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Abstract

Many asymptotically minimax procedures for function estimation often rely on somewhat
arbitrary and restrictive assumptions such as isotropy or spatial homogeneity. This work
enhances the theoretical understanding of Bayesian additive regression trees under substan-
tially relaxed smoothness assumptions. We provide a comprehensive study of asymptotic
optimality and posterior contraction of Bayesian forests when the regression function has
anisotropic smoothness that possibly varies over the function domain. The regression func-
tion can also be possibly discontinuous. We introduce a new class of sparse piecewise
heterogeneous anisotropic Hölder functions and derive their minimax lower bound of esti-
mation in high-dimensional scenarios under the L2-loss. We then find that the Bayesian
tree priors, coupled with a Dirichlet subset selection prior for sparse estimation in high-
dimensional scenarios, adapt to unknown heterogeneous smoothness, discontinuity, and
sparsity. These results show that Bayesian forests are uniquely suited for more general es-
timation problems that would render other default machine learning tools, such as Gaussian
processes, suboptimal. Our numerical study shows that Bayesian forests often outperform
other competitors such as random forests and deep neural networks, which are believed to
work well for discontinuous or complicated smooth functions. Beyond nonparametric re-
gression, we also examined posterior contraction of Bayesian forests for density estimation
and binary classification using the technique developed in this study.

Keywords: Adaptive Bayesian procedure, Bayesian CART, Bayesian forests, High-
dimensional inference, Posterior contraction, Sparsity priors

1. Introduction

1.1 Motivation

Many of the existing asymptotic minimaxity results for estimating regression functions are
predicated on the assumption that certain smoothness conditions hold, which can be rarely
satisfied/verified when confronted with real data. This creates a disconnect between theory
and practice, limiting the scope of many theoretical results. For example, in nonparametric
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regression involving multiple predictors, the assumption of isotropic smoothness can be
unnecessarily restrictive. A more realistic scenario is when the function exerts different
degrees of smoothness in different directions and areas, with possible discontinuities that
allow further flexibility. This study is motivated by the desire to evaluate the theoretical
performance of Bayesian forests, one of the workhorses of Bayesian machine learning, in
such broad scenarios.

Bayesian trees and their ensembles have achieved notable empirical success in statistics
and machine learning (Chipman et al., 1998; Denison et al., 1998; Chipman et al., 2010).
Relative to other Bayesian machine learning alternatives, tree-based methods require com-
paratively less tuning and can be scaled to higher dimensions (Lakshminarayanan et al.,
2013; Bleich et al., 2014; He et al., 2019). The popularity of Bayesian forests, such as
Bayesian additive regression trees (BART), (Chipman et al., 2010) is growing rapidly in
many areas including causal inference (Hill, 2011; Hahn et al., 2020), mean-variance func-
tion estimation (Pratola et al., 2020), smooth function estimation (Linero and Yang, 2018),
variable selection (Bleich et al., 2014; Linero, 2018), interaction detection (Du and Linero,
2019), survival analysis (Sparapani et al., 2016), time series (Taddy et al., 2011), count and
categorical data analysis (Murray, 2021), and density regression (Orlandi et al., 2021; Li
et al., 2022). For comprehensive overviews and surveys, refer to Linero (2017), Tan and
Roy (2019), and Hill et al. (2020).

Despite remarkable success in empirical studies, the theoretical properties of Bayesian
forests remained unavailable until the emergence of recent literature (Ročková and van der
Pas, 2020; Linero and Yang, 2018; Ročková and Saha, 2019; Castillo and Ročková, 2021).
Although these pioneering findings divulge why tree-based methods perform well, they are
limited to isotropic regression function surfaces, which exhibit the same level of smoothness
in every direction. Isotropy is an archetypal assumption in theoretical studies, but it can be
restrictive in real-world applications. This assumption is particularly unattractive in higher
dimensions wherein the function can behave very poorly in certain directions.

However, empirical evidence suggests that Bayesian forests are expected to adapt to
more intricate smoothness situations. For example, Figure 1 shows that BART successfully
adapts to a piecewise smooth function or a Doppler-type function. The successful perfor-
mance beyond isotropy is attributable to at least three reasons: (i) tree methods are based
on top-down recursive partitioning, wherein splits occur more often in areas where the func-
tion is locally uneven or bumpy, making the procedure spatially adaptive; (ii) the choice
of coordinates for the split is data-driven, dividing the domain more often in directions
in which the function is less smooth; and (iii) tree-based learners are piecewise constant
and, as such, are expected to adapt to discontinuous functions by detecting smoothness
boundaries and jumps. These considerations naturally create an expectation that Bayesian
forests achieve optimal estimation properties in more complex function classes without any
prior modification.

1.2 Our Contribution

The main goal of this study is to examine optimality and posterior contraction of Bayesian
forests under relaxed smoothness assumptions. We introduce a class of functions the do-
main of which has been cleaved into hyper-rectangles, where each rectangular piece has its
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(a) Piecewise smooth function estimation

(b) Doppler-type function estimation

Figure 1: Function estimation in nonparametric regression with complicated smoothness
using Bayesian CART and BART.

own anisotropic smoothness (with the same harmonic mean). We allow for possible dis-
continuities at the boundaries of the pieces. We call this new class of functions piecewise
heterogeneous anisotropic functions (see Definitions 1–2 in Section 2.2). We then estab-
lish an approximation theory for this general class, which blends anisotropy with spatial
inhomogeneity and which, to the best of our knowledge, has not yet been pursued in the
literature. Our results complement the body of existing work on piecewise isotropic smooth-
ness classes (e.g., Candès and Donoho, 2000, 2004; Le Pennec and Mallat, 2005; Petersen and
Voigtlaender, 2018; Imaizumi and Fukumizu, 2019). Our function class subsumes the usual
(homogeneous) anisotropic space for which adaptive procedures exist with optimal conver-
gence rate guarantees, including the dyadic classification and regression trees (CART) of
Donoho (1997). We refer to Barron et al. (1999), Neumann and von Sachs (1997), Hoffman
and Lepski (2002), Lepski (2015), and references therein for a more complete list. There are
also adaptive Bayesian procedures for anisotropic function estimation with desired asymp-
totic properties (e.g., Bhattacharya et al., 2014; Shen and Ghosal, 2015). There appear
to be no theoretical properties for adaptation in the more general case of piecewise het-
erogeneous anisotropic smoothness. Indeed, existing theoretical studies for discontinuous
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piecewise smooth classes impose the isotropy assumption (e.g., Candès and Donoho, 2000,
2004; Le Pennec and Mallat, 2005; Petersen and Voigtlaender, 2018; Imaizumi and Fuku-
mizu, 2019) and the convergence rates in spatially adaptive estimation depend on global
smoothness parameters (e.g., Pintore et al., 2006; Liu and Guo, 2010; Wang et al., 2013;
Tibshirani, 2014). In this respect, our study appears to be the first theoretical investigation
of piecewise anisotropic function classes.

The majority of frequentist/Bayesian methods for anisotropic function estimation rely
on multiple scaling (bandwidth) parameters, one for each direction. As noted by Bhat-
tacharya et al. (2014), selecting optimal scaling parameters in a frequentist way can be
computationally difficult, as adaptation in anisotropic spaces presents several challenges
(Lepski and Levit, 1999). The Bayesian paradigm provides an effective remedy by assign-
ing priors over these unknown parameters. One such example is the generalized Gaussian
process priors or spline basis representations (Bhattacharya et al., 2014; Shen and Ghosal,
2015). Although these priors enjoy elegant theoretical guarantees in typical anisotropic
spaces, whether they can adapt to piecewise heterogeneous anisotropic spaces without sub-
stantial modification remains unclear. Contrariwise, Bayesian forests are expected to work
in these more complex scenarios without any additional scaling parameters. The approx-
imability is controlled merely by the depth of a tree and the orientation of its branches,
where no prior modifications should be required to achieve optimal performance. Moreover,
computation with Gaussian processes can be quite costly (Banerjee et al., 2013; Liu et al.,
2020), while Bayesian forests are more scalable and faster than their competitors.

In the context of regression or classification, Bayesian forests often rely on observed co-
variate values for splits in recursive partitioning (Chipman et al., 1998; Denison et al., 1998;
Chipman et al., 2010). This facilitates theoretical investigation under the fixed regression
design. In the context of nonparametric Gaussian regression, Ročková and van der Pas
(2020) and Ročková and Saha (2019) investigated posterior contraction for BART based on
this conventional manner of partitioning, whereas the dyadic CART (Donoho, 1997) splits
at dyadic midpoints of the domain and can achieve optimal performance as well (Castillo
and Ročková, 2021). We generalize the dyadic CART by introducing the notion of split-nets,
which form a collection of candidate split-points that are not necessarily observed covariate
values and/or dyadic midpoints. Our findings show that optimality can be achieved with
split-nets that are sufficiently evenly distributed. By allowing the split-points to occur be-
yond observed values, we show that Bayesian forests enjoy the general recipe of the posterior
contraction theory (Ghosal et al., 2000; Ghosal and van der Vaart, 2007), which applies to
other statistical setups such as density estimation or regression/classification with random
design.

Asymptotic minimaxity is often used to evaluate the optimality of statistical procedures.
Yang and Tokdar (2015) derived the minimax rates of sparse function estimation in high
dimensions, but their results are restricted to the isotropic cases. In fixed (low) dimensions,
minimax rates over anisotropic function spaces have been extensively studied in the litera-
ture (Ibragimov and Hasminskii, 1981; Nussbaum, 1985; Birgé, 1986). If the true function
only depends on a subset of coordinates, the minimax rate is improved and determined by
the smoothness parameters of active coordinates (Hoffman and Lepski, 2002). However, to
the best of our knowledge, there are no available studies on minimax rates over piecewise
anisotropic function spaces like ours. While there exist results on piecewise isotropic classes
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(e.g., Imaizumi and Fukumizu, 2019), even the simpler fixed-dimensional setup without
sparsity has not been studied for piecewise anisotropic classes. Focusing on Gaussian non-
parametric regression, we derive the minimax lower bound for our piecewise heterogeneous
anisotropic spaces under the high-dimensional scenario. This result verifies the finding that
our obtained contraction rates for Bayesian forests are indeed minimax-optimal up to a
logarithmic factor.

We summarize the contribution of this study as follows.

• Approximation theory: The true function should be approximable by tree-based
learners to establish the optimal rate of posterior contraction. Approximation theory
for piecewise heterogeneous anisotropic classes is much more intricate when there
are discontinuities and heterogeneity. We establish such approximation theory here
under suitable regularity conditions (with smoothness up to 1 owing to the limitation
of piecewise constant learners).

• Posterior contraction: For piecewise heterogeneous anisotropic functions, posterior
contraction of Bayesian forests is established under the high-dimensional setup with
a Dirichlet sparse prior. The derived rates consist of the risk of variable selection
uncertainty and the risk of function estimation, similar to isotropic cases (Yang and
Tokdar, 2015; Ročková and van der Pas, 2020).

• Minimax optimality: Minimax rates in high-dimensional spaces have been unavail-
able even for simple anisotropic classes. For Gaussian nonparametric regression with
high-dimensional inputs, we formally derive the minimax lower bound over piecewise
heterogeneous anisotropic spaces. This certifies that our obtained contraction rate for
Bayesian forests is optimal up to a logarithmic factor.

• Applications beyond regression: Unlike the asymptotic studies of the traditional
tree priors (Ročková and van der Pas, 2020; Ročková and Saha, 2019), our findings
show that splits for recursive partitioning do not necessarily have to be at observed
covariate values. This implies that our technique of proofs extends beyond fixed-
design regression to other estimation problems such as density estimation or regres-
sion/classification with random design.

1.3 Preview and Outline of the Paper

The main results of this study begin to appear in Section 4.2 after excessive preliminary
steps. Before going into the preparatory phase, here we provide a preview of our main
results. Let us focus on a fixed design regression setup,

Yi = f0(xi) + εi, εi ∼ N(0, σ2
0), i = 1, . . . , n, (1)

with a response Yi ∈ R and a covariate xi ∈ [0, 1]p, where f0 : [0, 1]p → R and σ2
0 < ∞.

Assume that f0 depends only on d variables among p coordinates. Assume further that f0

is a piecewise heterogeneous anisotropic function with a global smoothness harmonic mean
ᾱ ∈ (0, 1] (see Definitions 1–3 for a more precise definition). Assigning the BART prior on
f0, the posterior contraction rate is obtained as

√
(d log p)/n+ (log n)cn−ᾱ/(2ᾱ+d) for some

c > 0 (Theorem 2). This rate is minimax-optimal up to a log factor (Theorem 3). The
same contraction rates are also achieved in other statistical setups (Theorems 4–6). For the
additive true function, the rate has an additive form (Theorems 7).
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The rest of this paper is organized as follows. In Section 2, we describe the background
of function spaces and Bayesian forests. In high-dimensional scenarios, the tree priors on
functions are specified in Section 3. In Section 4, we illuminate the approximation theory
for our function spaces. In Section 5, we study posterior contraction of Bayesian forests and
their minimax optimality in nonparametric regression with a fixed design. The section also
includes a numerical study that shows the outstanding performance of BART over other
methods such as random forests and deep neural networks, which are believed to work
well for discontinuous or complicated smooth functions. Posterior contraction properties in
other statistical models such as density estimation and binary classification are investigated
in Section 6. An example of additive regression is also considered in Section 6 to emphasize
a theoretical advantage of Bayesian forests over single tree models. Section 7 concludes. All
technical proofs are presented in Appendix.

2. Preliminaries

2.1 Notation and Terminology

Although the main focus of this study is BART for regression in (1), we work with a general
statistical experiment Pf indexed by a measurable function f : [0, 1]p → R for some p > 0,
which will be modeled by Bayesian forests. This allows us to incorporate other statistical
setups, such as density estimation, into our theoretical framework. Each statistical model
we are dealing with will be specified for our examples in Sections 5–6. We observe n
observations with the true function denoted by f0 and assume that p is possibly increasing
with the sample size n. The notation E0 denotes the expectation operator under the true
model with f0.

For sequences an and bn, we write an . bn (or bn & an equivalently) if an ≤ Cbn
for some constant C > 0, and an � bn implies an . bn . an. We also write an � bn
(or bn � an equivalently) if an/bn → 0 as n → ∞. For a subspace E of the Euclidean
space, C(E) denotes a class of continuous functions f : E → R. For a given measure
µ and a measurable function f , we denote by ‖f‖v,µ = (

∫
|f |vdµ)1/v the Lv(µ)-norm,

1 ≤ v < ∞. We denote by L2(µ) the linear space of real valued functions equipped with

inner product 〈f, g〉µ =
∫
fgdµ and norm ‖f‖2,µ = 〈f, f〉1/2µ . For the sake of brevity, with

the Lebesgue measure on a unit hypercube, L2 denotes the L2 space and ‖f‖v denotes the
Lv-norm. In particular, ‖f‖∞ denotes the L∞-norm of a function f defined by the essential
supremum, i.e., ‖f‖∞ = inf{C ≥ 0 : |f(x)| ≤ C for almost every x}.1 The support of
a measure µ is denoted by supp(µ). For a given vector u, the notations ‖u‖v and ‖u‖∞
represent the `v-norms, 1 ≤ v <∞, and the maximum-norm, respectively. For a semimetric
space (F , ρ) endowed with a semimetric ρ, the expressions D(ε,F , ρ) and N(ε,F , ρ) are
ε-packing and ε-covering numbers of F , respectively. For a subset S ⊆ {1, . . . , p} and
x = (x1, . . . , xp)

> ∈ Rp, let xS = (xj , j ∈ S) ∈ R|S| be the indices chosen by S.

A q-dimensional hyper-rectangle Ψ ⊆ [0, 1]q with any q > 0 is simply called a box.
Precisely, a box is defined as the Cartesian product of open, closed, or semi-closed intervals;

1. We use the L∞-norm to measure the difference of discontinuous functions while ignoring possible dis-
agreement at jump surfaces. The L∞-norm is reduced to the supremum-norm for continuous functions
if the domain is not a null set.
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therefore, a box can be open, closed, or neither (e.g., [a1, b1) × (a2, b2]) depending on the
context. A partition Y = {Ψ1, . . . ,ΨJ} of [0, 1]q, consisting of J disjoint boxes Ψr ⊆ [0, 1]q,
r = 1, . . . , J , is called a box partition. For the Cartesian product of q subsets of R, i.e.,
E ⊆ Rq, we denote the jth projection mapping of E by [E]j = {xj ∈ R : (x1, . . . , xq)

> ∈ E}.
The length and interior of an interval I ∈ R is denoted by len(I) and int(I), respectively.

2.2 Heterogeneous Anisotropic Function Spaces with Sparsity

In this subsection, we introduce our function spaces with heterogeneous smoothness and
sparsity in high dimensions. The first assumption is that the true regression function
f0 : [0, 1]p → R is d-sparse, i.e., it depends on a small subset of d variables. This means
that there exist a function h0 : [0, 1]d → R and a subset S0 ⊆ {1, . . . , p} with |S0| = d, such
that f0(x) = h0(xS0) for any x ∈ [0, 1]p. For example, suppose the true function is defined
as f0(x1, x2) = sin(x1) on [0, 1]2 with p = 2. This function can be completely expressed by
the one-dimensional function h0(x1) = sin(x1) on [0, 1], and hence is 1-sparse by definition.

For now, we focus on the function h0 on the low-dimensional domain [0, 1]d. The com-
plete characterization of f0 will soon be discussed. We assume that [0, 1]d partitioned into
many boxes and h0 is Hölder continuous with possibly different smoothness in each box.
The smoothness inside each box is anisotropic, i.e., different for each coordinate. Focusing
on a single box, we first define an anisotropic Hölder space in the usual sense.

Definition 1 (Anisotropic Hölder space). For smoothness α = (α1, . . . , αd)
> ∈ (0, 1]d, a

box Ψ ⊆ [0, 1]d, and a Hölder coefficient λ < ∞, we denote by Hα,dλ (Ψ) an anisotropic
α-Hölder space on Ψ, i.e.,

Hα,dλ (Ψ) =

h : Ψ→ R; |h(x)− h(y)| ≤ λ
d∑
j=1

|xj − yj |αj , x, y ∈ Ψ

 .

Note that the definition above imposes a restriction α ∈ (0, 1]d. Although one can
generalize this definition to smoother classes (e.g. Bhattacharya et al., 2014), we do not
consider such extensions here, as step function estimators cannot be optimal in classes
smoother than Lipschitz.

As discussed above, our targeted function class is not necessarily globally anisotropic
over the entire domain [0, 1]d. Instead, we assume that h0 has different anisotropic smooth-
ness on R ≥ 1 disjoint boxes of the domain with the same harmonic mean (the same
harmonic mean is an important assumption for obtaining the minimax lower bound in
Section 5.2). To be more precise, we define a set of R-tuples for smoothness parameters,

AR,dᾱ =

(α1, . . . , αR) : αr = (αr1, . . . , αrd)
> ∈ (0, 1]d, ᾱ−1 = d−1

d∑
j=1

α−1
rj , r = 1, . . . , R

 .

We assume that the anisotropic smoothness of h0, the nonsparse proxy of f0, is specified
on an unknown underlying box partition X0 = {Ξ1, . . . ,ΞR} of [0, 1]d with R ≥ 1 boxes. If
R = 1, we write X0 = {[0, 1]d} with Ξ1 = [0, 1]d. Note that each Ξr can be open, closed,
or neither. The function space is formed by agglomerating anisotropic Hölder spaces for all
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Figure 2: A graphical illustration of a piecewise heterogeneous anisotropic Hölder space
with five boxes. Each piece has its own smoothness parameter, but the harmonic mean is
assumed to be the same.

boxes. We emphasize that the resulting function space is not necessarily continuous, which
provides a lot more flexibility relative to the conventional Hölderian class. Considering that
smoothness parameters can vary across boxes and functions can be discontinuous at their
boundaries, we call this new class a piecewise heterogeneous anisotropic Hölder space. We
define these functions formally below.

Definition 2 (Piecewise heterogeneous anisotropic Hölder space). Consider a smoothness

parameter Aᾱ = (αr)
R
r=1 ∈ A

R,d
ᾱ for some ᾱ ∈ (0, 1] and a box partition Y = {Ψ1, . . . ,ΨR}

of [0, 1]d with boxes Ψr ⊆ [0, 1]d.2 We define a piecewise heterogeneous anisotropic Hölder
space as

HAᾱ,dλ (Y) =
{
h : [0, 1]d → R; h|Ψr ∈ H

αr,d
λ (Ψr), r = 1, . . . , R

}
.

A graphical illustration of the piecewise heterogeneous anisotropic Hölder spaces is given
in Figure 2. Clearly, Definition 2 subsumes the anisotropic Hölder space in Definition 1
with R = 1. According to Definition 2, any h ∈ HAᾱ,dλ (Y) is anisotropic on each Ψr with
a smoothness parameter αr ∈ (0, 1]d and the same harmonic mean ᾱ for all Ψr. We again
emphasize that discontinuities are allowed at the boundaries of boxes Ψr, r = 1, . . . , R.

Definition 2 does not impose a specific structure on the partition Y other than a box
partition. However, we will later see that, depending on the approximation metric, our
approximation theory will require X0 to be a tree-based recursive structure defined in the
next section (see Figure 4 below). Nonetheless, as every box partition can be extended to
the required form by adding more splits, this discrepancy can be addressed, but it may harm
our posterior contraction rate. We refer the reader to Section 4.1.1 for more discussion.

Remark 1. We compare Definition 2 with piecewise smooth function spaces widely inves-
tigated in the literature. Approximation rates for piecewise smooth functions with smooth

2. For any q > 1, we write Y = {Ψr}r to denote an arbitrary box partition of [0, 1]q with boxes Ψr ⊆ [0, 1]q,
r = 1, 2, . . . , and write Ψ ⊆ [0, 1]q to denote an arbitrary q-dimensional box.
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jump curves/surfaces have been extensively studied in two dimensions (e.g., Candès and
Donoho, 2000, 2004; Guo and Labate, 2007) as well as in higher dimensions (Chandrasekaran
et al., 2008; Petersen and Voigtlaender, 2018; Imaizumi and Fukumizu, 2019). All these
studies deal with smooth functions with smooth jump curves/surfaces under the isotropy
assumption. contrariwise, our definition deals with different anisotropic smoothness param-
eters for the boxes in a box partition, and hence seems to offer some flexibility. Our jump
surfaces, however, are restricted to hyper-planes parallel to the coordinates.

Remark 2. We believe that our function class is not a subset of a popular one, but is orig-
inally defined in our work. For example, anisotropic and mixed smooth Besov spaces are
highly flexible classes that render discontinuity and spatially varying smoothness (Suzuki,
2019; Suzuki and Nitanda, 2021), but they do not account for our piecewise heterogeneous
anisotropic smoothness in Definition 2. In our construction, the axis-aligned box partition
appears to be an important assumption in obtaining the optimal posterior contraction rate
using our theory. Later we will see that our contraction rate depends on R, which is trans-
lated as the number of binary splits required to approximate the true X∗0 (see Section 4.1.1).
If the partition is not axis-aligned, infinitely many splits are needed, which will deteriorate
our rate. Whether this is a fundamental limitation of BART is still unclear.

Note that Definition 2 can be used for the mapping h0 from the lower dimensional
domain [0, 1]d while the true function f0 maps the entire [0, 1]p to R. We now characterize a
sparse elaboration of Definition 2 for the mapping f0 : [0, 1]p → R. For any S ⊆ {1, . . . , p},
we denote with W p

S : C(R|S|)→ C(Rp) the map that transmits h ∈ C(R|S|) onto W p
Sh : x 7→

h(xS). Similar to Yang and Tokdar (2015) for the isotropic cases, we now formalize d-sparse
function spaces as follows.

Definition 3 (Sparse function space). For the space HAᾱ,dλ (Y) in Definition 2, we define a
d-sparse piecewise heterogeneous anisotropic Hölder space as

ΓAᾱ,d,pλ (Y) =
⋃

S⊆{1,...,p}:|S|=d

W p
S

(
HAᾱ,dλ (Y)

)
.

That is, ΓAᾱ,d,pλ (Y) is read as the collection of p-dimensional d-sparse functions over
Y with piecewise anisotropic ᾱ smoothness and a Lipschitz constant λ. For an unknown
smoothness parameter Aᾱ = (αr)

R
r=1 ∈ A

R,d
ᾱ (with possibly decreasing ᾱ) and model com-

ponents R, d, p, and λ (which are possibly increasing with n), the true function f0 is

assumed to belong to the class ΓAᾱ,d,pλ (X0) which allows for discontinuities, or to its contin-

uous variant ΓAᾱ,d,pλ (X0)∩C([0, 1]p). This means that there exists a function h0 : [0, 1]d → R
and a subset S0 ⊆ {1, . . . , p} with |S0| = d such that f0 = W p

S0
h0. The continuous vari-

ant ΓAᾱ,d,pλ (X0) ∩ C([0, 1]p) achieves approximability under more relaxed assumptions (see
Theorem 1 in Section 4.2). The two spaces are identical if R = 1.

Note that the true underlying X0 is the box partition of the d-dimensional cube [0, 1]d.
Considering the domain [0, 1]p of f0, it will be convenient to extend X0 to the corresponding
box partition of the p-dimensional cube [0, 1]p. To this end, we extend each Ξr to the
p-dimensional box Ξ∗r = {x ∈ [0, 1]p : xS0 ∈ Ξr, xSc0 ∈ [0, 1]p−d} ⊆ [0, 1]p using the true
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(a) {1, 2}-chopped partition

1

2
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(b) {2}-chopped partition

Figure 3: Examples of sparse partitions in three dimensions.

sparsity index S0; that is, Ξr is the projection of Ξ∗r onto the coordinates in S0. The boxes
Ξ∗r then constitute the box partition X∗0 = {Ξ∗1, . . . ,Ξ∗R} of [0, 1]p.3 We emphasize that X∗0
is determined by the unknown sparsity index S0 of the true function f0. Observe also that
our definition gives rise to X∗0 = {[0, 1]p} with Ξ∗1 = [0, 1]p if R = 1.

Apart from the notion of sparsity for functions, we also introduce sparsity of box parti-
tions as follows.

Definition 4 (Sparse partition). Consider a box partition Y = {Ψ1, . . . ,ΨJ} of [0, 1]p with
boxes Ψr ⊆ [0, 1]p, r = 1, . . . , J . For a subset S ⊆ {1, . . . , p}, the partition Y is called
S-chopped if maxj∈S len([Ψr]j) < 1 and minj /∈S len([Ψr]j) = 1 for every r = 1, . . . , J .

A graphical illustration of sparse partitions is provided in Figure 3. According to Defini-
tion 4, the extended box partition X∗0 is S-chopped for some S ⊆ S0. Observe that X∗0 is not
always S0-chopped, since X0 may not have been cleaved in some coordinates. For example,
if f0(x1, x2, x3) = h0(x1, x3) = sin(x1) cos(x3)1(0 ≤ x1 ≤ 0.5)1(0 ≤ x2 ≤ 1) with p = 3
and d = 2, then S0 = {1, 3}, but X∗0 = {[0, 0.5]× [0, 1]2, (0.5, 1]× [0, 1]2} is {1}-chopped. In
particular, X∗0 is ∅-chopped if R = 1 irrespective of what S0 is. It is then clear that sparsity
of X∗0 is not the same as sparsity of f0. In what follows, we write S∗0 ⊆ S0 to denote sparsity
of X∗0; that is, X∗0 is S∗0 -chopped.

Remark 3. Throughout the study, the model parameters ᾱ, R, d, p, and λ are treated as
positive sequences of n, which can vary at appropriate rates so that our target posterior
contraction rate in (7) changes. Accordingly, the model objects related to these sequences,

e.g., X0, X∗0, and Aα ∈ AR,dα , can also vary with n. The only exception is the minimax study
in Section 5.2, where a fixed d provides a correct interpretation of the obtained minimax
lower bound (see the lower bound in Theorem 3). With a slight abuse of notation, we
usually suppress the dependency on n for the sake of notational simplicity.

3. The notations X0 = {Ξ1, . . . ,ΞR} and X∗0 = {Ξ∗1, . . . ,Ξ∗R} are used only to denote the true underlying
box partition for the anisotropic smoothness of h0 and its extension to the p-dimensional space for f0,
respectively.
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(a) A non-tree box partition (b) A tree partition.

Figure 4: Examples of non-tree box partitions and tree partitions

2.3 Tree-Based Partitions

In this work, for estimators of the true function f0, we focus on piecewise constant learners,
i.e., step functions that are constant on each piece of a box partition of [0, 1]p. A precise
description of piecewise constant learners requires an underlying partitioning rule that pro-
duces a partition for these step functions. In tree-structured models, the idea is based on
recursively applying binary splitting rules to split the domain [0, 1]p. Here we shed light on
this mechanism to construct tree-based partitions, while deferring a complete description
of the induced step functions to Section 2.4.

For a given box Ψ ⊆ [0, 1]p, choose a splitting coordinate j ∈ {1, . . . , p} and a split-point
τj ∈ int([Ψ]j). The pair (j, τj) then dichotomizes Ψ along the jth coordinate into two boxes:
{x ∈ Ψ : xj ≤ τj} and {x ∈ Ψ : xj > τj}, where xj is jth entry of x. Starting from the
root node [0, 1]p, the procedure is iterated K − 1 times in a top-down manner by picking
one box for a split each time. This generates K disjoint boxes Ψ1, . . . ,ΨK , called terminal
nodes, which constitute a tree-shaped partition of [0, 1]p, called a tree partition. We call this
iterative procedure the binary tree partitioning. We will further refer to the resulting tree
partitions as flexible tree partitions to emphasize that splits can occur everywhere in the
domain [0, 1]p (not necessarily at dyadic midpoints or observed covariate values). According
to Definition 4, we say that a flexible tree partition is S-chopped if splitting coordinates j
are restricted to a subset S ⊆ {1, . . . , p}. Note that while flexible tree partitions are always
box partitions, the reverse is not generally true; see Figure 4.

Although the binary tree partitioning allows splits to occur anywhere in the domain,
Bayesian tree models usually take advantage of priors that choose split-points from a pre-
determined discrete set. For example, in regression with continuous covariates, observed
covariate values are typically used for split-points (Chipman et al., 1998; Denison et al.,
1998; Chipman et al., 2010). Following this manner, Ročková and van der Pas (2020) and
Ročková and Saha (2019) investigated posterior contraction of BART in Gaussian non-
parametric regression with fixed covariates. Here, we relax this restriction while keeping
split-points chosen from a discrete set. To this end, we define a discrete collection of loca-
tions where splits can occur, which we call a split-net.

11
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(a) Regular grid system (b) Split-net without duplication

Figure 5: Examples of the split-net with bn = 25 in two dimensions. For the regular grid in
(a), one can easily see that bj(Z) = 5, j = 1, 2; hence, initial splits eliminate the possibility
of other splits. The split-candidates of the split-net in (b) are unique in every coordinate,
so bj(Z) = bn, j = 1, 2.

Definition 5 (split-net). For an integer sequence bn, a split-net Z = {zi ∈ [0, 1]p, i =
1, . . . , bn} is a set of bn points zi = (zi1, . . . , zip)

> ∈ [0, 1]p at which possible splits occur
along coordinates.

For a given split-net Z, we call each point zi = (zi1, . . . , zip)
> a split-candidate. For a

given splitting coordinate j and a split-net Z, a split-point will be chosen from [Z]j∩int([Ψ]j)
to dichotomize a box Ψ. Note that [Z]j = {zij ∈ [0, 1], i = 1, . . . , bn} may have fewer
elements than Z owing to duplication. We denote by bj(Z) the cardinality of [Z]j , i.e., the
number of unique values in the bn-tuple (z1j , . . . , zbnj). We then obtain max1≤j≤p bj(Z) ≤
bn by definition. For example, consider a regular (equidistant) grid system illustrated

in Figure 5a, wherein bj(Z) = b
1/p
n < bn, j = 1, . . . , p. This simplest split-net will be

further discussed in Section 4.3.1. It is also possible to construct a split-net such that
bj(Z) = bn, j = 1, . . . , p, as shown in Figure 5b. As noted above, another typical example
of Z is the observed covariate values in fixed-design nonparametric regression with bn = n
(supposing that all xi are different). This specific example will be discussed in Section 4.3.2.
Our definition of split-nets yields additional flexibility in situations when no deterministic
covariate values are available, such as density estimation or in the analysis of nonparametric
regression with random covariates. A subset of the observed covariate values can also be
used in a fixed-design regression setup.

In assigning a prior over tree partitions, we will assume that splits in the binary parti-
tioning rule occur only at the points in Z; that is, for every splitting box Ψ ⊆ [0, 1]p with a
splitting coordinate j, a split-point τj is chosen such that τj ∈ [Z]j ∩ int([Ψ]j). As a split is
restricted to the interior of a given interval, some split-candidates may have already been
eliminated in the previous steps of the splitting procedure (see Figure 5a). Clearly, a tree
partition constructed by Z is an instance of flexible tree partitions, but the reverse is not
the case. To distinguish between the two more clearly, we make the following definition.

12
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Definition 6 (Z-tree partition). For a given split-net Z, a flexible tree partition T =
{Ω1, . . . ,ΩK} of [0, 1]p with boxes Ωk ⊆ [0, 1]p, k = 1, . . . ,K, is called a Z-tree partition if
every split occurs at points zi ∈ Z.4

In summary, we obtain the following relationship among the three types of partitions:
{Z-tree partitions} ⊆ {Flexible tree partitions} ⊆ {Box partitions}. Similar to flexible tree
partitions, Z-tree partitions can be S-chopped for a subset S ⊆ {1, . . . , p} irrespective of
what Z is employed. As we aim to do sparse estimation in high-dimensional setups, we are
primarily interested in S-chopped Z-tree partitions for some low-dimensional S. In what
follows, we denote by TS,K,Z the set of all S-chopped Z-tree partitions with K boxes.

Remark 4. The definition of a Z-tree partition is introduced to restrict possible splits to a
discrete set. This means that we assign a discrete prior on the tree topologies (see Section 3).
One may instead assign a prior on the topology of flexible tree partitions, in which case a
split-net Z is not needed. For regression problems, most of the recent BART procedures
deploy a discrete set of split-candidates in their prior constructions using the observed
covariate values. We aim to generalize this conventional idea while incorporating it into our
framework. A discrete prior has an advantage in that it is invariant to a transformation of
predictor variables (Chipman et al., 1998). We only consider placing a discrete tree prior
using a given split-net Z, and a continuous prior on flexible tree partitions is not considered.

2.4 Bayesian Trees and Forests

We now describe our piecewise constant learners using Z-tree partitions. While single
tree learners have received some attention (Chipman et al., 1998; Denison et al., 1998),
it is widely accepted that additive aggregations of small trees are much more effective
for prediction (Chipman et al., 2010). Noting that single trees are a special case of tree
ensembles (forests), we will focus on forests throughout the rest of the paper.

We consider a fixed number T of trees. For a given split-net Z and for each t ≤ T , we de-
note with T t = {Ωt

1, . . . ,Ω
t
Kt} a Z-tree partition of size Kt and with βt = (βt1, . . . , β

t
Kt)> ∈

RKt
the heights of the step function, called the step-heights. An additive tree-based learner

is then fully described by a tree ensemble E = {T 1, . . . , T T } and terminal node parameters

B = (β1>, . . . , βT>)> ∈ R
∑T
t=1K

t
through

fE,B(x) =

T∑
t=1

Kt∑
k=1

βtk1(x ∈ Ωt
k). (2)

That is, fE,B is constant on the boxes constructed by overlapping Z-tree partitions T 1, . . . , T T .
Chipman et al. (2010) recommends the choice T = 200, which was seen to provide good

empirical results. For a given ensemble E , we henceforth define FE = {fE,B : B ∈ R
∑T
t=1K

t}
the set of functions in (2). If E consists of a single tree T , we instead write FT to denote
FE .

4. The notation T = {Ωk}k is used only for the Z-tree partitions with a split-net Z, with some suitable
superscript and/or superscript if required. We denote flexible tree partitions by Y = {Ψk}k as general
box partitions.

13
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Our objective is to characterize the posterior asymptotic properties of the tree learners
in (2) in estimating the true function f0 belonging to ΓAᾱ,d,pλ (X0) or ΓAᾱ,d,pλ (X0)∩C([0, 1]p).
This goal requires two nice attributes of the procedure. First, appropriate prior distri-
butions should be assigned to the tree learners fE,B in (2) so that the induced posterior
can achieve the desired asymptotic properties. Second, there should exist a piecewise tree
learner approximating f0 with a suitable approximation error matched to our target rate.
In the following two sections, we elucidate these in detail.

3. Tree and Forest Priors in High Dimensions

3.1 Priors over Tree Topologies with Sparsity

Conventional tree priors (Chipman et al., 1998; Denison et al., 1998) are not designed for
high-dimensional data with a sparse underlying structure. Prior modifications are thus re-
quired for trees to meet demands of high-dimensional applications (Linero, 2018; Linero and
Yang, 2018; Ročková and van der Pas, 2020). Ročková and van der Pas (2020) adopted a
spike-and-slab prior for BART to achieve adaptability to unknown sparsity levels, but the
computation of the posterior distribution is much more challenging than the original BART
algorithm owing to the nature of a point mass prior. Linero (2018) and Linero and Yang
(2018) considered a sparse Dirichlet prior on splitting coordinates for a computationally fea-
sible algorithm, while achieving the theoretical optimality in the high-dimensional scenario.
We deploy the sparse Dirichlet prior developed by Linero (2018) for ease of computation
for the posterior distribution.

Unlike the original tree priors, the BART model with the sparse Dirichlet prior chooses
a splitting coordinate j is from a proportion vector η = (η1, . . . , ηp)

> belonging to the p-
dimensional simplex Sp = {(x1, . . . , xp)

> ∈ Rp :
∑p

j=1 xj = 1, xj ≥ 0, j = 1, . . . , p}. A
proportion vector η has a Dirichlet prior with ζ > 0 and ξ > 1,

η = (η1, . . . , ηp)
> ∼ Dir(ζ/pξ, . . . , ζ/pξ). (3)

The requirement ξ > 1 is needed for technical reasons. The prior imposes a sparsity into
splitting variables (we refer the reader to Figure 2 of Linero (2018)). Given a proportion
vector η, the BART prior is assigned, as in Chipman et al. (2010), with a minor modification.
Assuming an independent product prior for E , i.e., Π(E) =

∏T
t=1 Π(T t), a Bayesian CART

prior (Chipman et al., 1998) is assigned to each T t. The procedure begins with the root
node [0, 1]p of depth ` = 0, where the depth of a node means the number of nodes along the
path from the root node down to that node. For each ` = 0, 1, 2, . . . , each node at depth
` is split with prior probability ν`+1 for ν ∈ (0, 1/2). If a node corresponding to a box Ω
is split, a splitting coordinate j is drawn from the proportion vector η and a split-point τj
will be chosen randomly from [Z]j ∩ int([Ω]j) for a given Z. The procedure repeats until all
nodes are terminal.

The original CART prior proposed by Chipman et al. (1998) uses a splitting probabil-
ity that decays polynomially. Ročková and Saha (2019) showed that this decay may not
be fast enough, and suggested using an exponentially decaying probability as ours. This
modification gives rise to the desirable exponential tail property of tree sizes. Linero and
Yang (2018) handled this issue by assigning a prior on the number T of trees. As we want
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to fix T as in the practical implementation of BART, we use the exponentially decaying
prior probability for splits.

3.2 Prior on Step-Heights

To complete the prior on the sparse function space, what remains to be specified is the prior
on step-heights B in (2). Given K1, . . . ,KT induced by E , Chipman et al. (2010) suggests
using a Gaussian prior on B (after shifting and rescaling the responses):

dΠ(B|K1, . . . ,KT ) =
T∏
t=1

Kt∏
k=1

φ(βtk; 0, cβ/T ),

where cβ > 0 is a constant and φ( · ;µ, τ2) is the Gaussian density with mean µ and variance
τ2. The variance cβ/T shrinks step-heights toward zero, limiting the effect of individual
components by keeping them small enough for large T . This choice is preferred in view of
the practical performance, but any zero-mean multivariate Gaussian prior on B gives rise to
the same optimal properties as soon as the eigenvalues of the covariance matrix are bounded
below and above. Throughout the paper, we place a Gaussian prior on the step-heights B
in most cases. From the computational point of view, this choice is certainly appealing in
Gaussian nonparametric regression owing to its semi-conjugacy. For theoretical purposes,
a prior with exponentially decaying thicker tails, such as a Laplace distribution, can easily
replace a Gaussian prior for the same optimality under relaxed conditions. Although such
a prior may loosen a restriction on ‖f0‖∞ (Ročková, 2020; Jeong and Ghosal, 2021a), we
primarily consider normal priors throughout the paper, even for non-Gaussian models for
the sake of simplicity. We consider non-Gaussian priors only when required for theoretical
purposes; see, for example, a truncated prior for regression with random design in Section 6.

4. Approximating the True Function

Recall that tree learners fE,B in (2) are piecewise constant, whereas the true function f0

does not have to be. This will not be an issue as long as there exists a tree learner that can
approximate f0 sufficiently well. In this section, we establish the approximation theory for
tree ensembles in the context of our targeted function spaces.

For isotropic classes, balanced k-d trees (Bentley, 1979) are known to give rise to rate-
optimal approximations under mild regularity conditions (Ročková and van der Pas, 2020).
This is not necessarily the case for our general setup where smoothness may vary over the
domain and where cycling repeatedly through the coordinates (as is done in the k-d tree)
may not be enough to capture localized features of f0. We thus generalize the notion of
k-d trees and show that there exists a good partitioning scheme for piecewise heterogeneous
anisotropic classes. Although our primary interest lies in additive tree aggregations in (2),
we show that a single deep tree can approximate well. We thereby consider only single trees
T and suppress the superscript t throughout this section.

4.1 Split-Nets for Approximation

Approximation properties of tree-based estimators are driven by the granularity and fineness
of a chosen split-net. Roughly speaking, a good approximation requires that a split-net have
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Figure 6: A two-dimensional example of the Hausdorff-type divergence in Definition 7. The
divergence is the maximum dependency of the boxes in the partitions.

two properties: (i) it should be dense enough so that the boundaries of the box partition
X∗0 = {Ξ∗1, . . . ,Ξ∗R}, extended from X0 = {Ξ1, . . . ,ΞR}, can be detected by a Z-tree partition
with a minimal error; and (ii) it should be regular enough so that there exists a Z-tree
partition that captures local/global features of f0 on each Ξ∗r . We elucidate these two
properties.

4.1.1 Dense Split-Nets: Global Approximability

Recall that the underlying partition X∗0 = {Ξ∗1, . . . ,Ξ∗R} for the true function is unknown.
From the sheer flexibility of binary tree partitioning, we expect that the boundaries can
be detected well enough by a Z-tree partition if X∗0 is a flexible tree partition. If the prior
rewards partitions that are sufficiently close to X∗0, Bayesian CART (BART) is expected to
adapt to unknown X∗0 without much loss of efficiency. We examine when this adaptivity
can be achieved in more detail below.

The ability to detect X∗0 is thus closely tied to the density of the split-net Z; it should
be dense enough so that a Z-tree partition can be constructed that is sufficiently close to
X∗0. Therefore, we need a gadget to measure the closeness between two partitions. To this
end, we introduce a Hausdorff-type divergence; see Figure 6 for an illustration.

Definition 7 (Hausdorff-type divergence). For any two box partitions Y1 = {Ψ1
1, . . . ,Ψ

1
J}

and Y2 = {Ψ2
1, . . . ,Ψ

2
J} with the same number J of boxes, we define a divergence between

Y1 and Y2 as

Υ(Y1,Y2) = min
(π(1)...π(J))∈Pπ [J ]

max
1≤r≤J

Haus(Ψ1
r ,Ψ

2
π(r)),

where Pπ[J ] denotes the set of all permutations (π(1) . . . π(J)) of {1, . . . , J} and Haus(·, ·)
is the Hausdorff distance.

The permutation in Definition 7 makes the specification immune to the ordering of
boxes. We want the split-net Z to produce a Z-tree partition T such that Υ(X∗0, T ) is
smaller than some threshold. Section 4.2 establishes how small these thresholds should be
so that the tree learner is close to f0 (for various approximation metrics). The following
definition will be useful in characterizing the details.
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Definition 8 (Dense split-net). For a given subset S ⊆ {1, . . . , p} and an integer J ≥ 1,
consider an S-chopped partition Y = {Ψ1, . . . ,ΨJ} of [0, 1]p with boxes Ψr ⊆ [0, 1]p, r =
1, . . . , J . For any given cn ≥ 0, a split-net Z = {zi ∈ [0, 1]p, i = 1, . . . , bn} is said to be
(Y, cn)-dense if there exists an S-chopped Z-tree partition T = {Ω1, . . . ,ΩJ} of [0, 1]p such
that Υ(Y, T ) ≤ cn.

In Section 4.2, the approximation theory will require that Z be (X∗0, cn)-dense for some
suitable cn ≥ 0. Note that the ideal case cn = 0 can be achieved only when X∗0 is a Z-tree
partition. This condition, while obviously satisfied in the case R = 1, is very restrictive in
the most situations. This is because, if J = 1, i.e., Y = {[0, 1]p}, we obtain Υ(Y, T ) = 0
for T = {[0, 1]p}. Hence, every split-net Z is (([0, 1]p), 0)-dense. However, we will see in
Theorem 1 that, in many cases, it is sufficient that cn tends to zero at a suitable rate.
This means that X∗0 should be at least a flexible tree partition, but not necessarily a Z-tree
partition. If X∗0 is a box partition but not a flexible tree partition, we can redefine X∗0
by adding more splits to make it a flexible tree partition. For example, the non-tree box
partition in Figure 4 can be extended to a tree partition with a single extra split. However,
this approach increases R and hence may deteriorate the result (observe that our rate in
(7) is dependent on R). In particular, if X∗0 is not a box partition (e.g., jumps are not
axis-parallel), the redefined R increases to infinity. For our theory to be valid, X∗0 must be
at least a box partition. In Section 4.3, we present some examples of dense split-nets.

Dense split-nets have nested properties. That is, a (Y, cn)-dense split-net is also (Y, c̃n)-
dense for every c̃n ≥ cn. We are interested in the smallest possible cn. In particular, every
split-net Z is (Y, 1)-dense for any box partition Y.

4.1.2 Regular Split-Nets: Local Approximability

Beyond closely tracking smoothness boundaries, good tree partitions should be able to
capture local/global smoothness features of f0. In other words, there should exist a Z-tree
partition that achieves an optimal approximation error determined by our target rate. In
Section 4.1.1, we focused on global approximability of underlying partitions, which requires
split-nets to be suitably dense. Now, we focus on local approximability.

Assume that X∗0 can be approximated well (as discussed in the previous section) by an
S∗0 -chopped Z-tree partition T ∗ = {Ω∗1, . . . ,Ω∗R},5 which is formally written as

T ∗ = arg min
T ∈TS∗0 ,R,Z

Υ(X∗0, T ). (4)

We now focus on local approximability inside each box Ω∗r . Ideally, one would want to
construct a sub-tree partition of this local box that balances out approximation errors in all
coordinates. Therefore, we first need to devise a splitting scheme to achieve this balancing
condition. The regularity of split-nets can then be spelled out based on such a law.

We now zoom onto a single box Ω∗r . Recall that the true function f0 has anisotropic
smoothness on each of Ξ∗r . Intuitively, denser subdivisions are required for less smooth
coordinates to capture the local features. Allowing splits to occur more often in certain
directions, we define the anisotropic k-d tree, which achieves the desired approximation error

5. The notation T ∗ = {Ω∗1, . . . ,Ω∗R} with an asterisk is only used to denote an S∗0 -chopped Z-tree partition
approximating X∗0 = {Ξ∗1, . . . ,Ξ∗R}.
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Figure 7: A realization of the anisotropic k-d tree with smoothness parameters α1 = 0.25
(for the horizontal axis) and α2 = 0.5 (for the vertical axis), and a box Ψ (the shaded box)
that is a subspace of [0, 1]2 (the outer square). Because 2α1 = α2, the subset Ψ splits twice
as often in the vertical direction than in the horizontal direction.

for anisotropic smoothness. The definition requires the notion of midpoint-splits defined as
follows. For a given box Ψ and a splitting coordinate j, a midpoint-split picks up the
db̃j(Z,Ψ)/2eth split-candidate in [Z]j ∩ int([Ψ]j) as a split-point τj , where b̃j(Z,Ψ) is the
cardinality of [Z]j ∩ int([Ψ]j).

Definition 9 (Anisotropic k-d tree). Consider a smoothness vector α = (α1, . . . , αd)
> ∈

(0, 1]d, a box Ψ ⊆ [0, 1]p, a split-net Z = {zi ∈ [0, 1]p, i = 1, . . . , bn}, an integer L > 0, and
an index set S = {s1, . . . , sd} ⊆ {1, . . . , p} with |S| = d. We define the anisotropic k-d tree
Akd(Ψ;Z, α, L, S) as the iterative splitting procedure that partitions Ψ into disjoint boxes
as follows.

1. Start from the root node by setting Ω◦1 = Ψ and set lj = 0, j = 1, . . . , d.

2. For splits at iteration 1 +
∑d

j=1 lj , choose j corresponding to the smallest ljαj . If the
smallest ljαj is duplicated with multiple js, choose the smallest j among such j’s.

3. For all boxes Ω◦k, k = 1, . . . , 2
∑d
j=1 lj , at the current iteration, do the midpoint-splits

with the given Z and the splitting coordinate sj chosen by j. Relabel the generated

new boxes as Ω◦k, k = 1, . . . , 21+
∑d
j=1 lj , and then increase lj by one for chosen j.

4. Repeat 2–3 until either
∑d

j=1 lj = L or the midpoint-split is no longer available.

Return (l1, . . . , ld)
> and T ◦ = {Ω◦1, . . . ,Ω◦2L◦}, where L◦ =

∑d
j=1 lj .

Note that the anisotropic k-d tree construction depends on the smoothness that is
unknown. Rather than a practical estimator, we use this to show that there exists a good
tree approximator in the technical proof. One possible realization of the anisotropic k-d
tree generating process is given in Figure 7. Observe that Akd(Ψ;Z, α, L, S) returns a tree
partition T ◦ = {Ω◦1, . . . ,Ω◦2L◦} of Ψ and a vector (l1, . . . , ld)

> such that L◦ =
∑d

j=1 lj ≤ L.6

6. The notation T ◦ = {Ω◦k}k with a circle is used only for tree partitions of some box Ψ ⊆ [0, 1]p, returned
by the anisotropic k-d trees, with some suitable subscript if required.
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Although these returned items clearly depend on the inputs of the anisotropic k-d tree
procedure (i.e., Ψ, Z, α, L, and S), we suppress them throughout the paper. Each lj is a
counter of how many times the jth coordinate has been used. The procedure is designed
so that every lj is approximately proportional to α−1

j after enough iterations. The total

number of splits for the jth coordinate is thus close to 2C/αj for every j with some C > 0. In
the proof of Theorem 1, this matching is indeed clearly optimal and minimizes the induced
bias.

To play a role as a ‘sieve’ for approximation, Ψ needs to be sufficiently finely subdivided
to capture the global/local behavior of a function. The threshold L determines the resolution
of the returned tree partition T ◦ = {Ω◦1, . . . ,Ω◦2L◦}. For a good approximation, we are
particularly interested in the situation when L◦ = L, i.e., the resulting tree has the desired
depth. If L◦ < L owing to insufficient split-candidates, the resolution may not be good
enough.

Now, we can define the regularity of a split-net on Ψ ⊆ [0, 1]p using T ◦. The desirable
situation is when all the splits occur nearly at the center of boxes such that, for any given
j ∈ S, all len([Ω◦k]j), k = 1, . . . , 2L, are balanced well. The evenness of the returned partition
is solely determined by the regularity of a split-net Z. Intuitively, the split-net should be
regularly distributed to give rise to an appropriate partition, in which we say a split-net
is regular. We make the definition technically precise below, which will be used as a basis
for approximating the function classes. See Verma et al. (2009) for a related regularity
condition.

Definition 10 (Regular split-net). For a given box Ψ ⊆ [0, 1]p, an integer L > 0, and an
index set S = {s1, . . . , sd} ⊆ {1, . . . , p}, we say that a split-net Z is (Ψ, α, L, S)-regular if
T ◦ = {Ω◦1, . . . ,Ω◦2L◦} and (l1, . . . , ld)

>, returned by Akd(Ψ;Z, α, L, S), satisfy L◦ = L and

maxk len([Ω◦k]sj ) . len([Ψ]sj )2
−lj for every j = 1, . . . , d.

The condition maxk len([Ω◦k]sj ) . len([Ψ]sj )2
−lj is the key to obtaining optimal approxi-

mation results. In the ideal case that all the splits occur exactly at the center, this condition
is trivially satisfied as maxk len([Ω◦k]sj ) = len([Ψ]sj )2

−lj . The inequality provides a lot more
flexibility where the condition can be satisfied in most cases except for very extreme situa-
tions. See Section 4.3 for examples of regular split-nets.

Similar to dense split-nets, regular split-nets also have nested properties. If a split-net
Z is (Ψ, α, L, S)-regular for some Ψ, α, L, and S, then it is also (Ψ, α, L̃, S)-regular for any
L̃ ≤ L. This can be easily shown by noting that the latter is determined only by a pruned
tree of the full-blown tree for the former. We are particularly interested in the largest
possible L.

Remark 5. As regular split-nets require the desired depth, i.e., L◦ = L, it is of interest
to see which L achieves this precondition. Consider a box Ψ ⊆ [0, 1]p and a split-net
Z = {zi ∈ [0, 1]p, i = 1, . . . , bn}. If there are no ties in Z for any coordinate, i.e., bj(Z) = bn,
j = 1, . . . , p, it can be easily checked that any integer L ≤ blog2(b̃j(Z; Ψ) + 1)c gives rise
to L◦ = L with the anisotropic k-d tree. (Observe that all b̃j(Z; Ψ) are identical in this
case.) If there are ties, L may need to be much smaller to achieve L◦ = L, but a tight upper
bound may not be obtained for the general case.
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Ξ∗1 Ξ∗2

Ξ∗3 Ξ∗3

Ω∗1 Ω∗2

Ω∗3 Ω∗3

Figure 8: An example of constructing T̂ . First, X∗0 = {Ξ∗1, . . . ,Ξ∗4} is approximated by
T ∗ = {Ω∗1, . . . ,Ω∗4}. Then, each Ω∗r is subdivided by the anisotropic k-d tree, producing T ◦r
a constituent of T̂ displayed on the rightmost panel.

4.2 Approximation Theory

Our goal is to establish the contraction rate of the posterior distribution. The construction
requires that tree learners be able to approximate functions in the spaces ΓAᾱ,d,pλ (X0) and

ΓAᾱ,d,pλ (X0)∩C([0, 1]p) appropriately. Here, we investigate the approximation properties for
these sparse function spaces.

Recall that a split-net Z is required to be suitably dense and regular. First, a split-
net Z should be (X∗0, cn)-dense for some appropriate cn, so that the boundaries of X∗0 =
{Ξ∗1, . . . ,Ξ∗R} can be detected well by the binary tree partitioning rule. As X∗0 is approxi-
mated by a Z-tree partition with a given Z, the underlying partition X∗0 should be at least
a flexible tree partition, but a stronger result is obtained if X∗0 is a Z-tree partition (see
Theorem 1 below). Denoting by T ∗ = {Ω∗1, . . . ,Ω∗R} the S∗0 -chopped Z-tree partition in (4),
each box Ω∗r should be appropriately subdivided to capture the local/global nature of the
true function on Ξ∗r . (If R = 1, we write T ∗ = X∗0 = {[0, 1]p} with Ω∗1 = [0, 1]p.) Hence,

for a smoothness parameter Aᾱ ∈ AR,dᾱ and some suitably chosen L > 0, Z should also
be (Ξ∗r , αr, L, S0)-regular, r = 1, . . . , R. The integer sequence L will eventually be chosen
such that the approximation error is balanced with our target rate (see L0 in Theorem 1).
Let T ◦r = {Ω◦r1, . . . ,Ω◦r2L} be the tree partition of Ω∗r returned by Akd(Ω∗r ;Z, αr, L, S0),

r = 1, . . . , R. Then, the approximating partition T̂ is formed by agglomerating all sub-tree
partitions T ◦r , leading to an S0-chopped Z-tree partition

T̂ =
{

Ω◦11, . . . ,Ω
◦
12L , . . . ,Ω

◦
R1, . . . ,Ω

◦
R2L

}
. (5)

(Note that each T ◦r is S0-chopped, not S∗0 -chopped.) A graphical illustration of constructing

T̂ is given in Figure 8.
The strongest approximation results relative to the L∞-norm for ΓAᾱ,d,pλ (X0) are of

particular interest. Owing to the possible discontinuity or heterogeneity at the unknown
boundaries of X∗0, however, such results are not practically obtained except for the case
R = 1. As the following theorem shows, the conditions can be relaxed if we opt for weaker
metrics, which often suffice in many statistical setups. For example, in our examples of
Gaussian nonparametric regression in Section 5.1, we only need an approximation rate in L2-
or empirical L2-sense. The approximation results for the continuous variant ΓAᾱ,d,pλ (X0) ∩
C([0, 1]p) require even milder conditions.
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Theorem 1 (Approximation theory). For cn ≥ 0 specified below, assume that a split-net

Z is (X∗0, cn)-dense. For a smoothness parameter Aᾱ ∈ AR,dᾱ and an integer L > 0, assume
that Z is (Ξ∗r , αr, L, S0)-regular for every r = 1, . . . , R. Let ε̃n be a sequence satisfying ε̃n &
λd2−ᾱL/d and construct T̂ as in (5) (through T ∗ in (4)). Then, for any f0 ∈ ΓAᾱ,d,pλ (X0),

there exists f̂0 ∈ FT̂ such that

(i) ‖f0 − f̂0‖∞ . ε̃n if cn = 0;

(ii) ‖f0 − f̂0‖v . ε̃n if cn . (ε̃n/‖f0‖∞)v minr,j len([Ξ∗r ]j)/|S∗0 | for any v ≥ 1;

(iii) ‖f0 − f̂0‖v,PZ . ε̃n for any v ≥ 1, where PZ(·) = b−1
n

∑bn
i=1 δzi(·).

Further, for any f0 ∈ ΓAᾱ,d,pλ (X0) ∩ C([0, 1]p), there exists f̂0 ∈ FT̂ such that

(iv) ‖f0 − f̂0‖∞ . ε̃n if c
minr,j αrj
n . ε̃n/(λ|S∗0 |);

(v) ‖f0 − f̂0‖v . ε̃n if c
1+vminr,j αrj
n . (ε̃n/λ)v minr,j len([Ξ∗r ]j)/|S∗0 |v+1 for any v ≥ 1.

In particular, if we choose L = L0 such that 2L0 � (n(λd)2/(R log n))d/(2ᾱ+d), then the
above assertions hold for ε̃n = ε̄n := (λd)d/(2ᾱ+d)((R log n)/n)ᾱ/(2ᾱ+d).

Proof. See Section A.1 in Appendix.

Although Theorem 1 holds for any ε̃n & λd2−ᾱL/d, the results are particularly useful
for our purposes when combined with L0 and ε̄n, motivated by our target rate εn in (7).
The assertion in (i) gives the strongest result with the L∞-norm. However, the condition
cn = 0 requires that the boundaries of the pieces be correctly detectable by the binary tree
partitioning rule with a given split-net Z; that is, X∗0 should be a Z-tree partition. Except
for the case R = 1, this limitation is too restrictive and impractical, as the locations of the
boundaries are unknown (every split-net Z is (X∗0, 0)-dense if R = 1). The assertion in (iv)
relaxes this limitation by means of the continuity restriction. We will use (i) and (iv) for a
density estimation problem in Section 6.2.

The assertions in (ii) and (v) are with respect to the Lv-norm, v ≥ 1, which is useful
in many statistical setups. We note that, despite the continuity restriction, the condition
for cn of (v) is not always milder than that of (ii). Indeed, the former is milder than the

latter only if λ|S∗0 |c
minr,j αrj
n . ‖f0‖∞, which is often satisfied, as the left-hand side is prone

to be decreasing with a suitably chosen cn. We will use the results in (ii) and (v) for
nonparametric regression and binary classification with random design in Sections 6.1 and
6.3.

The assertion in (iii) is particularly useful in regression setups with Z chosen by fixed
covariates; see Sections 4.3.2 and 6.4. Note that (iii) only explicitly requires the regularity
of a split-net Z, and an upper bound for cn is not specified. This is because the closeness
between f0 and f̂0 is measured only at points in Z, and the boundary detection needs to be
performed much loosely compared with the other metrics. Although not explicitly stated,
(iii) still requires a dense split-net in an implicit way. Indeed, every assertion in Theorem 1
necessitates a condition on T ∗ imposed implicitly by the regularity with Ξ∗r ; for Z to be
regular for every Ξ∗r , it must be sufficiently evenly distributed and hence suitably dense.

As stated above, if R = 1, i.e., the global anisotropic case, we always obtain the strongest
result in (i) as soon as a split-net is suitably regular. If R > 1, a split-net should also be
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suitably dense except for the case of the empirical ‖·‖v,PZ -norm in (iii). As the conditions

on cn depend on unknown model specification, e.g., Aᾱ ∈ AR,dᾱ , λ, and |S∗0 |, more practical
conditions can be obtained by plugging in reasonable bounds of the unknown components.
For example, we cannot hope for better than ε̄n & (λdR(log n)/n)1/3 owing to the funda-
mental limitation of piecewise constant learners. We can also assume that minr,j len([Ξ∗r ]j)
is bounded away from zero or decreases at most polynomially. To establish the posterior
contraction rate, we will eventually assume ‖f0‖∞ .

√
log n (see (A3) below). Because the

necessary conditions d/ᾱ � log n and λᾱ/dR � n are required for consistent estimation
(see the rate in (7) below), making mild assumptions on d and λ is not prohibitive (note
that |S∗0 | ≤ d). Putting everything together, the conditions on cn can be easily satisfied if
cn is a decreasing polynomial in n with a suitable exponent. The results are formalized in
the following corollary.

Corollary 1 (Approximation with L∞ and Lv when R > 1). Under the setup of Theorem 1
with L = L0, suppose that R > 1 and d . log n. Then, the following assertions hold.

(i) Suppose that minr,j αrj ≥ a1 and λ . na2 for some constants a1 > 0 and a2 ≥ 0. If

cn . n−(1+2a2)/(3a1)(log n)−1/(3a1), then for every f0 ∈ ΓAᾱ,d,pλ (X0) ∩ C([0, 1]p), there

exists f̂0 ∈ FT̂ such that ‖f0 − f̂0‖∞ . ε̄n.

(ii) Suppose that ‖f0‖∞ .
√

log n and minr,j len([Ξ∗r ]j) & n−a3 for some constant a3 ≥ 0.
Fix any v ≥ 1. If cn . n−(v/3+a3)(log n)−(max{0,1−v/3}+v/6), then for every f0 ∈
ΓAᾱ,d,pλ (X0), there exists f̂0 ∈ FT̂ such that ‖f0 − f̂0‖v . ε̄n.

Proof. See Section A.1 in Appendix.

Corollary 1 implies that the target approximation error is attained with both the L∞-
and Lv-norms as soon as cn decreases polynomially. The assertion in (i) provides the
stronger result with the aid of the continuous restriction. It also requires a constant lower
bound of the minimum smoothness parameter minr,j αrj , causing ᾱ to be bounded away
from zero. In contrast, (ii) removes such a restriction at the expense of a tighter upper
bound. In general, the conditions for (ii) are much milder, yielding a relatively weaker but
still useful result in many statistical setups.

Remark 6. No upper bounds for bn and bj(Z) are made for Theorem 1; the approximation
results are more easily achieved with larger values of bj(Z), j = 1, . . . , p. However, values
increasing too fast may harm the contraction rate as they escalate the model complexity.
In Section 5, we will see that our main results on the optimal posterior contraction require
that max1≤j≤p log bj(Z) . log n. We are ultimately interested in well-balanced split-nets.

Remark 7. Our approximation theory is presented with the error ε̄n motivated by our
target rate εn in (7). However, what we really need is the weaker approximation error εn,
which is identical to the posterior contraction rate (see Sections 5–6). Although the latter
slightly relaxes the required conditions, we stick to the approximation result with ε̄n because
such generalization complicates the technical details too much for a small gain.

Remark 8. The assertion in (iii) requires Z to be regular over [0, 1]p. Because the assertion
is with respect to Lv(PZ)-norm, one may anticipate the regularity over [0, 1]p to be relaxed

22



The art of BART

into a smaller subset. Indeed, we can restrict our attention to a subset of [0, 1]p and the
technical details require the regularity Z only over such a smaller subset. We do not consider
such an extension so that the Lv(PZ)-consistency can be interpreted as an approximate
result for the Lv-norm, which is more appealing in the usual sense.

4.3 Examples of Split-Nets for Approximation

Although the notion of dense and regular split-nets is crucial in characterizing the approx-
imation theory in Section 4.2, how to obtain such a good split-net in practice remains
unsolved. Clearly, a split-net attains the suitable density and regularity more easily with
larger bn. As mentioned in Remark 6, however, we will see that a split-net must satisfy
max1≤j≤p log bj(Z) . log n to establish the optimal posterior contraction rate. Accordingly,
our primary concern is examining split-nets that are suitably dense and regular under the
restriction on log bj(Z). In this subsection, we show that the two split-nets described in Sec-
tion 2.3 are dense and regular as required, and hence fulfill the requirements of Theorem 1
and Corollary 1.

4.3.1 Regular Grid

We first consider a regular grid Z = {(i−1/2)/b
1/p
n , i = 1, . . . , b

1/p
n }p for bn such that b

1/p
n is

an integer. This simplest example is a split-net according to Definition 5. We will see that
a regular grid can be useful for density estimation, binary classification, and nonparametric
regression with random design, but it also has the potential to be used for many other
statistical models. A two-dimensional example is illustrated in Figure 5a. The following
lemma shows that, with an appropriately chosen bn, a regular grid is suitably dense and
regular under mild conditions.

Lemma 1 (Regular grid). Consider a regular grid Z with bn = ncp for a constant c ≥ 1.
If minr,j len([Ξ∗r ]j) ≥ n−c and λd/minr,j len([Ξ∗r ]j)

ᾱ/d+1/2 . ncᾱ/d+(c−1)/2
√
R log n, then Z

is (X∗0, cn)-dense and (Ξ∗r , αr, L0, S0)-regular for r = 1, . . . , R, where cn = n−c1(R > 1).

Proof. See Section A.2 in Appendix.

The second condition is replaced by λd/
√

minr,j len([Ξ∗r ]j) . n(c−1)/2
√
R log n if we

consider the worst-case scenario ᾱ→ 0 with the upper bound ᾱ/d ≤ 1. Combined with the
necessary conditions d/ᾱ � log n and λᾱ/dR � n for consistent estimation (see (7)), the
conditions are very mild as soon as c is suitably large. The choice c = 1 may even be sufficient
with stronger boundedness conditions, i.e., λ . 1, d .

√
log n, and minr,j len([Ξ∗r ]j) & 1.

In particular, the first condition is trivially satisfied if R = 1, i.e., X∗0 = {[0, 1]p}. In this
case, we obtain the strongest result in (i) of Theorem 1 as soon as the second condition

is satisfied (recall that ΓAᾱ,d,pλ (X0) = ΓAᾱ,d,pλ (X0) ∩ C([0, 1]p) if R = 1). If R > 1, cn is a
decreasing polynomial in n with our choice of bn. This concludes that, with a suitably large
c, the assertions in (ii) and (iv) of Theorem 1 (or the assertions in (i) and (ii) of Corollary 1)
hold. Note that (iii) of Theorem 1 also holds trivially with this Z.

As max1≤j≤p log bj(Z) = p−1 log bn . log n, a regular grid satisfies the condition for
the optimal posterior contraction specified in Section 5 (see Remark 6). This makes a
regular grid very appealing for practical use given its simplicity, and there is little benefit of
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considering more complicated split-nets. The only exception is a set of fixed design points
commonly used in the literature of BART (Chipman et al., 2010; Ročková and van der Pas,
2020).

A regular grid can easily be extended to an irregular rectangular grid with boxes of
different sizes. If every mesh-size of an irregular checkerboard is asymptotically proportional

to 1/b
1/p
n , the above results still hold with minor modification. This extension is particularly

interesting in a regression setup where the distribution of covariates is explicitly available.
For example, it allows us to use the quantiles for grid points, which is a natural way to
generate a weakly balanced system (Castillo and Ročková, 2021).

Remark 9. Lemma 1 indicates that a large value of c is preferred in the sense of making the
required conditions mild. Furthermore, a large c does not harm the posterior contraction
rate, as the boundedness condition max1≤j≤p log bj(Z) . log n is satisfied for any c > 0.
Nonetheless, the empirical performance is affected by the size of c; an extremely large c pro-
duces unnecessarily many split-candidates, making the algorithm inefficient. Consequently,
we want to choose a suitable but not extremely large c. A good choice of c is model-specific.
In Section 6.2, we will see that density estimation requires approximation with respect to
the L∞-norm, which can be fulfilled by (i) of Corollary 1 with the continuity assumption
on f0. If λ . 1, d .

√
log n, minr,j len([Ξ∗r ]j) & 1, and minr,j αrj > 1/3, then c = 1 and

the corresponding cn satisfy the requirements for (i) of Corollary 1 and Lemma 1. The
most disappointing assumption is the lower bound for the minimum smoothness parame-
ter, minr,j αrj > 1/3. Although we recommend c = 1 as the default choice by assuming
such requirements, increasing c is recommended if the density function is thought to be less
smooth.7 In contrast, nonparametric regression with random design and binary classifica-
tion require approximation with respect to the L2-norm (see Sections 6.1 and 6.3), which
is obtained by (ii) of Corollary 1. One can easily verify that, if λ . 1, d .

√
log n, and

minr,j len([Ξ∗r ]j) & 1, then c = 1 and the corresponding cn satisfy the conditions for (ii) of
Corollary 1 and Lemma 1, and hence c = 1 is the default choice.

4.3.2 Fixed Design Points

Now we focus on a fixed design regression setup, where observed covariate values are readily
available. In this case, using fixed design points is particularly appealing in that (iii)
of Theorem 1 (coupled with this split-net) gives an approximation error relative to the
empirical probability measure as soon as it is suitably regular (the assertion does not require
a further bound on cn). The strategy is conventional in the literature of Bayesian CART
and BART (Chipman et al., 1998; Denison et al., 1998; Chipman et al., 2010).

Suppose that a split-net Z = {zi ∈ [0, 1]p, i = 1, . . . , n} consists of the observed covariate
values in a regression setup. We need to assume that the design points are sufficiently evenly
distributed in S0. The required assumption is formalized as follows.

(F) For every α ∈ (0, 1]d and every box Ψ ⊆ [0, 1]p with nPZ(Ψ)� 1, Z is (Ψ, α, L, S0)-
regular with L = blog2(cnPZ(Ψ))c for some constant c > 0.

7. A careful examination of the proof indicates that the isotropy assumption eliminates the condition
minr,j αrj > 1/3, so c = 1 works for all smoothness levels. This is because isotropy causes minr,j αrj = ᾱ,
and there is enough cancellation in simplifying (iv) of Theorem 1. To maintain anisotropy throughout
the paper, we do not investigate such a particular situation in greater detail.
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Although assumption (F) may appear nontrivial, it is actually not restrictive. As PZ is
defined as PZ(·) = b−1

n

∑bn
i=1 δzi(·), for Z chosen above, nPZ(Ψ) denotes the number of

split-candidates contained in Ψ. Hence, the condition nPZ(Ψ)� 1 implies that the number
of design points in Ψ increases with n, which is a certainly mild assumption. As noted in
Remark 5, if Z is balanced very well in S0 and there are no ties so that splits can occur
nPZ(Ψ) times, then Z is (Ψ, α, L, S0)-regular for L = blog2(nPZ(Ψ)+1)c. Our requirement
in (F) is milder with the aid of the constant c.

Lemma 2 (Fixed design points). Consider fixed design points Z = {zi, i = 1, . . . , n} satis-
fying assumption (F). If λd . (n/R)ᾱ/d

√
log n, minr PZ(Ξ∗r) & R−1, and R� n, then Z is

(Ξ∗r , αr, L0, S0)-regular for r = 1, . . . , R.

Proof. See Section A.2 in Appendix.

As nPZ(Ξ∗r) is the number of split-candidates in Ξ∗r , the condition minr PZ(Ξ∗r) & R−1

implies that the number of split-candidates should be balanced well among the R boxes. Our
condition λd . (n/R)ᾱ/d

√
log n slightly relaxes the condition λd .

√
log n of Theorem 4.1

in Ročková and van der Pas (2020) (for the case of global isotropy). The latter is obtained
if we consider the worst-case scenario ᾱ→ 0. We see that (iii) of Theorem 1 directly follows
from this lemma. As the design points are used as Z, the term ‖f0 − f̂0‖v,PZ is translated
into the approximation error relative to the empirical probability measure. In regression
setups, this fact makes fixed design points much more attractive than other split-nets in
the previous sections. We also note that the requirement max1≤j≤p log bj(Z) . log n for
the optimal posterior contraction is trivially satisfied.

5. BART in Nonparametric Regression

5.1 Posterior Contraction Rates

BART is an archetypal example of Bayesian forests (Chipman et al., 1998; Denison et al.,
1998; Chipman et al., 2010). For a fixed design Gaussian nonparametric regression, Ročková
and van der Pas (2020) and Ročková and Saha (2019) established L2 rate-optimal posterior
contraction of BART for high-dimensional isotropic regression functions. Our investigation
goes beyond these studies in three aspects: (i) we treat the variance parameter σ2 as
unknown with a prior; (ii) we consider both fixed and random regression design; and,
most importantly, (iii) the true function is assumed to be in the piecewise heterogeneous
anisotropic space introduced earlier. The last point significantly enlarges the optimality
scope of BART.

We separately deal with fixed and random designs. This section is focused on the fixed
design case, while the random design case will be considered in Section 6.1. The fixed design
regression model writes as

Yi = f0(xi) + εi, εi ∼ N(0, σ2
0), i = 1, . . . , n, (6)

where xi = (xi1, . . . , xip)
> ∈ [0, 1]p, i = 1, . . . , n, are fixed. The model is independent

but not identically distributed, and hence the asymptotic studies are established under
the product measure for the n observations. The general theory of posterior contraction
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requires an exponentially powerful test function of a semimetric under this product measure
(Ghosal and van der Vaart, 2017). In nonparametric regression with fixed design, such a
good test function can be directly constructed for the empirical L2-distance even when the
noise error is unknown (Ning et al., 2020; Jeong and Ghosal, 2021b; Lim and Jeong, 2023).
The general theory also requires desirable properties of the prior. We show that the tree
priors in Section 3 satisfy those conditions.

We impose the following assumptions on the true parameters f0 and σ2
0.

(A1) For d > 0, λ > 0, R > 0, X0 = {Ξ1, . . . ,ΞR}, and Aᾱ ∈ AR,dᾱ with ᾱ ∈ (0, 1], the

true function satisfies f0 ∈ ΓAᾱ,d,pλ (X0) or f0 ∈ ΓAᾱ,d,pλ (X0) ∩ C([0, 1]p).

(A2) It is assumed that d, p, λ, R, and ᾱ satisfy εn � 1, where

εn =

√
d log p

n
+ (λd)d/(2ᾱ+d)

(
R log n

n

)ᾱ/(2ᾱ+d)

. (7)

(A3) The true function satisfies ‖f0‖∞ .
√

log n.

(A4) The true variance parameter satisfies σ2
0 ∈ [C−1

0 , C0] for a sufficiently large C0 > 1.

Assumption (A1) means that the true regression function f0 lies on a sparse piecewise
heterogeneous anisotropic space. If the continuity assumption is further imposed, the ap-
proximation results in Theorem 1 are obtained under milder conditions. Assumption (A2) is
required to make our target rate εn tend zero. The boundedness condition in (A3) is made to
guarantee a sufficient prior concentration under the normal prior on the step-heights spec-
ified in (P2) below. Although the Gaussian prior can be replaced by a thick-tailed prior
(e.g., Ročková, 2020), we only consider the Gaussian prior to leverage its semi-conjugacy.
Assumption (A4) allows one to assign a standard prior to σ2, e.g., an inverse gamma dis-
tribution.

It is also important to choose a suitable split-net so that Theorem 1 can be deployed. For
regression with fixed design, we need an approximation result with respect to the empirical
L2-norm ‖·‖n defined as ‖f‖2n = n−1

∑n
i=1 |f(xi)|2. We make the following assumptions on

the split-net Z. The notation dep means the depth of a node, the number of nodes along
the path from the root node down to that node.

(A5) The split-net Z satisfies max1≤j≤p log bj(Z) . log n.

(A6) The split-net Z is suitably dense and regular to construct a Z-tree partition T̂ such
that there exists f̂0 ∈ FT̂ satisfying ‖f0 − f̂0‖n . ε̄n by Theorem 1.

(A7) The Z-tree partition T ∗ = {Ω∗1, . . . ,Ω∗R} approximating X∗0 satisfies maxr dep(Ω∗r) .
log n.

Assumption (A5) is required for a suitable bound of the entropy and a good prior concen-
tration (see Lemma 4). Assumption (A6) provides the desired approximation error with
respect to the ‖·‖n-distance. Owing to (iii) of Theorem 1 and Lemma 2, using fixed design
points as Z is of particular interest, as ‖·‖2,PZ is equivalent to the empirical L2-norm ‖·‖n
in this case. Assumption (A7) is a technical requirement which is certainly mild. This
condition is trivially satisfied if R is bounded.

Lastly, careful prior specification is required to obtain the optimal posterior contraction.
We consider the following prior distributions discussed in Section 3.

26



The art of BART

(P1) For a fixed T > 0, each tree T t, t = 1, . . . , T , is independently assigned a tree prior
with Dirichlet sparsity.

(P2) The step-heights B are assigned a normal prior with a zero-mean and a covariance
matrix whose eigenvalues are bounded below and above.

(P3) The variance parameter σ2 is assigned an inverse gamma prior.

Under the above assumptions and priors, the following theorem formalizes the posterior
contraction rate of model (6).

Theorem 2 (Nonparametric regression, fixed design). Consider model (6) with Assump-
tions (A1)–(A7) and the prior assigned through (P1)–(P3). Then, there exists a constant
M > 0 such that for εn in (7),

E0Π
{

(f, σ2) : ‖f − f0‖n + |σ2 − σ2
0| > Mεn

∣∣Y1, . . . , Yn

}
→ 0.

Proof. See Section A.3 in Appendix.

Intuitively, the rate in (7) resembles a near-minimax rate of estimation of high-dimensional
anisotropic functions. The first part in (7) is the near-minimax risk of the penalty for not
knowing the subset S0 (Raskutti et al., 2011). The second part in (7) is incurred by
anisotropic regression function estimation. Although λ and R can be a polynomial in n
with a suitably small power to satisfy εn → 0, a particularly interesting case is when both
are at most logc n for some c > 0. The second term then corresponds to the near-minimax
rate of anisotropic function estimation (Hoffman and Lepski, 2002). Whether the rate in
(7) is in fact the actual (near) minimax rate remains to be established. The answer to
this question is provided in the following subsection, where we formally derive the minimax
lower bound with respect to the L2-risk.

Remark 10. In isotropic regression using BART, Ročková and van der Pas (2020) assumed
that the first part of the rate in (7) is dominated by the second part, whereby the resulting
rate is simplified such that it only depends on the risk of function estimation. As this
restriction is not required, we keep the rate in the form of (7).

5.2 Minimax Lower Bound

In Section 5.1, we established the posterior contraction rate of BART under relaxed smooth-
ness assumptions. Although the rate in (7) consists of two logical components (a penalty
for variable selection uncertainty and a rate of anisotropic function estimation), it is not
guaranteed that the whole rate is (nearly) minimax optimal. While the minimax rates in
high-dimensional isotropic function estimation were studied exhaustively in Yang and Tok-
dar (2015), extensions to (piecewise) anisotropic functions have not been obtained in the
literature. We fill this gap by deriving a minimax lower bound in our general smoothness
setup. These results will certify that the rates obtained in Section 5.1 are indeed minimax
optimal (with respect to the L2-risk) up to a logarithmic factor.
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To deploy the conventional minimax theory, we consider the model with random design
given by

Yi = f0(Xi) + εi, Xi ∼ Q, εi ∼ N(0, σ2
0), i = 1, . . . , n, (8)

where Xi = (Xi1, . . . , Xip), i = 1, . . . , n, are p-dimensional random covariates and Q is a
probability measure such that supp(Q) ⊆ [0, 1]p. We assume (without loss of generality)
that σ2

0 is fixed to 1. To obtain a lower bound of the minimax rate, we use the Le Cam
equation (Birgé and Massart, 1993; Wong and Shen, 1995; Barron et al., 1999). Now the
density q of Q is assumed to satisfy the following assumption under which the L2(Q)-norm
is replaced by the L2-norm.

(M) There exist constants 0 < q ≤ q ≤ ∞ such that the density q satisfies q ≤ infx q(x) ≤
supx q(x) ≤ q.

We define the L2-minimax risk for any function space F ∈ L2 as

r2
n(F) = inf

f̂∈Bn
sup
f0∈F

Ef0,Q‖f̂ − f0‖22, (9)

where Bn is the space of all L2-measurable function estimators and Ef,Q is the expectation
operator under the model with f and Q. The Le Cam equation requires suitable upper
and lower bounds of the metric entropy of the target function space. We thus define the

bounded function space Γ
Aᾱ,d,p
λ,M (X0) = {f ∈ ΓAᾱ,d,pλ (X0) : ‖f‖∞ ≤ Mλ} for any M > 0. As

our contraction rate is the same for both ΓAᾱ,d,pλ (X0) and ΓAᾱ,d,pλ (X0)∩C([0, 1]p), we aim to

construct a lower bound of rn
(
Γ
Aᾱ,d,p
λ,M (X0) ∩ C([0, 1]p)

)
close enough to εn.

Theorem 3 (Minimax lower bound). Consider model (8) for σ2
0 = 1 with Assumption

(M). For d > 0, λ > 0, R > 0, a partition X0 = {Ξ1, . . . ,ΞR} of [0, 1]d, and a smoothness

parameter Aᾱ ∈ AR,dᾱ for ᾱ ∈ (0, 1] such that log len([Ξr]j) & −1/αrj, 1 ≤ r ≤ R, 1 ≤ j ≤ d,
there exists Md > 0 depending only on d such that

rn
(
Γ
Aᾱ,d,p
λ,M (X0) ∩ C([0, 1]p)

)
&

√
1

n
log

(
p

d

)
+Md

(
λd/ᾱ

n

)ᾱ/(2ᾱ+d)

.

Proof. See Section A.4 in Appendix.

As Md can be dependent on d, the correct interpretation of the result is with a bounded
d. Also, our contraction rate εn is derived under the condition ‖f0‖∞ .

√
log n, and hence

we assume that λ .
√

log n to match the two spaces. One can easily verify that the condition
log len([Ξr]j) & −1/αrj , 1 ≤ r ≤ R, 1 ≤ j ≤ d, leads to the restriction logR . d/ᾱ, which
removes the term R from our rate εn in (7). Putting the bounds together, εn matches the
lower bound up to a logarithmic factor.
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5.3 Numerical Study

In this section, we conduct a numerical study that shows the successful performance of
BART with a variety of multivariate functions. For competitors we consider Gaussian
process (GP) prior regression, gradient boosting (GB), random forest (RF), and neural
network (NN) models with the rectified linear unit (ReLU) activation function. GP prior
regression is widely exploited for multiple nonparametric regression and ensures theoretical
optimality for smooth functions (van der Vaart and van Zanten, 2008). GB is expected to
work similarly to BART. RF is expected to satisfactorily detect discontinuous boundaries
along the coordinates, as it is based on the additive tree ensembles. We know that NN
models adapt well to complicated function classes with the guaranteed optimal properties
(e.g., Petersen and Voigtlaender, 2018; Imaizumi and Fukumizu, 2019; Schmidt-Hieber,
2020; Hayakawa and Suzuki, 2020). Our numerical study shows that BART outperforms
these competitors in adapting to complicated smoothness structures.

Our synthetic datasets are generated from model (6) with a few different functions
f0 : [0, 1]p → R. To specify the simulation setups, we first introduce the following functions
that maps [0, 1]p to R:

basep : (x1, . . . , xp) 7→ sin

(
10
√
p

{ p∑
j=1

(xj − 0.5)2 − p

12

})
,

discont1 : (x1, . . . , xp) 7→ 1(x1 ≤ 0.5, x2 > 0.5) + 1(x1 > 0.5, x2 ≤ 0.5),

discont2p : (x1, . . . , xp) 7→ 1

( p∑
j=1

(xj − 0.5) ≤ 0,

p∑
j=1

(−1)j(xj − 0.5) > 0

)

+ 1

( p∑
j=1

(xj − 0.5) > 0,

p∑
j=1

(−1)j(xj − 0.5) ≤ 0

)
.

The function basep is viewed as having an isotropic smoothness and is used as the base
component for f0.8 The functions discont1 and discont2p render discontinuous jumps along
hyperplanes in different directions. To account for non-Lipschitz continuity and spatially
varying smoothness, we also define the blancmange function and the Doppler function as,

blanc(z) =
∞∑
k=0

|2kz − b2kz + 0.5c|
2k

, z ∈ [0, 1],

doppl(z; a) =
√
z(1− z) sin

(
2π(1 + a)

z + a

)
, z ∈ [0, 1],

which are illustrated in Figure 9.

Using the above functions, we describe six simulation scenarios. Specifically, Scenario k

is defined by model (6) with f0 = f
(k)
0 , k = 1, . . . , 6, where the true functions f

(k)
0 : [0, 1]p →

8. The argument of the sine function is chosen so that it is centered at zero and has a reasonable scale for
every p, allowing the period of the sine function to be roughly maintained with p. In particular, if Xj has
a uniform distribution on [0, 1] independently, one can easily see that (10/

√
p){

∑p
j=1(Xj − 0.5)2−p/12}

weakly converges to N(0, 5/9) as p→∞.
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Figure 9: Functions that exhibit non-Lipschitz continuity and spatially varying smoothness.

R are defined as

f
(1)
0 : (x1, . . . , xp) 7→ basep(x1, . . . , xp),

f
(2)
0 : (x1, . . . , xp) 7→ basep(x1, . . . , xp) + discont1(x1, . . . , xp),

f
(3)
0 : (x1, . . . , xp) 7→ basep(x1, . . . , xp) + discont2p(x1, . . . , xp),

f
(4)
0 : (x1, . . . , xp) 7→ basep(x1, . . . , xp) + 3blanc(4x1)doppl(x2; 0.1),

f
(5)
0 : (x1, . . . , xp) 7→ basep(x1, . . . , xp) + 3blanc(4x1)doppl(x2; 0.1)discont1(x1, . . . , xp),

f
(6)
0 : (x1, . . . , xp) 7→ basep(x1, . . . , xp) + 3blanc(4x1)doppl(x2; 0.1)discont2p(x1, . . . , xp).

The functions f
(1)
0 and f

(4)
0 represent globally isotropic and anisotropic functions, respec-

tively. The other functions produce discontinuous jumps that are either parallel or oblique

to the coordinate system. Specifically, f
(2)
0 and f

(5)
0 are regarded as piecewise isotropic and

anisotropic functions, respectively, as defined in Definition 2. The remaining functions f
(3)
0

and f
(6)
0 are similarly piecewise isotropic and anisotropic, but they differ from Definition 2

in that the jumps are not parallel to the coordinates. The two-dimensional case of each f
(k)
0

is visualized in Figure 10.

We generate the synthetic datasets under Scenarios 1–6. For each scenario, we consider
two sample sizes n ∈ {1000, 5000} and five dimension values p ∈ {2, 5, 10, 20, 50}, while
fixing σ2

0 = 0.52 for reasonable signal to noise ratios. Therefore, each scenario has 10
synthetic datasets generated with all possible combinations of n and p. For given predictor
variables Xi generated uniformly on [0, 1]p, the response variable Yi is generated from model
(6), i = 1, . . . , n.

All datasets are fitted by BART and the other competitors. For a fair comparison to the
other methods, we do not use the Dirichlet sparse prior in (3) for BART. Instead, we assign
a uniform prior that corresponds to the Dirichlet prior with concentration parameter 1,
with a priori assumption that all predictor variables contribute equally to the observations.
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Figure 10: Level plots of the true functions f
(k)
0 , k = 1, . . . , 6, for p = 2.

We fit BART with 200 trees using the prior that splits a node at depth ` with probability
α(` + 1)−β for α ∈ (0, 1) and β ∈ [0,∞], the original construction by Chipman et al.
(2010), which is implemented in the R package BART. However, as our theory resorts to the
exponentially decaying prior for splits as mentioned in Section 3.1, we also consider BART
with the prior that splits a node at depth ` with probability ν`+1 for ν ∈ (0, 1/2). We
choose α = 0.3, β = 2, and ν = 0.3 to make the two priors roughly similar for small `. We
will see that the two priors exhibit similar empirical behavior. For GP prior regression, the
squared exponential covariance kernel k(x, x′) = τ2 exp(‖x− x′‖2/l2) is employed with half
normal priors τ ∼ N+(0, 1) and l ∼ N+(0, 1). Optimizing other parameters in the posterior
distribution, the posterior mode of f0 is obtained in a closed-form expression (we also tried
other informative priors for τ and l and observed no significant difference). GB is trained
by the gbm package with trees of five splits and the number of trees determined via cross
validation (CV). RF is fitted by the randomForest package with 200 trees and the maximal
node size 5 or 50 for each tree. The NN models are trained by TensorFlow with the Keras
interface. We consider two NN models with two and four hidden layers with (64, 32) and
(256, 128, 64, 32) hidden units. All hidden units take the ReLU activation function with the
dropout of rate 0.3 for regularization. The description of the methods is summarized in
Table 1.

Figures 11 and 12 show the root mean squared prediction error (RMSPE) obtained by
the methods described in Table 1. The RMSPEs are estimated by randomly drawn out-of-

samples. For Scenario 1 with the global isotropic function f
(1)
0 , BART, GP regression, and
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Table 1: The description of the methods for simulation.

Method Description

BART1 BART with 200 trees
Node at depth ` is split with prior probability α(`+ 1)−β, α = 0.3, β = 2

BART2 BART with 200 trees
Node at depth ` is split with prior probability ν`+1, ν = 0.3

GP GP prior regression with the squared exponential covariance kernel
GB GB with trees of five splits and the number of trees determined via CV
RF1 RF of 200 trees with maximal node size 5 for each tree
RF2 RF of 200 trees with maximal node size 50 for each tree
NN1 NN model with two hidden layers and (64, 32) hidden units
NN2 NN model with four hidden layers and (256, 128, 64, 32) hidden units

GB perform similarly well in relatively lower dimensions (p = 2, 5, 10), but the performance

of GP degrades as p increases. For Scenario 2 with the piecewise isotropic function f
(2)
0 ,

BART clearly outperforms the other methods as expected. Interestingly, GB performs
substantially worse than BART in this situation, implying that BART detects discontinuous
jumps along the coordinates better. RF falls behind BART and GB although it is also

based on binary tree ensembles. For Scenario 3 with f
(3)
0 , GP and NN perform better

than BART and GB in lower dimensions; this makes sense given that BART cannot detect
such discontinuous jumps efficiently using the coordinate parallel splitting rule. However,
the performance of GP and NN deteriorates as p increases, and BART and GB beat the
competition in higher dimensions (p = 50). The interpretation of the results is similar for
the remaining scenarios. The major difference is that BART produces the best prediction
error in almost all cases of Scenarios 4–6. Given that BART is designed to capture local
anisotropy very effectively, this finding appears to be a natural consequence. Overall, GB
performs slightly worse than BART. As well as the setups used in our simulation, we also
tested many other tuning parameter setups and network structures for GB, RF, and NN,
but found no clear improvement.

Based on Figures 11 and 12, we can also compare the performance of the two BART
priors. BART with the polynomially decaying prior (the original BART prior by Chipman
et al. (2010)) works slightly better in lower dimensions (p = 2, 5), whereas the exponentially
decaying prior is marginally preferred in higher dimensions (p = 10, 20, 50). However,
because the difference is not significant, we conclude that there are no substantial differences
in empirical behavior between the two BART priors.

6. Further Applications

Section 5 establishes the posterior contraction rate of BART for the nonparametric regres-
sion model and justifies its near-minimax optimality. As our approximation theory only
requires conditions on a split-net, the results can be extended to statistical models beyond
nonparametric regression with fixed design. In this section, we consider other applications
such as nonparametric regression with random design, density estimation, and nonparamet-
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Figure 11: RMSPEs obtained from 50 replicated datasets of size n = 1000.

ric binary classification. Moreover, as the technical results in Section 5 hold even with the
single tree model (T = 1), one can find no theoretical advantages of BART over Bayesian
CART. A theoretical advantage of BART can be recognized if the true function has an addi-
tive structure (Linero and Yang, 2018; Ročková and van der Pas, 2020). Such an extension
is also considered in this section.
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Figure 12: RMSPEs obtained from 50 replicated datasets of size n = 5000.

6.1 Nonparametric Regression with Random Design

Theorem 2 quantifies the posterior contraction rate of nonparametric regression with fixed
design where the predictor variables are not random variables. Now we consider a ran-
dom design regression in (8) in which the model is treated as independent and identically
distributed. We establish the posterior contraction rate of BART for the random design
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model in (8). The main advantage of considering random design is that it provides the
L2,Q-contraction rate without empirical process theory, where Q is a probability measure
for Xi, whereas fixed design essentially provides the contraction rate with respect to the
empirical L2-norm as in Section 5. The random design assumption is also often necessary in
certain statistical models, for example, in measurement error models (Tuo and Wu, 2015)
or causal inference models (Hahn et al., 2020; Ray and van der Vaart, 2020). Note that
fixed design points in Section 4.3.2 cannot be used for a split-net, as the procedure is not
truly Bayesian if the prior is dependent on the data (Xi is now considered a part of the
observation.). Instead, a regular grid in Section 4.3.1 can be useful for this framework.

We consider model (8) for Q a probability measure that satisfies supp(Q) ⊆ [0, 1]p with
a bounded density. Unlike model (6), model (8) is independent and identically distributed.
The well-known fact that exponentially powerful tests exist with respect to the Hellinger
metric ρH(·, ·) allows one to establish the contraction rate for the corresponding metric
(Ghosal et al., 2000). However, in normal models, the Hellinger distance is matched to the
L2-type metric only when ‖f‖∞ and | log σ2| are bounded in the entire parameter space,
not only for the true values (e.g., Xie and Xu, 2018). Unlike in Theorem 2, this restriction
requires that f0 be uniformly bounded and a prior be appropriately truncated. Note also
that we need a good approximation error with respect to the integrated L2-norm. We
summarize the required modifications of (A3), (A6), (P2), and (P3).

(A3∗) The true function f0 satisfies ‖f0‖∞ ≤ C∗0 for some sufficiently large C∗0 > 0.

(A6∗) The split-net Z is suitably dense and regular to construct a Z-tree partition T̂ such
that there exists f̂0 ∈ FT̂ satisfying ‖f0 − f̂0‖2 . ε̄n by Theorem 1.

(P2∗) A prior on the compact support [−C1, C1] is assigned to the step-heights B for some
C1 > C∗0 .

(P3∗) A prior on the compact support [C
−1
2 , C2] is assigned to σ2 for some C2 > C0.

Assumption (A6∗) requires good approximability with respect to the L2-norm. Owing to
(ii) of Corollary 1 and Lemma 1, a regular grid in Section 4.3.1 can be useful to meet this
requirement (see Remark 9). We wrap up this section with a theorem that formalizes the
posterior contraction of BART for model (8).

Theorem 4 (Nonparametric regression, random design). Consider model (8) with Assump-
tions (A1), (A2), (A3∗), (A4), (A5), (A6∗), and (A7), and the prior assigned through (P1),
(P2∗), and (P3∗). Then, there exists a constant M > 0 such that for εn in (7),

E0Π
{

(f, σ2) : ‖f − f0‖2,Q + |σ2 − σ2
0| > Mεn

∣∣ (X1, Y1), . . . , (Xn, Yn)
}
→ 0.

Proof. See Section A.5 in Appendix.

6.2 Density Estimation

In addition to classical nonparametric regression, density estimation is an interesting branch
of nonparametric inference. There exist a few studies employing the Bayesian tree ensembles
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for density regression (Orlandi et al., 2021; Li et al., 2022). Here we consider a more
traditional density estimation problem. With the Bayesian tree ensembles, we only provide
a theoretical flavor for density estimation rather than practical implementation. It may be
difficult to develop an efficient algorithm for the setup considered here.

For some probability measure P that satisfies supp(P ) ⊆ [0, 1]p, suppose n independent
observations Xi, i = 1, . . . , n, are drawn from P , i.e.,

Xi ∼ P, i = 1, . . . , n. (10)

Assume that P is absolutely continuous with respect to the Lebesgue measure µ with the
true density p0. We assign a prior on pf indexed by f such that pf = ef/

∫
[0,1]p e

fdµ with

f assigned the forest priors in Section 3. We write f0 = log p0 while assuming (A1)–(A3).
That is, our d-sparsity for density estimation implies that the remaining p − d variables
are independent and uniformly distributed on [0, 1]p−d. This sparsity setup is useful in
high dimensions because the density cannot be estimated effectively without a stronger
assumption for p > n, such as isotropy. A similar sparsity structure was also imposed
in Liu et al. (2007) for high-dimensional density estimation. We leverage the existence of
an exponentially powerful test for the Hellinger metric ρH(·, ·). Owing to the relationship
between Hellinger balls and L∞ balls in density estimation with the exponential link, we
need an approximation result with respect to the L∞-norm. This is obtained by (iv) of
Theorem 1 with the continuity restriction on the true function. As (i) of Corollary 1 and
Lemma 1 show, a regular grid in Section 4.3.1 is useful to obtain the L∞-approximation
(see Remark 9). We make the following assumptions to satisfy this requirement.

(A1‡) For d > 0, λ > 0, R > 0, X0 = {Ξ1, . . . ,ΞR}, and Aᾱ ∈ AR,dᾱ with ᾱ ∈ (0, 1], the

true function satisfies f0 ∈ ΓAᾱ,d,pλ (X0) ∩ C([0, 1]p).

(A6‡) The split-net Z is suitably dense and regular to construct a Z-tree partition T̂ such
that there exists f̂0 ∈ FT̂ satisfying ‖f0 − f̂0‖∞ . ε̄n by Theorem 1.

We assign the tree prior with Dirichlet sparsity and a normal prior on the step-heights.
Under suitable assumptions, the following theorem provides the posterior contraction rate
for pf with respect to the Hellinger distance.

Theorem 5 (Density estimation). Consider model (10) with Assumptions (A1‡), (A2)–
(A3), (A5), (A6‡), and (A7), and the prior assigned through (P1)–(P2). Then, there exists
a constant M > 0 such that for εn in (7),

E0Π
{
f : ρH(pf , p0) > Mεn

∣∣X1, . . . , Xn

}
→ 0.

Proof. See Section A.5 in Appendix.

As mentioned in Section 5.1, the normal prior in (P2) is not necessary and a heavy-
tailed prior can relax the assumption on ‖f‖∞. As normal priors are not conjugate to the
model likelihood in the density estimation example, there is no clear benefit of adopting
(P2) anymore. This is also the case in the example of binary classification given in the next
subsection. Nevertheless, we employ (P2) for the sake of simplicity.
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Remark 11. As previously stated, the practical implementation of the density estimation
problem here is not as straightforward as the Gaussian regression case. We do not believe
that there is a highly efficient algorithm for density estimation with the type of Bayesian
forest considered here. One possible option is employing the idea of reversible jump moves
(Green, 1995), as in Linero (2022) for generalized BART for exponential family models.

6.3 Nonparametric Binary Classification

Nonparametric classification is useful for modeling categorical response variables. In the
original work by Chipman et al. (2010), BART for Gaussian regression was readily adapted
to probit regression using the latent variable expression (Albert and Chib, 1993). Later,
Kindo et al. (2016) devised a BART algorithm for multi-category response variables using
multinomial probit models. Although the probit models are particularly simple to imple-
ment, we consider nonparametric binary classification with the logistic link function to make
use of the classical theory (van der Vaart and van Zanten, 2008). The computation is still
straightforward owing to the latent variable expression with a Pólya-gamma distribution
(Polson et al., 2013).

For a binary response Yi ∈ {0, 1} and a random covariate Xi ∈ Rp, assume that we have
n independent observations (X1, Y1), . . . (Xn, Yn) from the binary classification model,

E0[1(Yi = 1)|Xi = x] = ϕ0(x), Xi ∼ Q, i = 1, . . . , n, (11)

for some ϕ0 : [0, 1]p → [0, 1] and some probability measure Q such that supp(Q) ⊆ [0, 1]p

with a bounded density. We thus consider a binary classification problem with random
design. We parameterize the probability function using the logistic link function H : R →
[0, 1] such that ϕf = H(f) for f on which the forest priors in Section 3 are assigned. For true
function ϕ0, we write f0 = H−1(ϕ0) while assuming (A1)–(A3) as in the density estimation
problem. The proof shows that the Hellinger metric is bounded by the L2(Q)-distance in
this example, and hence (A6∗) is assumed. Similar to Section 6.1, fixed design points are
not available for a split-net, but a regular grid in Section 4.3.1 can be useful. The following
theorem formalizes the posterior contraction rate with respect to the L2(Q)-distance.

Theorem 6 (Binary classification). Consider model (11) with Assumptions (A1)–(A3),
(A5), (A6∗), and (A7), and the prior assigned through (P1)–(P2). Then, there exists a
constant M > 0 such that for εn in (7),

E0Π
{
f : ‖H(f)−H(f0)‖2,Q > Mεn

∣∣ (X1, Y1), . . . , (Xn, Yn)
}
→ 0.

Proof. See Section A.5 in Appendix.

6.4 Additive Nonparametric Regression

Thus far we have considered statistical models with the true function f0 that belongs to the
piecewise heterogeneous anisotropic Hölder space with sparsity. As Theorems 2-6 hold even
with the single tree model (T = 1), the empirical success of BART is not well explained by
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the previous examples, although the empirical performance of BART should be attributed
to its fast mixing to some extent. However, Linero and Yang (2018) and Ročková and
van der Pas (2020) observed that BART optimally adapts to a larger class of additive
functions which single tree models do not adapt to. In this section, we consider additive
nonparametric regression to show theoretical advantages of BART over Bayesian CART.

We consider the nonparametric regression model with fixed design in (6), but the true
function f0 is assumed to have an additive structure with T0 components, f0 =

∑T0
t=1 f0t,

where each f0t belongs to the piecewise heterogeneous anisotropic Hölder space with sparsity.
We also need suitable conditions on a split-net Z such that the approximation theory works
for every additive component. We thus make the following modifications of the conditions
used in Section 5.1. In what follows, the subscript or superscript t stands for additive
component-specific extensions of the model elements used in Section 5.1.

(A1§) For dt > 0, λt > 0, Rt > 0, X0t = {Ξt1, . . . ,ΞtR}, and At,ᾱt ∈ A
Rt,dt
ᾱt with ᾱt ∈ (0, 1],

t = 1, . . . , T0, the true function satisfies f0 =
∑T0

t=1 f0t for f0t ∈ Γ
At,ᾱt ,dt,p
λt

(X0t) or

f0t ∈ Γ
At,ᾱt ,dt,p
λt

(X0t) ∩ C([0, 1]p).

(A2§) It is assumed that dt, pt, λt, Rt, and ᾱt satisfy εt,n � 1, where εt,n =
√

(dt log p)/n+

(λtdt)
dt/(2ᾱt+dt) ((Rt log n)/n)ᾱt/(2ᾱt+dt).

(A6§) The split-net Z is suitably dense and regular to construct a Z-tree partition T̂ t

such that for ε̄t,n = (λtdt)
dt/(2ᾱt+dt) ((Rt log n)/n)ᾱt/(2ᾱt+dt), there exists f̂0t ∈ FT̂ t

satisfying ‖f0t − f̂0t‖n . ε̄t,n by Theorem 1, t = 1, . . . , T0.

(A7§) The Z-tree partition T ∗t = {Ω∗t1, . . . ,Ω∗tR} approximating X0
∗
t satisfies maxr dep(Ω∗tr) .

log n, t = 1, . . . , T0.

These simply mean that the assumptions in Section 5.1 hold for every additive component
f0t. It is worth noting that we do not need to modify the prior distribution for additive
regression, which makes BART very appealing in that the procedure truly adapts to the
unknown true function. This is owing to the use of the Dirichlet prior in (3); the spike-and-
slab prior does not yield such a nice property (Ročková and van der Pas, 2020). The next
theorem provides the posterior contraction rate for the additive regression model.

Theorem 7 (Additive nonparametric regression). Consider model (6) with Assumptions
(A1§)–(A2§), (A3)–(A5), and (A6§)–(A7§) and the prior assigned through (P1)–(P3). If

T0 ≤ T , there exists a constant M > 0 such that for ε∗n =
√∑T0

t=1 ε
2
t,n,

E0Π
{

(f, σ2) : ‖f − f0‖n + |σ2 − σ2
0| > Mε∗n

∣∣Y1, . . . , Yn

}
→ 0.

Proof. See Section A.5 in Appendix.

Theorem 7 shows that the posterior contraction rate for additive regression is the sum of
the rates for the additive components. If the function space is reduced to a high-dimensional
isotropic class, then our rate ε∗n matches the minimax rate for high-dimensional additive
regression (Yang and Tokdar, 2015). We believe that ε∗n is indeed near-minimax optimal,
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which can be formally justified by combining the proof technique of our Theorem 3 and the
tools for additive scenarios developed in Yang and Tokdar (2015). Considering the length
of the paper, we do not pursue this direction in this study.

7. Discussion

In this study, we enlarged the scope of theoretical understanding of Bayesian forests in
the context of function estimation by considering relaxed smoothness assumptions. We
introduced a new class of piecewise anisotropic sparse functions, which form a blend of
anisotropy and spatial inhomogeneity. We derived a minimax lower bound for estimation
of these functions in high-dimensional regression setups, extending existing results obtained
earlier only for isotropic functions. We formalized that Bayesian forests attain the near-
optimal posterior concentration rate for these general function classes without any need for
prior modification.

Our results are extended to a general class of estimation problems including nonparamet-
ric regression with a fixed and random design, binary classification, and density estimation.
Although we do not consider further nonparametric statistical models with BART priors
in view of the length of the work, there are many other possible directions, such as mean-
variance function estimation (Pratola et al., 2020) and causal inference (Hahn et al., 2020).
Refer to Linero (2017), Tan and Roy (2019), and Hill et al. (2020) for extensive surveys of
the application of BART to various nonparametric models. Because our Lemmas 4–7 enjoy
a model-free framework, they will also be useful in investigating the posterior contraction
rates for other statistical models.
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Appendix

Appendix A. Technical Proofs

A.1 Proof of Theorem 1 and Corollary 1

We can prove Theorem 1 and Corollary 1 using a suitably chosen approximator f̂0 of f0.
The following proof shows that an approximator can be constructed with the step-heights
evaluated at any yrk ∈ Ω◦rk ∩ Ξ∗r , r = 1, . . . , R, k = 1, . . . , 2L.
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Proof of Theorem 1. As T ∗ is chosen as in (4) and every Ξ∗r is regular, note that Ω◦rk∩Ξ∗r
is not empty for every r and k. We fix any yrk ∈ Ω◦rk ∩Ξ∗r and let f̂0(x) =

∑
r,k 1Ω◦rk

(x)βrk,0
for βrk,0 = f0(yrk), so that

f0(x)− f̂0(x) =
R∑
r=1

2L∑
k=1

1Ω◦rk
(x)(f0(x)− f0(yrk)).

In what follows, we write S0 = {s0,1, . . . , s0,d}. We verify the assertion for each of the given
metrics.

Verification of (i) and (iv): We first prove (iv). Fix r and k. For any x ∈ Ω◦rk, define

x 7→ x∗ : x∗ = arg min
z∈cl(Ω◦rk∩Ξ∗r)

‖x− z‖1, (12)

where cl(·) denotes the closure of a set. If x ∈ cl(Ω◦rk ∩ Ξ∗r), it is trivial that x∗ = x, which
gives |f0(x) − f0(x∗)| = 0. If x /∈ cl(Ω◦rk ∩ Ξ∗r), there exists r′ 6= r such that x ∈ Ξ∗r′ for
Ξ∗r′ that is contiguous to Ξ∗r , and hence, x∗ ∈ cl(Ξ∗r) ∩ cl(Ξ∗r′). In this case, we have x 6= x∗

but xj = x∗j for j /∈ S∗0 ⊆ S0, where xj and x∗j are the jth entries of x and x∗, respectively.
As f0 is continuous and x, x∗ ∈ cl(Ξ∗r′), we obtain |f0(x)− f0(x∗)| = |h0(xS0)− h0(x∗S0

)| ≤
λ
∑d

j=1 |xs0,j − x∗s0,j |
αr′j . It follows that, for any x ∈ Ω◦rk with given r and k,

|f0(x)− f0(x∗)| ≤ λ
d∑
j=1

|xs0,j − x∗s0,j |
minr,j αrj ≤ λ|S∗0 |c

minr,j αrj
n , (13)

since ‖x − x∗‖∞ ≤ cn and xj = x∗j for j /∈ S∗0 . Hence, by the triangle inequality, for any
x ∈ Ω◦rk,

|f0(x)− f0(yrk)| ≤ λ|S∗0 |c
minr,j αrj
n + |f0(x∗)− f0(yrk)|. (14)

Let {Ω̃◦r1, . . . , Ω̃◦r2L} be the tree partition and (lr1, . . . lrd)
> be the counter vector returned by

Akd(Ξ∗r ;Z, α, L, S0) such that L =
∑d

j=1 lrj , r = 1, . . . , R. As x∗, yrk ∈ cl(Ω◦rk∩Ξ∗r) ⊆ cl(Ξ∗r)
and f0 is continuous,

|f0(x∗)− f0(yrk)| ≤ λ
d∑
j=1

len([Ω̃◦rk]s0,j )
αrj . λ

d∑
j=1

2−αrj lrj . (15)

Let l̃rj = Lᾱ/(dαrj) for r = 1, . . . , R, j = 1, . . . , d, such that αr1 l̃r1 = · · · = αrd l̃rd and

L =
∑d

j=1 l̃rj for every r (note that l̃rj may not be integers). Then, it can be easily seen

that lrj > l̃rj − 1 for every r, j, and hence

λ

d∑
j=1

2−αrj lrj ≤ 2λ

d∑
j=1

2−αrj l̃rj ≤ 2λd2−ᾱL/d. (16)

Putting the bounds together for every r and k, we obtain

‖f0 − f̂0‖∞ . λ|S∗0 |c
minr,j αrj
n + λd2−ᾱL/d.
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This verifies (iv).

Now, to prove (i), note that cn = 0 implies cl(Ω∗r) = cl(Ξ∗r) although possibly Ω∗r 6= Ξ∗r .
That is, (Ω∗r ∪ Ξ∗r) ∩ (Ω∗r ∩ Ξ∗r)

c is a null set with measure zero for every r. Therefore, in
evaluating the L∞-norm ‖f0 − f̂0‖∞ with the essential supremum, we can ignore such a
null set and focus on Ω∗r ∩ Ξ∗r . If x ∈ Ω◦rk ∩ Ξ∗r , then similar to (15) and (16), we obtain

that |f0(x) − f0(yrk)| . λ
∑d

j=1 2−αrj lrj . λd2−ᾱL/d since x, y ∈ Ξ∗r . Putting the bounds
together for every r and k, we conclude the assertion.

Verification of (ii) and (v): To verify (ii), we first show that when f0 ∈ ΓAᾱ,d,pλ (X0), for
any finite measure µ and any fixed v ≥ 1,

‖f0 − f̂0‖v,µ . ε̃n, if

R∑
r=1

µ(Ω∗r ∩ Ξ∗cr ) . (ε̃n/‖f0‖∞)v. (17)

Observe that ∫
|f0(x)− f̂0(x)|vdµ(x) =

R∑
r=1

2L∑
k=1

∫
Ω◦rk

|f0(x)− f0(yrk)|vdµ(x). (18)

The integral term in each summand is bounded by∫
Ω◦rk∩Ξ∗r

|f0(x)− f0(yrk)|vdµ(x) + µ(Ω◦rk ∩ Ξ∗cr )(2‖f0‖∞)v. (19)

Using (15) and (16), observe that, for every x, yrk ∈ Ω◦rk ∩ Ξ∗r ,

|f0(x)− f0(yrk)| . λd2−ᾱL/d.

The first term of (19) is thus bounded by a constant multiple of µ(Ω◦rk ∩ Ξ∗r)(λd2−ᾱL/d)v.
Note also that

∑
k µ(Ω◦rk ∩ Ξ∗cr ) = µ(Ω∗r ∩ Ξ∗cr ). Therefore,

‖f0 − f̂0‖vv,µ .
R∑
r=1

2L∑
k=1

{
µ(Ω◦rk ∩ Ξ∗r)

(
λd2−ᾱL/d

)v
+ µ(Ω◦rk ∩ Ξ∗cr )‖f0‖v∞

}
≤ µ([0, 1]p)

(
λd2−ᾱL/d

)v
+ ‖f0‖v∞

R∑
r=1

µ(Ω∗r ∩ Ξ∗cr ).

(20)

This leads to the assertion in (17). Now, to verify the first part of (ii), it suffices to show that∑R
r=1 Lebp(Ω

∗
r ∩ Ξ∗cr ) . (ε̃n/‖f0‖∞)v for Lebp, the Lebesgue measure on a p-dimensional

space. For each r, we only need to consider the case Ξ∗r ( Ω∗r , as Lebp(Ω
∗
r∩Ξ∗cr ) is maximized

in this case. Then, Ω∗r ∩ Ξ∗cr is not a box but a p-dimensional orthogonal polyhedron (for
example, with a rectangular hole). One can easily see that

Lebp(Ω
∗
r ∩ Ξ∗cr ) ≤

p∑
j=1

Leb1([Ω∗r ∩ Ξ∗cr ]j)
∏
k 6=j

len([Ω∗r ]k).
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It should be noticed that [Ω∗r ∩ Ξ∗cr ]j may not be an interval but can be an empty set
or a union of two isolated intervals. As Leb1([Ω∗r ∩ Ξ∗cr ]j) = 0 for j /∈ S∗0 ⊆ S0 and
maxj Leb1([Ω∗r ∩ Ξ∗cr ]j) ≤ 2cn, the last expression is bounded by

|S∗0 |max
j

Leb1([Ω∗r ∩ Ξ∗cr ]j)
∏
k 6=j

len([Ω∗r ]k)

 ≤ 2cn|S∗0 |vol(Ω∗r)
minj len([Ω∗r ]j)

,

where we use the notation vol(·) to denote the volume of a box. As len([Ω∗r ]j) ≥ len([Ξ∗r ]j)−
2cn for every j,

R∑
r=1

Lebp(Ω
∗
r ∩ Ξ∗cr ) ≤ 2cn|S∗0 |

minr,j len([Ξ∗r ]j)− 2cn
≤ 3cn|S∗0 |

minr,j len([Ξ∗r ]j)
, (21)

for every small cn > 0. It follows from this that
∑R

r=1 Lebp(Ω
∗
r ∩ Ξ∗cr ) . (ε̃n/‖f0‖∞)v if

cn . (ε̃n/‖f0‖∞)vminr,j len([Ξ∗r ]j)/|S∗0 |. The first part of (ii) is verified.

We now verify (v). Similar to (17), we first show that when f0 ∈ ΓAᾱ,d,pλ (X0)∩C([0, 1]p),
for any finite measure µ and any v ≥ 1,

‖f0 − f̂0‖v,µ . ε̃n, if c
vminr,j αrj
n

R∑
r=1

µ(Ω∗r ∩ Ξ∗cr ) . (ε̃n/(λ|S∗0 |))v. (22)

We start from the identity in (18). Similar to the above, one can observe that the integral
term in (18) is bounded by

µ(Ω◦rk ∩ Ξ∗r)
(
λd2−ᾱL/d

)v
+

∫
Ω◦rk∩Ξ∗cr

|f0(x)− f0(yrk)|vdµ(x). (23)

Using x∗ ∈ cl(Ω◦rk ∩ Ξ∗r) in (12), the second term of (23) is bounded by

2v−1

∫
Ω◦rk∩Ξ∗cr

(|f0(x)− f0(x∗)|v + |f0(x∗)− f0(yrk)|v)dµ(x)

≤ 2v−1µ(Ω◦rk ∩ Ξ∗cr )
{(
λ|S∗0 |c

minr,j αrj
n

)v
+
(
λd2−ᾱL/d

)v}
,

where the inequality holds by (13) combined with the fact that x, x∗ ∈ cl(Ξ∗r′) and x∗, yrk ∈
cl(Ξ∗r) for some r′ 6= r. Hence, (23) is further bounded by a constant multiple of

µ(Ω◦rk)
(
λd2−ᾱL/d

)v
+ µ(Ω◦rk ∩ Ξ∗cr )

(
λ|S∗0 |c

minr,j αrj
n

)v
,

and we obtain that

‖f0 − f̂0‖vv,µ .
R∑
r=1

2L∑
k=1

{
µ(Ω◦rk)

(
λd2−ᾱL/d

)v
+ µ(Ω◦rk ∩ Ξ∗cr )

(
λ|S∗0 |c

minr,j αrj
n

)v}
≤ µ([0, 1]p)

(
λd2−ᾱL/d

)v
+
(
λ|S∗0 |c

minr,j αrj
n

)v R∑
r=1

µ(Ω∗r ∩ Ξ∗cr ).

(24)
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This leads to (22). Now, to verify the second part of (ii), we take the Lebesgue measure for

µ. Then using the bound in (21), we have that (λ|S∗0 |c
minr,j αrj
n )v

∑R
r=1 Lebp(Ω

∗
r ∩Ξ∗cr ) . ε̃vn

if c
1+vminr,j αrj
n . (ε̃n/λ)vminr,j len([Ξ∗r ]j)/|S∗0 |v+1. This proves the assertion.
Verification of (iii): We again use the result in (17). Take PZ for µ. Then, it can be

seen that split-points can be picked up such that there are no zi on ∪r(Ω∗r∩Ξ∗cr ) by choosing
the points closest to the boundaries in every split. As we have

∑R
r=1 PZ(Ω∗r ∩ Ξ∗cr ) = 0 in

this case, (iii) easily follows.

Proof of Corollary 1. Verification of (i): As ε̄n & (λdR(log n)/n)1/3 and |S∗0 | ≤ d, we
obtain ε̄n/(λ|S∗0 |) & (n−1R log n)1/3(λd)−2/3 ≥ n−(1+2a2)/3 log−1/3 n. The assertion in (i)
follows by combining (iv) of Theorem 1 and the bound minr,j αrj ≥ a1.

Verification of (ii): Similar to above, we obtain

(ε̄n/‖f0‖∞)v min
r,j

len([Ξ∗r ]j)/|S∗0 | & (n−1λdR log n)v/3(log n)−v/2n−a3/d

& λv/3n−(v/3+a3)(log n)−(max{0,1−v/3}+v/6).

As λ & 1, we can verify the assertion in (ii) using (ii) of Theorem 1.

A.2 Proof of Lemmas 1–2

To prove Lemma 1, we first provide the following lemma, which shows that a regular grid
is dense and regular for arbitrary inputs under mild conditions.

Lemma 3 (Regular grid, general case). For a regular grid Z, we have the following asser-
tions.

(i) For any S ⊆ {1, . . . , p} and any S-chopped flexible tree partition Y = {Ψ1, . . . ,ΨJ}
with J ≥ 2, Z is (Y, 1/b

1/p
n )-dense if minr,j len([Ψr]j) ≥ b−1/p

n .

(ii) For any S ⊆ {1, . . . , p}, α ∈ (0, 1]d, Ψ ⊆ [0, 1]p, and L = blog2(b
1/p
n minj len([Ψ]j) −

1)c, Z is (Ψ, α, L, S)-regular if minr,j len([Ψr]j) ≥ 3b
−1/p
n .

Proof. Verification of (i): Consider a p-dimensional checkerboard
∏p
j=1[(ij−1)/b

1/p
n , ij/b

1/p
n ],

ij = 1, . . . , bn. Note that each point zi in Z is located at the center of each box of this

checkerboard. As the mesh-size of the checkerboard is 1/b
1/p
n , there exists an S-chopped

Z-tree partition T such that Υ(Y, T ) ≤ 1/b
1/p
n if minr,j len([Ψr]j) ≥ 1/b

1/p
n . The assertion

easily follows.

Verification of (ii): The condition minr,j len([Ψr]j) ≥ 3b
−1/p
n is made to ensure that there

is at least one split-point that is sufficiently far away from the boundaries of Ψ in every
coordinate. Observe that for any box Ψ ⊆ [0, 1]p, we obtain

b̃j(Z,Ψ) ≤ b1/pn len([Ψ]j) ≤ b̃j(Z,Ψ) + 1, j = 1, . . . , p. (25)

Thus, in every coordinate, midpoint-splits can occur bb1/pn minj len([Ψ]j)c− 1 times without
choosing the leftmost and rightmost split-points (these two points may produce too small
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cells). This allows us to choose L = blog2(b
1/p
n minj len([Ψ]j) − 1)c for an anisotropic k-d

tree (note that blogbxcc = blog xc, x > 0).
For any Ψ ⊆ [0, 1]p and j ∈ S, a mid-point split chooses db̃j(Z,Ψ)/2eth split-candidate

in [Z]j ∩ int([Ψ]j) as a split-point τj . The resulting two cells have at most bb̃j(Z,Ψ)/2c
split-points in coordinate j. Therefore, using (25),

max
k

len([Ω◦k]sj ) ≤
b̃j(Z,Ψ)2−lj + 1

b
1/p
n

≤ len([Ψ]sj )2
−lj + 1/b1/pn

≤ len([Ψ]sj )

(
2−lj +

1

b
1/p
n minr,j len([Ψr]j)

)
.

As L ≤ log2(b
1/p
n minj len([Ψ]j) − 1) ≤ log2(b

1/p
n minj len([Ψ]j)) − 1 and lj ≤ L for every

j = 1, . . . , d, the last expression is bounded by

len([Ψ]sj )(2
−lj + 21−L) ≤ 3len([Ψ]sj )2

−lj .

This leads to the assertion.

Proof of Lemma 1. If R = 1, it is obvious that Z is (X∗0, 0)-dense. If R > 1, by

(i) of Lemma 3, Z is (X∗0, 1/b
1/p
n )-dense since b

1/p
n minr,j len([Ξ∗r ]j) � 1. Also, (ii) of

Lemma 3 shows that Z is (Ξ∗r , αr, Lr, S0)-regular for Lr = blog2(b
1/p
n minj len([Ξ∗r ]j) − 1)c,

r = 1, . . . , R. To conclude that Z is (Ω∗r , αr, L0, S0)-regular for r = 1, . . . , R, we only need
to show that L0 ≤ minr Lr. As 2L0 � (n(λd)2/(R log n))d/(2ᾱ+d), L0 can be chosen to
be 2L0 ≤ C1(n(λd)2/(R log n))d/(2ᾱ+d) for small enough C1 > 0 as desired. Therefore, a

sufficient condition for L0 ≤ minr Lr is (n(λd)2/(R log n))d/(2ᾱ+d) . b
1/p
n minj len([Ξ∗r ]j).

Plugging in bn = ncp, the conditions in the lemma are obtained.

Proof of Lemma 2. Assumption (F) implies that Z is (Ξ∗r , αr, Lr, S0)-regular for Lr =
blog2(C1nPZ(Ξ∗r))c, for some C1 > 0, r = 1, . . . , R. It remains to show that L0 ≤
minr Lr. Recall that 2L0 � (n(λd)2/(R log n))d/(2ᾱ+d). As L0 can be chosen to be 2L0 ≤
C2(n(λd)2/(R log n))d/(2ᾱ+d) for small enough C2 > 0 as desired, a sufficient condition for
L0 ≤ minr Lr is given by (n(λd)2/(R log n))d/(2ᾱ+d) . nPZ(Ξ∗r) no matter what C1 is. Us-
ing that PZ(Ξ∗r) & R−1, the inequality is translated into λd . (n/R)ᾱ/d

√
log n.

A.3 Proof of Theorem 2

We deploy the standard theory on posterior contraction (Ghosal et al., 2000; Ghosal and
van der Vaart, 2007). The required conditions for the general theory are deferred to Lem-
mas 4–7.

Proof of Theorem 2. As σ2
0 is bounded below and above, |σ2− σ2

0| and |σ− σ0| have the
same rate. We will work with the latter for convenience. We write ρ2

n((f1, σ1), (f2, σ2)) =
‖f1 − f2‖2n + |σ1 − σ2|2 for any f1, f2 : Rp → R and any σ1, σ2 ∈ (0,∞). (Observe that
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√
‖·‖2n + | · |2 and ‖·‖n + | · | have the same order.) By Lemma 1 of Lim and Jeong (2023),

for every ε > 0 and (f1, σ1) with ‖f1 − f0‖2n + |σ1 − σ0|2 ≥ ε2, there exists a test φn such
that, for a universal constant K > 0,

E0φn ≤ e−Knε
2
, sup

(f,σ2):‖f−f1‖2n+|σ−σ1|2≤ε2/36

Ef,σ2(1− φn) ≤ e−Knε2 .

We write F∗ = ∪EFE , where the union is taken over all E generated by a given Z.
For the Kullback-Leibler (KL) divergence K(p1, p2) =

∫
log(p1/p2)p1 and its second order

variation V (p1, p2) =
∫
| log(p1/p2)−K(p1, p2)|2p1, define

Bn =

{
(f, σ) :

n∑
i=1

K(p0,i, pf,σ,i) ≤ nε2n,
n∑
i=1

V (p0,i, pf,σ,i) ≤ nε2n

}
.

By Theorem 8.19 of Ghosal and van der Vaart (2017), we only need to verify that there
exists a sieve Θn ⊆ F × (0,∞) such that for some c̄ > 0 and a sufficiently large c̄′ > 0,

Π(Bn) ≥ e−c̄nε2n , (26)

logN(εn,Θn, ρn) . nε2n, (27)

Π((f, σ) /∈ Θn)� e−c̄
′nε2n , (28)

We first verify (26). By direct calculations,

1

n

n∑
i=1

K(p0,i, pf,σ,i) =
1

2
log

(
σ2

σ2
0

)
− 1

2

(
1− σ2

0

σ2

)
+
‖f − f0‖2n

2σ2
,

1

n

n∑
i=1

V (p0,i, pf,σ,i) =
1

2

(
1− σ2

0

σ2

)2

+
σ2

0‖f − f0‖2n
σ2

.

Using the Taylor expansion, it is easy to see that, for any εn → 0, there exists a constant
C1 > 0 such that

Bn ⊇ {(f, σ) : ‖f − f0‖n ≤ C1εn, |σ − σ0| ≤ C1εn}.

First, note that log Π(σ2 : |σ − σ0| ≤ C1εn) & − log n if σ0 lies on a compact subset of
(0,∞). We will construct a good approximating ensemble denoted by Ê = (T̂ 1, . . . , T̂ T ).
By restricting the function space to the one constructed by Ê , we obtain

Π(f ∈ F∗ : ‖f − f0‖n ≤ C1εn) ≥ Π(Ê)Π(f ∈ FÊ : ‖f − f0‖n ≤ C1εn). (29)

Assumption (A6) states that, for a given split-net Z there exists a Z-tree partition T̂
producing f̂0 ∈ FT̂ satisfying ‖f0 − f̂0‖n . ε̄n. An approximating ensemble Ê can be

constructed by setting T̂ 1 to be T̂ and T̂ t, t = 2, . . . , T , to be root nodes with no splits,
i.e., T̂ t = {[0, 1]p}, t = 2, . . . , T . Then,

log Π(Ê) =
T∑
t=1

log Π(T̂ t) = log Π(T̂ 1) + (T − 1) log(1− ν) & −nε2n,

45



Jeong and Ročková

by Lemma 4. It remains to bound the second term of (29). By (A6), we have ‖f − f0‖n .
‖f − f̂0‖∞ + εn for some f̂0 ∈ FT̂ . We can construct f̂0 as in the proof of Theorem 1.

We denote this f̂0 by f
0,T̂ ,β̂, where β̂ is the corresponding step-heights, to emphasize the

dependence on T̂ and β̂. We shall now express f
0,T̂ ,β̂ using the approximating ensemble Ê

with corresponding step-heights B̂. As all trees in Ê are the root nodes except for the first

one T̂ 1, every step-heights vector B for Ê has the form B = (β1>, β2, . . . , βT )> ∈ RK̂+T−1

with β1 ∈ RK̂ and βt ∈ R, t = 2, . . . , T , where K̂ is the size of T̂ . Hence, letting B̂ =
(β̂>, 0, . . . , 0)>, we can write f

0,T̂ ,β̂ = f
0,Ê,B̂ for f

0,Ê,B̂ defined with the ensemble components

(Ê , B̂). Putting the bounds together, for some C2 > 0,

Π
(
f ∈ FÊ : ‖f − f0‖n ≤ C1εn

)
≥ Π

(
f ∈ FÊ : ‖f − f

0,Ê,B̂‖∞ ≤ C2εn

)
.

By Lemma 5, the right-hand side is bounded below as desired. Putting everything together,
we conclude that there exists a constant c̄ such that Π(Bn) ≥ e−c̄nε2n .

Next, we verify the entropy condition (27). We denote by ES,K1,...,KT the collection

of E = {T 1, . . . , T T } with given S,K1, . . . ,KT ; that is, each T t is an S-chopped Z-tree

partition of size Kt. With given E and M > 0, we first define the function spaces F (1)
E,M =

{fE,B ∈ FE : ‖B‖∞ ≤M} and F (2)
E,M = {fE,B ∈ FE : ‖B‖∞ > M} such that F (1)

E,M ∪F
(2)
E,M =

FE . We also define

F (`)

s̄n,K̄n,M
:=

⋃
E∈E

S,K1,...,KT
:|S|≤s̄n,Kt≤K̄n,t=1,...,T

F (`)
E,M , ` = 1, 2, (30)

for K̄n � nε2n/ log n and s̄n � nε2n/ log p. That is, F (`)

s̄n,K̄n,M
is the collection of all F (`)

E,M

such that Kt ≤ K̄n and |S| ≤ s̄n. We take Θn = F (1)

s̄n,K̄n,nM1
× (n−M2 , eM2nε2n) for large

M1,M2 > 0. It is easy to see that logN(εn, (n
−M2 , eM2nε2n), |·|) . nε2n. Combining this with

Lemma 6, we conclude that (27) is verified.
Lastly, we verify (28). First, it is easy to see that Π(σ2 /∈ (n−2M2 , e2M2nε2n))ec̄

′nε2n → 0
if M2 is large enough, using the tail probabilities of inverse gamma distributions. Choose
K̄n = bM3nε

2
n/ log nc and s̄n = bM3nε

2
n/ log pc for a sufficiently large M3 > 0. As we have

Π(F∗ \ F (1)

s̄n,K̄n,nM1
)ec̄
′nε2n → 0 by Lemma 7, the condition is verified.

Lemma 4 (Prior concentration of tree sizes). Let T̂ be the Z-tree partition defined in (5).
Under Assumptions (A5) and (A7), log Π(T̂ ) & −K̂ log n− d log p.

Proof. We will obtain a lower bound of Π(T̂ ). As this depends on splitting proportions
drawn from a Dirichlet prior, we first restrict the proportions to the set

V1 =

η ∈ Sp : ηj ≥
1

2d
, j ∈ S0,

∑
j /∈S0

ηj ≤
1

2d

 .

Fix η∗ = (η∗1, . . . , η
∗
p)
> ∈ Sp such that η∗j = 1/d, j ∈ S0, and η∗j = 0, j /∈ S0. It can

be easily shown that V1 ⊇ {η ∈ Sp : ‖η − η∗‖1 ≤ 1/(2d)}. By (54) of Lemma 12, it
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follows that Π(V1) ≥ e−C1d log p for some C1 > 0. Recall that the first R − 1 splits of T̂
form T ∗ = {Ω∗1, . . . ,Ω∗R}, the approximating tree partition of X∗0, and the remaining splits
generate T ◦r , the tree partition of Ω∗r constructed by an anisotropic k-d tree, r = 1, . . . , R.
Hence, we can write

Π(T̂ ) ≥ e−C1d log pΠ(T̂ |V1) = e−C1d log pΠ(T ∗ is a pruned tree of T̂ |V1)

R∏
r=1

Π(T ◦r |Ω∗r , V1).

We first focus on the prior probability Π(T ∗ is a pruned tree of T̂ |V1). To generate T ∗,
the root node is subdivided R − 1 times in a top-down manner. As each node splits with
probability ν`+1 for depth `, this occurs with probability at least ν(R−1) maxr dep(Ω∗r) no matter
what the partition is. Note also that, for every split, there are at most max1≤j≤p bj(Z)
splitting points and a splitting coordinate j is chosen by ηj , j ∈ S0, which is at least
1/(2d) on V1. Hence the prior probability of choosing the correct split is bounded below by
1/(2dmax1≤j≤p bj(Z)) for every split. This gives us a lower bound:

Π(T ∗ is a pruned tree of T̂ |V1) ≥ ν(R−1) maxr dep(Ω∗r)

(2dmax1≤j≤p bj(Z))R−1
.

It follows that log Π(T ∗ is a pruned tree of T̂ |V1) & −R log n as log(2dmax1≤j≤p bj(Z)) .
log n by (A5) and maxr dep(Ω∗r) . log n by (A7).

We now obtain a lower bound of Π(T ◦r |Ω∗r , V1). In splitting each Ω∗r , observe that 2k

cells split at depth k = 0, . . . , L0 − 1, and each cell splits with probability νdep(Ω∗r)+k+1 at
depth k. Note that closing each of the terminal nodes is of probability at least 1 − ν and
there are 2L0 terminal nodes. Hence, similar to the above,

Π(T ◦r |Ω∗r , V1) ≥ (1− ν)2L0

L0−1∏
k=0

(
νdep(Ω∗r)+k+1

2dmax1≤j≤p bj(Z)

)2k

= (1− ν)2L0 ν
(dep(Ω∗r)+1)(2L0−1)+(L0−2)2L0+2

(2dmax1≤j≤p bj(Z))2L0−1
,

where we used the formulae
∑a−1

k=0 2k = 2a − 1 and
∑a−1

k=0 k2k = (a − 2)2a + 2. This yields∑R
r=1 log Π(T ◦r |Ω∗r , V1) & −R2L0 log(2dmax1≤j≤p bj(Z)) − R2L0 maxr dep(Ω∗r) − RL02L0 &

−R2L0 log n since L0 . log n.

Putting everything together, we thus obtain log Π(T̂ ) & −R2L0 log n − d log p. As
K̂ = R2L0 , this verifies the assertion.

Lemma 5 (Prior concentration of tree learners). Define Ê and B̂ as in the proof of Theo-
rem 2. Under (A3) and (P2), for any C > 0,

− log Π
(
f ∈ FÊ : ‖f − f

0,Ê,B̂‖∞ ≤ Cεn
)
. nε2n.
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Proof. For any step-heights B1 = (β1>
1 , β2

1 , . . . , β
T
1 )>, B2 = (β1>

2 , β2
2 , . . . , β

T
2 )> ∈ RK̂+T−1

with Ê , we write fÊ,B1
, fÊ,B2

∈ FÊ to denote two additive tree functions that lie on the

same partition ensemble Ê . Evidently,

‖fÊ,B1
− fÊ,B2

‖∞ =

∥∥∥∥∥
T∑
t=1

βt1 −
T∑
t=1

βt2

∥∥∥∥∥
∞

≤ ‖β1
1 − β1

2‖1 +
T∑
t=2

|βt1 − βt2| ≤ ‖B1 −B2‖2
√
K̂∗,

where K̂∗ = K̂ + T − 1. It follows that, for some C1 > 0,

Π
(
f ∈ FÊ : ‖f − f

0,Ê,B̂‖∞ ≤ Cεn
)
≥ Π

(
B ∈ RK̂∗ : ‖B − B̂‖2 ≤ C1εn/

√
K̂∗

)
.

Recall that the eigenvalues of the covariance matrix for a normal prior is bounded below

and above. This means that there exists an invertible matrix D ∈ RK̂∗×K̂∗ such that DB
has a product of independent standard normal priors. Following the computations in page
216 of Ghosal and van der Vaart (2007), the last display is further bounded below by

Π

(
B ∈ RK̂∗ : ‖D(B − B̂)‖2 ≤ C1εnσ

−1
max(D−1)/

√
K̂∗

)
≥ 2−K̂∗/2e−‖DB̂‖

2
2Π

(
B ∈ RK̂∗ : ‖DB‖2 ≤ C1εnσ

−1
max(D−1)/

√
2K̂∗

)
,

(31)

where σmax(D−1) is the spectral norm of D−1, which is bounded by the assumption. As
the induced prior for ‖DB‖22 is a chi-squared distribution with degree of freedom K̂∗, we

obtain that for υn = εnσ
−1
max(D−1)/

√
K̂∗ . εn,

Π(B ∈ RK̂∗ : ‖DB‖2 ≤ C1υn/
√

2) ≥ 2/K̂∗

2K̂∗Γ(K̂∗/2)
(C1υn)K̂∗e−C

2
1υ

2
n/4.

The logarithm of the right-hand side is bounded below by a constant multiple of −(K̂ +

T ) log n − υ2
n & −nε2n. It only remains to bound e−‖DB̂‖

2
2 in (31). Observe that ‖β̂‖∞ =

‖f
0,T̂ ,β̂‖∞ ≤ ‖f0‖∞, where the inequality follows from our choice of f̂0 = f

0,T̂ ,β̂ (see the

proof of Theorem 1). Therefore,

‖DB̂‖22 ≤ σ2
max(D)‖β̂‖22 ≤ σ2

max(D)K̂‖β̂‖2∞ . K̂ log n,

as soon as ‖f0‖∞ .
√

log n.

Lemma 6 (Metric entropy). Let K̄n � nε2n/ log n and s̄n � nε2n/ log p. Define F (1)

s̄n,K̄n,M

for M > 0 as in (30). Under (A5), for any C > 0,

logN
(
εn,F (1)

s̄n,K̄n,nC
, ‖·‖n

)
. nε2n.
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Proof. Observe that the exponential of the left-hand side is bounded by∑
S:|S|≤s̄n

∑
(K1,...,KT ):Kt≤K̄n,t=1,...,T

∑
E∈E

S,K1,...,KT

N
(
εn,F (1)

E,nC , ‖·‖∞
)
.

(32)

For any given E and B1, B2 ∈ R
∑T
t=1 K

t
,

‖fE,B1 − fE,B2‖∞ = sup
x∈[0,1]p

∣∣∣∣∣∣
T∑
t=1

Kt∑
k=1

(βt1k − βt2k)1(x ∈ Ωt
k)

∣∣∣∣∣∣ ≤
(

T∑
t=1

Kt

)
‖B1 −B2‖∞.

Observe that the cardinality of the set ES,K̄1,...,K̄T is equal to
∏T
t=1 |TS,Kt,Z | ≤ |TS,K̄n,Z |

T .
Hence, (32) is further bounded by

(K̄n)T ×N
(

εn
TK̄n

,
{
B ∈ RTK̄n : ‖B‖∞ ≤ nC

}
, ‖·‖∞

) ∑
S:|S|≤s̄n

|TS,K̄n,Z |
T . (33)

Observe that |TS,K̄n,Z | ≤ (|S|max1≤j≤p bj)
K̄n , as all splits are restricted to S and each one

has at most max1≤j≤p bj split points. It follows that∑
S:|S|≤s̄n

|TS,K̄n,Z |
T ≤

s̄n∑
s=1

(
p

s

)(
s max

1≤j≤p
bj

)TK̄n
≤ s̄nps̄n

(
s̄n max

1≤j≤p
bj

)TK̄n
.

Therefore, (33) is further bounded by (K̄n)T snp
s̄n(s̄n max1≤j≤p bj)

TK̄n(3TK̄nn
C/εn)TK̄n .

The logarithm is bounded by a constant multiple of s̄n log p + K̄n log n . nε2n as soon as
max1≤j≤p bj . log n.

Lemma 7 (Prior mass of sieve). Let K̄n = bM ′nε2n/ log nc, and s̄n = bM ′nε2n/ log pc for a

sufficiently large M ′ > 0. Define F (1)

s̄n,K̄n,M
for M > 0 as in (30). Under (P1) and (P2),

for any C > 1 and C ′ > 0,

Π(F∗ \ F (1)

s̄n,K̄n,nC
)� e−C

′nε2n .

Proof. Note that F∗ \ F (1)

s̄n,K̄n,nC
= F (2)

s̄n,K̄n,nC
∪ (F∗ \ (F (1)

s̄n,K̄n,nM1
∪ F (2)

s̄n,K̄n,nM1
)). We will

give a union bound. First, observe that

Π(F (2)
E,M ) = Π(B ∈ R

∑T
t=1 K

t
: ‖B‖∞ > M) ≤ Π

(
B ∈ R

∑T
t=1 K

t
: ‖DB‖∞ >

Mσ−1
max(D−1)√∑T
t=1K

t

)
,

where D is the matrix with bounded singular values that makes the prior for DB the
standard normal distribution. Using the tail probability of normal distributions,

Π
(
F (2)

s̄n,K̄n,nC

)
≤

∑
S:|S|≤s̄n

∑
(K1,...,KT ):Kt≤K̄n,t=1,...,T

∑
E∈E

S,K1,...,KT

Π
(
F (2)

E,nC
)

≤ (K̄n)T s̄np
s̄n

(
s̄n max

1≤j≤p
bj

)TK̄n
2TK̄ne

−σ−2
max(D−1)n2C/(2TK̄n).
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Since TK̄n . nε2n/ log n� n and σmax(D−1) is bounded, if max1≤j≤p bj . log n and C > 1,

the right most side of the expression is o(e−C
′nε2n) for any C ′ > 0. Now observe that

Π
(
F∗ \ (F (1)

s̄n,K̄n,nM1
∪ F (2)

s̄n,K̄n,nM1
)
)

≤
T∑
t=1

Π(Kt > K̄n) + Π(S : s > s̄n|Kt ≤ K̄n, t = 1, . . . , T ).
(34)

The prior satisfies log Π(Kt > K̄n) . −K̄n log K̄n for every t = 1, . . . , T (see Lemma
5.1 and Corollary 5.2 of Ročková and Saha (2019)). Using that K̄n � nε2n/ log n and
nε2n & nd/(2ᾱ+d) ≥ n1/3, we obtain −K̄n log K̄n . −K̄n log n. To bound the second term of
the right-hand side of (34), we define the set

V2 =

η ∈ Sp : min
S:|S|=s̄n

∑
j /∈S

ηj ≥ κn

 ,

for κn specified below. By (55) of Lemma 12, we show that the prior satisfies Π(V2) ≤
e−C1(ξ−1)s̄n log p−log κn for some C1 > 0. Hence,

Π(S : s > s̄n|Kt ≤ K̄n, t = 1, . . . , T ) ≤ e−C1(ξ−1)s̄n log p−log κn

+ Π(S : s > s̄n|Kt ≤ K̄n, t = 1, . . . , T, V c
2 ).

The term Π(S : s > s̄n|Kt ≤ K̄n, t = 1, . . . , T, V c
2 ) is interpreted as the prior probability

that splits occur along more than s̄n coordinates with at most TK̄n splits given V c
2 . If η is

available, this probability is

1−
∑

S:|S|≤s̄n

∑
j∈S

ηj

TK̄n

≤ 1−

 max
S:|S|≤s̄n

∑
j∈S

ηj

TK̄n

.

Conditional on V c
2 , the last expression is further bounded by 1 − (1 − κn)TK̄n ≤ κnTK̄n.

Choosing κn = e−(C′+1)nε2n , the resulting bound for (34) gives Π(F∗ \ F (1)

s̄n,K̄n,nC
)� e−C

′nε2n

as M ′ is sufficiently large.

A.4 Proof of Theorem 3

Our proof is similar to the proof of Theorem 3.1 in Yang and Tokdar (2015), which is based
on the Le Cam equation (Birgé and Massart, 1993; Wong and Shen, 1995; Barron et al.,
1999). A minimax lower bound of nonparametric regression can be obtained by solving the
Le Cam equation with the metric entropy of the target function space (Yang and Barron,
1999). We first formalize this result in the following lemma, which is a corollary induced
by Theorem 1 of Yang and Barron (1999).

Lemma 8 (Minimax lower bound in nonparametric regression). For a function space F ⊂
L2(Q), suppose there are upper and lower bounds of the metric entropies as

logN(ε,F , ‖·‖2,Q) ≤ V ∗(ε),
logD(ε,F , ‖·‖2,Q) ≥ V∗(ε).

(35)
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Suppose that γ̄n is the solution to V ∗(γ̄n) � nγ̄2
n. Then, for the nonparametric regression

model in (8), the sequence γn such that V∗(γn) � nγ̄2
n satisfies

rn(F , Q) & γn,

where rn is the L2(Q)-minimax risk defined as rn(F , Q) = inf f̂∈Bn supf0∈F Ef0,Q‖f̂ −f0‖22,Q
with Bn the space of all L2(Q)-measurable function estimators.

Proof. By Theorem 1 of Yang and Barron (1999), the assertion holds for every statistical
model if (35) is replaced by

logN(ε,F ,K1/2) ≤ V ∗(ε),
logD(ε,F , ‖·‖2,Q) ≥ V∗(ε),

for the KL divergence K. Let pf (x, y) = (2πσ2
0)−1/2 exp{−(y−f(x))2/(2σ2

0)}q(x). One can
easily observe that K(pf1 , pf2) = (2σ2

0)−1‖f1 − f2‖22,Q. The assertion in the lemma follows
immediately.

The key to obtaining a sharp minimax lower bound γn is to establish the bounds V ∗ and
V∗ as tight as possible. In the Lemmas 9–10 below, we provide entropy estimates for the d-
dimensional (non-sparse) piecewise heterogeneous anisotropic Hölder space. While an upper
bound of the metric entropy is well known for isotropic classes (e.g., Theorem 2.7.1 of van der
Vaart and Wellner (1996)), we believe that there is no available result on more complicated
function space in the literature, even for the simple anisotropic classes in Definition 1.
Lemma 11 concatenates the results to obtain entropy bounds for the sparse function space.

Below we write HAᾱ,dλ,M (X0) = {h ∈ HAᾱ,dλ (X0) : ‖h‖∞ ≤Mλ} for M > 0. For the upper

bound of the metric entropy, we consider a bound for the space HAᾱ,d1,M (X0), which is not

worse than that for HAᾱ,d1,M (X0)∩C([0, 1]d). This implies that the Le Cam equation gives the
same minimax lower bound for the two spaces.

Lemma 9 (Covering number, upper bound). For d > 0, R > 0, a partition X0 =

{Ξ1, . . . ,ΞR} of [0, 1]d, and a smoothness parameter Aᾱ ∈ AR,dᾱ for ᾱ ∈ (0, 1] such that
log len([Ξr]j) & −1/αrj, 1 ≤ r ≤ R, 1 ≤ j ≤ d, there exist constants ε0 > 0 and M0 > 1
such that for any ε < ε0,

logN
(
ε,HAᾱ,d1,M (X0), ‖·‖∞

)
≤ (M0d/ε)

d/ᾱ. (36)

Proof. To express the assumption more explicitly, let C1 > 0 be a constant such that
log len([Ξr]j) ≥ −C1/αrj for every r and j. For a sufficiently small C2 > 0, choose δd ∈
(0,min{e−C1 , C2/d}) such that minr,j len([Ξr]j)δ

−1/αrj
d > 1. On each box cl(Ξr), consider a

Cartesian product of grid points,

G̃r :=
d∏
j=1

{
ILrj , I

L
rj + urj , I

L
rj + 2urj , . . . , I

L
rj + len([Ξr]j)

}
,
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where urj = len([Ξr]j)/dlen([Ξr]j)δ
−1/αrj
d e is the mesh-size and ILrj is the left-boundary of

Ξr in coordinate j. Observe that

m̃r := |G̃r| =
d∏
j=1

(1 + dlen([Ξr]j)δ
−1/αrj
d e) ≤

d∏
j=1

(2 + len([Ξr]j)δ
−1/αrj
d ) ≤ vol(Ξr)3

dδ
−d/ᾱ
d .

(37)

We write the elements of G̃r as x`r = (x`r1, . . . , x
`
rd)
>, i.e., x`r ∈ G̃r, ` = 1, . . . , m̃r, r =

1, . . . , R. For every h ∈ HAᾱ,d1,M (X0), we define the vector

Gh =
(
bh(x1

1)/δdc, . . . , bh(xm̃1
1 )/δdc, . . . , bh(x1

R)/δdc, . . . , bh(xm̃RR )/δdc
)>

.

Because mesh-size satisfies urj ≤ δ
1/αrj
d , for every x = (x1, . . . , xd)

> ∈ Ξr with given r,

there exists a point x`r ∈ G̃r such that
∑d

j=1 |xj − x`rj |αrj ≤ dδd. Hence, for every such x

and x`r, all functions h1, h2 ∈ H
Aᾱ,d
1,M (X0) such that Gh1 = Gh2 satisfy

|h1(x)− h2(x)| ≤ |h1(x`r)− h2(x`r)|+ 2
d∑
j=1

|xj − x`rj |αrj ≤ δd + 2dδd.

As this holds for every 1 ≤ r ≤ R, it follows that ‖h1 − h2‖∞ ≤ 3dδd for any h1, h2 such
that Gh1 = Gh2. This means that, whenever 3dδd < ε0 for some small constant ε0 > 0, the

covering number N(3dδd,H
Aᾱ,d
1,M (X0), ‖·‖∞) is bounded by the number of possible vectors

Gh for h that ranges over HAᾱ,d1,M (X0).

Without loss of generality, we now assume that (x`r)
m̃r
`=1 in G̃r are appropriately sorted

so that every two successive values differ in only one coordinate by mesh-size; that is, for
every ` > 1, there exists `′ < ` such that

∑d
j=1 |x`

′
rj − x`rj |αrj = u

αrj′

rj′ ≤ δd for some j′. For

the enumeration, we begin with the first element of Gh, which is defined with x1
1 ∈ G̃1. As

‖h‖∞ ≤ M , the number of possible values of bh(x1
1)/δdc does not exceed 2M/δd + 1. For

every remainder defined with x`1 ∈ G̃1, 2 ≤ ` ≤ m̃1, there exists `′ < ` such that

|bh(x`
′

1 )/δdc − bh(x`1)/δdc|

≤ δ−1
d |h(x`

′
1 )− h(x`1)|+ |h(x`

′
1 )/δd − bh(x`

′
1 )/δdc|+ |h(x`1)/δd − bh(x`1)/δdc|

≤ δ−1
d

d∑
j=1

|x`′j − x`j |αrj + 2 ≤ 3.

It follows that, for a given bh(x`
′

1 )/δdc, the number of possible values of bh(x`1)/δdc is at
most 7, which is the case for every ` > 1. Putting the bounds together, the number of
possible values of the first m1 elements of Gh is bounded by (2M/δd + 1)7m̃1−1. Next,

because h ∈ HAᾱ,d1,M (X0) can be discontinuous at the boundaries of the pieces of X0, the

(m̃1 + 1)th element of Gh, defined with x1
2 ∈ G̃2, has no restriction. Similar to the case

with r = 1 above, the number of possible values of bh(x1
2)/δdc at most 2M/δd + 1, and
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the number of possible values of bh(x`2)/δdc is at most 7 for every 2 ≤ ` ≤ m̃2. This
concludes that the number of possible values of the next m̃2 elements of Gh is bounded
by (2M/δd + 1)7m̃2−1. Concatenating this for all r, the number of possible vectors Gh is
clearly at most

∏R
r=1(2M/δd + 1)7m̃r−1 = (2M/δd + 1)R7m̃−R, where m̃ =

∑R
r=1 m̃r. Using

(37), it is evident that m̃ ≤ 3dδ
−d/ᾱ
d because

∑R
r=1 vol(Ξr) = 1. Taking ε = 3dδd,

logN(ε,HAᾱ,d1,M (X0) ∩ C([0, 1]d), ‖·‖∞) ≤ R log(6Md/ε+ 1) + 3d(3d/ε)d/ᾱ log 7.

As log(6Md/ε + 1) . (6Md/ε)d/ᾱ and logR . d/ᾱ (by the condition log len([Ξr]j) &
−1/αrj), the last expression is bounded by (M0d/ε)

d/ᾱ for some M0 > 0. To complete the
proof, we must now show that there exists a small constant ε0 > 0 such that ε = 3dδd < ε0.
This is achieved by a sufficiently small C2 > 0 since δd < C2/d.

Lemma 10 (Packing number, lower bound). For d > 0, R > 0, a partition X0 =

{Ξ1, . . . ,ΞR} of [0, 1]d, and a smoothness parameter Aᾱ ∈ AR,dᾱ for ᾱ ∈ (0, 1] such that
log len([Ξr]j) & −1/αrj, 1 ≤ r ≤ R, 1 ≤ j ≤ d, there exist constants ε1 > 0 and M1 > 1 such

that for any ε < εd1, there are N ≥ exp{1/(Md
1 ε)

d/ᾱ} functions hi ∈ H
Aᾱ,d
1,M (X0) ∩ C([0, 1]d),

i = 1, . . . , N , and h0 = 0 satisfying∫
[0,1]d

hi(x)dxj = 0, 0 ≤ i ≤ N, 1 ≤ j ≤ d, (38)

‖hi − hk‖2 ≥ ε, 0 ≤ i ≤ k ≤ N. (39)

Proof. Similar to above, let C1 ≥ log 8 be a constant such that log len([Ξr]j) ≥ −C1/αrj for
every r and j and choose a constant δ ∈ (0,min{e−C1 ,M}] such that len([Ξr]j)δ

−1/αrj > 1,
1 ≤ r ≤ R, 1 ≤ j ≤ d. On each box Ξr, consider a Cartesian product of grid points,

Gr :=
d∏
j=1

{
ILrj +

urj
2
, ILrj +

3urj
2
, ILrj +

5urj
2
, . . . , ILrj + len([Ξr]j)−

urj
2

}
,

where urj = len([Ξr]j)/dlen([Ξr]j)δ
−1/αrje is the mesh-size and ILrj is the left-boundary of

Ξr in coordinate j (cf. the grid G̃r used in the proof of Lemma 9). Note that

mr := |Gr| =
d∏
j=1

dlen([Ξr]j)δ
−1/αrje ≥ vol(Ξr)δ

−d/ᾱ. (40)

We write the elements of Gr as x`r = (x`r1, . . . , x
`
rd)
>, i.e., x`r ∈ Gr, ` = 1, . . . ,mr, r =

1, . . . , R. We define the univariate kernel K(t) = t1(|t| ≤ 1/2)+(sgn(t)− t)1(1/2 < |t| ≤ 1),
t ∈ R, supported on [−1, 1]. Clearly, K is 1-Lipschitz and satisfies

∫
K(t)dt = 0.

We define the function

φ`r(x) =
δ

2d+1

d∏
j=1

K

(
xj − x`rj
urj/2

)
, 1 ≤ ` ≤ mr, 1 ≤ r ≤ R,
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which is supported on X `r :=
∏d
j=1[x`j−urj/2, x`j+urj/2] with the center x`r. As ‖K‖∞ = 1/2,

we obtain ‖φ`r‖∞ ≤ δ‖K‖d∞/2d+1 ≤ 1 for a suitable C1 > 0. Using the Lipschitz continuity
of K and the inequality |

∏
j aj −

∏
j bj | ≤

∑
j |aj − bj | for any aj , bj ∈ [−1, 1], we have that

for any x, y on the support X `r ,

|φ`r(x)− φ`r(y)| ≤ δ

2

d∑
j=1

∣∣∣∣xj − yjurj

∣∣∣∣ ≤ δ

2

d∑
j=1

∣∣∣∣xj − yjurj

∣∣∣∣αrj ≤ d∑
j=1

|xj − yj |αrj ,

where we used the inequalities x ≤ xa for any x ∈ [0, 1] and a ∈ [0, 1], and urj ≥ 1/(2δ−1/αrj )
as soon as len([Ξr]j)δ

−1/αrj ≥ 1/2 (note that dxe ≤ 2x for x ≥ 1/2). This shows that φ`r ∈
Hαr,d1 (X `r ) for every 1 ≤ ` ≤ mr and 1 ≤ r ≤ R. For a binary vector ω̃r = (ω̃1

r , . . . , ω̃
mr
r )> ∈

{0, 1}mr , define the continuous function hω̃r =
∑mr

`=1 ω̃
`
rφ
`
r supported on Ξr. As

∫
φ`r(x)dxj =

0 for every j and each φ`r is a shifted copy of another, we obtain
∫
hω̃r(x)dxj = 0 for every

j and hω̃r ∈ H
αr,d
1 (Ξr). Let m =

∑R
r=1mr, which satisfies m ≥ δ−d/ᾱ by (40). We

write ω = (ω1, . . . , ωm)> = (ω̃>1 , . . . , ω̃
>
R)> ∈ {0, 1}m and define hω =

∑R
r=1 hω̃r . Then, as

‖hω‖∞ = maxr,`‖φ`r‖∞ ≤ δ ≤ M and each hω̃r is zero at all points on the boundary of Ξr,

it is easy to see that hω ∈ H
Aᾱ,d
1,M (X0)∩C([0, 1]d) and

∫
hω(x)dxj = 0. We also have that for

any ω, ω′ ∈ {0, 1}m,

‖hω − hω′‖22 ≥

[
m∑
b=1

(ωb − ω′b)2

]
min
r,`

∫
[φ`r(x)]2dx = ρ(ω, ω′)

(
δ2‖K‖2d2

23d+2

)
min
r

d∏
j=1

urj , (41)

where ρ(ω, ω′) =
∑m

b=1 1(ωb 6= ω′b) is the Hamming distance between ω and ω′. As m ≥
δ−d/ᾱ ≥ δ−1 ≥ eC1 > 8, the Gilbert-Varshamov bound (Lemma 2.9 of Tsybakov (2008)) says
that there exist N ≥ 2m/8 binary strings ω(1), . . . , ω(N) ∈ {0, 1}m such that ρ(ω(`), ω(`′)) ≥
m/8, 0 ≤ ` < `′ ≤ N , with ω(0) = 0. As minr

∏d
j=1 urj ≥ 1/(2dδ−d/ᾱ) and ‖K‖22 = 1/6, the

lower bound in (41) gives that for every 0 ≤ ` < `′ ≤ N ,

‖hω(`) − hω(`′)‖22 ≥
m

8

(
δ2

6d23d+2

)
min
r

d∏
j=1

urj ≥
δ2

2596d
.

Letting ε = δ/
√

2596d, the previous lower bound gives ‖hω(`) − hω(`′)‖2 ≥ ε while N ≥
2m/8 ≥ exp(δ−d/ᾱ(log 2)/8) ≥ exp(1/(2896d/2ε)d/ᾱ). As δ is a constant, this holds for every
ε < ε1/96d/2 for some ε1 > 0.

Lemma 11 (Entropy with sparsity). For d > 0, λ > 0, R > 0, a partition X0 =

{Ξ1, . . . ,ΞR} of [0, 1]d, and a smoothness parameter Aᾱ ∈ AR,dᾱ for ᾱ ∈ (0, 1] such that,
there exist ε2 > 0 and M2 > 1 such that for any ε < ε2 and ε′ < εd2,

logN
(
ε,Γ

Aᾱ,d,p
λ,M (X0), ‖·‖2

)
≤ log

(
p

d

)
+
(M2λd

ε

)d/ᾱ
, (42)

logD
(
ε′,Γ

Aᾱ,d,p
λ,M (X0) ∩ C([0, 1]p), ‖·‖2

)
≥ log

(
p

d

)
+
( λ

Md
2 ε
′

)d/ᾱ
. (43)
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Proof. We only need to verify the assertion for λ = 1 since D(ε, λF , ‖·‖2) = D(ε/λ,F , ‖·‖2)
and N(ε, λF , ‖·‖2) = N(ε/λ,F , ‖·‖2) for any set F . We first verify the upper bound (42).

For every ε < ε0, Lemma 9 gives logN(ε,HAᾱ,d1,M (X0), ‖·‖2) ≤ (M0d/ε)
d/ᾱ. As Γ

Aᾱ,d,p
1,M (X0) is

a union of
(
p
d

)
many HAᾱ,d1,M (X0), the assertion easily follows.

Next, we verify (43). By Lemma 10, for every ε′ < εd1, there are functions h0 = 0,

hi ∈ H
Aᾱ,d
1,M (X0)∩C([0, 1]d), 1 ≤ i ≤ N satisfying (38) and (39), with N ≥ exp{1/(Md

1 ε
′)d/ᾱ}.

This means that for any S ⊆ {1, . . . , p} such that |S| = d, we have that W p
Shi ∈ Γ

Aᾱ,d,p
1,M (X0)∩

C([0, 1]p) for every such hi , 0 ≤ i ≤ N . Therefore,

W(ε′) :=
⋃

S⊆{1,...,p}:|S|=d

{W p
Shi : 1 ≤ i ≤ N} ⊆ Γ

Aᾱ,d,p
1,M (X0) ∩ C([0, 1]p).

Now, for any S 6= S′ ⊆ {1, . . . , p} and 1 ≤ i ≤ k ≤ N , observe that ‖W p
Shi −W

p
S′hk‖2 =

(‖hi‖22 +‖hk‖22)1/2 ≥ ε′ by (39), as 〈W p
Shi,W

p
S′hk〉 = 0 owing to (38), where we used h0 = 0.

Also for any S ⊆ {1, . . . , p}, it is easy to see that ‖W p
Shi−W

p
Shk‖2 = ‖hi−hk‖2 ≥ ε′ by (39).

These imply that W(ε′) is ε′-separated, and hence the packing number D(ε′,Γ
Aᾱ,d,p
1,M (X0) ∩

C([0, 1]p), ‖·‖2) is bounded below by the cardinality of W(ε′), which is
(
p
d

)
N . This leads to

the assertion.

Proof of Theorem 3. Let the right-hand sides of (42) and (43) be V ∗(ε) and V∗(ε),
respectively. As L2(Q)-norm can be replaced by L2-norm under Assumption (M), Lemma 8
implies that a sequence γn is a minimax lower bound if V∗(γn) = nγ̄2

n and V ∗(γ̄n) = nγ̄2
n

for some γ̄n.

Let γ̂n =
√
n−1 log

(
p
d

)
+ ((λd)d/ᾱ/n)ᾱ/(2ᾱ+d) and γ̄n be the solution to V ∗(γ̄n) = nγ̄2

n.

As V ∗(ε) is nondecreasing in ε, we obtain

V ∗(M2γ̂n) ≤ V ∗
(
M2((λd)d/ᾱ/n)ᾱ/(2ᾱ+d)

)
= nγ̂2

n ≤M2
2nγ̂

2
n.

This shows that γ̄n ≤M2γ̂n. Now, define κn = max
{√

n−1 log
(
p
d

)
, ((λd)d/ᾱ/n)ᾱ/(2ᾱ+d)

}
. It

follows that V ∗(γ̂n/2) ≥ V ∗(κn) because γ̂n/2 ≤ κn. If
√
n−1 log

(
p
d

)
≤ ((λd)d/ᾱ/n)ᾱ/(2ᾱ+d),

V ∗(κn) = V ∗
(

((λd)d/ᾱ/n)ᾱ/(2ᾱ+d)
)
≥Md/ᾱ

2 nκ2
n ≥ nγ̂2

n/4,

as M
d/ᾱ
2 ≥ 1. If

√
n−1 log

(
p
d

)
> ((λd)d/ᾱ/n)ᾱ/(2ᾱ+d),

V ∗(κn) = V ∗
(√

n−1 log

(
p

d

))
≥ nκ2

n ≥ nγ̂2
n/4.

Putting the bounds together, we obtain γ̄n ≥ γ̂n/2. This concludes γ̄n � γ̂n.

Now, let γ̃n =
√
n−1 log

(
p
d

)
+ M−d2 (λd/ᾱ/(d2n))ᾱ/(2ᾱ+d) and γn be the solution to

V∗(γn) = nγ̂2
n. Then, it is easy to see that

V∗(γ̃n) ≤ V∗
(
M−d2 (λd/ᾱ/(d2n))ᾱ/(2ᾱ+d)

)
= nγ̂2

n,
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which implies γn ≤ γ̃n. Let κ̃n = max
{√

n−1 log
(
p
d

)
,M−d2 (λd/ᾱ/(d2n))ᾱ/(2ᾱ+d)

}
and note

that V∗(γ̃n/2) ≥ V∗(κ̃n). Similar to the above, if
√
n−1 log

(
p
d

)
≤M−d2 (λd/ᾱ/(d2n))ᾱ/(2ᾱ+d),

V∗(κ̃n) = V∗

(
M−d2 (λd/ᾱ/(d2n))ᾱ/(2ᾱ+d)

)
= nγ̂2

n,

and if
√
n−1 log

(
p
d

)
> M−d2 (λd/ᾱ/(d2n))ᾱ/(2ᾱ+d),

V∗(κ̃n) = V∗

(√
n−1 log

(
p

d

))
≥ nκ̃2

n ≥ nγ̂2
n/4.

These give γn ≥ γ̃n/2, and hence γn � γ̃n. Lemma 8 concludes that rn
(
Γ
Aᾱ,d,p
λ,M (X0) ∩

C([0, 1]p)
)
& γ̃n. As M−d2 d−2α/(2α+d) ≥ M−d2 d−2, γ̃n is bounded below by the lower bound

in Theorem 3 for some Md > 1 depending only on d.

A.5 Proofs of Theorems 4–7

This section provides proofs of Theorems 4–7. The proofs are largely based on the proof of
Theorem 2. We often refer to the reader to the proof of Theorem 2 rather than showing all
details.

Proof of Theorem 4. Let pf,σ2 be the density of model (8) with f and σ2. By Lemma B.1
of Xie and Xu (2018), the Hellinger distance ρH satisfies

‖f1 − f2‖22,Q + |σ2
1 − σ2

2|2 . ρ2
H(pf1,σ2

1
, pf2,σ2

2
) . ‖f1 − f2‖1,Q + |σ2

1 − σ2
2|2, (44)

if f1, f2, log σ1, log σ2 are uniformly bounded (we use variance parameters in place of stan-
dard deviations; both are identical up to constants under the boundedness assumption).
Hence, it suffices to show the assertion with respect to the Hellinger distance.

By the well-known theory of posterior contraction (e.g., Theorem 2.1 of Ghosal et al.

(2000)), we need to verify that there exists Θn ⊆ F × [C
−1
2 , C2] such that for some c̄ > 0

and a sufficiently large c̄′ > 0,

Π(Bn) ≥ e−c̄nε2n , (45)

logN(εn,Θn, ρH) . nε2n, (46)

Π((f, σ2) /∈ Θn)� e−c̄
′nε2n , (47)

similar to (26)–(28), where Bn = {f : K(p0, pf,σ2) ≤ ε2n, V (p0, pf,σ2) ≤ ε2n}. Using (44),
the conditions (46) and (47) can be similarly verified as in the proof of Theorem 2; only
difference is that we use truncated priors, so (47) is even more easily satisfied. For (45),
note that by Lemma B.2 of Xie and Xu (2018),

max
{
K(p0, pf,σ2), V (p0, pf,σ2)

}
. ‖f − f0‖22,Q + |σ2 − σ2

0|,
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as ‖f0‖∞ and | log σ0| are bounded and the priors are truncated. Hence, there exists a
constant C1 > 0 such that

Bn ⊇ {(f, σ2) : ‖f − f0‖2,Q ≤ C1εn, |σ2 − σ2
0| ≤ C1ε

2
n}.

Note that ‖f − f0‖2,Q . ‖f − f0‖2 if the density of Q is bounded. It is easy to see that
log Π(σ2 : |σ2 − σ2

0| ≤ C1ε
2
n) & − log n, as | log σ2

0| is bounded. Uisng Lemmas 4–7, the rest
of the proof follows similarly to that of Theorem 2.

Proof of Theorem 5. It is well known that the Hellinger distance possesses an exponen-
tially powerful local test with respect to both the type-I and type-II errors (e.g., Section 7
of Ghosal et al. (2000) or Lemma 2 of Ghosal and van der Vaart (2007)). Therefore by the
general posterior contraction theory, it suffices to show that there exists Θn ⊆ F such that
for some c̄ > 0 and a sufficiently large c̄′ > 0,

Π(Bn) ≥ e−c̄nε2n , (48)

logN(εn,Θn, ρH) . nε2n, (49)

Π(f /∈ Θn)� e−c̄
′nε2n , (50)

where Bn = {f : K(p0, pf ) ≤ ε2n, V (p0, pf ) ≤ ε2n}. The last condition (50) follows directly
from the proof of Theorem 2, so we only need to verify (48) and (49).

By Lemma 3.1 of van der Vaart and van Zanten (2008), for any measurable f, g,

K(pf , pg) . ‖f − g‖2∞e‖f−g‖∞(1 + ‖f − g‖∞),

V (pf , pg) . ‖f − g‖2∞e‖f−g‖∞(1 + ‖f − g‖∞)2,

ρH(pf , pg) ≤ ‖f − g‖∞e‖f−g‖∞/2.

(51)

(The uniform norm is used in van der Vaart and van Zanten (2008) but can be easily re-
placed by the L∞-norm.) The first two assertions imply that there exists C1 > 0 such that
Bn ⊇ {f : ‖f − f0‖∞ ≤ C1εn} if εn → 0. Hence we follow the calculation in the proof
of Theorem 2 to conclude that there exists a constant c̄ > 0 such that Π(Bn) ≥ e−c̄nε

2
n .

The last assertion of (51) enables us to work with the supremum norm in the calculation
of the Hellinger covering number. The entropy calculation in Theorem 2 also verifies (49),
completing the proof.

Proof of Theorem 6. Denote by pf (x, y) the density of model (11) and by p0(x, y)
the true density. We also write f0 = H−1(ϕ0). From the fact that |pf (0|x) − p0(0|x)| =
|pf (1|x)−p0(1|x)| = |H(f(x))−H(f0(x))|, it follows that ‖pf−p0‖2 =

√
2‖H(f)−H(f0)‖2,Q.

The L2-norm is bounded by a multiple of the Hellinger distance as pf and p0 are uniformly
bounded, (see, for example, Lemma B.1 of Ghosal and van der Vaart (2017)). Hence, it
suffices to show the contraction rate results with respect to the Hellinger distance. This
means that the assertion can be verified if there exists Θn ⊆ F satisfying (48)–(50) for some
c̄ > 0. By Lemma 2.8 of Ghosal and van der Vaart (2017), K(p0, pf ) . ‖f − f0‖22,Q and

V (p0, pf ) . ‖f−f0‖22,Q. We also have that ρH(pf , pg) . ‖f−g‖2,Q for every measurable f, g
by the same lemma. Similar to the proof of Theorem 4, the proof is completed by following
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that of Theorem 2.

Proof of Theorem 7. It suffices to verify (26)–(28) for the given model. Following the
proof of Theorem 2, one can easily see that (26) is verified as soon as

log Π(Ê) + log Π(f ∈ FÊ : ‖f − f0‖n ≤ C1ε
∗
n) & −n(ε∗n)2, (52)

for an approximating ensemble Ê . Assumption (A6) says that for each 1 ≤ t ≤ T0, there
exists a Z-tree partition T̂ t such that ‖f̂0t − f0t‖n . ε̄t,n for some f̂0t ∈ FT̂ t . We index

Ê = (T̂ 1, . . . , T̂ T ) with T̂ t = {[0, 1]p}, t = T0 + 1, . . . , T . Then,

log Π(Ê) =

T0∑
t=1

log Π(T̂ t) + (T − T0) log(1− ν) & −
T0∑
t=1

K̂t log n−
T0∑
t=1

dt log p & −n(ε∗n)2,

by Lemma 4. Constructing f̂0t as in the proof of Theorem 1, we denote every f̂0t by
f

0t,T̂ t,β̂t , where β̂t is the corresponding step-heights. Then the approximator of f0 can

be expressed as f
0,Ê,B̂ =

∑T0
t=1 f0t,T̂ t,β̂t with the ensemble components (Ê , B̂), where B̂ =

(β̂1>, . . . , β̂T0>, 0, . . . , 0)> ∈ RK̂∗ with K̂∗ =
∑T0

t=1 K̂
t + T − T0. This gives us that

‖f − f0‖∞ ≤ ‖f − f0,Ê,B̂‖∞ +

T0∑
t=1

‖f
0t,T̂ t,β̂t − f0t‖∞ . ‖f − f

0,Ê,B̂‖∞ +

T0∑
t=1

εt,n.

Therefore, using
∑T0

t=1 εt,n ≤
√
T0ε
∗
n, we obtain that

Π(f ∈ FÊ : ‖f − f0‖∞ ≤ C1ε
∗
n) ≥ Π

(
f ∈ FÊ : ‖f − f

0,Ê,B̂‖∞ ≤ C2ε
∗
n

)
. (53)

For any B1 = (β1>
1 , . . . , βT0>

1 , βT0+1
1 , . . . , βT1 )>, B2 = (β1>

2 , . . . , βT0>
2 , βT0+1

2 , . . . , βT2 )> ∈
RK̂∗ , we write fÊ,B1

, fÊ,B2
∈ FÊ to denote two additive tree functions that lie on the same

partition ensemble Ê . From (2), it is easy to see that ‖fÊ,B1
− fÊ,B2

‖∞ ≤ ‖B1 −B2‖2K̂1/2
∗ .

As K̂∗ log n .
∑T0

t=1 K̂
t log n . n(ε∗n)2, one can follow the proof of Theorem 2 to lower

bound the logarithm of (53) by a constant multiple of −n(ε∗n)2. Combined with the lower
bound of Π(Ê), this verifies (52). The conditions in (27) and (28) follow directly from the
proof of Theorem 2, but with the rate ε∗n for the additive regression.

Appendix B. Auxiliary Result: Dirichlet Prior Concentration

The following lemma is a slight modification of Theorem 2.1 of Yang and Dunson (2014).
We provide the complete proof for a self-contained result. Similar results are also available
in the literature (e.g., Lemma G.13 of Ghosal and van der Vaart (2017)).

Lemma 12 (Concentration of Dirichlet priors). Suppose that η ∈ Sp has a Dirichlet prior
in (3) with ζ > 0 and ξ > 1. For any η∗ ∈ Sp such that

∑p
j=1 1(η∗j 6= 0) = s and any
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ε ∈ (0, 1), there exists a constant C > 0 such that

Π(‖η − η∗‖1 ≤ ε) ≥ exp{−Cξs log(p/ε)}, (54)

Π

(
min
S:|S|=s

∑
j /∈S

ηj ≥ ε

)
≤ exp{−C(ξ − 1)s log p− log ε}. (55)

Proof. We first prove (54). Without loss of generality, we assume that the index set of
nonzero entries of η∗ is {1, 2, . . . , s − 1, p}, i.e., η∗j = 0, j = s, s + 1, . . . , p − 1. By the

inequality |ηp − η∗p| = |
∑p−1

j=1 ηj −
∑p−1

j=1 η
∗
j | ≤

∑p−1
j=1 |ηj − η∗j |, observe that ‖η − η∗‖1 ≤

2
∑p−1

j=1 |ηj−η∗j | = 2
∑s−1

j=1 |ηj−η∗j |+2
∑p−1

j=s ηj . Hence, for b0 = ε/(4s) and b1 = ε/(4p−4s),

S = {η ∈ Sp : |ηj − η∗j | ≤ b0, j = 1, . . . , s− 1, ηj ∈ (0, b1], j = s, . . . , p− 1}
⊆ {η ∈ Sp : ‖η − η∗‖1 ≤ ε}.

Using this, we obtain

Π(‖η − η∗‖1 ≤ ε) ≥ Π(S)

=

∫
S

Γ(ζ/pξ−1)

Γp(ζ/pξ)

p−1∏
j=1

η
ζ/pξ−1
j

(
1−

p−1∑
j=1

ηj

)ζ/pξ−1

dη1 . . . dηp−1

≥ Γ(ζ/pξ−1)

Γp(ζ/pξ)


s−1∏
j=1

∫ min{1,η∗j+b0}

max{0,η∗j−b0}
η
ζ/pξ−1
j dηj



p−1∏
j=s

∫ b1

0
η
ζ/pξ−1
j dηj

 ,

where we used the fact that ηp ≤ 1 and ζ/pξ − 1 < 0 for large enough p. As the Taylor
expansion of Γ gives that xΓ(x) = 1−γ0x+O(x2) for the Euler-Mascheroni constant γ0, we
obtain Γ(x) � 1/x for every small enough x. Therefore, the last display is bounded below
by a constant multiple of

(ζ/pξ)p

ζ/pξ−1
(2b0)s−1

(
pξ

ζ
b
ζ/pξ

1

)p−s
= ζs−1p−ξ(s−1)−1

( ε
2s

)s−1
(

ε

4p− 4s

)ζp−(ξ−1)(1−s/p)

≥ ζs−1p−ξ(s−1)−1
( ε

2s

)s−1
(
ε

4p

)ζ
,

where for the inequality we used the fact that ξ ≥ 1. The logarithm of the rightmost side
leads to the desired assertion.

Now, we verify (55). Consider a Dirichlet process DP(ζ/pξ−1, Q0) with concentration
parameter ζ/pξ−1 and uniform measure Q0 on [0, 1]. Suppose a random measure P ∼
DP(ζ/pξ−1, Q0). Then, for the intervals Ij = [j − 1)/p, j/p), j = 1, . . . , p, we have

(P (I1), . . . , P (Ip)) ∼ Dir(ζ/pξ, . . . , ζ/pξ).

This allows us to define η as η = (P (I1), . . . , P (Ip))> using the Dirichlet process above. The
stick-breaking representation of a Dirichlet process gives an expression P =

∑∞
k=1wkδzk for
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zk ∼ Q0 and

wk = vk

k−1∏
j=1

(1− vj), vk ∼ Beta(1, ζ/pξ−1).

For every k, let jk be the index such that zk ∈ Ijk . It follows that

max
S:|S|≤s

∑
j∈S

ηj ≥
s∑

k=1

ηjk =
s∑

k=1

P (Ijk) =
∑

1≤`<∞:z`∈∪sk=1Ijk

w` ≥
s∑

k=1

wk,

where the last inequality holds as zk ∈ Ijk , k = 1, . . . , s. This gives that

min
S:|S|=s

∑
j /∈S

ηj ≤ 1−
s∑

k=1

wk = 1−
s∑

k=1

vk

k−1∏
j=1

(1− vj) =
s∏
j=1

(1− vj),

where the last equality can be verified by induction. Letting v̄j = 1− vj ∼ Beta(ζ/pξ−1, 1),
j = 1, . . . , s, we obtain

Π

(
min
S:|S|=s

∑
j /∈S

ηj ≥ ε

)
≤ Π

(
s∏
j=1

v̄j ≥ ε

)
≤ ζs

ε(ζ + pξ−1)s
≤ ε−1ζsp−s(ξ−1),

using the Markov inequality. The rightmost side verifies the assertion.
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