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Abstract

Data driven individualized decision making problems have received a lot of attentions in
recent years. In particular, decision makers aim to determine the optimal Individualized
Treatment Rule (ITR) so that the expected specified outcome averaging over heterogeneous
patient-specific characteristics is maximized. Many existing methods deal with binary or a
moderate number of treatment arms and may not take potential treatment effect structure
into account. However, the effectiveness of these methods may deteriorate when the number
of treatment arms becomes large. In this article, we propose GRoup Outcome Weighted
Learning (GROWL) to estimate the latent structure in the treatment space and the op-
timal group-structured ITRs through a single optimization. In particular, for estimating
group-structured ITRs, we utilize the Reinforced Angle based Multicategory Support Vec-
tor Machines (RAMSVM) to learn group-based decision rules under the weighted angle
based multi-class classification framework. Fisher consistency, the excess risk bound, and
the convergence rate of the value function are established to provide a theoretical guaran-
tee for GROWL. Extensive empirical results in simulation studies and real data analysis
demonstrate that GROWL enjoys better performance than several other existing methods.
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1. Introduction

A common data-driven individualized decision making problem seeks to optimize the ex-
pected value of a specified outcome, by carefully determining the Individualized Treatment
Rule (ITR) based on individual characteristics and contextual information. Since the treat-
ment effect may contain significant heterogeneity, it is necessary to tailor treatment deci-
sion rules to different subgroups of individuals. For example, using a large-scale Electronic
Health Records (EHR) database, a physician may assign an optimal individualized therapy
based on a patient’s specific characteristics to maximize the quality of health care (Wu
et al., 2020).

Machine learning based approaches for estimating an optimal ITR have been studied
intensively in the literature. These methods can be usually classified into two categories.
The first category consists of model-based indirect learning methods such as modeling the
conditional treatment effects given the individual characteristics (Q-learning) (Watkins,
1989; Qian and Murphy, 2011), modeling the contrast between two candidate treatment
effects (A-learning) (Murphy, 2003), sub-group identification methods based on a weighted
loss minimization problem (Tian et al., 2014; Chen et al., 2017), and direct learning methods
(D-learning) (Qi and Liu, 2018). The second category circumvents the need for modeling
conditional mean functions by directly estimating the ITR that maximizes the value function
based on Inverse Probability Weighting (IPW) (Zhao et al., 2012, 2015). To combine the
advantages of methods in the two categories discussed above, Zhang et al. (2012), Liu et al.
(2018) and Athey and Wager (2021) proposed doubly robust augmented IPW estimation to
overcome model misspecification issues. In addition, extensions to more than two treatments
were studied in Zhang et al. (2021) and Qi et al. (2020).

Despite great development for estimating the optimal ITRs with a moderate number
of treatments in the literature as discussed above, in some clinical problems, there can be
many treatment options available. For instance, Rashid et al. (2021) analyzed the Patient-
Derived Xenograft (PDX) dataset which permits the evaluation of more than 20 treatments
in the allowable treatment space. Another potential challenge for learning the optimal ITR
is the situation with unbalanced structure of treatment propensity scores. For example, in
the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study (Rush et al.,
2004), the ratio of the number of patients who were provided with the cognitive therapy
and the number of patients who received venlafaxine is only around 1:3. Another example
is that, when studying Type 2 Diabetes (T2D) treatment patterns, Montvida et al. (2018)
concluded that the baseline treatments such as Metformin and Insulin would dominate other
treatment options in the EHR database.

With many treatments but limited data size, model-based indirect methods are diffi-
cult to model conditional treatment effect due to the large number of interaction terms
between treatments and features. In addition, it can be impractical to fit a useful regres-
sion model without enough observations for certain treatments. Therefore, the estimated
optimal ITR induced by the indirect methods can be inaccurate with large variability due
to the poor performance of the regression model. On the other hand, IPW-based direct
learning methods utilize a plug-in approach for possible unbalanced propensities that ap-
pear in the denominator of IPW-based value function. Suffering from unbalanced structure
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of propensities in the presence of many treatments, small values in propensity scores can
lead to large variability of the estimated value function.

It is interesting to point out that many treatments may work similarly for patients,
due to the fact that the development of drugs is often based on intervening the same
disease symptoms and mechanisms. For example, for treating depression in the STAR*D
study, the 7 treatment options at Level 2 are often combined with one class of treatments
involving selective serotonin reuptake inhibitors (SSRI) and the other class of treatments
without SSRI because the treatments within the same class have similar treatment effects
(Liu et al., 2018; Pan and Zhao, 2021). Hence, it can be helpful to identify such latent
structure in the treatment space. Moreover, utilizing this latent cluster treatment structure
allows us to group homogeneous treatments together and helps reducing the dimension of
the treatment space. This motivates us to explore specific latent structure for treatments
to identify optimal treatment groups.

To the best of our knowledge, not much has been done in the literature for estimating
the optimal ITR with latent structure for treatments. Rashid et al. (2021) imposed a hier-
archy binary group structure based on the conditional treatment effects for the treatments
in the PDX study. This estimated group structure helps producing high-quality ITRs and
identifying the important genes that are known to be associated with response to treatment.
In addition, several existing methods explored combining treatment decision rules for dif-
ferent patients when the conditional treatment effects cannot be distinguished. Specifically,
Laber et al. (2014), Ertefaie et al. (2016) and Meng et al. (2020) proposed recommending a
set of near-optimal individualized treatment recommendations that are alternative to each
other to a patient. However, these methods are not tailored to deal with many treatment
options.

In this article, we propose estimating the latent multiple group structure of treatments
and associated optimal group-structured ITRs within a single optimization. Considering
grouping structure, our proposed method reduces the dimension of the treatment space and
automatically clusters the treatments with similar treatment effects into the same group. In
particular, we define our value function associated with both treatment partition and group-
based decision rules in the IPW-based direct learning framework. The optimal treatment
partition and group-based decision rules are obtained by maximizing the value function.
When the treatment effects employ exact homogeneous group structure, our defined op-
timal partition can induce the same expected homogeneous group structure. Under the
estimated optimal partition for the treatment space, the estimated group-structured ITR
uses a random treatment assignment strategy, determined by randomly sampling treatment
based on specific strategies within the estimated optimal treatment group. Specifically, the
Reinforced Angle based Multicategory Support Vector Machines (RAMSVM) based sur-
rogate loss function (Zhang et al., 2016) is tailored for estimating the optimal treatment
group decision rules robustly in the interpretable angle-based weighted multiclass classifica-
tion framework (Zhang and Liu, 2014). The group-based decision functions can give linear or
non-linear decision rules to deal with complicate decision boundaries. Moreover, we prove
that the surrogate loss function enjoys Fisher consistency for both group structure and
group-structured ITRs. Furthermore, we present comprehensive theoretical justification on
the excess risk bound, finite sample regret bound and convergence rate for our method, and
allow the number of the treatment groups diverge to infinity as the sample size increases.
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Finally, we implement efficient algorithms to solve the non-convex integer programming
problem to search for the optimal partition, and the coordinate descent algorithm to solve
the dual problem of RAMSVM based weighted classification problem.

The main contributions of this article are summarized as follows. Our proposed method
learns the optimal ITR by identifying the latent treatment group structure in a possible large
treatment space. We cluster the treatments with similar treatment effects into the same
group to reduce the dimension of the possible large treatment space. In contrast to existing
methods (Zhao et al., 2012; Liu et al., 2018), our method avoids using weights involving
the inverse of individual treatment propensity scores, which can be close to 0 when there
are many treatments. Using the treatment group propensity scores, our method can obtain
more stable estimate of the value function. In addition, our method simultaneously learns
the optimal group-structured ITR and clusters the treatments. Different from the two-
step method (Rashid et al., 2021), we combine both supervised learning (learn the optimal
ITR) and unsupervised learning (cluster the treatments) through one single optimization.
Moreover, we propose an effective procedure to determine the number of unknown treatment
groups. This procedure is motivated by the trade-off between the benefit and the variability
of the value function. It is worth noting that our theoretical contributions are different from
that in the Outcome Weighted Learning (OWL) literature (Zhao et al., 2012). In particular,
we establish the generalized Fisher consistency, excess risk bound, and finite sample regret
bound with respect to both treatment partition and group-based decision rule under the
angle-based multi-class classification framework.

The remainder of this article is organized as follows. In Section 2, we introduce the
methodology and implementation details of our proposed GRoup Outcome Weighted Learn-
ing (GROWL) method. In Section 3, we provide theoretical guarantees of GROWL. In Sec-
tion 4, we conduct simulation studies to evaluate the performance of GROWL. Our method
is then illustrated using the data from the Sequenced Treatment Alternatives to Relieve
Depression (STAR*D) study in Section 5. We conclude this article and discuss some future
extensions in Section 6.

2. Methodology

In this section, we first introduce the framework of estimating optimal ITRs. Then we
propose our GROWL method to estimate group-structured ITRs from the IPW-based value
function.

2.1 Framework of Learning Optimal ITRs

Consider the i.i.d. training data pXi, Ai, Riq „ P for i “ 1, . . . , n, where Xi P X Ď Rd
denotes the patient’s prognostic variables, Ai P A “ t1, 2, . . . ,Mnu :“ rMns is the treatment
assignment, and Ri P R is the observed outcome for each patient i. Suppose that the number
of treatments Mn may diverge to infinity with a certain rate as the sample size n increases
since we consider the large treatment space. We assume that the larger outcome is better
and R is bounded. Let

`

Rpaq
˘

aPA P R
Mn be the potential outcome. In addition, define the

propensity function ppa|xq :“ PpA “ a|X “ xq and the unknown mean-outcome function
µpa|xq :“ ErRpaq|X “ xs for a P rMns. An Individualized Treatment Rule (ITR) D P D is
a map from the covariate space X to the treatment space A and D Ď AX is a prespecified
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ITR class. Our goal is to find the optimal ITR D˚ P D, that maximizes the expected
outcome, known as the value function (Zhao et al., 2012). Specifically, the value of an ITR
D is defined as

VpDq “ E

«

Mn
ÿ

a“1

IrDpXq “ asRpaq

ff

“ E

«

Mn
ÿ

a“1

IrDpXq “ asµpa|Xq

ff

.

Next we state the following identifiability assumptions (Rubin, 1974): (1) Consistency:
R “

ř

aPA IrA “ asRpaq; (2) Unconfoundedness: for each a P rMns, Rpaq KK A | X; (3)
Positivity: ppa|xq ą 0 for any x P X . If the above assumptions are satisfied, VpDq can be
written as the following two equivalent forms:

VpDq “ E

«

Mn
ÿ

a“1

IrDpXq “ asErR|X,A “ as

ff

(1)

“ E
„

IrDpXq “ As

ppA|Xq
R



. (2)

Based on (1), model-based Q-learning methods (Qian and Murphy, 2011) first give an
estimate for pErR|X,As (Q-function), then the optimal ITR D˚pxq is estimated from solving
arg maxaPA pErR|X “ x,A “ as. However, due to the large number of treatment options
Mn and possible unbalanced structure of the propensity score ppA|Xq, we may not have
enough observations for some specific treatments to fit the regression model. Consequently,
pErR|X,As can be inaccurate due to potential poor performance of the regression model
and the estimated optimal ITR may have large variability. Another common approach
is to estimate the value function based on (2) using empirical data, and then directly

search for the optimal ITR D that maximizes the empirical value function En
”

IrDpXq“As
ppA|Xq R

ı

(Zhao et al., 2012). Note that the propensity score ppA|Xq appears in the denominator of

En
”

IrDpXq“As
ppA|Xq R

ı

. For the case with many treatments where insufficient data are observed

for some specific treatments, it is likely to have the propensity score ppA|Xq close to 0 for
some treatments. Hence, this can cause large variability of the empirical estimate for the
value function.

2.2 GRoup Outcome Weighted Learning (GROWL)

Next we introduce our proposed GROWL method using the idea of latent group structure
for the treatment space. We consider Mn treatments can be partitioned into Kn disjoint
latent groups where 2 ď Kn ď Mn. We allow Kn go to infinity with a certain rate as
the sample size increases. Denote δ as the partition of A, which is a map from A to
t1, 2, . . . ,Knu :“ rKns. Under δ, denote Gδk “ ta | δpaq “ k, a P Au as the k-th treatment
set for k P rKns. Intuitively, for a reasonable partition, the treatments that belong to the
same treatment group should have similar treatment effects. In contrast, the treatment
effects from different treatment groups should have relatively large differences. Hence, we
need to first define the optimal partition δ˚ that maximizes the expected outcome.

To start with, we define the following group-structured ITR class, denoted as D “
Ť

δ Dδ.
Specifically, associated with a partition δ, a group-structured ITR in Dδ is obtained from a
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random treatment assignment strategy πδ given as

πδpa|xq “ Irδpaq “ Dgpxqs
ppa|xq

ppδpaq|xq
, (3)

where Dg is a group-based decision rule mapping from X to treatment group space rKns,
and ppδpaq|xq :“ PrA P Gδδpaq|X “ xs is the propensity score for the δpaq-th treatment group
under δ. Then, for a given partition δ and a group-based decision rule Dg, the value function
of group-structured ITR equals to the expectation of weighted conditional treatment effects.
With these notations in place, we can express the value of group-structured ITR V1pδ,Dgq

as follows:

V1pδ,Dgq “ E

»

–

Kn
ÿ

k“1

IrDgpXq “ ks
ÿ

a:δpaq“k

ppa|Xq

ppδpaq|Xq
ErR|X,A “ as

fi

fl

“ E
„

IrDgpXq “ δpAqs
R

ppδpAq|Xq



.

(4)

Remark 1 Based on the definition in (3), group-structured ITR is obtained by first estimat-
ing the group-based decision rule Dgpxq, then sampling one treatment from group GδDgpxq with
probabilities proportional to propensity scores. Note that sampling proportional to propen-
sity scores has the following advantages and interpretations: (a) the propensity score ppA|Xq
showing up in the denominator of the value function in (2) would be cancelled by that in the
sample strategy term. Thus, only the group-based propensity ppδpAq|Xq appears in the value
function V1pδ,Dgq. Hence, it can give a more stable estimate for V1pδ,Dgq using empirical
data especially when propensity scores are small for some treatments; (b) it makes sense to
assign higher probabilities to choose prevalent treatments as they are often affordable and
acceptable in practice.

For any given δ, the optimal group-based decision rule Dδ
g is given by

Dδ
g P arg max

Dg :XÑrKns
V1pδ,Dgq, (5)

and the corresponding optimal value for δ is

V˚1 pδq “ V1pδ,D
δ
gq. (6)

The optimal partition δ˚ is defined as

δ˚ P arg max
δ

V˚1 pδq :“ ∆˚, (7)

where ∆˚ is the optimal equivalent partition class and each element in this set achieves the
maximum value. Observing that

ř

a:δpaq“k
ppa|Xq
ppδpaq|XqErR|A “ a,Xs “ ErR|A P Gδk, Xs for

k P rKns, the optimal value for δ in (6) can be written as

V˚1 pδq “ max
Dg :XÑrKns

EX

«

Kn
ÿ

k“1

IrDgpXq “ ksErR|A P Gδk, Xs

ff

“ EX
„

max
kPrKns

ErR|A P Gδk, Xs


.
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Hence, the optimal partition δ˚ has the following interpretation. Averaging over the
marginal distribution of X, the maximum of conditional treatment effects under the group
domain, which is a mixture mean of conditional treatment effects under the individual
treatment domain, is optimized under the optimal partition δ˚.

It is worth noting that, when treatment effects have homogeneous structure, our defined
optimal partition δ˚ in (7) would lead to this expected natural group structure. In particu-
lar, treatment effects have homogeneous structure if treatments can be partitioned into K0

homogeneous groups G0 “ tG0
1, G

0
2, . . . , G

0
K0
u and the treatment effects are identical within

each treatment group set G0
k for k P rK0s. For each k P rK0s and each pair of treatments i, j

within the same treatment group G0
k, we have ErR|A “ i,Xs “ ErR|A “ j,Xs “ ErR|A P

G0
k, Xs a.e. in X. Meanwhile, for each pair of treatments r, s that belong to two different

treatment groups respectively, ErR|A “ r,Xs ‰ ErR|A “ s,Xs holds with a positive prob-
ability in X. In this case, GROWL aims to combine treatments with identical treatment
effects based on homogeneous structure G0 to reduce the dimension of treatment space and
learn the optimal group-structured ITR. Denote δ0 to be the partition that induces the
group structure G0, then the following Lemma 2 holds, which demonstrates that our δ˚ is
properly defined for the expected homogeneous structure.

Lemma 2 Suppose Kn “ K0 and the defined optimal partition δ˚ is unique. Then, we
have δ˚ “ δ0.

Next we illustrate how to solve pδ˚, D˚g q P arg maxδ,Dg :XÑrKns V1pδ,Dgq in order to get
an estimate for the optimal partition δ˚ and the associated optimal group-based decision
rule D˚g under the IPW-based direct learning framework. Since

V1pδ,Dgq `Rpδ,Dgq “ E
„

R

ppδpAq|Xq



,

where the risk function Rpδ,Dgq :“ E
”

R
ppδpAq|XqIrDgpXq ‰ δpAqs

ı

. Hence, maximizing

V1pδ,Dgq is equivalent to minimizing the generalized risk function:

rRpδ,Dgq “ Rpδ,Dgq ´ E
„

R

ppδpAq|Xq



.

In practice, we use empirical risk minimization to approximate the generalized risk func-

tion rRpδ,Dgq by En
”

R
ppδpAq|XqIrDgpXq ‰ δpAqs

ı

´En
”

R
ppδpAq|Xq

ı

, where En is the empirical

average based on the training data. To alleviate the difficulty of the discontinuity and non-
convexity of the 0-1 loss in the treatment group-based weighted misclassification error, for
each x P X and a P A, we propose replacing the 0-1 loss function IrDgpxq ‰ δpaqs by a angle-
based loss Lφ

`

δpaq,fpxq
˘

, as proposed in Zhang and Liu (2014) and Zhang et al. (2016).
The group-based decision rule Dg is determined by the decision function f mapping from
X to RKn´1. Specifically, We encode the k-th treatment group as a vector Wk P RKn´1

with

Wk “

"

pKn ´ 1q´1{21Kn´1, k “ 1,

´p1`
?
Knq{pKn ´ 1q3{21Kn´1 ` p

Kn
Kn´1q

1{2ek´1, k “ 2, 3, . . . ,Kn,
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where 1Kn´1 is a vector of ones of length Kn´ 1, and ek P RKn´1 is a vector with the k-th
element equal to one, and zero elsewhere. Specifically, when Kn “ 2, we have W1 “ 1 and
W2 “ ´1, which corresponds to the standard coding procedure in the binary classification
problem. In addition, based on this coding procedure, one can check that, this treatment
group simplex is symmetric with all vertices share an equal distance from each other in
RKn´1. We refer Zhang and Liu (2014) for more details about the angle-based classification
method. The RAMSVM-based loss consists of a convex combination of two loss functions

Lφ
`

δpaq,fpxq
˘

:“ p1´ γq

„

ÿ

k‰δpaq

p1` xWk,fpxqyq
`



` γ

„

pKn ´ 1´ xWδpaq,fpxqyq
`



, (8)

where γ P r0, 1s. The final group-based decision rule is obtained from

Dgpxq “ arg max
kPrKns

xWk,fpxqy.

The corresponding optimization problem is

min
δ,fnPFn

"

En
„

R

ppδpAq|Xq
Lφ

`

δpAq,fpXq
˘



´KnEn
„

R

ppδpAq|Xq



` λn }f}
2
Fn

*

, (9)

where Fn is a pre-specified function class of tf : X Ñ RKn´1u, λn is a tuning parameter,
and }¨}Fn is the functional penalty associated with Fn to overcome overfitting.

2.3 Implementation of GROWL

We introduce efficient algorithms to solve the optimization problem (9). To this end, we
follow the procedure proposed by Liu et al. (2018) to replace R with the residual R´ spXq.
The rational is that removing the main effect that is independent of treatment should not
affect the treatment decision while using residuals can significantly reduce the variability
of weights to improve algorithm performance. However, note that the residual R ´ spXq
can take negative values, which would break the convexity of the minimization problem.
In this case, we can switch the treatment group to other different treatment groups under
the uniform sampling procedure. Specifically, it can be checked that, for any fixed δ, the
following two optimization problems are equivalent:

min
f

E
„

R´ spXq

ppδpAq|Xq
LφpδpAq,fpXqq



ðñ min
f

E
„

pR´ spXqq`

ppδpAq|Xq
LφpδpAq,fpXqq



` pKn ´ 1qE
„

pR´ spXqq´

ppδpAq|Xq
LφprδpAq,fpXqq



,

(10)

where u` “ maxpu, 0q, u´ “ maxp´u, 0q, and the conditional distribution of the random
variable rδpAq is determined by PrprδpAq “ k|δpAq, Xq “ 1

Kn´1 for k ‰ δpAq and 0 for

k “ δpAq. In this way, the weight term can be easily computed by pR´spXqq`

ppδpAq|Xq ` pKn ´

1q pR´spXqq
´

ppδpAq|Xq . For simplicity of notations, in the following of this section, we use R‹ to

denote pR´ spXqq` ` pKn ´ 1qpR´ spXqq´. The derivations of why the two optimization
problems in (10) are equivalent can be seen in Appendix C.

Next we specify the decision function f : X Ñ RKn´1 in a product Reproducing Kernel
Hilbert Space (RKHS) Fn “ bKn´1

k“1 Hk
κ. We develop efficient algorithms to solve (9) after
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replacing R with R‹ and switching treatments for observations with negative residuals. Our
implementation consists of two steps. Step 1: under any fixed partition candidate δ, we
convert the RAMSVM-based weighted classification problem (9) to a dual quadratic pro-
gramming problem with box constraints. Then we solve the dual problem using coordinate
descent algorithm to obtain the estimated optimal decision function under δ, denoted as pf δ;
Step 2: Treatment partition estimation step: after plugging pδ, pf δq back into (9) to get the
value (smaller is preferred) for the candidate δ, we propose to use the genetics algorithm
(Goldberg and Holland, 1988), which is a stochastic search and evolutionary algorithm to
obtain the optimal pδ. Alternatively, we can also use the coordinate descent type of greedy
algorithm to adjust the partition.

For step 1, we propose the following algorithm to solve the weighted classification prob-
lem when specifying f in the product linear space or product RKHS. Specifically, let ωi “

R‹i
ppδpAiq|Xiq

be the weight for subject i P rns. For x P X , denote fpxq “ pf1pxq, . . . , fKn´1pxqq
T

and Wj,k represents the k-th element of Wj , where j P rKns and k P rKn ´ 1s.

For linear decision functions, we assume fkpxq “ xTβk with k P rKn´1s, where βk’s are
our parameters of interest. The penalty term }f}2Fn “

řKn´1
k“1 βTk βk. Note that we include

the intercepts in X to simplify notation. After introducing slack variables for (9) and taking
partial derivative of the Lagrangian function with respect to each βk and slack variables,
we can derive the following dual problem with respect to the Lagrangian multiplier αi,j and
obtain ppαi,jqiPrns;jPrKns by solving

min
pαi,jqiPrns;jPrKns

1

2nλ

Kn´1
ÿ

k“1

»

–

n
ÿ

i“1

αi,δpAiqWδpAiq,kXi ´

n
ÿ

i“1

ÿ

j‰δpAiq

αi,jWj,kXi

fi

fl

T

»

–

n
ÿ

i“1

αi,δpAiqWδpAiq,kXi ´

n
ÿ

i“1

ÿ

j‰δpAiq

αi,jWj,kXi

fi

fl

´

n
ÿ

i“1

αi,δpAiqpKn ´ 1q ´
n
ÿ

i“1

ÿ

j‰δpAiq

αi,j ,

s.t. 0 ď αi,j ď ωi pγIrj “ δpAiqs ` p1´ γqIrj ‰ δpAiqsq pi P rns; j P rKnsq.

(11)

Moreover, we can calculate

pβk “
1

nλ

»

–

n
ÿ

i“1

pαi,δpAiqWδpAiq,kXi ´

n
ÿ

i“1

ÿ

j‰δpAiq

pαi,jWj,kXi

fi

fl .

Note that one can verify that the quadratic optimization function in (11) is strictly con-
vex with respect to each αi,j . The constraints in (11) are box constraints. Therefore,
(11) can be solved efficiently by the well-known coordinate descent algorithm. Compared
with standard Quadratic Programming (QP) algorithms for solving the dual problem, the
coordinate descent algorithm can enjoy a faster computational speed and obtain more ac-
curate solutions (Zhang et al., 2016). The final estimated group-based ITR is obtained by

9



Haixu Ma, Donglin Zeng and Yufeng Liu

pDgpxq “ arg maxjPrKnsxWj , pfpxqy, where pfpxq “ p pf1pxq, . . . , pfKn´1pxqq
T and pfkpxq “ xT pβk

for k P rKn ´ 1s.
To deal with more complicated functions, we generalize the linear approach to obtain a

nonlinear decision function in RKHS. To begin with, denote κ to be the corresponding kernel
function and G “

`

κpXi, Xi1q
˘

i,i1Prns
to be the gram matrix. We assume G is invertible.

Denote Gi to be the i-th column of G. By using the L2 norm in bKn´1
k“1 Hk

κ for the penalty

term, i.e., }f}2Fn “
řKn´1
k“1 θTk Gθk, we can represent the decision function as fkpxq “

θk,0 `
řn
i“1 θk,iκpXi, xq for k P rKn ´ 1s. Here, θk “ pθk,1, . . . , θk,nq

T is our kernel product
coefficient vector for k P rKn ´ 1s. Similar to the steps in linear case, ppαi,jqiPrns;jPrKns can
be obtained by solving the following dual problem

min
pαi,jqiPrns;jPrKns

1

2nλ

Kn´1
ÿ

k“1

»

–

n
ÿ

i“1

αi,δpAiqWδpAiq,kGi ´

n
ÿ

i“1

ÿ

j‰δpAiq

αi,jWj,kGi

fi

fl

T

G´1

»

–

n
ÿ

i“1

αi,δpAiqWδpAiq,kGi ´

n
ÿ

i“1

ÿ

j‰δpAiq

αi,jWj,kGi

fi

fl

`
1

2nλ

Kn´1
ÿ

k“1

»

–

n
ÿ

i“1

αi,δpAiqWδpAiq,k
´

n
ÿ

i“1

ÿ

j‰δpAiq

αi,jWj,k

fi

fl

2

´

n
ÿ

i“1

αi,δpAiqpKn ´ 1q ´
n
ÿ

i“1

ÿ

j‰δpAiq

αi,j ,

s.t. 0 ď αi,j ď ωi pγIrj “ δpAiqs ` p1´ γqIrj ‰ δpAiqsq pi P rns; j P rKnsq.

(12)

Furthermore, we can obtain

pθk “
1

nλ
G´1

»

–

n
ÿ

i“1

pαi,δpAiqWδpAiq,kGi ´

n
ÿ

i“1

ÿ

j‰δpAiq

pαi,jWj,kGi

fi

fl

pθk,0 “
1

nλ

»

–

n
ÿ

i“1

pαi,δpAiqWδpAiq,k ´

n
ÿ

i“1

ÿ

j‰δpAiq

pαi,jWj,k

fi

fl .

One can check that (12) can be solved in an analogous manner as (11). The final decision
function is obtained from pfkpxq “ pθk,0 `

řn
i“1

pθk,iκpXi, xq for k P rKn ´ 1s. More details
about how the original problem (9) is transformed to the dual problems (11) and (12) in
step 1 are provided in Appendix C.

For step 2, after we plug pδ, pf δq back to (9), we get the value for the candidate partition
δ. We formulate the partition space as the discrete problem of partitioning Mn numbers
into Kn groups. To solve this non-convex integer programming problem, when Mn and Kn

are relatively small, we can implement the genetics algorithm using the R package called
GA introduced in Scrucca (2013). Furthermore, if Kn ! Mn and both Kn and Mn are
large, then the total number of partitions can be very large. Consequently, the genetics

10
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algorithm can be time consuming. Hence, to deal with this case, we propose a coordinate
descent type of greedy algorithm to search for the optimal partition iteratively. Specifically,
at each iteration, we minimize (9) by successively adjusting the group assignment for one
specific treatment while holding the assignment of other treatments fixed. We go through
each treatment in a cyclic fashion until convergence. The initial partition can be obtained
via clustering the fitted conditional expected outcome for each treatment. The conditional
expected outcome can be roughly estimated by L1 penalized regression (Qian and Murphy,
2011), random forest or latent supervised clustering using the pairwise fusion penalty (Chen
et al., 2021).

2.4 Selection of Treatment Group Number

Our analysis so far treats the group number Kn as given. However, Kn is typically un-
known in practice. We propose the following effective procedure to determine Kn. We first
randomly split the observed data tpXi, Ai, Riqu

n
i“1 into two folds. For each group number

1 ď K ď Mn, denote the pδK and pDg,K as the estimated optimal partition and associ-
ated group-based decision rule learned from one fold of the training data based on the
implementations discussed in Section 2.3. Then, we calculate the estimated value function
pV1ppδK , pDg,Kq for each K using

pV1ppδK , pDg,Kq “
En

“

RIr pDg,KpXq “ pδKpAqs{pppδKpAq|Xq
‰

En
“

Ir pDg,KpXq “ pδKpAqs{pppδKpAq|Xq
‰
, (13)

where En denotes the empirical mean of the other fold of observed data. Note that when
K “ 1, all the treatments are grouped together and the associated pV1ppδ1, pDg,1q corresponds
to the value when we randomly recommend treatments. Thus, we can obtain the estimated
benefit function of the estimated group-structured ITR for each K with

pBenpKq “ pV1ppδK , pDg,Kq ´ pV1ppδ1, pDg,1q

“ pV1ppδK , pDg,Kq ´ EnrRs.

We replicate the above process T times. For each replication t “ 1, 2, . . . , T , denote the

benefit function as pB
ptq
en pKq. We propose the following procedure that can be interpreted as

the trade-off between the benefit and the variability of the estimated group-structured ITR
to determine the optimal Kn:

pKn “ arg max
1ăKďMn

!

mean
t

“

t pBptqen pKqu
T
t“1

‰

)

. (14)

One can also replace R with R´pspXq in (13) to remove variability coming from estimating
the main effect.

The group number estimator (14) can be interpreted as follows. Denote δ˚K as the
optimal partition when the group number is K. For 1 ď K ď Mn, let BenpKq :“

EX
“

maxkPrKs ErR|A P G
δ˚K
k , Xs ´ R

‰

be the maximum benefit when the group number
is specified as K and B˚en :“ EX

“

maxaPA ErR|X,A “ as ´ R
‰

“ BenpMnq be the optimal
benefit. The optimal benefit B˚en corresponds to the case that we do not consider any

11
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group structure in the treatment space. We first consider the case that the treatments
have homogeneous group structure G0 discussed in Section 2.2 and the true value of group
number equals to K0. Then, similar to the proof of Lemma 2 shown in Appendix C, one
can check that if setting K ą K0, then the optimal partition defined in (7) would result
in over identified group structures. These over identified optimal group structures can be
any refinement of G0. In particular, these refined optimal partitions δ˚K ’s of δ˚K0

all lead to
the same optimal benefit BenpKq “ B˚en when K0 ď K ďMn. In this case, the bias of the
value function is 0. However, the stochastic error bound and the convergence rate of the
estimated value function shown in Theorem 6 in Section 3.3 increases with a polynomial
rate OpK2

nq as Kn becomes larger. This demonstrates that as Kn increases, the variability
of the group-structured ITR becomes larger. Based on Xia et al. (2009), this variability is
involved in (14) by using T times of sample splitting. Therefore, the group number selection
procedure (14) incorporates the penalization of variability to avoid the over identified group
structures when K ě K0 for the homogeneous case.

When the homogeneous case does not hold, then our optimal benefit BenpKq may be
strictly less than the optimal benefit B˚en for all 1 ď K ăMn. One can check that BenpKq
is a non-decreasing function as K increases by induction, and finally equals to B˚en when
K “Mn. For the non-homogeneous case, together with the same analysis of the increasing
variability as K increases, the selection of group number can be interpreted as a trade-off
between the benefit and the variability of the group-structured ITR.

Remark 3 In practice, when the estimated optimal pKn is relatively small, we conclude
that the gain of smaller variability would dominate the potential loss of the benefit for the
group-structured ITR. Hence, a homogeneous or nearly-homogeneous group structure of the
treatment effects is expected. In contrast, when pKn is close to Mn, the gain of higher benefit
would dominate the negative effect of the large variability. For this scenario, we expect that
the treatments may behave very differently from each other on the same patient. When
pKn “ Mn, GROWL would learn the optimal ITR under the individual treatment domain
without grouping. Its performance becomes similar to the traditional methods that do not
consider the treatment structure.

3. Theoretical Properties

In this section, we establish Fisher consistency of the optimal partition and associated group-
based ITR for GROWL. We further obtain an excess risk bound and derive the convergence
rate for the value function with the diverging group number Kn.

3.1 Fisher Consistency

Denote pδ˚φ,f
˚
φ q as the optimal partition and associated optimal decision function under the

generalized Lφ risk function rRφpδ,fq:

pδ˚φ,f
˚
φ q P arg min

δ,f :XÑRKn´1

"

rRφpδ,fq :“ Rφpδ,fq ´KnE
„

R

ppδpAq|Xq

*

, (15)

12
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where the Lφ risk function Rφpδ,fq is defined as

Rφpδ,fq :“ E
„

R

ppδpAq|Xq
Lφ

`

δpAq,fpXq
˘



. (16)

Let f δφ be the optimal decision function for any fixed δ: f δφ “ arg minf :XÑRKn´1
rRφpδ,fq.

Under the angle-based weighted classification framework, a classifier is said to be Fisher
consistent if for each partition δ and x P X , the predicted treatment group has the maximum
conditional group treatment effect under δ:

arg max
kPrKns

xWk,f
δ
φpxqy “ arg max

kPrKns
ErR|A P Gδk, X “ xs.

For our problem, we establish the generalized Fisher consistency results for both parti-
tion δ and the decision rule under the group domain if we choose Lφ to be the surrogate
loss function, i.e., the derived optimal decision rule is the same as the one using the 0-1
loss. In particular, the following generalized Fisher consistency holds:

Theorem 4 Let δ˚ and ∆˚ be defined in (7) and pδ˚φ,f
˚
φ q be defined in (15). Denote

D˚g pxq to be the optimal deterministic group-based ITR under δ˚ P ∆˚, which leads to the

Bayesian rule arg maxkPrKns ErR|A P G
δ˚

k , X “ xs. If γ P r0, 1
2 s, then we have δ˚φ P ∆˚ and

arg maxkPrKnsxWk,f
˚
φ pxqy “ D˚g pxq.

3.2 Excess Risk

Next we establish the excess risk of 0-1 loss can be upper bounded by that of RAMSVM loss.
To start with, we introduce the following notations. For any group-based ITR Dg, there
exists a decision function f : X Ñ RKn´1 such that Dgpxq “ arg maxkPrKnsxWk,fpxqy.
Similar to the definition of Rpδ,Dgq, we define

Rpδ,fq “ E

«

Irarg max
kPrKns

xWk,fpXqy ‰ δpAqs
R

ppδpAq|Xq

ff

,

and denote rRpδ,fq “ Rpδ,fq ´ErR{ppδpAq|Xqs. Then the generalized Bayesian risk is de-

noted as rR˚ “ infδ,f

!

rRpδ,fq|δ,f : X Ñ RKn´1
)

. In terms of the value function V1pδ,Dgq

defined in (4), we observe that V1pδ
˚, D˚g q´V1pδ,Dgq “ rRpδ,fq´ rR˚. Note that in GROWL,

we replace the 0-1 loss with the Lφ loss. Recall we have defined the generalized Lφ risk

function rRφpδ,fq in (15) and (16). Similarly, the infimum of generalized Lφ risk function

is defined as rR˚φ “ infδ,f

!

rRφpδ,fq|δ,f : X Ñ RKn´1
)

. In addition, under any fixed δ, let

f δ “ arg minf :XÑRKn´1 Rpδ,fq be the optimal decision function under the group domain.
Denote f˚ “ arg minf :XÑRKn´1 Rpδ˚,fq.

The following theorem shows the relationship between the generalized excess 0-1 risk
rRpδ,fq´ rR˚ and generalized excess Lφ risk rRφpδ,fq´ rR˚φ under some bounded restrictions
for f .

13
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Theorem 5 (Bound for excess risk) For any partition δ, any measurable function f :
X Ñ RKn´1 such that xWk,fpxqy P r´1,Kn´ 1s holds for @x P X and @k P rKns, and any
probability distribution for pX,A,Rq, we have

rRpδ,fq ´ rR˚ ď rRφpδ,fq ´ rR˚φ.

Note that Theorem 5 is different from Theorem 3.2 in Zhao et al. (2012) in the sense
that we consider multiple treatments, and dealing with both partition δ and the decision
function.

3.3 Convergence Rate

Define the estimated optimal partition pδn and group-based decision function pfn as

ppδn, pfnq P arg min
δ,fPbKn´1

k“1 Hk
κ

"

En
„

R

ppδpAq|Xq
LφpδpAq,fpXqq ´Kn

R

ppδpAq|Xq



` λn }f}
2
Fn

*

. (17)

For a fixed partition δ, denote the optimal estimated group-based decision function as

pf δn “ arg min
fPbKn´1

k“1 Hk
κ

"

En
„

R

ppδpAq|Xq
LφpδpAq,fpXqq ´Kn

R

ppδpAq|Xq



` λn }f}
2
Fn

*

. (18)

Specifically, for the decision function class, we restrict our consideration to the product
RKHS associated with Radial Basis Function (RBF) kernels:

κpx, x1q “ expp´σ2
n }x´ x}

2
q, x, x1 P X ,

where σn ą 0 is a bandwidth parameter varying with n. For theoretical convenience, we
assume pfn satisfies the extra bounded constraint xWk, pfnpxqy P r´1,Kn ´ 1s for @x P X
and @k P rKns. This constraint does not show up in the algorithm discussed in Section 2.3
because it makes the computation algorithm in Section 2.3 become more complicate and
inefficient. Our numerical experience suggests that removing the constraint for pfn can yield
better classification performance than including it.

Next we show that rRppδn, pfnq converges to rR˚ and equivalently, the value function
V1ppδn, pDg,nq converges to V1pδ

˚, D˚g q where the estimated group-based ITR pDg,npxq :“

arg maxkPrKnsxWk, pfnpxqy. We start with introducing the following quantity:

Aδ
σnpλnq “ inf

fPbKn´1
k“1 Hkκ

!

λn}f}
2
κ `

rRφpδ,fq ´ rRφpδ,f
δq

)

.

For a fixed δ, the term Aδ
σnpλnq describes how well the regularized RAMSVM-risk approx-

imates the optimal RAMSVM-risk in the RKHS. This quantity is often referred as the
approximation error term (Steinwart and Scovel, 2007). Specifically, when Kn “ 2, Stein-
wart and Scovel (2007) proposed a geometric noise assumption to upper bound Aδ

σnpλnq in
the context of hinge loss based SVM classification problem under any fixed δ. In this paper,
we generalize the geometric noise assumption so that we can upper bound Aδ

σnpλnq for the
multicategory group-based ITR problem under the RAMSVM-based loss. Under each δ,
denote the difference of two group treatment effects as

ηδi,jpxq “ ErR|A P Gδi , X “ xs ´ ErR|A P Gδj , X “ xs, i ‰ j and i, j P rKns.
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Define the decision regions for each pair of treatment groups i, j P rKns to be Oδ,´
ij “ tx P

X | ηδi,jpxq ă 0u and Oδ,`
ij “ tx P X | ηδijpxq ą 0u. Then let X δ

i “
Ş

j‰iO
δ,`
ij for i P rKns

be the subset of X where the treatment effect of group i dominates any other treatment
groups under partition δ. Denote the function ηδpxq “

řKn
i“1 Irx P X δ

i s supj‰i |η
δ
i,jpxq| as

the maximum difference of the group treatment effects for each region X δ
i . Furthermore,

denote the following distance function to the decision boundary as ∆δpxq “
řKn
i“1 Irx P

X δ
i s infj‰i distpx,X δ

j q, where distpx,Oq is the distance between a point x and a set O. Then
we define the following generalized geometric noise assumption:

Assumption 1 (Generalized geometric noise assumption) For a fixed δ and i P rKns,
there exists a constant U ą 0 such that for any t ą 0, we have

EX
„

exp

ˆ

´
p∆δpXqq2

t

˙

|ηδpXq|



ď Utqd{2,

where d is the dimension of X and q serves as the geometric noise exponent.

One can check that when Kn “ 2, Assumption 1 is consistent with Definition 2.3 in
Steinwart and Scovel (2007) and Definition 3.8 in Zhou et al. (2017). In some sense, this
geometric noise exponent q describes the concentration of the measure |ηδpxq|dPX near
the decision boundary. In the case of complete separation, i.e., ηδpxq ą ϕ0 ą 0 for some
constant ϕ0, q can be as large as possible.

Let Γn be the total number of partitions. Recall the definition of V˚1 pδq and ∆˚ in
(6) and (7). Consider Kn can diverge to infinity as the sample size n increases. Then,
for any n, there exist a positive gap Ψn :“ 1

2 infδR∆˚tV˚1 pδ˚q ´ V˚1 pδqu ą 0, such that
rRpδ̄,f δ̄q´ rR˚ “ V˚1 pδ˚q´V˚1 pδ̄q ą Ψn holds for any non-optimal partition δ̄ R ∆˚. Here, Ψn

can be interpreted as the signal to characterize the minimum distance of the value function
between the optimal partitions and any other non-optimal partitions. Intuitively, we need
the signal Ψn to be large enough so that we can distinguish the optimal partitions from
non-optimal partitions. Now we are ready to present the main theorem for the convergence
rate of GROWL.

Theorem 6 (Convergence rate of pδn and value function for diverging Mn, Kn)

Suppose the generalized geometric noise assumption holds for an optimal partition δ˚ P
∆˚ with exponent 0 ă q ă 8 and constant U . Further assume | R

ppδ˚pAq|Xq | ď Zn and

θpX q ď M1, where tZnu is a sequence, and θpX q is denoted as the volume of X . Let

εn “ K
1{2
n Z

1{2
n n´1{2λ

´1{2
n `KnZnn

´1{2`KnZn
`

pλnq
´ 2

2`v
`
p2´vqp1`θq
p2`vqp1`qqn´

2
2`v `n´1λ´1

n `λ
q
q`1
n

˘

.
Then, if MnK

2
n{ log n Ñ 0, nλn Ñ 8,Ψn{εn Ñ 8 hold for any θ ą 0, 0 ă v ă 2, and take

σn “ λ
´1{pq`1qd
n , the following results hold:

(I) For any θ ą 0, 0 ă v ă 2, we have

Prppδn P ∆˚q “ 1´OpΓnεnq;

(II) rRppδn, pfnq ´ rR˚ “ OppΓnεnq.
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For Theorem 6, we can choose λn “ n
´
q`1
3q`1 , and let pθ, vq be sufficiently small. When data

are well separated under one of the optimal partitions, q can be sufficiently large. Note that
if the group-based propensity score ppδ˚pAq|Xq has balanced structure under δ˚, then as
Kn Ñ8, ppδ˚pAq|Xq would decay uniformly. Thus, we have | R

ppδ˚pAq|Xq | ď Zn “ OpKnq. In

this case, the convergence rate for the value function can achieve V1pδ
˚, D˚g q´V1ppδn, pDg,nq “

rRppδn, pfnq ´ rR˚ “ OppΓnK
2
nn
´ 1

3 q.

Note that εn in Theorem 6 describes the rate of the stochastic error bound for the
regret. Thus, the assumption Ψn{εn Ñ 8 implies that, the signal Ψn should be large
enough and dominates the noise εn so that pδn can finally belong to ∆˚. To better under
illustrate this assumption, we consider the following simple example. Suppose the number of
treatment groups is fixed. Then, under the homogeneous case, the best partition among the
partition set without the optimal partitions corresponds to the case that only one treatment
is misclustered. In this case, one can check that the defined signal term Ψn “ Op1{Mnq

based on the proof of Lemma 2. Hence, due to Mn “ oplog nq, the assumption Ψn{εn Ñ8

is satisfied since εn decays at a polynomial rate of n.

The pipeline for proving Theorem 6 is stated as the follow two steps: First, for any
optimal partition δ˚ P ∆˚, we establish a finite sample bound for the difference between
the expected outcome using the estimated group-based decision function pf δ

˚

n based on
the training data and that of the optimal group-based decision function f δ

˚

under δ˚;
Second, due to Ψn{εn Ñ8, as n goes to infinity, the stochastic error εn of rRpδ̄,f δ̄q arising
from using En to estimate E in (17) would be dominated by the gap Ψn for any δ̄ R ∆˚.
Hence, pδn in (17) would finally belong to ∆˚ when n is sufficient large since δ˚ P ∆˚

maximizes the value function V1. Then, the convergence rate is determined by the rate of
Prppδn P ∆˚q Ñ 1 and the convergence rate of the first step when treating the partition is
fixed as δ˚ P ∆˚. Specifically, the novelty of our technical proof arises from bounding the

approximation bias term Aδ
σnpλnq with order OpK2

nλ
q{pq`1q
n q and deriving the finite value

reduction bound in a multicategory setting. The intermediate results deriving from the
first step generalize Lemma 3.9 in Zhou et al. (2017) and Theorem 3.4 in Zhao et al. (2012)
from binary treatments to multiple treatment groups Kn that may diverge to infinity as the
sample size increases. More details are provided in Appendix B.

For the case that the number of treatments Mn and treatment groups Kn are fixed, it
is straightforward to derive the following Corollary 7 from Theorem 6. Note that for the
fixed group number case, Ψn{εn Ñ8 is trivially satisfied since Ψn is a constant.

Corollary 7 (Convergence rate of pδn and value function for fixed Mn and Kn)

Suppose the generalized geometric noise assumption holds for an optimal partition δ˚ P ∆˚

with exponent 0 ă q ă 8 and constant U . Further assume | R
ppδ˚pAq|Xq | ď Z0 and θpX q ďM1

where Z0 and M1 are constants. Then, if nλn Ñ8, and take σn “ λ
´1{pq`1qd
n , the following

results hold:

(I) For any θ ą 0, 0 ă v ă 2, we have

Prppδn P ∆˚q “ 1´O
ˆ

pnλnq
´1{2 ` pλnq

´ 2
2`v

`
p2´vqp1`θq
p2`vqp1`qqn´

2
2`v ` λ

q
q`1
n

˙

;
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(II) rRppδn,pfnq ´ rR˚ “ Op

ˆ

pnλnq
´1{2 ` pλnq

´ 2
2`v

`
p2´vqp1`θq
p2`vqp1`qqn´

2
2`v ` λ

q
q`1
n

˙

.

4. Simulation Studies

We evaluate the finite-sample performance of our proposed method using several simulation
studies.

4.1 Homogeneous Settings

In this simulation study, we consider the setting where the treatment responses for the
treatments in the same group are equivalent, but differ for the treatments across different
groups. We generate 10-dimensional independent prognostic variables X1, . . . , X10, follow-
ing U r´1, 1s. The outcome R is normally distributed with ErR|A,Xs “ 1 ` 2X1 ` X2 `

0.5X3`T0pX,Aq and standard deviation 1, where T0pX,Aq reflects the interaction between
the treatment and the prognostic variables. In addition, we assume that the treatment
effects have the homogeneous grouping structure G0 induced by δ0 discussed in Section 2.2.
Specifically, we consider the following three scenarios:

Scenario 1. Mn “ 10,Kn “ 2,G0 “
 

t1, 2, 3, 4, 5u, t6, 7, 8, 9, 10u
(

and T0pX,Aq “ 1.8
`

0.2 ´

X1 ´X2

˘`

IrA P t1, 2, 3, 4, 5us ˆ p´1q ` IrA P t6, 7, 8, 9, 10us ˆ 1
˘

;

Scenario 2. Mn “ 10,Kn “ 2,G0 “
 

t1, 2, 3, 4, 5u, t6, 7, 8, 9, 10u
(

and T0pX,Aq “ 3.5
`

0.8 ´

X2
1 ´X

2
2

˘`

IrA P t1, 2, 3, 4, 5us ˆ p´1q ` IrA P t6, 7, 8, 9, 10us ˆ 1
˘

;

Scenario 3. Mn “ 15,Kn “ 3,G0 “
 

t1, 2, 3, 4, 5u, t6, 7, 8, 9, 10u, t11, 12, 13, 14, 15u
(

and

T0pX,Aq “ 5
`

p´0.2 ` X1 ` 2X2qIrA P t1, 2, 3, 4, 5us ` p0.3 ` 2X1 ` X2qIrA P t6, 7, 8, 9, 10us `

p´0.2` 3X1qIrA P t11, 12, 13, 14, 15us
˘

.

Scenario 1 corresponds to 10 treatment arms belonging to two treatment groups with
underlying linear decision boundaries whereas Scenario 2 considers the circle decision bound-
ary. Scenario 3 includes 15 treatments compared with the first two and deals with three
treatment groups with linear decision boundary. Since our studies are especially interested
in the case that the propensity score of some specific treatments may be very small, we
perform the following two designs varying from balanced to unbalanced designs within each
scenario:

(a) Balanced Design: ppa|xq “ 1
Mn

for each a P A “ rMns and each x P X ;

(b) Unbalanced Design: The value of ppa|xq for some specific treatments can be very
small compared with other treatments.

Under the unbalanced design, for each x P X , the propensity scores for the first two sce-
narios are set to be

`

p 1
20 ,

1
20 ,

1
20 ,

3
20 ,

1
5q, p

1
20 ,

1
20 ,

1
10 ,

1
10 ,

1
5q
˘

while the propensity scores equal to
`

p 1
20 ,

1
20 ,

1
20 ,

11
120 ,

11
120q, p

1
20 ,

1
20 ,

1
20 ,

11
120 ,

11
120q, p

1
20 ,

1
20 ,

7
90 ,

7
90 ,

7
90q

˘

for Scenario 3. In addition, we
conduct more simulation settings when the propensity scores are more unbalanced and may
depend on the covariates. These additional results are shown in Appendix D. For GROWL,
we use the linear kernel for Scenarios 1 and 3 and utilize the Gaussian kernel for Scenario
2 corresponding to different shapes of the decision boundary. The tuning parameter λn is
chosen to maximize the empirical value function En

“

RIr pDpXq “ As{ppA|Xq
‰L

En
“

Ir pDpXq “
As{ppA|Xq

‰

by 10-fold cross-validation among t 1
16 ,

1
8 ,

1
4 ,

1
2 , 1, 2, 4, 8, 16u. For the Gaussian

kernel, we fix the inverse bandwidth of the kernel σn with 1{p2pτ2q, where pτ is the median of
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the pairwise Euclidean distance of the covariates (Wu and Liu, 2007). The treatment group
number is determined by the trade-off procedure (14) with T “ 50 shown in Section 2.4.

The following four methods are compared under each scenario:

(a) SL: Super Learner based Q-learning method to estimate ErR|X,As (Polley and Van
Der Laan, 2010);

(b) AD: Multi-armed Angle-based Direct learning using linear terms for Scenarios 1 and
3 and polynomial terms for Scenario 2 (Qi et al., 2020);

(c) PLS: L1-Penalized Least Squares method (Qian and Murphy, 2011), which estimates
ErR|X,As using the basis sets p1, X,A,XAq for Scenarios 1 and 3, and p1, X2, A,X2Aq for
Scenario 2;

(d) GROWL: Our proposed method.

SL aims to find the optimal combination of multiple estimated Q-functions by mini-
mizing the cross-validated risk. For the collection of learning algorithms, we include ridge
regression (Hoerl and Kennard, 1970), elastic net (Zou and Hastie, 2005), random forest
(Breiman, 2001), XGBoosting (Chen and Guestrin, 2016), and neural network (Venables
and Ripley, 2013). We refer Polley and Van Der Laan (2010) for more implementation de-
tails about SL. In addition, the tuning parameters in AD and PLS are selected to maximize
En

“

RIr pDpXq “ As{ppA|Xq
‰L

En
“

Ir pDpXq “ As{ppA|Xq
‰

by 10-fold cross-validation.

We evaluate the above methods using the empirical value function and the group-based
misclassification rate between the estimated group decision rules and the true group deci-
sion rules on an independently generated testing data of size 10, 000. The empirical value
function is calculated by the mean of treatment effects under the empirical distribution of
X based on the estimated decision rule. Note that under the homogeneous setting, the
maximum group-based treatment effect equals to the maximum individual treatment based
effect. Hence, the misclassification rate under the group domain is equivalent to the mis-
classification rate under the individual treatment domain. For each scenario, the training
sample sizes vary from 200, 400 to 600 and we replicate the simulations for 200 times.

We present the empirical value function of each scenario under different designs using
boxplots in Figure 1. Results of group-based misclassification rates are included in Figure 5
of Appendix D. We also report the square root of Mean Square Error (MSE) of the empirical
value function and the misclassification rate in Table 1. Based on Lemma 2 and Theorem
4, we have shown that δ0 should equal to the optimal partition δ˚ defined in (7), and δ˚

should equal to the optimal partition δ˚φ derived from (15). Accordingly, the Ratio column

in Table 1 reports the ratio of our estimated pδn exactly being δ0 among the 200 replications.
It can be seen that pδn, the estimation of δ˚φ, converges to δ0 with a high ratio as n becomes
larger, which confirms part (I) of Theorem 6. In general, as the trial design becomes more
unbalanced, all these methods perform worse, in the sense that MSE becomes larger for
each scenario. Without considering the group structure for the treatments, SL, PLS and
AD suffer from the inaccurate estimation of functions related to individual-treatment effects
because of the small amount of observations for some specific treatments. However, GROWL
estimates the group-structured ITR, which reduces the dimension of the treatment space
and clusters the treatments that employ similar treatment effects into the same group. In
addition, since GROWL estimates the ITR in the treatment group domain, the variance of
the value function shrinks quicker than other methods as the training sample size increases.
As is demonstrated in Figure 1 and Table 1, our method outperforms other methods in most
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cases with higher empirical value functions, smaller misclassfication rates, and especially
lower variabilities for both evaluation criteria.

Table 1: Results for Ratio of finding the optimal partition δ0 and square root of MSE of Empir-
ical Value Function and Misclassification Rate evaluated on the independent test data under the
homogeneous settings. The best values are in bold.

n “ 200 n “ 400 n “ 600

Ratio(%) Value Misclassification Ratio(%) Value Misclassification Ratio(%) Value Misclassification

Balanced Design

Scenario 1

SL — 0.109 0.112 — 0.046 0.069 — 0.028 0.052
AD — 0.132 0.126 — 0.056 0.098 — 0.044 0.086
PLS — 0.070 0.092 — 0.041 0.065 — 0.030 0.057
GROWL 97.0 0.046 0.068 99.5 0.014 0.044 100 0.008 0.034

Scenario 2

SL — 0.181 0.167 — 0.068 0.097 — 0.052 0.078
AD — 0.106 0.133 — 0.073 0.111 — 0.069 0.107
PLS — 0.086 0.112 — 0.047 0.079 — 0.041 0.069
GROWL 92.5 0.079 0.101 98.5 0.036 0.069 99.0 0.027 0.060

Scenario 3

SL — 0.567 0.260 — 0.169 0.154 — 0.119 0.108
AD — 1.310 0.463 — 0.752 0.369 — 0.565 0.342
PLS — 0.401 0.226 — 0.199 0.177 — 0.191 0.170
GROWL 67.5 0.511 0.269 92.0 0.125 0.119 97.5 0.080 0.089

Unbalanced Design

Scenario 1

SL — 0.258 0.164 — 0.073 0.088 — 0.046 0.068
AD — 0.416 0.216 — 0.270 0.145 — 0.075 0.101
PLS — 0.146 0.129 — 0.045 0.067 — 0.032 0.058
GROWL 91.5 0.085 0.078 99.0 0.022 0.047 99.0 0.009 0.035

Scenario 2

SL — 0.255 0.199 — 0.127 0.139 — 0.082 0.102
AD — 0.246 0.197 — 0.123 0.138 — 0.089 0.120
PLS — 0.166 0.148 — 0.072 0.093 — 0.047 0.075
GROWL 83.5 0.080 0.103 97.5 0.037 0.070 98.0 0.029 0.061

Scenario 3

SL — 0.675 0.288 — 0.183 0.162 — 0.121 0.112
AD — 1.484 0.481 — 0.814 0.386 — 0.664 0.355
PLS — 0.423 0.236 — 0.231 0.184 — 0.198 0.174
GROWL 56.0 0.570 0.281 83.5 0.132 0.124 98.0 0.083 0.090

4.2 Non-homogeneous Settings

In many cases, it is possible that the treatment effects do not have exactly homogeneous
grouping structure G0 assumed in Section 4.1. In this section, we perform nearly homoge-
neous and nonhomogeneous scenarios to examine our method. Specifically, we generalize
Scenario 1 in Section 4.1 with the following Scenario 4 indexed by a parameter θ ą 0:

Scenario 4: Mn “ 10, T0pX,Aq “ 1.8
`

0.2´X1 ´X2

˘`

IrA P t1, 2, 3, 4, 5us ˆ p´1´ A
θ q ` IrA P

t6, 7, 8, 9, 10us ˆ p1` A´5
θ q

˘

.

The parameter θ determines the level of heterogeneity of treatment effects. As θ be-
comes smaller, the treatment effects become more diverse and thus the group structure
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Figure 1: Boxplots of Empirical Value Function evaluated on the independent test data under the
homogeneous settings. Red horizontal dashed lines show oracle values for each scenario.
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tends to disappear. When θ “ `8, Scenario 4 has the exact homogeneous structure
G0 “

 

t1, 2, 3, 4, 5u, t6, 7, 8, 9, 10u
(

shown in Scenario 1. We vary θ from 40, 20, 10 to 5. In
particular, the simulation scenarios in this section only focus on the unbalanced design. For
GROWL, the treatment group number is determined by the trade-off procedure in (14).
Other simulation settings and comparison methods are the same as those in Section 4.1.

Similar to Section 4.1, we provide boxplots of the empirical value function in Figure 2,
and MSE of the empirical value function in Table 2. When θ decreases from 40 to 5, the
treatment effects vary from nearly homogeneous structure to nonhomogeneous structure.
For nearly homogeneous cases with θ “ 40 and 20, our method still outperforms other
methods while for nonhomogeneous cases with θ “ 10 and 5, PLS performs the best. The
results are consistent with Remark 3. For each 1 ď Kn ă 10, the maximum benefit of group-
structured ITR BenpKnq is strictly less than the optimal benefit B˚en because the conditional
treatment effects within the same group are different under δ˚K in nonhomogeneous cases.
When θ “ `8, these two values are equal. As θ decreases, the gap between these two
values increases. Based on our simulation results, for each θ and training sample size,
over 95% of the replications suggest pKn “ 2 based on the trade-off procedure (14), and
over 90% of the estimated partition still equals to the same two-group structure G0 “
 

t1, 2, 3, 4, 5u, t6, 7, 8, 9, 10u
(

as the homogeneous setting. Hence, in Scenario 4, GROWL
tends to sacrifice the benefit while retain small variability of the value function, and the gain
of small variability continues to dominate the loss of benefit when θ decreases from 40 to
5. In Figure 2, one can observe that the empirical value of our method would not converge
to the optimal value (shown by dashed lines) and a positive gap would exist. In addition,
when sample size increases from 200 to 600, the relative improvement ratio in terms of the
MSE for GROWL decreases when θ has smaller values. However, due to the usage of the
group structure, the variability of our method is very small compared with others shown in
Figure 2. Therefore, the trade-off between the benefit and variability of the value function
for the group-structured ITR estimated by GROWL is clear. From Table 2, GROWL is
still competitive in nonhomogeneous settings in terms of the MSE criterion.

5. Application to the STAR*D Study

In this section, we apply our proposed GROWL to analyze the data from the STAR*D
study (Rush et al., 2004). The STAR*D study performed research on outpatients with
nonpsychotic major depressive disorder. The goal of the study was to compare various
treatment options for the patients who failed to obtain a satisfactory response with citalo-
pram (CIT), an initial antidepressant treatment. The primary outcome was measured by
the Quick Inventory of Depressive Symptomatology (QIDS) score ranging from 0 to 27,
where higher scores indicate more severe depression.

The STAR*D data consist of four levels. In our analysis, we focus on the 1407 eligible
patients who received treatments at Level 2. In particular, at Level 2, patients were asked
to indicate their preference of either switching to one of the 4 different treatments, i.e.,
bupropion (BUP), cognitive therapy (CT), sertraline (SER), and venlafaxine (VEN), or
augmenting their existing CIT with 3 options, i.e., CIT+BUP, CIT+buspirone (BUS), and
CIT+CT. If a patient indicated no preference, then he/she was assigned to any of the
above 7 treatments. To encourage the active collaboration and shared decision-making
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Figure 2: Boxplots of Empirical Value Function evaluated on the independent test data under the
nonhomogeneous settings and unbalanced design. Red horizontal dashed lines show oracle values
for each scenario.
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Table 2: Results for square root of MSE of Empirical Value Function evaluated on independent test
data under the nonhomogeneous settings and unbalanced designs. The best values are in bold.

n “ 200 n “ 400 n “ 600

θ “ 40

SL 0.265 0.136 0.091
AD 0.424 0.174 0.132
PLS 0.212 0.102 0.076
GROWL 0.119 0.069 0.058

θ “ 20

SL 0.266 0.137 0.123
AD 0.480 0.223 0.167
PLS 0.245 0.100 0.084
GROWL 0.141 0.091 0.079

θ “ 10

SL 0.306 0.178 0.151
AD 0.546 0.298 0.294
PLS 0.214 0.112 0.091
GROWL 0.206 0.154 0.146

θ “ 5

SL 0.339 0.208 0.165
AD 0.664 0.454 0.442
PLS 0.233 0.125 0.092
GROWL 0.315 0.293 0.282

with patients, we consider the patients’ preference as part of the intervenable treatment
options and assume the future patients’ preference can be intervened when recommending
treatments. Hence, we have a total of 3`4`7 “ 14 treatment options and these preference-
related treatments are often called patient-centered medications in the literature (Robinson
et al., 2008). Figure 3 demonstrates the distribution of the observation numbers for the 14
patient-centered treatments. Due to the relatively large treatment space and the unbalanced
structure of propensities of treatments, it can be seen that only a few observations were
obtained for many treatment options, especially for the treatments in the “no-preference”
(Nop-) group.

We apply four methods (SL, PLS, AD, GROWL) discussed in Section 4 to estimate the
optimal treatment rules among the 14 treatment options for patients. Specifically, the re-
ward R in our study is calculated by the reduction of QIDS score from the start to the end of
Level 2. Hence, a higher value of R is preferred. Feature variables X include QIDS score at
the start of Level 2, reduction of QIDS score during Level 1, and other demographic variables
such as gender, race, age, education level, employment status, and marital status, etc. The
estimated propensities pppA|Xq are obtained from fitting the multinomial logistic regression
model. For PLS, we use terms p1, X,X2, A,XA,X2Aq to fit the L1 penalized linear regres-
sion to estimate conditional treatment effects; For AD, polynomial terms are also included as
the basis set of decision functions; For GROWL, we implement the Gaussian kernel for deci-
sion functions. Comparisons of all these methods were based on 200 repetitions of three-fold
cross-validation, where two folds are used to train the model. For our proposed GROWL, we
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Figure 3: Distribution of observations for the 14 treatment options in the STAR*D dataset. “Swi”,
“Aug” and “Nop” correspond to patients that switch to other treatments, augment existing treat-
ments, and have no preference for two previous options.

follow equation (14) discussed in Section 2.4 to determine the number of groups with train-
ing data. We evaluate the four methods on the remaining one fold of testing data based on
the empirical value function En

“

RIr pDpXq “ As{pppA|Xq
‰L

En
“

Ir pDpXq “ As{pppA|Xq
‰

, where
En denotes the empirical average of testing data.
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Figure 4: Boxplots of Expected Reduction of QIDS score during Level 2 for patients in testing data
based on 200 repetitions for the STAR*D study (higher value is better).
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The testing results are shown in Figure 4. The means of expected reduction of QIDS
score during Level 2 by using GROWL is 6.44, which outperform the mean value of SL
(5.28), AD (5.32) and PLS (5.04). Thus, compared with methods without considering the
treatment partition, GROWL substantially improves the performance of the optimal ITR
estimation. The estimated group numbers are 5 or 6 for most of the repetitions. Among the
200 estimated partitions of the treatment space, the patient-centered treatments containing
SER, CIT+BUP, CIT+BUS, and CIT+CT are often combined within one group and the
treatments containing BUP, CT and VEN are integrated with another group with high
frequency. It is interesting to point out that, the treatments SER, CIT+BUP, CIT+BUS,
and CIT+CT are often considered as one class of treatments including Selective Serotonin
Reuptake Inhibitors (SSRI) while the treatments BUP, CT and VEN are non-SSRI treat-
ments because the treatments within the same group have similar treatment effects (Liu
et al., 2018; Pan and Zhao, 2021). In addition, the patient-centered treatments with the
same patients’ preference are often clustered into the same group. With the overall dataset,
we implement the GROWL with the Gaussian kernel and obtain the final estimated group
structure with 5 treatment groups:

pG0 “

"

tSwi-BUP, Swi-VEN, Nop-VENu, tSwi-SERu,

tAug-CIT+BUP, Aug-CIT+BUS, Aug-CIT+CTu,

tSwi-CT, Nop-CIT+CT, Nop-CT, Nop-VENu,

tNop-CIT+BUP, Nop-CIT+BUS, Nop-SERu

*

.

It can be seen that these patient-centered treatments with the same preference work simi-
larly within the SSRI groups and the non-SSRI groups respectively.

To better interpret the decision rule and examine the effects of the feature variables, we
implement our GROWL with linear kernel based on pG0. For the STAR*D dataset, the mean
of expected reduction of QIDS score for GROWL with linear kernel is 6.11, demonstrating
that GROWL with the linear kernel still outperforms other methods. Note that we have
13 feature variables (including the intercept) and 5 treatment groups. Therefore, we obtain
a 4 ˆ 13 estimated coefficient matrix pB for the linear decision function. The k-th column
of Table 3 in Appendix D demonstrates pBTWk for the k-th treatment group where k “
1, 2, . . . , 5. We can see that nearly all feature variables play an important role in the
estimated optimal ITR. In particular, for the important biomarker, the QIDS score, the
patients with higher QIDS score reduction during Level 1 are suggested with augmenting
the current CIT treatment implemented at Level 1, while patients with low QIDS reduction
are recommended with switching to other treatments at Level 2.

6. Discussion

In this article, we propose a new method called GROWL to cluster treatment options and
at the same time, estimate the optimal group-structured ITR within one RAMSVM-based
objective function. Other comparison methods estimate the ITR under the individual treat-
ment domain while GROWL focuses on the group treatment domain. When homogeneous
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or nearly-homogeneous treatment group structure is satisfied for the treatments, GROWL
is able to find the expected partition with high accuracy and the superior performance of
GROWL is demonstrated in our numerical studies. Under heterogeneous settings when θ
is small shown in Section 4.2, our method tends to sacrifice the benefit while reduce the
variability significantly. In this case, our method is still superior to other methods when the
sample size is small. Another advantage of GROWL is that it combines both supervised
and unsupervised learning through one single optimization.

From a broad perspective, our method is not limited to ITR problems. It can be viewed
as a multicategory classification technique. In particular, consider using observed data
px1, y1q, . . . , pxn, ynq to classify the covariate x P X as a specific class y in a large class space
Y. Due to the large number of labels, insufficient data are observed for some specific labels.
Consequently, standard classification methods can become ineffective. On the other hand,
the conditional probability PrrY “ y|Xs may employ possible similar patterns for some
classes y P Y. Then our method tends to estimate this pattern with group-based structure
to reduce the dimension of the classification label space and classify the observations in the
group domain. Although our paper mainly focuses on estimating the optimal ITR in the
decision making framework, the essence is similar because the conditional treatment effects
ErR|A “ a,Xs play a similar role as PrrY “ y|Xs in classification problems.

Several possible extensions can be explored for future studies. First, most scenarios con-
sidered in the paper is that the group structure of the treatment effects is independent with
the marginal distribution of feature variables X. However, consider the case that homo-
geneous group structure is completely different with different values of x P X , the optimal
partition in (7) tends to sacrifice some subgroups of individuals. Consequently, more value
would be lost because the optimal partition is obtained via averaging the marginal distri-
bution of X. For these more complex scenarios, it will be interesting to estimate different
partitions targeting subgroups of individuals. Secondly, our method can be extended to
learn group structures for multi-stage Dynamic Treatment Regimes (DTR) (Murphy, 2003;
Zhao et al., 2015). This can be an interesting direction for future research.
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Appendix

The appendix contains detailed proofs of the main results, additional figures and tables, and
more implementation details. In Appendix A, we introduce some useful lemmas to prove
the theorems in the main paper. In Appendix B, we give the detailed proofs of theorems in
the main paper. In Appendix C, we prove the lemmas in the main paper and the lemmas in
Appendix A. We also provide proofs of equation (10) and how the dual problems (11) and
(12) are derived. Additional results of more simulations and real data analysis are given in
Appendix D. Finally, implementation details are summarized in Appendix E.
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Appendix A. Useful Lemmas

Lemma 8 (Bound of excess risk for any fixed δ) For any partition δ, any measurable
function f : X Ñ RKn´1 such that xWk,fpxqy P r´1,Kn ´ 1s holds for @x P X and
@k P rKns, we have

Rpδ,fq ´Rpδ,f δq ď Rφpδ,fq ´Rφpδ,f
δq.

Note that Lemma 8 generalizes the excess risk bound in Theorem 3.2 in Zhao et al.
(2012) from the binary setting to the multi-class setting for any fixed δ.

Lemma 9 (Bound for approximation error) Fix a partition δ. Suppose the general-
ized geometric noise assumption holds for δ with noise exponent 0 ă q ă 8 and constant U .

Set σn “ λ
´1{pq`1qd
n . Then for the Gaussian kernel κ, there is a constant c ą 0 depending

only on the dimension d, the geometric noise exponent q and constant U , such that for all
λn ą 0, we have

Aδ
σnpλnq ď cK2

nλ
q{pq`1q
n .

Lemma 10 (Finite sample regret bound for optimal δ˚) Suppose the generalized ge-
ometric noise assumption holds for an optimal partition δ˚ P ∆˚ with exponent 0 ă q ă 8
and constant U . Assume | R

ppδ˚pAq|Xq | ď Zn. Then for the Gaussian kernel κ and any

θ ą 0, 0 ă v ă 2, there exists a constant C (depending on θ, v, d), such that for all τ ě 1

and σn “ λ
´1{pq`1qd
n ,

Pr˚
´

rRpδ˚, pf δ˚n q ď rR˚ ` ε
¯

ě 1´ e´τ ,

where Pr˚ denotes the outer probability for possibly nonmeasurable sets, and

ε “ CKnZn

„

pλnq
´ 2

2`v
`
p2´vqp1`θq
p2`vqp1`qqn´

2
2`v `

τ

nλn
` λ

q
q`1
n



.

Note that Lemma 10 is a generalization of Theorem 3.4 in Zhao et al. (2012) to deal
with the multiclass ITR problem under the Lφ-based loss.
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Appendix B. Proofs of Theorems

Proof of Theorem 4:
Based on the definition of Lφ loss, Rφpδ,fq equals to

EX,A

»

–

ErR|A,Xs
ppδpAq|Xq

ˆ rp1´ γq
ÿ

j‰δpAq

p1` xWj ,fpXqyq
`
` γpKn ´ 1´ xWδpAq,fpXqyq

`
s

fi

fl

“ EX

»

–

Kn
ÿ

k“1

ÿ

a:δpaq“k

ErR|A “ a,Xsppa|Xq

ppδpAq|Xq
ˆ rp1´ γq

ÿ

j‰k

p1` xWj ,fpXqyq
`
` γpKn ´ 1´ xWk,fpXqyq

`
s

fi

fl

“ EX

«

Kn
ÿ

k“1

ErR|A P Gδk, Xs rp1´ γq
ÿ

j‰k

p1` xWj ,fpXqyq
`
` γpKn ´ 1´ xWk,fpXqyq

`
s

ff

.

For each fixed δ and fixed x P X , denote gδpxq “ arg maxkPrKns ErR|A P Gδk, X “ xs.
Then based on the proof of Theorem 1 in Zhang et al. (2016), when γ P r0, 1{2s, we have
xWgδpxq,f

δ
φpxqy “ Kn ´ 1 and xWj ,f

δ
φpxqy “ ´1 for j ‰ gδpxq. Hence, classical Fisher

Consistency holds for group-based decision rule for each fixed δ. By plugging f δφ into above
equation, we have

inf
f :XÑRKn´1

Rφpδ,fq “ Rφpδ,f
δ
φq

“ EX

»

–

Kn
ÿ

k‰gδpXq

ErR|A P Gδk, Xs rp1´ γqKn ` γKns

fi

fl

“ EX

«

Kn

Kn
ÿ

k“1

ErR|A P Gδk, Xs ´Kn max
kPrKns

ErR|A P Gδk, Xs

ff

“ E
„

Kn
R

ppδpAq|Xq



´KnEX
„

max
kPrKns

ErR|A P Gδk, Xs


.

Hence, we have

δ˚φ P arg min
δ

"

rRφpδ,f
δ
φq “ Rφpδ,f

δ
φq ´KnE

„

R

ppδpAq|Xq

*

“ arg max
δ

EX
„

max
kPrKns

ErR|A P Gδk, Xs


“ ∆˚.

Then arg maxkPrKnsxWk,f
˚
φ pxqy “ arg maxkPrKns ErR|A P G

δ˚

k , X “ xs follows straightfor-
ward.

Proof of Theorem 5:
To prove the excess risk bound, we notice the following decomposition:

rRpδ,fq ´ rR˚ “
´

rRpδ,fq ´ rRpδ,f δq
¯

`

´

rRpδ,f δq ´ rRpδ˚,f˚q
¯

“

´

Rpδ,fq ´Rpδ,f δq
¯

`

´

rRpδ,f δq ´ rRpδ˚,f˚q
¯

ď

´

Rφpδ,fq ´Rφpδ,f
δq

¯

`

´

rRpδ,f δq ´ rRpδ˚,f˚q
¯

ď

´

Rφpδ,fq ´Rφpδ,f
δq

¯

`

´

rRφpδ,f
δq ´ rR˚φ

¯

“ rRφpδ,fq ´ rR˚φ.
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The first inequality follows from Lemma 8. For the second inequality, notice that

rRpδ,f δq ´ rRpδ˚,f˚q ď Kn

´

rRpδ,f δq ´ rRpδ˚,f˚q
¯

“ rRφpδ,f
δq ´ rR˚φ.

Then the proof is complete.
Proof of Theorem 6:
For each partition δ, take the following notations. Define the random variable Sδ “
R

ppδpAq|Xq . Denote V δ
φ pfq “ SδLφpδ,fq as the weighted loss. Similarly, under δ, let Pδ

be the population measure of
`

X, δpAq, R{ppδpAq|Xq
˘

and Pδn be the associated empirical

measure. Recall that Ψn “
1
2 minδR∆˚ V˚1 pδ˚q ´ V˚1 pδq ą 0. Then, for any δ R ∆˚, we

have inff rRφpδ,fq ´ rR˚φ ą Ψn. To prove part (I) in this theorem, we need to control the

probability of event
!

pδn R ∆˚
)

. Take an optimal δ˚ P ∆˚. Note that based on the definition

of pδn, the following two events are equivalent:
!

pδn P ∆˚
)

ô
č

δR∆˚

"

Pδ
˚

n pV
δ˚

φ p pfnqq ` λn

›

›

›

pfn

›

›

›

2

Fn
´KnPδ

˚

n pS
δ˚

q ď PδnpV δφ p pfnqq ` λn
›

›

›

pfn

›

›

›

2

Fn
´KnPδnpSδq

*

.

Hence, Pr
”

pδn P ∆˚
ı

“ 1´ Pr

»

–

ď

δR∆˚

"

Pδ
˚

n pV
δ˚

φ p pfnqq ` λn

›

›

›

pfn

›

›

›

2

Fn
´KnPδ

˚

n pS
δ˚

q ą PδnpV δφ p pfnqq ` λn
›

›

›

pfn

›

›

›

2

Fn
´KnPδnpSδq

*

fi

fl

ě 1´
ÿ

δR∆˚

Pr

„

Pδ
˚

n pV
δ˚

φ p pfnqq ` λn

›

›

›

pfn

›

›

›

2

Fn
´KnPδ

˚

n pS
δ˚

q ą PδnpV δφ p pfnqq ` λn
›

›

›

pfn

›

›

›

2

Fn
´KnPδnpSδq



“ 1´
ÿ

δR∆˚

ˆ

1´ Pr

„

Pδ
˚

n pV
δ˚

φ p pfnqq ` λn

›

›

›

pfn

›

›

›

2

Fn
´KnPδ

˚

n pS
δ˚

q ď PδnpV δφ p pfnqq ` λn
›

›

›

pfn

›

›

›

2

Fn
´KnPδnpSδq

˙

After rearranging both sides, we can only control the following probability for each fixed

δ R ∆˚ in order to lower bound Pr
”

pδn P ∆˚
ı

:

Pr
”

Pδ
˚

n pV
δ˚

φ p pfnqq ´ PδnpV δφ p pfnqq ´KnpPδ
˚

n pS
δ˚

q ´ PδnpSδqq ď 0
ı

“Pr
”

Pδ
˚

n pV
δ˚

φ p pfnqq ´ PδnpV δφ p pfnqq ´KnpPδ
˚

n pS
δ˚

q ´ PδnpSδqq ´ p rR˚φ ´ rRφpδ,f
δ
qq ď rRφpδ,f

δ
q ´ rR˚φ

ı

ěPr
”

Pδ
˚

n pV
δ˚

φ p pfnqq ´ PδnpV δφ p pfnqq ´KnpPδ
˚

n pS
δ˚

q ´ PδnpSδqq ´ p rR˚φ ´ rRφpδ,f
δ
qq ď Ψn

ı

“Pr rI` II` III´ IV ď Ψns

ěPr rI` II` III ď Ψns ,

where

I “ pPδ
˚

n ´ Pδ
˚

qpV δ˚

φ p pfnqq ´ pPδn ´ PδqpV δ
φ p

pfnqq,

II “ KnpPδ
˚

´ Pδ
˚

n qpS
δ˚q ´KnpPδ ´ PδnqpSδq,

III “ Pδ
˚

pV δ˚

φ p pfn ´ f
δ˚qq,

IV “ PδpV δ
φ p

pfn ´ f
δqq.

Note that the last inequality above is due to IV ě 0. Here, after removing IV, the advantage
is that we only need the generalized geometric noise condition holds for δ˚ to bound III
following from Lemma 10.
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Now, we would bound the above three terms respectively using concentration techniques.

First, to bound I, we start with obtaining a bound for
›

›

›

pfn

›

›

›

2

Fn
. Since Ppδn

n pV
pδn
φ p

pfnq´KnS
pδnq`

λn

›

›

›

pfn

›

›

›

2

Fn
ď PδnpV δ

φ pfq´KnS
δq`λn }f}

2
Fn holds for any δ and f P bKn´1

k“1 Hk
κ, we can select

δ “ pδn and f “ 0 to get

›

›

›

pfn

›

›

›

2

Fn
ď

1

λn

1

n

n
ÿ

i“1

Sδi Lφp
pδn,0q ď

2pKn ´ 1q

λn
Zn,

so that only the constrained class Fn “
!?

λnf P b
Kn´1
k“1 Hk

κ :
›

›

?
λnf

›

›

Fn ď
a

2pKn ´ 1qZn

)

would be considered. Note that RAMSVM loss Lφ is Lipschitz continuous with respect to
f with Lipschitz constant KnZn. Then, for each δ, McDiarmid’s inequality (Bartlett and
Mendelson, 2002) implies that with probability at least 1´ e´τ ,

sup
fPFn

pPδn ´ PδqV δ
φ pfq ď E

«

sup
fPFn

pPδn ´ PδqV δ
φ pfq

ff

` 2KnZn

c

2τ

n
.

Next we define the Rademacher complexity over Fn as Rδ
n :“ E supfPFn PnpεV

δ
φ pfqq, where

ε is the Rademacher variable independent of pX, δpAq, Sδq under Pδ. Then by standard
symmetrization arguments and Lemma 22 in Bartlett and Mendelson (2002), we have

E

«

sup
fPFn

pPδn ´ PδqV δ
φ pfq

ff

ď 2Rδ
n ď 2

d

2pKn ´ 1qZn
nλn

.

Similar proof holds for Pδ ´ Pδn. Therefore, we have Pr rI ď ε1s ě 1´ 2e´τ , where

ε1 “ 4

d

2pKn ´ 1qZn
nλn

` 4KnZn

c

2τ

n
.

Next we bound the second term II. Note that by assumption, for each δ, pKn ´ 1q|Sδ| ď
pKn ´ 1qZn. By Hoeffding inequality (Steinwart and Christmann, 2008), we have

Pr rII ď ε2s ě 1´ e´τ ,

where

ε2 “ pKn ´ 1qZn

c

τ

2n
.

Finally, bounding III with Lemma 10, we have for any θ ą 0, v P r0, 2s, such that for all

τ ě 1 and σn “ λ
´1{pq`1qd
n , we have

Pr˚rRφpδ
˚, pf δ

˚

n q ď R˚φ ` ε3s “ PrrIII ď ε3s ě 1´ e´τ ,

and

ε3 “ CKnZn

„

pλnq
´ 2

2`v
`
p2´vqp1`θq
p2`vqp1`qqn´

2
2`v `

τ

nλn
` λ

q
q`1
n



,
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where C is a constant depending on v, θ and d.
Therefore, combining the bound for I, II, III, we have

Pr˚rI` II` III ď ε1 ` ε2 ` ε3s ě 1´ 4e´τ ,

where ε1, ε2 and ε3 depend on n and go to 0 as nÑ8. Note that ε1 “ OpK1{2
n Z

1{2
n n´1{2λ

´1{2
n

`KnZnn
´1{2q, ε2 “ OpKnZnn

´1{2q and ε3 “ O
ˆ

KnZnpλnq
´ 2

2`v
`
p2´vqp1`θq
p2`vqp1`qqn´

2
2`v `

KnZnpnλnq
´1 `KnZnλ

q
q`1
n

˙

. Based on Ψn{pε1` ε2` ε3q Ñ 8, we can find sufficient larget

n such that ε1 ` ε2 ` ε3 ă Ψn, then we have

Pr˚rpδn P ∆˚s “ 1´OpΓnεnq.

To prove (II), for each fixed τ ą 1, θ ą 0, 0 ă v ă 2, consider

Pr
”

rRφp
pδn, pfnq ´ rR˚φ ě 2ε3

ı

“Pr
”´

rRφp
pδn, pfnq ´ rRφpδ

˚, pfnq
¯

`

´

rRφpδ
˚, pfnq ´ rR˚φ

¯

ě 2ε3

ı

ďPr
”

rRφp
pδn, pfnq ´ rRφpδ

˚, pfnq ě ε3

ı

` Pr
”

rRφpδ
˚, pfnq ´ rR˚φ ě ε3

ı

.

Next we bound the above two terms respectively. For the first term, take n sufficient large
such that ε1 ` ε2 ` ε3 ă Ψn, then

Pr
”

rRφp
pδn, pfnq ´ rRφpδ

˚, pfnq ě ε3

ı

“Pr
”

rRφp
pδn, pfnq ´ rRφpδ

˚, pfnq ě ε3

ˇ

ˇ

ˇ

pδn P ∆˚
ı

Pr
”

pδn P ∆˚
ı

` Pr
”

rRφp
pδn, pfnq ´ rRφpδ

˚, pfnq ě ε3

ˇ

ˇ

ˇ

pδn R ∆˚
ı

Pr
”

pδn R ∆˚
ı

ď0` Pr
”

pδn R ∆˚
ı

ď4e´τ .

For the second term, Lemma 10 implies that Pr
”

rRφpδ
˚, pfnq ´ rR˚φ ě ε3

ı

ď e´τ . Combining

both parts, when ε1 ` ε2 ` ε3 ă Ψn, we have for all τ ě 1,

Pr
”

rRφp
pδn, pfnq ´ rR˚φ ď Opε1 ` ε2 ` ε3q

ı

ě 1´ 5e´τ .

Therefore, we have
rRppδn, pfnq ´ rR˚ “ OppΓnεnq.

Note that when R is replaced with R‹ “ pR´spXqq``pKn´1qpR´spXqq´ discussed in
Section 2.3, the final convergence rate would also include the rate coming from estimating
spXq. More details can be found in Liu et al. (2018).

31



Haixu Ma, Donglin Zeng and Yufeng Liu

Appendix C. Proofs of Lemmas, Equation (10), and Dual Problems (11)
and (12)

Proof of Lemma 2:
For any fixed δ : AÑ rKns,

V˚1 pδq “ max
Dg :XÑrKns

E
„

IrDgpXq “ δpAqs
R

ppδpAq|Xq



“ max
Dg :XÑrKns

EX

«

ÿ

aPA
IrDgpXq “ δpaqs

ppa|Xq

ppδpaq|Xq
ErR|X,A “ as

ff

“ max
Dg :XÑrKns

EX

»

–

Kn
ÿ

k“1

IrDgpXq “ ks
ÿ

a:δpaq“k

ppa|Xq

ppδpaq|Xq
ErR|X,A “ as

fi

fl

“ EX

»

– max
kPrKns

ÿ

a:δpaq“k

ppa|Xq

ppδpaq|Xq
ErR|X,A “ as

fi

fl

ď EX
„

max
aPA

ErR|X,A “ as



“ EX
„

max
kPrKns

ErR|X,A P G0
ks



“ V˚1 pδ0q,

where the last equation is because of the homogeneous group structure. So, taking supre-
mum over all of the partitions gives supδ:AÑrKns V

˚
1 pδq ď V˚1 pδ0q. Therefore, based on the

definition of δ˚, we have δ˚ “ δ0.
Proof of Lemma 8:
First, for the excess risk of 0-1 loss,

Rpδ,fq ´Rpδ,f δq

“E
„

R

ppδpAq|Xq

`

Irarg max
j

xWj ,fpXqy ‰ δpAqs ´ Irarg max
j
xWj ,f

δpXqy ‰ δpAqs
˘



“E

«

Kn
ÿ

k“1

ErR|A P Gδk, Xs
`

Irarg max
j

xWj ,fpXqy ‰ δpAqs ´ Irarg max
j
xWj ,f

δpXqy ‰ δpAqs
˘

ff

Then, for the excess risk of RAMSVM loss,

Rφpδ,fq ´Rφpδ,f
δq

“E

»

–

R

ppδpAq|Xq

`

p1´ γq
ÿ

k‰δpAq

p1` xWk,fpXqyq
` ` γpKn ´ 1´ xWδpAq,fpXqyq

`
˘

fi

fl

´ E

»

–

R

ppδpAq|Xq

`

p1´ γq
ÿ

k‰δpAq

p1` xWk,f
δpXqyq` ` γpKn ´ 1´ xWδpAq,f

δpXqyq`
˘

fi

fl

“E

»

–

Kn
ÿ

k“1

ErR|A P Gδk, Xs
`

p1´ γq
ÿ

k‰δpAq

p1` xWk,fpXqyq
` ` γpKn ´ 1´ xWδpAq,fpXqyq

`
˘

fi

fl
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´ E

»

–

Kn
ÿ

k“1

ErR|A P Gδk, Xs
`

p1´ γq
ÿ

k‰δpAq

p1` xWk,f
δpXqyq` ` γpKn ´ 1´ xWδpAq,f

δpXqyq`
˘

fi

fl

ěE

»

–

Kn
ÿ

k“1

ErR|A P Gδk, Xs
`

p1´ γq
ÿ

k‰δpAq

p1` xWk,fpXqyq ` γpKn ´ 1´ xWδpAq,fpXqyq
˘

fi

fl

´ E

»

–

Kn
ÿ

k“1

ErR|A P Gδk, Xs
`

p1´ γq
ÿ

k‰δpAq

p1` xWk,f
δpXqyq ` γpKn ´ 1´ xWδpAq,f

δpXqyq
˘

fi

fl

“E

«

Kn
ÿ

k“1

ErR|A P Gδk, Xs
`

pKn ´ 1´ xWk,fpXqyq ´ pKn ´ 1´ xWk,f
δpXqyq

˘

ff

“E

«

Kn
ÿ

k“1

ErR|A P Gδk, XsxWk,f
δpXq ´ fpXqy

ff

.

The inequality is because, taking out the positive operator would make the first term smaller
while leave the second term unchanged due to xWk,f

δpxqy P r´1,Kn ´ 1s for every x P X .
Next, we can only prove, for each x P X ,

E

«

Kn
ÿ

k“1

ErR|A P Gδk, X “ xsxWk,f
δpxq ´ fpxqy

ff

ě E

«

Kn
ÿ

k“1

ErR|A P Gδk, X “ xs
`

Irarg max
j

xWj ,fpxqy ‰ δpAqs ´ Irarg max
j
xWj ,f

δpxqy ‰ δpAqs
˘

ff

.

(19)

Suppose ErR|A P Gδs, X “ xs ą ErR|A P Gδk, X “ xs for every k ‰ s. Then based on Fisher

Consistency for group-based decision rule, we have arg maxjPrKnsxWj ,f
δpxqy “ s. Suppose

arg maxjxWj ,fpxqy “ r where r ‰ s. The right hand side of (19) becomes

Kn
ÿ

k‰r,s

ErR|A P Gδk, X “ xsp1´ 1q ` ErR|A P Gδr, X “ xsp0´ 1q ` ErR|A P Gδs, X “ xsp1´ 0q

“ ErR|A P Gδs, X “ xs ´ ErR|A P Gδr, X “ xs.

Since
řKn
k“1 Wk “ 0, the left hand side of (19) equals to

Kn
ÿ

k‰s

ErR|A P Gδs, X “ xsx´Wk,f
δpxq ´ fpxqy `

Kn
ÿ

k‰s

ErR|A P Gδk, X “ xsxWk,f
δpxq ´ fpxqy

“

Kn
ÿ

k‰s

“

ErR|A P Gδk, X “ xs ´ ErR|A P Gδs, X “ xs
‰

xWk,f
δpxq ´ fpxqy

“

Kn
ÿ

k‰r,s

“

ErR|A P Gδs, X “ xs ´ ErR|A P Gδk, X “ xs
‰

p1` xWk,fpxqyq

`
“

ErR|A P Gδs, X “ xs ´ ErR|A P Gδr, X “ xs
‰

p1` xWr,fpxqyq .

The last equation is based on xWk,f
δpxqy “ ´1 for each k ‰ s (Theorem 1 in Zhang et al.

(2016)). Then, by the definition of f and the constraint of bound, we have xWk,fpxqy ě ´1
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for k ‰ r and xWr,fpxqy ě 0. Hence, (19) holds and taking expectation for X in both
sides of (19) gives the result.

Proof of Lemma 9:

Let HκpRdq be the RKHS of the RBF kernel with parameter σn. Then based on Stein-
wart and Scovel (2007), the following linear operator Vσn : bKn´1

k“1 Lk2pRdq Ñ b
Kn´1
k“1 Hk

κpRdq
defined by

Vσngpxq “
p2σnq

d{2

πd{4

ż

Rd
e´2σ2

n}x´y}
2

gpyq dy, g P bKn´1
k“1 Lk2pRdq, x P Rd,

is an isometric isomorphism. Accordingly, for any fixed δ, we obtain

Aδ
σnpλnq ď inf

xVσng,WkyPr´1,Kn´1s,@kPrKns
λn}g}

2
L2
`Rφpδ, Vσngq ´Rφpδ,f

δq.

Using the notation of Lemma 4.1 of Steinwart and Scovel (2007), define X́ “ 3X . Let X́ δ
i be

similarly defined as X δ
i on the domain of X́ . We fix a specific measurable function f́ δ such

that for each i P rKns and x P X́ δ
i , f́ δ satisfies xWi, f́

δpxqy “ Kn´1 and xWj , f́
δpxqy “ ´1

for j ‰ i. For x P X́ , it can be checked that the above property is equivalent with f́ δpxq “
pKn ´ 1q

řKn
i“1 WiIrx P X́ δ

i s. Besides X́ , define f́ δpxq “ 0. By similar approach of Lemma

4.1 in Steinwart and Scovel (2007), we can make sure the ball Bpx,∆δpxqq Ă X́ δ
i for every

x P X δ
i pi P rKnsq on this enlarged support for X . Choose g “ pσ2

n{πq
d{4f́ δ and note that

}Wi}2 “ 1, we immediately obtain the following with Jensen inequality and assumption of
bounded volume of X ,

}g}2L2
ď pKn ´ 1qp

81σ2
n

π
qd{4θpX q ď pKn ´ 1qp

81σ2
n

π
qd{4M1.

Similar to the proof of Lemma 2 in our paper,

Rφpδ, Vσngq ´Rφpδ,f
δq

ď

Kn
ÿ

k“1

E

»

–IrX P X δ
k s

Kn
ÿ

j‰k

|ErR|A P Gδj , Xs ´ ErR|A P Gδk, Xs| ¨ |xWj , VσngpXq ´ f δpXqy|

fi

fl

“

Kn
ÿ

k“1

E

»

–IrX P X δ
k s

Kn
ÿ

j‰k

|ηδj,kpXq| ¨ |xWj , VσngpXq ´ f δpXqy|

fi

fl .
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Now for x P X δ
k , we would bound |xWj , Vσngpxq ´ f δpxqy| when j ‰ k. We observe

´1 ď xWj , Vσngpxqy

“ xWj , p
2σ2

n

π
qd{2

ż

Rd
e´2σ2

n}x´y}
2

f́ δpyq dyy

“ p
2σ2

n

π
qd{2

ż

Rd
e´2σ2

n}x´y}
2

xWj , f́
δpyqy dy

“ p
2σ2

n

π
qd{2

ż

Rd
e´2σ2

n}x´y}
2

xWj , f́
δpyq ´ pKn ´ 1qWjy dy ` pKn ´ 1q

ď p
2σ2

n

π
qd{2

ż

Bpx,∆δpxqq
e´2σ2

n}x´y}
2

xWj , f́
δpyq ´ pKn ´ 1qWjy dy ` pKn ´ 1q

“ p
2σ2

n

π
qd{2

ż

Bpx,∆δpxqq
´Kne

´2σ2
n}x´y}

2

dy ` pKn ´ 1q

“ ´1`KnPγσn p|u| ě ∆δpxqq,

where γσn “ p2σ
2
n{πq

d{2e´2σ2
n|u|

2
du is a spherical Gaussian in Rd. According to Ledoux and

Talagrand (2013), we have Pγσn p|u| ě ∆δpxqq ď 4e´σ
2
n∆δpxq2{2d and consequently,

´1 ď xWj , Vσngpxqy ď ´1` 4Kne
´σ2

n∆δpxq2{2d.

Note that xWj ,f
δpxqy “ ´1 for x P X δ

k and j ‰ k. Observe that above derivation holds
for all k P rKns. Hence, we conclude

|xWj , Vσngpxq ´ fpxqy| ď 4Kne
´σ2

n∆δ
kpxq

2{2d

for all x P
ŤKn
k“1 X δ

k . Then generalized geometric noise assumption for t “ 2d
σ2
n

yields

Rφpδ, Vσngq ´Rφpδ,f
δq ď 4KnpKn ´ 1qUp2dqqd{2σ´qdn .

Therefore, combining both part, we conclude that

Aδ
σnpλnq ď cK2

nλ
q{pq`1q
n ,

where c depends on the dimension of covariates d, geometric noise component q and as-
sociated constant U , and upper bound of volume of covariate space M1 when we set

σn “ λ
´1{pq`1qd
n .

Proof of Lemma 10:
To begin with, according to 1, it suffices to prove the result for rRφpδ

˚, pf δ
˚

n q´
rR˚φ. Then,

similar to the proof idea in Theorem 3.4 in Zhao et al. (2012), we observe the following
decomposition:

rRφpδ
˚, pf δ

˚

n q ´
rR˚φ ď

«

λn

›

›

›

pf δ
˚

n

›

›

›

2

Fn
` rRφpδ

˚, pf δ
˚

n q ´ inf
fPbKn´1

k“1 Hkκ

´

λn }f}
2
Fn `

rRφpδ
˚,fq

¯

ff

`

«

inf
fPbKn´1

k“1 Hkκ

´

λn }f}
2
Fn `

rRφpδ
˚,fq

¯

´ rR˚φ

ff

,
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where the first term is referred as stochastic error and the second term is called the ap-
proximation bias term. We will bound each term separately in the following. First, the

approximation bias term has been bounded by OpK2
nλ

q{pq`1q
n q in Lemma 9.

Next, to bound the stochastic error term, we follow the proof of Theorem 3.4 in Zhao
et al. (2012). The proof of their theorem is basically derived by verifying the conditions of
Theorem 5.6 in Steinwart and Scovel (2007). To achieve that, we first point out that, with
Cauchy-Schwarz inequality, RAMSVM loss p1 ´ γq

ř

k‰δ˚pAqp1 ` xWj ,fpXqyq
` ` γpKn ´

1´xWδ˚pAq,fpXqyq
` is Lipschitz continuous with respect to f with Lipschitz constant Zn.

In addition, let Pδ˚ be the population measure of
`

X, δ˚pAq, R{ppδ˚pAq|Xq
˘

and Pδ˚n be the

associated empirical measure. Next, by the definition of pf δ
˚

n , we have

Pδ
˚

n

` R

ppδ˚pAq|Xq
Lφpδ

˚, pf δ
˚

n q
˘

` λn

›

›

›

pf δ
˚

n

›

›

›

2

Fn
ď Pδ

˚

n

` R

ppδ˚pAq|Xq
Lφpδ

˚,fq
˘

` λn }f}
2
Fn ,

holds for any f P bKn´1
k“1 Hk

κ. Hence, we can select f “ 0 to get

›

›

›

pf δ
˚

n

›

›

›

2

Fn
ď

1

λn

1

n

n
ÿ

i“1

Ri
ppδ˚pAiq|Xiq

Lφpδ
˚,0q ď

2

λn
pKn ´ 1qZn.

Therefore, it suffices to consider a ball with radius r “
a

2pKn ´ 1qZn{λn in the product

RKHS bKn´1
k“1 Hk

κ, denoted by B
b
Kn´1
k“1 Hkκ

prq. We define the function class

Gλn “
"

R

ppδ˚pAq|Xq
Lφpδ

˚,fq ` λn }f}
2
Fn ´

R

ppδ˚pAq|Xq
Lφpδ

˚,f˚λnq ´ λn
›

›f˚λn
›

›

2

Fn
: f P B

b
Kn´1
k“1

Hkκ
prq

*

,

where f˚λn “ arg minf

!

Rφpδ
˚,fq ` λn }f}

2
Fn : f P B

b
Kn´1
k“1 Hkκ

prq
)

. Then similar to the

proof of Theorem 3.4 in Zhao et al. (2012), we verify the following three conditions: (i)
By the Lipschitz continuity of Lφ, there exists constant B such that supgPGλn }g}8 ď B

where B “ Opλ´1{2
n q; (ii) Based on the convexity of Lφ, there exists constant c such that

Erg2s ď cErgs for all g P Gλn where c “ Opλ´1q; (iii) Theorem 2.1 in Steinwart and Scovel
(2007) gives that, for all σn ą 0, 0 ă v ă 2, θ ą 0, ε ą 0, supPδ˚n

logN pB´1Gλn , ε, L2pPδ
˚

n qq ď

c2σ
p1´v{2qp1`θqd
n ε´v. Then the result follows from Theorem 5.6 in Steinwart and Scovel

(2007).

Combining the bound for stochastic error term and approximation bias term, we com-
plete the proof.

Proof of Equation (10):
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We firstly derive the equivalence of the two optimization problems based on the 0-1 loss.
For any fixed δ,

min
Dg

E
„

pR´ spXqq`

ppδpAq|Xq
IrDgpXq ‰ δpAqs



` pKn ´ 1qE
„

pR´ spXqq´

ppδpAq|Xq
IrDgpXq ‰ rδpAqs



“min
Dg

EδpAq,X
„

ErpR´ spXqq`|δpAq, Xs
ppδpAq|Xq

IrDgpXq ‰ δpAqs



` pKn ´ 1qEδpAq,X

»

–

ErpR´ spXqq´|δpAq, Xs
ppδpAq|Xq

ÿ

j‰δpAq

1

Kn ´ 1
IrDgpXq ‰ js

fi

fl

“min
Dg

EδpAq,X
„

ErpR´ spXqq`|δpAq, Xs
ppδpAq|Xq

IrDgpXq ‰ δpAqs



` EδpAq,X

»

–

ErpR´ spXqq´|δpAq, Xs
ppδpAq|Xq

ÿ

j‰δpAq

IrDgpXq ‰ js

fi

fl

“min
Dg

EX

«

Kn
ÿ

i“1

ErpR´ spXqq`|δpAq “ i,XsIrDgpXq ‰ is

ff

` EX

«

Kn
ÿ

i“1

ErpR´ spXqq´|δpAq “ i,Xs
ÿ

j‰i

IrDgpXq ‰ js

ff

“min
Dg

EX

«

Kn
ÿ

i“1

ErpR´ spXqq`|δpAq “ i,XsIrDgpXq ‰ is

ff

` EX

«

Kn
ÿ

i“1

ErpR´ spXqq´|δpAq “ i,Xs
`

Kn
ÿ

j“1

IrDgpXq ‰ js ´ IrDgpXq ‰ is
˘

ff

“min
Dg

EX

«

Kn
ÿ

i“1

ErpR´ spXqq`|δpAq “ i,XsIrDgpXq ‰ is

ff

` EX

«

Kn
ÿ

i“1

ErpR´ spXqq´|δpAq “ i,Xs
`

Kn ´ 1´ IrDgpXq ‰ is
˘

ff

“min
Dg

EX

«

Kn
ÿ

i“1

ErR´ spXq|δpAq “ i,XsIrDgpXq ‰ is

ff

` pKn ´ 1qEX

«

Kn
ÿ

i“1

ErpR´ spXqq´|δpAq “ i,Xs

ff

“min
Dg

E
„

R´ spXq

ppδpAq|Xq
IrDgpXq ‰ δpAqs



` pKn ´ 1qEX

«

Kn
ÿ

i“1

ErpR´ spXqq´|δpAq “ i,Xs

ff

Note that the second term in the last equation is not related to Dg. Hence, the problem is
equivalent with minimizing the first term. This finishes the proof for the equivalence based
on the 0-1 loss. The equivalence based on the RAMSVM loss can be directly guaranteed
by Fisher consistency from Theorem 4.

Derivations from Problem (9) to Dual Problems (11) and (12):
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For the linear kernel, we solve (9) with its dual form. After introducing new slack
variables pξi,jqiPrns;jPrKns, the problem with linear learning can be written as

min
βk,ξi,j

nλ

2

Kn´1
ÿ

k“1

βTk βk `
n
ÿ

i“1

ωi

»

–γξi,δpAiq ` p1´ γq
ÿ

j‰δpAiq

ξi,j

fi

fl ,

s.t. ξi,j ě 0 pi P rns, j P rKnsq;

ξi,δpAiq ` xfpXiq,WδpAiqy ´ pKn ´ 1q ě 0 pi P rnsq;

ξi,j ´ xfpXiq,Wjy ´ 1 ě 0 pi P rns, j ‰ δpAiqq.

The corresponding Lagrangian function La is defined as

La “
nλ

2

Kn´1
ÿ

k“1

βTk βk `
n
ÿ

i“1

ωi

»

–γξi,δpAiq ` p1´ γq
ÿ

j‰δpAiq

ξi,j

fi

fl

´

n
ÿ

i“1

Kn
ÿ

j“1

ρi,jξi,j ´
n
ÿ

i“1

αi,δpAiqrξi,δpAiq ` xfpXiq,WδpAiqy ´ pKn ´ 1qs

´

n
ÿ

i“1

ÿ

j‰δpAiq

αi,jrξi,j ´ xfpXiq,Wjy ´ 1s,

where pαi,jqiPrns;jPrKns and pρi,jqiPrns;jPrKns are the Lagrangian multipliers. Furthermore, we
can rewrite La with

La “
nλ

2

Kn´1
ÿ

k“1

βTk βk `
n
ÿ

i“1

Kn
ÿ

j“1

“

ωi
`

γIrj “ δpAiqs ` p1´ γqIrj ‰ δpAiqs
˘

´ ρi,j ´ αi,j
‰

ξi,j

`

n
ÿ

i“1

αi,δpAiqpKn ´ 1q `
n
ÿ

i“1

ÿ

j‰δpAiq

αi,j

´

n
ÿ

i“1

αi,δpAiqxfpXiq,WδpAiqy `

n
ÿ

i“1

ÿ

j‰δpAiq

αi,jxfpXiq,Wjy.

Next we take partial derivative of La with respect to pξi,jqiPrns;jPrKns and pβkqkPrKn´1s, and
let them be 0. We have

BLa
Bξi,j

“ ωi
`

γIrj “ δpAiqs ` p1´ γqIrj ‰ δpAiqs
˘

´ ρi,j ´ αi,j “ 0 pi P rns, j P rKnsq,

and

BLa
Bβk

“ nλβk ´
n
ÿ

i“1

αi,δpAiqWδpAiq,kXi `

n
ÿ

i“1

ÿ

j‰δpAiq

αi,jWj,kXi “ 0 pk P rKn ´ 1sq.

When the partial derivatives for pβkqkPrKn´1s equal to 0, we have

βk “
1

nλ

»

–

n
ÿ

i“1

αi,δpAiqWδpAiq,kXi ´

n
ÿ

i“1

ÿ

j‰δpAiq

αi,jWj,kXi

fi

fl .
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After plugging the above characterizations of β into La, we can simplify La with

La “ ´
nλ

2

Kn´1
ÿ

k“1

βTk βk `
n
ÿ

i“1

αi,δpAiqpKn ´ 1q `
n
ÿ

i“1

ÿ

j‰δpAiq

αi,j .

Note that maximizing La with respect to αi,j is equivalent to minimizing ´La, which solves
the dual problem (11). The constraints of problem (11) come from pαi,jqiPrns;jPrKns ě 0,
pρi,jqiPrns;jPrKns ě 0, and pBLa{Bξi,jqiPrns;jPrKns “ 0.

For the general kernel, we similarly introduce the slack variables pξi,jqiPrns;jPrKns. If the
intercepts pθk,0qkPrKn´1s are included in the penalty term, then (9) is equivalent to

min
θk,θk,0,ξi,j

nλ

2

Kn´1
ÿ

k“1

θTk Gθk `
nλ

2

Kn´1
ÿ

k“1

θ2
k,0 `

n
ÿ

i“1

ωi

»

–γξi,δpAiq ` p1´ γq
ÿ

j‰δpAiq

ξi,j

fi

fl ,

s.t. ξi,j ě 0 pi P rns, j P rKnsq;

ξi,δpAiq ` xfpXiq,WδpAiqy ´ pKn ´ 1q ě 0 pi P rnsq;

ξi,j ´ xfpXiq,Wjy ´ 1 ě 0 pi P rns, j ‰ δpAiqq.

Similar to the linear case, we introduce the Lagrangian multipliers pρi,jqiPrns;jPrKns and
pαi,jqiPrns;jPrKns, calculate partial derivative with respect to pθqqqPrKn´1s, pθq,0qqPrKn´1s, and
pξi,jqiPrns;jPrKns, and set the derivatives to 0. Then we have that

θk “
1

nλ
G´1

»

–

n
ÿ

i“1

αi,δpAiqWδpAiq,kGi ´

n
ÿ

i“1

ÿ

j‰δpAiq

αi,jWj,kGi

fi

fl ,

and

θk,0 “
1

nλ

»

–

n
ÿ

i“1

αi,δpAiqWδpAiq,k ´

n
ÿ

i“1

ÿ

j‰δpAiq

αi,jWj,k

fi

fl ,

where Gi is the i-th column of G. After plugging the above characterizations of θ into the
Lagrangian function and rewriting it, we get (12).

Appendix D. Additional Simulation Results

D.1. Misclassification Rate Under the Homogeneous Settings.
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Figure 5: Boxplots of Misclassificaiton Rate evaluated on the independent test data under the
homogeneous settings.
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D.2. Simulations Under More Unbalanced Designs.
To better demonstrate the performance of GROWL, we conduct several other simula-

tions under more unbalanced designs for Scenario 3 in homogeneous setting. For the unbal-
anced design (II), the propensity scores of 15 treatments are set to be

`

p0.035, 0.035, 0.035,
0.114, 0.114q, p0.035, 0.035, 0.035, 0.114, 0.114q, p0.035, 0.035, 0.088, 0.088, 0.088q

˘

, and for the
unbalanced design (III), the propensity scores are set to be

`

p0.020, 0.020, 0.020, 0.137, 0.137q,
p0.020, 0.020, 0.020, 0.137, 0.137q, p0.020, 0.020, 0.098, 0.098, 0.098q

˘

. Varying from balanced
design, unbalanced design (I) (same setting as shown in Section 4.1), unbalanced design (II),
and unbalanced design (III), the treatment propensities become more and more unbalanced.
In addition, we conduct another simulation setting where the propensity scores of one of the
three treatment groups is extremely small. Specifically, for this extreme case, the propensity
scores are

`

p0.070, 0.070, 0.087, 0.087, 0.087q, p0.100, 0.100, 0.100, 0.100, 0.100q, p0.020, 0.020,
0.020, 0.020, 0.020q

˘

. Overall, GROWL still performs the best in most cases shown in Fig-
ures 6 and 7. As treatment propensities become more unbalanced, GROWL may need more
training data in order to learn the true partition δ0 correctly. In addition, a roughly correct
pδn is still helpful in terms of the performance of the value function. Compared with other
methods that do not consider the treatment structure, GROWL is able to combine the simi-
lar treatments into the treatment groups. The decision rules learned from GROWL perform
better because they are estimated under the treatment groups that have more observations
than the individual treatments.
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V
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Empirical Value for Scenario 3

Figure 6: Boxplots of Empirical Value Function under more unbalanced designs for the homoge-
neous case.
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Figure 7: Boxplots of Empirical Value Function under extreme designs for the homogeneous case.

D.3. Simulations When Propensity Scores Depend on the Covariates.
We conduct more general simulation settings when the treatment propensity scores

depend on the covariates. Specifically, the treatment propensity score ppa|xq is provided
with the following multinomial model:

log
ppa|Xq

pp1|Xq
“ βa,0 ` βa,1X1 ` βa,2X2 ` ¨ ¨ ¨ ` βa,10X10,

for a “ 2, . . . ,M , where βi,j ’s are all generated independently from U r´0.1, 0.1s. For
the homogeneous case, we take Scenario 1 as an example. The value shown in Figure 8
demonstrates that GROWL still has superior performance over other methods. For the
non-homogeneous case in Scenario 4, as shown in Figure 9, the overall trend of GROWL
is similar to that of the unbalanced design in Figure 2. GROWL is still competitive, and
especially has smaller variance than other methods.
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Figure 8: Boxplots of Empirical Value Function under the dependent design for the homogeneous
case.
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Figure 9: Boxplots of Empirical Value Function under the dependent design for the non-
homogeneous case.
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D.4. Estimated Coefficients in STAR*D Analysis.

Table 3: Estimated coefficients of linear comparison function for GROWL on the STAR*D dataset.
Larger coefficients encourage better reward.

Variable Name Group 1 Group 2 Group 3 Group 4 Group 5

intercept 0.713 0.168 0.658 0.191 -1.730

gender (female) -0.839 0.249 1.635 -0.444 -0.601

ethnic (white) -0.878 -0.180 -0.764 0.221 1.601

age -0.959 -0.319 0.579 -0.746 1.445

depression history (yes) -1.427 0.021 -0.368 0.528 1.245

marital 1.049 0.371 -1.636 0.282 -0.066

school years 1.421 -0.151 -0.033 0.153 -1.390

education 0.526 -1.230 1.166 -0.841 0.379

student (yes) -0.813 1.704 -0.541 -0.377 0.026

employment 0.178 -0.867 -1.085 1.369 0.405

volunteer work 0.066 -0.750 -0.056 -0.886 1.626

QIDS change during Level 1 -1.574 0.136 1.206 0.228 0.004

QIDS at the start of Level 2 0.743 0.576 -0.952 0.851 -1.218

Appendix E. Implementation Details

Algorithm 1: GROWL using the Genetic Algorithm
Initialize.
a. Fit (penalized) linear regression R „ X with training data and get residuals r;
b. Input the estimated initial partition set ∆0.
For each partition δ in ∆0, do
a. Fit treatment A into group δpAq based on δ
b. If r ą 0, Stay with the same assigned treatment δpAq, and set sδpAq “ δpAq;

Else Uniformly switch δpAq to arbitrary unassigned treatment rδpAq, and set sδpAq “ rδpAq;

c. Use pR, sδpAq, Xq to fit RAMSVM with weights wG “
|r|

ppδpAq|Xq ;

d. Get fitted decision function pf δ based on RAMSVM;

e. Plug pδ, pf δq back into the empirical average of the risk function rRφ;
f. Get the risk value for δ.
Updated the set ∆ using the Genetic Algorithm until convergence;

Obtain the optimal pδ and corresponding pDg under group domain;

Sample one treatment from group pDgpXq based on πδ, and finally get the ITR DpXq.
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Algorithm 2: GROWL with the Greedy Adjustment
Initialize.
a. Fit (penalized) linear regression R „ X with training data and get residuals r;
b. Input the estimated initial partition set ∆0.
Update δ, do

For j “ 1, 2, . . . ,Mn, 1, 2, . . . ,Mn, . . . , do
a. Adjust the assignment of the j-th treatment and hold the assignment for others fixed;
b. Get the risk value for the adjusted δ in the same way shown in Algorithm 1;
c. Obtain the locally best δ in cyclic fashion.
Until convergence.

Obtain the optimal pδ and corresponding pDg under group domain;

Sample one treatment from group pDgpXq based on πδ, and finally get the ITR DpXq.
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