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Abstract

We consider high-dimensional multiclass classification by sparse multinomial logistic re-

gression. Unlike binary classification, in the multiclass setup one can think about an entire

spectrum of possible notions of sparsity associated with different structural assumptions on

the regression coefficients matrix. We propose a computationally feasible feature selection

procedure based on penalized maximum likelihood with convex penalties capturing a spe-

cific type of sparsity at hand. In particular, we consider global row-wise sparsity, double

row-wise sparsity, and low-rank sparsity, and show that with the properly chosen tuning

parameters the derived plug-in classifiers attain the minimax generalization error bounds

(in terms of misclassification excess risk) within the corresponding classes of multiclass

sparse linear classifiers. The developed approach is general and can be adapted to other

types of sparsity as well.

Keywords: Feature selection, high-dimensionality, minimaxity, misclassification excess

risk, sparsity

1. Introduction

Classification is a core problem of statistical and machine learning. One of its main chal-

lenges nowadays is high-dimensionality of the data, where the number of features d is of the

same order or even larger than the available sample size n (“large d, small n” setup) that

causes a severe “curse of dimensionality” problem. Moreover, the number of classes L may

also be large (“large L, large d, small n” model). A key assumption to handle the “curse of

dimensionality” is sparsity. Dimension reduction of the feature domain by selecting a sparse
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subset of significant features becomes crucial. Bickel and Levina (2004) and Fan and Fan

(2008) showed that even binary classification in high-dimensional setup without a proper

feature selection procedure might be as bad as pure guessing. Feature selection and clas-

sification procedures should also be computationally feasible to deal with high-dimensional

data.

Although there exists a large amount of statistical and machine learning literature on

feature selection in classification, the rigorous theory on the accuracy of resulting classifiers

has been mostly developed for the simplest binary case. See Vapnik (2000), Shalev-Shwartz

and Ben-David (2014), Mohri et al. (2018).

One common strategy for multiclass classification is its reduction to a series of binary

classifications. The two most well-known methods are One-vs-All (OvA), where each class is

compared against all others, and One-vs-One (OvO), where all pairs of classes are compared

to each other. A more direct and appealing strategy is extending binary classification

methods to a multiclass setup. One approach is based on empirical risk minimization

(ERM) (e.g., Koltchinskii and Panchenko, 2002; Daniely et al., 2012). A general crucial

drawback of ERM is in minimization of the non-convex 0-1 loss and a common remedy is

to replace it by some convex surrogate. Zhang (2004), Chen and Sun (2006), Daniely et al.

(2015), Maximov and Reshetova (2016), Lei et al. (2019) and Reeve and Kaban (2020) (see

also references therein) investigated the error bounds for various surrogate losses in terms of

Rademacher complexity, covering numbers, or Natarajan/graph dimensions. Daniely et al.

(2015) compared these results with those for OvA and OvO. However, all the above works

do not consider feature selection and to the best of our knowledge, there are no theoretical

results for the ERM-based approach in high-dimensional sparse multiclass setups.

An alternative approach to ERM is plug-in classifiers, where one assumes some model for

the underlying unknown probabilities of outcome classes, estimates them from the data and

plugs-in estimated probabilities to derive a classification rule. It may be especially useful

when one is interested not only in prediction but also in interpretability and inference.

In particular, in this paper we consider multinomial logistic (linear) classifiers – one of

the mostly used classification tools. We investigate feature selection in high-dimensional

multinomial logistic regression model and the accuracy of the resulting plug-in classifiers

under various sparsity scenarios.

For binary classification the notion of sparsity is naturally associated with the number

of significant features. For linear classifiers it is the number of non-zero entries of a vector of

coefficients β. For multiclass case, in contrast, there is a matrix of coefficients B that allows

one to consider the entire spectrum of various types of sparsity associated with different
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structural assumptions on B. Abramovich et al. (2021) studied the most straightforward

extension of multiclass sparsity measured by the number of non-zero rows of B. Such global

row-wise sparsity corresponds to the assumption that most of features do not affect any

class predictions at all. In this paper we present other possible extensions. In particular,

we consider double row-wise sparsity, where it is still assumed that B has a sparse subset

of non-zero rows (global sparsity) but, in addition, its non-zero rows are also sparse (local

row-wise sparsity), and the low-rank sparsity, where B is assumed to be of a low rank. The

latter assumption is associated with the existence of a smaller number of latent variables

defining the outcome classes.

For each considered type of sparsity we propose penalized maximum likelihood feature

selection procedures with the corresponding convex penalties and establish the bounds for

generalization errors in terms of misclassification excess risk of the resulting multinomial

logistic regression classifiers. The penalties are variations of a celebrated Lasso and its

recently developed more general and flexible version Slope (Bogdan et al., 2015). We show

that for the proper choice of tuning parameters the derived classifiers attain the optimal (in

the minimax sense) generalization errors within the corresponding classes of sparse linear

classifiers. The errors can be improved under the additional low-noise condition.

The proposed approach is general and can be adapted to other types of sparsity. The

machinery for a general form of a sparse multinomial logistic regression classifier is developed

in Appendix A.1.

The paper is organized as follows. Section 2 presents sparse multinomial logistic regres-

sion model and some preliminaries. Section 3 contains the main theoretical results, where

we introduce feature selection procedures for various types of sparsity and derive the error

bounds for the resulting misclassification excess risks. In Section 4 we illustrate the perfor-

mance of the developed procedures on a real-data example and compare them with other

existing classifiers. Some concluding remarks are given in Section 5. All the proofs are left

to the Appendix.

2. Sparse multinomial logistic regression

Consider a d-dimensional L-class classification model:

Y |(X = x) ∼Mult(p1(x), . . . , pL(x)),

L∑
j=1

pj(x) = 1, (1)
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where X ∈ Rd is a vector of linearly independent features with a marginal probability

distribution PX on a bounded support X ⊆ Rd. Let V = E(XXT ) be the second moment

matrix of X.

We consider a multinomial logistic regression model, where it is assumed that

pl(x) =
exp(βTl x)∑L
k=1 exp(βTk x)

, |βl|2 ≤ R, l = 1, . . . , L, (2)

LetB ∈ Rd×L be the corresponding matrix of regression coefficients with columns β1, . . . ,βL.

The model (2) is not identifiable without an extra constraint on B since shifting each βl

by the same vector c does not affect the probabilities pl(x). In this paper we adopt a

symmetric zero mean rows constraint
∑L

l=1 βl = 0 or, equivalently, B1 = 0d. Hence, βl

represents the effects of x in the l-th class w.r.t. the mean response over all classes on the

log-scale:

βTl x = ln

 pl(x)

L

√∏L
k=1 pk(x)

 = ln pl(x)− ln p(x).

One can evidently choose any other constraint (e.g., βL = 0, where the L-class is used as

the reference one) – the models will be equivalent but the vectors of coefficients βl will have

different interpretation. In particular, the symmetric constraint implies that the model is

invariant to permutations of the classes.

For the considered multinomial logistic regression model (1)-(2) the Bayes classifier that

minimizes generalized misclassification error (risk) R(η) = P (Y 6= η(X)) is a linear classifier

η∗(x) = arg max1≤l≤L pl(x) = arg max1≤l≤L β
T
l x with the (oracle) misclassification risk

R(η∗) = 1− EX max1≤l≤L pl(x).

Given a random sample (X1, Y1), . . . , (Xn, Yn), we estimate the unknown matrix B

from the data and consider the resulting plug-in classifier η̂
B̂

(x) = arg max1≤l≤L β̂
T

l x. Its

conditional misclassification error is R(η̂
B̂

) = P
(
Y 6= η̂

B̂
(X)|(X1, Y1), . . . , (Xn, Yn)

)
and

its goodness w.r.t. η∗ is measured by the misclassification excess risk

E(η̂
B̂
, η∗) = ER(η̂

B̂
)−R(η∗).

The goal is to find B̂ that yields the minimal E(η̂
B̂
, η∗).

Consider the log-likelihood function for the multinomial logistic regression model (1)-(2):

`(B) =
n∑
i=1

{
XT

i Bξi − ln
L∑
l=1

exp(βTl Xi)

}
, (3)

where ξi ∈ RL is the indicator vector corresponding to Yi with ξil = I{Yi = l}. One can find

the maximal likelihood estimator (MLE) for B by maximizing `(B) under the identifiability
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symmetric constraint B1 = 0d. Although the solution is not available in closed form, it

can be nevertheless obtained numerically by the fast iteratively reweighted least squares

algorithm (McCullagh and Nelder, 1989).

As we have mentioned in the introduction, feature selection is essential for high-dimensional

classification. To perform feature selection we consider a penalized maximum likelihood es-

timator of the form:

B̂ = arg min
B̃:B̃1=0d

{−`(B̃) + Pen(B̃)}

= arg min
B̃:B̃1=0d

{
n∑
i=1

(
ln

L∑
l=1

exp(βTl Xi)−XT
i B̃ξi

)
+ Pen(B̃)

} (4)

with a penalty Pen(·) capturing specific sparsity assumptions on B.

3. Main results

For binary classification, where a matrix B reduces to a single vector β ∈ Rd, the sparsity is

naturally characterized by the l0 (quasi)-norm ||β||0 – the number of non-zero entries of β

(see, e.g., Abramovich and Grinshtein, 2019; Chen and Lee, 2021). For the multiclass case

there is a wide spectrum of possible ways to extend the notion of sparsity associated with

different assumptions on the regression coefficients matrix B. In this section we consider

several of them and derive misclassification excess risk bounds for the resulting multiclass

sparse linear classifiers.

The straightforward approach in (4) is to use complexity-type penalties that mimic

sparsity directly. However, despite strong theoretical ground (see, e.g., Abramovich et al.,

2021), it is computationally infeasible for high-dimensional data since solving (4) requires

in this case a combinatorial search over all possible models. The goal then is to find convex

surrogates for complexity penalties while preserving their theoretical properties.

3.1 Global row-wise sparsity

The most straightforward extension of notion of sparsity for multiclass classification is global

sparsity, where it is assumed that part of features do not affect any class predictions at all.

In terms of the matrix B global sparsity corresponds to the assumption that B has a “small”

number of non-zero rows (global row-wise sparsity). Such type of sparsity was studied in

Abramovich et al. (2021) and in this subsection we review their main results (generalizing

for a anisotropic X) in order to extend them afterwards to other, finer types of sparsity.
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Let rB be the number of non-zero rows of B. To capture the global sparsity Abramovich

et al. (2021) proposed to use a complexity penalty on the number of non-zero rows of B in

(4).

Let M = {B ∈ Rd×L : B1 = 0} be the set of regression matrices satisfying the

symmetric constraint, M(d0) = {B ∈ M : rB ≤ d0} be its subset of d0-globally row-wise

sparse matrices and CL(d0) = {η(x) = arg max1≤l≤L β
T
l x : B ∈ M(d0)} be the set of

d0-sparse linear L-class classifiers. Define the penalized maximum likelihood estimator B̂

B̂ = arg min
B̃∈M

{
−`(B̃) + Pen(r

B̃
)
}

(5)

with the complexity penalty of the form

Pen(r
B̃

) = C1 rB̃(L− 1) + C2 rB̃ ln

(
de

r
B̃

)
(6)

for some positive constants C1 and C2.

Abramovich et al. (2021) showed that for the bounded X ,

sup
η∗∈CL(d0)

E(η̂
B̂
, η∗) ≤ C

√√√√d0(L− 1) + d0 ln
(
de
d0

)
n

(7)

for some C > 0 simultaneously for all 1 ≤ d0 ≤ min(d, n/(L − 1)), and that the bound in

(7), up to a probably different constant, is also the minimax for CL(d0).

Misclassification excess risk bounds (7) show that there is a phase transition between

small and large number of classes. For L ≤ 2 + ln(d/d0), the multiclass effect is not yet

manifested and the minimax misclassification excess risk over the set of d0-sparse linear

classifiers is of the order

√
d0
n ln

(
de
d0

)
regardless of L. Note that d0 ln

(
de
d0

)
∼ ln

(
d
d0

)
which

is the log of the number of all possible models of size d0. For larger L, the risk is of the

order

√
d0(L−1)

n , where d0(L−1) is the overall number of estimated parameters in the given

model of size d0, and does not depend on d. For L > n/d0 the number of parameters in the

(true) model becomes larger than the sample size and consistent classification is evidently

impossible.

Classification is mostly challenging at points, where it is difficult to distinguish the most

likely class from others, that is, at those x ∈ X , where the largest probability p(1)(x) is

close to the second largest p(2)(x). The misclassification error bounds (7) may be then im-

proved under the additional multiclass extension of the low-noise (aka Tsybakov) condition

(Tsybakov, 2004):
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Assumption A Consider the multinomial logistic regression model (1)-(2) and assume

that there exist C > 0, α ≥ 0 and h∗ > 0 such that for all 0 < h ≤ h∗,

P
(
p(1)(X)− p(2)(X) ≤ h

)
≤ Chα.

Assumption A implies that with high probability (depending on the parameter α) the most

likely class is sufficiently distinguished from others. The two extreme cases are α = 0 and

α =∞. The former does not impose any assumption on the noise, while the latter assumes

the existence of a hard margin of size h∗ separating p(1)(x) and p(2)(x).

Abramovich et al. (2021) proved that under the additional low-noise Assumption A the

misclassification excess risk bound (7) of η̂
B̂

can be indeed improved:

sup
η∗∈CL(d0)

E(η̂
B̂
, η∗) ≤

C d0(L− 1) + d0 ln
(
de
d0

)
n


α+1
α+2

(8)

for all 1 ≤ d0 ≤ min(d, n/(L − 1)) and all α ≥ 0. Note that the proposed classifier η̂
B̂

is

inherently adaptive to both sparsity d0 and noise level α.

As we have mentioned above, solving for B̂ in (5) requires a combinatorial search over

all possible 2d models that makes it computationally infeasible for large d. One should

apply convex relaxation techniques to replace the original complexity penalty (6) by some

convex surrogate.

The well-known examples of convex surrogates are celebrated Lasso, where the l0-norm

in the complexity penalty is replaced by the l1-norm norm, and its recently developed more

general variation Slope that uses a sorted l1-type norm (Bogdan et al., 2015). Lasso and

Slope estimators have been intensively studied in the last decade in various regression setups

(see e.g., van de Geer, 2008; Bickel et al., 2009; Su and Candès, 2016; Bellec et al., 2018;

Abramovich and Grinshtein, 2019; Alquier et al., 2019). Abramovich and Grinshtein (2019)

and Abramovich et al. (2021) applied logistic Lasso and Slope classifiers for classification.

To capture a global row-wise sparsity for multinomial logistic regression, Abramovich

et al. (2021) considered a group version of multinomial logistic Slope defined as follows. Let

B̂gS = arg min
B̃∈M

 1

n

n∑
i=1

(
ln

(
L∑
l=1

exp(β̃
T

l Xi)

)
−XT

i B̃ξi

)
+

d∑
j=1

λj |B̃|(j)

 , (9)

where |B̃|(1) ≥ . . . ≥ |B̃|(d) are the descendingly ordered l2-norms of rows of B̃ and λ1 ≥
. . . ≥ λd > 0 are tuning parameters, and define η̂gS(x) = arg max1≤l≤L β̂

T

gS,lx. Multinomial

logistic group Lasso classifier η̂gL is a particular case of η̂gS corresponding to equal λj ’s in

(9).
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The identifiability symmetric constraint B̃ ∈ M is, in fact, unnecessary in (9) since

unlike the complexity penalty in (5), the solution of (9) is identifiable without any additional

constraint. Moreover, since the unconstrained log-likelihood (3) satisfies `(β̃1, . . . , β̃L) =

`(β̃1 − c, . . . , β̃L − c) for any vector c ∈ Rd, it can be always improved by taking ĉj =

arg mincj
∑L

l=1(B̃jl − cj)2, that is, for ĉj = B̄j·. Hence, the unconstrained solution of (9)

will inherently have zero mean rows.

As usual for convex relaxation, one needs some (mild) extra conditions on the design.

Assume that all Xj are scaled, i.e. EX2
j = 1, j = 1, . . . , d. For a given matrix A ∈ M let

Πd0(A) be its d0-sparse projection, i.e. the matrix with at most d0 nonzero rows closest to

A in the Frobenius norm.

Assumption B1 Assume that

νgS(d0) = inf
A∈M:A 6=0d×L

‖V
1
2A‖2F

‖Πd0(A)‖2F
> 0,

In fact, one immediately realizes that Πd0(A) keeps d0 rows of A with the largest l2-norms

and zeroes other rows. Hence, ‖Πd0(A)‖2F =
∑d0

j=1 |A|2(j).
Such or similar types of conditions are common for convex relaxation methods (see

Bellec et al., 2018, Section 8 for discussion).

Let ||A||gS =
∑d

j=1 λj |A|(j) be the group Slope norm of a matrix A. The following theo-

rem provides an upper bound for misclassification excess risk of the group Slope classifier ex-

tending the results of Abramovich et al. (2021) to anisotropic design. In addition, it provides

also the upper bounds for the integrated prediction error
∑L

l=1 E‖(β̂gS,l − βl)Tx‖2L2(PX) =

E‖V
1
2 (B̂gS − B)‖2F and the estimation error of the regression coefficients matrix B w.r.t.

the group Slope norm E||B̂gS −B||gS :

Theorem 1 Consider a d0-globally row-sparse multinomial logistic regression (1)-(2), where

d0 ≤ min(d, n/(L−1)) and Xj’s are scaled to have EX2
j = 1, j = 1, . . . , d. Apply the multi-

nomial logistic sparse group Slope classifier (12) with λj’s satisfying

max
1≤j≤d

√
L+ ln(d/j)

λj
≤ C0

√
n, (10)

where the constant C0 is derived from Abramovich et al. (2021). Then, under Assumptions

A-B1,

sup
η∗∈CL(d0)

E(η̂gS , η
∗) ≤

 C

νgS(d0)

d0∑
j=1

λj√
j


2(α+1)
α+2

.
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In addition,

sup
B∈M(d0)

E‖V
1
2 (B̂gS −B)‖2F ≤

C1

νgS(d0)

 d0∑
j=1

λj√
j

2

and

sup
B∈M(d0)

E||B̂gS −B||gS ≤
C2

νgS(d0)

 d0∑
j=1

λj√
j

2

In particular, setting

λj =
1

C0

√
L+ ln(d/j)

n
,

the misclassification excess risk of the multinomial logistic group Slope classifier η̂gS is of

the minimax order (8):

Corollary 2 Apply Theorem 1 with

λj =
1

C0

√
L+ ln(d/j)

n
.

Then, under Assumptions A-B1,

sup
η∗∈CL(d0)

E(η̂gS , η
∗) ≤

 C

νgS(d0)

d0(L− 1) + d0 ln
(
de
d0

)
n


α+1
α+2

. (11)

Furthermore,

sup
B∈M(d0)

E‖V
1
2 (B̂gS −B)‖2F ≤

C1

νgS(d0)

d0(L− 1) + d0 ln
(
de
d0

)
n

and

sup
B∈M(d0)

E||B̂gS −B||gS ≤
C2

νgS(d0)

d0(L− 1) + d0 ln
(
de
d0

)
n

Note that η̂gS is inherently adaptive to d0 and α.

Similarly, the multinomial logistic group Lasso classifier η̂gL with a (constant) λ =
1
C0

√
L+ln d
n is sub-optimal (up to the log-factor):

sup
η∗∈CL(d0)

E(η̂gL, η
∗) ≤

(
C

νgS(d0)

d0(L− 1) + d0 ln d

n

)α+1
α+2

.

We consider now other possible types of sparsity for multiclass case and derive the

corresponding generalization error bounds.
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3.2 Double row-wise sparsity

We show that the misclassification excess risks bounds for a global row-wise sparsity can

be improved under a finer row-wise sparsity structure. Namely, assume that even each

significant feature is involved in only part of probabilities pl’s. In terms of the matrix B it

implies the additional sparsity assumption on its non-zero rows in the usual l0-norm sense,

i.e., local row-wise sparsity.

For a given matrix B, let J (B) = {j1, . . . , jrB} be the set of indices of its non-zero rows.

Consider a set of double (global and local) row-wise sparse matricesM(d0,m) = {B ∈M :

|J (B)| ≤ d0; ||Bj·||0 ≤ mj , j ∈ J (B)} and the corresponding set of (d0,m)-sparse linear

L-class classifiers CL(d0,m) = {η(x) = arg max1≤l≤L β
T
l x : B ∈M(d0,m)}.

To capture a double row-wise sparsity one should impose penalties on both the number

of non-zero rows of B and on the numbers of their non-zero entries. A natural convex

surrogate in this case is a multinomial logistic sparse group Slope estimator of B defined as

follows:

B̂sgS = arg min
B̃∈M

{
1

n

n∑
i=1

(
ln

(
L∑
l=1

exp(β̃
T

l Xi)

)
−XT

i B̃ξi

)

+

d∑
j=1

λj |B̃|(j) +

d∑
j=1

L∑
l=1

κl|B̃|j(l)

 ,

(12)

where |B̃|(1) ≥ . . . ≥ |B̃|(d) are the descendingly ordered l2-norms of the rows of B̃, |B̃|j(1) ≥
. . . ≥ |B̃|j(L) are the descendingly ordered absolute values of entries of its j-th row, and

λ1 ≥ . . . ≥ λd > 0 and κ1 ≥ . . . ≥ κL > 0 are tuning parameters. The additional last

term in the penalty in (12) yields sparsity of non-zero rows. Sparse group Slope essentially

combines group Slope on the row’s norms with usual Slope within each row.

The multinomial logistic sparse group Slope classifier is η̂sgS(x) = arg max1≤l≤L β̂
T

sgS,lx.

Multinomial logistic sparse group Lasso classifier η̂sgL (see Friedman et al., 2010; Vincent

and Hansen, 2014) is its particular case with identical λj ’s and κl’s in (12).

Let ||A||sgS =
∑d

j=1 λj |A|(j) +
∑d

j=1

∑L
l=1 κl|A|j(l) be the sparse group Slope norm of

a matrix A ∈ Rd×L. The following theorem provides an upper bound for misclassification

excess risk of η̂sgS :

Theorem 3 Consider a (d0,m)-sparse multinomial logistic regression (1)-(2) with d0 ≤
min(d, n/(L − 1)) and scaled Xj’s. Apply the multinomial logistic sparse group classifier

10
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(12) with λj’s and κl’s satisfying κL ≥ 1
C
√
n

and

max
1≤j≤d

√
2
∑L

l=1
1
l

(
Le
l

)l
e−C

2nlκ2l + 2 log
(
de
j

)
λj

≤ 2C

C0

√
n, (13)

where C =
√

2
π

7
2880 and C0 is derived in the proof. Then, under Assumptions A-B1,

sup
η∗∈CL(d0,m)

E(η̂sgS , η
∗) ≤

 C

νgS(d0)

 d0∑
j=1

λj√
j

+

√√√√√ d0∑
j=1

(mj∑
l=1

κl√
l

)2



2(α+1)
α+2

.

In addition,

sup
B∈M(d0,m)

E‖V
1
2 (B̂sgS −B)‖2F ≤

C1

νgS(d0)

 d0∑
j=1

λj√
j

+

√√√√√ d0∑
j=1

(mj∑
l=1

κl√
l

)2


2

and

sup
B∈M(d0,m)

E||B̂sgS −B||sgS ≤
C2

νgS(d0)

 d0∑
j=1

λj√
j

+

√√√√√ d0∑
j=1

(mj∑
l=1

κl√
l

)2


2

.

The proof is given in the Appendix A.

In particular, take λj = c1

√
ln(de/j)

n , j = 1, . . . , d and κl = c2

√
ln(Le/l)

n , l = 1, . . . , L

with c1 = 1440C0
√
π

7 and c2 = 2880
√
π

7 . By a straightforward calculus one can verify that

these λj ’s and κl’s satisfy the condition (13), and Theorem 3 then implies:

Corollary 4 Apply Theorem 3 with

λj = c1

√
ln (de/j)

n
and κl = c2

√
ln (Le/l)

n
, (14)

where c1 = 1440
√

2πC0
7 , c2 = 2880

√
π

7 and C0 is given in Lemma 13. Then, under Assumptions

A-B1,

sup
η∗∈CL(d0,m)

E(η̂sgS , η
∗) ≤

 C

νgS(d0)

d0 ln
(
de
d0

)
+
∑

j∈J (B)mj ln
(
Le
mj

)
n


α+1
α+2

(15)

In addition,

sup
B∈M(d0,m)

E‖V
1
2 (B̂sgS −B)‖2F ≤

C1

νgS(d0)

d0 ln
(
de
d0

)
+
∑

j∈J (B)mj ln
(
Le
mj

)
n

11
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and

sup
B∈M(d0,m)

E||B̂sgS −B||sgS ≤
C2

νgS(d0)

d0 ln
(
de
d0

)
+
∑

j∈J (B)mj ln
(
Le
mj

)
n

Corollary 4 shows that with a proper choice of tuning parameters, the bounds for misclas-

sification excess risk for the global row-wise sparsity (8) are improved under the stronger

double row-wise sparsity assumption. The multinomial logistic sparse group Slope classifier

η̂sgS is adaptive to d0,m and α.

Similar to global sparsity, there is a phase transition between small and large number of

classes. The numerator in the upper bounds contains two terms. The first term d0 ln(de/d0)

corresponds again to the error of selecting a subset of d0 nonzero rows out of d, while the

second term
∑

j∈J (B)mj ln(Le/mj) appears due to simultaneous estimation of d0 mj-sparse

vectors from RL. Since d0 ln(Le) ≤
∑

j∈J (B)mj ln(Le/mj) ≤ d0L, the first term is always

dominating for small number of classes with L ≤ ln(de/d0), while the second term is the

main one for large number of classes with L ≥ d/d0.

It also follows from Theorem 3 that, similar to the group Lasso, the multinomial logistic

sparse group Lasso classifier with constant λ = c1

√
ln d
n and κ = c2

√
lnL
n in (12) is sub-

optimal up to the differences in the log-terms:

sup
η∗∈CL(d0,m)

E(η̂sgL, η
∗) ≤

(
C

νgS(d0)

d0 ln d+ lnL ·
∑

j∈J (B)mj

n

)α+1
α+2

.

Note that unlike global row-wise sparsity, interpretation of local (and, therefore, the

double) row-wise sparsity assumption depends on the chosen constraint on B. Thus, a

non-zero row of B may be sparse (in terms of l0-norm) under the symmetric constraint∑L
l=1 βl = 0 but not necessarily sparse under another possible constraint, e.g., βL = 0 and

vice versa.

3.3 Low-rank sparsity

So far we considered various types of row-wise sparsity of the regression coefficients matrix

B. A more general approach is to assume the existence of some underlying hidden low-

dimensional structure, where there is a smaller number of latent variables that define the

outcome classes. The row-wise sparsity is a particular case of such a general case. The

natural measure of such type of sparsity (sometimes called also spectral sparsity) is rank(B).

Direct penalization of rank(B) implies a non-convex optimization since rank(B) is

not a convex function although She (2013) proposed a computationally fast procedure for

its solution for GLM. To convexify rank penalization note that rank(B) = ||γ||0, where

12
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γ1, . . . , γmin(L−1,d) are the singular values of B. Similar to Lasso, we replace ||γ||0 by ||γ||1
aka a nuclear norm ||B||∗ or, Schatten S1-norm. Nuclear penalties have been intensively

studied in statistical and machine learning for multivariate regression and matrix completion

(e.g., Bach, 2008; Candes and Plan, 2010; Bunea et al., 2011; Koltchinskii et al., 2011;

Alquier et al., 2019). Powers et al. (2018) considered nuclear penalization in multinomial

logistic classification. They developed numerical algorithms for its solution but did not

investigate theoretical properties of the resulting classifier.

We start from establishing a minimax lower bound for misclassification excess risk over

a set of L-class linear classifiers with law rank coefficients matrices. Let M∗(r0) = {B ∈
M : rank(B) ≤ r0} and C∗L(r0) = {η(x) = arg max1≤l≤L β

T
l x : B ∈M∗(r0)}.

Theorem 5 Consider an agnostic multinomial regression model (1)-(2) with rank(B) ≤
r0, where 1 ≤ r0 ≤ min(L− 1, d) and r0(L+ d) ≤ n. Then,

inf
η̃

sup
η∗∈C∗L(r0), PX

E(η̃, η∗) ≥ C
√
r0((L− 1) + d)

n
(16)

for some C > 0.

The proof is given in the Appendix C.

We now show that estimating B by penalized maximum likelihood estimator with a

nuclear penalty of the form λ||B||∗ with a properly chosen tuning parameter λ leads to a

linear classifier that achieves the lower bound (16) up to a multiplicative term depending

on the marginal distribution PX of X.

Define

B̂nu = argmin
B̃

{
1

n

n∑
i=1

(
ln

(
L∑
l=1

exp(β̃Tl xi)

)
− βTyixi

)
+ λ||B||∗

}
, (17)

with λ > 0, and the corresponding classifier η̂nu(x) = argmax1≤l≤L β̂
T

nu,lx. Similar to group

Slope and group Lasso classifiers from Section 3.1, there is no need to impose an additional

symmetric constraint B̃ ∈ M in (17) since centering rows to zero means can only decrease

the nuclear norm of a matrix (Powers et al., 2018).

Let τ1(V ) ≥ . . . ≥ τd(V ) be the ordered eigenvalues of the second moment matrix

V = EX(XXT ).

Assumption B2 Assume that τd(V ) > 0.

13
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Theorem 6 Consider a multinomial regression model (1)-(2) and the nuclear penalized

classifier η̂nu(x) with

λ = C
√
τ1(V )

√
L− 1 +

√
d√

n
, (18)

where C > 0 is specified in the proof.

Then, under Assumption B2

sup
η∗∈C∗L(r0)

E(η̂nu, η
∗) ≤

√
C
τ1(V )

τd(V )

r0((L− 1) + d)

n
. (19)

Furthermore, under the additional low-noise Assumption A,

sup
η∗∈C∗L(r0)

E(η̂nu, η
∗) ≤

(
C
τ1(V )

τd(V )

r0((L− 1) + d)

n

)α+1
α+2

. (20)

In addition,

sup
B∈M∗(r0)

E‖V
1
2 (B̂nu −B)‖2F ≤ C1

τ1(V )

τd(V )

r0((L− 1) + d)

n

and

sup
B∈M∗(r0)

E||B̂nu −B||∗ ≤ C2
τ1(V )

τd(V )

r0((L− 1) + d)

n

The proof is given in the Appendix A.

Similar upper bounds for the misclassification excess risk with the extra ln3/2(n3/2L)-

term can be derived from Corollary 10 of Lei et al. (2019) using (23) from Appendix A.

Summarizing, up to a multiplicative constant depending on the eigenvalues of the sec-

ond moment matrix of X, η̂nu(x) attains the minimax misclassification excess risk and is

adaptive to the unknown low-rank sparsity of the regression coefficients matrix.

4. Example

To illustrate the performance of the derived sparse multinomial logistic regression classifiers

we applied them to the data set Cancer sites considered in Vincent and Hansen (2014). It

consists of bead-based expression data for n = 162 microRNAs with d = 372 features from

L = 18 classes of normal and cancer issue samples. The number of samples in each class

ranges from 5 to 26. Vincent and Hansen (2014) used sparse group Lasso classifier for this

data.

We compared the performance of sparse group Slope with λj ’s and κ`’s of the form

given in (14), sparse group Lasso (replicating Vincent and Hansen, 2014), random forest

14
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Classifier Average misclass. error # features # non-zero coefficients

sparse group Slope 0.159 (0.019) 60-67 186-271

sparse group Lasso 0.165 (0.018) 51-79 382-592

random forest 0.209 (0.009) - -

XGBoost 0.250 (0.026) - -

Table 1: Average misclassification errors with their standard errors (in brackets) and feature

selection for various classifiers.

and the well-known gradient boosting trees XGBoost classifiers on the above data set, where

we developed the proximal gradient algorithm for solving sparse group Slope in (12) – see

Appendix D.

To remove various technical variations, following Vincent and Hansen (2014), the data

was first normalized by centering and scaling the rows of the design matrix, and then

standardized by centering and scaling the columns. We split the data into training (75%)

and test (25%) sets. The tuning parameters of all classification procedures were chosen by

10-fold cross-validation on the training set, and the misclassification errors of the resulting

classifiers were measured on the test set. We repeated the process 10 times, randomly

partitioning the data into train and test sets.

Table 1 presents the average (over 10 random splits) misclassification errors for the test

sets, the numbers of selected features (non-zero rows of the regression coefficients matrix B)

and the overall numbers of non-zero coefficients in B. It shows that both sparse multinomial

logistic regression classifiers outperform their nonparametric counterparts for this data.

Sparse group Slope yielded smaller misclassification errors than sparse group Lasso and, in

addition, resulted in much sparser models.

5. Concluding remarks

In this paper we discussed high-dimensional multiclass classification by sparse multinomial

logistic regression. Multiclass setup allows one to consider various types of sparsity as-

sociated with different assumptions on a matrix of regression coefficients. We proposed

penalized MLE feature selection procedures with convex penalties capturing a specific type

of sparsity at hand and showed that the resulting classifiers are optimal in the minimax

sense. We presented the results for global row-wise, double row-wise and low-rank sparsity

scenarios but one can consider also other related types of sparsity, e.g., group-sparsity, when

features may have a group structure, or class-dependent sparsity, where each class has its
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own sparse subset of predictive features that implies column-wise sparsity, combinations of

row-wise and low-rank sparsities, etc. The developed approach is general (see Appendix

A.1 and Theorem 7 there) although a specific type of a penalty should be properly chosen

w.r.t. a particular type of sparsity at hand.

In this paper we assume that PX has a bounded support. Using a slightly different

techniques, the main results remain valid also for Gaussian design (see Bellec et al., 2018;

Alquier et al., 2019, for binary classification).

Even when the considered multinomial logistic regression model is misspecified and the

Bayes classifier η∗ is not linear, the misclassification excess risk can still be decomposed as

R(η̂
B̂

)−R(η∗) =
(
R(η̂

B̂
)−R(η∗L)

)
+ (R(η∗L)−R(η∗)) , (21)

where η∗L = arg minη∈CL R(η) is the best possible (oracle) linear classifier. The results of the

paper can then be applied to the first term in the RHS of (21) representing the estimation

error, whereas the approximation error in the second term measures the ability of linear

classifiers to perform as good as η∗. Enriching the class of linear classifiers may improve

the approximation error but will increase the resulting estimation error in (21). In a way,

it is similar to the variance/bias tradeoff in regression.
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Appendix A. Proofs of the upper bounds (Theorems 1, 3 and 6)

Throughout the proofs we use various generic positive constants, not necessarily the same

each time they are used even within a single equation.

Throughout the proofs let |a|2 be the Euclidean norm of a vector a, ||A||2 and ||A||F
respectively the operator/spectral and Frobenius norms of a matrix A. The Frobenius inner

product of two matrices A1 and A2 is 〈A1, A2〉 = tr(AT1 A2). Denote ||g(x)||L2 for the L2-

norm of a function g and ||g(x)||L2(PX) = (
∫
X g(x)2dPX(x))1/2 for the L2-norm of g w.r.t.

the measure PX . Recall that V = E[XXT ].
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A.1 Upper bounds for misclassification excess risk for a general penalized

MLE plug-in linear classifier

Consider first a generic setup. Let M = {B ∈ Rd×L : B1 = 0} be the set of regression

matrices satisfying the symmetric constraint andM0 ⊆M be its subset of sparse matrices,

where the notion of sparsity depends on the particular problem at hand. Let B ∈M0 and

consider a penalized MLE estimator B̂ of the form

B̂ = arg min
B̃∈M

{
−l(B̃) + ||B̃||

}
, (22)

where the regularized matrix norm || · || induces the given type of sparsity, and the corre-

sponding plug-in linear classifier

η̂
B̂

(x) = arg max
1≤l≤L

β̂
T

l x.

The Kullback-Leibler divergence between two multinomial distributions with proba-

bilities vectors p1 and p2 is KL(p1,p2) =
∑L

l=1 p1l ln
(
p1l
p2l

)
. Let fB(x, y) be the joint

distribution of (X, Y ), i.e., dfB(x, y) =
∏L
l=1 pl(x)ξldPX(x), where pl(x) are given in (2).

For two given regression coefficients matrices B1 and B2 the Kullback-Leibler divergence

between the distributions fB1 and fB2 is then dKL(fB1 , fB2) =
∫
KL(p1(x),p2(x))dPX(x).

We exploit the well-known result (e.g., Pires and Szepesvári, 2016; Abramovich et al.,

2021) that relates the misclassification excess risk E(η̂, η∗) and the Kullback-Leibler risk

EdKL(fB, fB̂) under the low-noise Assumption A:

E(η̂
M̂
, η∗) ≤ C

(
EdKL(fB, fB̂

)α+1
α+2 . (23)

We now extend the results of Alquier et al. (2019) for univariate response to multi-

variate (multinomial) Y to bound the Kullback-Leibler risk Ed2
KL(fB, fB̂). Define θl(x) =

βTl x, l = 1, . . . , L, where due to the symmetric constraint,
∑L

l=1 θl(x) = 0. It is easy to

verify that in terms of θl’s, the multinomial log-likelihood is Lipschitz w.r.t. the l2-norm.

Furthermore, for PX with a bounded support, |βTl x| ≤ C and dKL(·, ·) is strongly con-

vex (Abramovich et al., 2021): for any two matrices B1 and B2 satisfying the symmetric

constraint, dKL(fB1 , fB2) ≥ C
∑L

l=1 ||θ1l(x) − θ2l(x)||2L2(PX) (the multivariate analogue of

Bernstein condition in terminology of (Alquier et al., 2019). These two conditions allow us

to adopt the general approach of Alquier et al. (2019) to bound Ed2
KL(fB, fB̂).

Define the following quantities along the lines of Alquier et al. (2019). Let B||·|| = {B ∈
M : ||B|| ≤ 1} be the unit ball of matrices satisfying the symmetric constraint w.r.t. || · ||-
norm in (22). Let R̂ad(B||·||) be the empirical (multivariate) Rademacher complexity of
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B||·||, namely,

R̂ad(B||·||) = EΣ

{
1√
n

sup
B∈B

n∑
i=1

L∑
l=1

σilβ
T
l Xi

∣∣∣X1 = x1, . . . ,Xn = xn

}

= EΣ

{
1√
n

sup
B∈B

tr(ΣBTXT )

}
,

where the elements σil’s of Σ ∈ Rn×L are i.i.d. Rademacher random variables with P (σil =

1) = P (σil = −1) = 1/2, and

Rad(B||·||) = EX
{
R̂ad(B||·||)

}
be the Rademacher complexity of B.

Define a complexity function

r(ρ) =

√
C0Rad(B||·||)ρ

2R2
√
n

, ρ > 0,

where the exact value of C0 > 0 is specified in Alquier et al. (2019).

Let T (ρ) = {B′ ∈ M : ||B′|| = ρ, ||V
1
2B′||2F ≤ r2(2ρ)}. For a given matrix B ∈ M0

define ΓB(ρ) =
⋃
B′:||B′−B||< ρ

20
∂|| · ||(B′), where the subdifferential ∂|| · ||(B′) = {G ∈ M :

||B′ +B′′|| − ||B′|| ≥ 〈B′′, G〉, ∀B′′ ∈M}. The sparsity parameter is

∆(ρ) = inf
B′∈T (ρ)

sup
G∈ΓB(ρ)

〈B′, G〉.

Finally, let ρ∗ be any solution of the sparsity inequality

∆(ρ∗) ≥ 4

5
ρ∗ (24)

The quantity ρ∗ depends on a particular norm in (22) and the second moment matrix

V , and plays a key role in establishing the upper bound for EdKL(fB1 , fB2).

We have the following generic theorem:

Theorem 7 Let B̂ be the solution of (22). Assume that there exists ρ∗ such that ∆(ρ∗) ≥
4
5ρ
∗ and Rad(B||·||) ≤ 7

720

√
n. Then,

EdKL(fB, fB̂) ≤ Cρ∗, (25)

for some C > 0.

In addition,

E‖V
1
2 (B̂ −B)‖2F ≤ C1ρ

∗
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and

E‖B̂ −B‖ ≤ C2ρ
∗

for some C1, C2 > 0.

Theorem 7 is an extension of Theorem 2.2 (or more general Theorem 9.2) of Alquier

et al. (2019) for multivariate response and anisotropic design. Its proof repeats the proof

of Lemma 1 in Abramovich et al. (2021) with the particular group Slope norm considered

there replaced by a general norm || · ||.

Remark 8 In fact, from the definition of the sparsity parameter ∆(ρ) and ρ∗ it follows

that Theorem 7 holds even if the true regression matrix B is only “approximately sparse”

in the sense that there exists a sparse matrix B′ ∈ M0 such that ||B − B′|| ≤ ρ∗/20 (see

also Alquier et al., 2019).

We will now apply the general upper bound (25) for the group Slope, sparse group

Slope and nuclear norms to complete the proofs of Theorems 1, 3 and 6 by finding the

corresponding Rad(B||·||) and ρ∗.

A.2 Proof of Theorem 1

The proof of Theorem 1 is somewhat different from that of Theorem 4 of Abramovich et al.

(2021) for isotropic X.

For given λ1 ≥ . . . ≥ λd consider the group Slope norm ||B||λ =
∑d

j=1 λj |B|(j). Let

B ∈ M(d0) with a set of zero rows J (B) and B′ ∈ Rd×L such that ‖B′ − B‖λ = ρ∗ and

‖V
1
2 (B′ −B)‖2F ≤

C0Rad(Bλ)ρ∗

R2
√
n

, where ρ∗ will be defined later .

Let G be a set all of matrices of the form
∑

j∈J (B) λπ(j)ej
Bj·
|Bj·|2 +

∑
j∈J c(B) λπ(j)ejv

T
j ,

where π = (π(1), . . . , π(d)) is a permutation of {1, . . . , d} and vj ’s are unit vectors in RL,

and note that ‖B‖λ = maxG∈G〈B,G〉.

In particular, ∂‖ · ‖λ(B) ⊇ argmaxG∈G〈B,G〉. Hence, we can find a permutation of

{λj}dj=d0+1 such that the correspondingG ∈ argmaxG∈G〈B,G〉 ⊆ ∂‖·‖λ(B) and
∑

j∈J c(B)G
T
·j(B

′−
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B)j· ≥
∑d

j=d0+1 λj |B′ −B|(j). Then,〈
G,B′ −B

〉
=

∑
j∈J (B)

GT·j(B
′ −B)j· +

∑
j∈J c(B)

GT·j(B
′ −B)j·

≥
∑

j∈J c(B)

GT·j(B
′ −B)j· −

d0∑
j=1

λj |B′ −B|(j) ≥

≥
d∑
j=1

λj |B′ −B|(j) − 2

d0∑
j=1

λj |B′ −B|(j)

= ρ∗ − 2

d0∑
j=1

λj |B′ −B|(j).

(26)

By Assumption B1,

1

νgS(d0)
‖V

1
2 (B′ −B)‖2F ≥ ‖Πd0(B′ −B)‖2F =

d0∑
j=1

|B′ −B|2(j) . (27)

For any 1 ≤ j ≤ d0 we also have

d0∑
j′=1

|B′ −B|2(j′) ≥
j∑

j′=1

|B′ −B|2(j′) ≥ j|B
′ −B|2(j)

and, therefore, |B′ −B|(j) ≤
√∑d0

j′=1 |B′ −B|2(j′)/
√
j.

Taking

ρ∗ =
100C0C

νgS(d0)

Rad(Bλ)
(∑d0

j=1 λj/
√
j
)2

√
n

(27) implies

d0∑
j=1

λj |B′ −B|(j) ≤
1√

νgS(d0)

 d0∑
j=1

λj√
j

 ‖V 1
2 (B′ −B)‖F

≤ 1√
νgS(d0)

 d0∑
j=1

λj√
j

√C0Rad(Bλ)ρ∗

R2
√
n

≤ 1

10
ρ∗.

Thus, combining with (26) 〈
G,B′ −B

〉
≥ 4

5
ρ∗

for every B′ −B ∈ T (ρ∗) and, therefore,

∆(ρ∗) ≥ 4

5
ρ∗.
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Furthermore, by Lemma 2 of Abramovich et al. (2021),

Rad(Bλ) ≤ C max
1≤j≤d

√
L+ ln(d/j)

λj

for some C > 0. Hence, for λj satisfying (10), Rad(Bλ) ≤ 7
720

√
n and we can apply Theorem

7 to complete the proof.

A.3 Proof of Theorem 3

For given λ1 ≥ . . . ≥ λd > 0 and κ1 ≥ . . . ≥ κL > 0, consider the sparse group Slope

norm ||B||κ,λ =
∑d

j=1 λj |B|(j) +
∑d

j=1

∑L
l=1 κl|B|j(l), where |B|(1) ≥ . . . ≥ |B|(d) are the

descendingly ordered l2-norms of the rows of B and |B|j(1) ≥ . . . ≥ Bj(L) are descendingly

ordered absolute values of entries of its rows. Let Bκ,λ be the unit ball of matrices w.r.t.

this norm.

Lemma 9 Let B ∈M(d0,m). Under Assumption B1, define

ρ∗ =
100C0C

νgS(d0)

Rad(Bκ,λ)

(∑d0
j=1

λj√
j

+

√∑d0
j=1

(∑mj
l=1

κl√
l

)2
)2

√
n

. (28)

Then, ρ∗ satisfies the sparsity inequality (24), i.e., ∆(ρ∗) ≥ 4
5ρ
∗.

To apply Theorem 7 to complete the proof, we need also to show that Rad(Bκ,λ) ≤
7

720

√
n:

Lemma 10 Let κL ≥
√

π
2

2880
7

1√
n

. Then,

Rad(Bκ,λ) ≤ 7

1440

√
n+ C0

√
π

2
max

1≤j≤d

√
2
∑L

j=1
1
l

(
Le
l

)l
e−C

2nlκ2l + 2 log
(
de
j

)
λj

,

where C =
√

2
π

7
2880 and C0 > 0 is given in the proof.

In particular, for λj ’s and κl’s satisfying (13), Rad(Bκ,λ) ≤ 7
720

√
n.

A.4 Proof of Theorem 6

Let ||B||λ = λ||B||∗ and Bλ the corresponding unit ball. Define

ρ∗ = 100λ
C0r0Rad(Bλ)

2R2τd(V )
√
n
.

Extending Lemma 4.4 of Lecué and Mendelson (2018) for the anisotropic case by using

‖B‖∗ < 1√
τd(V )

‖V
1
2B‖∗, we have ∆(ρ∗) ≥ 4

5ρ
∗.

To apply Theorem 7 we need to show that for λ in (18), Rad(Bλ) ≤ 7
720

√
n:
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Lemma 11

Rad(Bλ) ≤ C0

√
τ1(V )

√
L− 1 +

√
d

λ

for some C0 > 0.

Thus, taking C = 720C0
7 , the choice of λ =

√
τ1(V )

(
√
L−1+

√
d)√

n
implies Rad(Bλ) ≤ 7

720

√
n.

Appendix B. Proofs of lemmas

B.1 Proof of Lemma 9

We use the arguments similar to those in the proof of Theorem 1.

Let J be the set of indices of non-zero rows of B and Lj be the set of indices of non-zero

entries of the j-th row for j ∈ J . Obviously, |J | = d0 and |Lj | = mj . Consider a matrix

B′ such that ‖B′ −B‖κ,λ = ρ∗ and ‖V
1
2 (B′ −B)‖2F ≤ r2(2ρ∗) = C0Rad(B)C√

n
ρ∗.

We can decompose ‖B‖κ,λ into two additive components: ‖B‖κ,0 =
∑d

j=1

∑L
l=1 κl|B|j(l)

and ‖B‖0,λ =
∑d

j=1 λj |B|(j).
Define two matricesG,H ∈ Rd×L as follows. For every j ∈ J let πj(1), . . . , πj(mj) be the

indices of descendingly ordered nonzero entries |B|j(l)’s and set Gjπj(l) = κπj(l) sign(Bjπj(l)).

Similarly, let π̃(1), . . . , π̃(d0) be the indices of descendingly ordered Euclidean norms |B|(j)
of d0 nonzero rows of B and set Hjl = λπ̃(j)

Bπ̃(j)l
|Bπ̃(j)·|2

. The entries of G and H corresponding

to zero entries of B will be defined later.

By construction, tr(GTB) = ‖B‖κ,0 and tr(HTB) = ‖B‖0,λ, while for anyB′, tr(GTB′) ≤
‖B′‖κ,0 and tr(HTB′) ≤ ‖B′‖0,λ. Thus, G and H are in ∂‖ · ‖κ,0(B) and ∂‖ · ‖0,λ(B) re-

spectively.

We have
d∑
j=1

∑
l∈Lj

Gjl
∣∣B′jl −Bjl∣∣ ≤ d∑

j=1

mj∑
l=1

κl
∣∣B′ −B∣∣

j(l)

and ∑
j∈J

∣∣∣∣∣
L∑
l=1

Hjl

(
B′jl −Bjl

)∣∣∣∣∣ ≤
d0∑
j=1

λj
∣∣B′ −B∣∣

(j)
.

Hence,

tr
(
GT
(
B′ −B

))
=

d∑
j=1

∑
l∈Lj

Gjl
(
B′jl −Bjl

)
+

d∑
j=1

∑
l∈LCj

Gjl
(
B′jl −Bjl

)

≥
d∑
j=1

∑
l∈LCj

Gjl
(
B′jl −Bjl

)
−

d∑
j=1

mj∑
l=1

κl
∣∣B′ −B∣∣

j(l)
,

(29)
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and

tr
(
HT

(
B′ −B

))
=
∑
j∈J

L∑
l=1

Hjl

(
B′jl −Bjl

)
+
∑
j∈JC

L∑
l=1

Hjl

(
B′jl −Bjl

)
≥
∑
j∈JC

L∑
l=1

Hjl

(
B′jl −Bjl

)
−

d0∑
j=1

λj
∣∣B′ −B∣∣

(j)

(30)

To bound the first terms of the RHSs in (29) and (30) from below for a given B′ complete

the entries of G and H corresponding to zero entries of B in such a way that

d∑
j=1

∑
l∈LCj

Glj
(
B′lj −Blj

)
≥

d∑
j=1

L∑
l=mj+1

κl
∣∣B′ −B∣∣

j(l)
,

and ∑
j∈JC

L∑
l=1

Hlj

(
B′lj −Blj

)
≥

d∑
j=d0+1

λj
∣∣B′ −B∣∣

(j)
.

Thus,

tr
(
GT
(
B′ −B

))
≥

d∑
j=1

L∑
l=1

κl
∣∣B′ −B∣∣

j(l)
− 2

d∑
j=1

mj∑
l=1

κl
∣∣B′ −B∣∣

j(l)

= ‖B′ −B‖κ,0 − 2
d∑
j=1

mj∑
l=1

κl
∣∣B′ −B∣∣

j(l)
,

and

tr
(
HT

(
B′ −B

))
≥

d∑
j=1

λj
∣∣B′ −B∣∣

(j)
− 2

d0∑
j=1

λj
∣∣B′ −B∣∣

(j)

= ‖B′ −B‖0,λ − 2

d0∑
j=1

λj
∣∣B′ −B∣∣

(j)
.

Consider Z = G+H. Evidently, Z ∈ ∂‖ · ‖κ,λ(B) and

tr
(
ZT
(
B′ −B

))
≥ ‖B′ −B‖κ,λ − 2

d0∑
j=1

λj
∣∣B′ −B∣∣

(j)
− 2

d∑
j=1

mj∑
l=1

κl
∣∣B′ −B∣∣

j(l)

= ρ∗ − 2

d0∑
j=1

λj
∣∣B′ −B∣∣

(j)
− 2

d∑
j=1

mj∑
l=1

κl
∣∣B′ −B∣∣

j(l)
.

By Assumption B1,

1

νgS(d0)
‖V

1
2 (B′ −B)‖2F ≥ ‖Πd0(B′ −B)‖2F =

d0∑
j=1

|B′ −B|2(j) ≥
∑
j∈J

mj∑
l=1

|B′ −B|2j(l) .
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Since |B′ −B|(j) ≤
√∑d0

j′=1 |B′ −B|2(j′)/
√
j,

d0∑
j=1

λj
∣∣B′ −B∣∣

(j)
≤ 1

νgS(d0)

d0∑
j=1

λj√
j
‖V 1/2(B′ −B)‖F .

On the other hand, by the Cauchy-Schwartz inequality,

d∑
j=1

mj∑
l=1

κl
∣∣B′ −B∣∣

j(l)
≤
∑
j∈J

∣∣(B′ −B)
∣∣
j

mj∑
l=1

κl√
l

≤

√√√√√ d∑
j=1

(mj∑
l=1

κl√
l

)2
√√√√ d0∑

j′=1

|B′ −B|2(j′)

≤ 1

νgS(d0)

√√√√√ d∑
j=1

(mj∑
l=1

κl√
l

)2

‖V 1/2(B′ −B)‖F

Thus, for any B −B′ ∈ T (ρ∗), we found Z ∈ ∂‖ · ‖κ,λ(B) such that

tr
(
ZT
(
B′ −B

))
≥ ρ∗ − 2

1

νgS(d0)

 d0∑
j=1

λj√
j

+

√√√√√ d∑
j=1

(mj∑
l=1

κl√
l

)2
 ‖V 1/2(B′ −B)‖F .

Hence,

∆(ρ∗) = inf
B′′∈T (ρ∗)

sup
Z∈∂‖·‖κ,λ(B)

tr
(
ZTB′′

)

≥ ρ∗ − 2

 d0∑
j=1

λj√
j

+

√√√√√ d∑
j=1

(mj∑
l=1

κl√
l

)2

√
C0Rad(Bλ,κ)C

νgS(d0)
√
n

ρ∗.

and, therefore, for ρ∗ from (28), ∆(ρ∗) ≥ 4
5ρ
∗.

B.2 Proof of Lemma 10

To prove Lemma 10 we first bound the empirical Rademacher complexity R̂ad(Bκ,λ). As

a first step, we bound the empirical Rademacher complexity by the empirical Gaussian

complexity

Ĝ(Bκ,λ) = EG

{
1√
n

sup
B∈Bκ,λ

n∑
i=1

L∑
l=1

Gilβ
T
l Xi

∣∣∣X1 = x1, . . . ,Xn = xn

}
= EG

{
1√
n

sup
B∈Bκ,λ

tr(BTZ)

}
,

where Gil are i.i.d. N(0, 1) and Z = XTG. We have R̂ad(Bκ,λ) ≤
√

π
2 Ĝ(Bκ,λ) (see, e.g.,

Wainwright, 2019, Section 5.2).
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Define

δj =

√√√√ L∑
l=1

(∣∣Zj(l)∣∣−√ 2

π

7

1440
|X|2j κl

)2

+

, j = 1, . . . , d.

To bound Ĝ(Bκ,λ) we need the following two lemmas:

Lemma 12

Ĝ(Bκ,λ) ≤
√

2

π

7

1440
max

1≤j≤d
|X·j |2 + EG max

1≤j≤d

δ(j)

λj
.

Lemma 13 Let κL ≥
√

π
2

2880
7
√
n

. Then, conditionally on X,

EG max
1≤j≤d

δ(j)

λj
≤ C0 max

1≤j≤d


1√
n
|X|2j

√
2
∑L

j=1
1
l

(
Le
l

)l
e−C

2nlκ2l + 2 log
(
de
j

)
λj

 ,

where C =
√

2
π

7
2880 and C0 = 2 (1 +

√
π).

Lemmas 12 and 13 together imply

R̂ad(Bκ,λ) ≤

 7

1440

√
n+ C0

√
π

2
max

1≤j≤d

√
2
∑L

j=1
1
l

(
Le
l

)l
e−C

2nlκ2l + 2 log
(
de
j

)
λj

 max
1≤j≤d

1√
n
|X·j |2.

Hence,

Rad(Bκ,λ) = EX
{
R̂ad(Bκ,λ)

}

≤ 7

1440

√
n+ C0

√
π

2
max

1≤j≤d

√
8
∑L

j=1
1
l

(
Le
l

)l
e−C

2nlκ2l + 2 log
(
de
j

)
λj

.

Proof of Lemma 12

Define two unit balls w.r.t. || · ||κ,0 and || · ||0,λ: Bκ =
{
B :

∑d
j=1

∑L
l=1 κl

∣∣Bj(l)∣∣ ≤ 1
}

and

Bλ =
{
B :

∑d
j=1 λj |B|(j) ≤ 1

}
and note that Bκ,λ ⊆ Bκ ∩ Bλ.

For any matrix A ∈ Rd×L we have

EG sup
B∈Bκ,λ

〈Z,B〉 ≤ EG sup
B∈Bκ∩Bλ

〈Z,B〉 = EG sup
B∈Bκ∩Bλ

{〈A,B〉+ 〈Z −A,B〉}

≤ EG

{
sup

B∈Bκ∩Bλ
〈A,B〉+ sup

B∈Bκ∩Bλ
〈Z −A,B〉

}

≤ EG

{
sup
B∈Bκ

〈A,B〉+ sup
B∈Bλ

〈Z −A,B〉

}
.
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Similar to the results for the group Slope of Abramovich et al. (2021), supB∈Bκ 〈A,B〉 ≤

maxjl
|Aj(l)|
κl

and supB∈Bλ 〈Z −A,B〉 ≤ maxj
|Z−A|(j)

λj
. Thus,

E sup
B∈Bκ,λ

〈Z,B〉 ≤ E

{
max
j,l

∣∣Aj(l)∣∣
κl

+ max
j

|Z −A|(j)
λj

}
.

In particular, consider a matrixA such thatAj(l) = sign
(
Zj(l)

)
min

{∣∣Zj(l)∣∣ ,√ 2
π

7
1440 |X·j |2κl

}
.

We then have

E sup
B∈Bκ,λ

〈Z,B〉 ≤
√

2

π

7

1440
max

1≤j≤d
|X·j |2 + E


max

1≤j≤d

(√∑L
l=1

(∣∣Zj(l)∣∣−√ 2
π

7
1440 |X·j |2 κl

)2

+

)
(j)

λj


.

Proof of Lemma 13

Denoting C = 1√
2π

7
1440 , we have

EG


( ∣∣Zj(l)∣∣

1√
n
|X·j |2

− 2C
√
nκl

)2

+

 =

∫ ∞
0

2sP

( ∣∣Zj(l)∣∣
1√
n
|X·j |2

− 2C
√
nκl

)2

+

> s2

 ds

≤
∫ ∞

0
2sP

( ∣∣Zj(l)∣∣
1√
n
|X·j |2

> s+ 2C
√
nκl

)
ds

≤
∫ ∞

0
2s

(
L

l

)
P

(
|Zjl|

1√
n
|X·j |2

> s+ 2C
√
nκl

)l
ds.

(31)

Note that conditionally on X,
Zjl

1√
n
|X·j |2

is an N (0, 1) Gaussian random variable and, there-

fore, (31) yields

EG


( ∣∣Zj(l)∣∣

1√
n
|X·j |2

− 2C
√
nκl

)2

+

 ≤
∫ ∞

0
2l+1s

(
L

l

)
e−

l(s+2C
√
nκl)

2

2 ds

≤
∫ ∞

0
2l+1 1

l

(
L

l

)
l
(
s+ 2C

√
nκl
)
e−

l(s+2C
√
nκl)

2

2 ds

= 2l+1 1

l

(
L

l

)
e−2C2nlκ2l ≤ 2l+1 1

l

(
Le

l

)l
e−2C2nlκ2l .

(32)

For κl ≥ 1
C
√
n

, (32) implies

E
{(∣∣Zj(l)∣∣− 2C|X·j |2κl

)2
+

}
≤ 2

1

l

(
Le

l

)l
e−C

2nlκ2l
1

n
|X·j |22
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Hence, by Jensen inequality,

E

√√√√ L∑
l=1

(∣∣Zj(l)∣∣− 2C|X·j |2κl
)2

+
≤

√√√√E

[
L∑
l=1

(∣∣Zj(l)∣∣− 2C|X·j |2κl
)2

+

]

≤

√√√√2
L∑
j=1

1

l

(
Le

l

)l
e−C

2nlκ2l
1√
n
|X·j |2.

Let

Mj =

√√√√2

L∑
j=1

1

l

(
Le

l

)l
e−C

2nlκ2l .

One can verify that the function fj(z) =
√∑L

l=1

(
|zj(l)| − 2C|X·j |2κl

)2
+

: RL → R is

a 1-Lipschitz function. Recall that Zjl ∼ N (0, 1√
n
|X·j |2) and, therefore, by the Tsirelson-

Ibragimov-Sudakov inequality (Boucheron et al., 2013, Theorem 5.6), for any s, u ≥ 1,

P

(
fj(Z) > s

1√
n
|X·j |2

√
2M2

j + 2u

)
≤ P

(
fj(Z) >

1√
n
|X·j |2Mj +

1√
n
|X·j |2s

√
u

)
≤P

(
fj(Z) > Efj(Z) +

1√
n
|X·j |2s

√
u

)
≤ e−

s2

2
u.

Thus, for s ≥ 2, we have,

P

f(j)(Z)

λj
> s

1√
n
|X·j |2

√
2M2

j + 2 log (de/j)

λj


≤
(
d

j

)
P

fj(Z)

λj
> s

1√
n
|X·j |2

√
2M2

j + 2 log (de/j)

λj

j

≤
(
d

j

)
e−j

s2

2
log(de/j) ≤

(
de

j

)−j( s2
2
−1
)
≤
(
de

j

)−j s2
4

,

and applying the union bound,

P

max
j

f(j)(Z)

λj
> smax

j

1√
n
|X·j |2

√
2M2

j + 2 log (de/j)

λj

 ≤ d∑
j=1

(
de

j

)−j s2
4

≤
d∑
j=1

e−j
s2

4

≤ e−
s2

4

1− e−
s2

4

≤ 2e−
s2

4 ,

(33)
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Finally, (33) implies

E


max1≤j≤d

δ(j)
λj

maxdj=1
1√
n
|X·j |2

√
2
∑L
j=1

1
l (
Le
l )

l
e
−C2nlκ2

l +2 log
(
de
j

)
λj


=

∫ ∞
0

P

max
j

f(j)(Z)

λj
> smax

j

1√
n
|X·j |2

√
2M2

j + 2 log (de/j)

λj


≤ 2

(
1 +
√
π
)
.

B.3 Proof of Lemma 11

Let U ∈ RL×(L−1) be a matrix with orthonormal columns such that UUT = I− 1
L11T . One

can easily verify that B = BUUT . Recall that

Rad(Bλ) = EXEΣ

[
1√
n

sup
B∈Bλ

tr(ΣUUTBTXT )

]
= EXEΣ

[
1√
n

sup
B∈Bλ

tr(UTBTK)

]
,

where K = XTΣU ∈ Rd×(L−1). By duality of Schatten norms,

1√
n

sup
B∈Bλ

tr(UTBTK) =
1

λ

1√
n

sup
‖B‖∗≤1

tr(UTBTK) =
1

λ

1√
n
‖XTΣU‖2.

Denote v(X) = ‖ 1√
n
X‖2 and ω(X) = ‖ 1√

n
X‖F ≤ v(X)

√
d. By Theorem 3.2 of

Rudelson and Vershynin (2013), conditionally on X, for any s, t > 1

P

(
1√
n
‖XTΣU‖2 > C

(
sω(X) + t

√
L− 1 v(X)

) ∣∣∣X) ≤ 2 exp

(
−ω

2(X)

v2(X)
s2 − (L− 1)t2

)
,

(34)

where C > 0 is given in their theorem.

Assume first that v(X)
√
L− 1 ≥ ω(X). Take s = v(X)

ω(X)

√
L− 1t > 1 in (34) to get

P

(
1√
n
‖XTΣ‖2 > 2Ct

√
L− 1 v(X)

)
≤ 2 exp

(
−2t2(L− 1)

)
.

Setting u = 2Ct
√
L− 1 v(X) yields

P

(
1√
n
‖XTΣ‖2 > u

∣∣∣X) ≤ 2 exp

(
− u2

2C2v(X)2

)
,

for any u > 2C
√
L− 1v(X) and, therefore, the empirical Rademacher complexity

R̂ad(Bλ) ≤ 1

λ

(
2C
√
L− 1v(X) + 2

∫ ∞
2C
√
L−1v(X)

e
− u2

2C2v(X)2 du

)
≤ C 1

λ

√
L− 1v(X).
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Similarly, for v(X)
√
L− 1 < ω(X), take t = ω(X)

v(X)
√
L−1

s > 1 in (34) and u = 2Csω(X)

to get

P

(
1√
n
‖XTΣ‖2 > u

∣∣∣X) ≤ 2 exp

(
− u2

2C2v(X)2

)
,

for any u > 2Cω(X) and, therefore,

R̂ad(Bλ) ≤ C 1

λ
ω(X) ≤ C 1

λ
v(X)

√
d.

Combining both cases we have

R̂ad(Bλ) ≤ C 1

λ
v(X)(

√
L− 1 +

√
d). (35)

To complete the proof of the lemma apply the results of Vershynin (2012, Section 5.4.1) for

sub-Gaussian matrices with independent rows to get

EXv(X) ≤
√
EXv2(X) ≤ C

√
τ1(V ). (36)

Appendix C. Proof of Theorem 5

Consider the class C̃L(r0) of r0-globally sparse linear L-class classifiers from Section 3.1 but

with the known subset of r0 significant features. Evidently, C̃L(r0) ⊂ C∗L(r0). Apply now

the results of Abramovich et al. (2021, Theorem 2) on the lower bounds for global row-wise

sparse classification to get

inf
η̃

sup
η∗∈C∗L(r0), PX

E(η̃, η∗) ≥ inf
η̃

sup
η∗∈C̃L(r0), PX

E(η̃, η∗) ≥ C
√
r0(L− 1)

n
. (37)

On the other hand, consider r0-class classification, where all d features are significant

(d0 = d). It is obvious that Cr0(d) ⊂ C∗r0(r0) and that r0-class classification cannot be harder

than the L-class one. Thus, exploiting again Theorem 2 of Abramovich et al. (2021) we

have

inf
η̃

sup
η∗∈C∗L(r0), PX

E(η̃, η∗) ≥ inf
η̃

sup
η∗∈C∗r0 (r0), PX

E(η̃, η∗) ≥ inf
η̃

sup
η∗∈Cr0 (d), PX

E(η̃, η∗) ≥ C
√
r0d

n
.

(38)

Combining (37) and (38) completes the proof of the theorem.

Appendix D. Sparse group Slope algorithm

The penalized MLE minimization problem in (12) involves a sum of a convex smooth log-

likelihood and a convex but non-smooth penalty consisting of two terms. A common ap-

proach to solve such optimization problems is by the proximal gradient method (e.g., Beck,
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2017). A general proximal operator of a given convex function f is defined as

proxf (a) = arg min
b

{
1

2
‖a− b‖2 + f(b)

}
.

For the setup at hand consider the proximal operator

prox‖·‖κ,λ(A) = arg min
B

{
1

2
‖A−B‖2F + ‖B‖κ,λ

}
, (39)

where recall that ‖B‖κ,λ =
∑d

j=1 λj |B|(j) +
∑d

j=1

∑L
l=1 κl|B|j(l) = ‖B‖λ +

∑d
j=1 ‖Bj·‖κ.

There exist the efficient proximal gradient descent algorithms for computing proximal

operators prox‖·‖κ and prox‖·‖λ for ‖·‖κ and ‖·‖λ separately (see respectively Bogdan et al.,

2015; Brzyski et al., 2019). We now show that applying prox‖·‖κ and prox‖·‖λ consecutively

results in prox‖·‖κ,λ as depicted by Algorithm 1:

Algorithm 1: prox‖·‖κ,λ(A)

for j → 1 . . . d do

Uj· = prox‖·‖κ(Aj·)

end

B ← prox‖·‖λ(U)

The proof relies on the second prox theorem (Beck, 2017, Theorem 6.39) and the fol-

lowing general lemma:

Lemma 14 Assume that for all a, ∂g(proxf (a)) ⊇ ∂g(a), then for all b, proxf+g(b) =

proxf (proxg(b)).

Proof For a given b, let a = proxg(b) and z = proxf (a). By the second prox theorem,

b− a ∈ ∂g(a) and a− z ∈ ∂f(z). By the condition, ∂g(z) ⊇ ∂g(a), and therefore,

b− z = b− a+ a− z ∈ ∂f(z) + ∂g(z) = ∂(f + g)(z)

which implies by the second prox theorem that z = proxf+g(b).

Applying Lemma 14 for g(A) =
∑d

j=1 ‖Aj,·‖κ and f(A) = ‖A‖λ relies on the following

lemma:

Lemma 15 For Z,A ∈ Rd×L such that Z ∈ ∂‖ · ‖λ(A) and for any j ∈ {1, . . . , d}, there

exists cj ≥ 0 such that Zj· = cjAj·.
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Proof Let Z ∈ ∂‖ · ‖λ(A). Thus,

Z ∈ argmax
‖Z‖∗λ≤1

tr(ZTA) = argmax
‖Z‖∗λ≤1

d∑
j=1

ZTj·Aj· ,

where ‖ · ‖∗λ is the dual norm. Since the norm ‖ · ‖λ is invariant to rotation of the rows,

so does its dual norm ‖ · ‖∗λ because we can always rotate the rows of the norming matrix.

Thus, the maximum above is when Zj· = cjAj· for some cj ≥ 0.

Let Z = prox‖·‖λ(A). By the second prox theorem we have A− Z ∈ ∂‖ · ‖λ(Z), and by

Lemma 15, Aj − Zj = cjZj for some cj > 0. Thus, Zj = 1
1+cj

Aj .

Let V ∈ ∂(
∑d

j=1 ‖eTj · ‖κ)(A), that is, Vj· ∈ ∂‖ · ‖κ(Aj·). By the definition of the

subgradient, for any u ∈ RL,

‖Aj·‖κ + V T
j· (u−Aj·) ≤ ‖u‖κ

Let u′ ∈ RL. Then,

‖Zj·‖κ + V T
j· (u

′ − Zj·) =
1

1 + cj
‖Aj·‖κ +

1

1 + cj
V T
j· ((1 + cj)u

′ −Aj·)

≤ 1

1 + cj
‖(1 + cj)u

′‖κ = ‖u′‖κ

and, therefore, V T
j· (u

′ − Zj·) ≤ ‖u′‖κ − ‖Zj·‖κ implying Vj· ∈ ∂‖ · ‖κ(Zj·). Hence, V ∈
∂(
∑d

j=1 ‖eTj · ‖κ)(Z) and the condition for Lemma 14 holds, i.e.

∂‖ · ‖κ(prox‖·‖λ(A)) ⊇ ∂‖ · ‖κ(A).
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Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration Inequalities: A

Nonasymptotic Theory of Independence. OUP Oxford, 2013.

Damian Brzyski, Alexej Gossmann, Weijie Su, and Ma lgorzata Bogdan. Group slope–

adaptive selection of groups of predictors. Journal of the American Statistical Association,

114(525):419–433, 2019.

Florentina Bunea, Yiyuan She, and Marten H. Wegkamp. Optimal selection of reduced

rank estimators of high-dimensional matrices. The Annals of Statistics, 39(2):1282–1309,

2011.

32



Generalization error bounds

Emmanuel J. Candes and Yaniv Plan. Matrix completion with noise. Proceedings of the

IEEE, 98(6):925–936, 2010.

Di-Rong Chen and Tao Sun. Consistency of multiclass empirical risk minimization methods

based on convex loss. Journal of Machine Learning Research, 7(86):2435–2447, 2006.

Le-Yu Chen and Sokbae Lee. Binary classification with covariate selection through `0-

penalised empirical risk minimisation. The Econometrics Journal, 24(1):103–120, 2021.

Amit Daniely, Sivan Sabato, and Shai Shwartz. Multiclass learning approaches: a theoretical

comparison with implications. In Advances in Neural Information Processing Systems,

volume 25. Curran Associates, Inc., 2012.

Amit Daniely, Sivan Sabato, Shai Ben-David, and Shai Shalev-Shwartz. Multiclass learn-

ability and the ERM principle. Journal of Machine Learning Research, 16(72):2377–2404,

2015.

Jianqing Fan and Yingying Fan. High-dimensional classification using features annealed

independence rules. The Annals of Statistics, 36(6):2605 – 2637, 2008.

Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for generalized

linear models via coordinate descent. Journal of Statistical Software, 33(1):1–22, 2010.

Vladimir Koltchinskii and Dmitry Panchenko. Empirical margin distributions and bounding

the generalization error of combined classifiers. The Annals of Statistics, 30(1):1–50, 2002.

Vladimir Koltchinskii, Karim Lounici, and Alexander B. Tsybakov. Nuclear-norm penal-

ization and optimal rates for noisy low-rank matrix completion. The Annals of Statistics,

39(5):2302–2329, 2011.
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