2
cov

)
Σ1/2

covθ
?
t−j .

Note that εr = ‖Σ1/2
covw0‖2 and εop = ‖Σ1/2

cov∆Σ
−1/2
cov ‖op. Therefore, taking the norm of both

sides and applying the triangle inequality,

‖Σ1/2
covwt+1‖2 ≤

t+1∑
k=0

‖
(

Σ1/2
covÂΣ−1/2

cov

)k
‖op‖Σ1/2

covw0‖2 (31)

+
t∑

k=0

‖
(

Σ1/2
covÂΣ−1/2

cov

)k
‖op‖Σ1/2

cov∆Σ−1/2
cov ‖op sup

0≤h≤t
‖Σ1/2

covθ
?
h‖2

= (εr + εop sup
0≤h≤t

‖Σ1/2
covθ

?
h‖2) ·

t+1∑
k=0

‖
(

Σ1/2
covÂΣ−1/2

cov

)k
‖op. (32)

Now, recalling the definition of θ?h, we bound:

sup
0≤h≤t

‖Σ1/2
covθ

?
h‖2 ≤

t∑
j=0

‖
(
γΣ−1/2

cov ΣcrΣ
−1/2
cov

)j
‖op‖Σ1/2

covθ
?
0‖2. (33)
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Therefore, combining these last two inequalities (Equations 33 and 32), and the identity
from Equation 30,

‖Σ1/2
cov(θ?γ − θ̂t)‖2 ≤

∞∑
k=t+1

‖
(

Σ1/2
covAΣ−1/2

cov

)k
‖op‖Σ1/2

covθ
?
0‖2 + ‖Σ1/2

covwt‖2

≤ ‖Σ1/2
covθ

?
0‖2

∞∑
k=t+1

αk +

(
εr + εop‖Σ1/2

covθ
?
0‖2

t−1∑
k=0

αk

)
t∑

k=0

α̂k, (34)

where α̂k := ‖
(

Σ
1/2
covÂΣ

−1/2
cov

)k
‖op and αk := ‖

(
Σ

1/2
covAΣ

−1/2
cov

)k
‖op. Since εop ≤ 1/(6‖Pγ‖op)

and γΣ
−1/2
cov ΣcrΣ

−1/2
cov is stable, Lemma 26 tells us that

α̂j = ‖P−1/2
γ P 1/2

γ

(
Σ1/2

covÂΣ−1/2
cov

)j
‖op

≤ ‖P−1/2
γ ‖op‖P 1/2

γ

(
Σ1/2

covÂΣ−1/2
cov

)j
‖op

≤ ‖P 1/2
γ ‖op‖P 1/2

γ ‖op

(
1− 1

2‖Pγ‖op

)j/2
= cond(Pγ)1/2

(
1− 1

2‖Pγ‖op

)j/2
.

Using similar reasoning, we get that

αj ≤ cond(Pγ)1/2

(
1− 1

‖Pγ‖op

)j/2
.

In conclusion, ‖Σ1/2
cov(θ?γ − θ̂t)‖2 is bounded by,

‖Σ1/2
covθ

?
0‖2cond(Pγ)1/2

(
1− 1

‖Pγ‖op

)(t+1)/2 ∞∑
k=0

αk +

(
εr + εop‖Σ1/2

covθ
?
0‖2

∞∑
k=0

αk

) ∞∑
k=0

α̂k.

The final bound comes from summing the geometric series,
∑∞

j=0(1−c)j/2 = (1−
√

1− c)−1,
for c ∈ (0, 1) and applying the numerical inequality,(

1−
√

1− 1

2z

)−1

≤ 10z,

which holds for all z ≥ 1.

Lemma 26 Let A be a square, stable matrix and let P = dlyap(A) Then, for all k ≥ 0,

‖Ak‖2op ≤ cond(P )

(
1− 1

‖P‖op

)k
.

Furthermore, for any matrix ∆ such that ‖∆‖op ≤ 1/(6‖P‖2op),

‖(A+ ∆)k‖2op ≤ cond(P )

(
1− 1

2‖P‖op

)k
.
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Proof This particular lemma is almost identical to the one from Perdomo et al. (2021).
However, we include the proof for the sake of providing a self-contained presentation. For
the first result, by definition of the solution to the Lyapunov equation, for any unit vector
x,

x>A>PAx = x>Px− x>Ix

= x>Px

(
1− ‖x‖

2
2

x>Px

)
≤ x>Px

(
1− 1

‖P‖op

)
.

Hence, A>PA � P (1− ‖P‖−1
op ). By iterating (Ak)>PAk � P (1− ‖P‖−1

op )k and

‖P 1/2Ak‖2op ≤ ‖P‖op(1− ‖P‖−1
op )k.

Therefore,

‖Ak‖op = ‖P−1/2P 1/2Ak‖op ≤ ‖P−1/2‖op‖P 1/2Ak‖op ≤ cond(P )1/2

(
1− 1

‖P‖op

)k/2
.

For the second result, using the insights from above,

(A+ ∆)>P (A+ ∆) = A>PA+A>P∆ + ∆>PA+ ∆>P∆.

Now, A>PA � P (1− ‖P‖−1
op ) and

‖A>P∆‖op = ‖∆>PA‖op ≤ ‖∆P 1/2‖op‖P 1/2A‖op ≤ ‖∆P 1/2‖op‖P 1/2‖op ≤ ‖∆‖op‖P‖op.

Bounding, ‖∆>P∆‖op ≤ ‖P‖op‖∆‖2op, and using the fact that P � I we get that for,

‖∆‖op ≤ 1/(6‖P‖2op),

the following relationship holds:

A>P∆ + ∆>PA+ ∆>P∆ � P 1

2‖P‖op
.

Therefore,

(A+ ∆)>P (A+ ∆) � P
(

1− 1

2‖P‖op

)
,

and the second result follows by using the same steps as the first.
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A.2 Proof of Proposition 6: coordinate invariance of Pγ

If we define the whitened features, φw(·) = Σ
−1/2
cov φ(·), then φ̃(·) = L′φw(·) where L′ = LΣ

1/2
cov .

Now, let USV > be the singular value decomposition of L′. Then,

Σ̃cov = Ex∼Dφ̃(x)φ̃(x)> = L′Ex∼Dφw(x)φw(x)>L′> = L′L′> = US2U>,

where we have used the fact that the whitened features have identity covariance. By this

calculation, we have that Σ̃
1/2
cov = USU>. Using similar substitutions, we can also deduce

that Σ̃cr = L′Σ
(w)
cr L′> where Σ

(w)
cr = Σ

−1/2
cov ΣcrΣ

−1/2
cov . Therefore,

Σ̃−1/2
cov Σ̃crΣ̃

−1/2
cov = (US−1U>)(USV >)Σ(w)

cr (V SU>)(US−1U>) = (UV >)Σ(w)
cr (UV >)>.

Since (UV >) is an orthogonal matrix, the equality of condition numbers follows by the fact
that for any matrix A and orthogonal matrix M , MAM> = A have the same singular
values. On the other hand, the invariance of the operator norm of Pγ follows from the
following lemma:

Lemma 27 Let A be a stable matrix and M be any orthogonal matrix, then

‖dlyap(A>)‖op = ‖dlyap(MA>M>)‖op.

Proof Let P = dlyap(A) be the unique solution over X to the matrix equation:

X = A>XA+ I.

Likewise, let P ′ = dlyap(MAM>) be the unique solution (over X ′) to the equation:

X ′ = MA>M>X ′MAM> + I.

From this, we can deduce that M>X ′M = A>M>X ′MA+ I. Therefore, P = M>X ′M =
M>P ′M . The conclusion follows from the fact that singular values are invariant to conju-
gation by an orthogonal matrix.

A.3 Proof of Proposition 7: FQI under specific growth rates

As discussed in the main body, the proof is identical to that of Theorem 5 except that we
specialize to the particular assumptions on the growth of matrix powers. We recall the key
inequality from the proof of the main theorem, Equation 34:

‖Σ1/2
cov(θ̂t − θ?γ)‖2 ≤ ‖Σ1/2

covθ
?
0‖2

∞∑
k=t+1

αk +

(
εr + εop‖Σ1/2

covθ
?
0‖2

t−1∑
k=0

αk

)
t∑

k=0

α̂k.

Here, αk = ‖
(
γΣ
−1/2
cov ΣcrΣ

−1/2
cov

)k
‖op and α̂k := ‖

(
Σ

1/2
cov(γΣ̂−1

covΣ̂cr)Σ
−1/2
cov

)k
‖op. By assump-

tion, αk ≤ αβk hence,
∑∞

k=0 αk ≤ α/(1− β). Now, by Lemma 28 since

εop = ‖Σ1/2
cov(γΣ̂−1

covΣ̂cr)Σ
−1/2
cov − γΣ−1/2

cov ΣcrΣ
−1/2
cov ‖op,
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we have that:

α̂k ≤ α(β + εopα)k.

Therefore, as long as εop <
9
10

(1−β)
α ,

∞∑
k=0

α̂k ≤ α
∞∑
k=0

(β + εopα)k = α
1

1− β − αεop
≤ 10

α

1− β
.

Putting everything together,

‖Σ1/2
cov(θ̂T − θ?γ)‖2 . ‖Σ1/2

covθ
?
0‖2

α

1− β
· βT+1 +

(
εr + εop‖Σ1/2

covθ
?
0‖2

α

1− β

)
α

1− β
.

Lemma 28 Let A be a square matrix such that for all nonnegative integers j, ‖Aj‖op ≤ a·bj
for scalars a > 0 and b ∈ (0, 1). Then, for any square matrix ∆ if we let ε := ‖∆‖op then,

‖(A+ ∆)n‖op ≤ a(b+ ε · a)n.

Proof We begin by expanding (A+ ∆)n into monomials Tk,j ,

(A+ ∆)n =
n∑
k=0

(nk)∑
j=1

Tk,j , (35)

where each Tk,j has k factors of ∆ and n − k, A factors. Now, by the submultiplicative
property of the operator norm,

‖Tk,j‖op ≤ εk
∏

si∈Sk,j

‖Asi‖op,

where Sk,j is a set of positive integers si satisfying
∑

i si = n − k and |S| ≤ k + 1. Using
our assumption on the growth of ‖Ak‖op, we get that,

‖Tk,j‖op ≤ εk
∏

si∈Sk,j

(a · bsi) ≤ ak+1εkbn−k.

Going back to the original expansion into monomials, and using the identity,

n∑
k=0

(
n

k

)
xk = (1 + x)n.

We conclude:

‖(A+ ∆)n‖op ≤ a · bn
n∑
k=0

(
n

k

)(aε
b

)k
= abn(1 +

a · ε
b

)n = a(b+ aε)n.

29



Perdomo Krishnamurthy Bartlett Kakade

A.4 Proof of Corollary 9: low distribution shift implies stability

Consider the augmented covariance matrix,

E
[
φ(s, a)
φ(s′, a′)

] [
φ(s, a)
φ(s′, a′)

]>
=

[
Σcov Σcr

Σ>cr Σnext

]
� 0.

By a Schur complement argument, Σ>crΣ
−1
covΣcr � Σnext. After conjugating by Σ

−1/2
cov and

multiplying by γ2, we get that:

(γΣ−1/2
cov ΣcrΣ

−1/2
cov )>(γΣ−1/2

cov ΣcrΣ
−1/2
cov ) � γ2Σ−1/2

cov ΣnextΣ
−1/2
cov .

Now, by the low distribution shift assumption,

γ2Σ−1/2
cov ΣnextΣ

−1/2
cov � γ2Σ−1/2

cov (CdsΣcov)Σ−1/2
cov = Cdsγ

2I.

Therefore, (γΣ
−1/2
cov ΣcrΣ

−1/2
cov )>(γΣ

−1/2
cov ΣcrΣ

−1/2
cov ) � Cdsγ

2I. Iterating for j ≥ 0 gives the
first part of the result. The rest follows from Proposition 7 by observing that Equation 22
holds with α = 1, β =

√
Cdsγ2 ∈ (0, 1).

A.5 Proofs of Corollary 11: Bellman completeness implies stability

To take advantage of matrix notation, for this result we assume that the state-action space
is finite, |S||A| <∞. In particular, we introduce the following quantities.

1. Feature matrix Φ ∈ R|S||A|×d.

2. Offline distribution vector µ ∈ R|S||A|.

With this, we have that Σcov = Φ>diag(µ)Φ and Σcr = Φ>diag(µ)P (π)Φ where P (π) is a
row stochastic matrix representing the transition operator. Corollary 11 follows from the
following lemma and Proposition 7.

Lemma 29 If φ is complete (Assumption 10) and Σcov is full rank, then for j ≥ 0,

‖(Σ−1/2
cov ΣcrΣ

−1/2
cov )j‖op ≤ ρs.

Proof First, we rewrite the relevant matrix as follows,

(Σ−1/2
cov ΣcrΣ

−1/2
cov )j = Σ1/2

cov(Σ−1
covΣcr)

jΣ−1/2
cov

= Σ−1/2
cov Φ>diag(µ)Φ>(Σ−1

covΣcr)
jΣ−1/2

cov .

Therefore,

‖(Σ−1/2
cov ΣcrΣ

−1/2
cov )j‖op ≤ ‖Σ−1/2

cov Φ>diag(µ)1/2‖op︸ ︷︷ ︸
:=T1

‖diag(µ)1/2Φ(Σ−1
covΣcr)

jΣ−1/2
cov ‖op︸ ︷︷ ︸

:=T2

.

To bound T1, we observe that

‖Σ−1/2
cov Φ>diag(µ)1/2‖2op = ‖(Φ>diag(µ)Φ)−1/2Φ>diag(µ)1/2‖op.
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Letting A := diag(µ)1/2Φ, the above expression satisfies,

‖(A>A)−1/2A>‖2op = sup
‖v‖2=1

v>A(A>A)−1A>v ≤ 1,

since A(A>A)−1A> is a projection matrix. Moving onto T2, we recall that

‖diag(µ)1/2Φ(Σ−1
covΣcr)

jΣ−1/2
cov ‖op = sup

‖v‖2=1
‖diag(µ)1/2Φ(Σ−1

covΣcr)
jΣ−1/2

cov v‖2.

For any fixed vector v, since the entries of µ form a probability measure,

‖diag(µ)1/2v‖2 =

√√√√ d∑
i=1

µiv2
i ≤ max

i
vi = ‖v‖∞.

Therefore,

‖diag(µ)1/2Φ(Σ−1
covΣcr)

jΣ−1/2
cov ‖op ≤ sup

‖v‖2=1
‖Φ(Σ−1

covΣcr)
jΣ−1/2

cov v‖∞.

Then, by repeatedly applying Lemma 30, we get that

‖Φ(Σ−1
covΣcr)

jΣ−1/2
cov v‖∞ ≤ ‖ΦΣ−1/2

cov v‖∞.

Lastly,

‖ΦΣ−1/2
cov v‖∞ = sup

(s,a)
|φ(s, a)>Σ−1/2

cov v| ≤ sup
(s,a)∈S×A

‖Σ−1/2
cov φ(s, a)‖2 = ρs.

Lemma 30 If φ is complete (Assumption 10) and Σcov is full rank, then for all θ,

‖ΦΣ−1
covΣcrθ‖∞ ≤ ‖Φθ‖∞.

Proof If we denote the vector of expected rewards by ~r ∈ R|S||A|, then completeness implies
that for all θ, there exists a θ′ such that

Φθ′ = ~r + γP (π)Φθ.

Choosing θ = 0, this means that there exists a vector θr such that ~r = Φθr. Consequently,
we deduce that for all θ, there always exists a θ′ such that Φθ′ = γP (π)Φθ. Using this
realizability condition, for a given distribution µ, θ′ must satisfy

θ′ = arg min
θ̄

E(s,a)∼µ,s′∼P (·|s,a)

(
φ(s, a)>θ̄ − γφ(s′, a′)>θ

)2

= γΣ−1
covΣcrθ.
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Together with the previous equation, this implies that for all θ, γΦΣ−1
covΣcrθ = γP (π)Φθ.

Thus, we conclude that

‖ΦΣ−1
covΣcrθ‖∞ = ‖P (π)Φθ‖∞

≤ ‖Φθ‖∞,

where we have used the fact that P (π) is row stochastic so ‖P (π)‖1 ≤ 1.

Lemma 31 Assume that the rewards are linearly realizable in the feature mapping φ. That
is, there exists a vector θ?r ∈ Rd such that for all (s, a) ∈ S × A, Er(s, a) = φ(s, a)>θ?r .

Then, ‖Σ−1/2
cov θφ,r‖2 ≤ 1.

Otherwise, if reward realizability does not hold ‖Σ−1/2
cov θφ,r‖2 ≤

√
d.

Proof Expanding out the definition of θφ,r,

‖Σ−1/2
cov θφ,r‖22 = tr

[
Σ−1/2

cov E[φ(s, a)r(s, a)]Eφ(s, a)>r(s, a)Σ−1/2
cov

]
Under realizability, E[φ(s, a)r(s, a)] = Eφ(s, a)φ(s, a)>θ?r . Hence, the expression above can
be rewritten as,

tr
[
Σ−1

covE[φ(s, a)φ(s, a)>]θ?rθ
?>
r Eφ(s, a)φ(s, a)>

]
= E(φ(s, a)>θ?r)

2 = Er(s, a)2 ≤ 1.

If the rewards are not linearly realizable in φ, then by Jensen’s inequality,

‖Σ−1/2
cov Eφ(s, a)r(s, a)‖22 ≤ E‖Σ−1/2

cov φ(s, a)r(s, a)‖22
= Etr

[
Σ−1/2

cov Eφ(s, a)φ(s, a)>r(s, a)2Σ−1/2
cov

]
≤ sup

s,a
r(s, a)2tr [I]

≤ d.

A.6 Proof of Proposition 12: FQI lower bound

Recall the functional form of the FQI approximation,

θ̂T =
T∑
k=0

(γΣ−1
covΣcr)

kΣ−1
cov(θφ,r + z) = µ+ v,

where Eθ̂T = µ :=
∑T

k=0(γΣ−1
covΣcr)

−1Σ−1
covθφ,r and v :=

∑T
k=0(γΣ−1

covΣcr)
−1Σ−1

covz. Expand-
ing out and using Ev = 0, we have that

E‖θ̂T − Eθ̂T ‖22 = E‖θ̂T ‖22 − ‖Eθ̂T ‖22
= E‖µ‖22 + E‖v‖22 − ‖Eθ̂T ‖22
= E‖v‖22.
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Now, letting A = γΣ−1
covΣcr, we have that

E‖v‖22 = tr

[
(

T∑
k=0

Ak)>Λ(

T∑
k=0

Ak)

]
≥ σmin(Λ)‖

T∑
k=0

Ak‖2op

= σmin(Λ) sup
‖v‖2=1

v>(
T∑
k=0

Ak)>(
T∑
k=0

Ak)v,

where we have used tr
[
A>A

]
= ‖A‖2F ≥ ‖A‖2op (‖ · ‖F denotes the Frobenius norm of a

matrix) and the variational characterization of the operator norm for symmetric matrices.
By assumption on the spectral radius, A has an eigenvector u with eigenvalue λ such that
|λ| > 1. Therefore,

sup
‖v‖2=1

v>(

T∑
k=0

Ak)>(

T∑
k=0

Ak)v ≥ u>(

T∑
k=0

Ak)>(

T∑
k=0

Ak)u = ‖u‖22(

T∑
k=0

λk)2 =

(
λT+1 − 1

λ− 1

)2

.

Note that if |λ| = 1, this series can grow linearly in T (e.g if λ = 1) or oscillate (if λ = −1).
The last equality only holds for λ 6= 1.

A.7 Extensions to ridge regression

One might wonder whether adding `2 regularization, that is, an λ‖θ‖22, λ > 0 additive
penalty to the FQI or LSTD objective in Equation 2, could help mitigate the divergence
phenomenon outlined in Proposition 12 or the limits of linear estimators from Theorem 22.

For finite-dimensional problems with full rank covariance, typical analyses of ridge re-
gression set the regularizer λ to shrink with the number of samples n. In this case, the ridge
estimator achieves consistent parameter recovery and asymptotically returns the same so-
lution as just performing ordinary least squares. Therefore, we can expect similar blowup if
stability fails (in fact, this phenomenon is verified empirically by Wang et al. (2021b)). On
the other hand, if the parameter λ is lower bounded by a constant, then ridge regression will
have constant bias which will then be amplified by the number of rounds T . Hence, adding
regularization does not avoid the need for stability when performing fitted Q-iteration. Sim-
ilar arguments demonstrate why regularization is unlikely to overcomes the limitations of
least squares temporal differencing learning (or other linear estimators) in settings where
invertibility does not hold.

Appendix B. Supporting Arguments for Section 4: LSTD

B.1 Proof of Theorem 13: invertibility is sufficient for LSTD

Recall the closed form expression of the empirical LSTD estimator:

θ̂LS = (I − γΣ̂−1
covΣ̂cr)

†Σ̂−1
covθ̂φ,r.

Multiplying on the left by Σ
1/2
cov ,

Σ1/2
cov θ̂LS = Σ1/2

cov(I − γΣ̂−1
covΣ̂cr)

†Σ−1/2
cov Σ1/2

covΣ̂−1
covθ̂φ,r

=
(

Σ1/2
cov(I − γΣ̂−1

covΣ̂cr)Σ
−1/2
cov

)†
(Σ1/2

covΣ̂−1
covθ̂φ,r),
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where we have used the identity (ABA−1)† = AB†A−1 for any invertible A and B. Similarly,

Σ1/2
covθ

?
γ =

(
Σ1/2

cov(I − γΣ−1
covΣcr)Σ

−1/2
cov

)−1
(Σ1/2

covΣ−1
covθφ,r).

Now defining the following quantities,

A := Σ1/2
cov(I − γΣ−1

covΣcr)Σ
−1/2
cov , Â := Σ1/2

cov(I − γΣ̂−1
covΣ̂cr)Σ

−1/2
cov

b := Σ1/2
covΣ−1

covθφ,r, b̂ := Σ1/2
covΣ̂−1

covθ̂φ,r.

We can rewrite the above expression as:

Σ1/2
cov(θ?γ − θ̂γ) = (A−1 − Â†)b+ Â†(b− b̂).

Therefore,

‖Σ1/2
cov(θ?γ − θ̂γ)‖2 ≤ ‖A−1 − Â†‖op‖b‖2 + ‖Â†‖op‖b− b̂‖2.

Using Lemma 32, since εop ≤ 1
2σmin(I − γΣ−1

covΣcr):

‖Σ1/2
cov(θ?γ − θ̂γ)‖2 .

εop

σmin(I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov )2

‖Σ−1/2
cov θφ,r‖2 +

εr

σmin(I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov )

.

Lemma 32 (Theorem 3.8 in Stewart (1990)) Let A ∈ Rm×n, with m ≥ n and let
Ã = A+ E. Then

‖Ã† −A†‖op ≤
1 +
√

5

2
max{‖Ã†‖2op, ‖A†‖2op}‖E‖op.

Furthermore, if ‖E‖op ≤ 1
2σmin(A), then

‖Ã† −A†‖op . ‖A†‖2op‖E‖op.

B.2 Proof of Proposition 14: Relating stability and invertibility

The first part of the proposition follows directly from Fact 1. For the second, again using
Fact 1:

1/σmin(I − γΣ−1/2
cov ΣcrΣ

−1/2
cov ) = ‖(I − γΣ−1/2

cov ΣcrΣ
−1/2
cov )−1‖op

= ‖
∞∑
k=0

(γΣ−1/2
cov ΣcrΣ

−1/2
cov )k‖op

≤
∞∑
k=0

‖(γΣ−1/2
cov ΣcrΣ

−1/2
cov )k‖op.

≤
∞∑
k=0

cond(Pγ)1/2

(
1− 1

‖Pγ‖op

)k/2
Here, we’ve used Lemma 26 in the last line. The final bound follows from applying the final
argument from the proof of Theorem 5.
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B.3 Proof of Proposition 17: Relationship to Mou et al. (2020)

The result follows from the proof of Corollary 1 in Mou et al. (2020). We include the
calculation for the sake of completeness. For any unit vector u,

(1− κ)‖u‖22 ≤ u>(I − γΣ−1/2
cov ΣcrΣ

−1/2
cov )u ≤ ‖(I − γΣ−1/2

cov ΣcrΣ
−1/2
cov )u‖op‖u‖2.

Therefore, ‖(I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov )−1‖op = 1/σmin(I − γΣ

−1/2
cov ΣcrΣ

−1/2
cov ) ≤ 1/(1− κ).

B.4 Proof of Proposition 19: contractivity implies stability

By the Schur Complement Lemma, the contractivity condition implies that

Σcov − ΣcrΣ
−1
covΣ>cr � 0.

Rearranging and multiplying on the left and the right by Σ
−1/2
cov ,

I � (Σ−1/2
cov ΣcrΣ

−1/2
cov )(Σ−1/2

cov ΣcrΣ
−1/2
cov )>.

Using the fact that γ ∈ (0, 1) and the identity that for any matrix A, ‖A‖2op = ‖AA>‖op,
we conclude

‖γΣ−1/2
cov ΣcrΣ

−1/2
cov ‖2op < 1.

Stability follows from the observation that the spectral radius of a matrix is always smaller
than the operator norm.

B.5 Proof of Proposition 20: gaps between stability and other conditions

Consider the following MDP with 4 states and no actions,

s0 s1

s2 s3

1

1
1

1

The reward distribution at every state is a mean-zero coin toss: R(s) = Unif({±1}) for
all s ∈ S. Now, consider the two-dimensional feature mapping,

φ(s0) = [1, 0]>, φ(s1) = [0, 1/ε]>, φ(s2) = [0, 1]>, φ(s3) = [ε, 0]>,

where ε > 0 is a problem parameter to be determined later. This MDP is (trivially) linearly
realizable with θ?γ = 0 because all rewards have 0 mean. If D place probability 1/2 on s0

and s2, then

γΣ−1/2
cov ΣcrΣ

−1/2
cov = γ

[
0 1/ε
ε 0

]
.
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This matrix has eigenvalues equal to γ and −γ for all values of ε > 0. Hence, its spectral
radius of this matrix is always strictly smaller than 1 and the OPE instance is stable (and
hence invertible).

For this problem, we can check that

Σnext =
1

2

[
ε2 0
0 1/ε2

]
and Σcov =

1

2

[
1 0
0 1

]
.

Therefore, Cds is the smallest positive number β such that

0 � 1

2

[
β − ε2 0

0 β − 1/ε2

]
Low distribution shift. While stability holds for all values of ε > 0, as ε→ 0, Cds goes
to ∞ (because 1/ε2 becomes arbitrarily large). Hence, stability holds, but low distribution
shift does not. This proves the first case.

Symmetric stability. Similarly, as ε→ 0, we can check that the two eigenvalues of

γΣ−1/2
cov ΣcrΣ

−1/2
cov + (γΣ−1/2

cov ΣcrΣ
−1/2
cov )>,

go to ±∞. Therefore, the symmetric stability condition (Assumption 16) also fails for this
problem.

Contractivity. From the argument in Proposition 19, we know that if contractivity (As-
sumption 18) held, then

‖γΣ−1/2
cov ΣcrΣ

−1/2
cov ‖op < 1.

However, a direct calculation shows that as ε→ 0, then ‖γΣ
−1/2
cov ΣcrΣ

−1/2
cov ‖op →∞. There-

fore, while stability holds, contractivity does not.

Bellman completeness. To prove the last case, we use a different example. In particular,
consider the following MDP (with no actions) presented in Amortila et al. (2020),

s0 s1
1

1

The rewards are R(s0) = 0 (almost surely) and ER(s1) = 1. The value function of any policy
is linearly realizable in the feature mapping φ(s0) = γ and φ(s1) = 1 with θ?γ = 1/(1− γ).
If the offline distribution places mass 1/2 on each state then,

γΣ−1/2
cov ΣcrΣ

−1/2
cov =

(γ
2

) γ2 + 1

γ + 1
.

This matrix (scalar) lies in the interval (0, 1) and is hence clearly stable and invertible.
However, Bellman completeness fails for this MDP. In particular, Bellman completeness
asserts that for every θ there exist a θ′ such that for all s ∈ S,

φ(s)θ′ = ER(s, a) + γEs′∼P (·|s)φ(s′) · θ
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In this case, this means that for all θ, there exists a θ′ such that

φ(s1) · θ′ = 1 + γ · φ(s1) · θ
φ(s0) · θ′ = 0 + γ · φ(s1) · θ.

Plugging in our choice of feature map, these equations become θ′ = 1+γ ·θ and γ ·θ′ = γ ·θ.
They clearly cannot be satisfied if we pick any θ 6= 0.

B.6 Bellman Residual Minimization Counterexample

Consider the following 3 state MDP with no actions and stochastic transitions:

s0

s2

s1

1/2

1/2

The feature mapping is:

φ(s0) =
γ

4
, φ(s1) =

1

2
, φ(s2) = 0.

Rewards are exactly 0 everywhere except for s1, where r(s1) = 1 deterministically. We can
check that this example is linearly realizable with θ?γ = 1

1−γ . However, it also holds that

Σcov =
γ2

16
, Σcr =

γ

16
, Σnext =

1

8
.

Hence, Σcov − γΣcr − γΣ>cr.+ γ2Σnext � 0, but BRM returns the wrong answer,

θBRM = (Σcov − γΣcr − γΣ>cr + γ2Σnext)
†(θφ,r − γEφ(s′, a′)r(s, a)) = 0,

since Eφ(s, a)r(s, a) = Eφ(s′, a′)r(s, a) = 0.

B.7 Proof of Theorem 22: necessity of invertibility for LSTD

We begin by proving two auxiliary claims and then move on to proving each part of the
theorem separately.

Claim 1 If the matrix I − γΣ−1
covΣcr is singular, then there exists a real vector v ∈ Rd such

that:

E
(s,a)∼D,s′∼P (·|s,a),a′∼π(s′)

φ(s, a)〈γ · φ(s′, a′)− φ(s, a), v〉 = 0.

Proof The matrix being rank deficient implies that there exists a vector v such that
(I − γΣ−1

covΣcr)v = 0, or equivalently, that the matrix γΣ−1
covΣcr has an eigenvector v with

eigenvalue 1. Because the matrix and eigenvalue are both real, we can also take v to be
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real. From here, v = γΣ−1
covΣcrv. Hence, Σcovv = γΣcrv. Expanding out the definitions of

these matrices,

Eφ(s, a)〈φ(s, a), v〉 = γEφ(s, a)〈φ(s′, a′), v〉.

Rearranging both terms to be on the same side we get the claim.

Claim 2 For any (s, a) ∈ S ×A,

φ(s, a) = −E

[ ∞∑
t=0

γt (γφ(st+1, at+1)− φ(st, at)) | (s0, a0) = (s, a), π

]
.

Proof The sum telescopes and limt→∞ γ
tEφ(st, at) = 0.

We conclude with the proof of Theorem 22:

Alternate reward. As per the presentation of theorem, the only difference between M
and M is the unknown reward. In particular, we define the new reward function R as

R(s, a) = R(s, a) +
1

2B
〈γ · φ(s′, a′)− φ(s, a), v〉 (36)

where v is as in Claim 1, s′ ∼ P (· | s, a), a′ ∼ π(s′), and B = sups,a ‖φ(s, a)‖2. Note that
by Cauchy-Schwarz, and the definition of B, for any s, s′, a, and a′:

| 1

2B
〈γ · φ(s′, a′)− φ(s, a), v〉| ≤ 1

2B
‖v‖2(‖φ(s, a)‖2 + ‖φ(s′, a′)‖2) ≤ 1

Therefore, |r(s, a)| is uniformly bounded by 2.

Proof of identical moments. Since the features, offline distribution, and transitions are
all the same, then Σcov = Σ̄cov,Σcr = Σ̄cr, and Σnext = Σ̄next. Next, by expanding out the
new reward function:

θ̄φ,r = E(s,a)∼Dφ(s, a)r̄(s, a)

= Eφ(s, a)r(s, a) +
1

2B
E

(s,a)∼D,s′∼P (·|s,a),a′∼π(s′)
φ(s, a)〈γ · φ(s′, a′)− φ(s, a), v〉

= Eφ(s, a)r(s, a) + 0,

where the last line follows from Claim 1.

Proof of realizability. Expanding out the definition of Q̄π,
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Q̄π(s, a) = E

[ ∞∑
t=0

γt · r̄(st, at) | (s0, a0) = (s, a), π

]

= E

[ ∞∑
t=0

γt · r(st, at) | (s0, a0) = (s, a), π

]

+ E

[ ∞∑
t=0

γt · 〈γ · φ(st+1, at+1)− φ(st, at),
1

2B
v〉 | (s0, a0) = (s, a), π

]

= Qπ(s, a)− φ(s, a)>v
1

2B

= φ(s, a)>(θ?γ −
1

2B
v),

where in the 3rd line we have used Claim 2 and in the last one used the assumption that
Qπ is linearly realizable. In short, Q̄π is linearly realizable with weight vector θ?γ− (2B)−1v.

Proof of different Q functions By the previous part establishing the realizability of
Q̄π,

ED(Qπ(s, a)−Q′π(s, a))2 =
1

4B2
v>Σcovv ≥

σmin(Σcov)

4B2
‖v‖22.

The precise statement follows from the fact that v has unit length.

Appendix C. Concentration Analysis: Proof of Lemma 4

Lemma 33 (Matrix Bernstein, Tropp (2012)) Let S1, . . . , Sn ∈ Rd1×d2 be random,
independent matrices satisfying E[Sk] = 0, max{‖E[SkS

>
k ]‖op, ‖E[S>k Sk]‖op} ≤ σ2, and

‖Sk‖op ≤ L almost surely for all k. Then, with probability at least 1− δ for any δ ∈ (0, 1),

‖ 1

n

n∑
k=1

Sk‖op ≤
√

2σ2 log((d1 + d2)/δ)

n
+

2L log((d1 + d2)/δ)

3n
.

Lemma 34 (Vector Bernstein, Minsker (2017)) Let v1, . . . , vn be independent vectors
in Rd such that Evk = 0, E‖vk‖22 ≤ σ2, and ‖vk‖2 ≤ L almost surely for all k. Then, with
probability 1− δ for any δ ∈ (0, 1),

‖ 1

n

n∑
i=1

vi‖2 ≤
√

2σ2 log(28/δ)

n
+

2L log(28/δ)

3n
.

To shorten the notation in our concentration analysis, we use xi = φ(si, ai) and yi =
φ(s′i, a

′
i), and ri = r(si, ai). With this shorthand:

Σcov = Exx>, Σ̂cov =
1

n

n∑
i=1

xix
>
i , Σcr = Exy>, Σ̂cr =

1

n

n∑
i=1

xiy
>
i , (37)

θφ,r = Exr, θ̂φ,r =
1

n

n∑
i=1

xiri.
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C.1 Bounding εop

Lemma 35 If n & ρ2
s log(d/δ) then, with probability 1− δ,

‖Σ1/2
cov(γΣ̂−1

covΣ̂cr)Σ
−1/2
cov − γΣ−1/2

cov ΣcrΣ
−1/2
cov ‖op .

√
max(σ2

cr, σ
2
covCds) log(d/δ)

n

+
max(C1/2

ds ρ
2
s, ρsρs′) log(d/δ)

n
.

Proof Let Â := γΣ̂−1
covΣ̂cr. We start by using the following error decomposition,

‖Σ1/2
covÂΣ−1/2

cov − γΣ−1/2
cov ΣcrΣ

−1/2
cov ‖op

≤ γ‖Σ1/2
covΣ̂−1

covΣ1/2
cov · Σ−1/2

cov

(
Σ̂cr − Σcr

)
Σ−1/2

cov ‖op + γ‖Σ1/2
cov(Σ̂−1

cov − Σ−1
cov)Σ1/2

cov · Σ−1/2
cov ΣcrΣ

−1/2
cov ‖op

≤ γ ‖Σ1/2
covΣ̂−1

covΣ1/2
cov‖op︸ ︷︷ ︸

:=T1

· ‖Σ−1/2
cov

(
Σ̂cr − Σcr

)
Σ−1/2

cov ‖op︸ ︷︷ ︸
:=T2

+ ‖Σ1/2
cov(Σ̂−1

cov − Σ−1
cov)Σ1/2

cov‖op︸ ︷︷ ︸
:=T3

· ‖γΣ−1/2
cov ΣcrΣ

−1/2
cov ‖op︸ ︷︷ ︸

:=T4

.

We now bound each of these terms separately.

Bound on T2. We apply the Matrix Bernstein inequality on Σ
−1/2
cov

(
Σ̂cr − Σcr

)
Σ
−1/2
cov .

Here we define

Sk = Σ−1/2
cov

(
xky

>
k − Σcr

)
Σ−1/2

cov

which is centered and satisfies:

‖Sk‖ ≤ ‖Σ−1/2
cov xky

>
k Σ−1/2

cov ‖+ ED‖Σ−1/2
cov xy>Σ−1/2

cov ‖ ≤ 2 sup
(x,y)∈supp(D)

‖Σ−1/2
cov xy>Σ−1/2

cov ‖

≤ 2 sup
(x,y)∈supp(D)

‖Σ−1/2
cov x‖ · ‖Σ−1/2

cov y‖ ≤ 2ρsρs′ .

Therefore for σ2
cr defined as in Equation 12, , we get that with probability 1− δ,

T2 ≤
√

2σ2
cr log(2d/δ)

n
+

4ρsρs′ log(2d/δ)

3n
.

Bound on T1 and T3. Essentially the same argument as for the bound on T2 reveals
that,

‖Σ−1/2
cov (Σ̂cov − Σcov)Σ−1/2

cov ‖op ≤
√

2σ2
cov log(2d/δ)

n
+

2ρ2
s log(2d/δ)

3n
=: τ. (38)

This inequality directly implies that

1− τ ≤ λmin(Σ−1/2
cov Σ̂covΣ−1/2

cov ) ≤ λmax(Σ−1/2
cov Σ̂covΣ−1/2

cov ) ≤ 1 + τ,
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which in particular implies that Σ
−1/2
cov Σ̂covΣ

−1/2
cov is invertible whenever τ < 1/2, a fact that

is ensured by our lower bound on n. Therefore:

T1 = ‖Σ1/2
covΣ̂−1

covΣ1/2
cov‖ =

1

λmin(Σ
−1/2
cov Σ̂covΣ

−1/2
cov )

≤ 1

1− τ
. (39)

More generally, we have that:

1− 2τ ≤ λmin(Σ1/2
covΣ̂−1

covΣ1/2
cov) ≤ λmax(Σ1/2

covΣ̂−1
covΣ1/2

cov) ≤ 1 + 2τ.

Using the fact that 1/(1 + τ) ≥ 1 − 2τ and 1/(1 − τ) ≤ 1 + 2τ for τ ≤ 1/2, this directly
yields

T3 = ‖Σ1/2
cov(Σ̂−1

cov − Σ−1
cov)Σ1/2

cov‖ ≤ 2τ. (40)

Thus, we have bounded T1 and T3. In particular, for τ < 1/2, T1 ≤ 2, and T3 ≤ 2τ .

Bound on T4. For T4, no concentration argument is required. Instead, a Schur comple-
ment argument implies that,

‖Σ−1/2
cov ΣcrΣ

−1/2
cov ‖2op ≤ ‖Σ−1/2

cov ΣnextΣ
−1/2
cov ‖op ≤ Cds,

where we’ve used Σnext � CdsΣcov. Hence, T4 ≤ C1/2
ds .

Wrapping up. Taking a union bound, we obtain that

εop .

√
max(σ2

cr, σ
2
covCds) log(d/δ)

n
+

max(C1/2
ds ρ

2
s, ρsρs′) log(d/δ)

n
.

C.2 Bounding εr

Lemma 36 If n & ρ2
s log(d/δ) then, with probability 1− δ,

‖Σ1/2
covΣ̂−1

covθ̂φ,r − Σ−1/2
cov θφ,r‖2 .

√
max(‖Σ−1/2

cov θφ,r‖22σ2
cov, σ

2
r ) log(d/δ)

n
+
‖Σ−1/2

cov θφ,r‖2ρ2
s log(d/δ)

n
.

Proof The ideas are very similar to Lemma 35. In this case, the relevant error decompo-
sition is,

εr = ‖Σ1/2
covΣ̂−1

covθ̂φ,r − Σ−1/2
cov θφ,r‖2

≤ ‖Σ1/2
covΣ̂−1

covΣ1/2
cov‖op︸ ︷︷ ︸

:=T1

‖Σ−1/2
cov (θφ,r − θ̂φ,r)‖2︸ ︷︷ ︸

:=T2

+ ‖(Σ1/2
covΣ̂−1

covΣ1/2
cov − I)‖op︸ ︷︷ ︸

:=T3

‖Σ−1/2
cov θφ,r‖2.

Bound on T1 and T3. Whenever τ , defined as in Equation 38, is strictly less than 1/2,
the analysis therein (in particular, Equations 40 and 39) proves that T1 ≤ 2 and T3 ≤ 2τ .
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Bound on T2. We apply the vector Bernstein inequality, Lemma 34, on the vectors

vi = Σ−1/2
cov xiri − Σ−1/2

cov θφ,r.

Note that, since the rewards have magnitude bounded by 1,

sup
i
‖vi‖2 ≤ sup

i
‖Σ−1/2

cov xiri‖2 + ‖Σ−1/2
cov θφ,r‖2 ≤ ‖Σ−1/2

cov xiri‖2 + E‖Σ−1/2
cov xr‖2 ≤ 2ρs,

and,

E‖vi‖22 = E‖Σ−1/2
cov xiri‖22 − ‖Σ1/2

covθφ,r‖22 = σ2
r .

Applying vector Bernstein,

T2 ≤
√

2σ2
r log(28/δ)

n
+

4ρs log(28/δ)

3n
.

Wrapping up. Combining these, we get that,

εr .

√
max(‖Σ−1/2

cov θφ,r‖22σ2
cov, σ

2
r ) log(d/δ)

n
+
‖Σ−1/2

cov θφ,r‖2ρ2
s log(d/δ)

n
.

C.3 Bounding variances

Bounding σ2
r Since the rewards r(s, a) satisfy |r(s, a)| ≤ 1, we have that

E‖vi‖22 = E‖Σ−1/2
cov xiri‖22 − ‖Σ1/2

covθφ,r‖22 ≤ tr
[
Σ−1/2

cov Er2
i xix

>
i Σ−1/2

cov

]
≤ d.

Bounding σ2
cr. Again using the notation from Equation 37, and letting

Sk = Σ−1/2
cov

(
xky

>
k − Σcr

)
Σ−1/2

cov

bounding σ2
cr is equivalent to bounding the operator norms of:

E[SkS
>
k ] = E[‖Σ−1/2

cov y‖22(Σ−1/2
cov x)(Σ−1/2

cov x)>]− Σ−1/2
cov ΣcrΣ

>
crΣ
−1/2
cov

E[S>k Sk] = E[‖Σ−1/2
cov x‖22(Σ−1/2

cov y)(Σ−1/2
cov y)>]− Σ−1/2

cov Σ>crΣcrΣ
−1/2
cov .

We will subsequently show that, for any vector v ∈ Rd, we have

v>(E[SkS
>
k ])v ≥ 0, v>(E[S>k Sk])v ≥ 0. (41)

Additionally, for any random variables (a, b) ∈ R×Rd from some joint distribution, Holder’s
inequality implies that

‖E[a2bb>]‖op = sup
v,‖v‖2=1

E[a2(v>b)2] ≤ min{sup{a} sup
v

E[(v>b)2], sup
b,v
{(v>b)2}E[a2]}

= min{sup{a}‖E[bb>]‖op, sup{‖b‖22}E[a2]}.
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Using these two facts and positive semi-definiteness, we have that

‖E[SkS
>
k ]‖op ≤ ‖E[‖Σ−1/2

cov y‖22(Σ−1/2
cov x)(Σ−1/2

cov x)>]‖op

≤ sup
y
‖Σ−1/2

cov y‖22‖E[(Σ−1/2
cov x)(Σ−1/2

cov x)>]‖

≤ ρ2
s′ .

Essentially the same proof yields a similar bound on ‖E[S>k Sk]‖:

‖E[S>k Sk]‖op ≤ ‖E[‖Σ−1/2
cov x‖22(Σ−1/2

cov y)(Σ−1/2
cov y)>]‖op ≤ ρ2

0‖Σ−1/2
cov ΣnextΣ

−1/2
cov ‖op ≤ ρ2

sCds.

Alternatively, we can get

‖E[S>k Sk]‖op ≤ ‖E[‖Σ−1/2
cov x‖22(Σ−1/2

cov y)(Σ−1/2
cov y)>]‖op ≤ E[‖Σ−1/2

cov x‖22‖(Σ−1/2
cov y)(Σ−1/2

cov y)>]‖]
= E[‖Σ−1/2

cov x‖22‖Σ−1/2
cov y‖22] ≤ ρ2

s′d.

Let us now verify (41). Rebinding x̃ = Σ
−1/2
cov x, ỹ = Σ

−1/2
cov y, we have

v>(E[SkS
>
k ])v = E[(v>x̃)2‖ỹ‖22]− (E(v>x̃)ỹ)>(E(v>x̃)ỹ) = E‖(v>x̃)ỹ‖22 − ‖E[(v>x̃)ỹ]‖22 ≥ 0,

where the last inequality is by convexity. In conclusion,

σ2
cr ≤ max(ρ2

s′ ,min(ρ2
sCds, ρ

2
s′d)).

Bounding σ2
cov. For x̃ = Σ

−1/2
cov φ(s, a), the variance σ2

cov is equal to

σ2
cov = ‖Ex̃x̃>x̃x̃> − I‖op = ‖E‖x̃‖22x̃x̃> − I‖op.

While this quantity is always less that ρ2
s, one can achieve tighter bounds if the offline

distribution is hypercontractive as per the following definition:

Definition 37 A distribution D over random vectors x is L8-L2 hypercontractive if there
exists a positive constant L such that for all unit vectors u,

Ex∼D((x− Ex)>u)8 ≤ L2
(
Ex∼D((x− Ex)>u)2

)4
.

Gaussians or strongly log-concave distributions are some examples of probability measures

that satisfy this condition. If Σ
−1/2
cov φ(s, a) is L8-L2 hypercontractive, then one can show

that

σ2
cov . Ltr

[
I + µµ>

]
‖I + µµ>‖op,

where µ := Σ
−1/2
cov E(s,a)∼Dφ(s, a). We point the interested reader to Lemma A.3 in Chera-

panamjeri et al. (2020) for a more formal derivation.
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Appendix D. Analyzing the Misspecified Case: Proof of Proposition 25

By definition of θ?∞, we have that for all (s, a) ∈ S ×A we can write Qπ as

Qπ(s, a) = φ(s, a)>θ?γ + f(s, a), (42)

where f(s, a) = Qπ(s, a)− φ(s, a)>θ?γ and sups,a |f(s, a)| ≤ ε∞.

From the relationship above, we have that for Q̂π(s, a) = φ(s, a)>θ̂

|Qπ(s, a)− Q̂π(s, a)| = |φ(s, a)>(θ?∞ − θ̂) + f(s, a)|

≤ ‖Σ−1/2
cov φ(s, a)‖2‖Σ1/2

cov(θ?∞ − θ̂)‖2 + |f(s, a)|. (43)

Applying the triangle inequality again,

‖Σ1/2
cov(θ?∞ − θ̂)‖2 ≤ ‖Σ1/2

cov(θ?∞ − θ?fp)‖2 + ‖Σ1/2
cov(θ?fp − θ̂)‖2. (44)

By assumption on θ̂, ‖Σ1/2
cov(θ?fp − θ̂)‖2 ≤ εfp. Therefore, it remains to bound:

‖Σ1/2
cov(θ?∞ − θ?fp)‖2.

By Claim 3, we have that Σ
1/2
covθ?∞ is equal to

(I − γΣ−1/2
cov ΣcrΣ

−1/2
cov )−1Σ−1/2

cov θφ,r +

(I − γΣ−1/2
cov ΣcrΣ

−1/2
cov )−1Σ−1/2

cov E
(s,a)∼D

s′∼P (·|s,a),a′∼π(s′)

φ(s, a)(φ(s, a)>θ?∞ − γφ(s′, a′)>θ?∞ − r(s, a)).

Note that Σ
1/2
covθ?fp is exactly equal to (I − γΣ

−1/2
cov ΣcrΣ

−1/2
cov )−1Σ

−1/2
cov θφ,r. Furthermore, by

the second part of Claim 3, the `2 norm of the second term in the expression above is upper

bounded by ρsε∞/σmin(I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov ). Consequently,

‖Σ1/2
cov(θ?∞ − θ?fp)‖2 ≤

ρs

σmin(I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov )

ε∞. (45)

Combining Equations 43, 44, and 45, we get that

|Qπ(s, a)− Q̂π(s, a)| ≤ ‖Σ−1/2
cov φ(s, a)‖2(εfp +

ρs

σmin(I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov )

ε∞) + ε∞.
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Claim 3 Let θ?∞ be defined as in Equation 28 and let A := I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov then,

Σ1/2
covθ

?
∞ − Σ1/2

covθ? = A−1Σ−1/2
cov θφ,r

+A−1Σ−1/2
cov E

(s,a)∼D
s′∼P (·|s,a),a′∼π(s′)

φ(s, a)(φ(s, a)>θ?∞ − γφ(s′, a′)>θ?∞ − r(s, a)).

where ‖A−1Σ
−1/2
cov E

(s,a)∼D
s′∼P (·|s,a),a′∼π(s′)

φ(s, a)(φ(s, a)>θ?∞−γφ(s′, a′)>θ?∞−r(s, a))‖2 is less than

or equal to:

ε∞

σmin(I − γΣ
−1/2
cov ΣcrΣ

−1/2
cov )

ρs.

Proof By the Bellman equation, we have that,

Qπ(s, a) = Er(s, a) + γ · E
s′∼P (·|s,a)
a′∼π(s′)

Qπ(s′, a′).

Using the decomposition from Equation 42, the following relationship holds for all (s, a) ∈
S ×A,

φ(s, a)>θ?γ = Er(s, a) + γ · E
s′∼P (·|s,a)
a′∼π(s′)

φ(s′, a′)>θ?γ − f(s, a) + γ · E
s′∼P (·|s,a)
a′∼π(s′)

f(s′, a′).

Now we do a couple of things, we multiply on the left by Σ
−1/2
cov φ(s, a) and take expectations

with respect to (s, a) ∼ D. Rearranging, we get the following equation:

Σ1/2
covθ

?
γ = (I − γΣ−1/2

cov ΣcrΣ
−1/2
cov )−1Σ−1/2

cov θφ,r

+ (I − γΣ−1/2
cov ΣcrΣ

−1/2
cov )−1 E

s′∼P (·|s,a)
a′∼π(s′)

Σ−1/2
cov φ(s, a)(γ · f(s′, a′)− f(s, a))

Focusing on the second term, we have that for any (s, a) ∈ S × A, |f(s, a)| ≤ ε∞ and

‖Σ−1/2
cov φ(s, a)‖2 ≤ ρs. Therefore,

‖(I − γΣ−1/2
cov ΣcrΣ

−1/2
cov )−1 E

s′∼P (·|s,a)
a′∼π(s′)

Σ−1/2
cov φ(s, a)(γ · f(s′, a′)− f(s, a))‖2

≤ ε∞ · ρs
σmin(I − γΣ

−1/2
cov ΣcrΣ

−1/2
cov )

.

Moreover, f(s, a) = Qπ(s′, a′)−φ(s, a)>θ?∞ and Qπ(s, a) = Er(s, a) + γ · E
s′∼P (·|s,a)
a′∼π(s′)

Qπ(s′, a′).

Using these identities, we have that:

γ · f(s′, a′)− f(s, a) = φ(s, a)>θ?∞ − γφ(s′, a′)>θ?∞ − r(s, a).
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