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Abstract
Vector autoregression has been widely used for modeling and analysis of multivariate time series
data. In high-dimensional settings, model parameter regularization schemes inducing sparsity yield
interpretable models and achieved good forecasting performance. However, in many data applica-
tions, such as those in neuroscience, the Granger causality graph estimates from existing vector
autoregression methods tend to be quite dense and difficult to interpret, unless one compromises
on the goodness-of-fit. To address this issue, this paper proposes to incorporate a commonly used
structural assumption — that the ground-truth graph should be largely connected, in the sense that
it should only contain at most a few components. We take a Bayesian approach and develop a novel
tree-rank prior distribution for the regression coefficients. Specifically, this prior distribution forces
the non-zero coefficients to appear only on the union of a few spanning trees. Since each span-
ning tree connects p nodes with only (p − 1) edges, it effectively achieves both high connectivity
and high sparsity. We develop a computationally efficient Gibbs sampler that is scalable to large
sample size and high dimension. In analyzing test-retest functional magnetic resonance imaging
data, our model produces a much more interpretable graph estimate, compared to popular exist-
ing approaches. In addition, we show appealing properties of this new method, such as efficient
computation, mild stability conditions and posterior consistency.

KEYWORDS: Graph rank, Laplacian matrix, Structural vector autoregression, Gibbs sampling,
Neuroimaging data

1. Introduction

Vector autoregression (VAR) models have been widely used for modeling multivariate time series
data in economics (Eichler, 2007; Stock and Watson, 2016; Lin and Michailidis, 2020), genomics
(Michailidis and d’Alché Buc, 2013; Basu et al., 2015) and neuroscience (Seth et al., 2015). The
observations yt = (yt1, . . . , y

t
p) ∈ Rp at discrete time points t = 1, · · · , T evolve according to:

yt = C(1)yt−1 + C(2)yt−2 + ...+ C(d)yt−d + εt, (1)

where the transition matrices C(k) ∈ Rp×p capture lead-lag effects at lags 1, · · · , d and εt ∈ Rp is
a noise term. The elements of the transition matrices C(k) form a directed graph of Granger causal
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effects (Granger, 1969); specifically, if there is at least one C(k)
i,j 6= 0 for some k = 1, · · · , d, then it

implies that ytj is predictive for future values of yt
′
i with t′ ≥ t+ k, and an edge is included (j → i)

in the corresponding graph.
However, in many applications, the dimensionality of the parameter space p2d exceeds the num-

ber of available observations. To overcome this challenge, several Bayesian and frequentist regu-
larization approaches have been proposed in the literature. For example, Sims (1989) proposed to
impose a Gaussian prior distribution on the elements of the transitions matrices, whereas Banbura
et al. (2010) used a Gaussian-inverted Wishart prior distribution to induce ridge type shrinkage.
Korobilis (2013) put Bernoulli prior distributions on the indicators of each parameter in the transi-
tion matrix to select Granger causal effects. More recently, Ghosh et al. (2019, 2021) studied the
theoretical properties of Bayesian VAR models under various prior distributions for the parame-
ters and established their posterior consistency. In frequentist approaches, various sparsity-inducing
penalties have been proposed and studied. Basu and Michailidis (2015) used a lasso penalty and
developed key technical results to establish estimation consistency of the model parameters. Vari-
ants of sparse regularization schemes were proposed in Kock and Callot (2015); Lin and Michailidis
(2017); Hsu et al. (2008); Nicholson et al. (2020). A different direction was pursued by Basu et al.
(2019) that assumes that the transition matrices exhibit a low-rank and sparse structure. Another
variant integrates additional data summarized as factors that are incorporated as additional time
series in the model (Lin and Michailidis, 2020).

These regularized versions of the vector autoregressive model generally exhibit very good pre-
dictive performance. However, in many cases, the resulting Granger causal graph is fairly dense,
which makes interpretation more challenging, and/or disconnected, which contradicts scientific
background knowledge in certain application domains. Indeed, in the neuroimaging application
discussed in Section 6, existing sparsity-inducing approaches produce very dense Granger causal
graphs unless the tuning parameters that control the degree of regularization are selected to produce
much sparser estimates at the expense of a significantly poorer goodness-of-fit.

To address this challenge, we introduce a model that posits the Granger causal graph to be con-
nected (or almost connected) and containing relatively few edges, thus making it highly interpretable
and suitable for applications wherein the underlying science dictates full connectivity. We achieve
this by developing a novel tree-rank prior distribution and the corresponding algorithm to calcu-
late the posterior distribution of the model parameters, and establishing its theoretical properties.
The proposed model has been employed to estimate robust Granger causal graphs from functional
MRI (fMRI) data obtained from the Human Connectome Project. Granger causal graphs play an
important role in fMRI analysis, primarily due to their ability to examine directional relationships,
or causal influences, between different brain regions.

In recent developments in the domain of network neuroscience, tree-type connectivity has re-
ceived considerable attention. A review of neurophysiological and neuroimaging studies (Blomsma
et al., 2022) suggests that line-like tree organization characterizes neurodegenerative disorders across
pathologies and is associated with symptom severity and disease progression. In an Alzheimer’s dis-
ease (AD) study (Guo et al., 2017), it was reported that the minimum spanning tree extracted from
high-order functional connectivity greatly improves the diagnostic accuracy for AD. In a dementia
study (Saba et al., 2019), it was found that brain connectivity, characterized by spanning tree es-
timates and the degree of possible breakdowns in information flow, is highly associated with the
behavioral variants of frontotemporal dementia. These are just selected examples from a vast and
rapidly developing neuroscience literature, suggesting that the assumption of tree connectivity struc-
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ture is fairly plausible for the brain network. We have also demonstrated in our data application that
incorporating such an assumption into the statistical model could significantly improve the accuracy
and reproducibility of the graph estimate.

The remainder of the paper is organized as follows. In Section 2, we introduce the tree-rank
VAR model and develop a Gaussian scale mixture prior on the coefficient matrix. In Section 3,
we introduce the posterior distribution initialization and computation. In Section 4.1, we establish
a mild stability condition for the model, while in Section 4.2, posterior consistency and model
selection consistency. Sections 5 and 6 illustrate the performance of tree-rank estimates on synthetic
and resting-state functional magnetic resonance imaging data. We conclude with a discussion in
Section 7. The software is available at https://github.com/leoduan/Spanning-Tree-VAR.

2. Modeling Framework

2.1 Vector Autoregressive Processes from a Tree-Covered Graph

The underlying data generating process corresponds to the VAR model in (1), with {C(k), k =
1, · · · , d} transition matrices defining the Granger causal network G = (V,E) (Basu et al., 2015).
Specifically, if there is an edge (j → i) ∈ E, then there is at least one C(k)

i,j 6= 0 for k = 1, · · · , d.

Further, we assume Gaussian measurement error εt iid∼ N(0,Σε) for all t, with some positive def-
inite covariance Σε. To facilitate computation, we impose a near low-rank structure on the error
covariance matrix Σε = WWT + Iσ2

ε , with W ∈ Rp×p∗ and p∗ < p. This allows us to use two
latent vectors zt ∼ N(0, Ip∗) and ξt ∼ N(0, Ipσ

2
ε), and obtain εt = Wzt + ξt ∼ N(0,Σε).

We introduce the following matrix notation Y = [yT · · · yd+1]T ∈ R(T −d)×p,

C̄ = [C(1) · · ·C(d)]T ∈ R(pd)×p, X =

(yT −1)T . . . (yT −d)T

...
. . .

...
(yd)T · · · (y1)T

 ∈ R(T −d)×(pd) and Z =

[zT . . . zT −d] ∈ R(T −d)×p∗ to write the likelihood in compact form:

L(Y,X,Z; C̄,W ) ∝ (σ2
ε )
−(T −d)p/2 exp(− 1

2σ2
ε

‖Y −XC̄ − ZWT‖2F ) exp(−
‖Z‖2F

2
). (2)

Remark The above likelihood function is also suitable for modeling multiple time series
[Y (1), X(1)], . . . , [Y (S), X(S)] based on a regression model with shared C̄. In that case, one uses
matrices Y = [Y (1) · · ·Y (S)] ∈ R(

∑
s Ts−Sd)×p, X = [X(1) · · ·X(S)] ∈ R(

∑
s Ts−Sd)×(pd), and

adjusts the dimensions of other matrices accordingly.
Next, we incorporate the prior information that G should be sparse and nearly connected. Con-

sider the undirected version ofG, denoted by Ḡ; that is, Ḡ = {V,EḠ}, with (i, j) ∈ EḠ if and only
if at least one of (i → j) or (j → i) is in G]. We assume that Ḡ can be covered by m spanning
trees of a complete graph with p nodes,

Ḡ ⊆ T̄ =

m⋃
l=1

T l, (3)

where the union and subset signs are shorthand for EḠ ⊆
⋃
ET l for notational convenience. Recall

that a spanning tree T l is the smallest connected graph containing p nodes with (p − 1) edges.
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Further, since we assume that it is “connected”, for any two nodes i and j, there is a set of edges in
ET l to form a path to them together.
Graph-based Gaussian Prior Distribution with Further Edge Selection: To incorporate this
structural assumption into the model, we use the following graph-based Gaussian prior distribution:

C
(k)
i,j

indep∼ N(0, rkηi,jσ
2
εAT̄ :i,j), (4)

where each AT̄ = (AT̄ :i,j)i,j=1,··· ,p is the adjacency matrix of the union of trees, with AT̄ :i,j =
AT̄ :j,i = 1 if (i, j) ∈ T̄ , and AT̄ :i,j = 0 otherwise; further, we fix AT̄ :i,i = 1.

When AT̄ :i,j = 0, the above distribution would be degenerate at point mass C(k)
i,j = 0. Further,

we use ηi,j ≥ 0 and rk ≥ 0 to adjust for the varying scales of coefficients over (i, j) and k =
1, · · · , d. Note that if ηi,j = ηj,i = 0 exactly and (i, j) ∈ T̄ , then Ḡ would be a disconnected
subgraph of T̄ ; if ηi,j = 0 exactly, (i, j) ∈ T̄ , but ηj,i � 0, then G would correspond to a directed
graph. Therefore, the above graph-based Gaussian prior is quite flexible. On the other hand, to
facilitate the computation of the posterior distribution, we will use strictly positive ηi,j and rk, and
rely on a continuous shrinkage prior distribution to have some ηi,j ≈ 0 and rk ≈ 0.

rk
iid∼ IG(ak, bk),

ηi,j ∼ IG(αη, βi,j), βi,j ∼ Exp(γη).

where IG is the inverse-gamma distribution, and both inverse-gamma and exponential use scale
parameterization. The hierarchical prior on ηi,j is equivalent to a generalized Pareto prior π0(ηi,j) ∝
(1 + ηi,j/γη)

−(1+αη). Since the true order of lags in the VAR model is unknown, we use a large
value for the lag order d and make the scale bk increasingly close to zero for larger values of k, as
described at the end of this section.
Remark We induce sparsity in (4) through the following two routes: we first select a connected
and undirected graph T̄ via binary AT̄ , then we further select a subset of edges corresponding to
G ⊆ T via continuous shrinkage on ηi,j .

For the parameters related to measurement error, we use

σ2
ε ∼ IG(ασ, βσ), Wi,j ∼ N(0, γW ).

We defer the specification of all the hyper-parameters to the end of this section.
Prior Distribution for the Union of Trees: In T̄ , each tree T l needs to satisfy the following
constraints: (i) there are (p− 1) edges in T l, (ii) T l needs to be connected.

Next, we assign a prior distribution for the union of trees T̄ =
⋃m
l=1 T

l. We use the following
discrete probability distribution that varies with the number of edges |ET̄ |:

π0(T̄ ) ∝ λ|ET̄ |, (5)

where the probability is normalized over all possible unions of m spanning trees, and λ > 0. It is
not hard to see that if λ > 1, we would encourage the T l’s to have fewer overlapping edges; and if
λ < 1, we would favor more overlapping edges and consequently higher sparsity in C̄.

A nice property of this prior distribution is that it allows two or more component trees to be
identical T l = T l

′
, which is more likely to occur a priori when λ < 1, compared to when λ > 1.

Since we do not know the number of trees to cover Ḡ, we again set a large m, and rely on the above
prior distribution with λ < 1 to reduce the effective number of covering trees.

4



LOW TREE-RANK VAR

Another nice property is that the conditional prior probability for a component tree given the
others is factorizable over the edges:

π0(T l | {T k}all k 6=l) ∝
∏

(i,j)∈T l

{
λ1[(i, j) 6∈ ∪k 6=lT k] + 1[(i, j) ∈ ∪k 6=lT k]

}
.

This allows us to develop a tractable algorithm to update the component trees.
Choice of the Hyper-parameters: Next, we specify the hyper-parameters mentioned above. First,
we standardize each vector (y1

j , . . . , y
T
j ), so that it has sample mean 0 and sample variance 1.

This allows us to set the noise variance roughly on the same scale, σ2
ε ∼ Gamma−1(2, 1) and

γW = 1. Next, for the generalized double Pareto distribution, we follow Armagan et al. (2013) and
use αη = 3 and γη = 0.001 to balance between sparsity and tail-robustness. To regularize the order
of autoregression, we use ak = 3 and bk = 2 · 0.1k, corresponding to increasingly smaller prior
mean Erk = 0.1k and variance Vrk = 0.12k as k increases. For the union of trees prior distribution,
we empirically find that having λ adaptive to the length of the time series T is effective to control
the number of edges |ET̄ |, and we use λ = 0.1T in this article. For the parameter dimensions, we
use d = m = 10.

2.2 Arboricity, Tree Rank and Sub-graph Sparsity

Estimating the Granger causality graph: Using the posterior sample, we can form an estimate
of the graph G via AG = AT̄ ◦ Aη, with Aη:i,j = 1(ηi,j ≥ δ) based on some threshold δ. To
minimize the potential sensitivity in choosing δ, we select the one that has almost no impact on
the model goodness-of-fit, measured by the Mean Squared Error (MSE). Let MSE(C̄) = ‖Y −
XC̄‖2F /[(T − d)p], and C̄δ be thresholded matrix, with C(k)

δ:i,j = C
(k)
i,j 1(ηi,j ≥ δ), for each C̄, we

choose a maximal δ such that: |MSE(C̄)−MSE(C̄δ)|/MSE(C̄) ≤ ε̃, with ε̃ a small value (we use
ε̃ = 0.01 in this article).
Remark A conceptually simpler solution could be obtained with a Bernoulli prior distribution on
each element of matrix η = {ηi,j}all(i,j), for which one could directly obtain an estimate of G via
AG = AT̄ ◦ η. However, compared to a discrete model on η, the continuous shrinkage model
gives rise to simpler computations — we will be able to integrate out C̄ and rely on some fast tree
sampling algorithm to update T̄ .

Next, we discuss the consequences of covering G with m trees. First, note that the smallest
number of trees covering Ḡ is less or equal to m. This is a summary statistic known as “arboricity”.

arg min
m′
{(T 1, . . . , Tm

′
) : Ḡ ⊆

m′⋃
l=1

T l}.

We use the above for prior regularization, and call it the “tree-rank”. It corresponds to the number
of independent factors (spanning trees) that form the basis of a graph {for rigorous definitions of
independence in graphs and bases, see Murota (1998)}. As the name implies, the tree-rank shares a
similar range to a matrix-rank.

Theorem 1 For an undirected graph Ḡ with p nodes, 1 ≤ Tree-Rank(Ḡ) ≤ p− 1.

Therefore, analogously to imposing a low-rank constraint on matrices, a low tree-rank controls the
complexity of the graph Ḡ. On the other hand, a key difference from the matrix case is that a low
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tree-rank m∗ automatically ensures a certain level of sparsity, since |EḠ| ≤ m∗(p− 1). Further, the
tree-rank also induces sparsity in every sub-graph of Ḡ, as shown in the following classical result.

Theorem 2 Nash-Williams (1964)

Tree-Rank(Ḡ) = max
H⊆Ḡ

⌈
|EH |
|VH | − 1

⌉
. (6)

Therefore, with Tree-Rank(Ḡ) ≤ m, we obtain that every subgraphH ⊂ Ḡ has at mostm(|VH |−1)
edges. That is, the tree-rank gives a much stronger control on the sparsity of Ḡ.
Remark The above theorem is very general and all undirected graphs (including small-world and
scale-free graphs) satisfy this equality. In Appendix B, we provide an algorithm to estimate the
tree-rank of a graph.

An illustration of the low tree-rank modeling idea is depicted in Figure 1, which shows how a
sparse and connected graph can be covered by two spanning trees, each being the smallest connected
graph for p nodes. In addition, it shows a fundamental difference between a graph of low tree-rank
and a graph of low matrix-rank of its adjacency matrix: the former is connected and sparse, whereas
the latter is disconnected and not guaranteed to be sparse.

(a) A sparse and connected graph
having a low tree-rank.

(b) The graph in (a) can be covered
by two spanning trees (red and blue),
each is a connected graph having only
(p− 1) edges.

(c) Another graph having a low ma-
trix rank in the adjacency matrix. The
graph is disconnected, and in this
case, is dense in each component.

Figure 1: Illustration of the low tree-rank graph modeling idea.

3. Gibbs Sampling for Posterior Computation

Next, we derive an efficient and scalable algorithm for sampling the posterior distribution.

3.1 Data Augmentation

A challenge in updating the union of trees T̄ is the quadratic term C̄TXTXC̄ in the likelihood,
which poses a combinatorial complexity when updating each edge of the tree. To address this issue,
we modify the Gaussian integral trick (Zhang et al., 2012) and propose a new matrix Gaussian
latent variable U ∼ Matrix-N[(Im̃ −XTX)C̄, (Im̃ −XTX), Iσ2

ε ] with U ∈ R(dp)×p, where we
use m̃ = ‖XTX‖+ ε∗ with ‖ · ‖ the spectral norm and ε∗ = 10−3 to ensure positive definiteness of
the row covariance.

Π(U | X, C̄, σ2
ε)

∝ (σ2
ε)
−(p2d)/2 exp

{
− 1

2σ2
ε

tr[U − (Im̃−XTX)C̄]T(Im̃−XTX)−1[U − (Im̃−XTX)C̄]

}
.
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Multiplying the above two yields the likelihood with augmented data:

L(Y,X,U, Z;C̄,W, σ2
ε) ∝ (σ2

ε)
−(T −d)p/2−(p2d)/2 exp(−

‖Z‖2F
2

)

· exp

[
− 1

2σ2
ε

(
‖Y − ZWT‖2F + tr[UT(Im̃−XTX)−1U ]

+ m̃‖C̄‖2F − 2tr
{
C̄T[XT(Y − ZWT) + U ]

})]
.

It is useful to note that the above likelihood is now conditionally independent for C(k)
i,j over all (i, j).

This allows us to develop an efficient collapsed Gibbs sampling algorithm.

3.2 A Collapsed Gibbs Sampling Algorithm

Based on the Gaussian prior distribution in (4) and B = [XT(Y − ZWT) + U ], we can obtain the
coefficient estimate via

(C
(k)
i,j | AT̄ :i,j = 1, .) ∼ N

[ B
(k)
i,j

m̃+ (rkηi,j)−1
,

σ2
ε

m̃+ (rkηi,j)−1

]
,

(C
(k)
i,j | AT̄ :i,j = 0, .) = 0,

(7)

for all (i, j, k) in a block. Further, the Gaussian conjugacy allows us to integrate out those C(k)
i,j

corresponding to AT̄ :i,j = 1 completely, leading to a marginal distribution of AT̄ :

Π(AT̄ | .) ∝
∏

(i,j)∈T̄

λs̃i,j s̃j,i,

s̃i,j =
[ d∏
k=1

1

(rkηi,jm̃+ 1)1/2

]
exp

[ d∑
k=1

1

2σ2
ε

[B
(k)
i,j ]2

m̃+ (rkηi,j)−1

]
.

Therefore, conditioned on all the other trees T k : k 6= l, we can update each tree via

Π(T l | {T k}k 6=l, .) ∝
∏

(i,j)∈T l

{
λs̃i,j s̃j,i1[(i, j) 6∈ ∪k 6=lT k] + 1[(i, j) ∈ ∪k 6=lT k]

}
, (8)

for l = 1, . . . ,m. Since the above is factorizable over the edges of T l, we use the random-walk
covering algorithm (Broder, 1989; Aldous, 1990; Mosbah and Saheb, 1999) to sample from the
above distribution. The algorithmic details can be found in the recent work of Duan and Roy (2023).

To update the parameters in the continuous shrinkage prior, we have

(rk | .) ∼ IG(
|AT̄ |1

2
+ ak,

∑
i,j

[C
(k)
i,j ]2

2ηi,jσ2
ε

+ bk),

(ηi,j | .) ∼ IG(
dAT̄ :i,j

2
+ αη,

∑
k

[C
(k)
i,j ]2

2rkσ2
ε

+ βi,j),

(βi,j | .) ∼ Gamma
[
αη + 1, (

1

γη
+

1

ηi,j
)−1
]
,

(9)
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where all use the scale parameterization. To update the parameters related to the measurement error,
we have

(σ2
ε | .) ∼ IG

{
(T − d)p+ |AT̄ |1d

2
+ ασ,

‖Y −XC̄ − ZWT‖2F
2

+

∑
i,j,k[C

(k)
i,j ]2

2(rkηi,j)
+ βσ

}
,

(Z | .) ∼ Matrix-N[(Y −XC̄)W (WTW/σ2
ε + I)−1/σ2

ε , I, (W
TW/σ2

ε + I)−1],

(W | .) ∼ Matrix-N[(Y −XC̄)TZ(ZTZ/σ2
ε + I/γW )−1/σ2

ε , I, (Z
TZ/σ2

ε + I/γW )−1].

We provide empirical evidence in Appendix F that this algorithm enjoys rapid mixing of Markov
chains.

4. Consistency of Low Tree-Rank Vector Autoregression Models

4.1 Stability Condition

The vector autoregressive process is stable if the evolving limit of the observations is finite as time
T → ∞. Mathematically, the stability can be guaranteed (Lütkepohl, 2005; Hamilton, 2020) if for
any complex scalar z ∈ C : |z| ≤ 1,

det(Ip − C(1)z − ...− C(d)zd) 6= 0. (10)

Next, we derive an easy-to-verify sufficient condition. Note that we can view A(C, z) := C(1)z +
... + C(d)zd as a complex-valued and weighted adjacency matrix for a graph, where the weights
correspond to the transition matrices C(k), k = 1, · · · , d. Since the graph Laplacian matrix is by
construction positive semi-definite, we can enforce det{Ip −A(C, z)} > 0.

Theorem 3 Consider two transformed matrices of C(1), · · · , C(d) that are real-valued and sym-
metric:

(Ã∗)i,j = [

d∑
k=1

{
C

(k)
i,j + C

(k)
j,i

2
}2]1/2, (Ã∗∗)i,j = [

d∑
k=1

{
C

(k)
i,j + g0C

(k)
j,i

2
}2 + (1− g2

0){
C

(k)
j,i

2
}2]1/2

for i = 1, . . . , p and j = 1, · · · , p, with g0 = −0.4 − 0.61/d. Then, a sufficient condition for the
vector autoregressive process (1) to be stable is that for all i, the node strength

D̃∗i =

p∑
j=1

(Ã∗)i,j < 1/
√
d, D̃∗∗i =

p∑
j=1

(Ã∗∗)i,j < 1/
√
d.

Remark This result holds for any vector autoregressive process, although it is particularly mean-
ingful for low tree-rank and/or sparse models. Since each node has few edges, hence most of
(C

(k)
i,j , C

(k)
j,i )’s are zero, making the above condition easy to satisfy. A similar, but necessary condi-

tion was derived in Proposition 2.2 (i) of Basu and Michailidis (2015) that assumes (10) to be true.
Therefore, our new result shows that stability can be achieved via the sparsity condition.
Remark Note that for ease of computation, almost all estimation methods of VAR models do
not impose the process stability constraint on the parameter estimates. Our algorithm follows this
practice. On the other hand, in our collected posterior samples of C̄, all of them satisfy the stability
condition, even though the constraint was not enforced explicitly.
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4.2 Consistent Estimation of the Transition Matrices

Next, we derive conditions for consistent estimation of the elements of the transition matrices, as
the number of observations T → ∞. First, we rewrite the model in a linear regression form as

Y = XC + E , (11)

where E := [εT , · · · , εd+1]TN×p is the error matrix.

We assume that observations are generated with ground-truth C0 = {C(1)
0 , . . . , C

(d)
0 }T, and

associated ground-truth graph Ḡ0. For ease of presentation, we denote with N := T − d and use
vectorized notation for c = vec(C), y = vec(Y ), c0 = vec(C0), and (i, j, k) as a shorthand for the
corresponding vectorized single index kp2 + jp+ i,

Then, the likelihood function of model (1) is given by

L(y; c,Σε) ∝ det(Σε)
−T −d

2 exp[−1

2
{y − (Ip ⊗X)c}T(Σε ⊗ IT−d)−1{y − (Ip ⊗X)c}].

The prior distribution on c is c ∼ N(0,Φ), with Φ = diag{rkηi,jσ2
εAT̄ :i,j}. This is based on the

first line of (4), where c follows a Gaussian scale mixture prior.
The conditional posterior distribution is then given by

(c | Σε, r, η, s, A) ∼ N{ĉ, (Γ̂ + Φ−1/N)−1/N}

ĉ = (Γ̂ +
Φ−1

N
)−1γ̂,

Γ̂ = Σ−1
ε ⊗XTX/N, γ̂ = (Σ−1

ε ⊗XT)y/N.

(12)

Next, we impose certain assumptions on X, E and some of the hyperparameters.
(A1) The value rk, sl and ηi,j,k are bounded from below by a constant that does not change with

N, p, almost everywhere with respect to the posterior probability; whereas Ali,j ∈ [ε, 1]. As τ → 0,
ε→ 0 uniformly for any N, p.

(A2) 0 < infN≥1 λmin(CX) < ∞, 0 < supN≥1 λmax(CX) < ∞, where CX is the covariance
matrix of each row of the data matrix X .

(A3) ||c0|| ≤ K, where K is a positive constant.
(A4) λmin(Σε) > 0, λmax(Σε) <∞.
(A5) p = o(N1/2).
(A6) The specified d, p∗ and m are greater or equal to ground-truth values.
Assumption A1 ensures the boundedness of ||Φ−1||, which plays an important role in the con-

sistency proof. Assumptions A2 and A4 are standard ones for high-dimensional VAR models and
ensure that λmin(XTX/N) is bounded away from 0 and λmax(XTX/N) is bounded above with
high probability. In A1, we do not assume the true adjacency matrix to be known. On A5, we focus
on the moderate dimension case p2/N → 0 for the theory.

Next, we establish that assuming
⋃m
l=1 T

l + Ḡ0 holds, the posterior probability of such Tl’s
would go to 0 as N → ∞. To do so, we compare posterior densities Π(Φ? | y,X) and Π(Φ?? |
y,X), where Φ? is the Gaussian scale parameter corresponding to a set of trees

⋃m
l=1 T

l
? ⊇ Ḡ0 and

Φ?? corresponding to a set of trees
⋃m
l=1 T

l
?? 6⊇ Ḡ0.

9
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Theorem 4 Consider a stable VAR model with true parameter c0 of tree-rank m satisfying A1-A6;
then, posterior consistency holds, i.e.,

Π{||c− c0|| > η | Φ, y,X} → 0, as N →∞. (13)

Further, we have
Π(Φ?? | y,X)/Π(Φ? | y,X)→ 0, as N →∞, (14)

where Φ? corresponds to a set of trees
⋃m
l=1 T

l
? ⊇ Ḡ0 and Φ?? corresponds to a set of trees⋃m

l=1 T
l
?? 6⊇ Ḡ0.

Remark The first result shows that the posterior distribution concentrates around the true parameter
c0, while the second one establishes a posterior ratio consistency for the trees covering the ground-
truth graph Ḡ0 hence model selection consistency. In the above, we restrict ourselves to stable
VAR models, so that no elements of yT will diverge when T → ∞, which is a sufficient condition
to ensure the existence of ĉ to be used in the proof. In Appendix A, we further characterize the
convergence rate when Φ? covers Ḡ0.

5. Numerical Experiments on Synthetic Data

5.1 Finite Sample Performance for Modeling Sparse Graphs

We assess the finite sample performance of the model and the estimation procedure for a finite T
varying between 400 and 1200, and for p = 30 and 80. We experiment with two types of ground-
truth Granger causal graphs G0: (a) a low tree-rank one, and (b) a random sparse graph. The former
is used to empirically show fast convergence of the posterior distribution, while the latter to assess
the robustness of the posited model when the ground truth deviates from it.

For comparison, we also fit the generated data using: (i) a “shrinkage only” model, which is
the Bayesian VAR model as described above except using continuous shrinkage only [by replacing
AT :i,j with 1 in (4)], (ii) a “trees only” model, a Bayesian model using a union of trees only [by
replacing ηi,j with 1 in (4)], (iii) a VAR model with lasso regularization, and (iv) a VAR model
with elastic net regularization. For (i), an alternative is to use a horseshoe prior regularization,
although we find no clear difference in the results from the one based on the generalized Pareto
prior distribution; hence, we only report the latter. For models (iii) and (iv), we use cross-validation
to select the tuning parameters that control the amount of regularization.

For each G0, with d = 3, we randomly generate a transition matrix C0 with C(k)
0:i,j from N(0, 1)

if (i, j) ∈ Ḡ0, and C
(k)
0:i,j = 0 otherwise, then scale down to satisfy the stability condition in

Theorem 3. We use a covariance matrix Σε = ρ̃(0.5|i−j|)i,j=1,...,p, and then scale ρ̃ such that the
signal-to-noise ratio ||C0||F /||Σε||F = 0.1.

We assess the performance of the models on the following metrics: (i) recovering C0, by assess-
ing the relative estimation error on the transition matrix ||Ĉ − C0||F /||C0||F with Ĉ the posterior
mean (or, point estimate for lasso or elastic net); (ii) recovering the edges of G0, by calculating the
relative estimation error on the edges

∑
i,j(AĜ:i,j 6= AG0:i,j)/(p

2), with point estimate Ĝ corre-

sponding to Ĉδ as the thresholded version of Ĉ, such that |MSE(Ĉ) −MSE(Ĉδ)|/MSE(Ĉ) ≤ ε̃.
As described at the beginning of Section 2.2, for Bayesian models, we use the posterior mean of η̂
during the thresholding procedure. It takes about 4 minutes to run the MCMC algorithm for 1000
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iterations at p = 30, and 10 minutes at p = 80 on a quad-core laptop. Each setting is repeated 5
times and the average error rate and standard error are calculated.

We first consider the case where G0 is indeed a graph of low tree-rank set to 2 (Figure 2). The
trees only model shows the best performance, as it is one that corresponds to the true data-generating
mechanism. The proposed model has a very similar performance to the trees only model. The
shrinkage only model shows slightly higher estimation errors. All three models show a rapid drop
in the estimation errors as T increases. In comparison, the lasso and elastic net seem to have a
relatively slow decrease of errors.

We then explore the case where G0 is an unstructured sparse graph. We generate adjacency
matrices A0’s with about 5%p(p − 1) edges at random (Figure 3). The results are very similar to
the ones in the previous case, except that the trees only model now performs slightly worse than the
proposed model. In Appendix G, we provide additional results for graphs at different edge densities.

In addition, since one could increase the threshold δ to have higher levels of sparsity in the graph
estimate (although with greater compromise in the goodness-of-fit at a higher MSE), we evaluate
the receiver operating characteristic curves for the above methods, and present them in Appendix E.
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(c) Relative estimation error for C at p = 80.
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(d) Relative estimation error for G at p = 80.

Figure 2: Simulation results when the ground-truth graph G0 has a low tree-rank at 2. We com-
pare five models: (i) the proposed model (Trees and Shrinkage), (ii) the Bayesian model using the
continuous shrinkage only (Shrinkage only), (iii) the Bayesian model using the union of trees only
(Trees only), (iv) VAR regression with lasso regularization (Lasso), and (v) VAR regression with
elastic net regularization (Elastic net).
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Figure 3: Simulation results when the ground-truth graph G0 has a 95% sparsity.

5.2 Modeling Relatively Dense Graphs

Our model was developed with the aim of modeling sparse graphs with a low tree-rank regulariza-
tion; on the other hand, it can also be used for relatively dense graphs. Next, we illustrate that (i)
the model can flexibly represent the underlying dense graph, provided the upper bound m on the
tree-rank is sufficiently large; (ii) even under an overly smallm, the constrained model still captures
some important characteristics of the underlying graph.

We first explore the case whenG0 is a small-world graph (Watts and Strogatz, 1998). We gener-
ateG0 using the “igraph” function “smallworld” with a starting lattice of dimension 1, neighborhood
size 5, rewiring probability 0.05, and p = 80. Based on G0, we generate the transition matrix C0

and the data as in Section 5.1, and produce data over T = 1200 time points. Figure 4(a) shows the
ground-truth graph, and Panel(c) shows the estimated graph under tree-rank constraint m ≤ 10. In-
deed, the estimated graph is very close to the ground truth. In addition, Panel (b) plots the estimated
graph when the model is overly constrained with m ≤ 5. It can be seen that the estimated graph
is clearly sparser than the ground truth, however, it still captures the “small-worldness”, as those
nodes indexed near 1 and those near 80 are directly connected by a few edges. Panel (d) shows a
similar result when using lasso to fit the data.
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rank ≤ 5.
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Figure 4: Fitting the models when the ground-truth G0 is a small-world graph.

We next consider the case when G0 is a collection of several fully connected components (each
component is a complete graph). We generate G0 with component sizes of 20, 30 and 30. Based
on G0, we generate the transition matrix C0 and the data in the same way as in the last section, and
produce data over T = 1200 time points. By Theorem 2, we can see that the grouth-truth tree-rank
of G0 is 30.

Figure 5(a) shows the ground-truth graph, and Panel(c) shows the estimated graph under tree-
rank constraint m ≤ 30. In addition, Panel (b) plots the estimated graph when the model is overly
constrained with m ≤ 10. We can see again that the estimated graph is sparser than the ground
truth, but captures the three-component structure. Panel (d) shows a similar result when using lasso
to fit the data.
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Figure 5: Fitting the models when the ground-truth G0 is a graph with three fully connected com-
ponents.

6. Application to Brain Imaging Data

We employ the proposed model to analyze resting-state functional magnetic resonance imaging
(fMRI) data from the Human Connectome Project. The fMRI data contain blood oxygen level-
dependent (BOLD) signals for T = 1200. We use average BOLD signals in 68 brain cortical
regions of interest, according to the Desikan-Killarney atlas (Desikan et al., 2006). We consider
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468 subjects, each of whom has two scans taken at different times. We denote the first scan as the
“test” batch and the second scan as the “retest” batch.

As our study focuses on reproducibility, we use the test batch as the training data for graph esti-
mation and the retest batch as validation data to assess how many edge estimates can be reproduced.
We fit our model by running the Markov chain Monte Carlo sampler for 2,000 iterations, discarding
the first 1,000 as the burn-in period. We set the hyper-parameters according to the discussion in
Section 2, with (m, d) = (10, 10). For comparison purposes, we also fit sparse VAR models using
(i) shrinkage only, (ii) trees only, (iii) lasso regularization, and (iv) elastic net regularization. It takes
about 10 minutes to run the MCMC algorithm for each Bayesian model, and about 2 minutes to run
the optimization algorithm for lasso or elastic net regularization on a quad-core laptop.

We form a point estimate Ĝ using the posterior mean (or the optimal value) Ĉ, then threshold it
using the procedure described in Section 2.2. For the Bayesian models, we use the posterior mean
of η in this step. As shown in Figure 6, the proposed model shows the smallest number of edges in
Ĝ, followed by the trees-only model, and then the shrinkage-only model. The lasso and elastic net
models have many more edges, which complicates interpretation (results shown in Appendix D).
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(a) Graph estimate using the pro-
posed model. The graph has 268
edges.

1 17 34 51 68

1
17

34
51

68

(b) Graph estimate using the model
with continuous shrinkage only. The
graph has 405 edges.
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(c) Graph estimate using the model
with the union of trees only. The
graph has 396 edges.

Figure 6: Graph estimates from the “test” batch of fMRI data. Nodes are plotted using the Desikan-
Killiany atlas node coordinates.

We then fit these models to the “retest” batch, using the same hyper-parameters, and show the
results in Figure 7. Compared with Figure 6, we can see that there is not much change in Ḡ between
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the “test” and “retest” for the proposed model and for the trees-only model; whereas the graph
estimate from the “retest” is much denser than the one from the “test” for the shrinkage-only model.

To quantify the changes, we calculate the Jaccard index as a reproducibility score that compares
the graph estimates in two batches for each of the five methods (Table 1). The proposed model
and the trees-only model show the highest Jaccard index score, whereas the shrinkage-only model,
lasso, and elastic net show much lower scores.

In addition, we explore calibrating the shrinkage-only model by increasing the prior penalty, so
that it can produce a similar level of sparsity to that of our proposed model. To do this, we increase
αη to 30 and reduce γη to 0.0001, obtaining 257 edges in the graph estimate from the “test” batch.
Nevertheless, this calibrated model produces 648 edges from the “retest” data, and the Jaccard index
is worse than the uncalibrated version of the shrinkage-only model.
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(a) Graph estimate using the low
tree-rank model with additional edge
selection (proposed model). The
graph has 261 edges.

1 17 34 51 68

1
17

34
51

68

(b) Graph estimate using the model
with element-wise edge selection
alone (via generalized Pareto shrink-
age). The graph has 859 edges.
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(c) Graph estimate using the model
with the union of trees prior alone.
The graph has 398 edges.

Figure 7: Graph estimates from the “retest” batch of fMRI data.

Proposed Shrinkage only Trees only Lasso Elastic net Shrinkage only (calibrated)
0.951 0.750 0.941 0.737 0.721 0.632

Table 1: The Jaccard index comparing the two graph estimates from the “test” and “retest” batches
of data. The proposed model and the trees only model show the highest score of Jaccard index.
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(a) The probability estimate of Π((i→ j) ∈ G |
y) based on the “test” data.

(b) The probability estimate of Π((i→ j) ∈ G |
y) based on the “retest” data.
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(c) The posterior distribution of the effective tree-
rank in G based on the “test” data.
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(d) The posterior distribution of the effective tree-
rank in G based on the “retest” data.

Figure 8: Uncertainty quantification on the graph estimates from the proposed model.

Lastly, we use the posterior sample of G and quantify the uncertainty associated with the point
estimate Ĝ. We estimate the probability Π((i → j) ∈ G | y), by calculating the proportion when
(i → j) is included in the posterior sample point of G. As shown in Figure 8, most of the edges
have relatively low uncertainty. Further, comparing the two batches, most of these edges of low
uncertainty seem to appear in both of the graphs.

7. Discussion

We introduce a tree-rank prior distribution to induce both near-full connectivity and high sparsity
in the Granger causal network of a VAR model. We propose a fast algorithm for calculating the
posterior distribution of the model parameters and establish posterior consistency of these estimates.

There are several interesting extensions to pursue in future work. The focus of this paper was
a single connected, but highly sparse Granger causal network. However, there might be networks
with relatively low tree-rank, which contain several small, dense sub-networks. To accommodate
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this structure, we could adopt the approach from Basu et al. (2019) and consider a more flexible
“low tree-rank plus sparse” structure. In addition, it will be of great interest to link the estimated
Granger causal networks from fMRI to behavior traits and disease status. Considering that the
proposed method has estimated surprisingly reliable networks from a relatively less reproducible
imaging modality-fMRI (Zuo et al., 2019), we expect to get reliable and reproducible results in
such analyses. On the theoretical front, we have established the consistency of parameter estimates.
It would be interesting to quantify the convergence rate, although characterizing the tree-covering
probability poses a significant technical challenge.

References

David J Aldous. The Random Walk Construction of Uniform Spanning Trees and Uniform Labelled
Trees. SIAM Journal on Discrete Mathematics, 3(4):450–465, 1990.

Artin Armagan, David B Dunson, and Jaeyong Lee. Generalized Double Pareto Shrinkage. Statis-
tica Sinica, 23(1):119, 2013.

Marta Banbura, Domenico Giannone, and Lucrezia Reichlin. Large Bayesian Vector Auto Regres-
sions. Journal of Applied Econometrics, 25(1):71–92, 2010.

Sumanta Basu and George Michailidis. Regularized Estimation in Sparse High-Dimensional Time
Series Models. The Annals of Statistics, 43(4):1535–1567, 2015.

Sumanta Basu, Ali Shojaie, and George Michailidis. Network Granger Causality with Inherent
Grouping Structure. The Journal of Machine Learning Research, 16(1):417–453, 2015.

Sumanta Basu, Li Xiangqi, and George Michailidis. Low Rank and Structured Modeling of High-
Dimensional Vector Autoregressions. IEEE Transactions on Signal Processing, 67(5):1207–
1222, 2019.

Nicky Blomsma, Bart de Rooy, Frank Gerritse, Rick van der Spek, Prejaas Tewarie, Arjan Hille-
brand, Wim M Otte, Cornelis Jan Stam, and Edwin van Dellen. Minimum Spanning Tree Analysis
of Brain Networks: A Systematic Review of Network Size Effects, Sensitivity for Neuropsychi-
atric Pathology, and Disorder Specificity. Network Neuroscience, 6(2):301–319, 2022.

Andrei Z Broder. Generating Random Spanning Trees. In Annual Symposium on Foundations of
Computer Science, volume 89, pages 442–447, 1989.

Rahul S Desikan, Florent Ségonne, Bruce Fischl, Brian T Quinn, Bradford C Dickerson, Deborah
Blacker, Randy L Buckner, Anders M Dale, R Paul Maguire, and Bradley T Hyman. An Auto-
mated Labeling System for Subdividing the Human Cerebral Cortex on MRI Scans Into Gyral
Based Regions of Interest. Neuroimage, 31(3):968–980, 2006.

Leo L Duan and Arkaprava Roy. Spectral Clustering, Spanning Forest, and Bayesian Forest Process.
Journal of the American Statistical Association, (in press):1–24, 2023.

Michael Eichler. Granger Causality and Path Diagrams for Multivariate Time Series. Journal of
Econometrics, 137(2):334–353, 2007.

17



DUAN, YUWEN, MICHAILIDIS, ZHANG

Harold N Gabow and Herbert H Westermann. Forests, Frames, and Games: Algorithms for Matroid
Sums and Applications. Algorithmica, 7(1):465–497, 1992.

Satyajit Ghosh, Kshitij Khare, and George Michailidis. High-Dimensional Posterior Consistency
in Bayesian Vector Autoregressive Models. Journal of the American Statistical Association, 114
(526):735–748, 2019.

Satyajit Ghosh, Kshitij Khare, and George Michailidis. Strong Selection Consistency of Bayesian
Vector Autoregressive Models Based on a Pseudo-Likelihood Approach. The Annals of Statistics,
49(3):1267–1299, 2021.

C.W.J. Granger. Investigating Causal Relations by Econometric Models and Cross-Spectral Meth-
ods. Econometrica, 37(3):423–438, 1969.

Hao Guo, Lei Liu, Junjie Chen, Yong Xu, and Xiang Jie. Alzheimer Classification Using a Min-
imum Spanning Tree of High-Order Functional Network on fMRI Dataset. Frontiers in Neuro-
science, 11:639, 2017.

James Douglas Hamilton. Time Series Analysis. Princeton University Press, 2020.

Nan-Jung Hsu, Hung-Lin Hung, and Ya-Mei Chang. Subset Selection for Vector Autoregressive
Processes Using Lasso. Computational Statistics and Data Analysis, 52:3645–3657, 2008.

Anderes Bredahl Kock and Laurent Callot. Oracle Inequalities for High Dimensional Vector Au-
toregressions. Journal of Econometrics, 186(2):325–344, 2015.

Dimitris Korobilis. VAR Forecasting Using Bayesian Variable Selection. Journal of Applied Econo-
metrics, 28(2):204–230, 2013.

Jiahe Lin and George Michailidis. Regularized Estimation and Testing for High-Dimensional Multi-
Block Vector-Autoregressive Models. The Journal of Machine Learning Research, 18, 2017.

Jiahe Lin and George Michailidis. Regularized Estimation of High-Dimensional Factor-Augmented
Vector Autoregressive (FAVAR) Models. The Journal of Machine Learning Research, 21(1):
4635–4685, 2020.

Helmut Lütkepohl. New Introduction to Multiple Time Series Analysis. Springer Science & Business
Media, 2005.
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Appendix

Appendix A. Proofs

A.1 Proof for Theorem 1

The lower bound is trivial. For the upper bound, note that Ḡ ⊆ F , with F a complete graph
F = {V,EF }, with EF containing all possible pairs of undirected (i, j). Then consider the tree T̃ l

with edge sets ET̃ l = {([l+ 1]p, 1), ([l+ 2]p, 2), . . . , ([l+ p− 1]p, p− 1)}, where [l+ i]p = l+ i if
l+ i ≤ p, otherwise [l+ i]p = l+ i− p — that is, ET̃ l corresponds to the l-diagonal elements (the
diagonal with l row offset from the main diagonal ) in a p× p matrix.

Therefore, we can see that ∪p−1
l=1 T̃

l includes all the edges in F , therefore, the tree rank of F is
at most p− 1, hence so is for Ḡ.
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A.2 Proof for Theorem 3

For a complex matrix A ∈ Cp×p, A∗ denotes the conjugate transpose of A. We use z to denote the
complex conjugate of a complex number z. The modulus of z is denoted by |z|. For a complex
matrix A ∈ Cp×p, AH denotes the Hermitian part of A: AH = 2−1(A + A∗). Let A(C, z) :=
C(1)z + ... + C(d)zd. We use B(z) = 2−1[A(C, z) + A∗(C, z)] to denote its Hermitian part.
Since B(z) is Hermitian, we define the Laplacian as LB(z) := DB(z) − B(z) with DB(z) =
diag{

∑p
j=1 |B(z)ij |}i. ClearlyLB(z) is Hermitian hence all eigenvalues ofLB(z) are real, denoted

by λ1 ≤ λ2 ≤ ... ≤ λp.
For ease of notation, we omit .B(z) for now. For any w = (w1, ..., wp)

T ∈ Cp, we have

w∗Lw = w∗(D −B)w

=

p∑
i=1

wi(

p∑
j=1

|Bij |)wi −
∑
i<j

wiBi,jwj −
∑
j<i

wiBijwj −
n∑
i=1

wiBiiwi

(a)
=

p∑
i=1

|wi|2(
∑
j 6=i
|Bij |)− 2

∑
i<j

wiBijwj

=
1

2

p∑
i=1

∑
j 6=i
|Bij |(wi −

Bij

|Bij |
wj)(wi −

Bij
|Bij |

wj)

=
1

2

p∑
i=1

∑
j 6=i
|Bij ||wi −

Bij
|Bij |

wj |2

≥ 0.

(15)

where (a) is due to Bi,j = Bj,i and |Bi,i| = Bi,i.
Therefore, L is positive semi-definite; and it is not hard to see that L + εIp is strictly positive

definite, for any ε > 0.
For the complex matrix W = Ip − A(C, z) to be positive definite, the sufficient and necessary

condition is that its Hermitian part is positive definite. That is:

WH = Ip −B
= (L+ εIp) + (1− ε)Ip −DB

(16)

should be positive definite. Since DB is diagonal, therefore, a sufficient condition is to have:

1− ε− (DB)ii ≥ 0 (17)

for all i = 1, . . . , p. This is equivalent to

p∑
j=1

|1
2

[A(C, z) +A(C, z)∗]ij | ≤ 1− ε, (18)

or
p∑
j=1

|C(1)
i,j z + ...+ C

(d)
i,j z

d + C
(1)
j,i z + ...+ C

(d)
j,i z

d| ≤ 2− 2ε, (19)
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Taking ε→ 0+, we have a sufficient condition for stability:

p∑
j=1

|C(1)
i,j z + ...+ C

(d)
i,j z

d + C
(1)
j,i z + ...+ C

(d)
j,i z

d| < 2 ∀z ∈ C : |z| ≤ 1 (20)

for all i = 1, . . . , p.
Using the polar coordinate for z = r exp(Ix), where r ∈ [0, 1] and I is the imaginary unit. The

above becomes:

p∑
j=1

|
d∑

k=1

[C
(k)
i,j r

k exp(Ikx) + C
(k)
j,i r

k exp(−Ikx)]| < 2 ∀z ∈ C : |z| ≤ 1 (21)

For each term on the left-hand side, it has

|
d∑

k=1

[(C
(k)
i,j + C

(k)
j,i ) cos(kx)rk + I(C(k)

i,j − C
(k)
j,i ) sin(kx)rk|

=

{
[
d∑

k=1

(C
(k)
i,j + C

(k)
j,i ) cos(kx)rk]2 + [

d∑
k=1

(C
(k)
i,j − C

(k)
j,i ) sin(kx)rk]2

}1/2

(a)

≤

{
d∑

k=1

(C
(k)
i,j + C

(k)
j,i )2r2k

d∑
k=1

cos2(kx) +
d∑

k=1

(C
(k)
i,j − C

(k)
j,i )2r2k

d∑
k=1

sin2(kx)

}1/2

=

{
[
d∑

k=1

cos2(kx) +
d∑

k=1

sin2(kx)]
d∑

k=1

[(C
(k)
i,j )2 + (C

(k)
j,i )2]r2k

+ [
d∑

k=1

cos2(kx)−
d∑

k=1

sin2(kx)]
d∑

k=1

[2(C
(k)
i,j )(C

(k)
j,i )]r2k

}1/2

=

{
d

d∑
k=1

[(C
(k)
i,j )2 + (C

(k)
j,i )2]r2k + 2[

d∑
k=1

cos(2kx)]

d∑
k=1

C
(k)
i,j C

(k)
j,i ]r2k

}1/2

(22)

where (a) uses the Cauchy-Schwarz inequality, we denote:

gx =
1

d

d∑
k=1

cos(2kx)

=
1

2d
[1 + 2

d∑
k=1

cos(2kx)]− 1

2d

=
2π

2d
Dd(2x)− 1

2d
,

(23)

where Dd(x) denotes the Dirichlet kernel, which has the maximum of (2d + 1)/(2π), and the
minimum around −c0(2d + 1)/(2π) for d ≥ 10, with c0 ≈ 0.2172. Taking c1 = 0.22, we have
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Dd(x) > −0.22(2d+ 1)/(2π). Slightly adjusting the constant, we have:

−0.4− 0.61

d
< g(x) ≤ 1 (24)

for all d ∈ Z+, we denote g0 = −0.4− 0.61/d.
Continuing on the inequality,{

d

d∑
k=1

[(C
(k)
i,j )2 + (C

(k)
j,i )2]r2k + dgx[

d∑
k=1

2C
(k)
i,j C

(k)
j,i ]r2k

}1/2

=

{
d

d∑
k=1

(
[C

(k)
i,j + gxC

(k)
j,i ]2 + (1− g2

x)(C
(k)
j,i )2

)
r2k

}1/2

(a)

≤

{
d

d∑
k=1

(
[C

(k)
i,j + gxC

(k)
j,i ]2 + (1− g2

x)(C
(k)
j,i )2

)}1/2

(25)

where (a) is due to each term is non-negative, hence r2 = 1 maximizes the right hand side. It
is not hard to see that, to maximize the right hand side, if

∑d
k=1C

(k)
i,j C

(k)
j,i ≥ 0, we take gx = 1;

otherwise, we take gx = minx gx. Further with g0 ≤ minx gx, we have g0
∑d

k=1C
(k)
i,j C

(k)
j,i ≥

minx gx
∑d

k=1C
(k)
i,j C

(k)
j,i when

∑d
k=1C

(k)
i,j C

(k)
j,i < 0.

Therefore, we have the right hand side:{
d

d∑
k=1

(
[C

(k)
i,j + gxC

(k)
j,i ]2 + (1− g2

x)(C
(k)
j,i )2

)}1/2

≤
√
d

{
max

h∈{1,g0}
(
d∑

k=1

(
[C

(k)
i,j + hC

(k)
j,i ]2 + (1− h2)(C

(k)
j,i )2

)}1/2

.

(26)

Therefore, we have

p∑
j=1

|
d∑

k=1

[C
(k)
i,j r

k exp(Ikx) + C
(k)
j,i r

k exp(−Ikx)]|

≤ sup
gx∈[minx gx,1]

p∑
j=1

{
d

d∑
k=1

(
[C

(k)
i,j + gxC

(k)
j,i ]2 + (1− g2

x)(C
(k)
j,i )2

)}1/2

(a)

≤
√
d

p∑
j=1

max
hj∈{g0,1}

{
d∑

k=1

(
[C

(k)
i,j + hjC

(k)
j,i ]2 + (1− h2

j )(C
(k)
j,i )2

)}1/2

,

(27)

where (a) is due to the supremum of a sum over gx ∈ [minx gx, 1] is smaller or equal to the
sum of the supremum of each term, and each supremum is smaller than the one replacing gx by
hj ∈ {g0, 1}.
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A.3 Proof for Theorem 4

First we note that

Π{||c− c0|| > η | Φ, y,X} ≤ Π{||c− ĉ|| > η/2 | Φy,X}+ Π{||ĉ− c0|| > η/2 | Φ, y,X},

where ĉ = {Γ̂ + Φ−1/N}−1γ̂.
Let Σ−1

ε = QT
ΣQΣ be the symmetric decomposition, the Woodbury identity gives:

(Σ−1
ε ⊗XTX + Φ−1)−1 = {(QT

Σ ⊗XT)(QΣ ⊗X) + Φ−1}−1

= Φ− Φ(QT
Σ ⊗XT){I + (QΣ ⊗X)Φ(QT

Σ ⊗XT)}−1(QT
Σ ⊗XT)Φ.

Therefore, if (i, j) 6∈
⋃m
l=1 T

l, then with
∑m

l=1 slA
l
i,j → 0 uniformly, we have (ci,j,k | Σε, r, η, s, A)

converge to a point mass at zero. On the other hand, for those (i, j) ∈
⋃m
l=1 T

l, due to the lower-
boundedness as described in A3, we know Φ−1

i,j,k < κ for some constant κ > 0. Moreover, by
Assumption A1, for those (i, j) /∈

⋃m
l=1 T

l, we have Φ−1
i,j,k < κ/ε2, where ε is defined in A2.

Therefore, for any fixed ε > 0, ||Φ−1|| is bounded.
(i) Bound the distance between ĉ and c0 given Φ:

ĉ− c0 = [Γ̂ + Φ−1/N ]−1γ̂ − c0

= [Γ̂ + Φ−1/N ]−1(γ̂ − Γ̂c0 + Γ̂c0)− c0

= [Γ̂ + Φ−1/N ]−1(γ̂ − Γ̂c0) + [Γ̂ + Φ−1/N ]−1(Γ̂ + Φ−1/N − Φ−1/N)c0 − c0

= [Γ̂ + Φ−1/N ]−1(γ̂ − Γ̂c0 − Φ−1/Nc0).

(28)

Hence,
||ĉ− c0||
= ||[Γ̂ + Φ−1/N ]−1(γ̂ − Γ̂c0 − Φ−1c0/N)||
≤ ||[Γ̂ + Φ−1/N ]−1|| · {||Φ−1c0/N ||+ ||γ̂ − Γ̂c0||}.

(29)

Note that,

||[Γ̂ + Φ−1/N ]−1|| = λmax[Γ̂ + Φ−1/N ]−1 = 1/λmin[Γ̂ + Φ−1/N ]

(a)

≤ 1/{λmin(Γ̂) + λmin{Φ−1/N)} ≤ 1/λmin(Γ̂),
(30)

where (a) is due to the positive definiteness of Φ−1 and Γ̂. Together with λmin(Γ̂) = 1/||(Σ−1
ε ⊗

X ′X/N)−1|| = 1/(||Σε|| · ||(X ′X/N)−1||), we have ||[Γ̂ + Φ−1/N ]−1|| ≤ ||Σε||/λmin(X ′X/N).
Thus, together with (29), we have

Π(||ĉ− c0|| > η | Φ, y,X)

≤ Π(||[Γ̂ + Φ−1/N ]−1|| · {||Φ−1c0/N ||+ ||γ̂ − Γ̂c0||} > η | Φ, y,X)

(a)

≤ Π(||Σε||/λmin(X ′X/N) · (||Φ−1 · c0/N ||+ ||γ̂ − Γ̂c0||) > η | Φ, y,X)

≤ Π(λmin(X ′X/N) < λ1 | y,X) + Π(||Φ−1 · c0/N ||+ ||γ̂ − Γ̂c0|| > ηλ1/||Σε|| | Φ, y,X)

≤ Π(λmin(X ′X/N) < λ1 | y,X) + Π(||Φ−1 · c0/N || > ηλ1/(2||Σε||) | Φ, y,X)

+ Π(||γ̂ − Γ̂c0|| > ηλ1/(2||Σε||) | Φ, y,X),
(31)
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where (a) is due to ||[Γ̂ + Φ−1/N ]−1|| ≤ ||Σε||/λmin(X ′X/N) and λ1 is defined in Proposition
B.2 in Ghosh et al. (2019). Assumption A2 guarantees the validity of Proposition B.2 in Ghosh
et al. (2019), hence the first term on the right hand side of ( 31) is less than 2 exp{−

√
Np}.

By Assumption A1, for those (i, j) ∈
⋃m
l=1 T

l, due to the lower-boundedness as described in
A3, we know Φ−1

i,j,k < κ for some constant κ > 0. Moreover, for those (i, j) /∈
⋃m
l=1 T

l, we
have Φ−1

i,j,k < κ/ε2, where ε is defined in A2. Therefore, for any fixed ε > 0, ||Φ−1|| is bounded.
Together with Assumption A4 ||c0|| ≤ K, we have

||Φ−1c0|| = o(N), (32)

which ensures the second term on the right hand side of (31) converges to 0 as N →∞.

Note that ||γ̂ − Γ̂c0|| = ||vec(XTE/N)|| = ||XTE/N ||F
(a)

≤
√
dp||XTE/N ||, where (a)

is due to matrix norm property ||A||F ≤ rank(A)||A||. By Corollary B.4 in Ghosh et al. (2019),
||XTE/N || ≤ 2πλmax(Σε)[1+(1+µmin(C̃))/µmax(C̃)]ζN with probability at least 1−6 exp{−

√
Np},

where ζ2
n = 4p(d+ 1) log 21/N +

√
p/N/c.. Therefore, for sufficiently large N , we have ||γ̂ −

Γ̂c0|| ≤
√
dp2πλmax(Σε)[1+(1+µmin(C̃))/µmax(C̃)]ζN with probability at least 1−6 exp{−

√
Np},

which implies Π(||γ̂ − Γ̂c0|| > ηλ1/(2||Σε||) | y,X) = 0. Combining the results above gives

Π(||ĉ− c0|| > η | Φ, y,X)→ 0, as N →∞. (33)

(ii) Bound the distance between ĉ and c given Φ:
Recall that c | Φ, y,X ∼ N(ĉ, [Γ̂ + Φ−1/N ]−1/N) and define Σ̃ε as [Γ̂ + Φ−1/N ]−1/N . First

note that Z := Σ̃ε
− 1

2 (c− ĉ) | Φ, y,X ∼ N(~0, Idp2).
Also,

||c− ĉ|| = ||Σ̃ε
1/2 · Σ̃ε

−1/2
(c− ĉ)||

= ||Σ̃ε
1/2
Z||

≤ ||Σ̃ε
1/2|| · ||Z||

= (N ||Σ̃ε||)1/2 · ||Z/
√
N ||.

(34)

As previously stated, we have,

N ||Σ̃ε|| = ||[Γ̂ + Φ−1/N ]−1|| ≤ ||Σε||/λmin(X ′X/N). (35)

Therefore,
||c− ĉ|| ≤ {||Σε||/λmin(X ′X/N)}1/2 · ||Z/

√
N ||. (36)

Hence,

Π(||c− ĉ|| > η | Φ, y,X)

≤ Π({||Σε||/λmin(X ′X/N)}1/2 · ||Z/
√
N || > η | Φ, y,X)

≤ Π(λmin(X ′X/N) < λ1) + Π(||Σε||1/2||Z/
√
N || > η(λ1)1/2 | Φ, y,X)

= Π(λmin(X ′X/N) < λ1) + Π(||Z/
√
N || > η(λ1/||Σε||)1/2 | Φ, y,X)

= Π(λmin(X ′X/N) < λ1) + Π(||Z||2 > Nη2λ1/||Σε|| | Φ, y,X).

(37)
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By Proposition B.2 in Ghosh et al. (2019), the first term on the right hand side of (37) converges to
0 as N →∞.

Next, we show Π(||Z||2 > Nη2λ1/||Σε | Φ, y,X) → 0, as N → ∞.Note that ||Z||2 ∼
χ2(dp2), which implies E0(||Z||2) = dp2, V0(||Z||2) = 2dp2. Using Chebyshev’s inequality gives

Π{|||Z||2 − dp2| > Nη2λ1/||Σε|| | Φ, y,X} < 2dp2/(Nη2λ1/||Σε||)2

= 2(p/N)2 · d||Σε||2/(η2λ1).
(38)

Thus,

Π(||Z||2 > Nη2λ1/||Σε | Φ, y,X)

≤ Π(|||Z||2 − dp2| > Nη2λ1/||Σε | Φ, y,X) + Π(dp2 > Nη2λ1/||Σε | Φ, y,X).
(39)

Combining the two sections above, we have

Π{||c− c0|| > η | Φ, y,X} → 0, tasN →∞. (40)

(iv) Show convergence of posterior probability
First note that c | Φ, y,X ∼ N(ĉ, 1

N (Γ̂ + Φ−1

N )−1).
We obtain the marginal posterior distribution of (Φ | y,X) by integrating out the regression

coefficient c:

Π(Φ | y,X) ∝
∫
L(c,Φ; y)π0(c|Φ)π0(Φ) dc

∝
∫

exp{−1

2
{y − (Ip ⊗X)c}T(Σ−1

ε ⊗ IT−d){y − (Ip ⊗X)c}} exp{−1

2
cTΦ−1c}

{det(Φ)}−1/2π0(Φ) dc

∝ {det(Γ̂ + Φ−1/N)}−1/2π0(Φ){det(Φ)}−1/2 exp{Nγ̂T[Γ̂ + Φ−1/N ]−1γ̂/2}.

(41)

Comparing the posterior densities of two Φ?? and Φ?:

Π(Φ?? | y,X)

Π(Φ? | y,X)
=

det−1/2[Γ̂ + Φ−1
?? /N ] det−1/2(Φ??)π0(Φ??)

det−1/2[Γ̂ + Φ−1
? /N ] det−1/2(Φ?)π0(Φ?)

× exp
[
Nγ̂T

{
[Γ̂ + Φ−1

?? /N ]−1 − [Γ̂ + Φ−1
? /N ]−1

}
γ̂/2
]
.

(42)

By Assumption A1, we know Φ−1
i,j,k,?? ≤ min{κ, κ/ε2}. Since Φ−1

?? is diagonal, this guarantees
the boundedness of det{Φ−1

?? }. Similarly, det{Φ−1
? } is bounded.

Next, we show det{Γ̂ + Φ−1
?? /N} is bounded for sufficiently large N . Then together with

det
1
2 (Γ + Φ−1

? /N) is greater than 0, we obtain the boundedness of det
1
2 (Γ + Φ−1

?? /N) and det
1
2 (Γ +

Φ−1
? /N) for sufficiently large N .

By Assumption A2 0 < supN≥1 λmax(Γy(0)) <∞ and Proposition B.2 in Ghosh et al. (2019),
there exists 0 < λ2 < ∞, such that Π{λmax(X ′X/N) > λ2} ≤ 2 exp{−2

√
Np}. This ensures

that λmax(X ′X/N) < λ2 with probability at least 1 − 2 exp{−2
√
Np}. Also note that det{Γ̂ +

25



DUAN, YUWEN, MICHAILIDIS, ZHANG

Φ−1
?? /N} =

dp2∏
i=1

λi{Γ̂ + Φ−1
?? /N}, where λi{Γ̂ + Φ−1

?? /N} is the ith largest eigenvalue of Γ̂ +

Φ??−1/N .
λmax(Γ̂ + Φ−1

?? /N) ≤ λmax(Γ̂) + λmax(Φ??−1/N) leads to det{Γ̂ + Φ−1
?? /N} ≤ [λmax(Γ̂) +

λmax(Φ??−1/N)]dp
2
. Also, λmax(Γ̂) = ||Σε||λmax(X ′X/N) ≤ λ2||Σε|| with probability at least

1− 2 exp{−2
√
Np}, together with λmax({Φ−1

?? /N) is bounded as N goes to∞, we have det{Γ̂ +
Φ−1
?? /N} is bounded with probability at least 1− 2 exp{−2

√
Np}.

Without loss of generality, we only consider Φ? with π0(Φ??) is greater than 0, which guarantees
the boundedness of the term π0(Φ??)/π0(Φ?). Combining the results above, for sufficiently large
N , we have

det−1/2[Γ̂ + Φ−1
?? /N ] det−1/2(Φ??)π0(Φ??)

det−1/2[Γ̂ + Φ−1
? /N ] det−1/2(Φ?)π0(Φ?)

≤ H(X, τ), (43)

where H(X, τ) is a bounded positive function.
Next, we focus on exp{N/2γ̂T(Γ̂ + Φ−1

?? /N)−1γ̂ − N
2 γ̂

T(Γ̂ + Φ−1
? /N)−1γ̂} and show it goes

to 0 in probability, with fixed p and sufficiently large N .
We divide Nγ̂T(Γ̂ + Φ−1

??
N )−1γ̂ into three parts:

Nγ̂T[Γ̂ + Φ−1
?? /N ]−1γ̂

= N(γ̂ − Γ̂c0 + Γ̂c0)T[Γ̂ + Φ−1
?? /N ]−1(γ̂ − Γ̂c0 + Γ̂c0)

= N(Γ̂c0)T[Γ̂ + Φ−1
?? /N ]−1Γ̂c0

+N(γ̂ − Γ̂c0)T[Γ̂ + Φ−1
?? /N ]−1(γ̂ − Γ̂c0)

+ 2N(Γ̂c0)T[Γ̂ + Φ−1
?? /N ]−1(γ̂ − Γ̂c0).

(44)

Thus,
Nγ̂T[Γ̂ + Φ−1

?? /N ]−1γ̂ −Nγ̂T[Γ̂ + Φ−1
? /N ]−1γ̂

= {N(Γ̂c0)T[Γ̂ + Φ−1
?? /N ]−1Γ̂c0 −N(Γ̂c0)T[Γ̂ + Φ−1

? /N ]−1Γ̂c0}︸ ︷︷ ︸
I1

+N(γ̂ − Γ̂c0)T{[Γ̂ + Φ−1
?? /N ]−1 − [Γ̂ + Φ−1

? /N ]−1}(γ̂ − Γ̂c0)︸ ︷︷ ︸
I2

+ 2N(Γ̂c0)T{[Γ̂ + Φ−1
?? /N ]−1 − [Γ̂ + Φ−1

? /N ]−1}(γ̂ − Γ̂c0)︸ ︷︷ ︸
I3

.

(45)

Next, we show I1 approaches negative infinity and I2, I3 are bounded for sufficiently small τ
and sufficiently large N .

Consider I1 from (45),

N(Γ̂c0)T[Γ̂ + Φ−1
?? /N ]−1Γ̂c0

= N(c0)TΓ̂[Γ̂ + Φ−1
?? /N ]−1Γ̂c0

= N(c0)T(Γ̂ + Φ−1
?? /N − Φ−1/N)[Γ̂ + Φ−1

?? /N ]−1Γ̂c0

= N(c0)TΓ̂c0 −N(c0)T(Φ−1/N)[Γ̂ + Φ−1
?? /N ]−1Γ̂c0

= N(c0)TΓ̂c0 −N(c0)T(Φ−1
?? /N)[Γ̂ + Φ−1

?? /N ]−1(Γ̂ + Φ−1
?? /N − Φ−1

?? /N)c0

= N(c0)TΓ̂c0 − (c0)TΦ−1
?? c0 +N(c0)T(Φ−1

?? /N)[Γ̂ + Φ−1
?? /N ]−1(Φ−1

?? /N)c0.

(46)
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Thus, I1 is equivalent to

N(Γ̂c0)T[Γ̂ + Φ−1
?? /N ]−1Γ̂c0 −N(Γ̂c0)T[Γ̂ + Φ−1

? /N ]−1Γ̂c0

= (c0)TΦ−1
?? c0 −N(c0)T(Φ−1

?? /N)[Γ̂ + Φ−1
?? /N ]−1(Φ−1

?? /N)c0

− (c0)TΦ−1
? c0 +N(c0)T(Φ−1

? /N)[Γ̂ + Φ−1
? /N ]−1(Φ−1

? /N)c0.

(47)

Consider the first term on the right hand side of (47). Since G0 ⊆ ∪ml=1T
l
?, we have c0,i,j,k = 0

for (i, j) /∈ ∪ml=1T
l
?. If (i, j) ∈ ∪ml=1T

l
?, Φ−1

(i,j,k) ≤ κ. This implies (c0)TΦ−1
? c0 ≤ κ||c0||2.

Also, we show the third term on the right hand side of (47) approaches infinity as τ goes to
0.Also note that G0 * ∪ml=1T

l. This implies that there exists some (i, j) /∈ ∪ml=1T
l
?? such that

c0,i,j,k > ζ, where ζ is a positive constant. Moreover,
∑m

l=1 slA
l
i,j → 0 uniformly, which ensures

(c0)TΦ−1
?? c0 → ∞ as τ → 0. Hence, there exists Mτ > 0 such that (c0)TΦ−1c0 ≥ Mτ and

Mτ →∞, as τ → 0.
Note that,

N(c0)T(Φ−1
?? /N)[Γ̂ + Φ−1

?? /N ]−1(Φ−1
?? /N)c0

≤ ||c0||2||Φ−1
?? [Γ̂ + Φ−1

?? /N ]−1Φ−1
?? ||/N

≤ ||c0||2||Φ−1
?? ||2||[Γ̂ + Φ−1

?? /N ]−1||/N
(a)
= ||c0||2||Φ−1

?? ||2∞||[Γ̂ + Φ−1
?? /N ]−1||/N.

(48)

where (a) is due to Φ?? is diagonal and positive definite, hence its largest eigenvalue is the maximal
value on the diagonal.

Next, we obtain an upper bound of the second term on the right hand side of (47). Using
||[Γ̂ + Φ−1/N ]−1|| ≤ ||Σε||/λmin(X ′X/N) gives

N(c0)T(Φ−1
?? /N)[Γ̂ + Φ−1

?? /N ]−1(Φ−1
?? /N)c0

≤ ||Σε||/λmin(X ′X/N) · ||Φ−1
?? c0||2/N

≤ ||Σε||/λmin(X ′X/N)||c0||2||Φ−1
?? ||2∞/N,

(49)

which converges to 0 as N →∞.
Similarly, for the fourth term on the right-hand side of ( 47),

N(c0)T(Φ−1
? /N)[Γ̂ + Φ−1

? /N ]−1(Φ−1
? /N)c0 ≤ ||Σε||/λmin(X ′X/N)||c0||2||Φ−1

? ||2∞/N.
(50)

Thus,

I1 ≤ −Mτ + κ||c0||2 + ||Σε||/λmin(X ′X/N)||c0||2(||Φ−1
? ||2∞ + ||Φ−1

?? ||2∞)/N. (51)

Since ||Φ−1||∞ ≤ min{κ/ε2, κ} and ||Φ−1
? ||∞ ≤ min{κ/ε2, κ}, together with (51), we have

I1 approach −∞ with sufficiently small τ > 0 and sufficiently large N = N(τ).
Next, we show I2 = N(γ̂ − Γ̂c0)T{[Γ̂ + Φ−1

?? /N ]−1 − [Γ̂ + Φ−1
? /N ]−1}(γ̂ − Γ̂c0) is bounded

above.
By Corollary B.4 in Ghosh et al. (2019), we have ||γ̂− Γ̂c0|| ≤ Q(c0,Σε)

√
dp2/N with proba-

bility at least 1−6 exp{−
√
Np}, where Q(c0,Σε) = 2πλmax(Σε)[1+(1+µmin(C̃))/µmax(C̃)]ζN ,
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where where ζ2
n = 4p(d+ 1) log 21/N +

√
p/N/h.

Together with ||[Γ̂ + Φ−1/N ]−1|| ≤ ||Σε||/λmin(X ′X/N), we have

N(γ̂ − Γ̂c0)T[Γ̂ + Φ−1
?? /N ]−1(γ̂ − Γ̂c0))

≤ N ||[Γ̂ + Φ−1
?? /N ]−1|| · ||γ̂ − Γ̂c0||2

≤ ||Σε||/λmin(X ′X/N)Q(c0,Σε)
2dp2/N.

(52)

Similarly, we obtain

N(γ̂ − Γ̂c0)T[Γ̂ + Φ−1
? /N ]−1(γ̂ − Γ̂c0)) ≤ ||Σε||/λmin(X ′X/N)Q(c0,Σε)

2dp2/N. (53)

Hence,
I2 ≤ 2||Σε||/λmin(X ′X/N)Q(c0,Σε)

2dp2/N. (54)

Finally, we show I3 = 2N(Γ̂c0)T{[Γ̂ + Φ−1
?? /N ]−1 − [Γ̂ + Φ−1

? /N ]−1}(γ̂ − Γ̂c0) is bounded,
as N →∞.

Note that

N(Γ̂c0)T[Γ̂ + Φ−1
?? /N ]−1(γ̂ − Γ̂c0)

= N(c0)T[Γ̂ + Φ−1
?? /N − Φ−1

?? /N ][Γ̂ + Φ−1
?? /N ]−1(γ̂ − Γ̂c0)

= N(c0)T(γ̂ − Γ̂c0)− (c0)TΦ−1
?? [Γ̂ + Φ−1

?? /N ]−1(γ̂ − Γ̂c0).

(55)

Similarly, we have

N(Γ̂c0)T[Γ̂ + Φ−1
? /N ]−1(γ̂ − Γ̂c0)

= N(c0)T(γ̂ − Γ̂c0)− (c0)TΦ−1
?? [Γ̂ + Φ−1

? /N ]−1(γ̂ − Γ̂c0).
(56)

Thus,

I3 = (c0)TΦ−1
?? [Γ̂ + Φ−1

?? /N ]−1(γ̂ − Γ̂c0)− (c0)TΦ−1
? [Γ̂ + Φ−1

? /N ]−1(γ̂ − Γ̂c0). (57)

Considering the first term on the right hand side of (57), we have

|(c0)TΦ−1
?? [Γ̂ + Φ−1

?? /N ]−1(γ̂ − Γ̂c0)|
≤ ||Φ−1

?? || · ||[Γ̂ + Φ−1
?? /N ]−1|| · ||c0|| · ||γ̂ − Γ̂c0||.

(58)

Note that ||Φ−1
?? || is bounded and ||[Γ̂ + Φ−1

?? /N ]−1|| ≤ Σε||/λmin(X ′X/N).
Continuing the inequality of (58), we have

|(c0)TΦ−1
?? [Γ̂ + Φ−1

?? /N ]−1(γ̂ − Γ̂c0)|
≤ ||c0|| · ||γ̂ − Γ̂c0||Σε||/λmin(X ′X/N).

(59)
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Similarly for Φ?, the following holds,

|(c0)TΦ−1
? [Γ̂ + Φ−1

? /N ]−1(γ̂ − Γ̂c0)|
≤ ||c0|| · ||γ̂ − Γ̂c0||Σε||/λmin(X ′X/N).

(60)

Therefore,
I3 ≤ 2||c0|| · ||γ̂ − Γ̂c0||Σε||/λmin(X ′X/N). (61)

Combining the results about I1, I2 and I3, with sufficiently large N = N(τ), the following
holds,

I1 + I2 + I3 ≤ −Mτ + κ||c0||2 + ||Σε||/λmin(X ′X/N)||c0||2(||Φ−1
?? ||2∞ + ||Φ−1

? ||2∞)/N

+ 2||Σε||/λmin(X ′X/N)Q(c0,Σε)
2dp2/N

+ 2||c0|| · ||γ̂ − Γ̂c0||Σε||/λmin(X ′X/N).

(62)

By Assumption 2, we know ||Φ−1||∞ and ||Φ−1
? ||∞ are less than min{κ/ε2, κ}. Note that

Assumption A4 and A5 ensure the boundedness of ||c0||∞ and ||Σε||, respectively.
There exists sufficiently large N1(τ), such that for N > N1(τ),

||Σε|| · ||c0||2(||Φ−1
?? ||2∞ + ||Φ−1

? ||2∞)/N ≤ 1/2. (63)

For p = o(N1/2), ||γ̂ − Γ̂c0|| = o(1), the explanation is as follows. since ||γ̂ − Γ̂c0|| =
||vec(XTE/N)|| and ||vec(XTE/N)|| = ||XTE/N ||F ≤

√
dp||XTE/N ||, if p = o(N1/2), by

Corollary B.4 in Ghosh et al. (2019), we have ||γ̂ − Γ̂c0|| → 0, as N →∞.
Similarly, for τ given above, there exists sufficiently large N2(τ), such that for N > N2(τ),

2||c0|| · ||γ̂ − Γ̂c0||Σε||/λmin(X ′X/N) ≤ 1/2. (64)

Let N? = max{N1(τ), N2(τ)}. Combining (63) and (64), for N > N?, the following holds,

I1 + I2 + I3 ≤ −Mτ + κ||c0||2 + {2||Σε||Q(c0,Σε)
2dp2/N + 1}/λmin(X ′X/N). (65)

Thus,
Π(Φ?? | y,X)

Π(Φ? | y,X)

≤ H(X, τ) exp{−Mτ + κ||c0||2 + {2||Σε||Q(c0,Σε)
2dp2/N + 1}/λmin(X ′X/N)},

(66)

where H(X, τ) is the bounded function in (43).
For any η > 0, we have,

Π(
Π(Φ?? | y,X)

Π(Φ? | y,X)
> η)

≤ Π(λmin(X ′X/N) < λ1) + Π(
Π(Φ?? | y,X)

Π(Φ? | y,X)
> η, λmin(X ′X/N) > λ1)

(a)

≤ Π(λmin(X ′X/N) < λ1)

+ Π(H(X, τ) exp{−Mτ + κ||c0||2 + {2||Σε||Q(c0,Σε)
2dp2/N + 1}/λ1} > η),

(67)
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where (a) is due to (43) and the condition λmin(X ′X/N) > λ1.
By Proposition 1, the first term on the right hand side of (67) is less than 2 exp{−

√
Np}.

Consider the second term on the right hand side of (67).
First note that κ||c0||2 +{2||Σε||Q(c0,Σε)

2dp2/N +1}/λ1 andH(X, τ) are bounded given c0,
Σε and τ . Also, we knowMτ →∞, as τ → 0. Therefore for η given above, there exists sufficiently
small τ = τ(η) such that

H(X, τ) exp{−Mτ + κ||c0||2 + {2||Σε||Q(c0,Σε)
2dp2/N + 1}/λ1} ≤ η. (68)

which guarantees Π( Π(Φ|y,X)
Π(Φ?|y,X) > η, λmin(X

′X
N ) > λ1) = 0.

Hence, for sufficiently small τ = τ(η) and N > N?(τ, η),

Π(
Π(Φ | y,X)

Π(Φ? | y,X)
> η) ≤ 2 exp{−

√
Np}. (69)

Appendix B. Calculation of the Tree Rank

We have been focusing on regularizing the graph estimates using the tree rank. On the other hand,
when given an undirected graph Ḡ, one may be interested in directly calculating the tree rank. This
is not only useful for properly setting up our simulations later, but also of independent interests.
Therefore, we briefly review the relevant results and provide a simplified algorithm.

For a given covering
⋃m
l=1 T

l ⊇ Ḡ, we can remove some edges from each tree, starting from
deleting edges not found in Ḡ, F 1 = T 1 ∩ Ḡ, then sequentially for l = 2, . . . ,m, removing edges
previously covered, F l = {T l \ (

⋃l−1
h=1 F

h)} ∩ Ḡ. Each obtained graph F l is known as a “forest”,
an acyclic graph with possible disconnectivity. It is not hard to see that Ḡ = ∪ml=1F

l, F l ∩ F h = ∅
for any l 6= h; further, the tree rank is exactly equal to the minimum covering number using forests.
Using

Tree-Rank(Ḡ) = max
H⊆Ḡ

⌈
|EH |
|VH | − 1

⌉
,

we can maximize over all subgraphs of Ḡ which has cardinality ofO(2p), efficient search algorithm
such as Gabow and Westermann (1992) has been developed. Briefly speaking, their algorithm is a
combination of solving k-forest problems (covering as many edges in Ḡ as possible using k forests)
and a binary search for the minimum k that covers all the edges in Ḡ. Due to the high complexity,
we refer the readers to that article for the details. In the meantime, we present an approximate
algorithm that is much easier to implement.

Let W 1 be a p× p weight matrix with W 1
i,j = 1 if (i, j) ∈ Ḡ, and W 1

i,j = 0 otherwise. Let W 1

be a p× p weight matrix with W 1
i,j = 1 if (i, j) ∈ Ḡ, and W 1

i,j = 0 otherwise.

while W l 6= O do
Find the maximum spanning tree of a complete graph with weight matrix W l, denote
the produced tree by T l and its adjacency matrix by AT l ;

Set W l+1 = W l ◦ (J −AT l);
Set l← l + 1;

Set m = l − 1.
Algorithm 1: Find an upper bound estimate m ≥Tree-Rank(Ḡ).
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In the above, O denotes the p× p matrix filled by zeros, and J the matrix by ones; and one can use
Prim’s algorithm to easily find the maximum spanning tree (Prim, 1957).

Appendix C. Stability of the Estimated Autogressive Process in the Data Application

For the data application, we plot the spectral norm of each companion-form matrix [as the coefficient
matrix in the VAR(1) equivalent representation for the VAR(d) model] associated with each sampled
C̄, all of them are strictly smaller than 1, which shows the stability of the process.
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Figure 9: Boxplot of the spectral norm of the companion-form matrices in the VAR(1) equivalent
representation for the VAR(d) model, associated with each sampled C̄ estimated in the data appli-
cation.
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Appendix D. Additional Results from the Neuroimaging Data Analysis
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(a) Graph estimate using the lasso
regularization. The graph has 1086
edges.
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(b) Graph estimate using the elas-
tic net regularization. The graph has
1109 edges.

Figure 10: Comparing graph point estimates from several vector autoregressive models. Nodes are
plotted using the Desikan-Killiany atlas node coordinates and sized according to their degrees. Six
cortical regions are shown in colors.

Appendix E. Additional Results on Area under the Curve Calculations
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Figure 11: Simulation results when the ground-truth graph Ḡ0 has a low tree-rank at 2.
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(b) Area under the curve estimates in G at p = 80.

Figure 12: Simulation results when the ground-truth graph Ḡ0 has a 95% sparsity.

Appendix F. Rapid Mixing of Markov Chains for the Gibbs Sampler
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(c) Trace and ACF plots for the regression coefficient
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(d) Trace and ACF plots for the degree of node 1 in
AT .
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(e) Trace and ACF plots for the degree of node 40 in
AT .
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(f) Trace and ACF plots for the degree of node 80 in
AT .

Figure 13: Diagnostic plots showing rapid mixing of Markov chains for the Gibbs Sampler. The re-
sults are from the simulation with ground-truth graphG0 having a low tree-rank at 2, data generated
at p = 80, T = 400, and d = 3. Panels (a-c) show the mixings in coefficient estimates (at three
indices), and Panels(d-f) show the mixings in the union of trees estimate (using the degrees of three
nodes).
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Appendix G. Additional Simulations on Sparse Graph Estimation
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Figure 14: Simulation results when the ground-truth graph G0 has a 87% sparsity.
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Figure 15: Simulation results when the ground-truth graph G0 has a 80% sparsity.
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