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Abstract

We propose a novel multivariate nonparametric multiple change point detection
method using classifiers. We construct a classifier log-likelihood ratio that uses
class probability predictions to compare different change point configurations.
We propose a computationally feasible search method that is particularly well
suited for random forests, denoted by changeforest. However, the method can
be paired with any classifier that yields class probability predictions, which we
illustrate by also using a k-nearest neighbor classifier. We prove that it consis-
tently locates change points in single change point settings when paired with
a consistent classifier. Our proposed method changeforest achieves improved
empirical performance in an extensive simulation study compared to existing
multivariate nonparametric change point detection methods. An efficient imple-
mentation of our method is made available for R, Python, and Rust users in the
changeforest software package.

Keywords: break point detection, classifiers, multivariate time series, nonparametric

1. Introduction

Change point detection considers the localization of abrupt distributional changes in ordered
observations, often time series. We focus on offline problems, retrospectively detecting
changes after all samples have been observed. Inferring abrupt structural changes has a
wide range of applications, including bioinformatics (Olshen et al., 2004; Picard et al., 2005),
neuroscience (Kaplan et al., 2001), biochemistry (Hotz et al., 2013), climatology (Reeves
et al., 2007), and finance (Kim et al., 2005). A rich literature has developed around statistical
methods that recover change points in different scenarios, see Truong et al. (2020) for a recent
review.

Parametric change point detection methods typically assume that observations between
change points stem from a finite-dimensional family of distributions. Change points can then
be estimated by maximizing a regularized log-likelihood over various segmentations. The
classical scenario of independent univariate Gaussian variables with constant variance and
changes in the mean goes back to the 1950s (Page, 1954, 1955). It has recently been studied
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by, among others, Frick et al. (2014), Fryzlewicz (2014), and references therein. Pein et al.
(2017) consider a relaxed version that allows changes in the variance in addition to the mean
shifts. Generalizations exist for multivariate scenarios. Recently, even high-dimensional
scenarios have been studied: Wang and Samworth (2018) and Enikeeva and Harchaoui
(2019) consider multivariate Gaussian observations with sparse mean shifts, Wang et al.
(2021) study the problem of changing covariance matrices of sub-Gaussian random vectors,
Roy et al. (2017) study estimation in Markov random field models, and Londschien et al.
(2021) consider time-varying Gaussian graphical models.

Nonparametric change point detection methods use measures that do not rely on para-
metric forms of the distribution or the nature of change. Proposals for univariate nonpara-
metric change point detection methods include Pettitt (1979), Carlstein (1988), Diimbgen
(1991), and, more recently, Zou et al. (2014) and Madrid-Padilla et al. (2021a). Multivariate
setups are challenging even in parametric scenarios. The few multivariate nonparametric
change point detection methods we are aware of are based on ranks (Lung-Yut-Fong et al.,
2015), distances (Matteson and James, 2014; Chen and Zhang, 2015; Zhang and Chen, 2021),
kernel distances (Arlot et al., 2019; Garreau and Arlot, 2018; Chang et al., 2019), kernel
densities (Madrid-Padilla et al., 2021b), and relative density ratio estimation (Liu et al.,
2013).

Many of these nonparametric proposals are related to hypothesis testing. For a single
change point, they maximize a test statistic that measures the dissimilarity of distributions.
In the modern era of statistics and machine learning, many nonparametric methods are
available to learn complex conditional class probability distributions, such as random forests
(Breiman, 2001) and neural networks (McCulloch and Pitts, 1943). These have proven to
often outperform simple rank and distance-based methods. Friedman (2004) proposed to
use binary classifiers for two-sample testing. Recently, Lopez-Paz and Oquab (2017) applied
this framework in combination with neural networks and Hediger et al. (2022) with random
forests. Similar to such two-sample testing approaches, we use classifiers to construct a novel
class of multivariate nonparametric multiple change point detection methods.

1.1 Our contribution

We propose a novel classifier-based nonparametric change point detection framework. Mo-
tivated by parametric change point detection, we construct a classifier log-likelihood ratio
that uses class probability predictions to compare different change point configurations.
Theoretical results for the population case motivate the development of our algorithm.

We present a novel search method based on binary segmentation that requires a constant
number of classifier fits to find a single change point. We prove that this method consistently
recovers a single change point when paired with a classifier that provides consistent class
probability predictions. For multiple change points, the number of classifier fits required
scales linearly with the number of change points, making the algorithm highly efficient.
Our method is implemented for random forests and k-nearest neighbor classifiers in the
changeforest software package, available for R, Python, and Rust users. The algorithm
achieves improved empirical performance compared to existing multivariate nonparametric
change point detection methods.



RANDOM FORESTS FOR CHANGE POINT DETECTION

2. A nonparametric classifier log-likelihood ratio

We are interested in detecting structural breaks in the probability distribution of a time
series. More formally, consider a sequence of independent random variables (Xi), CRP
with distributions IP’l, e ,IP’ Let

0 = {O,n} U {Z . IEDZ 75 I@i—l—l}

be the set of segment boundaries and denote with K% := |a®| — 1 the total number of
segments. We label the elements of o by their natural order starting with zero. Then
consecutive elements in o define segments (ak o] for k = 1,..., K° within which the
map i — P; is constant and the X; ~ Py == P,, areiid. We Call ... ,a%o_l the change
points of the sequence X1, ..., X,,. We aim to estimate the change points (or equivalently a°)
of the time series process X1, ..., X, upon observing a realization z1,...,x,. We construct
a classifier log-likelihood ratio and use it for change point detection. We motivate this
ratio later in Section 2.2, drawing parallels to parametric methods that we introduce in
Section 2.1.

For any segmentation «, let y, = (yi)i-; be the sequence such that y; = k whenever
i € (ag-1,0k]. Consider a classification algorithm p that can produce class probability
predictions and denote with p, the classifier trained on covariates X = (x;)!"_; and labels
Ya. Write po(z;)r for the trained classifier’s class k probability prediction for observation
x;. The classifier log-likelihood ratio for change point detection is

Gl o) =3 3 1 o ( ol 1)

k=1ti=ap-1+1

Consider a setup with a single change point. If a split candidate s is close to that change
point, we expect the trained classifier pyg,) to perform better than random at separating
x1,...¢s from xgyq,...2, and G ((z;)1, | {0,s,n},p) will take a positive value. For a
segmentation o with multiple change points, the classifier log-likelihood ratio (1) measures
the separability of the segments (o, a1], ..., (ax 1, ax]. We expect this separability to be
highest for a = o, which we formalize in Proposition 2.

2.1 The parametric setting

Since first proposals from Page (1954), parametric approaches are typically based on max-
imizing a parametric log-likelihood, see also Frick et al. (2014) and references therein. For
this, one assumes that the X; ~ Py are i.i.d. within segments i € (a? ;,a?] and that the
distributions Py, € {Py | ¥ € ©} for some finite-dimensional parameter space ©. The dis-
tribution of (X;)!" ; can then be parametrlzed with the tuple (o’ (ﬁg)kKil) such that for all
k=1,...,K%and i = akfl +1,.. .,ak the X; are Pﬂg -distributed.

Assuming the Py have densities py, we can express the log-likelihood of observing some
sequence (x;)"_; in a setup parametrized by (a, (J)E_,) as

e((%)z 1] e ﬁk )= 1 Z Z log(py,, (:))- (2)

k=11i= (o7 1+1
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An estimate of a” can be obtained by maximizing (2). Since the log-likelihood is increasing
in K = |a|— 1, an additional penalty term v > 0 has to be subtracted whenever the number
of change points is unknown. Choose

G € argmax max ((xl)?zl | o, (ﬁk)szl) —laly, (3)
aed P10k

where A is a set of possible segmentations, typically restricted such that each segment has
a minimum length of dn for some § > 0.

The most popular parametrization of in-segment distributions are Gaussian distributions
with known variance and a changing mean, see for example Yao (1988) and Fryzlewicz (2014).
Next to changes in the mean, Killick et al. (2012) also study changes in the variance, where
the mean of the Gaussian is unknown but constant over all segments. Kim and Siegmund
(1989) study changes in the parameters of a linear regression model. Shen and Zhang
(2012) and Cleynen and Lebarbier (2014) consider changes in the rate of a Poisson and
changes in the success rate in a negative binomial, with applications in detecting copy
number alterations in DNA. Frick et al. (2014) consider the general case where in-segment
distributions belong to an exponential family.

2.2 The nonparametric setting

Often, a good parametric model is hard to justify and nonparametric methods can be applied
instead. Again, consider a classification algorithm p that yields class probability predictions
after training and recall that y, = (y;)i_; with y; = k whenever i € (aj-1,ax] and that
X = (z;)!~,. For any «, training p on (X, y,) yields the function p, = p(X, yo) that assigns
class k probability estimates po ()i corresponding to segments (ay-1, a| to observations x.
Write Py, ) 1= ﬁ Z;’:uﬂ P; for the mixture distribution of Xut1, ..., Xy and assume that
densities p(, ) exist. Assuming a uniform prior on class probabilities, the trained classifier
Do estimates

dP(X =z |Y =k) Play 1,04 (Ti) o — o1

Pa(2)y =P(Y =k | X =2)= P(Y = k) =
(z) ( | ) PX =) ( ) Do () -
for k =1,... K. This yields an approximation
Play,1, (x) n N
(ag-1,00] ~ Pal@)i ;

Po,n) (z) N Qp — Q-1

which we use in the definition of the classifier log-likelihood ratio (1):

G ((z)y | o) = Z Z log< e ) Z Z log< akl’“k](ﬁ’))

X
k=11i1=ap-1+1 k=1i=op-1+1 Dn]( Z)

This resembles the parametric log-likelihood (2), where P, ,a0] = Pgo, UP to the term

1%
> log(p(()’n] (xl)), which is independent of . In Equation (1), the classification algo-
rithm p takes the role of the parametrization by ¥ € © in Equation (2). Analogously to (3),
a nonparametric estimator for a® could be given by

by € argmax G ((zi)i21 | a,p) —7lal , (4)
acA
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where A is a suitable set of possible segmentations.

Remark 1 To further motivate the classifier log-likelihood ratio (1), take a generative clas-
sifier p (as in linear discriminant analysis). Choose U((u,v]) € argmax, Y it log(po(xi))
Tk pﬁ((ak,pakb(“)

Y51 Pi((agga) @)
Then the classifier log-likelihood ratio is equal to the parametric log-likelihood ratio between

the segment distributions P and the mizture model EJK:1 T Pi((a; 1 a'])(')j :
J- J

Q-1 — Qg

and for any segmentation « let 7y = , such that pa(x;)r =

Qp-1,0%])

Pi((any.c]) (T1)
G lan =3 30 1 Py )

k=1i=ay_1+1 Z] 1T5Pj((a;- 1’%])( i)

= ¢ (@i | (o (a1, )i ) Zlog Z% Pi((ay .00 (0

The following proposition suggests that for any estimator approximating the Bayes classifier,

maximizing G over segmentations « yields a reasonable estimator for o,

Proposition 2 Let

laf—1

pP(x) =P(Y =k| X =z)= <0% Qe P(akl,ak}>

n Pon] /=1

be the infinite sample Bayes classifier corresponding to the segmentation «. If A is a set of
segmentations containing o® and Dy (P || Q) is the Kullback-Leibler divergence of Q with
respect to P, then

max B [G ((Xi)iy | 0,p™)] =E [G (X)L | o”,p%)]

K
= (af —af 1) Dk L(Pk || Po,n)
k=1

and any mazimizer of E[G ((X;)" | a,p™)] is equal to a° or is a segmentation containing
a®. In particular, the mazimizer o with the smallest cardinality is equal to o.

3. The changeforest algorithm

Finding a solution to the nonparametric estimator (4) by evaluating the classifier log-
likelihood ratio (1) for all possible candidate segmentations « € A is infeasible. We present
an efficient search procedure based on binary segmentation that finds an approximate so-
lution to (4). We furthermore motivate the use of random forests as classifiers and present
a model selection procedure adapted to our search procedure. These building blocks com-
bine to form the changeforest algorithm, which we summarize in Section 3.5. Finally, we
present a consistency result for our method in the presence of a single change point.
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3.1 Binary segmentation

Binary segmentation (Vostrikova, 1981) is a popular greedy algorithm to obtain an ap-
proximate solution to the parametric maximum log-likelihood estimator (3). For some
J((u,v]) € argmaxy S, 41 log(py(w;)), binary segmentation recursively splits segments
at the split s maximizing the gain

u,s ( (s (xl)
= £ ()« Somet)

i=u+1 pﬁ((uv]) i=s+1

the increase in log-likelihood, until a stopping criterion is met. For change in mean,

where 9((u,v]) = -1 Y i—us1 Ti and py(z) = \/% exp(—1(z — ¥)?), the normalized gain

v—Uu

2
—2-G(y(8) is equal to (, =y 1 T — A Y xz> , the square of the CUSUM

s—U 1=u+ v—s
statistic, first presented by Page (1954). Binary segmentation typically requires O(Knlog(n))
evaluations of the gain, where K is the number of change points, and is typically faster than
search methods based on dynamic programming such as PELT (Killick et al., 2012).
We replace the parametric log-likelihood ratio G, ,)(s) in binary segmentation with the
nonparametric classifier log-likelihood ratio from (1)

i log(

G ((xi)f:u—i-l ‘ {’LL, S, U}aﬁ)

o) + 3 Ty

i=u+1 i=s5+1
(6)
- P(u,s (xl) ° P(sw (xl)
= Z log<m> + Z log<u .
it 1 P(u,] (xz) i=s+1 P(u,] ('rz)

In many parametric settings, the expected gain curve G, , will be piecewise convex
between the underlying change points (Kovacs et al., 2020b). Proposition 3 shows that
the same holds for the nonparametric variant (6) in the population case. Figure 1 shows
the nonparametric gains for a random forest and a k-nearest neighbor classifier applied to
simulated data with two change points.

Proposition 3 For the Bayes classifier p>°, the expected classifier log-likelihood ratio

s E[G((X)izysr | {u,s,0},0%)]

is piecewise convex between the underlying change points o, with strict convexity in the
segment (o ,ad] if Pluad 1 7 Plad a0 o7 Pao  a0) # Pgo -

3.2 The two-step search algorithm

Binary segmentation relies on the full grid search, where G, ,(s) is evaluated for all
s=wu+1,...,v, to find the maximizer of the gain G/, ,(s). In many traditional parametric
settings, such as change in mean, log-likelihoods of neighboring segments can be recovered
using cheap O(1) updates. This enables change point detection with binary segmentation
in O(Knlog(n)) time, where K is the number of change points.
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Figure 1: Classifier-based gain curves using a random forest (left) and a k-nearest neighbor
classifier (right). The time series with 600 observations of dimension 5 and change points
at t = 200,400 (green crosses) were simulated with changing covariances, as described in
Section 4.2. The maximizer is marked in red.

For many classifiers, random forests in particular, such updates are unavailable and
the classifiers need to be recomputed from scratch, making the computational cost of the
grid search in binary segmentation prohibitive. Similar computational issues arise in high-
dimensional regression models. Here, Kaul et al. (2019) propose a two-step approach. Start-
ing with an initial guess s(9), they fit a single high-dimensional linear regression for each
of the segments (u,s?)] and (s(9),v] and generate an improved estimate of the optimal
split using the resulting residuals. They repeat the procedure two times and show a result
about consistency in the high-dimensional regression setting with a single change point if
the change point is sufficiently close to the first guess s(?).

We apply a variant of the two-step search paired with the classifier log-likelihood ratio
for multiple change point scenarios. Instead of residuals, we recycle the class probability
predictions and the resulting classifier log-likelihood ratios for individual observations from
a single classifier fit p {(u,s() v} approximating

v « > v—Uu
G ((xi)i:u—i—l | {U;S,U}ap) ~ Z 1Og<8(0)_up{u,s(0),v}(xi)l>+

1=u+1
Y V—U
> 10g<v_3(o>p{u,s<o>,v}(mi)2>~

We call this the approzimate gain in the following. Note that the classifier and normalization
factors are fixed, but the summation varies with the split s. Like Kaul et al. (2019), we
compute this twice, using the first maximizer of the approximate gain as a second guess s(1).
This allows us to find local maxima of the nonparametric gain (6) in a constant number of
classifier fits.

Kaul et al. (2019) only apply the two-step search in scenarios with a single change
point. In scenarios with multiple change points, as encountered in binary segmentation, the
class probability predictions from the initial classifier fit might contain little information
if IF’(%S(O)] R~ IP’(8<0>,U]. To avoid this, we start with multiple initial guesses and select the
split point corresponding to the overall highest approximate gain as the second guess. The
resulting two-step algorithm, as implemented in changeforest, using three initial guesses
at the segment’s 25%, 50%, and 75%-quantiles is presented in Algorithm 2. Proposition 4
suggests good estimation performance when coupling the two-step search with our classifier-
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based approach in single change point scenarios. We present a consistency result of the two-
step search when paired with a classifier that yields consistent class probability predictions
for single change point scenarios in Section 3.6.

Proposition 4 For the Bayes classifier p° and any initial guess u < s9) < v, the expected
approrimate gain

Z log< p{us(O) (X > Z log( )P{u 5(0) oy (Xi)2 >]

i=u+1 i=s+1

s— E

is piecewise linear between the underlying change points . If there is a single change point
0

a’ € (u,v], the expected approzimate gain has a unique mazimum at s = a°.

Figure 2 shows approximate gain curves and the underlying class probability predictions
for a data set simulated with changing covariances, as described in Section 4.2. The approx-
imate gain curves have a piecewise linear shape with kinks at the underlying change points,
as predicted by Proposition 4. One can also observe how the distributions of the probability
predictions change at the true change points. For the second row, the choice of the initial
guess s(0 = 300 is precisely such that P 0,300 = P (300,600, and the approximate gain curve is
flat. Figure 4 shows approximate gain curves in different stages of binary segmentation for
a different simulated time series. Again, the approximate gain curves are roughly piecewise
linear with kinks at the underlying change points.

3.3 Choice of classifier

We recommend pairing our classifier-based method with random forests (Breiman, 2001).
We motivate this choice.

A classifier should satisfy three properties when paired with our change point detection
methodology to enjoy good estimation performance and computational feasibility: (i) It
needs to have a low dependence on hyperparameter tuning, (ii) it needs to be able to gen-
erate unbiased class probability predictions, and (iii) the training cost should be reasonable
even for a large number of samples. (i) The hyperparameters optimal for classification can
vary between segments encountered in binary segmentation. Retuning them, as is done by
Londschien et al. (2021), is infeasible. Thus, the classifier needs to provide suitable class
probability predictions even for suboptimal hyperparameters. (ii) If the class probability
predictions have a strong bias due to overfitting, the approximate gain curve will have a
kink at the initial guess, see Figure 3. For a weak underlying signal, the initial guess might
even be the maximizer of the curve, causing the two-step algorithm to fail in finding a
true change point. (iii) As for computational cost: Our optimization algorithm based on
binary segmentation and the two-step search massively reduces the number of classifier fits
required for change point estimation. Still, hundreds of fits might be necessary. For this not
to become restrictive, the classifier’s training cost should not explode when the number of
samples gets large.

Random forests are a perfect fit: They are known to be an off-the-shelf classifier that
fits most data without much hyperparameter tuning, they can generate unbiased probability
estimates through out-of-bag prediction, and their training complexity is nearly linear in the
sample size for a fixed maximal depth.
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Figure 2: Approximate gain curves (left) from single random forest fits for initial guesses
50 = 150 (top), 300 (second row), and 450 (third row) and the underlying out-of-bag
class probability predictions (right). The last row shows the approximate gain curve for
the second guess §1) = 400. The underlying data is the same as in Figure 1, with true
change points at ¢t = 200,400 (green crosses). The initial guess and the curve’s maximizer
are marked by blue and red vertical dashed lines, respectively.

We highlight another attractive attribute of random forests: They are applicable to a
wide range of types of data. The need for nonparametric change point detection arises
primarily when little is known about the data to be analyzed. Else, a smartly chosen para-
metric method might be better suited. In such situations, classifiers with broad applicability
are optimal. As a tree-based method, random forests are invariant to feature rescaling and
robust to the inclusion of irrelevant features. Due to these properties, random forests are
popular as black box or off-the-shelf learning algorithms and are thus well suited for many
data sets encountered in nonparametric change point detection.

While random forests are our classifier of choice, our method, including the two-step
search, can be paired with any classification algorithm that can produce unbiased class
probability predictions. As an illustration, we pair our approach with the Euclidean norm
k-nearest neighbor classifier. It has a single hyperparameter k, which we set to the square
root of the segment length. Furthermore, the algorithm can be adapted to recover leave-
one-out cross-validated probability estimates. Our implementation has a computational
complexity of O(n?) to compute all pairwise distances once, which we can recycle for all
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segments. More efficient implementations exist (Arya et al., 1998). However, the quadratic
runtime and memory requirements are not an issue for the reasonably sized data sets we use
for benchmarking.

Other choices of classifiers, such as neural networks, would also be possible when paired
with a cross-validation procedure to obtain unbiased class probability predictions. However,
we do not consider them here due to their high computational cost.

50

approx. gain
o

proba. predictions
o
wv

—50+1 X X
0 100 200 300 400 500 600 0 100 200 300 400 500 600
split t

Figure 3: In-sample (not out-of-bag) class probability predictions of a random forest (right)
and the corresponding approximate gain curve (left). Predictions are from a single random
forest fit for the initial guess s(9) = 450 (blue line). The underlying data is the same as in
Figures 1 and 2, with true change points at ¢ = 200,400 (green crosses). The maximizer is
marked in red. The predictions show a clear bias, dominating the underlying signal (kink
around the true change point at ¢ = 400), and the approximate gain curve has a peak at the
initial guess. Compare this to the third row of Figure 2, where out-of-bag class probability
predictions were used, resulting in a maximum around a true change point at ¢ = 400.

3.4 Model selection

So far, we have discussed how to accurately and efficiently estimate the location of change
points in a signal. We now discuss how to decide whether to keep or discard a candidate
split.

Separating true change points from false ones is crucial for good estimation performance
and is a task as complex as finding candidate splits. Two approaches for model selection
are particularly popular in change point detection: thresholding and permutation tests.
For thresholding, a candidate split is kept if its inclusion results in an increase of the log-
likelihood at least as large as the threshold ~. Thresholding is often applied in parametric
settings, where BIC-type criteria for the minimal gain to split can be derived with asymptotic
theory, see for example Yao (1988). Permutation tests are an alternative to thresholding
when such asymptotic theory is unavailable. Here, a statistic gathered for a candidate split
is compared to values of the statistic gathered after the underlying data was permuted, see
for example Matteson and James (2014).

No asymptotic theory is available to suggest a threshold for the (approximate) nonpara-
metric classifier log-likelihood ratio presented in Section 2. Meanwhile, permutation tests
require a high number of classifier fits in each splitting step, severely affecting the overall
computational cost. We apply a leaner pseudo-permutation test. Instead of permuting the
observations and refitting the classifier, we only permute the classifier’s predictions gathered
in the first step of the two-step search, and thus the classifier log-likelihood ratios. We then

10
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compute the approximate gains after shuffling and take their maxima. In the absence of
change points, there is no underlying signal for the classifier to learn other than the rel-
ative class sizes. We thus expect the distribution of the classifier log-likelihood ratios to
be approximately invariant under permutations. This allows us to compare the maximal
gain obtained in the first step of the two-step search to the maximal gains computed after
permuting. Algorithm 3 summarizes the procedure.

The significance threshold for the pseudo-permutation test is a tuning parameter rather
than a valid significance level. We choose 0.02 by default. This will typically lead to
false positives due to multiple testing, as the permutation test is applied to each segment
encountered in binary segmentation. We use 199 permutations. We analyze the empirical
false positive rate of the pseudo-permutation test in Section 4.7.

3.5 Our proposal

We present changeforest in Algorithm 1.
We comment on two details: (i) We use log, (z) instead of the natural logarithm and

{’LL,S,U} — v—u—1
: s—u=lfics)

(ii) rescale probabilities with 1 /7 instead of Y=x. (i) We introduce
log, () = log((1 —n)x +n) to use instead of log(x) in the definition of the classifier log-
likelihood ratio. Class probability predictions can take values 0 and 1, prohibiting us from
using the logarithm directly to compute individual classifier log-likelihood ratios. With
n = exp(—6), we effectively cap individual classifier log-likelihood ratios from below by —6.
(ii) Concerning the rescaling: a random forest’s out-of-bag probability predictions behave like
those from leave-one-out cross-validation. The prediction for observation x; was generated
by a forest that was trained on the v —u — 1 observations (z;)je{u+1,....0)\{i}- 1f @ < s, then

s —u — 1 of these observations belong to the first class, and if ¢ > s, s — v do. Thus, in the
S_u_]l{lg‘s} — W{U,S,U}
=T

1 and thus scale

absence of any change points, we expect ﬁ{u,s,v}(l‘i) ~

predictions by the inverse of W;{u’s’v} before taking the logarithm to recover the classifier
log-likelihood ratio estimates.

Our algorithm is visualized in Figure 4, where we display the approximate gain curves
of the two-step search for segments encountered in binary segmentation.

11
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Algorithm 1 changeforest

Input: Observations (z;),, a classifier p, and a minimum relative segment length § > 0.
Output: Change point estimate & < BinarySegmentation((z;)!_,,p,0).

function BinarySegmentation((x;);_,,,0)

if v —u < 26n then

return &
end if
3, ((fz‘,k,j)fzzjf17._,,v)j=1,2,3 < TwoStepSearch((x;)i_, 1, P, 0) > c.f. Algorithm 2
q+ ModelSelection(((Zi,k,j)f::ulfl7..',v)j:1,273, J) > c.f. Algorithm 3

if ¢ <0.02 then
Guefe 4 BinarySegmentation((z;)_, 1, p,9)
Guight — BinarySegmentation((x;);_;, 1,9, 9)
return &epy U {8} U Guight

else
return @

end if

end function

12
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Algorithm 2 TwoStepSearch

Input: Observations (x;);_,;, a classifier p, and a minimum relative segment length J > 0.

Output: A single change point estimate § and classifier log-likelihood ratios
k=12 .

((Ei,k,j)i:u+1,...,v)j:172,3 for model selection.

Step 1: Define (s\”, 58, s{") = (|3552 |, |2hu |, | 5532 |) and log, (x) = log((1 — n)a + 1)

for n = exp(—6) and set W{u’s’v} w. For j = 1,2,3, train binary classifiers

ﬁ{u,s§0),v} on (X y{u,s;m,v}) ((xi)i:u+17 (1 + ]l{i>s§0)})%):u+1) and let

A {u, 5(0) W} . {u, (0)7
liaj = log, <p{us<,o> oy @1/, ) , Lip,j = log, (P{US(,O) oy (@i)2/(1 = K )) :
g0 05
Select )
s ¢ argmax max & 1+ Z lioj.

s=u+14[on],...,v—[on] I= 172,3. i

Step 2: Train a binary classifier ﬁ{u7§(1)7v} and let

u,sM v R ws) v
fit = Loy <p{" o ) (w177 }) » bip = log, (p{u,su),v}(xzb/(l — })> :

Select

W>

§=353 ¢ argmax Z li1+ Z lio.

s=u+1+[on],....v—[on] ;,Z ut1 i—st1

A k=12
Return: (8,((fz',k,j)i:uh,...,v)j:mﬁ)

Algorithm 3 ModelSelection

k=1,2

Input: Classifier log-likelihood ratios ((£ix,;);=, 1. v

and a minimum relative segment length § > 0.
Output: An approximate p-value from the pseudo-permutation test.

)j=1,2,3 from the two-step search

Step 1: Recover the maximal gain encountered in the first step of the two-step search.

Go = smax o max Z ling + Z li2,j-
§= u+[ ’fl—|+ ey U |’TL—| - i=u-+1 i=s+1

Step 2: For random permutations oy : {u+1,...,0} = {u+1,...,v} forl=1...,199,
compute maximal gains after permuting likelihoods

s

v
G; = max g loy(i),1,5 T E lo ()2
1,2,3 1 Z): 5J 01(7‘)7 5J
j= s=u+ |'6n'| +1, Lu—[én] i e

Return: #{l=0,...,199 | G; > Gy} /200
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approx. gain

Figure 4: Approximate gain curves from the last step of the two-step search in the different
steps of binary segmentation as encountered in changeforest. The underlying data set was
simulated with the abalone setup, see Section 4.2 for details. The true change points at
t = 568,635,1122,1225,1914, 2305, 2508, 2775, 2817, 2875, 3134, 3249, 3306, 3432 are marked
with green crosses. Change point estimates, corresponding to maxima of the approximate
gain curves that are accepted in our model selection procedure, are marked in red. The
second guess §(1) for the two-step search is marked in blue. Current segment boundaries
are marked with black vertical lines. Here, changeforest estimates change points at t =
568,636, 1122, 1229, 1917, 2305, 2444, 2798, 2875, 3132, 3245, 3306, 3425, corresponding to an
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adjusted Rand index of 0.97.
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3.6 Theoretical guarantees

We provide the following finite sample guarantee for the two-step search Algorithm 2 in
settings with a single change point.

Theorem 5 Let 0 < 6,1 < 1 and 6 < 7% p < 1 —6. Set s = pn. Assume a single
change point scenario with n observations and a change point at a® = 7n. Let p satisfy
maxi—1,_n |[Ps(X:)1 — p2(Xi)1| "= 0 in probability. Choose

t n
n n
i c ] (u X; ) 3" log, [ ——p (X,
¢ %r:glma;( i=1 o 8ps< n +i:t+1 5 (n— SPS( z)2>

7|

where dpy(P1,P2) is the total variation distance between the two distributions Py and Po

2
before and after the change point and C' = (1_177)4 log<(1_lp)pn%) .

as in Algorithm 2. Then

a o

C'log(n) N—00
0
§2drv (P, P2)4n] e

In particular, for our choices of p € {1,%,3} and n = exp(—6), the estimator 2 is con-

sistent at the rate @ for 70. Interestingly, this convergence rate is independent of the
consistency rate of the classifier. Generalizing Theorem 5 to the case of multiple change
points would require further assumptions, preventing the possible "canceling-out" effects as
seen in Figure 2 (second row). Theorem 5 is based on a uniform consistency assumption for
the classifier. Such uniformly consistent classifiers exist (Bierens, 1983), including k-nearest
neighbor classifiers (Kudraszow and Vieu, 2013). However, we are not aware of any such
results for random forests.

3.7 The changeforest software package

A substantial part of this work is the changeforest software package, implementing Al-
gorithm 1 for random forests and k-nearest neighbor classifiers. It also implements the
parametric change in mean setup, paired with binary segmentation, which we use as a
baseline in the simulations.

The changeforest package is available for Python users on PyPI and conda-forge
(conda-forge community, 2015), R users on conda-forge, and Rust users on crates.io. Its
backend is implemented in the system programming language Rust (Matsakis and Klock,
2014). For inquiries, installation instructions, a tutorial, and more information, please visit
github.com/mlondschien/changeforest.

4. Empirical results

We present results from a simulation study comparing the empirical performance of our
classifier-based method changeforest to available multivariate nonparametric competitors.
The source code for the simulations, together with guidance on reproducing tables and fig-
ures, is available at github.com/mlondschien/changeforest-simulations. The repository
can easily be expanded to benchmark new methods provided by users.
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4.1 Competing methods

We are aware of the following nonparametric methods for multivariate multiple change point
detection with existing reasonably efficient implementations: Matteson and James’ (2014) e-
divisive (ECP), Lung-Yut-Fong et al.’s (2015) MultiRank, and kernel change point methods
such as Arlot et al.’s (2019) KCP and Madrid-Padilla et al.’s (2021b) MNWBS.

ECP searches for a single change point minimizing energy distances within segments. The
method generalizes to multiple change point scenarios through binary segmentation, and the
significance of change points is assessed with a permutation test. An implementation of ECP
is available through the R-package ecp (James and Matteson, 2015), which we use in the
simulations.

MultiRank uses a rank-based multivariate homogeneity statistic combined with dynamic
programming. The significance of change points is assessed based on asymptotic theory. To
run simulations with MultiRank, we used code made available to us by the authors. This is
included in the simulations repository.

Kernel change point methods minimize a within-segment average kernelized dissimilarity
measure. Arlot et al. (2019) propose KCP, an algorithm based on dynamic programming.
An efficient implementation can be found in the Python package ruptures (Truong et al.,
2020). We used the slope heuristic proposed by Arlot et al. (2019) for model selection.

MNWBS uses a kernel-density-based nonparametric extension of the CUSUM statistic
for single change point localization. The method extends to multiple change point scenarios
through wild binary segmentation (Fryzlewicz, 2014). Model selection is done by threshold-
ing of the test statistic, where the threshold is chosen based on the Kolmogorov—Smirnov
test statistic.

For all packages, we used default parameters, if available. For ECP, this results in a = 1
and using 199 permutations at a significance level of 0.05. For KCP, we use a Gaussian
kernel with a bandwidth of 0.1 after normalization by the median absolute deviation of
absolute consecutive differences, see Section 4.2. This choice of bandwidth was optimal
for the simulated scenarios, see also Section 4.6 and Table 9. For MNWBS, we used the
bandwidth 5 - (nlog(n)/8)"/? as proposed by Madrid-Padilla et al. (2021b). We used 50
random intervals to reduce the computational cost. We supplied information about the
minimum relative segment length J, equal to 0.01 in the main simulations, to each method,
either by informing about the minimum number of observations per segment [dn] or by
informing about the maximum number of change points [1/4].

Other multivariate nonparametric multiple change point detection methods that we did
not include in our simulations include Liu et al.’s (2013) RuLSIF, Cabrieto et al.’s (2017)
Decon with a kernel-based running statistic, and Zhang and Chen’s (2021) gMulti. For
gMulti, no implementation has been made available by the time of writing. The existing
implementation for Decon in the R package kcpRS does not implement the kernel-based
nonparametric running statistic. The implementation for RuLSIF is only available in Matlab
and does not include an automatic model selection procedure.

4.2 Simulation setups

We evaluate all methods on three parametric and six nonparametric scenarios. We display
their key characteristics below the header in Table 1.
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As for parametric setups, we use the change in mean (CIM) and change in covariance
(CIC) setups from Matteson and James (2014, Section 4.3) and the Dirichlet setup from
Arlot et al. (2019, Section 6.1). For both works, the authors present empirical results of
their methods on data sets for three sets of parameters. We use the set of parameters
corresponding to medium difficulty.

For the change in mean and change in covariance setups, we generate time series of
dimension d = 5 with n = 600 observations and change points at ¢ = 200,400. Observa-
tions in the first and last segment are independently drawn from a standard multivariate
Gaussian distribution. In the change in mean setup, entries in the second segment are i.i.d.
Gaussian with a mean shift of 4 = 2 in each coordinate. In the change in covariance setup,
entries in the second segment are i.i.d. Gaussian with mean zero and unit variance, but
with a covariance of p = 0.7 between coordinates. Lastly, the Dirichlet data set consists
of n = 1000 observations and has dimension d = 20. Ten change points are located at
t = 100, 130, 220, 320, 370, 520, 620, 740, 790, 870. In each segment, the observations are dis-
tributed according to the Dirichlet distribution, with the d parameters drawn i.i.d. uniformly
from [0, 0.2].

We also generate time series with nonparametric in-segment distributions. For this, we
use popular multiclass classification data sets and treat observations corresponding to a
single class as i.i.d. draws from a class-specific distribution. We discard classes with fewer
than dn = 17; observations and shuffle and randomly concatenate the remaining classes.
Categorical variables are dummy encoded. Finally, each covariate gets normalized by the
median absolute deviation of absolute consecutive differences, as is also used by Fryzlewicz
(2014) and further discussed by Kovécs et al. (2020a). This normalization does not affect
our random forest-based method changeforest and rank-based MultiRank but increases
performance for distance-based competitors ECP, KCP, and MNWBS. We did not normalize
covariates in the parametric simulations setup, as this would decrease performance for ECP,

KCP, and MNWBS.

We use the following data sets: The iris flower data set (Anderson, 1936) contains 150
samples of four measurements from three species of the iris flower. The glass identification
data set (Evett and Spiehler, 1989), initially motivated by criminological investigation, con-
tains measurements of chemical compounds for different types of glass. The wine data set
(Cortez et al., 2009) is the result of a physicochemical analysis of both red and white vinho
verde from north-western Portugal. It includes quality scores from blind testing, which we
use as class labels. We encode the wine color as binary. The Wisconsin breast cancer data
set (Street et al., 1993) contains nominal characteristics of cell nuclei computed from a fine
needle aspirate of breast tissue labeled as malignant or benign. The resulting simulated
time series has a single change point. The abalone data set (Waugh, 1995) contains easily
obtainable physical measurements of snails and their age, determined by cutting through the
shell cone and counting the number of rings. Two categorical variables are dummy encoded.
We use the number of rings as class labels. The dry beans data set (Koklu and Ozkan, 2020)
contains shape measurements derived from images of seven different types of dry beans.

The change in mean and change in covariance and possibly also the abalone and wine
data sets feature similar or equal distributions in non-neighboring segments. We expect
these scenarios to be challenging for our methodology, see Section 3.2 and Figure 2.
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4.3 Performance measures

We mainly use the adjusted Rand index (Hubert and Arabie, 1985), a standard measure to
compare clusterings, to evaluate the goodness of fit of estimated segmentations. Given two
partitionings of n observations, the Rand index (Rand, 1971) is the number of agreements,
pairs of observations either in the same or in different subsets for both partitionings, divided
by the total number of pairs (g) The adjusted Rand index is the normalized difference
between the Rand index and its expectation when choosing partitions randomly. Conse-
quently, the adjusted Rand index can take negative values but no values greater than one.
Its expected value is zero for random class assignments, but the expected value for random
segmentations, namely class assignments consistent with the time structure, is significantly
higher. We present a set of segmentations together with their adjusted Rand indices in
Table 4 in the Appendix.

We believe that an adjusted Rand index above 0.95 corresponds to a segmentation that
is close to perfect. An adjusted Rand index of 0.9 corresponds to a good segmentation,
possibly oversegmenting with a false positive close to a true change point or missing one of
two close change points. On the other hand, we expect a segmentation with an adjusted
Rand index significantly below 0.8 not to provide much scientific value.

We additionally use the Hausdorff distance to evaluate change point estimates. For two
segmentations a, o/, set d(a, ') == 1 max,comingeq |a — a/|. Then d(a®, &) is the largest
relative distance of a true change point in a? to its closest counterpart in &, and d(&, o) is
the largest relative distance of a found change point in @& to the closest entry in . Thus
d(a®, &) especially penalizes undersegmentation while d(&, «) penalizes oversegmentation.
Define the Hausdorff distance as dg(a, ') := max(d(«, o), d(a/, «)). Table 4 also includes

the Hausdorff distance for the selected segmentations.

4.4 Main simulation results

We present the results of our main simulation study in Table 1, where we display average
adjusted Rand indices over 500 simulations.

Our method, changeforest, scores above 0.9 on average for each simulation scenario
studied. All other methods have an average score lower than 0.75 for at least one scenario.
changeforest is the best-performing method for four setups: Dirichlet, glass, abalone,
and wine. Furthermore, in four further setups, change in mean, iris, breast cancer, and
dry beans, our method changeforest scores above 0.975 on average, corresponding to an
almost perfect segmentation. The only setup for which changeforest does not perform best
or above 0.975 is change in covariance. Here, changeforest scores second-best behind KCP
and the only other method to score above 0.5 is MNWBS. We compute the average score
for each method to combine the results for the nine simulation scenarios. changeforest
scores highest. Overall, changeforest is widely applicable, with robust performance on all
parametric and nonparametric setups.

We include Table 5 with median Hausdorff distances in the Appendix. The results are
similar, with changeforest being among the methods with the best score, except for change
in covariance, where it achieves a median Hausdorff distance of 0.013, behind KCP with a
median Hausdorff distance of 0.007.
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Table 1: Average adjusted Rand indices over 500 simulations, with standard deviations in
parentheses. Optimal scores are marked in bold. The MultiRank method was unable to
produce results for the dry beans simulation setup. For the abalone, wine, and dry beans
simulation setups, the computational cost of MNWBS was prohibitive. Average and worst
denote the average and worst performances across all setups.

CIM CIC Dirichlet iris glass

n,d, K 600,5,3 600,5,3 1000,20,11 150, 4,3 214,8,6

change in mean  1.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.93 (0.08) 0.49 (0.17)

changekNN 0.99 (0.02) 0.01 (0.08) 0.69 (0.25) 0.99 (0.03) 0.88 (0.09)

ECP 0.99 (0.03) 0.40 (0.32) 0.84 (0.08) 0.99 (0.03) 0.61 (0.24)

KCP 1.00 (0.01) 0.95 (0.06) 0.87 (0.08) 0.99 (0.02) 0.74 (0.23)

MultiRank 1.00 (0.00) 0.00 (0.04) 0.97 (0.02) 0.57 (0.26)  0.60 (0.09)

MNWBS 0.99 (0.06) 0.69 (0.18) 0.67 (0.10) 0.99 (0.04) 0.71 (0.18)

changeforest 0.99 (0.03) 0.93 (0.12) 0.99 (0.02) 0.98 (0.04) 0.92 (0.07)
breast cancer abalone wine  dry beans average worst

n,d, K 699,9,2  4066,9,15 6462,12,5 13611,16,7

change in mean 0.79 (0.03) 0.88 (0.06) 0.98 (0.02) 0.99 (0.01) 0.68 (0.07)  0.00
changekNN 0.91 (0.17) 0.88 (0.10) 0.97 (0.04) 1.00 (0.01) 0.81 (0.11)  0.01
ECP 1.00 (0.02) 0.87 (0.06) 0.98 (0.03) 1.00 (0.00) 0.86 (0.14)  0.43
KCP 1.00 (0.03) 0.92 (0.04) 0.99 (0.01) 1.00 (0.00) 0.94 (0.09) 0.74
MultiRank 0.92 (0.12) 0.81 (0.12)  0.96 (0.03) 0.73 (0.11)  0.00
MNWBS 0.99 (0.05) 0.84 (0.12)  0.67
changeforest 0.98 (0.07) 0.93 (0.05) 0.99 (0.02) 1.00 (0.01) 0.97 (0.06) 0.92

Table 6 in the Appendix shows the average number of estimated change points for each
method and simulation setup. changeforest slightly oversegments for most setups, but not
for the glass and wine setups.

Figure 7 in the Appendix shows histograms of the nonparametric methods’ change point
estimates for the Dirichlet setup, where the underlying change points are constant across
simulations. Corresponding to high adjusted Rand indices of 0.99 and 0.97, change point
estimates by changeforest and MultiRank are sharply concentrated around the true change
point locations. Meanwhile, estimates by changekNN, ECP, KCP, and MNWBS are visually
more spread out, corresponding to worse adjusted Rand indices smaller than 0.9.

We present average computation times for each method in Table 2. Simulations were
run on eight Intel Xeon 2.3 GHz cores with 4 GB of RAM available per core (32 GB in
total). The simple change in mean method is blazingly fast. On the largest simulation setup
dry beans with n = 13611 and d = 16, the average computation time was around 0.002
seconds. changeforest is the fastest nonparametric method on the dry beans simulation
setup, requiring around 2.6 seconds on average. On the other hand, MNWBS and ECP
are prohibitively slow. MNWRBS takes around four hours on average to estimate change
points on the Dirichlet simulation setup. It did not finish in a reasonable time on the larger
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dry beans, wine, and abalone simulation setups. ECP is faster but still requires more than
one hour to estimate change points on the dry beans simulation setup on average. The
code for MultiRank is experimental and broke for the dry beans simulation setup due to
the multiple dummy encoded columns. We further analyze the computational efficiency of
available implementations in Section 4.5.

Table 2: Average computation times in seconds on 8 Intel Xeon 2.3 GHz cores.

CIM CIC Dirichlet iris glass  breast abalone wine dry
cancer beans
n,d 600, 5 600,5 1000, 20 150,4 214,8 699,9 4066,9 6462, 12 13611, 16
change in mean <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
changekNN 0.04 0.04 0.15 <0.01 0.01 0.05 1.8 4.7 24
ECP 4.2 4.5 18 0.37 0.72 4.3 386 741 5356
KCP 0.08 0.09 0.18 0.02 0.04 0.10 2.5 6.6 31
MultiRank 0.77 0.91 2.1 0.10 0.17 1.0 34 90
MNWBS 2132 2143 14261 115 207 3211
changeforest 0.08 0.10 0.43 0.03 0.06 0.07 0.86 0.89 2.6

4.5 Performance for varying numbers of segments and samples

The performance of change point estimation methods depends on an interplay between the
number of observations, the size of distributional shifts between segments, and the number
of change points. In Table 1 we see that for some data sets, such as CIM, iris, and dry
beans, all methods achieve average adjusted Rand indices above 0.975. Here, we believe that
the signal-to-noise ratio is so high that change point estimation is easy, and the difference
between the average adjusted Rand index and the perfect score of 1.0 is primarily a result
of random false positives. On the other hand, the change in covariance and glass setups
appear truly difficult, clearly separating methods that perform well (above 0.9) and those
performing not much better than random guessing (below 0.8).

We introduce two simulation settings that let us generate time series of any length n
with any number of change points K, allowing us to control the underlying signal-to-noise

ratio. We draw Nj, ~ Exp(1) iid. for k =1,..., K and define N; = 10#1( + %Nk. We
j=11Vj

use round(nNy) as segment lengths, where we round such that Zszl round(nNy) = n. This
results in a minimum relative segment length of § = ﬁ.

We present two simulation setups: One based on the Dirichlet distribution and one based
on the dry beans data set. We construct the former as in Section 4.2. For each segment, we
draw i.i.d. observations from a Dirichlet distribution of dimension d = 20, after sampling its
parameters uniformly from [0,0.2]. To generate time series of arbitrary length based on the
dry beans data set, we first normalize each covariate to have an average within-class variance
of one. Then, for each segment, we draw a class label different to that of the previous segment
and draw round(nNj) observations with replacement from the corresponding class. We add
i.i.d. standard Gaussian noise to each observation. As in Section 4.2, we finally normalize
each covariate by the median absolute deviation of absolute consecutive differences. We
simulate 500 data sets with K = 20,80 and vary n = 250, 354, 500,707, 1000, ...,64000
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for each setup. The mean adjusted Rand indices of change point estimates from our and

competing methods are displayed in Figure 5. Each method was supplied with the minimum

relative segment length § = 10#[('
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Figure 5: Evolution of the average adjusted Rand index for methods by the number of
observations for 20 and 80 segments. The y-axis was scaled to better pronounce values in
[0.6,1]. Two times the standard deviation of the mean score is marked with vertical bars.
All methods were run until computational time got prohibitive (ECP and MNWRBS) or 32
GB of memory was insufficient for computation (KCP, MultiRank, and changekNN).

The change in mean method does not perform well for either setup. Our method
changeforest performs best, except for very small sample sizes. For the dry beans simu-
lation setup when n/K < 20, ECP performs best, but not much better than 0.8. For the
Dirichlet simulation setup for K = 20,n = 354 and K = 80,n = 1000, MultiRank performs
best. Surprisingly, KCP performs very badly for the dry beans-based simulation, not se-
lecting any change points at all. This might be due to the higher number of change points
compared to the main simulations or the added Gaussian noise.

We display the average computational time of the different methods in Figure 6, together
with dashed grey lines corresponding to linear and quadratic time complexity. Again, the
parametric change in mean method is very fast. For both change in mean and changeforest,
time complexity appears to scale approximately linear in the number of observations. Mean-
while, changekNN, MultiRank, KCP, and MNWBS scale approximately quadratic, while
ECP appears to have worse than quadratic time complexity. changeforest is the quickest
nonparametric method for n 2 5000.

4.6 Dependence on hyperparameters

We investigate how the hyperparameters of random forests affect changeforest’s perfor-
mance. For this, we vary the three most important parameters for random forests: the
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Figure 6: Average time for change point detection on 8 Intel Xeon 2.3 GHz cores with 4
GB of RAM available per core for the Dirichlet simulation setup. All methods were run
until computational time got prohibitive (ECP and MNWBS) or 32 GB of memory was
insufficient (KCP, MultiRank, and changekNN).

number of trees from 20 to 100 (default) to 500, the maximal depth of individual trees
from 2 to 8 (default) to infinity, and the number of features considered at each split (mtry)
from 1 to v/d (default, rounded down) to d. The average adjusted Rand indices for each
set of parameters for the simulation setups introduced in Section 4.2 are in Table 7 in the
Appendix. The average computational times are in Table 8. We summarize the results here.

Choosing even very extreme parameters, such as number of trees = 20, maximal depth =
2, and mtry = 1, yields acceptable change point estimation performance for simple simula-
tion setups. With these parameters, changeforest performs on average better than ECP,
MultiRank, MNWBS, and changekNN, our method paired with a k-nearest neighbor clas-
sifier. It even outperforms the default configuration (100, 8, \/&) for the iris, breast cancer,
and wine simulation setups, possibly due to selecting fewer false positives because of higher
noise in the predictions. On the other hand, increasing the number of trees from 100 to
500 and splitting individual trees to purity does not significantly increase the performance
compared to the default values while increasing computational cost fivefold.

This low dependence on the choice of tuning parameters is in contrast to KCP, where
the bandwidth of the Gaussian kernel has to be fine-tuned for optimal performance. Ta-

ble 9 in the Appendix shows the estimation performance of KCP for different kernels and
bandwidths.

4.7 False positive rates

We empirically analyze our model selection procedure. For this, we select the largest class
of each data set from Section 4.2, shuffle the observations before applying the change point
detection methods, and collect the percentage out of 2500 simulations where at least one
change point was detected. See Table 3 for the results.

As our model selection procedure is not a true permutation test, we observe more
false positives than expected, given the approximate significance threshold of 0.02 for both
changeforest and the k-nearest neighbor method changekNN. However, changeforest has
a similar false positive rate across all simulation setups. The methods based on heuristics
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Table 3: Percentage of simulations where at least one change point was detected in a
homogeneous data set. For each data set and method, 2500 simulations were performed.

data set CIM  CIC Dirichlet iris glass breast abalone wine dry  worst
cancer beans
change in mean  0.12 0.12 100.0 27.04 91.44 3.44 7.68 1.20 1.40 100.00
changekNN 244 244 1.80 3.64 240 29.80 3.28 6.80 2.04 29.80
ECP 5.76  6.20 5.08 6.80 5.72 4.76 4.76 516  5.16 6.80
KCP 0.00  0.00 0.00 3.04 0.32 5.24 11.32 0.08 0.04 11.32
MultiRank 0.20 0.20 12.08 93.64 90.44 100.0 100.0 100.0 100.00
MNWBS 95.08 95.08 79.36 95.16 77.68  98.20 98.20
changeforest 3.36  3.36 3.76  5.00 3.80 3.80 3.00 352 248 5.00

(KCP and MNWRBS) or asymptotic theory (MultiRank, change in mean) have varying de-
grees of false positive rates by data set. ChangekNN, which uses the same model selection
procedure as changeforest, has a false positive rate of almost 30% for the breast cancer
data set.

5. Future work
We comment on some possible avenues for future work.

Time series featuring serial correlations The setting outlined in Section 2.2 requires
independent observations. In practice, time series data often exhibit serial correlation and
the change in distribution may only manifest through a change in the structure of this
serial correlation. Even though the model assumptions are violated, our algorithm can be
applied to such data sets by augmenting the data with lagged observations. It would be
interesting to compare the performance of changeforest when applied to such augmented
time series with the performance of change point detection methods specifically designed to
detect changes in the autocorrelation structure.

Extending the theoretical guarantees to multiple change points As discussed in
Section 3.6, the two-step search is not guaranteed to find a true change point in a multiple
change point scenario due to possible canceling out effects (see also Figure 2). One possible
remedy would be to pair the two-step search with wild binary segmentation (Fryzlewicz,
2014) or seeded binary segmentation (Kovacs et al., 2023). This would help in scenarios
with very short segments and equal or similar distributions in surrounding segments but
would require changes to the model selection procedure presented to avoid overfitting. As
we already observe very good empirical performance with binary segmentation, we did not
pursue this further.

6. Conclusion

Our proposed changeforest algorithm uses random forests to efficiently and accurately per-
form multiple change point detection across a wide range of data set types. Motivated by
parametric change point detection methodology, the algorithm optimizes a nonparametric
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classifier-based log-likelihood ratio. When coupled with random forests, it performs very
well or better than competitors for all simulation setups studied. The computation time of
changeforest scales almost linearly with the number of observations, enabling nonparamet-
ric change point detection even for very large data sets. The changeforest software package
is available to R, Python, and Rust users. See github.com/mlondschien/changeforest for
installation instructions.

Acknowledgments

Malte Londschien is supported by the ETH Foundations of Data Science and the ETH Al
Center. Solt Kovacs and Peter Biihlmann are supported by the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant
agreement No. 786461 CausalStats - ERC-2017-ADG).

Authors’ contributions

S.K. conceived and co-supervised the project. M.L. and S.K. developed the methodology.
M.L. designed and implemented the changeforest software package, designed, implemented,
and ran the simulations, developed the theory, and wrote the manuscript. P.B. co-supervised
the project and provided feedback and ideas during the development. S.K. and P.B. provided
feedback on the manuscript.

24


github.com/mlondschien/changeforest

RANDOM FORESTS FOR CHANGE POINT DETECTION

Appendix A. Proofs

Proposition 2 Let

ol —1
QU — Q1 Play, 1,04 >| |

pff(:n):-]P’(Y-k]X—x)—( - Do

k=1

be the infinite sample Bayes classifier corresponding to the segmentation «. If A is a set of
segmentations containing o® and Dy (P || Q) is the Kullback-Leibler divergence of Q with
respect to P, then

max E[G ((Xi)iy | a,p™)] =E (G (X)) | a®p™)]

and any mazimizer of E[G ((X;)™; | a, p™)] is equal to a° or is a segmentation containing

a. In particular, the mazimizer o with the smallest cardinality is equal to a®.

Proof Let u < v and define x((u,v]) = {k e{l,....,K}| (& ,,a?] N (u,v] # @}. If there
exists some k such that of | <u < v < af, then n((u v]) = {k} and p(y,.) = P(a?_, a0 = Pk-
Consequently, as the X, 41,..., Xy—1 are Pg-distributed, we have

~ g (Pet K| _
’ Luzﬂl g<P(0,n}(Xz‘)>] = (=) Drr(Pr || Pron)-

This implies that, for any segmentation a containing o and thus |k((a_1, ax])| = 1 for all
k=1,...,K,

Mw

E[G((Xi)isy | a,p™ — o) ) DrL(Pr || Pon)-

k::l

(o o] N (u,v]|

Now assume that ((u, v]) contains more than a single element. Set 7 ((u,v]) = P

Then Py,0] = > ken((u,0) (4, v])Pr and

o 2 )| - e e G

i=u+1
Z er((u,v T ((U,’U])p (X)
o B )
V—Uu s u,v (o) M
=(@w=u) > m((w,v])Drr(Ps || Pon)-
ker((u,v])
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In the third line, we used the fact that x — xlog(x) is strictly convex. Consider any
segmentation o that does not contain a’. Then there exists at least one segment (cs_1, ]
such that x((ay -1, ax]) contains more than one element and thus

K ag . o XZ
E[G (Xt |op™)] =Y E| 3 log(fmﬁ)>
k=1

e P(on)(Xi)

K
<> (aw—a1) > m(ew1, oax])Drn(Py || Pioy)

ler((ok-1,0k])

I
M T

(o — ) 1) Drr(Pr || Pro,n)

B
Il
—

applying the above inequality with © = a1 and v = ayy. |

Proposition 3 For the Bayes classifier p>°, the expected classifier log-likelihood ratio

s = B[G ((X)izupr | {u,s,0},0%)]

is piecewise convex between the underlying change points o, with strict convexity in the
segment (a9 |, o] if Plua ) # Pla0 0] 07 Pao | a0] # P(a0 4]

Proof Let s € (u,v — 1]\a”. We show that the expected classifier log-likelihood ratio

G(s) =B [G ((Xi)izup | {u, 5,0},0%)]
is convex at s, that is, G(s + 1) — 2G(s) + G(s — 1) > 0. By definition

15[ 3 ()« 3 ()]

i=u+1 i=s+1
and
G(s+1) - E| S 1o ( “*1 ) 3 lo <p<s+1vl >> Hog(ZstH))]
i=u+1 (us] i=s+2 D }(XZ) p(S,v}(XS-H)
- (8 —u+t 1)DKL(P(U73+1] || P(%S]) (U A 1)DKL(P(5+1,U] H IP)(s,v]) +
p(u,s}(Xs+1)>:|
E log<
|: P(s] (Xs+1)

Similarly,

G(s—1)—G(s)=E

s—1
P(u,s s—1,v] X) P(s,v] (XS)
log( >+ lo < >+log<
2 p(% Z P(s,v) (X) P(u,s] (Xs)
=(s—u~ 1)DKL(IP>(U,8_1] I Pus) + (v =5+ DDrrPs-1,0] | Pls)) +
P(s,] (Xs)):|
E log(
|: P(u,s] (XS)
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As s ¢ a° the X, X,y are i.i.d. and thus

P(u,s] (XS+1)> <p(s,v] (XS)>:| |: DP(u,s] <X8+1) P(s,v) (XS)
E log< tlog( Pl ) V| g (o (Pus2et ) e ((Plnls) N g
|: P(s,v] (XS+1) P(u,s] (Xs) P(u,s] (XS) P(s,v)] (Xs-i‘l)
Combining everything,

G(s+1)—2G(s) +G(s—1) = (G(s+ 1) —G(s)) + (G(s — 1) — G(s))
= (8 —u+ 1)DKL(]P(u s+1] H ]P (u,s] ) + ( -8 I)DKL(]P)(S—H,U} ” ]P)(s,v]) +
(S —Uu-— 1)DKL(P(U,S—1] H IED(u,s]) (’U — s+ 1)DKL(]P)(S—1,U] H ]P(S,U])'

This is nonnegative, as the Kullback-Leibler divergence between two distributions is non-
negative and as u+ 1 < s < v — 1. Furthermore, as s —u+1>1and v —s+ 1 > 1, this
term is positive if Prysy1) # P(u,% or Pis_1,) # P(s- Choose k such that s € (., al].
Then, as s ¢ o, also s +1 € (o 1,af]. Then Py, o11) # Py g or Prs_q4) # Prs ) if and
only if IP) 0 3l 75 P a%] or P(agilyag] 75 P(a%,v]' |

Proposition 4 For the Bayes classifier p>° and any initial guess u < (0 < v, the expected
approrimate gain

Z 10g< p{u 5(0) v} ) Z 10g< (0)p{u s(0) v} (Xi)2 >]

i=u+1 i=s+1

s—E

is piecewise linear between the underlying change points . If there is a single change point
a® € (u,v], the expected approrimate gain has a unique mazimum at s = al.

Proof Write
S v —
G(s) = Z log(( 0) _ p{u 5(0) U} > + Z 10g< p{u 5(0) 1,}( i)2 )
i=u+1 § i=s+1
X;
Z lo <p(us< >+ Z lo (p(s(o) ( ))
i=u+1 (U’U]( i=s+1 p(uv](X)
and define

Uj=G(j)— G(j — 1) =log (pW(O)l(XJ)> ,

p(s(()) 71)] (X])

such that G(s) = G(u) + >, U;. For any segment (¥ |, ay] intersecting the seg-
ment (u,v] and any s € (af |, ax], the Uso 11+ Uay are i.i.d. Consequently, E[G(s)] =
E[G(a) )]+ (s—al DE[U, 0 1], proving that E[G(s)] is piecewise linear between the change
points in .

Now assume that there is a single change point a® in (u,v]. Assume without loss of

()_ (0)_,0
generality that s > a0 such that Plu,s0] = ﬁp(u,aq +ﬁp(aoﬂ,] and P(s© v] = P(a0 ]

27



LONDSCHIEN, BUHLMANN, AND KOVACS

Then, for j < a°,
Plu,s@) (X))
E[U;] = E g o (X))
U] = Ez, .o, [ & <p<s<o>,v}(Xj)

(0) _ (X;) (0) _ g0
S U Py,s0 (A S a
= E]P(u,s(o)] [10g ( ) ] B IE:]P)({J‘O,v]

(p(u,s(o)] (XJ) ) ]
log | "0 (%)
D(s5(0) 4] ( J)

a® —u P50 ] (X5) ad —u
o) _ 0) _ 40
s u s a
= @ —w DKL(]P)(u,s(Oﬂ || IP)(ao,v]) + a® —u DKL(IP(S(O),U] || IP)(u,s(o)]) > 0.

Similarly, for j > a°

_ Pus0)(X5) \ | _
E[U] = EP<S<0),v] llog (p(s@)v](Xa) = —DKL(]P)(G(O)M] [ P(u,sw)]) <0,

which shows that s — E[G(s)] = E[G(u)]+>;_, 1 E[U;] has a unique maximum at s = a°. B

Lemma 6 Let Py, Py be probability measures with corresponding densities p1,ps. Let d1,09 €
[0, 1] with 01 # 62. Define Q(0) :== (1 —6)Py + 6Py with density q(6) = (1 —3)p1+ dp2. Then

g0\ _ 9
B, [tog (24| = =2 - D) | Q(6) + )
1

02 — 01

D (Q(d2) || Q(61))- (8)

Proof The Kullback Leibler divergence between distribution @1, Qs with densities q1, ¢o is
Dicr(Q1 || Q2) = Equllog( 23 1. Thus

Du (@) [ Q(82) = (1 = 0Bz, [tog( 435 )] + aike, [log(( 2211

and
Dicr(Q(6) | Q(61)) = (1 — 6)Es, [w(jﬁﬁm 1 6, [14383)]
such that
=2 D (@) 1| Q) + 52 D (@) | Q)

- (525251(1 o) - 525151(1 - 52)) Fry [log(gglsﬂ i
(525—251 " 525—151 52) e, [log(ZEg)] ~ b [log(g%;)] '
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Lemma 7 Let Z1,

.y Zn be independent random wvariables bounded from below by a and
from above by b. Let 1 < K < n. Then,

K
Pl U {Z(Zi —E[Z]) > (b - a)\/klog(n)
k=1,...K

<
; S on?’
=1

Proof Define Z; := Z; — E[Z;] such that a; :== a — E[Z;] < Z; < b— E[Z;] := b;, with
we have

bj—a;=b—aforalli=1,...,n. By Hoeffding’s theorem, for each k =1,..., K and A > 0,
P

k
ZZ’ >\
=1

Setting A = (b—a)

k
P U {
k=1,...K li=1

IN\2
SOP T — )

klog(n) and taking a union bound yields

(Z; —E[Z]) = (b—a) klog(n)} < Kexp(—

2k(b — a)210g(n)) _K
k(b— a)? n?
|

Theorem 5 Let 0 < 6,1 < 1 and 6 < 7°,p < 1 —6. Set s = pn

change point scenario with n observations and a change point at a® = T

Assume a single
0
A~ n—oo . iy
maxi—1i,..n |[Ps(Xi)1 —pX(Xi)1| — 0 in probability. Choose

n. Let p satisfy
t
a € argmax log

argmex ) log,

. = n
Y o, (2050) + 3 1,
as in Algorithm 2. Then
C'log(n) ] e300

. n— Sﬁs(Xi)2>
i=t+1
P — 0
[ 52dry (P1, Po)*n ’

where dpy(P1,Ps) is the total variation distance between the two distributions Py and Po
before and after the change point and C' = =L log(

A~

a 0
n

1 11 )2
n (I=p)pn*) -
Proof Recall that log, (z) = log(n + (1 — n)x) and write

t n
Gs’n(t7p) = Zlogn (%pS(Xz)l) + Z logn
i=1

n
()
. n-—s
1=t+1
<§ Po,s] n

—5 P(s,n]

for t = 0,...,n and any classifier p. Recall that p> is the Bayes classifier with pZ®
T
nPpo,n]’ N PoO,n

) . We proceed in four steps.
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(i) First, we show that, for any t = 1,...,n,
E[G*"(a®, p™) = G¥(t,p™)] = 2|t — a®|5(1 — n)*dry (P1, Po).

(ii) Second, we show that

P

N { [GP7(a,p) — GV(t,p™)] — E [G*(a,p™) — G (1, p™)]

t=1,..n

1 1 1 nseo
> —210g<> t — a®| log(n } >1-- =1
p(1—p)n? | [ tog(n) n

(iii) Next, we argue by %—Lipschitz continuity of log, and consistency of p that, for any
e >0,

Pl {677 5) - G(t5)] - (6", p) = G(t,p™)] > —[t = e} | "5 1.
t=1,....n
| C'log(n)

(iv) Combined, these steps imply that, if |t —a®| > Ty (PLPa)T

A N ~ C1
G (a", p) > G*"(t,p) and thus |a — a°| < %.

then, with high probability,

Step 1: Fori=1,...,n, define

s s s . n
U>"(p)i :== G>"(i,p) — G¥"(i — 1,p) = log, (gps(Xih) — log, <n (Xi)2> :
We show that
[E[U7(p™)]] = 2(1 — n)ddry (P, Ps)?,

with a positive sign for i < a® and a negative sign for i > a’.
By symmetry, we can assume, without loss of generality, that s > a’. Then, ]P’(O s =

Fur-

(5] = IP’Q with densities p(o 4 =

thermore, P(o,n} = WIP’ + 2 na Py with density p(g,,) = —pl + 2 pg For each 1=1,.
we have

n+ (1 - n)l)(()’s](Xi)> log <?7+ (1— 77)?9(”1(‘)>

( P, (Xi) On]( )

NP o0,n) (Xi) + (1 = 1)p(0,s( On L —n)p(s,n)(Xi
o (2021 )m;( >)( =) o (S et
_log(n«:fmxg p2(X0) + (1= m)(5p1 + S;szxxi))

D () + 252 (%)) + (1 (X,
:10g<“s<1—n> PL(Xo) + <——<1—n" 8>>p2<xz->>‘
n5pi(X) + (1= 0% )pa(X0)
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Let Q(6) = (1 — )Py + 0Py. Then, by Lemma 6 with 6; = 1 — %(1 —n"=E), b =1~ n%,

and thus 2 — 91 = (1 — n)%,

[=}

Exom (U070 = 10 Dy (Q01) [ Q) + s E ) b ) | Qo).
(1—mn)% (1—-n)%

By Pinsker’s inequality, Dx 1 (Q(d1) || Q(d2)) = 2drv(Q(d1),Q(d2))%. Furthermore, it holds

that drv(Q(d1), Q(02)) = [d2 — é1]|dTv(P1,P2). Thus,

~—

(10 CLO CLO n—s
Ex,np [U(07)i] 2 2(1 —n)— (1 -+l (1= )) drv (P, Py)?

—2(1— n)% (2 ~La-gt ;25)> dpy (P, Py)>
> 2(1 — n)%ddyy (Py, Py)2.
Similarly,
—Ex,~p[U"(p™)i] = 2(1 — n)*6dry (Py, P2)?,
which proves the claim.

Step 2: Note that log, () is bounded from below by log() and from above by log(z) for all
z > 1. Consequently, the UM (p); = logn( s(Xi)1) — logn(ﬁpS(Xi) ) are bounded from
below by a = —log(1 pn) and from above by b = log<77> with b — a = log(77 p(ll p)>
Write

A(E) 1= [Go(a,p) = Gt p™)] — B [G(a,p) = G(t,p™)]

Then, for t < a°

af

AMI(E) = Y (U (%) = B[US (p)i]).

i=t+1
We apply Lemma 7 with K = a® and Z; = —~U®"(p*®),0_; 41 fori =1,..., K. This yields

11
P A%T(t —log< > t —a%log(n }

ti%ﬁ{ () <~ tog( ot ) Ve = alTog(n
1 1 K a°
—P Z; —E[Zi] > log| — ——— ) /]k[1 <= ==
ki4K{2: %<wpu—m> oym}} =5

Similarly, for t > a® + 1,
t
AI() = Y (U(p E[U*"(p™)i])
i=a0+1
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and we can apply Lemma 7 with K =n —a® and Z; = U, for i = 1,..., K. This yields

el U {As’”(t)<—10g<12(11_p)> |t—a0|10g(n)}

S n—a°
U R B o | B S
K

k=1,... i=1 P

Combining the two bounds, we obtain

Pl U {80 < tog( ot )V aToR | < Pt =

t=1,....,n

and thus

P :D'H{A(t)>—log<7712p(11_p)> \t—aoylog(n)} >1—%

t b b
as desired.

Step 3: Let e > 0. As log, is %—Lipschitz, whenever

max [ (Xi)1 = po(Xih| < mp(l = pe

[ARR)

and thus also

max [p3°(X;)2 — ps(Xi)2| = ,oax I(1—p(Xi)1) — (1= ps(Xe)1)| < mp(l — p)e,

i=1,...,n =1,...,n
then
max [U"(p™); —U"(p)i| <e,

i=1,...,n
and, forallt=1,...,n,
|[G="(a°, p) — G="(t, )] — [GZ"(a”, p™) = G (8, p™)]| <[t = d"e.

Thus, in particular,

Pl () {l6*"(a’p) = G*"(t,5)] = [G*"(a,p™) = G*(t,p™)] = —|t — a’|e}

t=1,....n
>P | () {l6*"(a°p) — G*"(t,p)] - [G¥(a®,p™) — G*"(t,p™)]| < |t — a°¢}
t=1,....,n

>P  max 157 (Xi)1 — Ds(Xi)1] < mp(1 —ple| — 1

=1,...,

by the consistency assumption of p, proving the claim.
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Step 4: We combine the results of steps 1, 2, and 3 to prove the claim.

Let t = 1,...,n. We bound G(a,p) — G(t,p) from below with high probability. For this,
we decompose

G>(a’,p) — G*(t, p) = E[G¥"(a%,p™) — G¥(t,p™)] +

A(t)
[G*"(a°, p™°) — G*"(t,p™)] — E[G>"(a”, p™) — G¥(t,p™)] +
B()
[G>"(a®, p) — G*"(t,p)] — [GZ"(a”, p™) — G™(t,p™)] .
C(t)
By step 1,
Vit = 1,. co,n A(t) = 2|t - ao\é(l - n)QdTv(Pl,Pg)Q.
By step 2,
P|Vt=1,...,n:B(t) > -1 ( 1) |t —a0|1 ()}>1 e
=1,...,n: —log| ——— —aVllog(n)| 21— — .
B\ —p) 2 & n

By step 3, choosing € = §(1 — 1)2dry (P1,P2)?,
n—oo

PVt=1,...,n:C(t) > —|t - a®|(1 — 77)25dTv(P1,P2)2] 100 1

Thus

PIVt=1,...,n: G’ p) — G(t,p) = A(t) + B(t) + C(t) >

1 n X
It — a®|5(1 — n)*dypy (Py,P2)? — 10g< 2> log(n)[t — a0|] =1

p(1=p)n

and

l n o
P [wz 1o st [t— o] < 108l - Go(al, ) >Gs’”(t,]§)} s

62drv (P, P2)

n? 1
2

2
where C' = ﬁ log<nis 77) , implying

|

as a € argmax,_y ., G*"(t,p).

C'log(n) 00
62dpy (P, Py)4 — 0

A~

a—a’| >
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Appendix B. Figures

changekNN ECP
xX X X X x X x X X XX X X X x X XX X
100
1501
80
60 1 100+
40
50 1
201
0- 0+ r T r ot :
0 200 400 600 800 1000 0 200 400 600 800 1000
KCP MultiRank
XX X XX X X XX X 5001 XX X XX X X XX X
200 A
400 A
1501
300 1
1004
2001
501 l 1001
0l~ ; . . \ ; 0l~ L . ; , -
0 200 400 600 800 1000 0 200 400 600 800 1000
MNWBS changeforest
801 <X x XX x X xX X 500 XX x XX x X XX X
604 4001
300
401
2001
20
100+
0 ol Ll , , , ,
0 200 400 600 800 1000 0 200 400 600 800 1000

Figure 7: Histograms of cumulative change point estimates for 500 simulation runs on the
Dirichlet simulation setup. The change in mean method is excluded as it did not produce any
change point estimates for the Dirichlet simulation setup. The true change point locations
are marked with green crosses. Note the different scales on the y-axis.
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Appendix C. Tables

Table 4: Adjusted Rand indices (ARI) and Hausdorff distances

(dg) for different seg-

mentations. The true segmentation comes from the parametric change in mean (CIC,
a’ = (0,50, 100,150)) and the nonparametric glass (o' = (0,17, 46, 55, 68, 144, 214)) setup.

true segmentation estimated segmentation ARI dg comment

0, 50, 100, 150 0, 50, 100, 150 1.00 0.000 perfect fit
0, 52, 99, 150 0.94 0.013 almost perfect fit
0, 23, 50, 100, 150 0.87 0.153 one extra change point
0, 43, 87, 97, 150 0.75 0.087 two extra change points
0, 50, 150 0.57 0.333 one missing change point
0, 20, 70, 150 0.37 0.200 random segmentation

0, 17, 46, 55, 68, 144, 214 0, 17, 46, 55, 68, 144, 214 1.00 0.000 perfect fit
0, 15, 45, 55, 68, 142, 214 0.95 0.009 almost perfect fit

0, 17, 46, 55, 68, 80, 144, 214 0.91 0.056
0, 17, 46, 55, 68, 100, 144, 214  0.83 0.150
0, 46, 55, 68, 144, 214 0.95 0.079

0, 17, 46, 55, 144, 214 0.89 0.061
0, 50, 100, 150, 214 0.61 0.150
0, 214 0.00 0.327

one extra change point
one extra change point
one missing change point
one missing change point
random segmentation

no segmentation

Table 5: Median relative Hausdorff distance over 500 simulations (in percent), with median
absolute deviations in parentheses. Optimal scores are marked in bold.

CIM CIC  Dirichlet iris glass

change in mean 0.0 (0.1)  33.3 (0.0) 48.0 (0.0) 1.3 (4.9) 16 8 (1.5)
changekNN 0.0 (1.0) 33.3(0.6) 6.6 (7.7) 0.0 (1.5) 9 (3.4)
ECP 0.0 (1.0) 32.0(9.3) 52(2.8) 0.0 (1.2) 31 1 (13.2)
KCP 0.0 (0.3) 0.7 (2.4) 5.0(25) 0.0(0.8) 7.9 (10.1)
MultiRank 0.0 (0.0) 33.3(0.3) 3.0 (L3) 15.3 (4.0) 15 9 ( 1)
MNWBS 0.0 (0.7) 15.3 (12.5) 5.9 (0.9) 0.0 (0.5) 9 (5.9)
changeforest 0.0 (1.8) 1.3(3.7) 0.2(14) 0.0(2.1) 8 (3.7)
breast cancer  abalone wine dry beans average

change in mean 16.7 (1.2) 5.0(1.8) 0.4 (14) 1.3(1.3) 13.7
changekNN 0.0 (7.5) 5.0 (3.5) 1.5(L7) 0.0 (0.6) 6.0
ECP 0.0 (0.8) 6.2(2.1) 0.3 (1.7) 0.0 (0.1) 8.1
KCP 0.0 (0.4) 4.2 (1.6) 0.2(1.4) 0.0 (0.0) 2.0
MultiRank 0.0 (7.3) 9.1 (44) 3.0 (L.1) 10.0
MNWBS 0.0 (0.7) 5.0
changeforest 0.0 (2.1) 3.1(1.9) 0.0(0.9) 0.0 (0.6) 0.9
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Table 6: The average number of change points estimated over 500 simulations, with standard
deviations in parentheses.

CIM CIC Dirichlet iris glass

ground truth 2 2 10 2 5
change in mean 2.00 (0.00) 0.00 (0.00)  0.00 (0.00) 2.99 (1.40) 22.06 (7.19)
changekNN 2.12 (0.41) 0.58 (1.24)  8.01 (2.68) 2.11 (0.35)  4.16 (0.97)
ECP 2.07 (0.34) 1.21 (1.05) 7.70 (1.07)  2.09 (0.36)  2.58 (1.10)
KCP 2.03 (0.18) 2.39 (0.66) 8.39 (1.16)  2.05 (0.31)  3.44 (1.12)
MultiRank 2.00 (0.00) 0.41 (3.72)  9.18 (0.46) 13.31 (8.00) 21.74 (3.48)
MNWBS 2.14 (1.05) 1.81 (1.25) 21.96 (4.82)  2.05 (0.60)  5.26 (3.05)
changeforest  2.13 (0.38) 2.38 (0.67) 10.54 (0.77)  2.15(0.42)  4.93 (0.78)

data set breast cancer abalone wine dry beans

ground truth 1 14 4 6

change in mean  16.62 (3.94) 11.07 (1.38) 3.65 (0.52) 7.04 (0.98)

changekNN 1.49 (0.90) 11.74 (1.76) 4.52 (1.00) 6.21 (0.49)

ECP 1.07 (0.36)  9.73 (1.10) 3.71 (0.57) 6.05 (0.25)

KCP 1.01 (0.14) 10.62 (1.07) 3.60 (0.49) 6.00 (0.04)

MultiRank 8.28 (10.91) 11.77 (1.93) 3.00 (0.71)

MNWBS 1.05 (0.57)

changeforest 1.08 (0.34) 12.09 (1.37) 4.21 (0.49) 6.23 (0.47)
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Table 7: Average adjusted Rand indices of changeforest for different tuning parameters
over 500 simulations, with standard deviations in parentheses. Optimal scores and those
within two standard deviations are marked in bold. When necessary, mtry, the number of
features evaluated at each split, was rounded down to the next integer.

trees max. mtry CIM CIC Dirichlet iris glass
depth
20 2 1 0.99 (0.03) 0.13 (0.29) 0.97 (0.02) 0.98 (0.04) 0.89 (0.08)
Vd 099 (0.03) 0.19 (0.34) 0.98 (0.02) 0.98 (0.04) 0.90 (0.08)
d 0.99 (0.03) 0.19 (0.34) 0.98 (0.02) 0.99 (0.03) 0.91 (0.08)
8 1 0.99 (0.02) 0.29 (0.41) 0.98 (0.01) 0.99 (0.02) 0.89 (0.08)
Vd 0.99 (0.02) 0.27 (0.40) 0.99 (0.01) 0.99 (0.02) 0.89 (0.10)
d 0.99 (0.05) 0.21 (0.37) 0.99 (0.01) 0.99 (0.02) 0.87 (0.13)
00 1 0.87 (0.27)  0.00 (0.00) 0.98 (0.02) 0.99 (0.02) 0.86 (0.15)
Vvd  0.85(0.30) 0.00 (0.00) 0.99 (0.01) 0.99 (0.02) 0.87 (0.12)
d 0.78 (0.36)  0.00 (0.00) 0.99 (0.01) 0.99 (0.02) 0.85 (0.16)
100 2 1 0.98 (0.04) 0.50 (0.44) 0.98 (0.02) 0.98 (0.04) 0.90 (0.08)
Vd 098 (0.04) 0.52 (0.44) 0.98 (0.02) 0.98 (0.04) 0.91 (0.07)
d 0.98 (0.04) 0.50 (0.43) 0.98 (0.02) 0.98 (0.04) 0.92 (0.07)
8 1 0.99 (0.03) 0.93 (0.13) 0.99 (0.02) 0.98 (0.04) 0.92 (0.07)
Vd o 0.99 (0.03) 092 (0.12)  0.99 (0.02) 0.98 (0.04) 0.92 (0.07)
d 0.99 (0.03) 0.89 (0.20) 0.98 (0.02) 0.99 (0.03) 0.92 (0.08)
00 1 0.98 (0.04) 0.88(0.22) 0.99 (0.02) 0.98 (0.04) 0.92 (0.08)
Vd 099 (0.04) 0.88(0.22) 0.99 (0.02) 0.98 (0.04) 0.92 (0.07)
d 0.99 (0.03) 0.82(0.31) 0.98 (0.02) 0.99 (0.04) 0.92 (0.08)
500 2 1 0.98 (0.05) 0.53 (0.43) 0.98 (0.02) 0.98 (0.05) 0.91 (0.07)
Vd  0.98 (0.04) 0.57 (0.43) 0.98 (0.03) 0.98 (0.04) 0.92 (0.07)
d 0.98 (0.04) 0.52 (0.43) 0.97 (0.02) 0.98 (0.04) 0.92 (0.07)
8 1 0.98 (0.04) 0.95 (0.05) 0.99 (0.02) 0.98 (0.05) 0.92 (0.07)
Vd  0.98 (0.04) 0.94 (0.07) 0.99 (0.02) 0.98 (0.04) 0.92 (0.07)
d 0.99 (0.04) 0.93 (0.11) 0.98 (0.02) 0.99 (0.04) 0.92 (0.08)
00 1 0.98 (0.04) 0.94 (0.08) 0.99 (0.02) 0.98 (0.04) 0.92 (0.07)
Vd 098 (0.04) 0.94 (0.07) 0.99 (0.02) 0.98 (0.04) 0.92 (0.07)
d 0.98 (0.04) 0.93 (0.11) 0.98 (0.02) 0.99 (0.04) 0.92 (0.08)

Continued on the next page.
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Table 7 (Continued): Average adjusted Rand indices of changeforest for different tuning
parameters over 500 simulations, with standard deviations in parentheses. Optimal scores
and those within two standard deviations are marked in bold. When necessary, mtry, the
number of features evaluated at each split, was rounded down to the next integer.

trees max. mtry breast abalone wine dry average
depth cancer beans
20 2 1 0.99 (0.05) 0.87 (0.08) 0.98 (0.02) 1.00 (0.01) 0.87 (0.11)
Vd 0.99 (0.04) 0.91 (0.06) 0.99 (0.01) 1.00 (0.01) 0.88 (0.12)
d 0.99 (0.05) 0.92 (0.05) 0.99 (0.02) 1.00 (0.01) 0.88 (0.12)
8 1 1.00 (0.03) 0.84 (0.11) 1.00 (0.01) 1.00 (0.00) 0.89 (0.14)
Vd 0.99 (0.04) 0.85(0.11) 1.00 (0.01) 1.00 (0.00) 0.89 (0.14)
d 0.99 (0.04) 0.81 (0.13) 1.00 (0.00) 1.00 (0.00) 0.87 (0.14)
00 1 1.00 (0.01) 0.08 (0.14) 0.99 (0.01) 1.00 (0.00) 0.75 (0.11)
Vd 1.00 (0.01) 0.09 (0.14) 0.99 (0.01) 1.00 (0.00) 0.75 (0.12)
d 1.00 (0.01) 0.07 (0.12) 0.99 (0.01) 1.00 (0.00) 0.74 (0.14)
100 2 1 0.98 (0.09) 0.91 (0.05) 0.98 (0.04) 0.99 (0.02) 0.91 (0.15)
Vd 0.98 (0.08) 0.93 (0.04) 0.98 (0.04) 0.99 (0.02) 0.92 (0.15)
d 0.97 (0.08) 0.94 (0.04) 0.98 (0.04) 0.99 (0.03) 0.92 (0.15)
8 1 0.98 (0.08) 0.93 (0.05) 0.99 (0.03) 0.99 (0.01) 0.97 (0.06)
Vd 0.98 (0.07)  0.93 (0.05) 0.99 (0.02) 1.00 (0.01) 0.97 (0.06)
d 0.98 (0.07) 0.93 (0.06) 0.99 (0.02) 1.00 (0.01) 0.96 (0.08)
00 1 1.00 (0.02) 0.88 (0.10) 1.00 (0.00) 1.00 (0.01) 0.96 (0.09)
Vd 0.99 (0.03)  0.90 (0.07) 1.00 (0.01) 1.00 (0.01) 0.96 (0.08)
d 1.00 (0.02) 0.89 (0.08) 1.00 (0.00) 0.99 (0.02) 0.95 (0.11)
500 2 1 0.98 (0.09) 0.92 (0.05) 0.97 (0.06) 0.98 (0.03) 0.91 (0.15)
Vd 0.97 (0.09) 0.93 (0.04) 0.97 (0.06) 0.98 (0.03) 0.92 (0.15)
d 0.97 (0.09) 0.94 (0.04) 0.97 (0.06) 0.98 (0.03) 0.92 (0.15)
8 1 0.97 (0.10)  0.93 (0.05) 0.98 (0.04) 0.99 (0.02) 0.97 (0.05)
Vd 0.98 (0.08) 0.94 (0.04) 0.99 (0.04) 0.99 (0.02) 0.97 (0.05)
d 0.98 (0.08) 0.93 (0.05) 0.99 (0.02) 1.00 (0.01) 0.97 (0.06)
00 1 0.99 (0.03) 0.91 (0.06) 1.00 (0.01) 1.00 (0.01) 0.97 (0.05)
Vd 0.99 (0.03) 0.93 (0.05) 1.00 (0.01) 0.99 (0.02) 0.97 (0.04)
d 0.99 (0.03) 0.92 (0.06) 1.00 (0.01) 0.99 (0.02) 0.97 (0.05)
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Table 8: Average computational times of changeforest in seconds on 8 Intel Xeon 2.3 GHz
cores. When necessary, mtry, the number of features evaluated at each split, was rounded
down to the next integer.

trees max. mtry CIM CIC Dirichlet iris glass wine breast abalone dry
depth cancer beans

20 2 1 0.03 0.01 0.10 0.01 0.02 0.02 0.23 0.24 0.64
Vd 0.02 0.01 0.11 0.01 0.02 0.02 0.24 0.25 0.68

d 0.03 0.01 0.14 0.01 0.02 0.02 0.27 0.27 0.86

8 1 0.03 0.02 0.16 0.01 0.02 0.03 0.32 0.34 0.84

Vd 0.03 0.02 0.16 0.01 0.03 0.03 0.35 0.36 0.97

d 0.04 0.03 0.21 0.01 0.03 0.03 0.42 0.45 1.5

00 1 0.04 0.02 0.18 0.01 0.03 0.03 0.23 0.57 1.2

Vd 0.04 0.02 0.17 0.01 0.03 0.03 0.27 0.57 1.4

d 0.05 0.02 0.22 0.01 0.03 0.03 0.31 0.72 2.1

100 2 1 0.04 0.03 0.22 0.02 0.03 0.04 043 0.45 1.3
Vd 0.04 0.03 0.24 0.02 0.04 0.04 0.46 0.48 1.4

d 0.05 0.04 0.33 0.02 0.04 0.04 0.56 0.56 2.1

8 1 0.07 0.08 0.43 0.02 0.06 0.07 0.77 0.79 2.1

Vd 0.08 0.09 043 0.02 0.06 0.07 0.85 0.87 2.6

d 0.10 0.10 0.57 0.02 0.07 0.07 1.1 1.2 4.7

00 1 0.09 0.10 0.50 0.03 0.06 0.09 1.3 1.6 3.6

Vd 010 0.11 046 0.02 0.06 0.09 1.4 1.6 4.2

d 0.11  0.12 0.60 0.03 0.07 0.09 1.7 2.2 7.4

500 2 1 0.11  0.08 0.67 0.04 0.10 0.10 1.2 14 4.3
Vvd 012 0.09 0.75 0.04 010 0.11 1.3 1.5 5.0

d 0.14 0.11 1.1 0.05 0.12 0.12 1.7 1.9 8.2

8 1 0.25 027 1.6 0.08 020 0.22 2.7 3.0 8.4

Vd 0.27 030 1.6 0.08 0.20 0.22 3.1 3.4 11

d 0.33 037 2.2 0.08 0.22 025 4.2 5.0 21

00 1 0.32 036 1.9 0.08 0.22 030 4.9 6.8 15

Vd 0.33 0.38 1.7 0.08 0.21 0.29 5.3 7.0 18

d 0.38 044 23 0.08 0.22 031 6.7 9.7 33
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Table 9: Average adjusted Rand indices of KCP (Arlot et al., 2019) for different tuning pa-
rameters over 500 simulations, with standard deviations in parentheses. Optimal scores and
those within two standard deviations are marked in bold. Note that for all nonparametric
simulation setups, the covariates have been normalized by the median absolute deviation
of absolute consecutive differences, such that the reported bandwidths are relative to the
scale of the covariates. For the bandwidth median, the bandwidth was chosen according to
the median heuristic (Garreau et al., 2017). Here, differently from the normalization based
on consecutive differences, the median is taken over all possible pairwise distances and thus
mostly contains differences across different distributions. As a consequence, the bandwidths
selected by the median heuristic tend to be large (greater than 1). The oracle is the best
performing hyperparameter combination. We used a Gaussian kernel with bandwidth 0.1 in

the main simulations.

kernel bandwidth CIM CIC Dirichlet iris glass
cosine 0.80 (0.17)  0.36 (0.25) 0.86 (0.08) 0.03 (0.00) 0.03 (0.00)
linear 0.99 (0.03) 0.34 (0.28) 0.87 (0.08) 0.85 (0.16) 0.37 (0.15)
Gaussian  0.025 0.99 (0.03) 0.38 (0.36) 0.80 (0.11) 0.94 (0.11) 0.83 (0.16)
Gaussian  0.05 1.00 (0.02) 0.73 (0.33) 0.87 (0.08) 0.98 (0.06) 0.83 (0.17)
Gaussian 0.1 1.00 (0.01) 0.95 (0.06) 0.87 (0.08) 0.99 (0.02) 0.74 (0.23)
Gaussian 0.2 1.00 (0.00)  0.98 (0.03) 0.87 (0.08) 1.00 (0.01) 0.59 (0.26)
Gaussian 0.4 1.00 (0.00) 0.98 (0.02) 0.87 (0.08) 0.99 (0.02) 0.46 (0.28)
Gaussian 0.8 1.00 (0.00) 0.97 (0.09) 0.87 (0.08) 0.83(0.22) 0.15 (0.25)
Gaussian  median 0.00 (0.00)  0.00 (0.00) 0.87 (0.08) 0.00 (0.00) 0.00 (0.00)
oracle 1.00 (0.00)  0.98 (0.02) 0.87 (0.08) 1.00 (0.01) 0.83 (0.17)
kernel bandwidth breast cancer abalone wine dry beans average
cosine 0.04 (0.01) 0.39 (0.04) 0.16 (0.02) 0.79 (0.08) 0.38 (0.11)
linear 0.97 (0.05) 0.84 (0.06) 0.63 (0.16) 0.96 (0.02) 0.76 (0.14)
Gaussian  0.025 1.00 (0.00) 0.89 (0.05) 0.99 (0.02) 1.00 (0.00) 0.87 (0.14)
Gaussian  0.05 1.00 (0.00) 0.90 (0.05) 0.99 (0.01) 1.00 (0.00) 0.92 (0.13)
Gaussian 0.1 1.00 (0.03) 0.92 (0.04) 0.99 (0.01) 1.00 (0.00) 0.94 (0.09)
Gaussian 0.2 0.99 (0.06) 0.92 (0.04) 0.99 (0.01) 1.00 (0.00) 0.93 (0.09)
Gaussian 0.4 0.99 (0.05) 0.88 (0.08)  0.97 (0.03) 1.00 (0.00) 0.91 (0.10)
Gaussian 0.8 0.99 (0.05) 0.82 (0.10)  0.92 (0.03) 0.97 (0.04) 0.84 (0.12)
Gaussian  median 0.98 (0.06) 0.61 (0.13)  0.00 (0.03) 0.00 (0.00) 0.27 (0.06)
oracle 1.00 (0.00) 0.92 (0.04) 0.99 (0.01) 1.00 (0.00) 0.95 (0.07)
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