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Abstract

In this paper, a unified batch-online learning approach is introduced to learn a linear represen-
tation of nonlinear system dynamics using the Koopman operator. The presented system modeling
approach leverages a novel incremental Koopman-based update law that regains a mini-collection
of samples stored in a memory to minimize not only the instantaneous Koopman operator’s identi-
fication errors but also the identification errors for the collection of retrieved samples. Discontin-
uous modifications of gradient flows are presented for the online update law to assure finite-time
convergence under easy-to-verify conditions defined on the batch of data. Therefore, this unified
online-batch framework allows joint sample- and time-domain analysis to converge the Koopman
operator’s parameters. More specifically, it is shown that if the collected mini-batch of samples
guarantees a rank condition, then the finite-time guarantee in the time domain can be certified, and
the settling time depends on the quality of collected samples being reused in the update law. More-
over, the efficiency of the proposed Koopman-based update law is further analyzed by showing that
the identification regret in continuous time grows sub-linearly with time. Furthermore, to avoid
learning corrupted dynamics due to the selection of an inappropriate set of Koopman observables,
a higher-layer meta-learner employs a discrete Bayesian optimization algorithm to obtain the best
library of observable functions for the operator. Since finite-time convergence of the Koopman
model for each set of observables is guaranteed under a rank condition on stored data, the fitness
of each set of observables can be obtained based on the identification error on the stored samples
in the proposed framework and even without implementing any controller based on the learned
system. Finally, to confirm the effectiveness of the proposed scheme, two simulation examples are
presented.
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1. Introduction

Koopman operator theory provides an elegant framework to construct (infinite-dimensional) linear
representations for nonlinear dynamical systems from input-output data and, as a result, a solid
framework to use established model-based linear control methods. More specifically, Koopman
operator theory relies on a nonlinear transformation to lift the original state-space to a space of
functions, referred to as observable functions, under which their flow along trajectories of the system
is described by a linear map with generally an infinite-dimensional state space. Finite-dimensional
approximations of the Koopman operator from data has been widely considered (Budišić et al.,
2012; Bakker et al., 2019), mainly using Dynamic Mode Decomposition (DMD) (Tu et al., 2013)
and Extended Dynamic Decomposition (EDMD) (Williams et al., 2015). These approaches are
mainly presented for discrete-time (DT) systems. Continuous-time (CT) formulations for system
dynamics, however, can be methodologically preferred over DT formulations for the control of
many systems, such as safety-critical systems. For example, control-theoretic analyses such as
Nagumo’s theorem (which is fundamental for characterizing the forward invariance of safe sets) are
not applicable for general DT systems (Maghenem and Sanfelice, 2018). Despite its advantages,
CT Koopman representation is scarce (Kaiser et al., 2021).

Koopman operator-based identification techniques mainly use a large batch of data samples as
a full training data set to learn offline the Koopman model. On the one hand, since the size of the
required batch of data set is generally huge for high-dimensional Koopman-based representations,
training on the full data at once can incur a high cost of computing resources. Moreover, a majority
of practical control systems are not able to wait until gathering a large and rich dataset and learning
the accurate model to make decisions, and they need to make decisions by learning the model
on the fly by using only available data samples which incrementally become available over time
(Ayoobi et al., 2021). On the other hand, even though online or incremental learning allows fast and
computationally cheap (at least sub-linear time and space complexity) learning algorithms, it can
only provide generalization guarantees (i.e., learning the exact system parameters) if a persistency
of excitation condition on the richness of data is satisfied, which is hard to guarantee when samples
are collected incrementally over time.

Another factor that has a huge impact on the performance of the Koopman-based identification,
besides its learning rule, is the selection of observable functions. EDMD can embody Koopman
observables (i.e., eigenfunctions) that are nonlinear functions of the state (Generally sets of radial
basis functions (Williams et al., 2016; Korda and Mezić, 2018) and polynomials (Williams et al.,
2015; Proctor et al., 2018)). Even though a large size of observables might lead to better accuracy,
it is desired to learn reduced-order Koopman-based models that are amenable to control-system ap-
proaches (Williams et al., 2015; Kutz et al., 2016). Moreover, some eigenfunctions can be distorted
when projected into a finite-dimensional measurement subspace, causing undesirable performance
degradation in the learning process. Instead of choosing a dictionary of observable functions a
priori, another approach is to use neural networks to learn the observable functions from the data
(Yeung et al., 2019; Li et al., 2017). These methods, however, typically separate learning the Koop-
man observables and its model parameters and are based on the availability of a huge batch of i.i.d
samples.

In sharp contrast to the existing offline Koopman operator identifier, a novel data-driven bilevel
learning algorithm is presented to jointly learn the efficient set of observables and the correspond-
ing Koopman parameters. The proposed learning scheme is composed of two layers: a lower-layer
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parameter learning and a higher-layer structure learning. In the lower layer (so-called base learner),
a unified batch-online learning framework is presented for learning the system Koopman operators’
parameters through an experience-replay gradient descent (ERGD) (Modares et al., 2013; Chowd-
hary et al., 2013; Yang et al., 2014; Liu et al., 2014; Chowdhary and Johnson, 2010; Kamalapurkar
et al., 2017; Vamvoudakis et al., 2015; Zhao et al., 2015; Zhang et al., 2016; Cao et al., 2017; Jha
et al., 2019; Parikh et al., 2019; Tatari et al., 2017, 2018; Walters et al., 2018; Yang and He, 2019;
Jiang et al., 2019; Yang et al., 2020; Vahidi-Moghaddam et al., 2020) update law that not only min-
imizes the current Koopman operator’s identification errors online but also the identification errors
for a batch of past samples collected in a history stack. To achieve finite-time convergence guarantee
(Lu et al., 2016; He and Song, 2017; Romero and Benosman, 2021; Xia et al., 2019; Song and Wei,
2019; Romero and Benosman, 2020b; Zhao and Liu, 2020; Romero and Benosman, 2020a; Tatari
et al., 2021) of the presented Koopman learning approach with a prescribed settling time, a discon-
tinuous ERGD update law is presented and Filippov differential inclusions along with finite-time
Lyapunov stability theory are leveraged to analyze these discontinuous flows and the performance
of the Koopman learned model. It is shown that the settling time and generalization capability of
the learned model depend on the maximum eigenvalue of the matrix formed by the mini-batch of
collected data that are being continually reused during online learning. The efficiency of the pro-
posed Koopman-based update law is further analyzed by showing that the identification regret in
continuous time grows sub-linearly with time.

In the higher layer (so-called meta-learner), a discrete Bayesian optimization algorithm (Brochu
et al., 2010) is used to learn the best library of observable functions. More specifically, adapting
the lifted state (library of observable functions) of the base learner is performed in a higher layer
to develop a model that is of high fidelity but also has as low dimensionality as possible. Since
finite-time convergence of the Koopman model for each set of observables is guaranteed under a
rank condition on stored data, the fitness of each set of observables can be obtained based on the
identification error on the stored samples in the proposed framework and even without implementing
any controller based on the learned system. Finally, two simulation examples are given to verify the
effectiveness of the proposed scheme.

The rest of this paper is organized as follows: Some preliminaries are provided in Section 2.
The problem formulation is provided in Section 3. The main theoretical results are provided and
proved in Section 4. Section 5 presents some simulation results to verify the performance of the
proposed control scheme. Finally, Section 6 provides the conclusion for the paper.

Notation. Throughout the paper, R and R+ represent the set of real numbers and positive
real numbers, respectively. Rn and Rn×m denote n-dimensional Euclidean space and (n×m)-
dimensional real matrices space. I denotes the identity matrix of the proper dimension. ∥ . ∥
denotes the Euclidean norm of a vector or the induced 2-norm of a matrix. We use ⊤ to denote
the transpose operator. A > 0 denotes that the matrix A is positive definite. We use λmin(A) (resp.
λmax(A)) to denote the minimum (resp. maximum) eigenvalues of the square matrix A. The Kro-
necker product of two matrices A and B is denoted as A⊗B. For a function f , f ≥ 0 denotes that
f is positive semi-definite. K : S1→→S2 denotes a set-valued map K for given sets S1 and S2 such
that s ∈ S1⇒K (s)⊆ S2.
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2. Preliminaries

Some basic preliminaries are briefly introduced in this section. Consider a vector differential equa-
tion described in the form of

ẋ(t) = I (x(t))
x(0) = x0

(1)

where I :Rn 7→Rn may be discontinuous, but Lebesgue measurable inside an open region R ⊂Rn,
R ̸= /0, and essentially locally uniformly bounded (i.e., I is bounded a.e. (almost everywhere)
inside a bounded neighborhood of the point x ∈ Rn, ∀x). Note that the discontinuous system (1)
can be seen as a Filippov differential inclusion, and in this sense, the following definition formally
describes a solution of (1).

Definition 1 (Filippov, 2013; Paden and Sastry, 1987) A Filippov solution of the vector differential
equation (1) on an interval [0,τ) is defined to be an absolutely continuous function x : [0,τ) 7→ Rn

with 0 < τ ≤ ∞ such that x(0) = x0 and

ẋ(t) ∈K[I ](x(t)), (2)

holds for almost all t ∈ [0,τ), where the Filippov set-valued map K[I ] : Rn ⇒ Rn is described by

K[I ](x)≡
⋂

δ>0

⋂
S: µS=0

co{I (B(x,δ )\S)}, (3)

where co denotes the convex closure, B(x,δ ) denotes the open ball of radius δ with the center x,
µ denotes the Lebesgue measure, , and

⋂
S: µS=0

denotes the intersection over all sets S where S runs

over all zero-measure sets of Rn. Moreover, the Filippov solution x is called maximal if it cannot be
extended (Cortés, 2008).

Definition 2 (Thieme, 2019) A set-valued function K[I ] :Rn ⇒Rn is called upper semi-continuous
at the point x if, for any ε > 0, there exists some δ > 0 such that K[I ] (B(x,δ )) is a subset of an
open ε-neighborhood of K[I ](x). If K[I ] is upper semi-continuous at each point x ∈ Rn, then it
is said to be upper semi-continuous.

Condition 1 K[I ] : Rn ⇒ Rn is upper semi-continuous and has compact, nonempty, and convex
values.

Lemma 1 (Paden and Sastry, 1987) Consider Filippov differential inclusion (2). There exists a
zero-level set NI , i.e., µNI = 0, such that (3) can be computed as

K[I ](x) = co{limI (xi) |xi→ x, xi /∈ S∪NI } , (4)

where S is any Lebesgue-zero measure set, i.e., µS = 0. In particular, K[I ](x) = {I (x)} provided
that I be continuous at the fixed point x.

Now, let us introduce generalized derivatives and gradients to deal with non-smooth Lyapunov
functions.
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Definition 3 Let V (·) : Rn 7→R be a locally Lipschitz function. Then, the Clarke upper generalized
derivative of V (.) at x in the direction of v (also called generalized directional derivative) is defined
as

V ◦(x;v) := limsup
x′→x t→0+

V (x′+ tv)−V (x′)
t

. (5)

Definition 4 V (·) : Rn 7→ R is called regular if for all v:
1) the usual one-sided directional derivative V (·)

V ′(x;v) := lim
t→0

V (x+ tv)−V (x)
t

, (6)

exists for all v;
2) V ◦(x;v) =V ′(x;v).

Definition 5 The Clarke generalized gradient of V (·) at x is the set

∂V (x) = co
{

lim
i→+∞

∇V (xi) : xi→ x, xi /∈ S∪NV

}
, (7)

where co denotes convex hull and S⊂Rn is any zero-measure set and NV the zero-measure set over
which V is not differentiable.

Lemma 2 (Bacciotti and Ceragioli, 1999) Let V (·) be a locally Lipschitz and regular function.
Then,
1)

∂V (x) = {ξ ∈ Rn : V o(x,v)≥ ξ · v ∀v ∈ Rn} ; (8)

2)

V ◦(x;v) = max{⟨ξ ,v⟩= ξ .v | ξ ∈ ∂V (x)}; (9)

3)

K[∇V ](x) = ∂V (x). (10)

Condition 2 V (·) is a locally Lipscthiz continuous and regular Lyapunov function 1 for the system
(1).

Definition 6 (Bacciotti and Ceragioli, 1999) Given a locally Lipschitz function V (.) :Rn 7→R and a
set-valued map K[I ](x), the set-valued time derivative of V with respect to the differential inclusion
(2) is defined as

V̇ (x)≜
{

a ∈ R : ∃v ∈K[I ](x) s.t. a = p⊤v, ∀p ∈ ∂V (x)
}
, (11)

for each x ∈ Rn.

1. In other words, it is a scalar function that is continuous, has continuous first derivatives, is strictly positive, except the
origin, and has a non-positive time derivative V̇ .
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The following proposition provides a sufficient condition for finite-time convergence of differ-
ential inclusions.

Proposition 1 (Romero and Benosman, 2020b) Consider the system (1) and let Condition 1 be
satisfied for a set-valued map K : Rn→→Rn. Let R ⊆ Rn be a positively invariant and open neigh-
borhood of x∗ and V : R 7→ R be positive definite 2 satisfying Condition 2. Consider the constants
c1 > 0 and c2 < 1 exist such that

supV̇ (x)≤−c1V (x)c2 , (12)

a.e. in x∈R. Then, (1) converges to x∗ within finite time and a settling-time which is upper bounded
by

t⋆ ≤ V (x(0))1−c2

c1(1− c2)
. (13)

3. Problem Formulation

The finite-time identification problem is formulated in this section for a continuous-time nonlinear
system with dynamics given by

ẋ = F(x)+G(x)u(t), F(0) = 0, (14)

where x ∈ Rn and u(t) ∈ Rm denote the state vector and the control input, respectively. Further-
more, F(x) ∈Rn and G(x) ∈Rn×m denote the drift dynamics and the input dynamics of the system,
respectively.

Assumption 1 The functions F(x) and G(x) are smooth. System states are available for measure-
ment. However, the derivatives of the states of the system may not be available for measurement.

The key step in obtaining a linear structured version of a nonlinear dynamical system (14) is a
lifting of the state-space (Mauroy and Goncalves, 2019; Drmač et al., 2021) to a higher-dimensional
space, where its evolution is approximately linear. Let us consider real-valued observables elements
ξi, which are elements of an infinite-dimensional Hilbert space. Generally, the Hilbert space is
provided by the Lebesgue-square integrable functions. In this study, it is our aim to identify the
nonlinear vector fields F(.) and G(.) based on the stream of data generated by the control dynamical
system and find a continuous-time dynamical system of the form (Huang et al., 2020; Brunton et al.,
2016b; Korda and Mezić, 2018)

d
dt

ξ (t) = Aξ (t)+BΨ(u(t)), (15)

where the term BΨ(.) captures how the observable ξ (x) is modified by the control policy u(.), e.g.,
Ψ(u(t)) is chosen as ξ (x)u(t) in (Korda and Mezić, 2018).

2. In other words, there exists some open neighborhood R of x⋆ such that V is defined in R and satisfies V (x⋆) = 0 and
V (x)> 0 for every x ∈R\{x⋆}.
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Definition 7 The finite set of all available observables, denoted by C , is defined as C :=
{

ξ1(x),ξ2(x),
. . . ,ξN(x)

}
. A library set L (θ), where L (θ) ⊆ C , is defined as L (θ) := {ξk : k ∈ θ ,ξk ∈ C }

where (θ ,≤) ⊆ {1, ...,N} is a non-empty finite partially ordered set with nξθ
:= |θ | distinct el-

ements. The library vector corresponding to θ , i.e., L (θ), is defined as ξθ (t) := [ξθ(1)(x(t)),
· · · ,ξθ(nξθ

)(x(t))]⊤ .

A library vector ξθ (t) corresponding to the ordered set of θ , i.e., L (θ), which is a subset of
the finite set of all available observables C , will be used in the sequel. It is worth noting that
the library vector ξθ (t) will be selected by the meta-learner layer (as detailed in Subsection 4.3)
to lift the system from a state-space to function space of observables with the benefit of reducing
the dimension of the Koopman operator and avoiding selecting corrupted dynamics. Note that the
dimension of the library vector ξθ (t) is the same as the size of set L (θ), i.e., ξθ (t) ∈ Rnξθ . In the
rest of the paper, for simplicity of notation, we have used ordered set θ instead of the library of
observables L (θ).

Now, the infinite-dimensional Koopman operator is approximated with a finite-dimensional ma-
trix A∗

θ
and B∗

θ
, and the linear representation continuous-time dynamics are given by

d
dt

ξθ (t) = A∗θ ξθ (t)+B∗θ Ψ(u(t))+Pθ (ξθ (t)), (16)

where A∗
θ
∈ Rnξθ

×nξθ , B∗
θ
∈ Rnξθ

×mξ , Ψ(.) ∈ Rmξ , and ξθ (t) ∈ Rnξθ denotes the nonlinear transfor-
mation of the state x through a vector-valued observable ξθ (t). The term B∗

θ
Ψ(.) captures how the

observable ξθ (t) is modified by the control policy u(t). Here, we assumed that Ψ(.) is known. Note
that this assumption is standard and realistic and it is about adding available knowledge (e.g., in
the form of basis functions) to the design procedure (See (Korda and Mezić, 2018; Brunton et al.,
2016a)). Moreover, Pθ (.) : Rnξθ 7→ Rnξθ is a bounded continuous approximation error term that
depends on the goodness of the chosen library of observable functions. In the rest of the paper, for
simplicity of notation, we have used ξθ instead of ξθ (t), i.e., t is dropped, when it is clear from the
context.

Remark 1 Note that the dimension of the system (16) scales with the number of observables, and
it is desired to use a few dominant observables associated with persistent dynamics to reduce the
size of the transformed system, make it amenable to control design methods. If the observables
span contains F(.), G(.), and x, then the model (16) may be well represented. Moreover, despite
the fact that, based on Koopman’s theory, infinite-dimensional lifting theoretically allows the rep-
resentation of any nonlinear dynamics as linear operators, in practice, one needs to approximate
this operator with finite-dimensional operators mainly due to computational feasibility, traceability,
and data limitations. To this end, Pθ (.) represents the bounded approximation error caused by us-
ing approximated finite-dimensional matrix A∗

θ
and B∗

θ
, which depends on the dimension of ξθ and

the goodness of the chosen lifted states. Additionally, it should be noted that the assumption of the
bounded Pθ (.) is a standard in the literature based on the universal approximator characteristics
(Tao, 2003).

The identifier for the unknown Koopman operators is defined as

d
dt

ξ̂θ (t) = Âθ ξθ (t)+ B̂θ Ψ(u(t)), (17)
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where Âθ (t) and B̂θ (t) denote the identified matrices A∗
θ

and B∗
θ

at the time of t. Now, one can write
the identification errors as 

eÂθ
(t) = Âθ (t)−A∗

θ

eB̂θ
(t) = B̂θ (t)−B∗

θ

e
ξ̂θ
(t) = ξ̂θ (t)−ξθ (t)

(18)

The objective is now to design a unified batch-online update law for the system identifier (17)
to make the identification errors converge to zero, i.e., ∥e

ξ̂θ
∥ → 0, ∥eÂθ

∥ → 0, and ∥eB̂θ
∥ → 0, in

finite time for the case where there is no approximation error and the identification errors remain
uniformly ultimately bounded (UUB) for the case where there is bounded approximation error.
These objectives are formally stated in Problems 1 and 2 in the sequel. We first consider the case
with no approximation error term, i.e., Pθ (.) = 0. In the subsequent sections, then, the presence of
the approximation error term will be analyzed. Moreover, the selection of an appropriate Koopman
observables set that achieves the minimum approximation error and avoids corruption dynamics is
performed through meta-learning later in the subsequent sections.

Problem 1 (Batch-online Koopman finite-time identifier when there is no approximation
error). Let the vector-valued observable ξθ be fixed and result in no approximation error. Let
exist a mini-batch of samples given by {ξθ (t1), . . . ,ξθ (tp)}. Consider the system (16) along with
the identifier (17). Develop a unified batch-online update law to make ∥e

ξ̂θ
∥ → 0, ∥eÂθ

∥ → 0, and
∥eB̂θ
∥→ 0, in finite time, under an easy-to-verify condition on mini-batch of collected data samples.

Letting the approximation error be zero, rewrite the system (16) as

d
dt

ξθ (t) = Σ
∗
θ

⊤Zθ (ξθ ,u(t)), (19)

where Σ∗⊤
θ

= [A∗
θ
,B∗

θ
]∈Rnξθ

×(nξθ
+mξθ

) is the unknown matrix, and Zθ (ξθ ,u(t))= [ξ⊤
θ
(t),Ψ⊤(u(t))]⊤ ∈

R(nξθ
+mξ ).

To eliminate the need to measure state derivatives as is required by existing system identification
methods, the system model is formulated as a filtered regressor as follows.

Proposition 2 Consider the system (16), (19). This system can be expressed as the filtered form ξθ (t) = Σ∗
θ

hθ (t)+alθ (t)+ e
−aIn

ξθ

t
ξθ (0)

ḣθ (t) =−ahθ (t)+Zθ (ξθ ,u(t)),
l̇θ (t) =−alθ (t)+ξθ ,

(20)

∀a > 0 with lθ (t) = 0 and hθ (t) = 0, where ξθ (0) denotes the initial state of (19) and hθ (t) ∈
R(nξθ

+mξ ) and lθ (t) ∈ Rnξθ denote the filtered regressor form of Zθ (ξθ ,u) and ξθ , respectively.

Proof. The proof is similar to that of Lemma 1 in (Modares et al., 2013) and it is provided here
for the sake of completeness. By adding and subtracting aξθ from the right-hand side of (19), we
get

d
dt

ξθ (t) =−aξθ (t)+Σ
∗
θ

⊤Zθ (ξθ ,u(t))+aξθ (t). (21)

8
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One can see that (21) has the following solution

ξθ (t) = Σ
∗
θ

⊤
∫ t

0
e
−aIn

ξθ

(t−τ)
Zθ (ξθ (τ),u(τ))dτ +a

∫ t

0
e
−aIn

ξθ

(t−τ)
ξθ (τ)dτ + e

−aIn
ξθ

t
ξθ (0). (22)

Define

hθ (t) :=
∫ t

0
e
−aIn

ξθ

(t−τ)
Zθ (ξθ (τ),u(τ))dτ, (23)

lθ (t) :=
∫ t

0
e
−aIn

ξθ

(t−τ)
ξθ (τ)dτ. (24)

Using (22)-(24), we have

ξθ (t) = Σ
∗
θ hθ (t)+alθ (t)+ e

−aIn
ξθ

t
ξθ (0), (25)

which is the first equation in (20). The second and third equations in (20) can be obtained by taking
the derivatives of (23) and (24). This completes the proof. □

Taking (20) and dividing its both sides by the normalizing signal nsθ
= 1 + hθ

⊤(t)hθ (t) +
lθ⊤(t)lθ (t), one has

ξ̄θ (t) = Σ
∗⊤
θ h̄θ (t)+al̄θ (t)+ e

−aIn
ξθ

t
ξ̄θ (0), (26)

where ξ̄θ = ξθ

/
nsθ

, ξ̄θ (0) = ξθ (0)
/

nsθ
, h̄θ (t) = hθ (t)

/
nsθ

, and l̄θ (t) = lθ (t)
/

nsθ
are the normalized

forms of ξθ , hθ (t), and lθ (t), respectively.
Using (26), and Proposition 2, the identifier’s state (17) becomes

ˆ̄
ξθ (t) = Σ̂

⊤
θ (t)h̄θ (t)+al̄θ (t)+ e

−aIn
ξθ

t
ξ̄θ (0), (27)

where Σ̂⊤
θ
(t) := [Âθ (t), B̂θ (t)] ∈ Rnξθ

×(nξθ
+mξ ). The normalized version of identification error, i.e.,

ēξθ
= eξθ

/
nsθ

, is defined as

ēξθ
(t) = ˆ̄

ξθ (t)− ξ̄θ (t) = Σ̃
⊤
θ h̄θ (t), (28)

where Σ̃⊤
θ
(t) = Σ̂⊤

θ
(t)−Σ∗

θ

⊤ describes the Koopman operators’ identification errors. One can see
that ēξθ

is measurable at each time since it is a function of the observables and states of the system
are assumed to be measurable. Furthermore, ēξθ

linearly relates to the state of the filtered regressor
and identification errors of Koopman operators. Using this formulation, as we see later, one can
reuse the recorded data in the update law without having to compute the derivatives of the system
states.

Now, (28) can be rewritten as

ēξθ
(t) = (h̄⊤θ (t)⊗ Inξθ

)⊤ Σ̃
vec
θ (t), (29)

where (h̄⊤
θ
(t)⊗ Inξθ

) ∈ Rnξθ
(nξθ

+mξ )×nξθ and Σ̃vec
θ
∈ Rnξθ

(nξθ
+mξ ).

9



MAZOUCHI, NAGESHRAO, AND MODARES

Remark 2 Standard batch learning practice for parameter convergence of the Koopman identifier
(i.e., for its generalization guarantees) (Han et al., 2020; Netto and Mili, 2018) leverages statistical
learning theory to provide probably approximately correct (PAC) sample complexity bounds on
the learned model. PAC analysis, however, requires a huge number of i.i.d samples to guarantee
generalization, which depends on the VC-dimension (Vapnik, 2013; Blockeel et al., 2013) of the
search space. On the other hand, online learning algorithms guarantee parameter convergence
(usually asymptotic guarantees in time) under restrictive and hard-to-verify persistence of excitation
conditions. It is critical to design learning algorithms that bring the best of both worlds together
and provide finite-time guarantees under easy-to-verify conditions (rather than i.i.d conditions) on
samples that depend only on the dimension of the search space and not its VC dimension.

In this paper, we store a mini-batch of past samples in a history stack and retrieve them during
online learning using the experience replay (also known as concurrent learning) technique (Chowd-
hary and Johnson, 2010; Modares et al., 2013). This technique needs to collect past data in the
history stack as

Sθ = [h̄θ (t1), ..., h̄θ (tp)], (30)

p is the number of collected data points that are stacked in the history stack, and t1, ..., tp are their
associated recorded times. The error of identification for the j-th collected data point is calculated
as follows

ēξθ
(t, t j) =

ˆ̄
ξ θ (t, t j)− ξ̄θ (t j)

=Σ̃
⊤
θ (t) h̄θ (t j),

=(h̄⊤θ (t j)⊗ Inξθ
) Σ̃

vec
θ (t), (31)

for j = 1, ..., p, where ξ̄θ (t j) denotes the normalized form of the state at t j,
ˆ̄
ξθ (t, t j) denotes iden-

tifier’s state at t j defined as

ˆ̄
ξθ (t, t j) := Σ̂

⊤
θ (t)h̄θ (t j)+al̄θ (t j)+ e

−aIn
ξθ

t j
ξ̄θ (0), (32)

and ēξθ
(t, t j) is the error of identification at t j. Furthermore, Σ̃⊤

θ
(t) is the identification error of

Koopman operators at the present time.

Condition 3 The stacked data Sθ at least consists of numbers of linearly independent elements

equal to the dimension of the basis function hθ (t). That is,
p
∑
j=1

h̄θ (t j) h̄⊤(t j) ≥ dθ Inξθ
+mξ

for some

dθ ∈ R+.

4. Main result

The hierarchical learning architecture given in Fig. 1 is adopted to deal with the problem at hand,
which consists of:
- A base learner (finite-time identifier), which is used to find the Koopman operator Âθ (t) and B̂θ (t)
corresponding to a library of the observable function θ .
- A meta-learner to learn the best library of observables θ that achieves a minimum approximation
error based on the available collected data set.

10
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4.1 Base Learner: Batch-online Finite-time Koopman Identifier with no Approximation
Error

It is well known that solution trajectories of the locally Lipschitz continuous systems converge no
faster than exponentially to equilibrium points, i.e., such systems at most can only have asymptotic
convergence rates. Non-smooth or non-Lipschitz continuous systems, however, are able to have a
finite-time convergence property. This emphasizes that enjoying the finite-time convergence prop-
erty in continuous-time systems is feasible only by introducing update law with discontinuous or
non-Lipschitz dynamics based on differential inclusions instead of ODEs. The following theorem
provides a unified novel batch-online learning using a novel discontinuous flow of gradients to guar-
antee finite-time convergence for the Koopman identifier when there is no approximation error and
the observables are fixed.

Theorem 1 Consider the systems (29) and (31). Let Condition 3 and Assumption 1 hold. Then, the
unknown parameter vector Σ̂vec

θ
(t) converges to its true Σvec

θ

∗ in finite time by using any maximal
Filippov solution to the following discontinuous differential inclusion update law

˙̂
Σ

vec
θ (t) = ˙̃

Σ
vec
θ (t) ∈ Kθ = K[Iθ ] : Rnξθ

(nξθ
+mξ )→→Rnξθ

(nξθ
+mξ ), (33)

with

Iθ =−αθ

∥Hθ (t)∥
(Hθ (t))

⊤
[Aθ ]

rHθ (t)

[Aθ ]
r+1Hθ (t)

, (34)

where

Hθ (t) := Hθ (t)ēξθ
(t)+

pθ

∑
j=1

Hθ (t j)ēξθ
(t, t j), (35)

and

Hθ (t) := h̄θ (t)⊗ Inξθ
,

Hθ (t j) := h̄θ (t j)⊗ Inξθ
, (36)

Aθ := Hθ (t)Hθ
⊤(t)+

pθ

∑
j=1

Hθ (t j)Hθ
⊤(t j), (37)

where r ∈ R, αθ > 0 and Kθ = K[Iθ ] : Rnξθ
(nξθ

+mξ )→→Rnξθ
(nξθ

+mξ ) is a set-valued map. Further-
more, its convergence time is given by the exact settling time

tθ ⋆ =
1

αθ

∥Hθ (0)∥. (38)

Proof. It follows from (29), (31), (35), and (36) that

Hθ (t) = Aθ Σ̃
vec
θ (t). (39)

11
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Figure 1: Proposed hierarchical learning architecture using Bayesian optimization (BO) for auto-
matic lifted-state tuning. The lifted-state configuration θk is evaluated in the meta-learner in terms
of cost functional JR(.). Based on all previous experiments, BO suggests the next lifted-state con-
figuration θk+1, aiming at finding the global optimum with only a few iterations.

Using (39), (34) can be rewritten as

Iθ =−αθ

∥Aθ Σ̃vec
θ
∥

Σ̃vec
θ

⊤Aθ

[Aθ ]
rAθ Σ̃vec

θ

[Aθ ]
r+1Aθ Σ̃vec

θ

. (40)

We begin now by proving that Condition 1 is satisfied. That is, Kθ = K[Iθ ] : Rnξθ
(nξθ

+mξ )→→
Rnξθ

(nξθ
+mξ ) is upper semi-continuous, and has compact, nonempty, and convex values. To this aim,

using (40) and some manipulation, give

∥Iθ∥ ≤ αθ∥
1
2

Aθ Σ̃
vec
θ ∥

λmax([Aθ ]
r)

λmin([Aθ ]
r+1)

∥∥1
2 Aθ Σ̃vec

θ

∥∥∥∥1
2 Aθ Σ̃vec

θ

∥∥2

≤ αθ

λmax([Aθ ]
r)

λmin([Aθ ]
r+1)

. (41)

Based on Condition 3,
pθ

∑
j=1

Hθ (t j)Hθ
⊤(t j) =

pθ

∑
j=1

(h̄θ (t j)h̄⊤θ (t j))⊗ Inξθ
≥ dθ Inξθ

(nξθ
+mξ )

. (42)

12
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Hence, Hθ (t)Hθ
⊤(t)≥ 0nξθ

(nξθ
+mξ )

implies that λmin((Hθ (t)H ⊤
θ
(t)+

pθ

∑
j=1

Hθ (t j)H ⊤
θ

(t j))
r+1) ≥

dθ everywhere near Σ̂vec
θ

= Σvec
θ

∗ for some dθ > 0. As a result, (41) implies that Iθ is defined
a.e. and is Lebesgue measurable in a non-empty open region R ⊂ Rnξθ

(nξθ
+mξ ), and for every

point Σ̃vec
θ
∈ Rnξθ

(nξθ
+mξ ), Iθ is bounded a.e. in some bounded neighborhood of Σ̃vec

θ
. Using

this observation and Theorem 5 of (Filippov and Arscott, 1988, Chapter 2), one can conclude that
Condition 1 is satisfied, i.e., the Filippov set-valued map Kθ = K[Iθ ] is upper semi-continuous and
has compact, nonempty, and convex values.

Now, take the following continuously differentiable Lyapunov function defined over Rnξθ
(nξθ

+mξ ),
which w.r.t. Σ̃vec

θ
is positive definite.

V (Σ̃vec
θ ) = Σ̃

vec⊤
θ (Aθ )

2
Σ̃

vec
θ

=
∥∥Aθ Σ̃

vec
θ

∥∥2
. (43)

Despite the update law (33)-(34) is continuous close to Σvec
θ

∗, it is not continuous at Σvec
θ

∗, and
therefore, undefined at Σ̂vec

θ
= Σvec

θ

∗ itself. To this end, given Σ̃vec
θ

(t) ∈ Rnξθ
(nξθ

+mξ )\{Σvec
θ

∗}, one
has

supV̇ (Σ̃vec
θ

) = sup{aθ ∈ R : ∃v ∈K[Iθ ](Σ̃
vec
θ

)s.t. aθ = p · v, ∀p ∈ ∂V (Σ̃vec
θ

)}
= sup

{
2(Aθ )

2
Σ̃vec

θ
·
(
Iθ (Σ̃

vec
θ

(t))
)}

=−2αθ∥Aθ Σ̃vec
θ
∥

=−(2αθ )(V (Σ̃vec
θ

))
1
2 .

(44)

Note that (43) satisfies Condition 2 since it is a continuously differentiable function. Furthermore,
for Σ̂vec

θ
= Σvec

θ

∗, i.e., Σ̃vec
θ

(t) = 0, V̇ (0) = 0 since

∇
Σ̃vec

θ

V (0) = 2((Hθ (t)Hθ
⊤(t)+

pθ

∑
j=1

Hθ (t j)Hθ
⊤(t j)))

2
Σ̃

vec
θ = 0.

Moreover, using (33)-(36), one has

V (Σ̃vec
θ ) = (Hθ (t))⊤Hθ (t), (45)

which implies that

V (Σ̃vec
θ (0)) = (Hθ (0))⊤Hθ (0). (46)

Now, invoking Proposition 1 and observing that supV̇ (Σ̃vec
θ

) = −(2α)V (Σ̃vec
θ

)
1
2 and V

(
Σ̃vec

θ
(0)

)
is

computable, maximal Filippov solution to the discontinuous differential inclusion update law (33)-
(34) converges to Σvec

θ

∗ in finite time by the exact prescribed settling time (38). Using (29), the
convergence of Σ̃vec

θ
within a finite time implies that eξθ

also goes to the origin within a finite time.
This completes the proof. □

Remark 3 From (41), one can see that a history stack’s richness influences the convergence time of
the identification error. To check whether finite-time convergence is possible, condition 3 provides
an easy-to-verify rank condition. One can add a probing noise into the control signal to ensure that
Condition 3 is satisfied.

13
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Remark 4 It is also worth noting that even though the number of stored samples in the history
stack is fixed after Condition 3 is satisfied, replacing old data with new rich data in the history stack
can avoid numerical challenges in algorithm iterations in the case of poorly conditioned Aθ . To
achieve this, new samples are periodically added, and old ones are removed if λmin([Aθ ]

r+1) would
be increased. This method, however, requires new data samples to stream. Therefore, in meanwhile,
to keep the update law (33)-(34) practical in terms of being suitable for numerical solvers, one can
also incorporate a small constant regularization term η > 0 (which is a small constant) in (34), as

Iθ =−αθ

∥Hθ (t)∥
η +Hθ (t)

[Aθ ]
rHθ (t)

[Aθ ]
r+1Hθ (t)

, (47)

and then remove it when Aθ is not poorly conditioned anymore. It is worth noting that the addition
of this term transforms finite-time convergence into practical finite-time convergence. That is, one
can select sufficiently small η to go into any given arbitrary neighborhood of the origin. Note
that the concept of practical finite-time convergence has recently received significant attention (Liu
et al., 2021; Chen et al., 2021; Chowdhary and Johnson, 2011) since it specifies a convergence
bound and finite convergence time that can be effectively employed in control, identification, and
monitoring to improve performance and reduce conservatism in control design.

Remark 5 To assure ∥eAθ
∥ → 0 and ∥eBθ

∥ → 0, the presented update law leverages modified gra-
dient descent rule to select Σ̂θ

vec to minimize the following cost function for not only the current time,
but also the past samples collected in the memory.

J(t) = ēξθ
(t)⊤ēξθ

(t)+
pθ

∑
j=1

ēξθ
( j)⊤ēξθ

( j), (48)

where its gradient and the Hessian matrix can be calculated as

∇
Σ̃vec

θ

J =
1
2

(
Aθ +A⊤θ

)
Σ̃

vec
θ = Aθ Σ̃

vec
θ , (49)

∇
2
Σ̃vec

θ

J =
1
2

Aθ +
1
2

A⊤θ = Aθ . (50)

Since Aθ in (49) depends on both current (online) and past (batch) samples, the discontinuous
gradient update law minimizes the identification error for both current and past samples. Before the
rank condition is satisfied, only estimation error is guaranteed to converge to zero (no generalization
guarantee), and as the samples are collected to satisfy Condition 3, the data samples provide a good
representation of the dynamic system (16) across its entire operating regimes, if an appropriate set
of observables is chosen (which will be performed in a meta-layer in this paper).

We now analyze the efficiency of the update law (33)-(34) by using the notion of regret. To this
aim, let the normed error N (.) and continuous regret be defined as

N (Σ̃vec
θ

(t)) = ∥Aθ (t)Σ̃vec
θ

(t)∥ (51)

where

Regret :=
∫ tθ ∗

0 N (Σ̃vec
θ

(τ))dτ−min
Σ̂vec

θ
∈Θθ

∫ tθ ∗
0 N (Σ̃vec

θ
(τ))dτ

=
∫ tθ ∗

0 N (Σ̃vec
θ

(τ))dτ
(52)

14
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Note that min
Σ̂vec

θ
∈Θθ

∫ tθ ∗
0 N (Σ̃vec

θ
(τ))dτ = 0, since min

Σ̂vec
θ
∈Θθ

N (Σ̃vec
θ

(t)) = 0 and regret given in
(52) is a non-decreasing function of the time span tθ ∗ since it contains a sum of N (Σ̃vec

θ
(t)), which

are non-negative costs.

Theorem 2 Consider the regret given in (52). Regret grows sub-linearly with time and the conver-
gence of identification errors to zero for the update rule (33)-(34) is upper bounded by a constant
regret 1

2αθ
V (0) where V (.) is given in (43).

Proof. Regret is analyzed based on the Lyapunov stability condition provided in Theorem 1 by
V̇ (t)≤−(2αθ )∥Aθ (t)Σ̃vec

θ
(t)∥ ≤ 0. Based on (43), one has V (t)≥ 0. Now, integrating V̇ (t) from 0

to tθ ∗, one has∫ tθ ∗

0
∥Aθ (τ)Σ̃

vec
θ (τ)∥dτ ≤− 1

2αθ

∫ tθ ∗

0
V̇ (τ)dτ =

1
2αθ

(V (0)−V (t∗θ )) =
1

2αθ

V (0). (53)

Given that V̇ (t) ≤ 0, it can be seen that V (0)−V (t∗) ≤ V (0) = O(1). This implies that the regret
bound does not grow as a function of time (i.e., regret grows sub-linearly with time) since the
convergence of identification errors to zero for the update rule (33)-(34), which is upper bounded
by a constant regret 1

2αθ
V (0). This completes the proof. □

4.2 Batch-online Koopman finite-time identifier with approximation error

Now, we investigate the sensitivity of the proposed update law (33)-(34) to the approximation error
term Pθ (.) by studying the behavior of solutions of the system identifier (17) in a neighborhood
of the finite-time solution of the nominal Koopman identifier. Let’s assume that there exists the
approximation error term Pθ (.).

Problem 2 (Batch-online Koopman finite-time identifier with approximation error). Let
the vector-valued observable ξ (θ) be fixed and results in some approximation error. Let the exist
a mini-batch of samples given by {ξθ (t1), . . . ,(ξθ (tp)}. Considering (16) and the system identifier
(17), develop a unified batch-online update law to ensure that eξθ

, eAθ
, and eBθ

, are uniformly
ultimately bounded (UUB), under an easy-to-verify condition on a mini-batch of samples.

Assumption 2 Continuous approximation error term Pθ (t,ξθ (t)) is bounded, i.e., ∥Pθ (t,ξθ (t)) ∥
≤PB

θ
.

Rewrite the system (19) as

d
dt

ξθ (t) = Σ
∗
θ

⊤Zθ (ξθ ,u)+Pθ (t,ξθ (t)). (54)

Proposition 3 Consider the system (54). This system can be expressed as the filtered form ξθ (t) = Σ∗
θ

⊤hθ (t)+alθ (t)+ e
−aIn

ξθ

t
ξθ (0)+Pθ (t)

ḣθ (t) =−aθ hθ (t)+Zθ (ξθ ,u), hθ (ξθ (0)) = 0
l̇θ (t) =−alθ (t)+ξθ , lθ (ξθ (0)) = 0

(55)

∀a > 0 with lθ (0) = 0 and hθ (0) = 0, where Pθ =
T∫
0

e
−aIn

ξθ

(t−τ)
Pθ (τ,ξθ (τ))dτ and ξθ (0) denotes

the initial state of (54) and hθ (t) ∈ R(nξθ
+mξ ) and lθ (t) ∈ Rnξθ denote the filtered regressor form of

Zθ (ξθ ,u) and ξθ , respectively.
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Proof. The proof follows from a similar development as Proposition 2.
Using Proposition 3, (28) is reformulated as

ēξθ
(t) = Σ̃⊤

θ
h̄θ (t)−P̄θ (t)

ξθ (t) = Σ∗
θ

⊤hθ (t)+alθ (t)+ e
−aIn

ξθ

t
ξθ (0)+Pθ (t)

ˆ̄
ξ θ (t) = Σ̂⊤

θ
h̄θ (t)+al̄θ (t)+ e

−aIn
ξθ

t
ξ̄θ (0)

ḣθ (t) =−aθ hθ (t)+Zθ (ξθ ,u), hθ (ξθ (0)) = 0
l̇θ (t) =−alθ (t)+ξθ , lθ (ξθ (0)) = 0

(56)

where P̄θ = Pθ

/
nsθ

.
Now, (29) and (31) are rewritten as

ēξθ
(t) = (h̄⊤θ (t)⊗ Inξθ

) Σ̃
vec
θ (t)−P̄θ (t) (57)

ēξθ
(t, t j) = (h̄⊤θ (t j)⊗ Inξθ

) Σ̃
vec
θ (t)−P̄θ (t), j = 1, ..., pθ . (58)

The following theorem concerns the behavior of identifier error (41) along with the update law
(33)-(34) under finite-dimensional Koopman with bounded approximation error.

Theorem 3 Consider (16) and (55), and let Assumptions 1 and 2 and Condition 3 hold. In the case
that a bounded Koopman approximation error exists, the update law (33)-(34) ensures that all the
identification errors are UUB.

Proof. Using (34), (56), (57), and some manipulations, one has

˙̂
Σ

vec
θ (t) = ˙̃

Σ
vec
θ (t) ∈ Kθ = K[Iθ ] : Rnξθ

(nξθ
+mξ )→→Rnξθ

(nξθ
+mξ ), (59)

where

Iθ (t, Σ̃vec
θ

,P̄θ ) =−αθ∥Aθ Σ̃vec
θ
−Bθ P̄θ∥Γθ , (60)

with

Γθ =
[Aθ ]

r [Aθ Σ̃vec
θ
−Bθ P̄θ

][
Aθ Σ̃vec

θ
−Bθ P̄θ

]⊤
[Aθ ]

r+1 [Aθ Σ̃vec
θ
−Bθ P̄θ

] , (61)

Bθ := Hθ (t)+
pθ

∑
j=1

Hθ (t j). (62)

Note that the analysis to show the validity of Conditions 1 and 2 is similar to that in the proof of
Theorem 1. Using (59)-(62) and Definition 6, the derivative of continuously differentiable Lyapunov
function (43) becomes

supV̇ (Σ̃vec
θ ) = sup{aθ ∈ R : ∃v ∈K[Iθ ](Σ̃

vec
θ )s.t. aθ = p · v, ∀p ∈ ∂V (Σ̃vec

θ )}
= sup{2(Aθ )

2
Σ̃

vec
θ · (Iθ (t, Σ̃vec

θ ,P̄θ ))}
=−2αθ (Aθ )

2
Σ̃

vec
θ

∥∥Aθ Σ̃
vec
θ −Bθ P̄θ

∥∥Γθ . (63)
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Adding and subtracting −2αθ Aθ Bθ P̄θ

∥∥Aθ Σ̃vec
θ
−Bθ P̄θ

∥∥Γθ to the right-hand side and some ma-
nipulations yields

supV̇ (Σ̃vec
θ ) =−2αθ Aθ

(
Aθ Σ̃

vec
θ −Bθ P̄θ

)∥∥Aθ Σ̃
vec
θ −Bθ P̄θ

∥∥Γθ

−2αθ Aθ Bθ P̄θ

∥∥Aθ Σ̃
vec
θ −Bθ P̄θ

∥∥Γθ

≤−2αθ

∥∥Aθ Σ̃
vec
θ −Bθ P̄θ

∥∥+2αθ

λmax([Aθ ]
r)

λmin([Aθ ]
r+1)

∥∥Aθ Bθ P̄θ

∥∥
≤−2αθ

∥∥Aθ Σ̃
vec
θ

∥∥+ ε(Σ̃vec
θ ,P̄θ )

≤−2αθ

(
V (Σ̃vec

θ )
) 1

2 + ε(Σ̃vec
θ ,P̄θ ), (64)

where

ε(Σ̃vec
θ ,P̄θ ) = 2αθ

[∥∥Bθ P̄θ

∥∥+ λmax([Aθ ]
r)

λmin([Aθ ]
r+1)

∥∥Aθ Bθ P̄θ

∥∥]. (65)

Note that

−2αθ

∥∥Aθ Σ̃
vec
θ −Bθ P̄θ

∥∥≤−2αθ

[∥∥Aθ Σ̃
vec
θ

∥∥−∥∥Bθ P̄θ

∥∥], (66)

and ∥∥2αθ Aθ Bθ P̄θ

∥∥∥∥Aθ Σ̃
vec
θ −Bθ P̄θ

∥∥∥Γθ∥

= 2αθ

∥∥Aθ Σ̃
vec
θ −Bθ P̄θ

∥∥ ∥∥Aθ Bθ P̄θ

∥∥∥∥[Aθ ]
r [Aθ Σ̃vec

θ
−Bθ P̄θ

]∥∥[
Aθ Σ̃vec

θ
−Bθ P̄θ

]⊤
[Aθ ]

r+1 [Aθ Σ̃vec
θ
−Bθ P̄θ

]
≤ 2αθ

∥∥Aθ Σ̃
vec
θ −Bθ P̄θ

∥∥ λmax([Aθ ]
r)
∥∥Aθ Bθ P̄θ

∥∥∥∥[Aθ Σ̃vec
θ
−Bθ P̄θ

]∥∥
λmin([Aθ ]

r+1)
∥∥[Aθ Σ̃vec

θ
−Bθ P̄θ

]∥∥2

≤ 2αθ

λmax([Aθ ]
r)

λmin([Aθ ]
r+1)

∥∥Aθ Bθ P̄θ

∥∥ . (67)

Now, if the following inequalities hold

Σ̃
vec
θ >

1
2αθ

ε(Σ̃vec
θ ,P̄θ )(Hθ (t)Hθ

⊤(t)+
pθ

∑
j=1

Hθ (t j)Hθ
⊤(t j)),

then, supV̇ (Σ̃vec
θ

)< 0, which completes the proof. □

4.3 Meta Learner

To learn a Koopman operator model with minimum approximation error and dimension, a meta-
learner is developed in this subsection. Toward this aim, a meta cost is defined as

JR(Ξ) := ℓθ (Âθ , B̂θ ,D
eval)+λnξθ

, (68)

where Ξ = [θ(1), ...,θ(nξθ
)]⊤ denotes the vector of the ordered set θ , and leads to the (Âθ , B̂θ )

model by the base learner layer, λ is a constant, and nξθ
= |θ | promotes sparsity to find a set of
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observable with minimum cardinality. The meta loss function ℓθ is the average identification error
for a set of observables with respect to the collected data set Deval after the lower layer convergences
to (Âθ , B̂θ ) model, and, it is defined as

ℓθ

(
Âθ , B̂θ ,D

eval)= 1
pθ

pθ

∑
k=1
∥ ˆ̄

ξ θ (D
eval, Âθ , B̂θ , t, tk)− ξ̄θ (D

eval, tk)∥ (69)

with 
ˆ̄
ξ θ (t) = Σ̂⊤

θ ih̄θ (t,Deval)+Aθ l̄θ (t,Deval)

+e−Aθ t ξ̄θ (t,Deval,0)
ḣθ (t) =−aθ hθ i(t,Deval)+Zθ i(ξθ (t,Deval),u)
l̇θ (t) =−Aθ lθ (t,Deval

i )+ξθ (t,Deval)

(70)

The collected data set Deval is formed by samples that are stored in the memory and represent
the state space well. Since the proposed novel batch-online learning in the lower layer allows
learning in finite time, data set Deval can provide a fair and control-agnostic comparison for sets
of observables. It means that the Koopman parameters for selected observables by the meta layer
can be computed in finite time without requiring additional rich incremental data. That is, different
matrix pairs (Âθ , B̂θ ) are obtained in finite time by the lower layer learner as the set of observables
varies, which results in different identifier system (70). Therefore, JR(Ξ) is a function of sets θ

which are parameterizing the lifted state vector of the base learner, i.e., ξθ (t).
As delineated in Algorithm 1, to optimize the meta cost, a Bayesian optimization (BO) strategy

for discrete variables (Shahriari et al., 2015; Luong et al., 2019) is leveraged, which leverages the
previously recorded data sets in the memory, i.e., Deval, to map the so-called meta-parameters θ

to meta cost JR(Ξ). In Steps 1-2, the algorithm is started up by using the available collecting data
samples D and Deval for Touter randomly chosen different vectors of Ξk (with k = 1, . . . ,Touter). The
training samples are used by the lower layer learner update law and can be a combination of the
samples collected incrementally as well as the memory samples. For each vector θk, the meta cost,
however, JR

k is evaluated using (69)-(70) and leveraging only the samples in the memory (to make
the identifier control agnostic). As a result, the initial set D =

{
(Ξk,JR

k ) : k = 1, ...,Tout
}

of libraries
of observable functions and corresponding performance JR is constructed. Since the function JR

is not known a priori, nonparametric Gaussian Process (GP) models should be used (Steps 3-4) to
approximate it using the training dataset D . Therefore, GP model characterizing “the best guess” of
JR corresponding to the library of observable functions θ , i.e., L (θ), based on the available training
dataset D . To this aim, the function values JR, which are related to different sets of θ , are assumed
as random variables with a joint Gaussian distribution (i.e., JR is a Gaussian variable) dependent on
the vector of Ξ with the defined a prior mean function and variance

mk(Ξ) = k′k(Kk +σ
2
e I)−1JR

k (Ξ), (73)

σ
2
k (Ξ) = κ(Ξ,Ξ)−k′k(Kk +σ

2
e I)−1kk +σ

2
e , (74)

where σ2
e is the variance of Gaussian noise, and κ(Ξ,Ξ j) and κ(Ξ j,Ξm) denote the j-th and [ j,m]-

th entry of the vector kk and Kernel matrix Kk, respectively. The covariance function κ(Ξ, Ξ̃)
determines the covariance between JR(θ) and JR(θ̃) and is described as

κ(Ξ, Ξ̃) = σ
2
0 e−

1
2λ2 [Ξ′−Ξ̃′µ ′−µ̃ ′][Ξ′−Ξ̃′µ ′−µ̃ ′]

′

, (75)
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Algorithm 1 Meta Learner
Result: Optimal observables vector Ξ∗.

1: Evaluate meta-loss function: JR←
{

JR(Ξ),Deval
}

;
2: Assemble and construct a training dataset: D ←

{
Ξ;JR

}
;

3: Place a GP prior on JR;
4: Initialize the GP using D ;
for k = 1 to Touter do

5.1: Train the GP that approximates JR on the basis of data D ;
5.2: Determine the acquisition function α(Ξ |D) using the GP;
5.3: Compute the subsequent vector Ξ as

Ξk+1← argmax
Ξ∈M

α(Ξ |D)

Ξk+1 = round(Ξk+1)
(71)

where M is some design space of interest;
5.4: Evaluate JR

k+1 based on Deval, and append it into D : D ←D ∪
{

Ξk+1;JR
k+1

}
;

5.5: If the stopping criterion is satisfied, exit the loop;
end
6: Return Ξ∗ = round(Ξk∗) where

k∗ = argmin
k

JR
k (72)

where σ0 and λ are the design parameters.
Afterward, the algorithm is repeated till a predefined termination criterion is satisfied. Following

are the steps that are performed during each iteration. Based on the available training dataset D , a
GP is fitted in Step 5.1. To find the next library of observable functions θk+1, the function α(Ξ |
D) (which is called the acquisition function) is getting optimized in Step 5.2. This function α(.)
is determined using the estimated GP mean and covariance, and its main objective is to balance
between exploration and exploitation. That is, exploring by evaluating the function JR in domains
of the search space with high variance and also exploiting the past recorded data and optimizing
the expected improvement over domains with high mean. Now, let the acquisition function α(.) be
defined as

α(Ξ |D) = E
[
max

{
0,JR∗− JR(Ξ)

}]
, (76)

where the target value JR∗ is the minimum of all explored data, represents the most optimal value of
JR, and defined as

JR∗ = argmin
k

JR
k . (77)

The acquisition function given in (76) can be computed analytically based on the mentioned GP
framework as

α(Ξ |D) =

{ (
JR∗−mk(Ξ)

)
Φ(Z)+σk(Ξ)ψ(Z) σi(Ξ,v)> 0

0 O.W.
(78)
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where Z = (JR∗−mk(Ξ))
/

σk(Ξ), Φ denotes the cumulative density function, and ψ is the prob-
ability density function. Intuitively, the acquisition function given in (76) selects the succeeding
parameter point at which the improvement over JR∗ should be the most in expectation. Note that it
is no need for real physical interaction with the system in order to optimize α(Ξ | D) in (71), and
only need to evaluate the GP model. If any new data sets Dk+1 and Deval

k+1 are available, they will
be collected and augmented to the available data sets D and Deval in Step 5.4. In Step 5.5, the new
determined optimal vector Ξ∗ is evaluated based on the updated evaluation data of real the system.

Remark 6 For the sake of simplicity, the BO with naive rounding (Naive BO) approach is used to
deal with the discrete nature of Ξ. That is, we treat discrete variables as continuous then apply a
normal BO method, and finally rounds the suggested continuous point to the nearest discrete point
before function evaluations.

Remark 7 Using Bayesian optimization, bounds can be set on the search space of θ . When maxi-
mization of the acquisition function is performed in Algorithm 1, then these bounds can be incorpo-
rated. In general, when the search space is narrowed down, the algorithm tends to converge faster,
therefore, requiring fewer time-consuming evaluations of the functional JR(Ξ). Specifically, each
evaluation of the functional JR(Ξ) takes

tθ ⋆ =
1

αθ

∥Hθ (0)∥. (79)

Prior system knowledge and design choices may be exploited to define suitable bounds. Moreover,
the proposed method is agnostic to the choice of the controller u since it relies on collected data in
the memory to evaluate the meta cost. However, if we have some prior knowledge of the controller u,
it would also be leveraged to narrow the search space and consequently accelerate the convergence
of the algorithm.

Remark 8 It is worth noting that a proposed batch learning method developed by (Lehrer et al.,
2010), aims to identify uncertain discrete-time systems in finite-time, requiring the online invertibil-
ity check of regressor matrix and its inverse computation as well as interval excitation of regressor.
In the case of large numbers of unknown parameters, however, the required inversion of the regres-
sor matrix makes the method in (Lehrer et al., 2010) computationally inefficient for online learning.

5. Simulation

In this section, two simulation results are presented to validate the theoretical results.
Example 1: The following nonlinear system is considered as the system dynamics

ẋ1 = µx1
ẋ2 = λ

(
x2− x4

1 +2x2
1
)
+u

(80)

where it can be rewritten as

d
dt


y1
y2
y3
y4


︸ ︷︷ ︸

ξ

=


µ 0 0 0
0 λ 2λ −λ

0 0 2µ 0
0 0 0 4µ


︸ ︷︷ ︸

A∗


y1
y2
y3
y4


︸ ︷︷ ︸

ξ

+


0
1
0
0


︸ ︷︷ ︸

B∗

u,
(81)
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Figure 2: Meta cost JR vs iteration i of Algorithm 1. At each iteration i, the cost of the current set of
observable functions θ and of the current best one are depicted. The green square shows the overall
best θ = {1,2,4,9} which is found at iteration 29.

with ξ = [x1,x2,x2
1,x

4
1]
⊤, µ =−1, λ =−1.

To satisfy Condition 3, we inject the following probing noise into the control input (i.e., add it
to the control input u) for t ∈ (0 − 0.5) sec

1.25e−t(0.4(sin(0.1t))6cos(1.5t)+0.3(sin(2.3t))4cos(0.7t)+0.5cos(2.4t)(sin(7.4t))2

+0.4(sin(2.6t))5 +0.7(sin(3t))2cos(4t)+0.3sin(0.3t)(cos(1.2t))2 +0.4(sin(1.12t))3

+0.3(sin(4t))3 +0.4(sin(3.5t))5 +0.4cos(2t)(sin(5t))8 +0.3sin(t)(cos(0.8t))2

+0.5(cos(2.4t))3(sin(7.4t))2 +0.1(sin(3.5t))7 +0.1(cos(2t))4(sin(5t))4 +0.4(sin(2.1t))2

+0.3(sin(2.1t))3(cos(0.9t))3 +0.1(sin(1.7t))5(cos(0.9t))2 +0.1(sin(0.4t))2(cos(1.6t))3)

(82)

The proposed learning scheme is used to find the best library of observable functions θ , and
matrices A∗, and B∗. In the history stack, the size of recorded data is set as 21.

We choose a finite set of polynomial observable functions based on the monomials of states x1
and x2 as follows

C (k) =
{

xa
1 · xb

2 | a,b ∈ {0,1,2, . . .k}
}
∪{x4

1}, (83)

where k = 2 is the order of the basis functions, ξ1(x) = x1, ξ2(x) = x2, ξ3(x) = x1 · x2, ξ4(x) = x2
1,

ξ5(x) = x2
2, ξ6(x) = x2

1 · x2, ξ7(x) = x1 · x2
2, ξ8(x) = x2

1 · x2
2, and ξ9(x) = x4

1. Now, for an ordered
set θ where θ ⊆ {1, ...,9} and nξθ

= |θ | ≤ 9, the vector ξθ (t) = [ξθ(1)(x(t)), · · · ,ξθ(nξθ
)(x(t))]⊤

can be defined, by using Definition 7, to lift the system from a state-space to function space of
observables. For instance, the ordered set θ = {1,2,4,9} corresponds with the lifted state vector
ξθ={1,2,4,9}(t) = [ξ1(x) = x1, ξ2(x) = x2, ξ4(x) = x2

1, ξ9(x) = x4
1]
⊤.

The system is initialized at x1 = 1 and x2 =−1. Let αθ = 3. MATLAB Statistics and Machine
Learning Toolbox is used to implement Algorithm 1, with the EI in (76) serving as an acquisition
function. The meta cost JR vs iteration i of Algorithm 1 is illustrated in Fig. 2. Fig. 3 shows that,
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Figure 3: Lifted state estimation errors with the library of observables θ = {1,2,4,9}.

Figure 4: Lifted state trajectories with the library of observables θ = {1,2,4,9}.

within finite time, the lifted state estimation error of the base learner for θ = {1,2,4,9} has been
zeroed out. The lifted states’ trajectories evolution is described in Fig. 4. The convergence of the
base learner parameters

Âθ={1,2,4,9} =


−1 0 0 0
0 −1 −2 1
0 0 −2 0
0 0 0 −4

 , B̂θ={1,2,4,9} =
[

0 1 0 0
]⊤

,

to the true values A∗ and B∗ within finite time and during online learning has been shown in Fig. 5
and Fig. 6 .
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Figure 5: Online learning error with the library of observables θ = {1,2,4,9}.

Figure 6: Estimated unknown elements of A∗ and B∗ with the library of observables θ = {1,2,4,9}.
Note that for simplicity of demonstration, we only show a non-zero elements of matrices.

For the case of θ = {1,2,4,8}, the finite time convergence of the base learner parameters

Âθ={1,2,4,8} =


−0.8316 0.2151 1.1806 −0.7588
−0.1784 −0.9781 0.1839 −1.5642
−0.3880 −0.3554 −2.0771 −0.6459
0.6716 0.6625 −4.5250 −1.6133


B̂θ={1,2,4,8} =

[
−0.0973 0.9653 0.1077 −0.1402

]⊤
to neighborhood values of the true matrices A∗ and B∗ during online learning has been shown in
Fig. 7
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Figure 7: Estimated unknown elements of A∗ and B∗ with the library of observables θ = {1,2,4,8}.

Example 2:
The vehicle is modeled as a nonlinear single-track bicycle model (See Fig. 8). The yaw dynam-

ics of a simple vehicle can be qualitatively described and analyzed with this model in all operating
conditions. Using the Lagrangian approach, the state equation of this vehicle model can be written
as (Andrzejewski and Awrejcewicz, 2006; de Souza Mendes et al., 2016)

v̇T = (Fx,F cos(αT −δ )+Fx,R cos(αT ))/mT +(Fy,F sin(αT −δ )+Fy,R sin(αT ))/mT

α̇T = (−Fx,F sin(αT −δ )−Fx,R sin(αT ))/(mT vT )+(Fy,F cos(αT −δ )+Fy,R cos(αT )−mT vT ψ̇)/(mT vT )
ψ̈ = (Fx,Fasin(δ )+Fy,Facos(δ )−Fy,Rb)/IT

(84)

where the longitudinal forces acting on the front and rear tires, respectively, are given by Fx,F and
Fx,R. Moreover, Fy,F and Fy,R (the lateral forces) are also determined by the selected tire model
where the subscripts F and R denote the front and rear points to which theses forces are associated.
Moreover, αT denotes the slip angle, and vT denotes the vehicle center of gravity velocity, mT

denotes the vehicle mass, δ denotes the front axle steering angle, IT is the vehicle inertia, and the
distances between the points F, CG, and R are determined by the constants a and b.

The following equation describes tire model

Fy,F = KαF,

Fy,R = KαR, (85)

where the constant K is stiffness, and

αF = αT +
a

vT,0
ψ̇−δ ,

αR = αT− b
vT,0

ψ̇.
(86)

We first reformulate the vehicle dynamics (84) into nonlinear affine in the control system and
then develop a novel hierarchical learning structure that leverages a novel incremental finite-time
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Figure 8: The single-track model. In this simulation, all tires on the same axle are assumed to have
equal slip angles, and each axle is represented by a single tire with equivalent dynamic properties.

Koopman-based update law to approximately learn the linear representation of vehicle dynamics
(84). To this aim, using the facts that

cos(αT−δ ) = cosαT cosδ + sinαT sinδ ,
sin(αT−δ ) = sinαT cosδ − cosαT sinδ .

One can rewrite (84) as

v̇T = 2
mT

KαT
2 + 1

mT
K (a−b)

vT,0
ψ̇αT− 1

mT
KαTδ − ( 1

2mT
KαT

2 + 1
2mT

K a
vT,0

ψ̇αT)δ
2 + 1

2mT
KαTδ 3

+( 1
mT

K a
vT,0

ψ̇
αT

2

2 −
1

mT
K a

vT,0
ψ̇− 1

mT
KαT +

1
mT

KαT
αT

2

2 )sinδ +( 1
mT

K− 1
mT

K αT
2

2 )δ sinδ

α̇T = 2
mT vT

KαT +
1

mT vT
K (a−b)

vT,0
ψ̇− 1

mT vT
K (a−b)

vT,0
ψ̇

αT
2

2 −
2

mT vT
K αT

3

2 − ψ̇ +( 1
mT vT

K αT
2

2 −
1

mT vT
K)δ

+( 1
2mT vT

KαT
αT

2

2 −
1

2mT vT
K a

vT,0
ψ̇ + 1

2mT vT
K a

vT,0
ψ̇

αT
2

2 −
1

2mT vT
KαT)δ

2

+( 1
2mT vT

K− 1
mT vT

K αT
2

4 )δ 3 +( 1
mT vT

KαT
2 + 1

mT vT
K a

vT,0
ψ̇αT)sinδ − 1

mT vT
KαTδ sinδ

ψ̈ = 1
IT

KαT(a−b)+ 1
IT

K (a2+b2)
vT,0

ψ̇− 1
IT

Kδa− ( 1
2IT

K a2

vT,0
ψ̇ + 1

2IT
KαTa)δ 2 + 1

2IT
Kaδ 3

(87)

Observing the facts that sinθ ≈ θ for θ ≤ 13.99o and cosθ ≈ 1− (θ)2
/

2 for θ ≤ 37.93◦ and
the facts that 0◦ ≤ αT ≤ 10◦ for race and high-performance tires and the number is a little lower
for street tires, and assuming |δ | ≤ 35◦, and some manipulations, (87) can be rewritten into the
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Table 1: Vehicle parameters.

Item Value Description

mT 1300.0 kg Total mass

IT 104kg ·m2 Moment of inertia

K 4×104 Tires stiffness

αT,0 0 rad Initial vehicle sideslip angle

Ψ̇0 0.01 rad/s Initial yaw rate

v0 20 m/s Initial velocity

a 1.6154 Distance to CG

b 1.8846 Distance to CG

following affine in control form

Ẋ =

 v̇T
α̇T
ψ̈

=


2

mT
KαT

2 + 1
mT

K (a−b)
vT,0

ψ̇αT
2

mT vT
KαT +

1
mT vT

K (a−b)
vT,0

ψ̇− 1
mT vT

K (a−b)
vT,0

ψ̇
αT

2

2 −
2

mT vT
K αT

3

2 − ψ̇

1
IT

KαT(a−b)+ 1
IT

K (a2+b2)
vT,0

ψ̇


︸ ︷︷ ︸

I (.)

+

 G11
G21
G31

G12
G22
G32

G13
G23
G33

G14
G24
G34

G15
G25
G35


︸ ︷︷ ︸

G (.)


δ

sinδ

δ sinδ

δ 2

δ 3


︸ ︷︷ ︸

U (.)

(88)

where G11 =
−KαT

mT
, G12 =

−Ka
mT vT,0

ψ̇ + KaαT
2

2mT vT,0
ψ̇− KαT

mT
+ KαT

3

2mT
, G13 =

K
mT
− KαT

2

2mT
, G14 =

−KαT
2

2mT
− KaαT

2mT vT,0
ψ̇ ,

G15 =
KαT
2mT

, G21 =
−K

mT vT
+ KαT

2

2mT vT
, G22 =

KαT
2

mT vT
+ KaαT

mT vTvT,0
ψ̇ , G23 =− KαT

mT vT
, G24 =

KαT
3

4mT vT
− Ka

2mT vTvT,0
ψ̇ +

KaαT
2

4mT vTvT,0
ψ̇ − KαT

2mT vT
, G25 =

K
2mT vT

− KαT
2

4mT vT
, G31 =

−Ka
IT

, G32 = 0, G33 = 0, G34 =
−Ka2

2IT vT,0
ψ̇− KαTa

2IT
, and

G35 =
Ka
2IT

. Moreover, I (X ), G (X ), and U (δ ) are the drift dynamics of the system, the control
input, and the input dynamics of the system, respectively.

The vehicle model for this study is a nonlinear single-track bicycle given in (88) and shown
in Fig. 8. It is noteworthy that this model is capable of qualitatively describing a simple nonlinear
vehicle yaw dynamics in all operating conditions corresponding to |αT| ≤ 0.174533 rad, |ψ| ≤
0.3 rad, |ψ̇| ≤ 0.7 rad/s, and |δ | ≤ 37.93◦.

Assuming that vT ≥ 1m/s, and let the observable functions consist of the elements of the state
vector X as:

C = {ψ,αT , ψ̇,αT
2,αT

3,αT
4,αT

5, αT
vT
, αT

vT
, αT

2

vT
, αT

3

vT
, αT

4

vT
, αT

5

vT
,αT ψ̇,

αT
2ψ̇,αT

3ψ̇,αT
4ψ̇,αT

5ψ̇, 1
vT

ψ̇, αT
vT

ψ̇, αT
2

vT
ψ̇, αT

3

vT
ψ̇, αT

4

vT
ψ̇, αT

5

vT
ψ̇}

(89)

26



FINITE-TIME KOOPMAN IDENTIFIER

Figure 9: Meta cost JR vs iteration i of Algorithm 1. At each iteration i, the cost of the current
set of observable functions and of the current best one are depicted. The green square shows the
overall best lifted state ξθ = [ψ,αT , ψ̇,αT

2,αT
3, αT

vT
, αT

2

vT
, αT

3

vT
,αT ψ̇,αT

2ψ̇, 1
vT

ψ̇, αT
vT

ψ̇, αT
2

vT
ψ̇]⊤ which

is found at iteration 20.

The meta cost JR vs iteration i of Algorithm 1 is illustrated in Fig. 9. Note that for the lifted
state ξθ = [ψ,αT , ψ̇,αT

2,αT
3, αT

vT
, αT

2

vT
, αT

3

vT
,αT ψ̇,αT

2ψ̇, 1
vT

ψ̇, αT
vT

ψ̇, αT
2

vT
ψ̇]⊤, one has

ξ̇θ = Â∗ξθ + B̂∗1ξθ δ + B̂∗2ξθ sin(δ )+ B̂∗3ξθ δ sin(δ )+ B̂∗4ξθ δ 2 + B̂∗5ξθ δ 3 +P̂θ (t,ξθ (t))

= Â∗ξθ +
[

Inξθ
Inξθ

Inξθ

Inξθ
Inξθ

]
diag(B̂∗1, B̂

∗
2, B̂
∗
3, B̂
∗
4, B̂
∗
5)︸ ︷︷ ︸

B̂∗
θ

(I5⊗ξθ )


δ

sinδ

δ sinδ

δ 2

δ 3


︸ ︷︷ ︸

Ψ(U (δ (t)))

+P̂θ (t,ξθ (t))

(90)

v̇T =
[
0,0,0, 2K

mT
,0,0,0,0, K(a−b)

mT vT,0
,0,0,0,0

]⊤
ξθ

+


Ḡ11
0
0
0
0

0
Ḡ12
0
0
0

0
0

Ḡ13
0
0

0
0
0

Ḡ14
0

0
0
0
0

Ḡ15

(I5⊗ξθ )


δ

sinδ

δ sinδ

δ 2

δ 3


(91)

where Ḡ11 =
[
0, −K

mT
,0,0,0,0,0,0,0,0,0,0,0

]
, Ḡ12 =

[
0, −K

mT
, −Ka

mT vT,0
,0, K

2mT
,0,0,0,0, Ka

2mT vT,0
,0,0,0

]
,

Ḡ13 =
[
0, K

mT
,0, −K

2mT
,0,0,0,0,0,0,0,0,0

]
, Ḡ14 =

[
0,0,0, −K

2mT
,0,0,0,0, −Ka

2mT vT,0
,0,0,0,0

]
, and Ḡ15 =[

0, K
2mT

,0,0,0,0,0,0,0,0,0,0,0
]
.
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Figure 10: Evolution of the lifted state ξθ and vT trajectories.

Figure 11: Control input δ =−35Sin(1.2t) Degree.

To satisfy Condition 1, a rich enough input signal δ is injected into the nonlinear vehicle system
(88) for excitation of the lifted states ξθ . The evolution of the lifted states trajectories under the
rich enough input signal δ is shown in Fig. 10. The proposed update law (34)-(36) is used to find
the approximated matrices Â∗

θ
, and B̂∗

θ
. After the convergence of Â∗

θ
and B̂∗

θ
, the control input δ ,

given in Fig. 11, is employed for the identified linear representation system (90) and the nonlinear
vehicle system (88) to compare the evolution of the states trajectories of the identified model and
the nonlinear vehicle system (88). Using the equations of motion (Andrzejewski and Awrejcewicz,
2006; de Souza Mendes et al., 2016)

Ẋ =vT cos(αT+ψ),
Ẏ =vT sin(αT+ψ).

(92)

Fig. 13, illustrates the comparison of X −Y positions of the nonlinear vehicle system (88) and the
identified model (90).

Now, to test the learned model, we assumed that a disturbance as a single steering pulse with
the magnitude of δ = 30◦ is simulated at t = 0−0.2 sec. The control input δ as depicted in Fig. 14

28



FINITE-TIME KOOPMAN IDENTIFIER

Figure 12: States trajectories of the nonlinear vehicle system and the identified model under control
input of δ =−35Sin(1.2t) Degree.

Figure 13: X and Y position trajectories of the nonlinear vehicle system (Light-Blue square) and the
identified model (Light-Coral square) under control input of δ =−35Sin(1.2t) Degree.

is employed for the nonlinear vehicle system (88) to stabilize the states {ψ,αT , ψ̇}. For the com-
parison, the feedback gain K is also applied to the identified model. Fig. 15 depicts the evolution of
state trajectories of identified (dashed line) and real (solid line) nonlinear system, which shows
that the both state trajectories. Fig. 16, illustrates the comparison of X−Y positions of the nonlinear
vehicle system (9) and the identified model (72) under the control input given in Fig. 16.

6. Conclusion

A novel data-driven learning algorithm is presented to learn a linear representation of nonlinear sys-
tem dynamics using Koopman operator theory. To jointly learn the set of observables (structure) and
Koopman parameters, a bilevel learning mechanism with two layers of learning is developed. The
lower layer learner leverages a unified batch-online learning-based finite-time Koopman identifier,
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Figure 14: Control input δ .

Figure 15: State trajectories of identified (dashed line) and real (solid line) nonlinear system with
δ .

Figure 16: X and Y position trajectories of the nonlinear vehicle system (Light-Blue square) and the
identified model (Light-Coral square) with control input of δ .

which uses discontinuous gradient update laws to minimize the instantaneous Koopman operator’s
identification errors as well as the identification errors for a batch of past samples collected in a
history stack. It is guaranteed that the lower layer identifier will converge in a finite time under
easy-to-verify conditions on a batch of samples. A higher layer employs a discrete Bayesian opti-
mization algorithm to find a set of observables with minimum approximation errors and minimum
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cardinality. Finally, the effectiveness of the proposed framework was verified on a simulation ex-
ample.
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André de Souza Mendes, Douglas De Rizzo Meneghetti, Marko Ackermann, and Agenor
de Toledo Fleury. Vehicle dynamics-lateral: Open source simulation package for matlab. Tech-
nical report, SAE Technical Paper, 2016.
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