
Journal of Machine Learning Research 24 (2023) 1-75 Submitted 5/22; Revised 4/23; Published 4/23

Asynchronous Iterations in Optimization:
New Sequence Results and Sharper Algorithmic Guarantees

Hamid Reza Feyzmahdavian hamid.feyzmahdavian@se.abb.com
ABB Corporate Research
Väster̊as, Sweden

Mikael Johansson mikaelj@kth.se

Division of Decision and Control Systems

KTH—Royal Institute of Technology

Stockholm, Sweden

Editor: Martin Jaggi

Abstract

We introduce novel convergence results for asynchronous iterations that appear in the
analysis of parallel and distributed optimization algorithms. The results are simple to ap-
ply and give explicit estimates for how the degree of asynchrony impacts the convergence
rates of the iterates. Our results shorten, streamline and strengthen existing convergence
proofs for several asynchronous optimization methods and allow us to establish convergence
guarantees for popular algorithms that were thus far lacking a complete theoretical under-
standing. Specifically, we use our results to derive better iteration complexity bounds for
proximal incremental aggregated gradient methods, to obtain tighter guarantees depending
on the average rather than maximum delay for the asynchronous stochastic gradient descent
method, to provide less conservative analyses of the speedup conditions for asynchronous
block-coordinate implementations of Krasnosel’skĭi–Mann iterations, and to quantify the
convergence rates for totally asynchronous iterations under various assumptions on com-
munication delays and update rates.

Keywords: asynchronous algorithms, parallel methods, incremental methods, coordinate
descent, stochastic gradient descent

1. Introduction

With the ubiquitous digitalization of the society, decision problems are rapidly expanding
in size and scope. Increasingly often, we face problems where data, computations, and
decisions need to be distributed on multiple nodes. These nodes may be individual cores
in a CPU, different processors in a multi-CPU platform, or servers in a geographically
dispersed cluster. Representative examples include machine learning on data sets that are
too large to conveniently store in a single computer, real-time decision-making based on
high-velocity data streams, and control and coordination of infrastructure-scale systems.

Insisting that such multi-node systems operate synchronously limits their scalability,
since the performance is then dictated by the slowest node, and the system becomes fragile
to node failures. Hence, there is a strong current interest in developing asynchronous algo-
rithms for optimal decision-making (see, e.g., Niu et al. 2011; Liu et al. 2014; Peng et al. 2016;
Leblond et al. 2017; Mishchenko et al. 2020 and references therein). Well-established mod-

c©2023 Hamid Reza Feyzmahdavian and Mikael Johansson.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v24/22-0555.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v24/22-0555.html

Feyzmahdavian and Johansson

els for parallel computations, such as bulk synchronous parallel (Valiant, 1990) or MapRe-
duce (Dean and Ghemawat, 2008), are now being complemented by stale-synchronous paral-
lel models (Ho et al., 2013) and fully asynchronous processing paradigms (Han and Daudjee,
2015). In many of these frameworks, the amount of asynchrony is a design parameter: in
some systems, the delay is proportional to the number of parallel workers deployed (Niu
et al., 2011); while other systems use communication primitives which enforce a hard limit
on the maximum information delay (Ho et al., 2013). It is therefore useful to have theo-
retical results which characterize the level of asynchrony that can be tolerated by a given
algorithm. To this end, this paper develops several theoretical tools for studying the con-
vergence of asynchronous iterations.

The dynamics of asynchronous iterations are much richer than their synchronous coun-
terparts, and quantifying the impact of asynchrony on the convergence rate is mathemat-
ically challenging. Some of the first results on the convergence of asynchronous iterations
were derived by Chazan and Miranker (1969) for solving linear equations. This work was
later extended to nonlinear iterations involving maximum norm contractions (Baudet, 1978)
and monotone mappings (Bertsekas and Baz, 1987). Powerful convergence results for broad
classes of asynchronous iterations under different assumptions on communication delays
and update rates were presented by Bertsekas (1983), Tsitsiklis et al. (1986), and in the
celebrated book of Bertsekas and Tsitsiklis (2015). Although the framework for modeling
asynchronous iterations in Bertsekas and Tsitsiklis (2015) is both powerful and elegant,
the most concrete results only guarantee asymptotic convergence and do not give explicit
bounds on convergence times. Execution time guarantees are essential when iterative algo-
rithms are used to find a decision under stringent real-time constraints. In this paper, we
derive a number of convergence results for asynchronous iterations which explicitly quantify
the impact of asynchrony on the convergence times of the iterates.

The convergence guarantees for influential asynchronous optimization algorithms such
as Hogwild! (Niu et al., 2011), Delayed Sgd (Agarwal and Duchi, 2011), AsySCD (Liu
et al., 2014), ARock (Peng et al., 2016) and Asaga (Leblond et al., 2017) have been es-
tablished on a per-algorithm basis, and are often based on intricate induction proofs. Such
proofs tend to be long, and sources of conservatism are hard to isolate. A closer analysis of
these proofs reveals that they rely on a few common principles. In this paper, we attempt
to unify these ideas, derive general convergence results for the associated sequences, and
use these results to systematically provide stronger guarantees for several popular asyn-
chronous algorithms. In contrast to the recent analysis framework proposed in Mania et al.
(2017), which models the effect of asynchrony as noise, our results attempt to capture the
inherent structure in the asynchronous iterations. This allows us to derive convergence re-
sults for complex optimization algorithms in a systematic and transparent manner, without
introducing unnecessary conservatism. We make the following specific contributions:

• We identify two important families of sequences, characterized by certain inequalities,
that appear naturally when analyzing the convergence of asynchronous optimization
algorithms. For each family, we derive convergence results that allow to quantify
how the degree of asynchrony affects the convergence rate guarantees. We use these
sequence results to analyze several popular asynchronous optimization algorithms.

2

Asynchronous Iterations in Optimization

• First, we derive stronger convergence guarantees for the proximal incremental gradient
method and provide a larger range of admissible step-sizes. Specifically, for L-smooth
and convex objective functions, we prove an iteration complexity of O

(
Lτ/ε

)
, which

improves upon the previously known rate O
(
L2τ3/ε

)
given in Sun et al. (2019). We

also show that for objective functions that satisfy a quadratic functional growth con-
dition, the iteration complexity is O

(
Qτ log(1/ε)

)
, where Q = L/µ is the condition

number. In this case, our result allows the algorithm to use larger step-sizes than
those provided in Vanli et al. (2018), leading to a tighter convergence rate guarantee.

• Second, we analyze the asynchronous stochastic gradient descent method with delay-
dependent step-sizes and extend the results of Koloskova et al. (2022) from non-convex
to convex and strongly convex problems. We show that our sequence results are not
limited to providing step-size rules and convergence rates that depend on the maximal
delay. In particular, for convex problems, we derive an iteration complexity of

O
(
Lτave
ε

+
σ2

ε2

)
,

where τave is the average delay, and σ denotes the variance of stochastic gradients.
For strongly convex problems, we obtain the iteration complexity

O
((

Qτave +
σ2

ε

)
log

(
1

ε

))
.

Our guarantees improve the previously best known bounds given in Arjevani et al.
(2020) and Stich and Karimireddy (2020), which are based on the maximal delay that
can be significantly larger than the average delay. Similar to Mishchenko et al. (2022),
we also provide convergence guarantees and admissible step-sizes which depend only
on the number of parallel workers deployed, rather than on the gradient delays.

• Third, we give an improved analysis of the ARock framework for asynchronous block-
coordinate updates of Krasnosel’skĭi–Mann iterations. For pseudo-contractive oper-
ators, we show that ARock achieves near-linear speedup as long as the number of
parallel computing elements is o(m), where m is the number of decision variables.
Compared to the results presented in Hannah and Yin (2017), we improve the re-
quirement for the linear speedup property from O (

√
m) to o (m).

• Finally, we present a uniform treatment of asynchronous iterations involving block-
maximum norm contractions under partial and total asynchronism. Contrary to the
results in Bertsekas and Tsitsiklis (2015) which only established asymptotic conver-
gence, we give explicit estimates of the convergence rate for various classes of bounded
and unbounded communication delays and update intervals.

This paper generalizes and streamlines our earlier work (Feyzmahdavian and Johans-
son, 2014; Feyzmahdavian et al., 2014; Aytekin et al., 2016). Specifically, we extend the
sequence result in Feyzmahdavian et al. (2014) to a family of unbounded delays, which
allows us to deal with totally asynchronous iterations. Compared to Feyzmahdavian et al.
(2014), we present two new Lemmas 2 and 3 in Section 3. The analysis in Feyzmahdavian

3

Feyzmahdavian and Johansson

and Johansson (2014) is limited to contraction mappings in the maximum-norm, and does
not provide any sequence results for analyzing asynchronous algorithms. However, Lemma 3
in Section 3 recovers the results in Feyzmahdavian and Johansson (2014) as a special case.
The sequence result presented in Aytekin et al. (2016) is only applicable for deriving linear
convergence rates, and is restricted to deliver step-size rules and convergence rates that
depend on the maximum delay. To overcome these limitations, we introduce a novel se-
quence result in Lemma 5 that guarantees both linear and sublinear rates of convergence
and can provide convergence bounds that depend on the average delay. In Aytekin et al.
(2016), the analysis of the proximal incremental gradient method has a drawback that the
guaranteed bound grows quadratically with the maximum delay τ . In our work, we improve
the dependence on τ from quadratic to linear.

1.1 Notation and Preliminaries

Here, we introduce the notation and review the key definitions that will be used throughout
the paper. We let R, N, and N0 denote the set of real numbers, natural numbers, and the
set of natural numbers including zero, respectively. For any n ∈ N,

[n] := {1, . . . , n}.

For a real number a, we denote the largest integer less than or equal to a by bac and define

(a)+ := max{a, 0}.

We use ‖ · ‖ to represent the standard Euclidean norm on Rd and 〈x, y〉 to denote the
Euclidean (dot) inner product of two vectors x, y ∈ Rd. We say that a function f : Rd → R
is L-smooth if it is differentiable and

‖∇f(y)−∇f(x)‖ ≤ L‖y − x‖, ∀x, y ∈ Rd.

We say a convex function f : Rd → R is µ-strongly convex if

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ

2
‖y − x‖2, ∀x, y ∈ Rd.

The notation g(t) = O
(
h(t)

)
means that there exist positive constants M and t0 such

that g(t) ≤ Mh(t) for all t ≥ t0, while g(t) = o
(
h(t)

)
means that limt→∞ g(t)/h(t) = 0.

Following standard convention, we use tilde Õ-notation to hide poly-logarithmic factors in
the problem parameters.

2. Lyapunov Analysis for Optimization Algorithms

Convergence proofs for optimization algorithms are usually based on induction and often
presented without invoking any general theorems. For more complex algorithms, this leads
to lengthy derivations where it is difficult to distinguish mathematical innovations. The
need to systemize convergence proofs for optimization algorithms was recognized in Polyak’s
insightful textbook (Polyak, 1987). Polyak argued that most results concerning convergence
and rate of convergence of optimization algorithms can be derived using Lyapunonv’s second

4

Asynchronous Iterations in Optimization

method, with typical Lyapunov functions being the objective function value, the norm of
its gradient, or the squared distance between the current iterate and the optimal set. In
addition, he derived and collected a number of useful sequence results which allowed to
shorten, unify and clarify many convergence proofs (Polyak, 1987, Chapter 2).

To make these ideas more concrete, consider the simple gradient descent method:

xk+1 = xk − γ∇f(xk), k ∈ N0.

Assume that f : Rd → R is µ-strongly convex and L-smooth. If x? is the minimizer of f
on Rd, the standard convergence proof (e.g., Theorem 2.1.15 in Nesterov 2013) establishes
that the iterates satisfy

‖xk+1 − x?‖2 ≤
(

1− 2γµL

µ+ L

)
‖xk − x?‖2 − γ

(
2

µ+ L
− γ
)
‖∇f(xk)‖2.

In terms of Vk = ‖xk − x?‖2 and Wk = ‖∇f(xk)‖2, the inequality reads

Vk+1 ≤
(

1− 2γµL

µ+ L

)
Vk − γ

(
2

µ+ L
− γ
)
Wk.

For step-sizes γ ∈
(
0, 2/(µ+ L)

]
, the second term on the right-hand side can be dropped

and, hence, Vk is guaranteed to decay by at least a factor q = 1− 2γµL/(µ+ L). That is,

Vk+1 ≤ qVk, k ∈ N0. (1)

This implies linear convergence of the iterates, i.e.,

Vk ≤ qkV0, k ∈ N0.

When f is convex, but not necessarily strongly convex, and L-smooth, the iterates satisfy

2γ
(
f(xk)− f(x?)

)
+ ‖xk+1 − x?‖2 ≤ ‖xk − x?‖2 − γ

(
1

L
− γ
)
‖∇f(xk)‖2.

Let Vk and Wk be as before, while Xk = 2γ(f(xk)− f(x?)). Then, the inequality above can
be rewritten as

Xk + Vk+1 ≤ Vk − γ
(

1

L
− γ
)
Wk. (2)

If γ ∈ (0, 1/L], the second term on the right-hand side is non-positive and can be dropped.
Summing both sides of (2) over k and using telescoping cancellation then gives

K∑
k=0

Xk + VK+1 ≤ V0, K ∈ N0.

The well-known O(1/k) convergence rate of f(xk) to f(x?) follows from the fact that Vk is
non-negative and that Xk is non-increasing (Beck, 2017, Theorem 10.21).

5

Feyzmahdavian and Johansson

In the analysis of gradient descent above, it is natural to view the iteration index k
as a surrogate for the accumulated execution time. This interpretation is valid when the
computations are done on a single computer and the time required to perform gradient
computations and iterate updates are constant across iterations. In distributed and asyn-
chronous systems, on the other hand, computations are performed in parallel on nodes with
different computational capabilities and workloads, without any global synchronization to
a common clock. In these systems, the iteration index is simply an ordering of events, typ-
ically associated with reading or writing the iterate vector from memory. Since the global
memory may have been updated from the time that it was read by a node until the time
that the node returns its result, xk+1 may not depend on xk but rather on some earlier
iterate xk−τk , where τk ∈ {0, . . . , k − 1}. More generally, many asynchronous optimization
algorithms result in iterations of the form

xk+1 =M(xk, xk−1, . . . , xk−τk).

We call these asynchronous iterations. The information delay τk represents the age (in terms
of event count) of the oldest information that the method uses in the current update, and can
be seen as a measure of the amount of asynchrony in the system. When we analyze the con-
vergence of asynchronous iterations, ‖xk+1−x?‖2 will not only depend on ‖xk−x?‖2, but also
on ‖xk−1−x?‖2, . . . , ‖xk−τk−x?‖2, and sometimes also on ‖∇f(xk−1)‖2, . . . , ‖∇f(xk−τk)‖2.
Hence, it will not be enough to consider simple sequence relationships such as (1) or (2).
Because of asynchrony, the right-hand side of the inequalities will involve delayed versions
of Vk and Wk that perturb the convergence of the synchronous iteration.

To fix ideas, consider the gradient descent method with a constant delay of τ in the
gradient computation:

xk+1 = xk − γ∇f(xk−τ). (3)

To analyze its convergence when f is µ-strongly convex and L-smooth, we add and subtract
γ∇f(xk) to the right-hand side of (3) and study the distance of the iterates to the optimum.
By applying the same analysis as for the gradient descent method with γ ∈ (0, 2/(µ+ L)],
we obtain

‖xk+1 − x?‖2 ≤
(

1− 2γµL

µ+ L

)
‖xk − x?‖2 + ωk, (4)

where the perturbation term ωk accounts for the impact of the delay in gradient computation
and is given by

ωk = 2γ
〈
∇f(xk)−∇f(xk−τ), xk − γ∇f(xk)− x?

〉
+ γ2‖∇f(xk)−∇f(xk−τ)‖2. (5)

According to Lemma 27 in Appendix A, we can bound ωk by

ωk ≤
(
γ4L4τ2 + 2γ2L2τ

)
max

(k−2τ)+≤`≤k

{
‖x` − x?‖2

}
. (6)

Substituting (6) into (4), we conclude that

‖xk+1 − x?‖2 ≤
(

1− 2γµL

µ+ L

)
‖xk − x?‖2 +

(
γ4L4τ2 + 2γ2L2τ

)
max

(k−2τ)+≤`≤k

{
‖x` − x?‖2

}
.

6

Asynchronous Iterations in Optimization

In terms of Vk = ‖xk − x?‖2, the iterates therefore satisfy

Vk+1 ≤
(

1− 2γµL

µ+ L

)
Vk +

(
γ4L4τ2 + 2γ2L2τ

)
max

(k−2τ)+≤`≤k
V`. (7)

We see that the inequality (7) includes delayed versions of Vk on the right-hand side and
reduces to (1) when τ = 0.

When f is L-smooth and convex, but not strongly convex, we first note that

‖xk+1 − x?‖2 = ‖xk − x?‖2 − 2γ〈∇f(xk−τ), xk − x?〉+ γ2‖∇f(xk−τ)‖2. (8)

By Lemma 28 in Appendix A, the inner product is lower bounded by

f(xk)− f? +
1

2L
‖∇f(xk−τ)‖2 − γ2Lτ

2

k−1∑
`=(k−τ)+

‖∇f(x`−τ)‖2 ≤ 〈∇f(xk−τ), xk − x?〉.

Substituting this bound into (8) yields

2γ(f(xk)− f?) + ‖xk+1 − x?‖2 ≤ ‖xk − x?‖2 + γ3Lτ
k−1∑

`=(k−τ)+

‖∇f(x`−τ)‖2

− γ
(

1

L
− γ
)
‖∇f(xk−τ)‖2.

With Xk = 2γ(f(xk) − f?), Vk = ‖xk − x?‖2, and Wk = ‖∇f(xk−τ)‖2, the iterates hence
satisfy a relationship on the form

Xk + Vk+1 ≤ Vk + γ3Lτ

k−1∑
`=(k−τ)+

W` − γ
(

1

L
− γ
)
Wk. (9)

Comparing with (2), the right-hand side involves delayed versions of Wk.
In the next section, we study the convergence of sequences which include (7) and (9) as

special cases. Our first set of results considers sequence relationships on the form

Vk+1 ≤ qVk + p max
(k−τk)+≤`≤k

V`, k ∈ N0. (10)

Here, the perturbation caused by asynchrony at iteration k is modeled as a function on the
order of V` scaled by a factor p, where ` ∈ [k − τk, k] and τk is the age of the outdated
information. Such sequences have appeared, for example, in the analysis of incremental
aggregated gradient methods (Gürbüzbalaban et al., 2017), accelerated incremental ag-
gregated gradient methods with curvature information (Wai et al., 2020), asynchronous
quasi-Newton methods (Eisen et al., 2017), and asynchronous forward–backward methods
for solving monotone inclusion problems (Stathopoulos and Jones, 2019).

The second set of our results considers iterate relationships on the form

Xk + Vk+1 ≤ qkVk + pk

k∑
`=(k−τk)+

W` − rkWk + ek, k ∈ N0. (11)

7

Feyzmahdavian and Johansson

Here, the perturbation due to asynchrony does not introduce delayed Vk-terms, but man-
ifests itself through the presence of delayed Wk-terms instead. As we will show in this
paper, these relationships appear naturally in the analysis of the proximal incremental
aggregated gradient method (Aytekin et al., 2016), the asynchronous stochastic gradient
descent method (Agarwal and Duchi, 2011), and the asynchronous Krasnosel’skĭi–Mann
method for pseudo-contractive operators (Peng et al., 2016).

3. Novel Sequence Results for Asynchronous Iterations

In this section, we develop specific convergence results for iterations on the form (10) and
(11). Our results attempt to balance simplicity, applicability and power, and provide explicit
bounds on how the amount of asynchrony affects the guaranteed convergence rates. As we
will demonstrate later, the results allow for a simplified and uniform treatment of several
asynchronous optimization algorithms.

3.1 Results for Iterations on the form (10)

Our first result, introduced in Feyzmahdavian et al. (2014), establishes convergence prop-
erties of iterations of the form (10) when delays are bounded.

Lemma 1 Let {Vk} be a non-negative sequence satisfying

Vk+1 ≤ qVk + p max
(k−τk)+≤`≤k

V`, k ∈ N0, (12)

for non-negative constants q and p. Suppose there is a non-negative integer τ such that

0 ≤ τk ≤ τ, k ∈ N0.

If q + p < 1, then

Vk ≤ ρkV0, k ∈ N0,

where ρ = (q + p)
1

1+τ .

Proof. See Lemma 3 in Feyzmahdavian et al. (2014).
Consider the delay-free counterpart of (12):

Vk+1 ≤ (q + p)Vk, k ∈ N0.

Clearly, if q + p < 1, the sequence {Vk} converges linearly at a rate of ρ = q + p. Lemma 1
shows that the convergence rate of {Vk} is still linear in the presence of bounded delays.
Lemma 1 also gives an explicit bound on the impact that an increasing delay has on the
convergence rate. As can be expected, the guaranteed convergence rate deteriorates with
increasing τ . More precisely, ρ is monotonically increasing in τ , and approaches one as τ
tends to infinity.

The next result extends Lemma 1 to a family of unbounded delays, which allows us to
deal with totally asynchronous iterations (Bertsekas and Tsitsiklis, 2015, Chapter 6), and
shows that the sequence {Vk} can still be guaranteed to converge.

8

Asynchronous Iterations in Optimization

Lemma 2 Let {Vk} be a non-negative sequence such that

Vk+1 ≤ qVk + p max
(k−τk)+≤`≤k

V`, k ∈ N0, (13)

for some non-negative scalars q and p. Suppose that the delay sequence {τk} satisfies

lim
k→+∞

k − τk = +∞. (14)

If q + p < 1, then {Vk} asymptotically converges to zero:

lim
k→+∞

Vk = 0.

Proof. See Appendix B.1.

Lemma 2 provides a test for asymptotic convergence of asynchronous iterations with
delays satisfying (14). Assumption (14) holds for bounded delays, irrespectively of whether
they are constant or time-varying. Moreover, delays satisfying (14) can be unbounded, as
exemplified by τk = b0.2kc and τk = b

√
kc. This constraint on delays guarantees that

as the iteration count k increases, the delay τk grows at a slower rate than time itself,
thereby allowing outdated information about process updates to be eventually purged from
the computation. To see this, let us assume that the update step in the gradient descent
method is based on gradients computed at stale iterates rather than the current iterate, i.e.,

xk+1 = xk − γ∇f(xk−τk).

If τk satisfies (14), then given any time K1 ∈ N, there exists a time K2 ∈ N such that

k − τk ≥ K1, ∀k ≥ K2.

This means that given any time K1, out-of-date information prior to K1 will not be used
in updates after a sufficiently long time K2. Therefore, (14) is satisfied in asynchronous
algorithms as long as no processor ceases to update (Bertsekas and Tsitsiklis, 2015).

Although Lemma 2 establishes convergence guarantees for the sequence {Vk} also under
unbounded delays, it no longer provides any finite-time guarantee or rate of convergence.
The next result demonstrates that such guarantees can be obtained when we restrict how
the possibly unbounded delay sequence is allowed to evolve.

Lemma 3 Let {Vk} be a non-negative sequence satisfying

Vk+1 ≤ qVk + p max
(k−τk)+≤`≤k

V`, k ∈ N0, (15)

for some non-negative constants q and p such that q+p < 1. In addition, assume that there
exists a function Λ : R→ R such that the following conditions hold:

(i) Λ(0) = 1.

(ii) Λ is non-increasing.

9

Feyzmahdavian and Johansson

(iii) limk→+∞ Λ(k) = 0 and

(q + p)Λ(k − τk) ≤ Λ(k + 1), k ∈ N0. (16)

Then Vk ≤ Λ(k)V0 for all k ∈ N0.

Proof. See Appendix B.2.

According to Lemma 3, any function Λ satisfying conditions (i)—(iii) can be used to
quantify how fast the sequence {Vk} converges to zero. For example, if Λ(t) = ρt with
ρ ∈ (0, 1), then {Vk} converges at a linear rate; and if Λ(t) = t−η with η > 0, then {Vk}
is upper bounded by a polynomial function of time. Given q and p, it is clear from (16)
that the admissible choices for Λ and, hence, the convergence bounds that we are able to
guarantee depend on the delay sequence {τk}. To clarify this statement, we will analyze
a special case of unbounded delays in detail. Assume that {τk} can grow unbounded at a
linear rate, i.e.,

τk ≤ αk + β, k ∈ N0, (17)

where α ∈ (0, 1) and β ≥ 0. The associated convergence result reads as follows.

Corollary 4 Let {Vk} be a non-negative sequence such that

Vk+1 ≤ qVk + p max
(k−τk)+≤`≤k

V`, k ∈ N0,

for some non-negative scalars q and p. Suppose the delay sequence {τk} satisfies (17). If
q + p < 1, then

Vk ≤
(

αk

1− α+ β
+ 1

)−η
V0, k ∈ N0,

where η = ln(q + p)/ ln(1− α).

Proof. Conditions (i)—(iii) of Lemma 3 are satisfied by the function

Λ(t) =

(
αt

1− α+ β
+ 1

)−η
.

Corollary 4 shows that for unbounded delays satisfying (17), the convergence rate of the
sequence {Vk} is O(k−η). Note that α, the rate at which the unbounded delays grow large,
affects η. Specifically, η is monotonically decreasing with α and approaches zero as α tends
to one. Hence, the guaranteed convergence rate slows down as the growth rate of the delays
increases.

10

Asynchronous Iterations in Optimization

3.2 Results for Iterations on the form (11)

We will now shift our attention to the convergence result for iterations on the form (11). This
result adds a lot of flexibility in how we can model and account for different perturbations
that appear in the analysis of asynchronous optimization algorithms, and will be central to
the developments in Subsections 4.1, 4.2, and 4.3.

Lemma 5 Let {Vk}, {Wk}, and {Xk} be non-negative sequences satisfying

Xk + Vk+1 ≤ qkVk + pk

k∑
`=(k−τk)+

W` − rkWk + ek, k ∈ N0, (18)

where ek ∈ R, qk ∈ [0, 1], and pk, rk ≥ 0 for all k. Suppose that there is a non-negative
integer τ such that

0 ≤ τk ≤ τ, k ∈ N0.

For every K ∈ N0, the following statements hold:

1. Assume that qk = 1 for k ∈ N0. If

τ∑
`=0

pk+` ≤ rk (19)

is satisfied for all k ∈ N0, then

K∑
k=0

Xk ≤ V0 +

K∑
k=0

ek,

VK+1 ≤ V0 +
K∑
k=0

ek.

2. Assume that pk = p > 0 and rk = r > 0 for k ∈ N0. Assume also that there exists a
constant q ∈ (0, 1) such that qk ≥ q for k ∈ N0. If

2τ + 1 ≤ min

{
1

1− q
,
r

p

}
,

then

VK+1 ≤ QK+1

(
V0 +

K∑
k=0

ek
Qk+1

)
,

K∑
k=0

Xk

Qk+1
≤ V0 +

K∑
k=0

ek
Qk+1

,

where Qk is defined as

Qk =

k−1∏
`=0

q`, k ∈ N,

with Q0 = 1.

11

Feyzmahdavian and Johansson

Proof. See Appendix B.3.

Consider the non-delayed counterpart of (18) with ek ≡ 0, qk = q ∈ (0, 1), pk = p > 0
and rk = r > 0:

Xk + Vk+1 ≤ qVk + (p− r)Wk, k ∈ N0.

Assume that q ∈ (0, 1) and p ≤ r, or equivalently,

1 ≤ 1

1− q
and 1 ≤ r

p
.

In this case, the sequence {Vk} converges linearly to zero at a rate of q. In general, the exis-
tence of delays may impair performance, induce oscillations and even instability. However,
Lemma 5 shows that for the delayed iteration (18), the convergence rate of {Vk} is still q if
the maximum delay bound τ satisfies

2τ + 1 ≤ 1

1− q
and 2τ + 1 ≤ r

p
.

This means that up to certain value of the delay, the iteration (18) and its delay-free
counterpart have the same guaranteed convergence rate.

4. Applications to Asynchronous Optimization Algorithms

Data-driven optimization problems can grow large both in the number of decision variables
and in the number of data points that are used to define the objective and constraints. It
may therefore make sense to parallelize the associated optimization algorithms over both
data and decision variables, see Figure 1. One popular framework for parallelizing algo-
rithms in the data dimension is the parameter server (Li et al., 2013b). Here, a master node
(the server) maintains the decision vector, while the data is divided between a number of
worker nodes. When a worker node is queried by the server, it computes and returns the
gradient of the part of the objective function defined by its own data. The master maintains
an estimate of the gradient of the full objective function, and executes a (proximal) gradient
update whenever it receives gradient information from one of the workers. As soon as the
master completes an update, it queries idle worker nodes with the updated decision vector.
If the asynchrony, measured in terms of the maximum number of iterations carried out by
the master between two consecutive gradient updates from any worker, is bounded, then
convergence can be guaranteed under mild assumptions on the objective function (Li et al.,
2013a; Aytekin et al., 2016).

A natural way to parallelize problems with high-dimensional decision vectors is to use
block-coordinate updates. In these methods, the decision vector is divided into sub-vectors,
and different processing elements update the sub-vectors in parallel. In the partially and
totally asynchronous models of Bertsekas and Tsitsiklis (2015), each processing element is
responsible for storing and updating one sub-vector, and it does so using delayed information
of the remaining decision variables retrieved from the other (remote) processors. Under
weak assumptions on the communications delays and update rates of individual processors,
convergence can be proven for contraction mappings with respect to the block-maximum

12

Asynchronous Iterations in Optimization

Computing DataMemory

Master Workers

PIAG on a parameter-server architecture ARock on multi-core shared-memory Asynchronous iteration in distributed memory

Figure 1: Three different parallel architectures studied for various algorithms in Section 4. The Piag
and Sgd algorithms run on the parameter server (left) distribute data over multiple nodes that
are able to evaluate the corresponding loss function gradients, while the master maintains and
updates the decision vector. In the ARock framework (middle), multiple computing units access
shared memory and update (randomly selected) sub-vectors of the overall decision vector in
parallel. Finally, the totally asynchronous framework (right) allows us to model loosely coupled
distributed architectures where computing nodes retrieve parts of the global decision vector from
remote nodes, and evaluate components of an operator to update their local decisions.

norm (Bertsekas and Tsitsiklis, 2015, Section 6.3). However, only some special combinations
of algorithms and optimization problems result in iterations that are contractive with respect
to the block-maximum norm (Bertsekas and Tsitsiklis, 2015, Section 3.1). Another type
of block-coordinate updates are used in the ARock framework (Peng et al., 2016). Here,
the decision vector is stored in shared memory, and the parallel computing elements pick
sub-vectors uniformly at random to update whenever they terminate their previous work.
Under an assumption of bounded asynchrony, convergence of ARock can be established for
a wide range of objective functions (Peng et al., 2016).

In the remaining parts of this paper, we demonstrate how the sequence results intro-
duced in the previous section allows us to strengthen the existing convergence guarantees for
the algorithms discussed above. Specifically, we improve iteration complexity bounds for the
proximal incremental aggregated gradient (Piag) method, which is suitable for implemen-
tation in the parameter server framework, with respect to both the amount of asynchrony
and the problem conditioning; we derive tighter guarantees for the asynchronous stochastic
gradient descent method, which depend on the average delay rather on maximal delay; we
prove the linear rate of convergence for ARock under larger step-sizes and provide better
scalability properties with respect to the number of parallel computing elements; and we de-
scribe a unified Lyapunov-based approach for analysis of totally and partially asynchronous
iterations involving maximum norm contractions, that allows to derive convergence rate
guarantees also outside the partially asynchronous regime.

13

Feyzmahdavian and Johansson

4.1 Proximal Incremental Aggregated Gradient Method

We begin by considering composite optimization problems of the form

minimize
x∈Rd

P (x) := F (x) +R(x). (20)

Here, x is the decision variable, F is the average of many component functions fi, i.e.,

F (x) =
1

n

n∑
i=1

fi(x),

and R is a proper closed convex function that may be non-differentiable and extended real-
valued. We use X ? to denote the set of optimal solutions of (20) and P ? to denote the
corresponding optimal value. We impose the following assumptions on Problem (20).

Assumption 1 The optimal set X ? is non-empty.

Assumption 2 Each function fi : Rd → R, i ∈ [n], is convex and Li-smooth.

Note that under Assumption 2, the average function F is LF -smooth (Xiao and Zhang,
2014), where

LF ≤ L :=
1

n

n∑
i=1

Li. (21)

In the optimization problem (20), the role of the regularization term R is to favor
solutions with certain structures. Common choices of R include: the `1 norm, R(x) = λ‖x‖1
with λ > 0, used to promote sparsity in solutions; and the indicator function of a non-empty
closed convex set X ⊆ Rd,

R(x) =

{
0, if x ∈ X ,
+∞, otherwise,

used to force the admissible solutions to lie in X . A comprehensive catalog of regularization
terms is given in Beck (2017).

Optimization problems on the form (20) are known as regularized empirical risk min-
imization problems and often arise in machine learning, signal processing, and statistical
estimation (see, e.g., Hastie et al. 2009). In such problems, we are given a collection of n
training samples {(a1, b1), . . . , (an, bn)}, where each ai ∈ Rd is a feature vector, and each
bi ∈ R is the desired response. A classical example is the least-squares regression where the
component functions are given by

fi(x) =
1

2
(a>i x− bi)2, i ∈ [n],

and popular choices of the regularization terms include R(x) = λ1‖x‖22 (ridge regression),
R(x) = λ2‖x‖1 (Lasso), or R(x) = λ1‖x‖22 + λ2‖x‖1 (elastic net) for some non-negative

14

Asynchronous Iterations in Optimization

parameters λ1 and λ2. Another example is logistic regression for binary classification prob-
lems, where each bi ∈ {−1, 1} is the desired class label and the component functions are

fi(x) = log
(

1 + exp(−bia>i x)
)
, i ∈ [n].

A standard method for solving Problem (20) is the proximal gradient (Pg) method,
which consists of a gradient step followed by a proximal mapping. More precisely, the Pg
method is described by Algorithm 1, where γ is a positive step-size, and the prox-operator
(proximal mapping) is defined as

proxγR(x) = argmin
u∈Rd

{
1

2
‖u− x‖2 + γR(u)

}
.

Under Assumptions 1 and 2, the iterates generated by the Pg method with γ = 1
L satisfy

P (xk)− P ? ≤
L‖x0 − x?‖2

2k
(22)

for all k ∈ N (Beck, 2017, Theorem 10.21). This means that Algorithm 1 achieves the
convergence rate O(1/k) in function values to the optimal value.

Algorithm 1 Proximal Gradient (Pg) Method

Input: x0 ∈ Rd, step-size γ > 0, number of iterations K ∈ N
1: Initialize k ← 0
2: while k < K do
3: Set gk ← 1

n

∑n
i=1∇fi(xk)

4: Set xk+1 ← proxγR(xk − γgk)
5: Set k ← k + 1
6: end while

Each iteration of the Pg method requires computing the gradients for all n component
functions. When n is large, this per iteration cost is expensive, and hence often results
in slow convergence. An effective alternative is the proximal incremental aggregated gra-
dient (Piag) method that exploits the additive structure of (20) and operates on a single
component function at a time, rather than on the entire cost function (Tseng and Yun,
2014). The Piag method evaluates the gradient of only one component function per it-
eration, but keeps a memory of the most recent gradients of all component functions to
approximate the full gradient ∇F . Specifically, at iteration k, the method will have stored
∇fi(x[i]) for all i ∈ [n], where x[i] represents the latest iterate at which ∇fi was evaluated.
An integer j ∈ [n] is then chosen, and the full gradient ∇F (xk) is approximated by

gk =
1

n

(
∇fj(xk)−∇fj(x[j]) +

n∑
i=1

∇fi
(
x[i]
))

.

The aggregated gradient vector gk is employed to update the current iterate xk via

xk+1 = proxγR(xk − γgk).

15

Feyzmahdavian and Johansson

Thus, the Piag method uses outdated gradients from previous iterations for the components
fi, i 6= j, and does not need to compute gradients of these components at iteration k.

A formal description of the Piag method is presented as Algorithm 2. Let us define
si,k as the iteration number in which the gradient of the component function fi is updated
for the last time before the completion of the kth iteration. Then, we can rewrite the
aggregated gradient vector gk as

gk =
1

n

n∑
i=1

∇fi
(
xsi,k

)
.

Note that si,k ∈ {0, . . . , k} for each i ∈ [n] and k ∈ N0. In a traditional (serial) implementa-
tion of Piag, the selection of j on line 7 follows a deterministic rule (for example, the cyclic
rule) and the gradient of the component function fj is computed at the current iterate, i.e.,
sj,k = k. In the parameter server implementation, the index j will not be chosen, but rather
assigned to the identity of the worker that returns its gradient to the master at iteration
k. Since workers can exchange information with the master independently of each other,
worker j may evaluate ∇fj at an outdated iterate xsj,k , where sj,k < k, and send the result
to the server. We assume that each component function is sampled at least once in the past
τ iterations of the Piag method. In other words, there is a fixed non-negative integer τ
such that the indices si,k satisfy

(k − τ)+ ≤ si,k ≤ k, i ∈ [n], k ∈ N0.

The value τ can be viewed as an upper bound on the delay encountered by the gradients of
the component functions. For example, if the component functions are chosen one by one
using a deterministic cyclic order on the index set {1, . . . , n}, then τ = n− 1.

Algorithm 2 Proximal Incremental Aggregated Gradient (Piag) Method

Input: x0 ∈ Rd, step-size γ > 0, number of iterations K ∈ N
1: for i = 1 to n do
2: Compute ∇fi(x0)
3: Store ∇fi(x[i])← ∇fi(x0)
4: end for
5: Initialize k ← 0
6: while k < K do
7: Choose j from {1, . . . , n}
8: Compute ∇fj(xk)
9: Set gk ← 1

n

(
∇fj(xk)−∇fj(x[j]) +

∑n
i=1∇fi

(
x[i]
))

10: Store ∇fj(x[j])← ∇fj(xk)
11: Set xk+1 ← proxγR(xk − γgk)
12: Set k ← k + 1
13: end while

The following result shows that in the analysis of the Piag method, we can establish
iterate relationships on the form (11).

16

Asynchronous Iterations in Optimization

Lemma 6 Let Assumptions 1 and 2 hold. Suppose that {αk} is a sequence defined by

αk = k + α0, k ∈ N0,

where α0 is a non-negative scalar. Let

Vk = 2γαk
(
P (xk)− P ?

)
+ ‖xk − x?‖2,

and Wk = ‖xk+1 − xk‖2 for k ∈ N0. Then, the iterates {xk} generated by Algorithm 2
satisfy

Vk+1 ≤ Vk + γL
(
αk + τ + 1

) k∑
`=(k−τ)+

W` − (2αk + 1− γLταk)Wk, k ∈ N0.

Proof. See Appendix C.1.
Using this iterate relationship, the sequence result in Lemma 5 yields the following

convergence guarantee for the Piag method.

Theorem 7 Let Assumptions 1 and 2 hold. Suppose that γ ∈ (0, γmax] with

γmax =
1

L
(
2τ + 1

) .
Then, for every k ∈ N and any x? ∈ X ?, the iterates {xk} generated by Algorithm 2 satisfy

P (xk)− P ? ≤
1
2γ ‖x0 − x

?‖2 + τ
(
P (x0)− P ?

)
k + τ

.

Proof. See Appendix C.2.
According to Theorem 7, the Piag iterations converge at a rate of O(1/k) when the

constant step-size γ is appropriately tuned. The convergence rate depends on the choice
of γ. For example, if we pick

γ =
1

L
(
2τ + 1

) , (23)

then the corresponding {xk} converges in terms of function values with the rate

P (xk)− P ? ≤
L‖x0 − x?‖2 + 2τ

(
L‖x0 − x?‖2 + P (x0)− P ?

)
2(k + τ)

, k ∈ N. (24)

One can verify that the right-hand side is monotonically increasing in τ . Hence, the guar-
anteed convergence rate slows down as the delays increase in magnitude. In the case that
τ = 0, the bound (24) reduces to (22), which is achieved by the Pg method. From (24), we
can see that if

k ≥ Kε =
L‖x0 − x?‖2 + 2τ

(
L‖x0 − x?‖2 + P (x0)− P ?

)
2ε

− τ,

then Piag with the step-size choice (23) achieves an accuracy of P (xk)−P ? ≤ ε. This shows
that the Piag method has an iteration complexity of O

(
L(τ + 1)/ε

)
for convex problems.

Therefore, as τ increases, the complexity bound deteriorates linearly with τ . Note that the
linear dependence on the maximum delay bound τ is unavoidable and cannot further be
improved (Arjevani et al., 2020).

17

Feyzmahdavian and Johansson

Remark 8 Sun et al. (2019) analyzed convergence of the Piag method under Assump-
tions 1 and 2 and proved O(C/k) convergence rate, where C is a positive constant. While
the constant C is implicit in Sun et al. (2019), Huang et al. (2021) showed that the analysis
in Sun et al. (2019) guarantees an O(τ3L2/ε) iteration complexity for the Piag method. In
comparison with this result, Theorem 7 gives a better dependence on the Lipschitz constant
(L vs. L2) and on the maximum delay bound (τ vs. τ3) in the iteration complexity.

Next, we restrict our attention to composite optimization problems under the following
quadratic functional growth condition.

Assumption 3 There exists a constant µ > 0 such that

P (x)− P ? ≥ µ

2

∥∥x−ΠX ?(x)
∥∥2, ∀x ∈ dom R, (25)

where dom R, defined as dom R := {x ∈ Rd | R(x) < +∞}, is the effective domain of the
function R, and ΠX ?(·) denotes the Euclidean-norm projection onto the set X ?, i.e.,

ΠX ?(x) = argminu∈X ?‖u− x‖.

Assumption 3 implies that the objective function grows faster than the squared distance
between any feasible point and the optimal set. While every strongly convex function
satisfies the quadratic functional growth condition (25), the converse is not true in gen-
eral (Necoara et al., 2019). For example, if A ∈ Rm×d is rank deficient and b ∈ Rm, the
function F (x) = ‖Ax − b‖2 is not strongly convex, but it satisfies Assumption 3. Other
examples of objective functions which satisfy the quadratic functional growth condition can
be found in Necoara et al. (2019). Let us define the condition number of the optimization
problem (20) as Q = L/µ. The role of Q in determining the linear convergence rate of
(proximal) gradient methods is well-known (Nesterov, 2013).

We next show that under Assumption 3, an iterate relationship on the form (11) appears
in the analysis of the Piag method.

Lemma 9 Suppose that Assumptions 1, 2 and 3 hold. Let

Vk =
2

L

(
P (xk)− P ?

)
+ ‖xk −ΠX ?(xk)‖2,

and Wk = ‖xk+1 − xk‖2 for k ∈ N0. Then, the iterates {xk} generated by Algorithm 2
satisfy

Vk+1 ≤
(

1

1 + γµθ

)
Vk +

1 + γL
(
τ + 1

)
1 + γµθ

k∑
`=(k−τ)+

W` −
2
γL + 1− τ
1 + γµθ

Wk,

where θ = Q
Q+1 .

Proof. See Appendix C.3.
We use Lemma 9 together with Lemma 5 to derive the convergence rate of the Piag

method for optimization problems whose objective functions satisfy the quadratic functional
growth condition.

18

Asynchronous Iterations in Optimization

Theorem 10 Let Assumptions 1, 2 and 3 hold. Suppose that the step-size γ is set to

γ =
h

L
(
2τ + 1

) , h ∈ (0, 1].

Then, for every k ∈ N, the iterates {xk} generated by Algorithm 2 satisfy

‖xk −ΠX?(xk)‖2 ≤
(

1− 1

1 + (Q+ 1)(2τ + 1)/h

)k (
2

L

(
P (x0)− P ?

)
+ ‖x0 −ΠX?(x0)‖2

)
,

P (xk)− P ? ≤
(

1− 1

1 + (Q+ 1)(2τ + 1)/h

)k (
P (x0)− P ?

)
+
L

2
‖x0 −ΠX?(x0)‖2

)
.

Proof. See Appendix C.4.
Theorem 10 demonstrates that under Assumption 3, the Piag method is linearly con-

vergent by taking a constant step-size inversely proportional to the maximum delay τ . The
best guaranteed convergence rate is obtained for the step-size

γ =
1

L
(
2τ + 1

) .
With this choice of γ, the iterates converge linearly in terms of function values with rate

P (xk)− P ? ≤
(

1− 1

1 + (Q+ 1)(2τ + 1)

)k
ε0,

where ε0 = P (x0)− P ? + L
2 ‖x0 −ΠX ?(x0)‖2. Taking the logarithm of both sides yields

log(P (xk)− P ?) ≤ k log

(
1− 1

1 + (Q+ 1)(2τ + 1)

)
+ log (ε0) .

Since log(1 + x) ≤ x for any x > −1, it follows that

log(P (xk)− P ?) ≤ −
k

1 + (Q+ 1)(2τ + 1)
+ log (ε0) .

Therefore, if the number of iterations satisfy

k ≥ Kε =
(
1 + (Q+ 1)(2τ + 1)

)
log
(ε0
ε

)
,

then P (xk)− P ? ≤ ε. We conclude that the Piag method achieves an iteration complexity
of O

(
Q(τ+1) log(1/ε)

)
for optimization problems satisfying the quadratic functional growth

condition. Note that when τ = 0, this bound becomes O
(
Q log(1/ε)

)
, which is the iteration

complexity for the Pg method (Beck, 2017, Theorem 10.30).
As discussed before, if the component functions are selected in a fixed cyclic order, then

τ = n− 1. It follows from Theorem 7 and Theorem 10 that the iteration complexity of the
Piag method with cyclic sampling is O(nL/ε) for convex problems and O

(
nQ log(1/ε)

)
for

problems whose objective functions satisfy the quadratic functional growth condition. Each
iteration of the Piag method requires only one gradient evaluation, compared to n gradient
computations in the Pg method. Therefore, in terms of the total number of component
gradients evaluated to find an ε-optimal solution, the iteration complexity of Pg and the
cyclic Piag are the same.

19

Feyzmahdavian and Johansson

Remark 11 Schmidt et al. (2017) proposed a randomized variant of Piag, called stochastic
average gradient (Sag), where the component functions are sampled uniformly at random.
The iteration complexity of the Sag method, in expectation, is O

(
max{n,Q} log(1/ε)

)
for

strongly convex problems and O
(
(n+L)/ε)

)
for convex problems. The maximum allowable

step-size for the Sag method is larger than that of the Piag method, which can lead to
improved empirical performance (Schmidt et al., 2017, Figure 1). Note, however, that in
some applications, the component functions must be processed in a particular deterministic
order and, hence, random sampling is not possible. For example, in source localization
or distributed parameter estimation over wireless networks, sensors may only communicate
with their neighbors subject to certain constraints in terms of geography and distance, which
can restrict the updates to follow a specific deterministic order (Blatt et al., 2007).

4.1.1 Comparison of Our Analysis with Prior Work

Blatt et al. (2007) proposed the incremental aggregated gradient (Iag) method for solving
unconstrained optimization problems. For a special case where each component function
is quadratic, they showed that the Iag method with a constant step-size achieves a linear
rate of convergence. The authors obtained these results using a perturbation analysis of the
eigenvalues of a periodic linear system. However, the analysis in Blatt et al. (2007) only
applies to quadratic objective functions and provides neither an explicit convergence rate
nor an explicit upper bound on the step-sizes that ensure linear convergence.

Tseng and Yun (2014) proved global convergence and local linear convergence for the
Piag method in a more general setting where the gradients of the component functions are
Lipschitz continuous and each component function satisfies a local error bound assumption.
For a L-smooth and (possibly) non-convex function F , the proof of Theorem 4.1 in Tseng
and Yun (2014) shows that the iterates generated by Piag satisfy

P (xk+1)− P ? ≤ P (xk)− P ? +
γ2L

2

k∑
`=(k−τ)+

‖d`‖2 − γ
(

1− γLτ

2

)
‖dk‖2, (26)

where dk is the search direction at iteration k and given by

dk = argmin
d∈Rd

{
〈gk, d〉+

1

2
‖d‖2 +R(xk + d)

}
.

By defining Vk = P (xk)−P ?, Xk = γ(1−h)‖dk‖2 with h ∈ (0, 1), and Wk = ‖dk‖2, we can
rewrite (26) as

Xk + Vk+1 ≤ Vk +
γ2L

2

k∑
`=(k−τ)+

W` − γ
(
h− γLτ

2

)
Wk.

The iterates satisfy a relationship on the form (11). Thus, according to Lemma 5, if

γ2L(τ + 1)

2
≤ γ

(
h− γLτ

2

)
,

20

Asynchronous Iterations in Optimization

then
∑K

k=0Xk ≤ V0 for every K ∈ N. This, in turn, implies that

K∑
k=0

‖dk‖2 ≤
P (x0)− P ?

γ(1− h)
, for γ =

2h

L(2τ + 1)
,

which is the same result as in Tseng and Yun (2014) for non-convex objective functions.
While the analysis in Tseng and Yun (2014) is more general than that in Blatt et al. (2007),
as the authors did not limit the objective function to be strongly convex and quadratic,
explicit rate estimates and a characterization of the step-size needed for linear convergence
were still missing in Tseng and Yun (2014).

Gürbüzbalaban et al. (2017) provided the first explicit linear rate result for the Iag
method. According to the proof of Theorem 3.3 in Gürbüzbalaban et al. (2017), the iterates
generated by Iag satisfy a relationship of the form (10) given by

Vk+1 ≤
(

1− 2γµL

µ+ L

)
Vk +

(
9γ4L4τ2 + 6γ2L2τ

)
max

(k−2τ)+≤`≤k
V`,

where Vk = ‖xk − x?‖2. As in Gürbüzbalaban et al. (2017), we can use Lemma 1 to obtain
an iteration complexity of O

(
Q2τ2 log(1/ε)

)
for the Iag method. However, this analysis

has a drawback that the guaranteed bound grows quadratically with both the condition
number Q and the maximum delay τ .

The quadratic dependence of the iteration complexity on Q was improved by Aytekin
et al. (2016) for strongly convex composite objectives and by Zhang et al. (2021) under
a quadratic functional growth condition. Specifically, the proof of Theorem 1 in Aytekin
et al. (2016) shows that for the iterates generated by Piag, we have

Vk+1 ≤
(

1

1 + γµ

)
Vk +

(
γL(τ + 1)

1 + γµ

) k∑
`=(k−τ)+

W` −
(

1

1 + γµ

)
Wk,

where Vk = ‖xk − x?‖2 and Wk = ‖xk+1 − xk‖2. Since the iterates satisfy a relationship of
the form (11), it follows from Lemma 5 that

‖xk − x?‖2 ≤
(

1

1 + γµ

)
‖x0 − x?‖2, for γ ∈

(
0,

1

L(2τ + 1)(τ + 1)

]
.

The above convergence rate leads to an iteration complexity of O
(
Qτ2 log(1/ε)

)
, which

matches the bound derived in Aytekin et al. (2016). However, this analysis has some
limitations. First, the number of iterations required to reach an ε-optimal solution increases
quadratically with the maximal delay τ . Second, the constant step-size that guarantees
linear convergence is inversely proportional to the square of τ .

Vanli et al. (2018) improved the quadratic dependence on τ to a linear one by showing
that the iteration complexity of the Piag method is O

(
Qτ log(1/ε)

)
. According to the proof

of Theorem 3.9 in Vanli et al. (2018), the iterates generated by Piag satisfy

Vk+1 ≤
(

1

1 + γµ/16

)
Vk +

(
3L

4(1 + γµ/16)

) k−1∑
`=(k−τ)+

W` −
(

1

4γ(1 + γµ/16)

)
Wk,

21

Feyzmahdavian and Johansson

where Vk = P (xk)− P ? and Wk = ‖xk+1 − xk‖2. Therefore, by Lemma 5, we have

P (xk)− P ? ≤
(

1

1 + γµ/16

)k
(P (x0)− P ?), for γ ∈

(
0,

1

3L(2τ + 1)

]
,

which is the same bound as in Vanli et al. (2018). In comparison with this result, Theorem 10
allows Piag to use larger step-sizes that leads to a tighter guaranteed convergence rate. This
improvement is achieved through our choice of the sequence Vk, which includes two terms:
P (xk)− P ? and ‖xk − x?‖2. In addition, the analysis in Vanli et al. (2018) only applies to
strongly convex problems.

We have thus shown that our sequence results can be used to obtain the convergence
guarantees established in Tseng and Yun (2014); Gürbüzbalaban et al. (2017); Aytekin
et al. (2016); Vanli et al. (2018), as their analysis involves recurrences of the form (10)
or (11). Upon comparing our analysis with previous work, it becomes clear that for a
specific algorithm, such as Piag, the range of step-sizes and convergence rates guaranteed
by Lemmas 1- 5 depend heavily on the choice of sequences Vk, Wk, and Xk. Selecting these
sequences involves considering the characteristics of the algorithm and properties of the
optimization problem that the algorithm aims to solve. For example, for the Piag method,
we see that

Vk = P (xk)− P ?

for non-convex problems,

Vk = 2γ(k + τ)
(
P (xk)− P ?

)
+ ‖xk − x?‖2

for convex problems, and

Vk =
2

L

(
P (xk)− P ?

)
+ ‖xk −ΠX ?(xk)‖2

for problems whose objective functions satisfy the quadratic functional growth condition
result in sharper theoretical bounds and larger step-sizes than the previous state-of-the-art.

4.2 Asynchronous SGD

To demonstrate the versatility of the sequence results, and that they are not limited to
deliver step-size rules and convergence rates that depend on the maximal delay, we now
consider stochastic optimization problems of the form

minimize
x∈Rd

F (x) := Eξ∼D
[
f(x, ξ)

]
. (27)

Here, x is the decision variable, ξ is a random variable drawn from the probability distri-
bution D, and f(·, ξ) : Rd → R is differentiable for each ξ. This objective captures, for
example, supervised learning where x represents parameters of a machine learning model
to be trained. In this case, D is an unknown distribution of labelled examples, ξ is a data
point, f(x, ξ) is the loss of the model with parameters x on the data point ξ, and F is the
generalization error. We use X ? to denote the set of optimal solutions of Problem (27) and
F ? to denote the corresponding optimal value.

22

Asynchronous Iterations in Optimization

In machine learning applications, the distribution D is often unknown, which makes
it challenging to solve Problem (27). To support these applications, we do not assume
knowledge of F , only access to a stochastic oracle. Each time the oracle is queried with an
x ∈ Rd, it generates an independent and identically distributed (i.i.d.) sample ξ from D
and returns ∇f(x, ξ), which is an unbiased estimate of ∇F (x), i.e.,

∇F (x) = Eξ∼D
[
∇f(x, ξ)

]
.

We then use the stochastic gradient ∇f(x, ξ), instead of ∇F (x), in the update rule of the
optimization algorithm that attempts to minimize F .

The classical stochastic gradient descent (Sgd) method is among the first and the most
commonly used algorithms developed for solving Problem (27). Its popularity comes mainly
from the fact that it is easy to implement and has low computational cost per iteration.
The Sgd method proceeds iteratively by drawing an i.i.d sample ξk from D, computing
∇f(xk, ξk), and updating the current vector xk via

xk+1 = xk − γk∇f(xk, ξk),

where γk is a step-size (or learning rate). For a L-smooth and convex function F , the
iteration complexity of the Sgd method is

O
(
L

ε
+
σ2

ε2

)
,

which is O(σ2/ε2) asymptotically in ε (Lan, 2012).
The Sgd method is inherently serial in the sense that gradient computations take place

on a single processor which has access to the whole data set and updates iterations sequen-
tially, i.e., one after another. However, it is often infeasible for a single machine to store and
process the vast amounts of data that we encounter in practical problems. In these situa-
tions, it is common to implement the Sgd method in a master-worker architecture in which
several worker processors compute stochastic gradients in parallel based on their portions
of the data set while a master processor stores the decision vector and updates the current
iterate. The master-worker implementation can be executed in two ways: synchronous and
asynchronous.

In the synchronous case, the master will perform an update and broadcast the new
decision vector to the workers when it has collected stochastic gradients from all the workers.
Given M workers, the master performs the following mini-batch Sgd update

xk+1 = xk −
γk
M

M∑
m=1

∇f
(
xk, ξk,m

)
,

when stochastic gradients ∇f
(
xk, ξk,1

)
, . . . ,∇f

(
xk, ξk,M

)
are computed and communicated

back by workers. In terms of the total number of stochastic gradients evaluated to find an
ε-optimal solution, the iteration complexity of the mini-batch Sgd method is

O
(
ML

ε
+
σ2

ε2

)
(28)

23

Feyzmahdavian and Johansson

for L-smooth and convex objective functions (Dekel et al. 2012). This bound is asymptoti-
cally O(σ2/ε2), which is exactly the asymptotic iteration complexity achieved by the Sgd
method. However, using M workers in parallel, the mini-batch Sgd method can achieve
updates at a rate roughly M times faster. This means that mini-batch Sgd is expected to
enjoy a near-linear speedup in the number of workers.

A main drawback of the mini-batch Sgd method is that the workers need to synchronize
in each round and compute stochastic gradients at the same decision vector. Due to various
factors, such as differences in computational capabilities and communication bandwidth, or
interference from other running jobs, some workers may evaluate stochastic gradients slower
than others. This causes faster workers to be idle during each iteration and the algorithm
suffers from the straggler problem, in which the algorithm can only move forward at the
pace of the slowest worker. The asynchronous Sgd method offers a solution to this issue
by allowing the workers to compute gradients at different rates without synchronization
and letting the master perform updates using outdated gradients. In other words, there is
no need for workers to wait for the others to finish their gradient computations, and the
master can update the decision vector every time it receives a stochastic gradient from some
worker. For this method, the master performs the update

xk+1 = xk − γk∇f
(
xk−τk , ξk

)
, (29)

where τk is the delay of the gradient at iteration k. The value of τk, which is often much
greater than zero, captures the staleness of the information used to compute the stochastic
gradient involved in the update of xk. In (29), the index of stochastic noise ξk is equal to
the iteration number k to show that previous iterates xk′ for k′ ≤ k do not depend on this
stochastic noise (Agarwal and Duchi, 2011). Algorithm 3 describes the asynchronous Sgd
method executed in a master-worker setting with one master and M workers.

Algorithm 3 Asynchronous Sgd

Input: x0 ∈ Rd

1: Server sends x0 to all workers
2: for k = 0, 1, . . . do
3: Workers compute stochastic gradients at the assigned points in parallel
4: Gradient ∇f

(
xk−τk , ξk

)
arrives from some worker mk ∈ {1, . . . ,M}

5: Server updates xk+1 ← xk − γk∇f
(
xk−τk , ξk

)
6: Server sends xk+1 to worker mk

7: end for

To characterize the iteration complexity and the convergence rate of Algorithm 3, we
make the following assumptions.

Assumption 4 The objective function F : Rd → R is L-smooth.

Assumption 5 The stochastic gradients have bounded variance, i.e., there exists a constant
σ ≥ 0 such that

Eξ∼D
[
‖∇f(x, ξ)−∇F (x)‖2

]
≤ σ2.

24

Asynchronous Iterations in Optimization

Assumption 6 There is a non-negative integer τmax such that

0 ≤ τk ≤ τmax, k ∈ N0.

Most existing theoretical guarantees for the asynchronous Sgd method show that the
number of iterations required to reach an ε-optimal solution grows with the maximum
delay τmax (see, e.g., Agarwal and Duchi 2011; Lian et al. 2015; Feyzmahdavian et al. 2016;
Mania et al. 2017; Arjevani et al. 2020; Stich and Karimireddy 2020). In particular, Arjevani
et al. (2020) analyzed positive semi-definite quadratic functions and Stich and Karimireddy
(2020) considered general L-smooth convex functions and proved that if the delays are
always constant (τk = τmax for k ∈ N0), the asynchronous Sgd method attains an iteration
complexity bound of the form

O
(
L(τmax + 1)

ε
+
σ2

ε2

)
. (30)

This bound is unable to exclude the possibility that the performance of asynchronous Sgd
degrades proportionally to τmax. In heterogeneous environments involving workers with
different computational speeds, τmax is effectively determined by the slowest worker. This
suggests that similar to mini-batch Sgd, the asynchronous Sgd method may face the strag-
gler issue. Moreover, the step-size used to achieve the bound (30) is inversely proportional
to τmax, and may hence be quite small, which degrades the performance of the algorithm
in practice.

To mitigate the impact of stragglers on asynchronous optimization, Aviv et al. (2021)
and Cohen et al. (2021) developed delay-adaptive Sgd methods whose rates depend on the
average delay τave rather than on τmax. Performance of these methods are more robust to
asynchrony since τave can be significantly smaller than τmax, especially when some workers
are much slower than others. For instance, consider the implementation of the asynchronous
Sgd method using two workers, where one worker is 1000 times faster than the other in
computing gradients. When the master waits for the slower worker to finish computing a
gradient, it can use the faster worker’s gradients to produce 1000 updates. As a result, τk
is equal to 0 for k = 0, . . . , 999, and τ1000 = 1000. This indicates that the average delay τave
would be approximately 1, while τmax = 1000. Although this scenario is hypothetical and
constructed to make a point, actual delays tend to have τmax � τave. For example, the delay
measurements for a 40 worker implementation of asynchronous Sgd reported in Figure 1
in Mishchenko et al. (2022) have τmax = 1200, while τave = 40.

Although the methods developed in Aviv et al. (2021) and Cohen et al. (2021) are more
robust to straggling workers, there are some limitations to their convergence guarantees.
Specifically, the rates in Aviv et al. (2021) were derived under the assumption that the
gradients are uniformly bounded, while the results in Cohen et al. (2021) only hold with
probability 1

2 . Koloskova et al. (2022) and Mishchenko et al. (2022) have recently addressed
these limitations, and shown that asynchronous Sgd is always faster than mini-batch Sgd
regardless of the delay patterns. In particular, Koloskova et al. (2022) proposed a delay-
adaptive step-size rule, under which asynchronous Sgd achieves an iteration complexity

O
(
L(τave + 1)

ε
+
σ2

ε2

)

25

Feyzmahdavian and Johansson

for L-smooth non-convex functions. Mishchenko et al. (2022) provided convergence guar-
antees for L-smooth convex, strongly convex, and non-convex functions which depend only
on the number of workers used to implement the algorithm.

Similar to Koloskova et al. (2022), we investigate the convergence of the asynchronous
Sgd method with delay-dependent step-sizes. We define the step-size sequence as

γk =

{
γ, τk ≤ τth,
0, τk > τth,

(31)

where the threshold parameter τth is a non-negative constant satisfying

min {2τave, τmax} ≤ τth.

The adaptive rule (31) sets the step-size to a constant value γ when the delay of the kth
iteration is at most τth. Otherwise, it sets the step-size to zero, effectively dropping the
gradients with large delays. Note that (31) reduces to a constant step-size rule by setting
τth ≥ τmax. In this case, the step-size remains fixed at γ for all iterations, regardless of the
delay values. The main goal of this section is to use the sequence results from Section 3
to: (i) extend the results of Koloskova et al. (2022) to L-smooth convex and strongly con-
vex functions; (ii) improve upon the previously best-known rate of the asynchronous Sgd
method with constant step-sizes for strongly convex functions given in Stich and Karim-
ireddy (2020); and (iii) recover the convergence rates derived in Mishchenko et al. (2022).

Remark 12 To use the delay-dependent step-size rule (31), prior knowledge of τave is re-
quired. This is challenging since gradient delays are usually difficult to predict before im-
plementing the algorithm. However, Koloskova et al. (2022) and Mishchenko et al. (2022)
have shown that for the asynchronous Sgd method running on M workers, it holds that

τave ≤M − 1.

Therefore, Algorithm 3 can be implemented without prior knowledge of τave by setting

τth = 2(M − 1).

The following result shows that in the analysis of the asynchronous Sgd method, we
can establish iterate relationships on the form (11).

Lemma 13 Suppose that Assumptions 4—6 hold. Let

Vk = E
[
‖xk − x?‖2

]
, Xk = 2γkE

[
F (xk)− F ?

]
, and Wk = γ2kE

[∥∥∇F (xk−τk)
∥∥2],

where the expectation is over all random variables ξ0, . . . , ξk−1. For the iterates generated
by Algorithm 3, the following statements hold:

1. If F is convex, then

Xk + Vk+1 ≤ Vk + 2γkτkL

k−1∑
`=(k−τk)+

W` −
(

1

γkL
− 1

)
Wk +

γ2k + 2γkL

k−1∑
`=(k−τk)+

γ2`

σ2

for γk > 0, and Vk+1 = Vk for γk = 0.

26

Asynchronous Iterations in Optimization

2. If F is µ-strongly convex, then

Vk+1 ≤ (1− γkµ)Vk + 2γkτkL

k−1∑
`=(k−τk)+

W` −
(

1

γkL
− 1

)
Wk +

γ2k + 2γkL

k−1∑
`=(k−τk)+

γ2`

σ2

for γk > 0, and Vk+1 = Vk for γk = 0.

Proof. See Appendix D.1.
Using this iterate relationship, Lemma 5 allows us to derive convergence guarantees for

the asynchronous Sgd method. Our proof is based on the observation that, even if some
gradients with large delays are discarded, gradients with delays less than or equal to the
threshold parameter τth are sufficient to ensure the convergence of the algorithm.

Theorem 14 Suppose Assumptions 4—6 hold. Let τth be a non-negative constant such
that

min {2τave, τmax} ≤ τth,

where τave is the average delay, i.e.,

τave =
1

K + 1

K∑
k=0

τk.

Using the delay-dependent step-size rule (31) in Algorithm 3 yields the following results:

1. For convex F and any x? ∈ X ?, choosing

γ ∈
(

0,
1

L(τth
√

2 + 1)

]
,

guarantees that

E
[
F (x̄K)− F ?

]
≤ ‖x0 − x

?‖2

γ(K + 1)
+ (1 +

√
2)γσ2, K ∈ N0,

where x̄K is the weighted average of x0, . . . , xK defined as

x̄K =
1∑K

k=0 γk

K∑
k=0

γkxk.

2. For strongly convex F , choosing

γ ∈
(

0,
1

L(2τth + 1)

]
,

ensures that

E
[
‖xK − x?‖2

]
≤ exp

(
−γµK

2

)
‖x0 − x?‖2 +

2γσ2

µ
, K ∈ N.

27

Feyzmahdavian and Johansson

Proof. See Appendix D.2.
According to Theorem 14, the asynchronous Sgd method converges to a ball around

the optimum at a rate of O(1/K) for convex functions and at a linear rate for strongly
convex functions. The choice of γ in the delay-adaptive step-size rule (31) affects both
the convergence rate and the residual error: decreasing γ reduces the residual error, but it
also results in a slower convergence. Next, we present a possible strategy for selecting γ to
achieve an ε-optimal solution.

Theorem 15 Suppose that Assumptions 4—6 hold. Given any ε > 0, the following state-
ments hold:

1. For convex F , choosing

γ = min

{
1

L(τth
√

2 + 1)
,

ε

2(
√

2 + 1)σ2

}
,

implies E
[
F (x̄K)− F ?

]
≤ ε after

O
(
L(τth + 1)

ε
+
σ2

ε2

)
iterations.

2. For strongly convex F , setting γ to

γ = min

{
1

L(2τth + 1)
,
εµ

4σ2

}
,

guarantees that E
[
‖xK − x?‖2

]
≤ ε after

O
((

L(τth + 1)

µ
+

σ2

εµ2

)
log

(
1

ε

))
iterations.

Proof. See Appendix D.3.
According to Theorem 15, the value of γ needed to achieve an ε-optimal solution de-

pends on two terms. The role of the first term is to decrease the effects of asynchrony on
the convergence of the algorithm, while the second term aims to control the noise from
stochastic gradient information. The first term is monotonically decreasing in the threshold
parameter τth. At the same time, the guaranteed bounds on the iteration complexity are
monotonically increasing in τth. Therefore, choosing a smaller value for τth allows the algo-
rithm to use larger step-sizes by discarding more gradients with long delays, and results in
fewer iterations required to attain an ε-optimal solution.

When the threshold parameter τth is set to 2τave, Theorem 15 shows that the asyn-
chronous Sgd method with delay-adaptive step-sizes achieves an iteration complexity of

O
(
L(τave + 1)

ε
+
σ2

ε2

)

28

Asynchronous Iterations in Optimization

for convex objective functions. The average delay τave only appears in the first term and
its negative impact on the convergence rate is asymptotically negligible once

τave ≤ O
(
σ2

Lε

)
. (32)

In this case, the asynchronous Sgd method has the same asymptotic iteration complexity as
the serial Sgd method. Our asymptotic rate O(σ2/ε2) for asynchronous Sgd is consistent
with the results in Arjevani et al. (2020) and Stich and Karimireddy (2020). However, their
requirement to guarantee such rate is

τmax ≤ O
(
σ2

Lε

)
,

which is more conservative than (32) since necessarily τave ≤ τmax.
According to Remark 12, we can select the threshold parameter as τth = 2(M − 1). By

doing so, it follows from Theorem 15 that for convex problems, we have

O
(
LM

ε
+
σ2

ε2

)
.

By comparing this bound with (28), we can see that the asynchronous Sgd method with
delay-adaptive step-sizes attains the same iteration complexity as the mini-batch Sgd
method. Since each update of mini-batch Sgd takes the time needed by the slowest worker,
its expected per-iteration time is slower than that of asynchronous Sgd. This means that
asynchronous Sgd outperforms mini-batch Sgd regardless of the delays in the gradients, as
previously proved by Koloskova et al. (2022) and Mishchenko et al. (2022).

By setting τth = 2τave, the iteration complexity for strongly convex functions is

O
((

L(τave + 1)

µ
+

σ2

εµ2

)
log

(
1

ε

))
.

In the case that τave = 0, the preceding guaranteed bound reduces to the one obtained
in Gower et al. (2019) for the serial Sgd method. We can see that the average delay τave
can be as large as O

(
σ2/(µLε)

)
without affecting the asymptotic rate of Algorithm 3.

An alternative approach to tune the step-size in Algorithm 3 is to use γ that depends
on a prior knowledge of the number of iterations to be performed (Lan, 2012; Mishchenko
et al., 2022). Assume that the number of iterations is fixed in advance, say equal to K. The
following result provides the convergence rate of Algorithm 3 in terms of K.

Theorem 16 Let Assumptions 4—6 hold. Given K ∈ N, the following statements hold:

1. For convex F and

γ = min

{
1

L(τth
√

2 + 1)
,

‖x0 − x?‖
σ
√√

2 + 1
√
K + 1

}
,

Algorithm 3 ensures

E
[
F (x̄K)− F ?

]
= O

(
L(τth + 1)

K
+

σ√
K

)
.

29

Feyzmahdavian and Johansson

2. For strongly convex F and

γ = min

{
1

L(2τth + 1)
,

2

µK
log

(
1 +

µ2K‖x0 − x?‖2

4σ2

)}
,

Algorithm 3 guarantees that

E
[
‖xK − x?‖2

]
= Õ

(
exp

(
− µK
L(τth + 1)

)
+
σ2

K

)
.

Proof. See Appendix D.4.
For strongly convex problems, the previously best known convergence rate under con-

stant step-sizes was given in Stich and Karimireddy (2020) and is expressed as

Õ
(
τmax exp

(
− µK
L(τmax + 1)

)
+
σ2

K

)
.

However, when we set τth = τmax, Theorem 16 tells us that the asynchronous Sgd method
with a constant step-size converges at a rate of

Õ
(

exp

(
− µK
L(τmax + 1)

)
+
σ2

K

)
.

Therefore, we obtain a sharper guaranteed convergence rate than the one presented in Stich
and Karimireddy (2020). Note also that our theoretical guarantee matches with the bound
in Arjevani et al. (2020) derived for strongly convex quadratic functions.

By selecting the threshold parameter as τth = 2(M − 1), it follows from Theorem 16
that the asynchronous Sgd method achieves a convergence rate of

E
[
F (x̄K)− F ?

]
= O

(
LM

K
+

σ√
K

)
for convex functions and

Õ
(

exp

(
− µK
LM

)
+
σ2

K

)
for strongly convex functions, which match the rates provided by Mishchenko et al. (2022).

4.2.1 Comparison of Our Analysis with Prior Work

Arjevani et al. (2020) analyzed the asynchronous Sgd method for convex quadratic func-
tions and provided the first tight convergence rate. However, their proof technique is based
on the generating function method, which is only applicable to quadratic functions. To
extend these results to general smooth functions, Stich and Karimireddy (2020) employed
the perturbed iterate technique, which was originally developed by Mania et al. (2017) to
analyze asynchronous optimization algorithms. In Theorem 16, we establish a convergence
rate for convex problems that matches the one derived by Stich and Karimireddy (2020)
while also providing a tighter guarantee for strongly convex problems. Next, we show how

30

Asynchronous Iterations in Optimization

to recover the convergence rate result for non-convex objective functions given in Stich and
Karimireddy (2020). For L-smooth (possibly non-convex) functions F , the proof of Theo-
rem 16 in Stich and Karimireddy (2020) shows that the iterates generated by asynchronous
Sgd satisfy

E
[
F (x̃k+1)− F ?] ≤ E

[
F (x̃k)− F ?] + γ3L2τmax

k−1∑
`=(k−τmax)+

E
[
‖∇F (x`)‖2

]
− γ (1− Lγ)

2
E
[
‖∇F (xk)‖2

]
+

(3γ3L2τmax + γ2L)σ2

2
, (33)

where {x̃k} with x̃0 = x0 is a virtual sequence defined in the proof. Let

Vk = E
[
F (x̃k)− F ?

]
, Wk = E

[
‖∇F (xk)‖2

]
, Xk =

γ

4
E
[
‖∇F (xk)‖2

]
,

and e = (3γ3L2τmax + γ2L)σ2/2. Then, we can rewrite (33) as

Xk + Vk+1 ≤ Vk + γ3L2τmax

k−1∑
`=(k−τmax)+

W` −
γ (1− 2Lγ)

4
Wk + e,

which is on the form (11). Thus, according to Lemma 5, if

γ3L2τ2max ≤
γ (1− 2Lγ)

4
,

then
∑K

k=0Xk ≤ V0 + (K + 1)e for K ∈ N. This implies that

K∑
k=0

E
[
‖∇F (xk)‖2

]
≤

4
(
F (x0)− F ?

)
γ

+ 5γL(K + 1)σ2, for γ ∈
(

0,
1

2L(τmax + 1)

]
.

By setting

γ = min

 1

2L(τmax + 1)
,

√
4
(
F (x0)− F ?

)
5L(K + 1)σ2

 ,

which minimizes the right-hand side of the inequality above with respect to γ, we obtain

min
0≤k≤K

{
E
[
‖∇F (xk)‖2

]}
= O

L(τmax + 1)
(
F (x0)− F ?

)
K + 1

+ σ

√
L
(
F (x0)− F ?

)
K + 1

 .

This convergence guarantee matches the bound derived in Stich and Karimireddy (2020).
Also focusing on non-convex problems, Koloskova et al. (2022) proposed a delay-adaptive

step-size rule that eliminates the dependence of the convergence rate on τmax. According
to the proof of Theorem 8 in Koloskova et al. (2022), the following inequality holds for the
sequence generated by asynchronous Sgd:

Xk + Vk+1 ≤ Vk + γkτkL
2

k−1∑
`=(k−τk)+

W` −
1

4γk
Wk +

γ2kL+ γkL
2

k−1∑
`=(k−τk)+

γ2`

σ2,

31

Feyzmahdavian and Johansson

where Vk = E
[
F (xk)−F ?

]
, Xk = γk

2 E
[
‖∇F (xk)‖2

]
, andWk = γ2kE

[∥∥∇F (xk−τk)
∥∥2]. Similar

to the proof for Theorem 14, it follows from Lemma 11 that

1∑K
k=0 γk

K∑
k=0

γkE
[
‖∇F (xk)‖2

]
≤

4
(
F (x0)− F ?

)
γ(K + 1)

+ 6γLσ2, for γ ∈
(

0,
1

2L(τth + 1)

]
.

By setting τth = 2τave, the above convergence rate leads to an iteration complexity of

O
(
τave
ε

+
σ2

ε2

)
.

This bound is the same as the one provided in Koloskova et al. (2022). Alternatively,
choosing τth = 2(M − 1) results in

O
(
M

ε
+
σ2

ε2

)
,

which matches the iteration complexity derived in Mishchenko et al. (2022) using the
perturbed iterate technique. While we recover the convergence guarantees presented in
Mishchenko et al. (2022), recurrences of the form (10) and (11) did not appear in their
proofs. The reason is that the analysis in Mishchenko et al. (2022) relies on upper bounds
for the delayed terms that are expressed in terms of M , rather than on the delay values
themselves.

4.3 Asynchronous Coordinate Update Methods

Many popular optimization algorithms, such as gradient descent, projected gradient descent,
proximal-point, forward-backward splitting, Douglas-Rachford splitting, and the alternat-
ing direction method of multipliers (Admm), can be viewed as special instances of the
Krasnosel’skĭi–Mann (Km) method for operators (Peng et al., 2016). The only way they
differ is in their choice of operator. The Km method has the form

xk+1 = (1− γ)xk + γT (xk), k ∈ N0, (34)

where γ ∈ (0, 1) is the step-size, and T : Rd → Rd is a nonexpansive operator, i.e.,

‖T (x)− T (y)‖ ≤ ‖x− y‖, ∀x, y ∈ Rd.

Any vector x? ∈ Rd satisfying T (x?) = x? is called a fixed point of T and the Km method
can be viewed as an algorithm for finding such a fixed point. Let S = Id − T , where Id is
the identity operator on Rd. Then, (34) can be rewritten as

xk+1 = xk − γS(xk), k ∈ N0. (35)

This shows that the Km method can be interpreted as a taking a step of length γ in the
opposite direction of S evaluated at the current iterate. For example, the gradient descent
method for minimization of a L-smooth convex function f : Rd → R can be formulated as
the Km method with

S =
2

L
∇f, or equivalently, T = Id −

2

L
∇f.

32

Asynchronous Iterations in Optimization

We represent x as x =
(
[x]1, . . . , [x]m

)
, where [x]i ∈ Rdi with d1, . . . , dm being positive

integer numbers satisfying d = d1 + . . .+ dm. We denote by Si : Rd → Rdi the ith block of
S, so S(x) =

(
S1(x), . . . , Sm(x)

)
. Thus, we can rewrite (35) as

[xk+1]i = [xk]i − γSi(xk), i ∈ [m].

ARock is an algorithmic framework for parallelizing the Km method in an asynchronous
fashion (Peng et al., 2016). In ARock, multiple agents (machines, processors, or cores) have
access to a shared memory for storing the vector x, and are able to read and update
x simultaneously without using locks. Conceptually, ARock lets each agent repeat the
following steps:

• Read x from the shared memory without locks and save it in a local cache as x̂;

• Choose an index i ∈ [m] uniformly at random and use x̂ to compute Si(x̂);

• Update component i of the shared x via

[x]i ← [x]i − γSi(x̂).

Since the agents are being run independently without synchronization, while one agent is
busy reading x and evaluating Si(x), other agents may repeatedly update the value stored
in the shared memory. Therefore, the value x̂ read from the shared memory may differ from
the value of x to which the update is made later. In other words, each agent can update
the shared memory using possibly out-of-date information.

Algorithm 4 ARock

Input: x0 ∈ Rd, step-size γ > 0, number of iterations K ∈ N
1: Initialize global counter k ← 0
2: while k < K do
3: Read each position of shared memory denoted by x̂k
4: Sample ik from {1, . . . ,m} with equal probability 1

m
5: Set [xk+1]ik ← [xk]ik − γSik(x̂k)
6: Set k ← k + 1
7: end while

Algorithm 4 describes ARock. We assume that the write operation on line 5 is atomic,
in the sense that the updated result will successfully appear in the shared memory by the
end of the execution. In practice, this assumption can be enforced through compare-and-
swap operations (Niu et al., 2011). Updating a scalar is a single atomic instruction on most
modern hardware. Thus, the atomic write assumption in Algorithm 4 naturally holds when
each block is a single scalar, i.e., m = d and di = 1 for all i ∈ [m].

We define one iteration of ARock as a modification on any block of x in the shared
memory. A global counter k is introduced to track the total number of iterations so that xk
is the value of x in the shared memory after k iterations. We use ik to denote the component
that is updated at iteration k, and x̂k for the value of x that is used in the calculation of

33

Feyzmahdavian and Johansson

Sik(·). Since every iteration changes one block of the shared memory and all writes are
required to be atomic, we have

xk = x̂k +
∑
j∈Jk

(xj+1 − xj), (36)

where Jk ⊆ {0, . . . , k − 1}. The set Jk contains the indices of the iterations during which a
block of shared memory is updated between the time when x̂k is read and the time when
xk is written. Thus, the sum in (36) represents all updates of the shared vector that have
occurred from the time that the agent ik begins reading x̂k from memory until it finishes
evaluating Sik(x̂k) and writes the result to memory (see Peng et al. 2016 for a more detailed
discussion). Note that individual blocks of the shared vector may be updated by multiple
agents while it is in the process of being read by another agent. Therefore, the components
of x̂k may have different ages and the vector x̂k may never actually exist in the shared
memory during the execution of Algorithm 4. This phenomenon is known as inconsistent
read (Liu and Wright, 2015).

To analyze the convergence of ARock, we need to make a few assumptions similar
to Peng et al. (2016).

Assumption 7 For Algorithm 4, the following properties hold:

1. (Pseudo-contractivity) The operator T = Id − S has a fixed point and is pseudo-
contractive with respect to the Euclidean norm with contraction modulus c. That is,
there exists c ∈ (0, 1) such that

‖T (x)− x?‖ ≤ c‖x− x?‖, ∀x ∈ Rd.

2. (Bounded delay) There is a non-negative integer τ such that

(k − τ)+ ≤ min
{
j | j ∈ Jk

}
, ∀k ∈ N0.

3. (Independence) Random variables ik for k = 0, . . . ,K are independent of each other.

Under Assumption 7.1, the serial Km iteration (35) with γ ∈ (0, 1] converges to the fixed
point x? at a linear rate (Bertsekas and Tsitsiklis, 2015, Chapter 3). Assumption 7.2
guarantees that during any update cycle of an agent, the vector x in the shared memory is
updated at most τ times by other agents. Therefore, no component of x̂k is older than τ for
all k ∈ N0. The value of τ is an indicator of the degree of asynchrony in ARock. In practice,
τ will depend on the number of agents involved in the computation. If all agents are working
at the same rate, we would expect τ to be a multiple of the number of agents (Wright, 2015).
Similar to Peng et al. (2016) and most results on asynchronous stochastic optimization for
shared memory architecture (e.g., Niu et al. 2011; Liu et al. 2014; Liu and Wright 2015), we
assume that the age of the components of x̂k is independent of the block ik being updated
at iteration k. However, this may not hold in practice if, for example, some blocks are more
expensive to update than others (Leblond et al., 2018). This independence assumption can
be relaxed using several techniques such as before read labeling (Mania et al., 2017), after

34

Asynchronous Iterations in Optimization

read labeling (Leblond et al., 2018), single coordinate consistent ordering (Cheung et al.,
2020), and probabilistic models of asynchrony (Sun et al., 2017; Cannelli et al., 2020).

The following result shows that in the analysis of ARock, we can establish iterate rela-
tionships on the form (11).

Lemma 17 Suppose Assumption 7 holds. Let Vk = E
[
‖xk − x?‖2

]
and Wk = E

[
‖S(x̂k)‖2

]
for k ∈ N0, where the expectation is over all choices of index ik up to step k. Then, the
iterates generated by Algorithm 4 satisfy

Vk+1 ≤

(
1− γ(1− c2)

m
(
1 + γ

(
τ
m +

√
τ
m

)))Vk +
2γ2

mτ

(
τ

m
+

√
τ

m

) k−1∑
`=(k−τ)+

W`

− γ

m

(
1− γ

(
1 +

τ

m
+

√
τ

m

))
Wk.

Proof. See Appendix E.2.
Using this iterate relationship, the sequence result in Lemma 5 allows us to derive new

convergence guarantees for ARock.

Theorem 18 Suppose that Assumption 7 holds and that the step-size γ is set to

γ =
h

1 + 5
(
τ
m +

√
τ
m

) ,
with h ∈ (0, 1]. Then, the iterates generated by Algorithm 4 satisfy

E
[
‖xk − x?‖2

]
≤

(
1− h(1− c2)

m
(
1 + 6

(
τ
m +

√
τ
m

)))k ‖x0 − x?‖2, k ∈ N0. (37)

Moreover, the algorithm reaches an accuracy of E
[
‖xk − x?‖2

]
≤ ε after

k ≥ Kε =
m
(
1 + 6

(
τ
m +

√
τ
m

))
h(1− c2)

log

(
‖x0 − x?‖2

ε

)
(38)

iterations.

Proof. See Appendix E.3.
Theorem 18 shows that for pseudo-contractive operators, ARock converges in expecta-

tion at a linear rate. To quantify how τ can affect the convergence of ARock, we define

Γ =
τ

m
+

√
τ

m
.

Clearly, Γ is monotonically increasing in τ and is equal to zero for τ = 0. The maximum
allowable step-size and the linear rate of ARock depend on Γ. As Γ tends to infinity, the
maximum allowable step-size decreases and approaches zero, while the convergence factor
increases and approaches one. Therefore, ARock should take a smaller step-size for a larger

35

Feyzmahdavian and Johansson

Γ, which will lead to a slower convergence rate. Note that if Γ ≈ 0, or equivalently, τ � m,
then ARock with step-size γ ≈ 1 has the linear rate

ρ = 1− 1− c2

m
,

which is precisely the rate for the serial stochastic Km method (Hannah and Yin, 2017). As
discussed before, τ is related to the number of agents used in the algorithm. Therefore, the
number of agents can be of the order of o(m) without appreciably degrading the convergence
rate of ARock.

The serial Km method (35) with constant step-size γKm = h ∈ (0, 1] needs

k ≥ 1

h(1− c2)
log

(
‖x0 − x?‖2

ε

)
iterations to satisfy ‖xk−x?‖2 ≤ ε (Hannah and Yin, 2017). Each iteration of (35) requires
computing all m blocks of S and updating the whole vector x. Thus, the overall complexity
of the serial Km method, in terms of the total number of blocks updated to find an ε-optimal
solution, is

KKm =
m

h(1− c2)
log

(
‖x0 − x?‖2

ε

)
.

On the other hand, by Theorem 18, ARock with step-size γARock = h/(1 + 5Γ) performs

KARock =
m (1 + 6Γ)

h(1− c2)
log

(
‖x0 − x?‖2

ε

)
component updates to return an ε-optimal solution in average. In the case that Γ ≈ 0, we
have γARock ≈ γKm and KARock ≈ KKm. Hence, as long as τ is bounded by o(m), ARock
can use the same step-size as the serial Km method and achieve the same iteration bound.
Furthermore, since ARock runs on p agents in parallel, updates can occur roughly p times
more frequently, leading to a near-linear speedup in the number of agents.

4.3.1 Comparison of Our Analysis with Prior Work

Peng et al. (2016) proposed ARock for finding fixed points of nonexpansive operators in an
asynchronous parallel fashion. They proved that if T is nonexpansive and S = I − T is
quasi-µ-strongly monotone, then ARock with step-size

γ =
1

1 +O
(
τ2√
m

)
converges linearly to a fixed point and achieves a linear speedup for τ ≤ O

(
m1/4

)
.1 How-

ever, we will show that using Lemma 5 in their proof allows us to improve the linear speed

1. The operator S : Rd → Rd is quasi-µ-strongly monotone if it satisfies 〈x − y, Sx〉 ≥ µ‖x − y‖2 for all
x ∈ Rd and y ∈ {z ∈ Rd | Sz = 0}.

36

Asynchronous Iterations in Optimization

condition from τ ≤ O
(
m1/4

)
to τ ≤ O

(
m1/2

)
. According to the proof of Theorem 4 in

Peng et al. (2016), the iterates generated by ARock satisfy

Vk+1 ≤
(

1− γµ

2m

)
Vk +

γ2

m2

(
γµτ +

√
m
) k−1∑
`=(k−τ)+

W` −
γ2

m

(
1

2γ
− 1− τ√

m

)
Wk,

where Vk = E
[
‖xk−x?‖2 and Wk = E

[
‖S(x̂k)‖2

]
for k ∈ N0. Since this inequality is on the

form (11), it follows from Lemma 5 that if

γ2

m2

(
γµτ +

√
m
)

(2τ) ≤ γ2

m

(
1

2γ
− 1− τ√

m

)
,

then Vk converges at a linear rate. This implies that

E
[
‖xk − x?‖2 ≤

(
1− γµ

2m

)k
‖x0 − x?‖2, for γ ∈

0,
1

2
(

1 +
τ(
√
µ+3)√
m

)
 .

Therefore, τ can be as large as O
(
m1/2

)
without affecting the maximum allowable step-size.

Hence, using Lemma 5 in the proof of Theorem 4 in Peng et al. (2016) improves the upper
bound on τ by a factor of m1/4.

Hannah and Yin (2017) improved the results in Peng et al. (2016) by showing that for
pseudo-contractive operators,

γ =
1

1 +O
(

τ√
m

)
guarantees the linear convergence of ARock and τ ≤ O

(
m1/2

)
ensures a linear speedup.

Compared to the result presented in Hannah and Yin (2017), not only can Theorem 18 pro-
vide a larger value for the maximal allowable step-size, but it also improves the requirement
for the linear speedup property from τ ≤ O

(
m1/2

)
to τ ≤ o (m). The analysis in Hannah

and Yin (2017) involves a recurrence of the form

Vk+1 ≤ qVk + p

k∑
`=(k−τk)+

W` − rWk, k ∈ N0,

with the same quantities for Vk and Wk as our analysis. However, our coefficients for q, p,
and r are different, since we employ tighter upper bounds on the delayed terms. It is, in
this case, the use of Lemmas 32 and 33 to bound Ek

[
‖xk − x̂k‖2

]
and Ek

[
〈x̂k −xk, S(x̂k)

〉]
,

respectively, that are the keys to our improved results.

4.3.2 A Special Case: Asynchronous Coordinate Descent Method

We now present a special case of ARock, namely the asynchronous coordinate descent
algorithm for minimizing a class of composite objective functions. Specifically, we consider
the problem

minimize
x∈Rd

P (x) := F (x) +R(x), (39)

37

Feyzmahdavian and Johansson

where F : Rd → R is µ-strongly convex and L-smooth, and R : Rd → R is separable in all
coordinates, i.e.,

R(x) =
m∑
i=1

ri
(
[x]i
)
.

Here, each ri : Rdi → R ∪ {+∞}, i ∈ [m], is a closed, convex, and extended real-valued
function. The best known examples of separable regularizers include `1 norm, `2 norm
square, and the indicator function of box constraints (Fercoq and Richtárik, 2015). The
minimizer of Problem (39) is the unique fixed point of Tprox defined as

Tprox(x) = prox 2
µ+L

R

(
x− 2

µ+ L
∇F (x)

)
.

The operator Tprox is contractive with contraction modulus

c =
Q− 1

Q+ 1
,

where Q = L/µ (Bertsekas, 2015). To solve (39), we apply ARock to S = Id−Tprox. Then,
the update rule of Algorithm 4 at the kth iteration becomes

[xk+1]ik ← [xk]ik − γ
(

[x̂k]ik − prox 2
µ+L

rik

(
[x̂k]ik −

2

µ+ L
∇ikF (x̂k)

))
,

where ∇iF (x) denotes the partial gradient of F with respect to [x]i. According to Theo-
rem 18, the iterates generated by ARock with step-size γ = 1/(1 + 5Γ) satisfy

E
[
‖xk − x?‖2

]
≤
(

1− 4Q

m (1 + 6Γ) (Q+ 1)2

)k
‖x0 − x?‖2, k ∈ N0.

If Γ ≈ 0, or equivalently, τ � m, then ARock using γ ≈ 1 converges linearly at a rate of

ρARock = 1− 4Q

m(Q+ 1)2
. (40)

Note that when m = 1, the preceding linear rate reduces to

ρGD =

(
Q− 1

Q+ 1

)2

,

which is the best convergence rate for the gradient descent method applied to strongly
convex optimization.

Remark 19 Liu and Wright (2015) proposed an asynchronous coordinate descent algorithm
for solving optimization problems of the form (39). They proved that the linear speedup is
achievable if τ ≤ O

(
m1/4

)
. For a special case of Problem (39) where R(x) ≡ 0, Liu et al.

(2014) showed that the asynchronous coordinate descent method can enjoy the linear speedup
if τ ≤ O

(
m1/2

)
. In comparison with Liu and Wright (2015) and Liu et al. (2014), our

requirement for the linear speedup property is τ ≤ o (m) and, hence, allows a larger value
for τ . Recently, Cheung et al. (2020) analyzed convergence of the asynchronous coordinate
descent method for composite objective functions without assuming independence between ik
and x̂k. Their analysis guarantees the linear speedup for τ ≤ O

(
m1/2

)
.

38

Asynchronous Iterations in Optimization

Remark 20 In Theorem 18, the linear convergence of ARock is given in terms of the ex-
pected quadratic distance from the iterates to the fixed point. Note however that the literature
on coordinate descent algorithms usually establishes convergence results using coordinate-
wise Lipschitz constants of the function F (see, e.g., Liu and Wright 2015; Liu et al. 2014;
Nesterov 2012). This allows to provide larger step-sizes, which can lead to potentially better
convergence bounds, especially in terms of the function values P (xk)− P ?.

4.4 A Lyapunov Approach to Analysis of Totally Asynchronous Iterations

Finally, we study iterations involving maximum norm pseudo-contractions under the general
asynchronous model introduced by Bertsekas and Tsitsiklis (2015), which allows for hetero-
geneous and time-varying communication delays and update rates. Such iterations arise, for
example, in algorithms for the solution of certain classes of linear equations, optimization
problems and variational inequalities (Bertsekas and Tsitsiklis, 2015; Moallemi and Roy,
2010; Hale et al., 2017), distributed algorithms for averaging (Mehyar et al., 2007), power
control algorithms for wireless networks (Feyzmahdavian et al., 2012), and reinforcement
algorithms for solving discounted Markov decision processes (Zeng et al., 2020). We will
demonstrate how the convergence results in Bertsekas and Tsitsiklis (2015) for maximum
norm contractions can be derived and extended using Lemmas 1—3. This allows to unify
and expand the existing results for partially and totally asynchronous iterations.

We consider iterative algorithms on the form

xk+1 = T (xk), k ∈ N0, (41)

where T : Rd → Rd is a continuous mapping. This iteration aims to find a fixed point of T ,
that is, a vector x? ∈ Rd satisfying x? = T (x?). Similar to Subsection 4.3, we decompose
the space Rd as a Cartesian product of m subspaces:

Rd = Rd1 × · · · × Rdm , d =
m∑
i=1

di.

Accordingly, we can partition any vector x ∈ Rd as x =
(
[x]1, . . . , [x]m

)
with [x]i ∈ Rdi ,

i ∈ [m]. We denote by Ti : Rd → Rdi the ith component of T , so T (x) =
(
T1(x), . . . , Tm(x)

)
.

Then, we rewrite (41) as [
xk+1

]
i

= Ti
(
[xk]1, . . . , [xk]m

)
, i ∈ [m]. (42)

This iteration can be viewed as a network of m agents, each responsible for updating one
of the m blocks of x so as to find a global fixed point of the operator T .

Let us fix some norms ‖ · ‖i for the spaces Rdi . The block-maximum norm ‖ · ‖wb,∞ on Rd
is defined as ∥∥x∥∥w

b,∞ = max
i∈[m]

wi
∥∥[x]i

∥∥
i
,

where wi are positive constants. Note that when di = 1 for each i ∈ [m], the block-maximum
norm reduces to the maximum norm

‖x‖w∞ = max
i∈[m]

wi
∣∣[x]i

∣∣.
39

Feyzmahdavian and Johansson

The following definition introduces pseudo-contractive mappings with respect to the block-
maximum norm.

Definition 21 A mapping T : Rd → Rd is called a pseudo-contraction with respect to the
block-maximum norm if it has a fixed-point x? and the property

‖T (x)− x?‖wb,∞ ≤ c ‖x− x?‖wb,∞, ∀x ∈ Rd.

Here, c, called the contraction modulus of T , is a constant belonging to (0, 1).

Pseudo-contractions have at most one fixed point (Bertsekas and Tsitsiklis, 2015, Propo-
sition 3.1.2). Note that we follow Bertsekas and Tsitsiklis (2015) and include the exis-
tence of a fixed point in the definition of pseudo-contractions. Examples of iterative algo-
rithms that involve pseudo-contractions with respect to the block-maximum norm can be
found in (Bertsekas and Tsitsiklis, 2015, Chapter 3). An important property of pseudo-
contractions is that the iterates produced by (42) converge at a linear rate to the fixed
point (Bertsekas and Tsitsiklis, 2015, Proposition 3.1.2). More precisely, using the Lya-
punov function Vk = ‖xk − x?‖wb,∞, one can show that the sequence {xk} generated by (42)

with initial vector x0 ∈ Rd satisfies Vk+1 ≤ cVk for all k ∈ N0. This implies that

‖xk − x?‖wb,∞ ≤ ck‖x0 − x?‖wb,∞, k ∈ N0.

The algorithm described by (42) is synchronous in the sense that all agents update
their states at the same time and have instantaneous access to the states of all other agents.
Synchronous execution is possible if there are no communication failures in the network and
if all agents operate in sync with a global clock. In practice, these requirements are hard to
satisfy: local clocks in different agents tend to drift, global synchronization mechanisms are
complex to implement and carry substantial execution overhead, and the communication
latency between agents can be significant and unpredictable. Insisting on synchronous
operation in an inherently asynchronous environment forces agents to spend a significant
time idle, waiting for the slowest agents (perhaps due to lower processing power or higher
workload per iteration) to complete its work.

In an asynchronous implementation of the iteration (42), each agent can update its state
at its own pace, using possibly outdated information from the other agents. This leads to
iterations on the form

[xk+1]i =

{
Ti
(
[xsi1,k]1, . . . , [xsim,k]m

)
, k ∈ Ki,

[xk]i, k 6∈ Ki.
(43)

Here, Ki is the set of times when agent i executes an update, and sij,k is the time at which
the most recent version of [x]j available to agent i at the time k was computed. The sets
Ki need not be known to all the agents. Thus, there is no requirement for a shared global
clock. Since the agents use only values computed in the previous iterations, sij,k ≤ k for all
k ∈ N0. We can view the value

τij,k := k − sij,k,

40

Asynchronous Iterations in Optimization

as the communication delay from agent j to agent i at time k. Clearly, the synchronous
iteration (42) is a special case of (43) where Ki = N0 and τij,k = 0 for all i, j ∈ [m] and all
k ∈ N0.

Based on the assumptions on communication delays and update rates, Bertsekas and
Tsitsiklis (2015) introduced a classification of asynchronous algorithms as either totally
asynchronous or partially asynchronous. The totally asynchronous model is characterized
by the following assumption.

Assumption 8 (Total Asynchronism) For the asynchronous iteration (43), the follow-
ing properties hold:

1. The sets Ki are infinite subsets of N0 for each i ∈ [m].

2. limk→∞ sij,k = +∞ for all i, j ∈ [m].

Assumption 8.1 guarantees that no agent ceases to execute its update, while Assump-
tion 8.2 guarantees that outdated information about the agent updates is eventually purged
from the computation (compare the discussion after Lemma 2). Under total asynchronism,
the communication delays τij,k can become unbounded as k increases. This is the main
difference with partially asynchronous iterations, where delays are bounded; in particular,
the following assumption holds.

Assumption 9 (Partial Asynchronism) For the asynchronous iteration (43), there ex-
ist non-negative integers B and D such that the following conditions hold:

1. At least one of the elements of the set {k, k + 1, . . . , k + B} belongs to Ki for each
i ∈ [m] and all k ∈ N0.

2. k −D ≤ sij,k ≤ k for all i, j ∈ [m] and all k ∈ Ki.

3. sii,k = k for all i ∈ [m] and k ∈ Ki.

Assumptions 9.1 and 9.2 ensure that the time interval between updates executed by
each agent and the communication delays are bounded by B and D, respectively. This
means that no agent waits an arbitrarily long time to compute or to receive a message from
another agent. Assumption 9.3 states that agent i always uses the latest version of its own
component [x]i. Note that when B = D = 0, the asynchronous iteration (43) under partial
asynchronism reduces to the synchronous iteration (42).

We will now present a uniform analysis of the iteration (43) involving block-maximum
norm pseudo-contractions under both partial and total asynchronism, and study its conver-
gence rate under different assumptions on the communication delays and update rates. To
this end, we introduce τk to represent the maximum age of the outdated information being
used to update blocks at global time k ∈ N0. Specifically, we define τk as

τk := k − min
i∈[m]

min
j∈[m]

sij,ti(k), (44)

where ti(k) is the most recent update time of agent i at k ∈ N0, i.e.,

ti(k) = max
{
κ | κ ≤ k ∧ κ ∈ Ki

}
.

41

Feyzmahdavian and Johansson

In this way, if k ∈ Ki then ti(k) = k, and if k ∈ (κ−, κ+) for two consecutive elements κ−

and κ+ of Ki, then ti(k) = κ−. For simplicity, we assume that 0 ∈ Ki for each i, so that
ti(k) is well-defined for all k ∈ N0.

The next result shows that for the asynchronous iteration (43), if Vk = ‖xk − x?‖wb,∞
is used as a candidate Lyapunov function (similarly to the convergence analysis for the
synchronous case), we can establish iterate relationships on the form (10).

Lemma 22 Suppose that T is pseudo-contractive with respect to the block-maximum norm
with contraction modulus c. Let Vk = ‖xk − x?‖wb,∞. Then, the iterates {xk} generated by
the asynchronous iteration (43) satisfy

Vk+1 ≤ c max
(k−τk)+≤`≤k

V`, k ∈ N0,

where τk is defined in (44).

Proof. See Appendix F.1.
We apply Lemma 2 to show that for pseudo-contractions with respect to the block-

maximum norm, the asynchronous iteration (43) converges asymptotically to the fixed point
under total asynchronism.

Theorem 23 Let Assumption 8 hold. Suppose that T is pseudo-contractive with respect to
the block-maximum norm. Then, the sequence {xk} generated by the asynchronous itera-
tion (43) converges asymptotically to the unique fixed point of T .

Proof. See Appendix F.2.
While convergent synchronous algorithms may diverge in the face of asynchronism, The-

orem 23 shows that pseudo-contractive mappings in the block-maximum norm can tolerate
arbitrarily large communication delays and update intervals satisfying Assumption 8. In
addition, as the next result shows, these iterations admit an explicit convergence rate bound
when they are executed in a partially asynchronous fashion.

Theorem 24 Let Assumption 9 hold. Suppose that T is pseudo-contractive with respect to
the block-maximum norm with contraction modulus c. Then, the sequence {xk} generated
by the asynchronous iteration (43) satisfies

‖xk − x?‖wb,∞ ≤ c
k

B+D+1 ‖x0 − x?‖wb,∞, k ∈ N0.

Proof. See Appendix F.3.
According to Theorem 24, the asynchronous iteration (43) involving block-maximum

norm pseudo-contractions remains linearly convergent for bounded communication delays

and update rates. Note that c
1

B+D+1 is monotonically increasing with B and D, and ap-
proaches one as either B or D tends to infinity. Hence, the guaranteed convergence rate
of (43) slows down as either the delays increase in magnitude or agents execute less fre-
quently. The convergence rate is directly related to the number of iterations required for
the algorithm to converge. According to Theorem 24, the asynchronous iteration (43) needs

k ≥ B +D + 1

log(1/c)
log

(
‖x0 − x?‖wb,∞

ε

)

42

Asynchronous Iterations in Optimization

iterations to satisfy ‖xk − x?‖wb,∞ ≤ ε. We can see that the time to reach a fixed target
accuracy deteriorates linearly with both B and D.

We now use Lemma 3 to develop a result that provides guaranteed convergence rates
for the asynchronous algorithm (43) under a rather broad family of communication delays
and update rates, in between the partially and totally asynchronous models.

Theorem 25 Suppose that T is pseudo-contractive with respect to the block-maximum norm
with contraction modulus c. Suppose also that there exists a function Λ : R → R such that
the following conditions hold:

(i) Λ(0) = 1.

(ii) Λ is non-increasing.

(iii) limk→+∞ Λ(k) = 0 and

cΛ(k − τk) ≤ Λ(k + 1), k ∈ N0,

where τk is defined in (44).

Then, the iterates {xk} generated by the asynchronous iteration (43) satisfy

‖xk − x?‖wb,∞ ≤ Λ(k)‖x0 − x?‖wb,∞, k ∈ N.

Proof. See Appendix F.4.

According to Theorem 25, any function Λ satisfying conditions (i)—(iii) can be used
to estimate the convergence rate of the asynchronous iteration (43). Condition (iii) implies
that the admissible choices for Λ depend on τk. This means that the rate at which the nodes
execute their updates as well as the way communication delays tend to large both affect
the guaranteed convergence rate of (43). For example, one can verify that under partial
asynchronism, the function

Λ(t) = c
t

B+D+1

satisfies conditions (i)—(iii). In the following example, we use Theorem 25 and Corollary 4
to establish convergence rates for a particular class of totally asynchronous iterations, where
the communication delays can grow unbounded at a linear rate.

Example 1 For the asynchronous iteration (43), suppose that Ki = N0 for each i ∈ [m].
Suppose also that there exist scalars α ∈ (0, 1) and β ≥ 0 such that

(1− α)k − β ≤ sij,k, i, j ∈ [m], k ∈ Ki. (45)

Note that (45) implies that the communication delays τij,k belong to the interval [0, αk+ β]
and may therefore grow unbounded. In this example, as ti(k) = k, we have

(1− α)k − β ≤ min
i∈[m]

min
j∈[m]

sij,ti(k).

43

Feyzmahdavian and Johansson

Thus, by Lemma 22, the iterates generated by the asynchronous iteration (43) satisfy

Vk+1 ≤ qVk + p max
(k−τk)+≤`≤k

V`, k ∈ N0,

with Vk = ‖xk−x?‖wb,∞, q = 0, p = c, and τk ≤ αk+β. Since q+ p = c < 1, it follows from
Corollary 4 that the function

Λ(t) =

(
αt

1− α+ β
+ 1

)−η
,

with η = ln(c)/ ln(1− α) satisfies conditions (i)—(iii) of Theorem 25. Therefore,

‖xk − x?‖wb,∞ ≤
(

αk

1− α+ β
+ 1

)−η
‖x0 − x?‖wb,∞, k ∈ N0.

We can see that under unbounded communication delays satisfying (45), the convergence
rate of the asynchronous iteration (43) is of order O(1/kη).

Although pseudo-contractions in the block-maximum norm converge when executed in
a totally asynchronous manner, we note that in many applications, it is rare that the
associated fixed-point iterations are maximum norm contractions. For instance, the gradient
descent iterations for unconstrained optimization problems are maximum norm contractions
if the Hessian matrix of the cost function is diagonally dominant (Bertsekas and Tsitsiklis,
2015, Section 3.1.3). The diagonal dominance assumption is quite strong and violated
even by some strongly convex quadratic objective functions (Bertsekas and Tsitsiklis, 2015,
Example 6.3.1).

Remark 26 Bertsekas and Tsitsiklis (2015) proved that contractions in the block-maximum
norm converge when executed in a totally asynchronous manner. However, they did not
quantify how bounds on the communication delays and update rates of agents affect the con-
vergence rate of the iterates. There are very few results in the literature on convergence rates
of asynchronous iterations involving block-maximum norm contractions. Notable exceptions
are the works of Bertsekas and Tsitsiklis (1989) and Zeng et al. (2020), where the conver-
gence rate of iterates was estimated under partial asynchronism. Theorems 23, 24 and 25
demonstrate that not only do we recover the asymptotic convergence results in Bertsekas
and Tsitsiklis (2015) for maximum norm pseudo-contractions, but we also provide explicit
bounds on the convergence rate of asynchronous iterations for various classes of bounded
and unbounded communication delays and update rates.

5. Conclusions

We introduced a number of novel sequence results for asynchronous iterations that appear
in the analysis of parallel and asynchronous algorithms. In contrast to previous analysis
frameworks, which have used conservative bounds for the effects of asynchrony, our results
attempt to capture the inherent structure in the asynchronous iterations. The results bal-
ance simplicity, applicability and power, and provide explicit bounds on how the amount
of asynchrony affects the guaranteed convergence rates. To demonstrate the potential of

44

Asynchronous Iterations in Optimization

the sequence results, we illustrated how they can be used to improve our theoretical under-
standing of several important classes of asynchronous optimization algorithms. First, we
derived better iteration complexity bounds for the proximal incremental aggregated gradi-
ent method, reducing the dependence of the convergence times on the maximum delay and
problem condition number. Second, we provided tighter guarantees for the asynchronous
stochastic gradient descent method that depend on the average delay rather on the maxi-
mal delay. Third, we gave an improved analysis of the ARock framework for asynchronous
block-coordinate updates of Krasnosel’skĭi–Mann iterations, proving a larger range of ad-
missible step-sizes, faster convergence rates and better scaling properties with respect to
the number of parallel computing elements. Finally, we gave a uniform treatment of asyn-
chronous iterations involving block-norm contractions under partial and (several versions
of) total asynchronism.

Appendix A. Proofs for Section 2

Lemma 27 Suppose f is L-smooth and µ-strongly convex. Consider the delayed gradient

method (3) with γ ∈
(

0, 2
µ+L

]
and let ωk be the perturbation term defined in (5). Then,

ωk ≤
(
γ4L4τ2 + 2γ2L2τ

)
max

(k−2τ)+≤`≤k

{
‖x` − x?‖2

}
.

Proof. Applying the Cauchy-Schwarz inequality, we obtain

ωk ≤ 2γ‖∇f(xk)−∇f(xk−τ)‖‖xk − γ∇f(xk)− x?‖+ γ2‖∇f(xk)−∇f(xk−τ)‖2.

We use L-smoothness of f to bound ‖∇f(xk)−∇f(xk−τ)‖. Specifically,

‖∇f(xk)−∇f(xk−τ)‖ ≤ L‖xk − xk−τ‖
(3)
= L

∥∥∥∥∥∥
k−1∑

`=(k−τ)+

γ∇f(x`−τ)

∥∥∥∥∥∥
≤ γL

k−1∑
`=(k−τ)+

‖∇f(x`−τ)‖,

where the last inequality follows from the triangle inequality. Since ∇f(x?) = 0, we have

‖∇f(xk)−∇f(xk−τ)‖ ≤ γL2
k−1∑

`=(k−τ)+

‖x`−τ − x?‖ ≤ γL2τ max
(k−2τ)+≤`≤k

{‖x` − x?‖} .

From (1), ‖xk − γ∇f(xk)− x?‖ ≤ ‖xk − x?‖ holds for the proposed range of γ. Thus,

ωk ≤ 2γ2L2τ‖xk − x?‖ max
(k−2τ)+≤`≤k

{‖x` − x?‖}+ γ4L4τ2 max
(k−2τ)+≤`≤k

{
‖x` − x?‖2

}
≤
(
γ4L4τ2 + 2γ2L2τ

)
max

(k−2τ)+≤`≤k

{
‖x` − x?‖2

}
.

45

Feyzmahdavian and Johansson

Lemma 28 Suppose f is L-smooth and convex. Then, the iterates generated by (3) satisfy

f(xk)− f? +
1

2L
‖∇f(xk−τ)‖2 − γ2Lτ

2

k−1∑
`=(k−τ)+

‖∇f(x`−τ)‖2 ≤ 〈∇f(xk−τ), xk − x?〉.

Proof. According to Theorem 2.1.5 in Nesterov (2013), we have

f(xk) ≤ f(xk−τ) +
〈
∇f(xk−τ), xk − xk−τ

〉
+
L

2
‖xk − xk−τ‖2

≤ f? +
〈
∇f(xk−τ), xk − x?

〉
− 1

2L

∥∥∇f(xk−τ)
∥∥2 +

L

2
‖xk − xk−τ‖2. (46)

We can bound the final term by

‖xk − xk−τ‖2
(3)
=

∥∥∥∥∥∥
k−1∑

`=(k−τ)+

γ∇f(x`−τ)

∥∥∥∥∥∥
2

≤ γ2τ
k−1∑

`=(k−τ)+

‖∇f(x`−τ)‖2, (47)

where the inequality follows from the convexity of ‖ · ‖2. Substituting (47) into (46), and
rearranging the terms conclude the proof.

Appendix B. Proofs for Section 3

This section provides the proofs for the results presented in Section 3.

B.1 Proof of Lemma 2

The proof idea is inspired by the convergence theorem for totally asynchronous itera-
tions (Bertsekas and Tsitsiklis, 2015, Proposition 6.2.1). We first use perfect induction
to prove that

Vk ≤ V0, k ∈ N0. (48)

Since V0 satisfies (48), the induction hypothesis is true for k = 0. Now, assume that (48)
holds for all k up to some K ∈ N0. This means that VK ≤ V0 and

max
(K−τK)+≤`≤K

V` ≤ V0.

Thus, from (13), we have

VK+1 ≤ (q + p)V0

≤ V0,

where the second inequality follows from the fact that q+ p ∈ (0, 1). Therefore, VK+1 ≤ V0
and, hence, the induction proof is complete. Next, we prove that Vk converges to zero as
k → +∞. To this end, we use induction to show that for each m ∈ N0, there exists Km ∈ N0

such that

Vk ≤ (q + p)mV0, ∀k ≥ Km. (49)

46

Asynchronous Iterations in Optimization

From (48), Vk ≤ (q + p)0V0 for all k ≥ 0. Thus, the induction hypothesis holds for m = 0
(with K0 = 0). Assuming (49) is true for a given m, we will show that there exists
Km+1 ∈ N0 such that Vk ≤ (q + p)m+1V0 for all k ≥ Km+1. From (14), one can find a
sufficiently large Km ≥ Km such that k − τk ≥ Km for k ≥ Km. Since (49) holds by
induction, we have

max
(k−τk)+≤`≤k

V` ≤ (q + p)mV0, ∀k ≥ Km.

It follows from (13) that

Vk+1 ≤ (q + p)(q + p)mV0

= (q + p)m+1V0, ∀k ≥ Km,

which implies that

Vk ≤ (q + p)m+1V0, ∀k ≥ Km + 1.

Set Km+1 = Km + 1. The induction proof is complete. In summary, we conclude that for
each m, there exists Km such that Vk ≤ (q+p)mV0 for all k ≥ Km. Since q+p < 1, (q+p)m

approaches zero as m→ +∞. Hence, the sequence Vk asymptotically converges to zero.

B.2 Proof of Lemma 3

We will show by induction that

Vk ≤ Λ(k)V0, k ∈ N0. (50)

Since Λ(0) = 1, the induction hypothesis is true for k = 0. Assume for induction that (50)
holds for all k up to some K. From (15), we have

VK+1 ≤ qΛ(K)V0 + p max
(K−τK)+≤`≤K

Λ(`)V0

≤ qΛ(K)V0 + p max
K−τK≤`≤K

Λ(`)V0.

Since Λ is non-increasing on R, we obtain VK+1 ≤ (q + p) Λ(K−τK)V0. It follows from (16)
that VK+1 ≤ Λ(K + 1)V0. Therefore, (50) holds for k = K + 1. The induction proof is
complete.

B.3 Proof of Lemma 5

Let us define Wk = 0 for k ∈ {. . . ,−2,−1}. Dividing both sides of (18) by Qk+1, summing
from k = 0 to K, and then using telescoping cancellation, we have

K∑
k=0

Xk

Qk+1
+
VK+1

QK+1
≤ V0 +

K∑
k=0

k∑
`=(k−τk)+

pkW`

Qk+1
−

K∑
k=0

rkWk

Qk+1
+

K∑
k=0

ek
Qk+1

= V0 +
K∑
k=0

k∑
`=k−τk

pkW`

Qk+1
−

K∑
k=0

rkWk

Qk+1
+

K∑
k=0

ek
Qk+1

.

47

Feyzmahdavian and Johansson

Since τk ≤ τ for all k ∈ N0, we obtain

K∑
k=0

Xk

Qk+1
+
VK+1

QK+1
≤ V0 +

K∑
k=0

k∑
`=k−τ

pkW`

Qk+1
−

K∑
k=0

rkWk

Qk+1
+

K∑
k=0

ek
Qk+1

= V0 +

τ∑
`=0

K−∑̀
k=−`

pk+`Wk

Qk+`+1
−

K∑
k=0

rkWk

Qk+1
+

K∑
k=0

ek
Qk+1

≤ V0 +

τ∑
`=0

K∑
k=0

pk+`Wk

Qk+`+1
−

K∑
k=0

rkWk

Qk+1
+

K∑
k=0

ek
Qk+1

= V0 −
K∑
k=0

(
rk

Qk+1
−

τ∑
`=0

pk+`
Qk+`+1

)
Wk +

K∑
k=0

ek
Qk+1

, (51)

where the second inequality comes from our assumption that Wk ≥ 0 for k ≥ 0 and Wk = 0
for k < 0. We are now ready to prove Lemma 5.

1. In this case, qk = 1 and, hence, Qk = 1 for each k. Thus, (51) simplifies to

K∑
k=0

Xk + VK+1 ≤ V0 −
K∑
k=0

(
rk −

τ∑
`=0

pk+`

)
Wk +

K∑
k=0

ek.

The assumption that

τ∑
`=0

pk+` ≤ rk

holds for every k ∈ N0 implies that

K∑
k=0

Xk + VK+1 ≤ V0 +
K∑
k=0

ek.

Since {Xk} and {Vk} are non-negative sequences, it follows that

K∑
k=0

Xk ≤ V0 +
K∑
k=0

ek and VK+1 ≤ V0 +
K∑
k=0

ek

hold for K ∈ N0.
2. In this case, pk = p and rk = r. Thus, (51) simplifies to

K∑
k=0

Xk

Qk+1
+
VK+1

QK+1
≤ V0 −

K∑
k=0

(
r

Qk+1
−

τ∑
`=0

p

Qk+`+1

)
Wk +

K∑
k=0

ek
Qk+1

. (52)

For each k ∈ N0 and ` ∈ [0, τ], we have

Qk+`+1 = Qk+1

`−1∏
s=0

qk+s+1

≥ Qk+1q
`,

48

Asynchronous Iterations in Optimization

where the inequality uses qk ≥ q for k ∈ N0. Since q ∈ (0, 1], we have q` ≥ qτ for ` ∈ [0, τ],
implying that Qk+`+1 ≥ Qk+1q

τ . Combining this inequality with (52) yields

K∑
k=0

Xk

Qk+1
+
VK+1

QK+1
≤ V0 −

(
r − p(τ + 1)q−τ

) K∑
k=0

Wk

Qk+1
+

K∑
k=0

ek
Qk+1

. (53)

By Bernoulli’s inequality, i.e., (1 + x)n ≥ 1 + nx for any n ∈ N0 and any x > −1, we have

qτ = (1− (1− q))τ

≥ 1− (1− q)τ. (54)

The assumption that 2τ + 1 ≤ 1/(1− q) implies that (1− q) ≤ 1/(2τ + 1) and thereby

1− (1− q)τ ≥ τ + 1

2τ + 1
.

By (54), it therefore holds that

qτ ≥ τ + 1

2τ + 1
,

or equivalently, q−τ (τ + 1) ≤ (2τ + 1). From (53), we then have

K∑
k=0

Xk

Qk+1
+
VK+1

QK+1
≤ V0 − (r − (2τ + 1)p)

K−1∑
k=0

Wk

Qk+1
+

K∑
k=0

ek
Qk+1

.

The assumption that 2τ + 1 ≤ r/p allows us to drop the second term on the right-hand
side. Thus,

K∑
k=0

Xk

Qk+1
+
VK+1

QK+1
≤ V0 +

K∑
k=0

ek
Qk+1

, K ∈ N,

which concludes the proof.

Appendix C. Proofs for Subsection 4.1

This section provides the proofs for the results presented in Subsection 4.1. We first state
two key lemmas which establish important recursions for the iterates generated by Piag.

Lemma 29 Suppose Assumptions 1 and 2 hold. Let {xk} be the sequence generated by
Algorithm 2. Then, for any x? ∈ X ? and every k ∈ N0, we have

P (xk+1)− P ? +
1

2γ
‖xk+1 − x?‖2 ≤

1

2γ
‖xk − x?‖2 +

L
(
τ + 1

)
2

k∑
`=(k−τ)+

‖x`+1 − x`‖2

− 1

2γ
‖xk+1 − xk‖2. (55)

49

Feyzmahdavian and Johansson

Proof. At iteration k ∈ N0, the update rule in Algorithm 2 is of the form

gk =
1

n

n∑
i=1

∇fi
(
xsi,k

)
,

xk+1 = proxγR(xk − γgk).

We write the proximal mapping more explicitly as

xk+1 = argmin
u∈Rd

{
1

2

∥∥u− (xk − γgk)
∥∥2 + γR(u)

}
. (56)

From the first-order optimality condition for the point u in the minimization problem (56),
there is a sub-gradient ξk+1 ∈ ∂R(xk+1) such that〈

xk+1 − xk + γ(gk + ξk+1), x
? − xk+1

〉
≥ 0. (57)

Since R is convex, we have

R(xk+1) ≤ R(x?) +
〈
ξk+1, xk+1 − x?

〉
(57)

≤ R(x?) +
〈xk − xk+1

γ
− gk, xk+1 − x?

〉
= R(x?) +

1

2γ

(
‖xk − x?‖2 − ‖xk+1 − xk‖2 − ‖xk+1 − x?‖2

)
−
〈
gk, xk+1 − x?

〉
,

(58)

where the last equality follows from the fact

2〈a− b, b− c〉 = ‖a− c‖2 − ‖a− b‖2 − ‖b− c‖2, a, b, c ∈ Rd.

By Assumption 2, each component function fi is Li-smooth. Thus, from Lemma 1.2.3
in Nesterov (2013), we have

fi(xk+1) ≤ fi(xsi,k) +
〈
∇fi(xsi,k), xk+1 − xsi,k

〉
+
Li
2

∥∥xk+1 − xsi,k
∥∥2

≤ fi(x?) +
〈
∇fi(xsi,k), xk+1 − x?

〉
+
Li
2

∥∥xk+1 − xsi,k
∥∥2,

where the second inequality follows from the convexity of fi. Dividing both sides of the
above inequality by n and then summing from i = 1 to n, we obtain

F (xk+1) ≤ F (x?) + 〈gk, xk+1 − x?〉+

n∑
i=1

Li
2n

∥∥xk+1 − xsi,k
∥∥2. (59)

By adding inequalities (58) and (59), rearranging the terms, and recalling that P (x) =
F (x) +R(x), we have

P (xk+1)− P ? +
1

2γ
‖xk+1 − x?‖2 ≤

1

2γ
‖xk − x?‖2 +

n∑
i=1

Li
2n

∥∥xk+1 − xsi,k
∥∥2

︸ ︷︷ ︸
H

− 1

2γ
‖xk+1 − xk‖2. (60)

50

Asynchronous Iterations in Optimization

Next, we find an upper bound on the term H. We expand H as follows:

H =

n∑
i=1

Li
2n

∥∥∥∥∥∥
k∑

`=si,k

x`+1 − x`

∥∥∥∥∥∥
2

=

n∑
i=1

Li
(
k − si,k + 1

)2
2n

∥∥∥∥∥∥
k∑

`=si,k

x`+1 − x`
k − si,k + 1

∥∥∥∥∥∥
2

.

The squared Euclidean norm (‖ · ‖2) is convex. Thus,

H ≤
n∑
i=1

Li
(
k − si,k + 1

)
2n

k∑
`=si,k

‖x`+1 − x`‖2.

Since (k − τ)+ ≤ si,k ≤ k for all i ∈ [n] and k ∈ N0, we have

H ≤
n∑
i=1

Li
(
τ + 1

)
2n

k∑
`=(k−τ)+

‖x`+1 − x`‖2

(21)
=

L
(
τ + 1

)
2

k∑
`=(k−τ)+

‖x`+1 − x`‖2. (61)

Substituting (61) into the bound (60) concludes the proof.

Lemma 30 Suppose Assumptions 1 and 2 hold. Let {αk} be a sequence of non-negative
numbers. Then, for every k ∈ N0, the sequence {xk} generated by Algorithm 2 satisfies

αk
(
P (xk+1)− P ?

)
≤ αk

(
P (xk)− P ?

)
+
Lαk

2

k∑
`=(k−τ)+

‖x`+1 − x`‖2

− αk
(

1

γ
− Lτ

2

)
‖xk+1 − xk‖2. (62)

Proof. According to Assumption 2, each component function fi, i ∈ [n], is Li-smooth. It
follows from the second inequality of (3.5) in Lemma 3.4 in Vanli et al. (2018) that

P (xk+1)− P ? ≤ P (xk)− P ? +
L

2

k−1∑
`=(k−τ)+

‖x`+1 − x`‖2 −
(

1

γ
− L(τ + 1)

2

)
‖xk+1 − xk‖2

= P (xk)− P ? +
L

2

k∑
`=(k−τ)+

‖x`+1 − x`‖2 −
(

1

γ
− Lτ

2

)
‖xk+1 − xk‖2.

Multiplying both sides of the above inequality by the non-negative number αk proves the
lemma.

51

Feyzmahdavian and Johansson

C.1 Proof of Lemma 6

Since αk = k+α0 with α0 ≥ 0, the sequence {αk} is non-negative and satisfies αk+1 = αk+1
for every k ∈ N0. Adding inequalities (55) and (62), and rearranging the terms, we have

αk+1

(
P (xk+1)− P ?

)
+

1

2γ
‖xk+1 − x?‖2 ≤ αk

(
P (xk)− P ?

)
+

1

2γ
‖xk − x?‖2

+
L
(
αk + τ + 1

)
2

k∑
`=(k−τ)+

‖x`+1 − x`‖2

− 1

2

(
2αk + 1

γ
− αkLτ

)
‖xk+1 − xk‖2. (63)

Multiplying both sides by 2γ and then letting Vk = 2γαk
(
P (xk) − P ?

)
+ ‖xk − x?‖2 and

Wk = ‖xk+1 − xk‖2, we can rewrite (63) as

Vk+1 ≤ Vk + γL
(
αk + τ + 1

) k∑
`=(k−τ)+

W` −
(
2αk + 1− γαkLτ

)
Wk, k ∈ N0.

The proof is complete.

C.2 Proof of Theorem 7

According to Lemma 6, the iterates generated by Algorithm 2 satisfy

Vk+1 ≤ Vk + pk

k∑
`=(k−τ)+

W` − rkWk, k ∈ N0,

where pk = γL
(
αk + τ + 1

)
, rk = 2αk + 1− γLταk, and αk = k + α0. To apply Lemma 5,

we need to enforce that the convergence condition

τ∑
`=0

γL
(
α`+k + τ + 1

)
≤ 2αk + 1− γLταk

is satisfied for every k ∈ N0. This inequality is equivalent to

γL ≤ 2αk + 1

ταk +
∑τ

`=0

(
α`+k + τ + 1

) . (64)

We will prove that if α0 = τ and γL(2τ + 1) ≤ 1, then (64) holds for all k ∈ N0. Replacing
αk = k + τ in (64), we have

2αk + 1

ταk +
∑τ

`=0

(
α`+k + τ + 1

) =
2k + 2τ + 1

(2τ + 1)k + 7
2τ

2 + 7
2τ + 1

=
1

2τ + 1
+

(2τ + 1)k + 1
2τ(τ + 1)

(2τ + 1)
(
(2τ + 1)k + 7

2τ
2 + 7

2τ + 1
) .

52

Asynchronous Iterations in Optimization

The second term on the right-hand side is non-negative for any τ ∈ N0 and k ∈ N0. Thus,

1

2τ + 1
≤ 2αk + 1

ταk +
∑τ

`=0

(
α`+k + τ + 1

) , k ∈ N0.

This shows that if

γL ≤ 1

2τ + 1
,

then (64) holds for k ∈ N0, and hence the convergence condition (19) in Lemma 5 is
satisfied. It follows from part 1 of Lemma 5 that Vk ≤ V0 for k ∈ N. Recalling that
Vk = 2γαk

(
P (xk)− P ?

)
+ ‖xk − x?‖2, we obtain

2γ(k + τ)
(
P (xk)− P ?

)
+ ‖xk − x?‖2 ≤ 2γτ

(
P (x0)− P ?

)
+ ‖x0 − x?‖2, k ∈ N.

By dropping the second term on the left-hand side and dividing both sides by 2γ(k + τ),
we finish the proof.

C.3 Proof of Lemma 9

According to Lemma 29 in Appendix C, the relation (55) holds for every x? ∈ X ?. Taking
x? = ΠX ?(xk) in (55), we get

P (xk+1)− P ? +
1

2γ
‖xk+1 −ΠX ?(xk)‖2 ≤

1

2γ
‖xk −ΠX ?(xk)‖2

+
L
(
τ + 1

)
2

k∑
`=(k−τ)+

‖x`+1 − x`‖2 −
1

2γ
‖xk+1 − xk‖2. (65)

By the projection property, we have ‖xk+1 −ΠX ?(xk+1)‖ ≤ ‖xk+1 −ΠX ?(xk)‖. Combining
this inequality with (65) yields

P (xk+1)− P ? +
1

2γ
‖xk+1 −ΠX ?(xk+1)‖2 ≤

1

2γ
‖xk −ΠX ?(xk)‖2

+
L
(
τ + 1

)
2

k∑
`=(k−τ)+

‖x`+1 − x`‖2 −
1

2γ
‖xk+1 − xk‖2. (66)

Adding inequalities (62) and (66), and setting αk = α for some α > 0, we have

(1 + α)
(
P (xk+1)− P ?

)
+

1

2γ
‖xk+1 −ΠX?(xk+1)‖2 ≤ α

(
P (xk)− P ?

)
+

1

2γ
‖xk −ΠX?(xk)‖2

+
L
(
α+ τ + 1

)
2

k∑
`=(k−τ)+

‖x`+1 − x`‖2

− 1

2

(
2α+ 1

γ
− αLτ

)
‖xk+1 − xk‖2. (67)

53

Feyzmahdavian and Johansson

Let θ = Q
Q+1 . Note that θ ∈ (0, 1). It follows from Assumption 3 that

(1 + α)
(
P (xk+1)− P ?

)
= θ
(
P (xk+1)− P ?

)
+ (1− θ + α)

(
P (xk+1)− P ?

)
≥ µθ

2
‖xk+1 −ΠX ?(xk+1)‖2 + (1− θ + α)

(
P (xk+1)− P ?

)
.

Combining the above inequality with (67) and then multiplying both sides by 2γ, we obtain

2γ(1− θ + α)
(
P (xk+1)− P ?

)
+ (1 + γµθ)‖xk+1 −ΠX ?(xk+1)‖2

≤ 2αγ
(
P (xk)− P ?

)
+ ‖xk −ΠX ?(xk)‖2

+ γL
(
α+ τ + 1

) k∑
`=(k−τ)+

‖x`+1 − x`‖2

− (2α+ 1− γαLτ) ‖xk+1 − xk‖2. (68)

By letting α = 1
γL , Vk = 2

L (P (xk)− P ?) + ‖xk − ΠX ?(xk)‖2 and Wk = ‖xk+1 − xk‖2, the
inequality (68) can be rewritten as

(1 + γµθ)Vk+1 ≤ Vk +
(
1 + γL(τ + 1)

) k∑
`=(k−τ)+

W` −
(

2

γL
+ 1− τ

)
Wk.

Dividing both sides by 1 + γµθ completes the proof.

C.4 Proof of Theorem 10

According to Lemma 9, the iterates generated by Algorithm 2 satisfy

Vk+1 ≤ qVk + p
k∑

`=(k−τ)+

W` − rWk

for every k ∈ N0, where

q =
1

1 + γµθ
, p =

1 + γL
(
τ + 1

)
1 + γµθ

and r =

2
γL + 1− τ
1 + γµθ

.

To apply Lemma 5, we need to ensure that

2τ + 1 ≤ min

{
1

γµθ
+ 1,

2
γL + 1− τ

1 + γL
(
τ + 1

)} .
This convergence condition is equivalent to{

2γµθτ ≤ 1,

γ2L2(2τ + 1)(τ + 1) + 3γLτ ≤ 2.
(69)

54

Asynchronous Iterations in Optimization

Define h = γL(2τ + 1). The inequalities (69) can be rewritten in terms of h, Q (recall that
θ = Q

Q+1), and τ as {
2hτ ≤ (Q+ 1)(2τ + 1),

h2(τ + 1) + 3hτ ≤ 2(2τ + 1).
(70)

For any fixed τ , the left-hand side of inequalities (70) is non-decreasing in h ≥ 0 and smaller
than the right-hand side for h = 1. Thus, the inequalities (70) hold for any h ∈ [0, 1]. This
shows that if γ is set to

γ =
h

L(2τ + 1)
, h ∈ (0, 1],

then the convergence condition (69) is satisfied. Therefore, by part 2 of Lemma 5, Vk ≤ qkV0
for k ∈ N. Since Vk = 2

L (P (xk)− P ?) + ‖xk −ΠX ?(xk)‖2, it follows that

2

L
(P (xk)− P ?) + ‖xk −ΠX ?(xk)‖2

≤
(

1

1 + γµθ

)k (2

L

(
P (x0)− P ?

)
+ ‖x0 −ΠX ?(x0)‖2

)
=

(
1− 1

1 + (Q+ 1)(2τ + 1)/h

)k (2

L

(
P (x0)− P ?

)
+ ‖x0 −ΠX ?(x0)‖2

)
.

Appendix D. Proofs for Subsection 4.2

In this section, we provide the proofs for the results presented in Subsection 4.2. We
denote by E the expectation with respect to the underlying probability space and by Ek the
conditional expectation with respect to the past, that is, with respect to {ξ0, . . . , ξk−1}.

We first state a useful lemma which helps us to determine admissible step-sizes for the
asynchronous Sgd method.

Lemma 31 Assume that α and β are non-negative real numbers. If α(β + 1) ≤ 1, then

α2β2 + α ≤ 1.

Proof. If α(β + 1) ≤ 1 holds, then α ≤ 1/(β + 1) and α2 ≤ 1/(β + 1)2. Thus,

α2β2 + α ≤ β2

(β + 1)2
+

1

β + 1

=
β2 + β + 1

(β + 1)2
.

Since β ≥ 0, one can verify that β2 + β + 1 ≤ (β + 1)2, implying that the right-hand side
of the above inequality is less than or equal to 1. Therefore, α2β2 + α ≤ 1.

55

Feyzmahdavian and Johansson

D.1 Proof of Lemma 13

When γk = 0, xk+1 = xk. This implies that ‖xk+1−x?‖2 = ‖xk−x?‖2, and hence Vk+1 = Vk.
Below, we assume γk > 0.

By subtracting x? from both sides of (29) and then taking norm squares, we have

‖xk+1 − x?‖2 = ‖xk − x?‖2 − 2γk 〈xk − x?,∇f(xk−τk , ξk)〉+ γ2k ‖∇f(xk−τk , ξk)‖
2 . (71)

Taking conditional expectation on both sides of (71) with respect to {ξ0, . . . , ξk−1} leads to

Ek
[
‖xk+1 − x?‖2

]
= ‖xk − x?‖2 − 2γk

〈
xk − x?,∇F (xk−τk)

〉
+ γ2kEk

[
‖∇f(xk−τk , ξk)‖

2
]

= ‖xk − x?‖2 − 2γk
〈
xk − x?,∇F (xk−τk)

〉
+ γ2kEk

[
‖∇f(xk−τk , ξk)−∇F (xk−τk)‖2

]
+ γ2k‖∇F (xk−τk)‖2,

where the second equality uses the fact that E[‖x
∥∥2] = E[‖x − E[x]‖2] + ‖E[x]‖2 for any

random vector x ∈ Rd. According to Assumption 5, stochastic gradients have bounded
variance. Thus,

Ek
[
‖xk+1 − x?‖2

]
≤ ‖xk − x?‖2 − 2γk

〈
xk − x?,∇F (xk−τk)

〉
+ γ2kσ

2 + γ2k‖∇F (xk−τk)‖2. (72)

1. Convex case

Since F is convex and L-smooth, it follows from Theorem 2.1.5 in Nesterov (2013) that

F (xk−τk) + 〈x? − xk−τk , ∇F (xk−τk)〉+
1

2L
‖∇F (xk−τk)‖2 ≤ F ?. (73)

Moreover, from Lemma 1.2.3 in Nesterov (2013), we have

F (xk) ≤ F (xk−τk) +
〈
xk − xk−τk , ∇F (xk−τk)

〉
+
L

2

∥∥xk − xk−τk∥∥2. (74)

By adding inequalities (73) and (74) and then rearranging the terms, we get

F (xk)− F ? ≤
〈
xk − x?, ∇F (xk−τk)

〉
+
L

2

∥∥xk − xk−τk∥∥2 − 1

2L

∥∥∇F (xk−τk)
∥∥2.

Combining this inequality with (72) and taking the full expectation on both sides, we obtain

2γkE
[
F (xk)− F ?

]
+ E

[
‖xk+1 − x?‖2

]
≤ E

[
‖xk − x?‖2

]
+ γkLE

[
‖xk − xk−τk

∥∥2]︸ ︷︷ ︸
H

−
(γk
L
− γ2k

)
E
[∥∥∇F (xk−τk)

∥∥2]+ γ2kσ
2. (75)

Next, we find an upper bound on the term H. From the first inequality in the proof of
Lemma 15 in Koloskova et al. (2022), we have

E
[
‖xk − xk−τk‖

2
]
≤ 2τk

k−1∑
`=(k−τk)+

γ2`E
[
‖∇F (x`−τ`)‖

2]+ 2σ2
k−1∑

`=(k−τk)+

γ2` .

56

Asynchronous Iterations in Optimization

Substituting the above inequality into (75) yields

2γkE
[
F (xk)− F ?

]
+ E

[
‖xk+1 − x?‖2

]
≤ E

[
‖xk − x?‖2

]
+ 2γkτkL

k−1∑
`=(k−τk)+

γ2`E
[
‖∇F (x`−τ`)‖

2]
−
(γk
L
− γ2k

)
E
[∥∥∇F (xk−τk)

∥∥2]
+

γ2k + 2γkL

k−1∑
`=(k−τk)+

γ2`

σ2. (76)

By letting Xk = 2γkE
[
F (xk) − F ?

]
, Vk = E

[
‖xk − x?‖2

]
, and Wk = γ2kE

[∥∥∇F (xk−τk)
∥∥2],

we can rewrite (76) as

Xk + Vk+1 ≤ Vk + 2γkτkL
k−1∑

`=(k−τk)+

W` −
(

1

γkL
− 1

)
Wk +

γ2k + 2γkL

k−1∑
`=(k−τk)+

γ2`

σ2.

2. Strongly convex case

If F is µ-strongly convex, then

µ

2
‖xk − x?‖2 ≤ F (xk)− F ?,

which implies that γkµVk ≤ Xk. Therefore,

Vk+1 ≤ (1− γkµ)Vk + 2γkτkL

k−1∑
`=(k−τk)+

W` −
(

1

γkL
− 1

)
Wk +

γ2k + 2γkL

k−1∑
`=(k−τk)+

γ2`

σ2.

This completes the proof.

D.2 Proof of Theorem 14

For any K ∈ N0, define the sets TK = {k ≤ K | τk ≤ τth} and T K = {k ≤ K | τk > τth}.
Since γk = γ for τk ≤ τth and γk = 0 for τk > τth, we have

γk =

{
γ, k ∈ TK ,
0, k ∈ T K .

1. Convex case

57

Feyzmahdavian and Johansson

For any k ∈ TK , according to Lemma 13, the iterates generated by Algorithm 3 satisfy

Xk + Vk+1 ≤ Vk + 2γτkL

k−1∑
`=(k−τk)+

W` −
(

1

γL
− 1

)
Wk + (1 + 2γτkL) γ2σ2

≤ Vk + 2γτthL
k−1∑

`=(k−τth)+

W` −
(

1

γL
− 1

)
Wk + (1 + 2γτthL) γ2σ2

= Vk + 2γτthL

k∑
`=(k−τth)+

W` −
(

1

γL
+ 2γτthL− 1

)
Wk + (1 + 2γτthL) γ2σ2,

(77)

where the second inequality uses τk ≤ τth for k ∈ TK . For k ∈ T K , γk = 0 and, hence,
Xk = 0. Thus, by Lemma 13, we have

Xk + Vk+1 = Vk, k ∈ T K .

Next, note that this implies that (77) also holds for k ∈ T K since W` is non-negative for
all ` ∈ N0, Wk = 0 for k ∈ T K , and (1 + 2γτthL) γ2σ2 ≥ 0. Therefore,

Xk + Vk+1 ≤ Vk + p
k∑

`=(k−τth)+

W` − rWk + e

with p = 2γτthL, r = 1
γL + 2γτthL− 1, and e = (1 + 2γτthL) γ2σ2 is satisfied by the iterates

for every k. To apply Lemma 5, we need to ensure that

2γτthL(τth + 1) ≤
(

1

γL
+ 2γτthL− 1

)
.

This convergence condition is equivalent to

2γ2τ2thL
2 + γL ≤ 1. (78)

Using Lemma 31 in Appendix D with α = γL and β = τth
√

2, we choose the step-size γ as

γ ∈
(

0,
1

L(τth
√

2 + 1)

]
to guarantee the convergence condition (78). It follows from part 1 of Lemma 5 that

K∑
k=0

Xk ≤ V0 + (K + 1)e, K ∈ N0.

Since V0 = ‖x0 − x?‖2, Xk = 2γkE
[
F (xk)− F ?

]
and e = (1 + 2γτthL) γ2σ2, we obtain

2
K∑
k=0

γkE
[
F (xk)− F ?

]
≤ ‖x0 − x?‖2 + (K + 1) (1 + 2γτthL) γ2σ2

≤ ‖x0 − x?‖2 + (K + 1)(1 +
√

2)γ2σ2,

58

Asynchronous Iterations in Optimization

where the second inequality follows since γ is selected to make γL(τth
√

2 + 1) ≤ 1. By the
convexity of F and definition of x̄K , we have

F (x̄K)− F ? = F

(
1∑K

k=0 γk

K∑
k=0

γkxk

)
− F ? ≤ 1∑K

k=0 γk

K∑
k=0

γk(F (xk)− F ?),

which implies that

E
[
F (x̄K)− F ?

]
≤
‖x0 − x?‖2 + (K + 1)

(
1 +
√

2
)
γ2σ2

2
∑K

k=0 γk
, K ∈ N0. (79)

Next, we will find a lower bound on
∑K

k=0 γk. As γk = γ for k ∈ TK and γk = 0 for k ∈ T K ,
we have

K∑
k=0

γk = γ|TK |. (80)

We consider two cases:

1. If 2τave ≤ τmax, then 2τave ≤ τth. As observed by Koloskova et al. (2022), since

K∑
k=0

τk = (K + 1)τave,

at most b(K + 1)/2c of the terms on the left-hand side of the above equality can be
larger than 2τave. Thus, there are at least half of the iterations with the delay smaller
than 2τave and, hence, τth. This implies that (K + 1)/2 ≤ |TK |.

2. If τmax ≤ 2τave, then τmax ≤ τth. In this case, we have τk ≤ τth for all k = 0, . . . ,K
since τk ≤ τmax for k ∈ N0. This shows that |TK | = K + 1.

Therefore, (K + 1)/2 ≤ |TK |. From (80), we then have

K∑
k=0

γk ≥
γ(K + 1)

2
.

Combining this inequality with (79) leads to

E
[
F (x̄K)− F ?

]
≤ ‖x0 − x

?‖2

γ(K + 1)
+ (1 +

√
2)γσ2, K ∈ N0.

2. Strongly convex case
Similar to the proof for the convex case,

Vk+1 ≤ (1− γµ)Vk + 2γτthL

k∑
`=(k−τth)+

W` −
(

1

γL
+ 2γτthL− 1

)
Wk + (1 + 2γτthL) γ2σ2 (81)

59

Feyzmahdavian and Johansson

is satisfied for k ∈ TK . For k ∈ T K , γk = 0. Thus, according to Lemma 13, we have
Vk+1 = Vk for k ∈ T K . This implies that

Vk+1 ≤ Vk + 2γτthL
k∑

`=(k−τth)+

W` −
(

1

γL
+ 2γτthL− 1

)
Wk (82)

holds for k ∈ T K since W` is non-negative for ` ∈ N0 and Wk = 0 for k ∈ T K . It follows
from (81) and (82) that the iterates generated by Algorithm 3 satisfy

Vk+1 ≤ qkVk + 2γτthL
k∑

`=(k−τth)+

W` −
(

1

γL
+ 2γτthL− 1

)
Wk + ek,

where qk = 1 and ek = 0 for k ∈ T K , and qk = 1 − γµ and ek = (1 + 2γτthL) γ2σ2 for
k ∈ TK . Let q = 1 − γµ. It is clear that qk ≥ q for every k. Thus, to apply Lemma 5, we
need to enforce that

2τth + 1 ≤ min

{
1

γµ
,

1
γL + 2γτthL− 1

2γτthL

}
.

This convergence condition is equivalent to{
γµ(2τth + 1) ≤ 1,

4γ2τ2thL
2 + γL ≤ 1.

(83)

If γL(2τth + 1) ≤ 1, the first inequality in (83) holds since µ ≤ L. Using Lemma 31 in
Appendix D with α = γL and β = 2τth, we can see that if γL(2τth + 1) ≤ 1, the second
inequality in (83) also holds. Thus, the convergence condition (83) is satisfied for

γ ∈
(

0,
1

L(2τth + 1)

]
.

Therefore, by part 2 of Lemma 5, we have

VK+1 ≤ QK+1V0 +QK+1

K∑
k=0

ek
Qk+1

, K ∈ N0, (84)

where Qk =
∏k−1
`=0 q`. Since q` = 1 for ` ∈ T K and q` = 1− γµ for ` ∈ TK , we have

QK+1 =

K∏
`=0

q` =
∏
`∈TK

(1− γµ) = (1− γµ)|TK |.

As discussed in the proof for the convex case, (K + 1)/2 ≤ |TK |. Thus,

QK+1 ≤ (1− γµ)
K+1

2

≤ exp

(
−γµ(K + 1)

2

)
, (85)

60

Asynchronous Iterations in Optimization

where the second inequality follows from the fact that 1 − α ≤ exp(−α) for α ≥ 0. Next,
we bound QK+1

∑K
k=0 ek/Qk+1. Since ek = 0 for k ∈ T K and ek = (1 + 2γτthL) γ2σ2 for

k ∈ TK , we have

QK+1

K∑
k=0

ek
Qk+1

= (1− γµ)|TK |
∑
k∈TK

(1 + 2γτthL) γ2σ2∏k
`=0 q`

= (1 + 2γτthL) γ2σ2
|TK |−1∑
k=0

(1− γµ)k

≤ (1 + 2γτthL) γ2σ2
∞∑
k=0

(1− γµ)k

=
(1 + 2γτthL) γσ2

µ
. (86)

Substituting (85) and (86) into (84) yields

VK+1 ≤ exp

(
−γµ(K + 1)

2

)
V0 +

(1 + 2γτthL) γσ2

µ
,

≤ exp

(
−γµ(K + 1)

2

)
V0 +

2γσ2

µ
,

where the second inequality is due to that γL(2τth + 1) ≤ 1. Since Vk = E
[
‖xk − x?‖2

]
, it

follows that

E
[
‖xK − x?‖2

]
≤ exp

(
−γµK

2

)
‖x0 − x?‖2 +

2γσ2

µ
K ∈ N.

This completes the proof.

D.3 Proof of Theorem 15

1. Convex case
According to Theorem 14, the iterates generated by the asynchronous Sgd method with

γ ≤ 1
L(τth

√
2+1)

satisfy

E
[
F (x̄K)− F ?

]
≤ ‖x0 − x

?‖2

γ(K + 1)
+ (1 +

√
2)γσ2, K ∈ N0. (87)

We will find the total number of iterations Kε necessary to achieve ε-optimal solution, i.e.,

E
[
F (x̄K)− F ?

]
≤ ε, for K ≥ Kε.

By selecting γ so that (
√

2 + 1)γσ2 ≤ ε/2, the second term on the right-hand side of (87)
is less than ε/2. Set γ to

γ = min

{
1

L(τth
√

2 + 1)
,

ε

2(
√

2 + 1)σ2

}
. (88)

61

Feyzmahdavian and Johansson

We now choose K so that the first term on the right-hand side of (87) is less than ε/2, i.e.,

‖x0 − x?‖2

γ(K + 1)
≤ ε

2
.

This implies that

K ≥ Kε :=
2‖x0 − x?‖2

γε
− 1

(88)
= 2 max

{
L(τth

√
2 + 1)

ε
,

2(
√

2 + 1)σ2

ε2

}
‖x0 − x?‖2 − 1.

2. Strongly convex case

It follows from Theorem 14 that the iterates generated by the asynchronous Sgd method
with γ ≤ 1

L(2τth+1) satisfy

E
[
‖xK − x?‖2

]
≤ exp

(
−γµK

2

)
‖x0 − x?‖2 +

2γσ2

µ
K ∈ N. (89)

With the choice of

γ = min

{
1

L(2τth + 1)
,
εµ

4σ2

}
, (90)

the second term on the right-hand side of (89) is less than ε/2. Next we choose K so that

exp

(
−γµK

2

)
‖x0 − x?‖2 ≤

ε

2
.

Taking logarithm of both sides and rearranging the terms gives

K ≥ Kε :=
2

γµ
log

(
2‖x0 − x?‖2

ε

)
(90)
= 2 max

{
L(2τth + 1)

µ
,

4σ2

µ2ε

}
log

(
2‖x0 − x?‖2

ε

)
.

D.4 Proof of Theorem 16

1. Convex case

According to Theorem 14, we have

E
[
F (x̄K)− F ?

]
≤ ‖x0 − x

?‖2

γ(K + 1)
+ (1 +

√
2)γσ2.

By minimizing the right-hand side of the above inequality with respect to γ over the interval(
0,

1

L(τth
√

2 + 1)

]
,

62

Asynchronous Iterations in Optimization

we obtain

γ? = min

{
1

L(τth
√

2 + 1)
,

‖x0 − x?‖
σ
√√

2 + 1
√
K + 1

}
.

The rest of the proof is similar to the one for the serial Sgd method derived in Lan (2012)
and thus omitted.
2. Strongly convex case

By Theorem 14, we have

E
[
‖xK − x?‖2

]
≤ exp

(
−γµK

2

)
‖x0 − x?‖2 +

2γσ2

µ
.

The result follows from Lemma 1 in Karimireddy et al. (2020).

Appendix E. Proofs for Subsection 4.3

In this section, we provide the proofs for the results presented in Subsection 4.3.

E.1 Preliminaries

Let I ∈ Rd×d be the identity matrix. We define the matrices Ui ∈ Rd×di , i ∈ [m], for which
I = [U1, . . . , Um]. Then, any vector x =

(
[x]1, . . . , [x]m

)
∈ Rd can be represented as

x =

m∑
i=1

Ui[x]i, [x]i ∈ Rdi , i ∈ [m].

Since [xk+1]j = [xk]j−γSj(x̂k) for j = ik and [xk+1]j = [xk]j for j 6= ik, the update formula
of Algorithm 4 can be written as

xk+1 = xk − γUikSik(x̂k), k ∈ N0. (91)

Note that xk depends on the random variable ξk−1 := {i0, . . . , ik−1} but not on ij for any
j ≥ k. For convenience, we define ξ−1 = ∅. We use E to denote the expectation over all
random variables, and Ek to denote the conditional expectation in terms of ik given ξk−1.

For any random vector x ∈ Rd, the variance can be decomposed as

E
[∥∥x− E[x]

∥∥2] = E
[∥∥x∥∥2]− ∥∥E[x]

∥∥2. (92)

For any vectors a, b ∈ Rd and any constant η > 0, the inequalities

〈a, b〉 ≤ η‖a‖2

2
+
‖b‖2

2η
, (93)

‖a+ b‖2 ≤ (1 + η) ‖a‖2 +

(
1 +

1

η

)
‖b‖2, (94)

−‖a‖2 ≤ − ‖b‖
2

1 + η
+
‖a− b‖2

η
, (95)

hold by the Cauchy-Schwarz inequality.
We need the following two lemmas in the convergence analysis of ARock. The first one

provides an upper bound on the expectation of ‖xk − x̂k‖2.

63

Feyzmahdavian and Johansson

Lemma 32 Let {x(k)} be the sequence generated by Algorithm 4. Then, it holds that

E
[
‖xk − x̂k‖2

]
≤ γ2 (

√
m+

√
τ)

2

m2

k−1∑
`=(k−τ)+

E
[
‖S(x̂`)‖2

]
, k ∈ N0.

Proof. Let η be a positive constant. From (36), we have

E
[
‖xk − x̂k‖2

]
= E

∥∥∥∥∥∥
∑
j∈Jk

(xj+1 − xj)

∥∥∥∥∥∥
2

(91)
= γ2E

∥∥∥∥∥∥
∑
j∈Jk

UijSij (x̂j)

∥∥∥∥∥∥
2

= γ2E

∥∥∥∥∥∥
∑
j∈Jk

(
UijSij (x̂j)−

1

m
S(x̂j)

)
+

1

m

∑
j∈Jk

S(x̂j)

∥∥∥∥∥∥
2

(94)

≤ γ2(1 + η)E

∥∥∥∥∥∥
∑
j∈Jk

(
UijSij (x̂j)−

1

m
S(x̂j)

)∥∥∥∥∥∥
2

︸ ︷︷ ︸
H1

+
γ2

m2

(
1 +

1

η

)
E

∥∥∥∥∥∥
∑
j∈Jk

S(x̂j)

∥∥∥∥∥∥
2

︸ ︷︷ ︸
H2

. (96)

We will find upper bounds on the quantities H1 and H2. We expand H1 as follows

H1 =
∑
j∈Jk

E

[∥∥∥∥UijSij (x̂j)− 1

m
S(x̂j)

∥∥∥∥2
]

+
∑

j,j′∈Jk,j>j′
2E
[〈
UijSij (x̂j)−

1

m
S(x̂j), Uij′Sij′ (x̂j′)−

1

m
S(x̂j′)

〉]

=
∑
j∈Jk

E

[∥∥∥∥UijSij (x̂j)− 1

m
S(x̂j)

∥∥∥∥2
]
,

where the second equality uses the fact that∑
j,j′∈Jk,j>j′

E
[〈
UijSij (x̂j)−

1

m
S(x̂j), Uij′Sij′ (x̂j′)−

1

m
S(x̂j′)

〉]

=
∑

j,j′∈Jk,j>j′
E
[
Ej
[〈
UijSij (x̂j)−

1

m
S(x̂j), Uij′Sij′ (x̂j′)−

1

m
S(x̂j′)

〉]]

=
∑

j,j′∈Jk,j>j′
E
[〈

Ej
[
UijSij (x̂j)−

1

m
S(x̂j)

]
, Uij′Sij′ (x̂j′)−

1

m
S(x̂j′)

〉]
= 0.

64

Asynchronous Iterations in Optimization

We then bound H1 by

H1 =
∑
j∈Jk

E

[
Ej

[∥∥∥∥UijSij (x̂j)− 1

m
S(x̂j)

∥∥∥∥2
]]

(92)
=

1

m

∑
j∈Jk

E
[
‖S(x̂j)‖2

]
− 1

m2

∑
j∈Jk

E
[
‖S(x̂j)‖2

]
≤ 1

m

∑
j∈Jk

E
[
‖S(x̂j)‖2

]
. (97)

Next, we turn to H2. We rewrite H2 as

H2 = |Jk|2E

∥∥∥∥∥∥
∑
j∈Jk

S(x̂j)

|Jk|

∥∥∥∥∥∥
2 .

By convexity of the squared Euclidean norm ‖ · ‖2, we get

H2 ≤ |Jk|
∑
j∈Jk

E
[
‖S(x̂j)‖2

]
. (98)

Substituting (97) and (98) into (96) yields

E
[
‖xk − x̂k‖2

]
≤ γ2

m2

(
(1 + η)m+

(
1 +

1

η

)
|Jk|
)∑
j∈Jk

E
[
‖S(x̂j)‖2

]
.

From Assumption 7.2, (k − τ)+ ≤ j ≤ k − 1 for any j ∈ Jk and |Jk| ≤ τ for all k ∈ N0.
Thus,

E
[
‖xk − x̂k‖2

]
≤ γ2

m2

(
(1 + η)m+

(
1 +

1

η

)
τ

) k−1∑
j=(k−τ)+

E
[
‖S(x̂j)‖2

]
.

It is easy to verify that the optimal choice of η, which minimizes the right-hand-side of the
above inequality, is η =

√
τ/m. Using this choice of η and the change of variable ` = j

completes the proof.
As a consequence of this lemma, we derive a bound on the expectation of 〈x̂k−xk, S(x̂k)

〉
.

Lemma 33 The iterates {x(k)} generated by Algorithm 4 satisfy

E
[
〈x̂k − xk, S(x̂k)

〉]
≤ γ

2

(
τ

m
+

√
τ

m

)1

τ

k−1∑
`=(k−τ)+

E
[
‖S(x̂`)‖2

]
+ E

[
‖S(x̂k)‖2

] .

Proof. Let η be a positive constant. From (93), we have

E
[
〈x̂k − xk, S(x̂k)

〉]
≤ η

2
E
[
‖xk − x̂k‖2

]
+

1

2η
E
[
‖S(x̂k)‖2

]
.

65

Feyzmahdavian and Johansson

It follows from Lemma 32 that

E
[
〈x̂k − xk, S(x̂k)

〉]
≤ ηγ2 (

√
m+

√
τ)

2

2m2

k−1∑
`=(k−τ)+

E
[
‖S(x̂`)‖2

]
+

1

2η
E
[
‖S(x̂k)‖2

]
.

Substituting

η =
m

γ
√
τ(
√
m+

√
τ)

into the above inequality proves the statement of the lemma.

E.2 Proof of Lemma 17

We reuse the proof technique from Hannah and Yin (2017). Our point of departure
with Hannah and Yin (2017) is to use Lemmas 32 and 33 to bound Ek

[
‖xk − x̂k‖2

]
and

Ek
[
〈x̂k − xk, S(x̂k)

〉]
. Let x? be a fixed point of the operator T . By subtracting x? from

both sides of (91) and then taking norm squares, we have

‖xk+1 − x?‖2 = ‖xk − x?‖2 − 2γ 〈xk − x?, UikSik(x̂k)〉+ γ2 ‖UikSik(x̂k)‖2 . (99)

By taking conditional expectation on both sides of (99) with respect to only the random
variable ik, we obtain

Ek
[
‖xk+1 − x?‖2

]
= ‖xk − x?‖2 − 2

γ

m

〈
xk − x?, S(x̂k)

〉
+
γ2

m
‖S(x̂k)‖2

= ‖xk − x?‖2 − 2
γ

m

〈
x̂k − x?, S(x̂k)

〉︸ ︷︷ ︸
H

+2
γ

m

〈
x̂k − xk, S(x̂k)

〉
+
γ2

m
‖S(x̂k)‖2. (100)

We will use H to generate a ‖xk − x?‖2 term to help prove linear convergence. Since T
is pseudo-contractive with contraction modulus c and S(x?) = 0, it follows from Lemma 8
in Hannah and Yin (2017) that

−H ≤ −(1− c2)
2

‖x̂k − x?‖2 −
1

2
‖S(x̂k)‖2. (101)

We then use (95) to convert ‖x̂k − x?‖2 to ‖xk − x?‖2 as follows

−‖x̂k − x?‖2 ≤ −
(

1

1 + η

)
‖xk − x?‖2 +

1

η
‖xk − x̂k‖2,

where η is a positive constant. Combining this inequality and (101), we have

−H ≤ − (1− c2)
2(1 + η)

‖xk − x?‖2 +
(1− c2)

2η
‖xk − x̂k‖2 −

1

2
‖S(x̂k)‖2

≤ − (1− c2)
2(1 + η)

‖xk − x?‖2 +
1

2η
‖xk − x̂k‖2 −

1

2
‖S(x̂k)‖2.

66

Asynchronous Iterations in Optimization

Substituting the above inequality into (100) yields

Ek
[
‖xk+1 − x?‖2

]
≤
(

1− γ(1− c2)
m(1 + η)

)
‖xk − x?‖2 + 2

γ

m

〈
x̂k − xk, S(x̂k)

〉
+

γ

mη
‖xk − x̂k‖2 −

γ

m
(1− γ) ‖S(x̂k)‖2.

After taking the full expectation on both sides, it follows from Lemmas 32 and 33 that

E
[
‖xk+1 − x?‖2

]
≤
(

1− γ(1− c2)
m(1 + η)

)
E
[
‖xk − x?‖2

]
+

γ2

mτ

(
τ

m
+

√
τ

m

)(
1 +

(
τ

m
+

√
τ

m

)
γ

η

) k−1∑
`=(k−τ)+

E
[
‖S(x̂`)‖2

]
− γ

m

(
1− γ

(
1 +

τ

m
+

√
τ

m

))
E
[
‖S(x̂k)‖2

]
. (102)

Let Vk = E
[
‖xk − x?‖2, Wk = E

[
‖S(x̂k)‖2

]
, and

η = γ

(
τ

m
+

√
τ

m

)
.

Then, the inequality (102) can be rewritten as

Vk+1 ≤

(
1− γ(1− c2)

m
(
1 + γ

(
τ
m +

√
τ
m

)))Vk +
2γ2

mτ

(
τ

m
+

√
τ

m

) k−1∑
`=(k−τ)+

W`

− γ

m

(
1− γ

(
1 +

τ

m
+

√
τ

m

))
Wk.

This completes the proof.

E.3 Proof of Theorem 18

According to Lemma 17, the iterates generated by Algorithm 4 satisfy

Vk+1 ≤ qVk + p

k∑
`=(k−τ)+

W` − rWk

for every k ∈ N0, where

q = 1− γ(1− c2)
m
(
1 + γ

(
τ
m +

√
τ
m

)) , p =
2γ2

mτ

(
τ

m
+

√
τ

m

)
,

and

r =
γ

m

(
1− γ

(
1 +

τ

m
+

√
τ

m

))
+

2γ2

mτ

(
τ

m
+

√
τ

m

)
.

67

Feyzmahdavian and Johansson

To apply Lemma 5, we need to enforce that

2τ + 1 ≤ min

{
1

1− q
,
r

p

}
.

This convergence condition is equivalent to{
γ(1− c2)(2τ + 1) ≤ m

(
1 + γ

(
τ
m +

√
τ
m

))
,

γ
(
1 + 5

(
τ
m +

√
τ
m

))
≤ 1.

(103)

Using the change of variable

h = γ

(
1 + 5

(
τ

m
+

√
τ

m

))
,

the inequalities (103) can be rewritten as{
h(1− c2)(2τ + 1) ≤ m

(
(5 + h)

(
τ
m +

√
τ
m

)
+ 1
)
,

h ≤ 1.
(104)

Since m ≥ 1 and c ∈ (0, 1), we have

(1− c2)(2τ + 1) ≤ (5 + h)τ +m

= m
(

(5 + h)
(τ
m

)
+ 1
)

≤ m
(

(5 + h)

(
τ

m
+

√
τ

m

)
+ 1

)
.

Thus, the inequalities (104) hold for any h ∈ [0, 1]. This shows that if the step-size γ is set
to

γ =
h

1 + 5
(
τ
m +

√
τ
m

) , h ∈ (0, 1],

then the convergence condition (103) is satisfied. Therefore, by part 2 of Lemma 5, Vk ≤
qkV0 for all k ∈ N0. Since Vk = E

[
‖xk − x?‖2

]
, it follows that

E
[
‖xk − x?‖2 ≤

(
1− h(1− c2)

m
(
1 + (5 + h)

(
τ
m +

√
τ
m

)))k ‖x0 − x?‖2
≤

(
1− h(1− c2)

m
(
1 + 6

(
τ
m +

√
τ
m

)))k ‖x0 − x?‖2,
where the second inequality is due to that h ≤ 1. This matches the upper bound (37) on
the convergence rate.

Finally, we derive the iteration complexity bound (38). Taking the logarithm of both
sides of (37) yields

log
(
E
[
‖xk − x?‖2

])
≤ k log

(
1− h(1− c2)

m
(
1 + 6

(
τ
m +

√
τ
m

)))+ log
(
‖x0 − x?‖2

)
.

68

Asynchronous Iterations in Optimization

Since log(1 + x) ≤ x for any x > −1, it follows that

log
(
E
[
‖xk − x?‖2

])
≤ −

(
h(1− c2)

m
(
1 + 6

(
τ
m +

√
τ
m

))) k + log
(
‖x0 − x?‖2

)
.

Therefore, for any k satisfying

−

(
h(1− c2)

m
(
1 + 6

(
τ
m +

√
τ
m

))) k + log
(
‖x0 − x?‖2

)
≤ log(ε), (105)

we have log
(
E
[
‖xk − x?‖2

])
≤ log(ε), implying that E

[
‖xk−x?‖2

]
≤ ε. Rearranging terms

in (105) completes the proof.

Appendix F. Proofs for Subsection 4.4

This section provides the proofs for the results presented in Subsection 4.4.

F.1 Proof of Lemma 22

For each i ∈ [m], let κi and κ′i be two arbitrary consecutive elements of Ki. From (43), we
have [

xk+1

]
i

= Ti

([
xsi1,κi

]
1
, . . . ,

[
xsim,κi

]
m

)
, k ∈

[
κi, κ

′
i

)
.

As ti(k) = κi for k ∈
[
κi, κ

′
i

)
, we obtain[

xk+1

]
i

= Ti

([
xsi1,ti(k)

]
1
, . . . ,

[
xsim,ti(k)

]
m

)
, k ∈

[
κi, κ

′
i

)
.

Since κi and κ′i are two arbitrary consecutive elements of Ki and 0 ∈ Ki for each i, we can
rewrite the asynchronous iteration (43) as[

xk+1

]
i

= Ti

([
xsi1,ti(k)

]
1
, . . . ,

[
xsim,ti(k)

]
m

)
, k ∈ N0. (106)

Let Vk = ‖xk − x?‖wb,∞. From the definition of ‖ · ‖wb,∞, we have

Vk+1 = max
i∈[m]

wi
∥∥[xk+1]i − [x?]i

∥∥
i

(106)
= max

i∈[m]
wi

∥∥∥Ti ([xsi1,ti(k)]1 , . . . , [xsim,ti(k)]m)− [x?]i

∥∥∥
i

≤ max
i∈[m]

∥∥∥T ([xsi1,ti(k)]1 , . . . , [xsim,ti(k)]m)− x?∥∥∥wb,∞ ,
where the inequality follows from the fact that wi

∥∥[x]i
∥∥
i
≤
∥∥x∥∥w

b,∞ for any x ∈ Rd and

i ∈ [m]. Since T is pseudo-contractive with respective to the block-maximum norm with
contraction modulus c, we obtain

Vk+1 ≤ cmax
i∈[m]

∥∥∥([xsi1,ti(k)]1 , . . . , [xsim,ti(k)]m)− x?∥∥∥wb,∞
= cmax

i∈[m]
max
j∈[m]

wj

∥∥∥∥[xsij,ti(k)]j − [x?]j

∥∥∥∥
j

,

69

Feyzmahdavian and Johansson

where the equality follows from the definition of ‖ · ‖wb,∞. Since wj
∥∥[x]j

∥∥
j
≤
∥∥x∥∥w

b,∞ for any

x ∈ Rd and j ∈ [m], we have

Vk+1 ≤ cmax
i∈[m]

max
j∈[m]

∥∥∥xsij,ti(k) − x?∥∥∥wb,∞
= cmax

i∈[m]
max
j∈[m]

Vsij,ti(k) . (107)

From (44), k − τk ≤ sij,ti(k) for all i, j ∈ [m] and k ∈ N0. Thus, sij,ti(k) ∈ {k − τk, . . . , k},
and hence

Vsij,ti(k) ≤ max
k−τk≤`≤k

V`.

This together with (107) implies that

Vk+1 ≤ c max
k−τk≤`≤k

V`,

which is the desired result.

F.2 Proof of Theorem 23

According to Lemma 22, the iterates generated by (43) satisfy

Vk+1 ≤ qVk + p max
(k−τk)+≤`≤k

V`, k ∈ N0,

with q = 0, p = c, and

τk = k − min
i∈[m]

min
j∈[m]

sij,ti(k).

As ti(k) ∈ Ki for i ∈ [m] and k ∈ N0, it follows from Assumption 8.1 that limk→∞ ti(k) =∞.
Thus, by Assumption 8.2, sij,ti(k) →∞ as k →∞ for all i, j ∈ [m]. This implies that

lim
k→∞

k − τk =∞.

Therefore, since c < 1, using Lemma 2 with q = 0 and p = c completes the proof.

F.3 Proof of Theorem 24

From Assumption 9.2, k − D ≤ sij,k for all i, j ∈ [m] and k ∈ Ki. Since ti(k) ∈ Ki for
k ∈ N0, we have

ti(k)−D ≤ sij,ti(k).

By Assumption 9.1, k − B ≤ ti(k) for each i and all k ∈ N0. Thus, k − B −D ≤ sij,ti(k),
implying that

τk = k − min
i∈[m]

min
j∈[m]

sij,ti(k) ≤ B +D.

70

Asynchronous Iterations in Optimization

It follows from Lemma 22 that the iterates generated by (43) satisfy

Vk+1 ≤ c max
(k−τk)+≤`≤k

V`, k ∈ N0,

with Vk = ‖xk − x?‖wb,∞ and τk ≤ B+D. As c < 1, using Lemma (1) with q = 0, p = c and
τ = B +D leads to

Vk ≤ c
k

B+D+1V0, k ∈ N0.

The proof is complete.

F.4 Proof of Theorem 25

According to Lemma 22, the iterates generated by (43) satisfy (15) with Vk = ‖xk−x?‖wb,∞,
q = 0, p = c, and τk defined in (44). Since q + p = c < 1, it follows from Lemma 3 that
Vk ≤ Λ(k)V0. This completes the proof.

References

A. Agarwal and J. C. Duchi. Distributed delayed stochastic optimization. Advances in
Neural Information Processing Systems, 24(1):1–9, 2011.

Y. Arjevani, O. Shamir, and N. Srebro. A tight convergence analysis for stochastic gradient
descent with delayed updates. Algorithmic Learning Theory, 1(1):111–132, 2020.

R. Z. Aviv, I. Hakimi, A. Schuster, and K. Y. Levy. Asynchronous distributed learning:
Adapting to gradient delays without prior knowledge. International Conference on Ma-
chine Learning, 1(1):436–445, 2021.

A. Aytekin, H. R. Feyzmahdavian, and M. Johansson. Analysis and implementation of
an asynchronous optimization algorithm for the parameter server. arXiv preprint arXiv:
1610.05507, 2016.

G. M. Baudet. Asynchronous iterative methods for multiprocessors. Journal of the ACM
(JACM), 25(2):226–244, 1978.

A. Beck. First-order Methods in Optimization. SIAM, 2017.

D. P. Bertsekas. Distributed asynchronous computation of fixed points. Mathematical
Programming, 27(1):107–120, 1983.

D. P. Bertsekas. Convex Optimization Algorithms. Athena Scientific, 2015.

D. P. Bertsekas and D. E. Baz. Distributed asynchronous relaxation methods for convex
network flow problems. SIAM Journal on Control and Optimization, 25(1):74–85, 1987.

D. P. Bertsekas and J. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods.
Athena Scientific, 2015.

71

Feyzmahdavian and Johansson

D. P. Bertsekas and J. N. Tsitsiklis. Convergence rate and termination of asynchronous
iterative algorithms. International Conference on Supercomputing, 1(1):461–470, 1989.

D. Blatt, A. O. Hero, and H. Gauchman. A convergent incremental gradient method with
a constant step size. SIAM Journal on Optimization, 18(1):29–51, 2007.

L. Cannelli, F. Facchinei, V. Kungurtsev, and G. Scutari. Asynchronous parallel algorithms
for nonconvex optimization. Mathematical Programming, 184(1):121–154, 2020.

D. Chazan and W. Miranker. Chaotic relaxation. Linear Algebra and its Applications, 2
(2):199–222, 1969.

Y. K. Cheung, R. Cole, and Y. Tao. Fully asynchronous stochastic coordinate descent: A
tight lower bound on the parallelism achieving linear speedup. Mathematical Program-
ming, 1(1):1–63, 2020.

A. Cohen, A. Daniely, Y. Drori, T. Koren, and M. Schain. Asynchronous stochastic opti-
mization robust to arbitrary delays. Advances in Neural Information Processing Systems,
34(1):9024–9035, 2021.

J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113, 2008.

O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao. Optimal distributed online prediction
using mini-batches. Journal of Machine Learning Research, 13(1), 2012.

M. Eisen, A. Mokhtari, and A. Ribeiro. Decentralizhed quasi-Newton methods. IEEE
Transactions on Signal Processing, 65(10):2613–2628, 2017.

O. Fercoq and P. Richtárik. Accelerated, parallel, and proximal coordinate descent. SIAM
Journal on Optimization, 25(4):1997–2023, 2015.

H. R. Feyzmahdavian and M. Johansson. On the convergence rates of asynchronous itera-
tions. 53rd IEEE Conference on Decision and Control, 1(1):153–159, 2014.

H. R. Feyzmahdavian, M. Johansson, and T. Charalambous. Contractive interference func-
tions and rates of convergence of distributed power control laws. IEEE Transactions on
Wireless Communications, 11(12):4494–4502, 2012.

H. R. Feyzmahdavian, A. Aytekin, and M. Johansson. A delayed proximal gradient method
with linear convergence rate. IEEE International Workshop on Machine Learning for
Signal Processing (MLSP), 1(1):1–6, 2014.

H. R. Feyzmahdavian, A. Aytekin, and M. Johansson. An asynchronous mini-batch algo-
rithm for regularized stochastic optimization. IEEE Transactions on Automatic Control,
61(12):3740–3754, 2016.

R. M. Gower, N. Loizou, X. Qian, A. Sailanbayev, E. Shulgin, and P. Richtárik. SGD:
General analysis and improved rates. International conference on machine learning, 1(1):
5200–5209, 2019.

72

Asynchronous Iterations in Optimization

M. Gürbüzbalaban, A. Ozdaglar, and P. Parrilo. On the convergence rate of incremental
aggregated gradient algorithms. SIAM Journal on Optimization, 27(2):1035–1048, 2017.

M. T. Hale, A. Nedić, and M. Egerstedt. Asynchronous multi-agent primal-dual optimiza-
tion. IEEE Transactions on Automatic Control, 62(9):4421–4435, 2017.

M. Han and K. Daudjee. Giraph unchained: Barrierless asynchronous parallel execution in
pregel-like graph processing systems. Proceedings of the VLDB Endowment, 8(9):950–961,
2015.

R. Hannah and W. Yin. More iterations per second, same quality–why asynchronous algo-
rithms may drastically outperform traditional ones. arXiv preprint arXiv: 1708.05136,
2017.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer Science & Business Media, 2009.

Q. Ho, J. Cipar, H. Cui, J. K. Kim, S. Lee, P. B. Gibbons, G. A. Gibson, G. R. Ganger,
and E. P. Xing. More effective distributed ML via a stale synchronous parallel parameter
server. Advances in Neural Information Processing Systems, 1(1):1223–1231, 2013.

X. Huang, K. Yuan, X. Mao, and W.Yin. An improved analysis and rates for variance
reduction under without-replacement sampling orders. Advances in Neural Information
Processing Systems, 34(1):3232–3243, 2021.

S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T. Suresh. SCAFFOLD:
Stochastic controlled averaging for federated learning. International Conference on Ma-
chine Learning, 1(1):5132–5143, 2020.

A. Koloskova, S. U. Stich, and M. Jaggi. Sharper convergence guarantees for asynchronous
SGD for distributed and federated learning. Advances in Neural Information Processing
Systems, 35(1):17202–17215, 2022.

G. Lan. An optimal method for stochastic composite optimization. Mathematical Program-
ming, 133(1):365–397, 2012.

R. Leblond, F. Pedregosa, and S. Lacoste-Julien. ASAGA: Asynchronous parallel SAGA.
Artificial Intelligence and Statistics, 1(1):46–54, 2017.

R. Leblond, F. Pedregosa, and S. Lacoste-Julien. Improved asynchronous parallel opti-
mization analysis for stochastic incremental methods. The Journal of Machine Learning
Research, 19(1):3140–3207, 2018.

M. Li, D. G. Andersen, and A. Smola. Distributed delayed proximal gradient methods.
NIPS Workshop on Optimization for Machine Learning, 5(1):1–5, 2013a.

M. Li, L. Zhou, Z. Yang, A. Li, F. Xia, D. G. Andersen, and A. Smola. Parameter server
for distributed machine learning. Big Learning NIPS Workshop, 6(1):1–10, 2013b.

73

Feyzmahdavian and Johansson

X. Lian, Y. Huang, Y. Li, and J. Liu. Asynchronous parallel stochastic gradient for noncon-
vex optimization. Advances in Neural Information Processing Systems, 28(1):2737–2745,
2015.

J. Liu and S. J. Wright. Asynchronous stochastic coordinate descent: Parallelism and
convergence properties. SIAM Journal on Optimization, 25(1):351–376, 2015.

J. Liu, S. J. Wright, C. Ré, V. Bittorf, and S. Sridhar. An asynchronous parallel stochastic
coordinate descent algorithm. International Conference on Machine Learning, 1(1):469–
477, 2014.

H. Mania, X. Pan, D. Papailiopoulos, B. Recht, K. Ramchandran, and M. I. Jordan. Per-
turbed iterate analysis for asynchronous stochastic optimization. SIAM Journal on Op-
timization, 27(4):2202–2229, 2017.

M. Mehyar, D. Spanos, J. Pongsajapan, S. H. Low, and R. M. Murray. Asynchronous
distributed averaging on communication networks. IEEE/ACM Transactions on Net-
working, 15(1):512–520, 2007.

K. Mishchenko, F. Iutzeler, and J. Malick. A distributed flexible delay-tolerant proximal
gradient algorithm. SIAM Journal on Optimization, 30(1):933–959, 2020.

K. Mishchenko, F. Bach, M. Even, and B. E. Woodworth. Asynchronous SGD beats mini-
batch SGD under arbitrary delays. Advances in Neural Information Processing Systems,
35(1):420–433, 2022.

C. C. Moallemi and B. Van Roy. Convergence of min-sum message-passing for convex
optimization. IEEE Transactions on Information Theory, 56(1):2041–2050, 2010.

I. Necoara, Y. Nesterov, and F. Glineur. Linear convergence of first order methods for
non-strongly convex optimization. Mathematical Programming, 175(1):69–107, 2019.

Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems.
SIAM Journal on Optimization, 22(2):341–362, 2012.

Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Springer
Science & Business Media, 2013.

F. Niu, B. Recht, C. Ré, and S. J. Wright. HOGWILD!: A lock-free approach to parallelizing
stochastic gradient descent. Advances in Neural Information Processing Systems, 24(1):
693–701, 2011.

Z. Peng, Y. Xu, M. Yan, and W. Yin. ARock: An algorithmic framework for asynchronous
parallel coordinate updates. SIAM Journal on Scientific Computing, 38(5):2851–2879,
2016.

B. T. Polyak. Introduction to Optimization. Optimization Software, Inc., Publications
Division, New York, 1987.

M. Schmidt, N. Le Roux, and F. Bach. Minimizing finite sums with the stochastic average
gradient. Mathematical Programming, 162(1):83–112, 2017.

74

Asynchronous Iterations in Optimization

G. Stathopoulos and C. N. Jones. An inertial parallel and asynchronous forward–backward
iteration for distributed convex optimization. Journal of Optimization Theory and Ap-
plications, 182(3):1088–1119, 2019.

S. U. Stich and S. P. Karimireddy. The error-feedback framework: Better rates for SGD with
delayed gradients and compressed updates. The Journal of Machine Learning Research,
21(1):9613–9648, 2020.

T. Sun, R. Hannah, and W. Yin. Asynchronous coordinate descent under more realistic
assumption. International Conference on Neural Information Processing Systems, 1(1):
6183–6191, 2017.

T. Sun, Y. Sun, D. Li, and Q. Liao. General proximal incremental aggregated gradient algo-
rithms: Better and novel results under general scheme. Advances in Neural Information
Processing Systems, 32(1):996–1006, 2019.

P. Tseng and S. Yun. Incrementally updated gradient methods for constrained and regu-
larized optimization. Journal of Optimization Theory and Applications, 160(3):832–853,
2014.

J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans. Distributed asynchronous deterministic and
stochastic gradient optimization algorithms. IEEE Transactions on Automatic Control,
31(9):803–812, 1986.

L. G. Valiant. A bridging model for parallel computation. Communications of the ACM,
33(8):103–111, 1990.

N. D. Vanli, M. Gürbüzbalaban, and A. Ozdaglar. Global convergence rate of proximal
incremental aggregated gradient methods. SIAM Journal on Optimization, 28(2):1282–
1300, 2018.

H. T. Wai, W. Shi, C. Uribe, A. Nedić, and A. Scaglione. Accelerating incremental gradient
optimization with curvature information. Computational Optimization and Applications,
76(2):347–380, 2020.

S. J. Wright. Coordinate descent algorithms. Mathematical Programming, 151(1):3–34,
2015.

L. Xiao and T. Zhang. A proximal stochastic gradient method with progressive variance
reduction. SIAM Journal on Optimization, 24(4):2057–2075, 2014.

Y. Zeng, F. Feng, and W. Yin. AsyncQVI: Asynchronous-parallel Q-value iteration for
discounted Markov decision processes with near-optimal sample complexity. International
Conference on Artificial Intelligence and Statistics, 1(1):713–723, 2020.

H. Zhang, Y. H. Dai, L. Guo, and W. Peng. Proximal-like incremental aggregated gradient
method with linear convergence under Bregman distance growth conditions. Mathematics
of Operations Research, 46(1):61–81, 2021.

75

	Introduction
	Notation and Preliminaries

	Lyapunov Analysis for Optimization Algorithms
	Novel Sequence Results for Asynchronous Iterations
	Results for Iterations on the form (10)
	Results for Iterations on the form (11)

	Applications to Asynchronous Optimization Algorithms
	Proximal Incremental Aggregated Gradient Method
	Comparison of Our Analysis with Prior Work

	Asynchronous SGD
	Comparison of Our Analysis with Prior Work

	Asynchronous Coordinate Update Methods
	Comparison of Our Analysis with Prior Work
	A Special Case: Asynchronous Coordinate Descent Method

	A Lyapunov Approach to Analysis of Totally Asynchronous Iterations

	Conclusions
	Proofs for Section 2
	Proofs for Section 3
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 5

	Proofs for Subsection 4.1
	Proof of Lemma 6
	Proof of Theorem 7
	Proof of Lemma 9
	Proof of Theorem 10

	Proofs for Subsection 4.2
	Proof of Lemma 13
	Proof of Theorem 14
	Proof of Theorem 15
	Proof of Theorem 16

	Proofs for Subsection 4.3
	Preliminaries
	Proof of Lemma 17
	Proof of Theorem 18

	Proofs for Subsection 4.4
	Proof of Lemma 22
	Proof of Theorem 23
	Proof of Theorem 24
	Proof of Theorem 25

