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Abstract
1 The paper has two major themes. The first part of the paper establishes certain general results
for infinite-dimensional optimization problems on Hilbert spaces. These results cover the classical
representer theorem and many of its variants as special cases and offer a wider scope of applications.
The second part of the paper then develops a systematic approach for learning the drift function of a
stochastic differential equation by integrating the results of the first part with Bayesian hierarchical
framework. Importantly, our Bayesian approach incorporates low-cost sparse learning through
proper use of shrinkage priors while allowing proper quantification of uncertainty through posterior
distributions. Several examples at the end illustrate the accuracy of our learning scheme.
Keywords: Reproducing kernel Hilbert spaces (RKHS), infinite-dimensional optimization, rep-
resenter theorem, nonparametric learning, stochastic differential equations, diffusion processes,
Bayesian methods

1. Introduction

The temporal dynamics of a variety of systems arising from systems biology, environmental sci-
ence, engineering, physics, medicine can be captured by stochastic differential equations (SDEs)
driven by appropriate drift and noise functions (c.f (3.1)). SDEs are also central to modern finan-
cial mathematics where they are used to model short term interest rates, asset and options pricing,
their volatility. Understanding behaviors of these systems requires not just building mathematical
models but integrating it with the available data. For instance, advanced technologies like single-
cell imaging can attest to the stochasticity of cellular processes (Friedman et al. (2010); Coulon
et al. (2013)). While this molecular noise is a rich source of information about the process dynam-
ics, utilizing this source in a systematic manner requires building stochastic temporal models that
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are calibrated according to the available data. Building such data-driven models characterizing the
inner-workings of these systems is instrumental for advancement of quantitative biology and other
quantitative disciplines.

There is a substantial volume of research on both theoretical and computational aspects of para-
metric SDE models and its statistical inference, a very limited list of references for which is Elerian
et al. (2001); Roberts and Stramer (2001); Kutoyants (2004); Golightly and Wilkinson (2005); Bish-
wal (2008); Golightly and Wilkinson (2008); Archambeau and Opper (2011); Cseke et al. (2013);
Beskos et al. (2006); Fearnhead et al. (2008); Sutter et al. (2016); Whitaker et al. (2017). Bish-
wal (2002, 2018, 2022b) analyzed asymptotic properties of statistical estimators for SDEs driven by
fractional Brownian Motion and certain stochastic PDE models. Parameter estimation for stochastic
volatility models are studied in Bishwal (2022a) Specifically, for these models the driving functions
of the SDE are assumed to be known barring a finite-dimensional parameter θ, which then needs
to be estimated from the available data. In reality, for a large class of physical systems functional
or parametric forms of the underlying SDEs are not precisely known. However, to get a workable
mathematical model a heavy set of assumptions is usually imposed on the system which in many
cases is not practical — the resulting model might be too simplistic and might only work in certain
ideal situations. For example, in biochemical systems, under a set of assumptions including spatial
homogeneity, the intensity function of each reaction driving the stochastic dynamics is assumed
to be of the form of a known polynomial function multiplied by the corresponding reaction rate
constant (unknown parameter). Model calibration then requires estimation of these reaction rates
from the given data (e.g. see Golightly and Wilkinson (2006); Boys et al. (2008); Golightly and
Wilkinson (2011); Koeppl et al. (2012)). However, most cellular reactions do not occur in spatially
homogeneous environments. Moreover there are often many unknown factors (e.g, undiscovered
reactions or species) affecting the reaction rates – assuming that they are constants despite these can
lead to simplistic models which might not be able to explain observed behavior of these systems
satisfactorily. This highlights the importance of developing truly data-driven models, where some
of the key driving functions (like b, σ) for a complex dynamical system of the form (3.1) are learnt
entirely from the given data.

This, however, is an infinite-dimensional learning problem! Compared to the parametric case,
very little is available in the literature for these nonparametric stochastic models. Most of the re-
search in the area of machine learning and ‘traditional’ nonparametric statistics focus on regression
or classification analysis involving i.i.d data points, which are comparatively much easier to work
with. For stochastic dynamical systems that we are interested in, there exist some histogram based
approaches using bins of size ϵ around each location x and computing appropriate local means in
those bins (Friedrich et al. (2011)). Further refinements include replacing the bins with means of k-
nearest neighbor (Hegger and Stock (2009)) and use of traditional Nadaraya-Watson type estimates
(Lamouroux and Lehnertz (2009)). These methods unfortunately only work for a limited number
of toy systems and require high number of data-points around each x. Some approaches involving
Gaussian Process have also been used (see Ruttor et al.; Yildiz et al. (2018)), but they often rely on
adhoc approximation including linearization which might not be desirable.

The present paper along with related future projects aims to develop a systematic Bayesian
framework for addressing these types of complex problems. The data for these problems can come
in a wide array of formats — ranging from a single path observed at high frequency to noisy par-
tial observations observed at sparse times. This article is the first in the series of ongoing and
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planned papers (Ganguly et al. (a,b)) that aims to develop learning schemes for these different
data settings. This article specifically focuses on learning of the drift function of SDEs in the
case of high frequency data by which we mean that it is of the form of a single discrete path
{X(ti) : i = 1, 2 . . . ,m} where the gap ti − ti−1 between two successive observation times ti
and ti−1 is very small. Our first step toward estimating the driving functions of the SDE is to
consider the problem of minimization of the negative log-likelihood subject to a penalty function
over an appropriate function space. Reproducing kernel Hilbert spaces (RKHS) are most suitable
function spaces for these kinds of infinite-dimensional optimization problems because of the well-
known representer theorem which often converts a class of such problems into finite-dimensional
ones. However the limitation of the representer theorem is that it requires the loss functional, L(h),
to depend on the input function h only through its values, h(xi), at a finite number of data points
{xi} which makes it or its known variants inapplicable in many important cases.

This issue is addressed in the first part of the paper (Section 2), which studies infinite-dimensional
optimization problems in a broader framework and proves certain general results (see Theorem 6
and its corollaries), special cases of which give the representer theorem on RKHS. Results of Section
2 should be of independent interest and are expected to find wider applications. The full generality
of Theorem 6 is crucial in our upcoming papers involving more general stochastic models; in the
current paper, only a slightly generalized version of the representer theorem is needed and it gives a
representation of the minimizer of the penalized negative log-likelihood in an RKHS as a finite-sum
with respect to the basis-functions, κ(·, X(ti)), where κ is the associated kernel of the RKHS. We
next develop a Bayesian hierarchical framework for estimating the coefficients of this finite-sum
representation by putting appropriate prior distributions on them. The primary advantage of the
Bayesian approach over point-optimization methods (like gradient descent) is the proper quantifi-
cation of uncertainty through the posterior distributions of the estimators. Now the number of terms
in this finite-sum expansion increases proportionately with the number of data points. It is therefore
imperative that sparse learning is incorporated to reduce the complexity of the estimators. In our
Bayesian paradigm, this is induced through proper shrinkage priors, and in this paper we employ
a multivariate t-prior and an extension of Horseshoe like priors for this purpose. The interplay of
shrinkage priors and the SDE dynamics is interesting to note. Shrinkage priors are effective in case
of positive recurrence which forces the SDE to revisit the relevant parts of the state space numer-
ous times over a finite time horizon. This implies that not all of the basis functions κ(·, X(ti)) are
needed in the finite-sum expansion of the estimator of the drift function; only a limited selection is
enough for accuracy, and proper shrinkage priors help to identify this selection. The use of shrink-
age priors in the context of SDEs is novel and to the best of our knowledge has not been studied
before.

The layout of the article is as follows. Section 2 studies optimization problem in the setting of a
general Hilbert space. Section 3 introduces the SDE model and formulates the Bayesian framework
with shrinkage priors for learning the drift function. The learning algorithms are also presented.
Numerical examples are discussed in Section 4. Finally, some concluding remarks can be found in
Section 5.

Notation: Rm×n denotes the space of m × n real matrices. vecm×n : Rm×n → Rmn will denote
the vectorization function for m × n matrices. For a matrix A ∈ Rm×n, A(i, ∗) and A(∗, j)
respectively denote the i-th row and j-th column of A. For two Hilbert (or Banach) spaces H1 and
H2, L(H1,H2) denotes the space of linear bounded operators from H1 to H2. H1⊕eH2 will denote
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the external direct sum of H1 and H2. Nd(µ,Σ) will refer to the d-dimensional Normal distribution
with mean µ and covariance matrix Σ, and for notational convenience Nd(·|µ,Σ) will denote the
corresponding density function. Similar convention will be followed for other named distributions:

• td(ν, µ, V ): d-dimensional t-distribution with degrees of freedom ν, mean µ and scale matrix
V ; td(·|ν, µ, V ): corresponding density function (c.f (3.7)).

• G(a, b), IG(a, b): Gamma and Inverse Gamma distributions with parameters a and b;
G(·|a, b), IG(·|a, b): corresponding density functions.

• Wd(ν, V ), IWd(ν, V ): d-dimensional Wishart and Inverse-Wishart distributions with de-
grees of freedom ν > d− 1 and scale matrix V ;
Wd(·|ν, V ) and IWd(·|ν, V ): the corresponding density functions.

• F(ν1, ν2, c): F-distribution with degrees of freedom ν1, ν2 and scaling parameter c;
F(·|ν1, ν2, c): the corresponding density function (c.f (3.8)).

2. Infinite-dimensional optimization

The main goal of the section is to characterize the solutions of a broad class of minimization prob-
lems which in particular will generalize the classical representer theorem in a significant way.

2.1 Classical representer theorem and its limitations

The representer theorem is a seminal result in learning theory which converts a class of infinite-
dimensional optimization problems on an RKHS to a tractable finite-dimensional one. It was first
derived in Kimeldorf and Wahba (1971) for quadratic loss and penalty functions in the setting of
Chebyshev splines and was later extended to more general RKHS framework in Wahba (1990).
Extensions to more general loss and penalty functions have been done in Cox and O’Sullivan (1990);
Schölkopf et al. (2001) (also see Scholkopf and Smola (2001)). We first recall its statement.

Let H be a Hilbert space, U an aribitrary space, and κ : U × U → R a symmetric kernel
satisfying (a) for each u ∈ U, κ(u, ·) ∈ H, and (b) for every h ∈ H and u ∈ U, ⟨h, κ(u, ·)⟩ = h(u).
Property (b) refers to the reproducing property of the kernel κ, and such a kernel κ is called a
reproducing kernel and the associated Hilbert space is called an RKHS, which is also unique for a
given reproducing kernel κ.

What makes RKHS particularly useful in learning theory is the fact that one can construct an
RKHS Hκ starting from a positive definite kernel κ. This is possible due to Moore-Aronszajn
theorem which says that the space Hκ ≡ Span{κ(·, u) : u ∈ U} is the RKHS corresponding to the
kernel κ. Here the overbar denotes closure of a set, and the closure is taken with the norm, ∥ · ∥κ
defined by

∥h∥κ =
l∑

i,j=1

cicjκ(ui, uj), h =
l∑

j=1

κ(·, uj)cj , cj ∈ R.

The following version of the representer theorem is adopted from Schölkopf et al. (2001).

Theorem 1 Let L : (U × R2)m → [−∞,∞] be any function, and J : [0,∞) → [0,∞) strictly
increasing, and κ : U×U → R a reproducing kernel. Let Hκ be the RKHS of functions h : U → R
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corresponding to κ. Let (x1, y1), (x2, y2), . . . , (xm, ym) ∈ U×R be fixed. Then any h∗ minimizing
the objective function

L(h) ≡ L ((x1, y1, h(x1)), (x2, y2, h(x2)), . . . , (xm, ym, h(xm))) + J(∥h∥), h ∈ Hκ

admits a representation of the form h∗(u) =
∑m

k=1 c
∗
kκ(xk, u) with c∗k ∈ R.

The representer theorem is a potent tool in learning theory as it provides a computable expres-
sion of the minimizer of a class of loss functionals as a finite sum expansion with respect to the
concrete basis functions involving the underlying kernel. One of the post popular applications is es-
timation of the function h of a regression model, y = h(x) + ε, from the data points {(xi, yi)}. But
as already noted in the Introduction one constraint in the representer theorem is the requirement that
the loss functional L depends on its argument function h only through h(xi), i = 1, 2, . . . ,m — its
values at the data points {xi} . This inhibits its direct applications to models where the dependence
on the loss functional on h is more intricate. We illustrate this with a couple of examples.

Example 1 (Linear functional regression) Consider the model

y = Lxh+ ε, (2.1)

where for each x, Lx is a linear functional acting on h, and ε captures the noise of the system. Thus
here the function h is observed (with errors) through a family of linear functionals. For example,
consider the regression model, Y = h(Z) + ε, where Z is not directly observed. Instead for a third
random variable X , the conditional distribution of Z|X = x, γ(·|x), is known (or at least can be
well approximated). Integrating the effect of Z, the conditional model of Y given X is of the form
(2.1), where for a given x, Lxh =

∫
h(u)γ(du|x).

Given data points {(xi, yi) : i = 1, 2, . . . ,m}, the natural approach to learn h is again through
the minimization problem of the form

min
h∈Hκ

L ((x1, y1,Lx1h), (x2, y2,Lx2h), . . . , (xm, ym,Lxmh)) + J(∥h∥). (2.2)

It is clear that the classical representer theorem cannot be applied here directly as the loss function
does not depend on h through the values h(xi), but it does so through certain integrals of h.

Example 2 (Fredholm integral equation of first kind) Consider the Fredholm equation of the first
kind: g(x) =

∫
E R(x, u)h(u)du, where E ⊂ Rd. Here given (possibly noisy) values, yi, of g at

finitely many points xi, the goal is to learn the best possible function h. The data generating models
is thus of the form

yi =

∫
E
R(xi, y)h(y)dy + ϵi, i = 1, 2, . . . ,m.

where ϵi captures the noise in the observations. As before, learning of h requires one to consider
the minimization problem of the form

min
h∈Hκ

L ((x1, y1, Rh(x1)), (x2, y2, Rh(x2)), . . . , (xm, ym, Rh(xm))) + J(∥h∥), (2.3)

where, by a slight abuse of notation, R also denotes the operator / integral transform corresponding
to the kernel R(·, ·); that is, Rh(x) =

∫
E R(x, u)h(u)du. Note again that the classical representer

theorem is not applicable as L depends on h not through its values h(xi) but through the above
integrals.
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2.2 A broad class of optimization problems in Hilbert space

Let F : H× [0,∞) → R. We are interested in the minimization problem

min
h∈H

F
(
h, ⟨Qh, h⟩1/2

)
, (2.4)

where Q ∈ L(H,H) is a self-adjoint, positive semidefinite (p.s.d.) continuous linear opera-
tor. Notice that this class of minimization problems is equal to the class of problems of the type
minh∈H F (h, ∥Rh∥) , where R ∈ L(H,H). It is useful to note here that by the Hellinger-Toeplitz
theorem (or simply by the closed graph theorem) if Q : H → H is a self-adjoint linear operator
with Dom(Q) = H, then Q has to be continuous, that is, Q ∈ L(H,H).

Recall that Q ∈ L(H,H) is positive or positive semi-definite (p.s.d.) if ⟨Qh, h⟩ ⩾ 0 for any
h ̸= 0, positive definite (p.d.) if the previous inequality is strict for all h ̸= 0, and uniformly positive
definite (uniformly p.d.) if there exists a λ > 0 such that ⟨Qh, h⟩ ⩾ λ∥h∥2 for all h ∈ H. If H0 is
a subset of H, then the restriction of Q to H0, Q

∣∣
H0

, is p.s.d. (p.d.) if ⟨Qh, h⟩ ⩾ 0 (> 0) for any
0 ̸= h ∈ H0, and uniformly p.d. if for some λ > 0, ⟨Qh, h⟩ ⩾ λ∥h∥2 for all h ∈ H0. Lemma 1 in
the Appendix is useful in characterizing uniformly p.d. operators.

For Q ∈ L(H,H), define

NQ = {h ∈ H : ⟨Qh, h⟩ = 0} . (2.5)

Clearly, if Q is self-adjoint and p.s.d., NQ is a closed subspace of H, and a p.s.d. operator Q is
p.d. if and only if NQ = {0}. Further note that if M is a subspace of H, then Q

∣∣
M is p.d. if

NQ ∩M = {0}. When Q is p.s.d., h → ⟨h,Qh⟩1/2 defines a seminorm; it is a proper norm when
Q is p.d., in which case we write ∥h∥Q ≡ ⟨h,Qh⟩1/2. ∥ · ∥Q is equivalent to the original ∥ · ∥ norm
if and only if Q is uniformly p.d.
By a solution to the problem (2.4) we will mean a (global) minimizer h∗ ∈ H such that

F
(
h∗, ⟨Qh∗, h∗⟩1/2

)
= inf

h∈H
F
(
h, ⟨Qh, h⟩1/2

)
def
= F ∗.

In contrast, an element h0 ∈ H is a local minimizer of the problem (2.4) if there exists a r > 0,
such that F

(
h0, ⟨Qh0, h0⟩1/2

)
= infh∈B(h0,r) F

(
h, ⟨Qh, h⟩1/2

)
. Here B(h0, r) is the open ball in

H with center at h0 and radius r.
Lower semicontinuity (l.s.c.) plays an important role in the solution of a minimization problem.

Since there are different notions of l.s.c. in a Hilbert space, we first recall their definitions.

Definition 2 (i) A function G : H → [−∞,∞] is said to be strongly lower-semicontinuous
(l.s.c.) or l.s.c. in the norm topology if lim infn→∞G(hn) ⩾ G(h), whenever hn → h (in
H-norm); or equivalently, the sublevel sets {h : G(h) ⩽ a} are closed in the norm topology
of H.

(ii) A function G : H → [−∞,∞] is said to be weakly sequentially l.s.c. if lim infn→∞G(hn) ⩾
G(h), whenever hn

w→ h, or equivalently, the sublevel sets {h : G(h) ⩽ a} are weakly
sequentially closed.

(iii) A function G : H → [−∞,∞] is said to be weakly l.s.c. if the sublevel sets {h : G(h) ⩽ a}
are closed in the weak topology on H.
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(iv) If H0 ⊂ H, the restriction of G to H0, G
∣∣
H0

, is weakly sequentially l.s.c. if lim infn→∞G(hn) ⩾

G(h) whenever {h, hn, n ⩾ 1} ⊂ H0 and hn
w→ h in H0 in the sense for any g ∈ H0,

⟨hn, g⟩ → ⟨h, g⟩. Strong l.s.c. of G
∣∣
H0

is defined similarly.

All notions of l.s.c. are equivalent when H is finite-dimensional, but that is obviously not the case
when H is infinite-dimensional. For infinite-dimensional Hilbert spaces, it should be noted that
the notion of weakly sequentially l.s.c. is not equivalent to that of weakly l.s.c. (since the weak
topology on H is not metrizable). In fact, we have the following hierarchy:

G is weakly l.s.c. ⇒ G is weakly sequentially l.s.c. ⇒ G is strongly l.s.c.

This is immediate because a subset C ⊂ H is weakly closed ⇒ C is weakly sequentially closed
⇒ C is closed in the norm topology. Thus the assumption of strong l.s.c. on a function G is a
weaker assumption than that of weak l.s.c. of G. However, under the additional assumption of
quasiconvexity, all notions of l.s.c. are equivalent (see Remark 4-(iii) below).

Definition 3 A function G : H → [−∞,∞] is quasiconvex if for any δ ∈ [0, 1] and h, h′ ∈ H,

G(δh+ (1− δ)h′) ⩽ max{G(h), G(h′)}, (2.6)

or equivalently, the sublevel sets {h : G(h) ⩽ a} are convex. It will be called almost quasiconvex,
if (2.6) holds for 0 < δ < 1 when G(h) ̸= G(h′).

G is strictly quasiconvex if the inequality in (2.6) is strict for 0 < δ < 1 and h ̸= h′. It will
be called almost strictly quasiconvex if (2.6) holds with strict inequality for G(h) ̸= G(h′) and
0 < δ < 1.

Note that for almost quasiconvex or almost strictly quasiconvex functions no stipulations are
made if G(h) = G(h′).
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Remark 4

(i) The definition of strict quasiconvexity is not uniform in the literature. Slight variants of the
definition given above have been used in the literature. In particular, Greenberg and Pierskalla
(1971) used strict quasiconvexity for functions which we call here almost strictly quasiconvex.

(ii) A strictly quasiconvex function is of course quasiconvex, and an almost strictly quasiconvex
function is almost quasiconvex. But an almost strictly quasiconvex function need not be qua-
siconvex. The standard example given in Greenberg and Pierskalla (1971) is G : R → R
defined by G(x) = 1{0}(x). It’s clear G is almost strictly quasiconvex, but the sublevel set
{x : G(x) ⩽ 0} = R− {0}, which is not convex; hence G is not quasi-convex.

(iii) A convex function is of course both quasiconvex and almost strictly quasiconvex, and a strictly
convex function is strictly quasiconvex. The equivalence of strong and weak l.s.c. of a function
G : H → [−∞,∞] under the assumption of quasiconvexity is simply a consequence of
Mazur’s lemma which, in particular, states that a convex subset C ⊂ H is closed in the norm
topology iff it is closed in the weak topology.

Lemma 5 Let G : H → [−∞,∞] be weakly sequentially l.s.c., and lim sup∥h∥→∞G(h) = ∞.
Then there exists a global minimizer h∗ ∈ H such that G(h∗) = minh∈HG(h) = infh∈HG(h).

Theorem 6 Let H be a Hilbert space, and F : H× [0,∞) → [−∞,∞]. Consider the minimization
problem (2.4) where Q ∈ L(H,H) is self-adjoint and p.s.d.. Let M be a closed subspace of
H, and the following conditions hold: (a) F (h, u) ⩾ F (PMh, u), h ∈ H, u ∈ [0,∞), where
PM : H → M is the (orthogonal) projection operator onto the subspace M, (b) for each fixed
h ∈ H, the mapping u ∈ R −→ F (h, u) is non-decreasing, and (c) QM ⊂ M.

(i) Then infh∈H F
(
h, ⟨Qh, h⟩1/2

)
= infh∈M F

(
h, ⟨Qh, h⟩1/2

)
. If h∗ ∈ H is a global mini-

mizer of F
(
h, ⟨Qh, h⟩1/2

)
, then so is PMh∗; in other words existence of a minimizer also

guarantees existence of a minimizer lying in M. If in addition for each h ∈ H, the mapping
u → F (h, u) is strictly increasing and NQ ⊂ M (or equivalently, NQ ∩ M⊥ = {0}), then
any (global) minimizer h∗ of the minimization problem (when it exists) lies in M.

(ii) If for each fixed u ∈ [0,∞), the mapping h ∈ H −→ F (h, u) is almost quasiconvex, and for
each h ∈ H, the mapping u → F (h, u) is strictly increasing and NQ ⊂ M , then any local
minimizer h0 of (2.4) (when it exists) lies in M.

(iii) If F is almost strictly quasiconvex (in particular, convex), then any local minimizer h0 is also
a global minimizer. If F is strictly quasiconvex, then the global minimizer of F , when it exists,
is unique.

Remark 7 If Q is self-adjoint and M is a closed subspace then QM ⊂ M (condition (c) in
Theorem 6) is equivalent to QM⊥ ⊂ M⊥ which in turn is equivalent to commutativity of Q and
PM. The first equivalence is easy to see. It is also immediate that if Q and PM commute, then
QM ⊂ M. To see the other direction of the second equivalence, we have for any h ∈ H

QPMh+Q(I − PM)h = Qh = PMQh+ (I − PM)Qh.
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Now QM ⊂ M and QM⊥ ⊂ M⊥ imply that QPMh ∈ M and Q(I − PM)h ∈ M⊥, and, of
course, by the definition of PM, PMQh ∈ M and (I − PM)Qh ∈ M⊥. Since H = M⊕M⊥,
we must have PMQh = QPMh.

Lemma 5 and Theorem 6, whose proofs are given in the Appendix, together give conditions for
existence of the solution (minimizer) to the problem (2.4) and for the solution to lie in a designated
subspace M.

Connection to optimization problems in learning: In many applications, particularly those arising
in the context of learning problems, F is of the form F (h, u) = F0(h) + J(u), where F0 can be
viewed as a loss functional and an associated penalty function on the size of h is defined through J .
A typical choice of J and the operator Q are J(u) = u2, Q = I , which defines the popular square-
norm penalty function, ∥h∥2. The following corollary is essentially a restatement of Theorem 6
in this case. Importantly, Theorem 6 or Corollary 8 below allows use of seminorms ⟨h,Qh⟩1/2,
which are different from the original H-norm, inside the penalty function J . Since Q does not
need to be uniformly p.d. or even p.d., they are not necessarily equivalent to the H-norm. The
desired subspace, M, in these problems is often finite-dimensional leading to a tractable finite-sum
expansion form of the minimizer.

Corollary 8 Suppose F is of the form F (h, u) = F0(h) + J(u), where J : [0,∞) → [0,∞)
is strictly increasing. Consider the minimization problem (2.4). Assume that the linear operator
Q : H → H of (2.4) is self-adjoint and p.s.d., NQ ∪QM ⊂ M, where M is a closed subspace of
H, and F0(h) ⩾ F0(PMh) for all h ∈ H. Then the set of global minimizers,

M0
def
=

{
h∗ ∈ H : F

(
h∗, ⟨Qh∗, h∗⟩1/2

)
= F ∗ = inf

h∈H
F
(
h, ⟨Qh, h⟩1/2

)}
⊂ M. (2.7)

Suppose in addition F0

∣∣
M : M → H is weakly l.s.c., J is l.s.c. and either (a) F0

∣∣
M is bounded

below, J is coercive (that is, lim supu→∞ J(u) = ∞), and Q
∣∣
M is uniformly p.d. (in particular, Q

is p.d. because of the eariler assumption NQ ⊂ M) , or (b) lim suph∈M, ∥h∥→∞ F0(h) = ∞. Then
M0 ̸= ∅.

In many applications it is desirable to consider minimization problems where penalty is im-
posed on the size of only a part of the function h. Below we demonstrate that Corollary 8 covers
such cases. In machine-learning, such minimization problems arise when partial structure of the
unknown function h to be learned is known, and the so-called semiparametric representer theorem
(which is a special case of Corollary 8 or Corollary 9 below) is a useful result covering a subset of
such instances.

For two Hilbert spaces (H1, ⟨·, ·⟩1) and (H2, ⟨·, ·⟩2), recall that the external direct sum H1⊕eH2

is the space H1 ×H2 equipped with the inner product

⟨(h1, h2), (h′1, h′2)⟩e = ⟨h1, h′1⟩1 + ⟨h2, h′2⟩2.

Corollary 9 Let (H1, ⟨·, ·⟩1) and (H2, ⟨·, ·⟩2) be two Hilbert spaces and H = H1 ⊕e H2. Suppose
F is of the form F (h, u) = F0(h) + J(u), where J : [0,∞) → [0,∞) is strictly increasing.
Consider the minimization problem

min
h=(h1,h2)∈H

F0(h) + J
(
h1, ⟨Q1h1, h1⟩1/2

)
(2.8)

9
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where Q1 ∈ L(H1,H2) is self-adjoint and p.s.d.. Let M1 be a closed subspace of H1, and assume
that NQ1 ∪Q1M1 ⊂ M1, F0(h) = F0(h1, h2) ⩾ F0(PM1h1, h2) for all h = (h1, h2) ∈ H. Then
the set of global minimizers, M0 ⊂ M1 ⊕e H2

Suppose in addition F0

∣∣
M1⊕eH2

: M1⊕eH2 → H is weakly sequentially l.s.c., lim sup
∥h∥→∞

h∈M1⊕H2

F0(h) =

∞, and J is l.s.c. Then M0 ̸= ∅.

Proof Define M = M1 ⊕e H2, Q : H → H by Qh = Q(h1, h2) = (Q1h1, 0) and notice that
NQ = NQ1 ⊕H2. The assertion now follows from Corollary 8.

Remark 10 If M is a finite-dimensional subspace of H, which, as mentioned, is an important case
in practice, and F (h, u) = F0(h) + J(u), then strong l.s.c. of F0

∣∣
M, which is easier to check, is

equivalent to weak l.s.c. (and hence weak sequential l.s.c.) of F0

∣∣
M. No additional assumption of

quasiconvexity of F0

∣∣
M is needed. Furthermore, in this case Q

∣∣
M is p.d. iff it is uniformly p.d.

Thus the conditions of Corollary 8 are easier to check.

Revisiting the representer theorem

We now show that the representer theorem along with most of its extensions is a special case of
Theorem 6. Importantly, we present the generalized semiparametric version of it for vector-valued
functions and also include conditions for existence of the minimizer. Representer theorem for
vector-valued functions is comparatively less studied, but some notable versions have been proved
in Micchelli and Pontil (2005) (also see Alvarez et al. (2012) for a review of results on learning
vector-valued functions). We chose the range of the functions to be finite-dimensional vector space
only for ease of presentation, but the same proof (with the appropriate changes) holds if the range
of the functions is infinite-dimensional.

The definition of RKHS of vector-valued functions is very similar to that of the scalar-valued
functions with the primary difference being that the associated kernel κ is now matrix-valued.

Definition 11 Let U be an arbitrary space. A symmetric function κ : U × U → Rn×n is a repro-
ducing kernel if for any u, u′ ∈ U, κ(u, u′) is a n× n p.s.d. matrix.

The RKHS associated with a reproducing kernel κ is a Hilbert space Hκ of functions h : U →
Rn, such that for every fixed u ∈ U and a (column) vector c ∈ Rn, (i) the mapping u′ → κ(u′, u)c
is an element of Hκ, and (ii) ⟨h,κ(·, u)c⟩ = h(u)T c.

Property (ii) is the reproducing property of the kernel κ in the vector framework. Like the scalar
case, given a reproducing matrix-valued kernel κ, an extension of Moore-Aronszajn theorem gives
the the associated RKHS, Hκ = Span{κ(·, u) : u ∈ U}, where the closure is taken with respect to
the norm, ∥ · ∥κ, now appropriately modified as

∥h∥κ =
l∑

i,j=1

cTi κ(ui, uj)cj , h =
l∑

j=1

κ(·, uj)cj , cj ∈ Rn.

Corollary 12 (Semiparametric Representer Theorem) Let L : Rnm → [−∞,∞] be any func-
tion, and J : [0,∞) → [0,∞) nondecreasing, and κ : U × U → Rn×n a reproducing kernel. Let

10
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Hκ be the RKHS of functions h : U → Rn corresponding to a symmetric positive definite kernel κ.
Let x1, x2, . . . , xm ∈ U be fixed. Let G = span {g1, g2, . . . , gr}, where g1, g2, . . . , gr are linearly
independent functions mapping U → Rn. Consider the objective function

L(h(x1) + g(x1), h(x2) + g(x2), . . . , h(xm) + g(xm)) + J(∥h∥), h̄ = (h, g) ∈ Hκ ⊕e G

Then the following hold.

(a) If a minimizer to the above objective function exists, then there also exists a minimizer h̄∗ of the
form

h̄∗(u) =

(
m∑
k=1

κ(xk, u)c
∗
k,

r∑
i=1

gi(u)α
∗
i

)
(2.9)

for some constants c∗i ∈ Rn and α∗
k ∈ R. If J is also strictly increasing then any minimizer

(when it exists) is of the form (2.9).

(b) If L and J are l.s.c. and L is coercive (that is, lim sup∥z∥→∞ L(z) = ∞), then there exists a
minimizer h∗ of the form (2.9).

Notice that a Hilbertian structure can be put on G with the inner product

⟨g, g′⟩G
def
=

r∑
i,j=1

αiα
′
j , g =

r∑
i=1

αigi, g′ =
r∑

i=1

α′
igi,

Define the finite-dimensional subspace

M =

{
m∑
i=1

κ(xi, ·)ci : ci ∈ Rn, i = 1, 2, . . . ,m

}
,

and observe that by the reproducing property for any h ∈ Hκ and v ∈ Rn,

h(xi)
T v = ⟨h,κ(xi, ·)v⟩ = ⟨PMh,κ(xi, ·)v⟩+ ⟨(I − PM)h,κ(xi, ·)v⟩ = ((PMh)(xi))

T v.

The second term after the second equality is 0 because κ(xi, ·)v ∈ M and (I − PM)h ∈ M⊥.
Since the above equality is true for any v ∈ Rn, it follows that h(xi) = PMh(xi). Consequently,

F0(h, g)
def
= L(h(x1) + g(x1), h(x2) + g(x2), . . . , h(xm) + g(xm)) = F0(PMh, g). Moreover, it

is easy to see that for each xi, lim sup
∥h∥κ→∞, h∈M

h(xi) = ∞ and lim sup
∥g∥G→∞

g(xi) = ∞, which, because

of the hypothesis on L, in turn implies that lim sup
∥(h,g)∥→∞
(h,g)∈M⊕eG

F0(h, g) = ∞. It follows that Corollary 12

is a restatement of Corollary 9 in this particular case.

Remark 13

(i) It is obvious that Corollary 12 covers minimization the objective function of the form

L̃ ((x1, y1, (h+ g)(x1)), (x2, y2, (h+ g)(x2)), . . . , (xm, ym, (h+ g)(xm))) + J(∥h∥)

where the points (xi, yi) ∈ Rd×Rd′ , i = 1, 2, . . . ,m are fixed. Indeed, in this case one simply
defines the function L : Rm → R in Corollary 12 as

L(u1, u2, . . . , um) = L̃ ((x1, y1, u1), (x2, y2, u2), . . . , (xm, ym, um)) .

11
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(ii) Absence of the semiparametric part as encoded by the space G leads to the usual representer
theorem. By Corollary 8 in this case, coercivity of J (lim sup∥u∥→∞ J(u) = ∞) with lower
boundedness of L instead of coercivity of L also guarantees the existence of a minimizer
in part (b). Also as evident from Theorem 6, seminorms of the form ⟨·, Q·⟩1/2, which are
different from the RKHS norm, can be used inside J .

(iii) Although informally, one can say that the minimizer in (2.9) is of the form h̄∗(u) =
∑m

k=1 κ(xk, u)c
∗
k+∑r

i=1 gi(u)α
∗
i , strictly speaking, such a representation is not correct, and mathematically it

should be represented as a pair as in (2.9). This is because Hκ ∩G might not be {0}, in which
case the mapping (h, g) ∈ Hκ ⊕e G → h + g ∈ Hκ + G is not injective. In other words,
the function f = h + g might have different representations in H + G, and consequently the
mapping h+ g → L(h(x1) + g(x1), h(x2) + g(x2), . . . , h(xm) + g(xm)) + J(∥h∥) is not a
well-defined function!

A common choice of matrix-valued reproducing kernel is the class of separable kernels of the
form (κ(u, u′))i,j = k(u, u′)ρ(i, j), where k and ρ are scalar kernels on Rd×Rd and {1, 2, . . . , d}×
{1, 2, . . . , d}, respectively. This is of course same as the class of kernels having the representation
κ(u, u′) = k(u, u′)B with B being an n × n p.s.d. matrix. Note for most learning problems one
can assume without loss of generality that B = In, as B can be “absorbed” in the coefficients ci
of the finite expansion of the form (2.9) by redefining ci as Bci. More general class of matrix-
kernels consists of κ of the form κ(u, u′) =

∑R
r=1 kr(u, u

′)Br. For a given set of data-points
{x1, x2, . . . , xm}, the associated nm × nm-dimensional Gram matrix K, which is important for
determination of the coefficients of the finite expansion, is given by K =

∑R
r=1Kr ⊗ Br. Here

Kr = ((kr(xi, xj)))m×m is the usual Gram matrix corresponding to the scalar kernel kr.

We now show how Corollary 8 (or more generally Theorem 6) can be employed to obtain a com-
putable representation of the solution to the minimization problems mentioned in Examples 1 and
Examples 2 — two scenarios where the usual representer theorem cannot be used.

Revisiting Example 1 - Linear functional regression

To obtain a solution to the problem (2.2) define the finite-dimensional vector space

M = span {fi : fi(u) = Lxiκ(u, ·), i = 1, 2, . . . ,m} .

Here, however, we first need to check that M is indeed a subspace of Hκ (as it is not obvious).
Nevertheless, it is easy as we first note that by the Riesz representation theorem there is gi ∈ Hκ,
such that Lxih = ⟨h, gi⟩ for any h ∈ Hκ. Consequently,

fi(u) = Lxiκ(u, ·) = ⟨κ(u, ·), gi⟩ = gi(u),

where the last equality is because of the reproducing property. That is fi = gi ∈ Hκ; hence
M ⊂ Hκ and gi ∈ M. As before writing h ∈ Hκ as h = PMh+ (I − PM)h, we see that

Lxih = LxiPMh+ Lxi(I − PM)h = LxiPMh+ ⟨(I − PM)h, gi⟩ = LxiPMh.

The last equality is because (I − PM)h ∈ M⊥, and we showed that gi ∈ M. Consequently,

F0(h)
def
= L̃ ((x1, y1,Lx1h), (x2, y2,Lx2h), . . . , (xm, ym,Lxmh)) = F0 ◦ PM(h), and hence by

12
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Corollary 8 (also see Remark 10) a minimizer h∗ ∈ M; in other words h∗ is of the form

h∗(u) =
m∑
i=1

Lxiκ(u, ·)ci.

Revisiting Example 2 - Fredholm integral equation of first kind

The following result characterizes the solution to the problem (2.3) in Example 2.

Corollary 14 Consider the framework of Example 2. Let E ⊂ Rd be compact, and let R : E ×E →
R be continuous. Let Hκ be the RKHS corresponding to a reproducing kernel κ. Assume that
κ : E × E → R is continuous. Let L : Rm → [−∞,∞] be any function, and J : [0,∞) → [0,∞)
nondecreasing. For fixed x1, x2, . . . , xm ∈ Rd consider the objective function

L(Rh(x1), Rh(x2), . . . , Rh(xm)) + J(∥h∥) def
= F (h, ∥h∥), h ∈ Hκ.

Then the following hold.

(a) If a minimizer to the above objective function exists, then there also exists a minimizer h∗ of the
form

h∗(u) =
m∑
i=1

Rκ(u, ·)(xi)ci =
m∑
i=1

ci

∫
E
κ(u, z)R(xi, z)dz (2.10)

for some constants ci ∈ R. If J is also strictly increasing then any minimizer (when it exists) is
of the form (2.9).

(b) Suppose L and J are l.s.c. and either (a) L is coercive or (b) J is coercive and L bounded
below (for example, non-negative). Then there exists a minimizer h∗ of the form (2.10).

Proof It’s easy to see that the continuity of the mapping κ : E × E → R gives continuity of
the mapping z ∈ E −→ κ(z, ·) ∈ HR. Since E is assumed to be compact, the latter mapping
is Bochner measurable, and thus so is the mapping z ∈ E −→ κ(z, ·)R(xi, z) ∈ HR for each
i = 1, 2, . . . ,m . Moreover, the mapping z ∈ E −→ ∥κ(z, ·)R(xi, z)∥ = κ(z, z)|R(xi, z)| ∈ R is
obviously integrable (as it is continuous, and E is compact); hence the mapping z → κ(z, ·)R(xi, z)
is Bochner integrable (e.g. see Yosida (1995)). Thus the functions fi defined by the following
Bochner integral:

fi
def
=

∫
E
κ(·, z)R(xi, z)dz

are elements of Hκ. Since the evaluation functionals are continuous on an RKHS, obviously,
fi(u) =

∫
E κ(u, z)R(xi, z)dz = Rκ(u, ·)(xi), where the integral in the middle is a regular Rie-

mann integral.
Now define the finite dimensional subspace M ⊂ Hκ by

M = span {fi : i = 1, 2, . . . ,m} .

13
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Writing h ∈ Hκ as h = PMh+ (I − PM)h, we see that

Rh(xi) = (RPMh)(xi) + (R(I − PM)h)(xi) = (RPMh)(xi) +

∫
E
R(xi, z)(I − PM)h(z) dz

= (RPMh)(xi) +

∫
E
R(xi, z)⟨(I − PM)h,κ(z, ·)⟩ dz

= (RPMh)(xi) +

〈
(I − PM)h,

∫
E
R(xi, z)κ(z, ·)dz

〉
= (RPMh)(xi) + ⟨(I − PM)h, fi⟩

= (RPMh)(xi),

where the fourth equality is by the property of Bochner integrals (and the fact that the mapping g →
⟨(I−PM)h, g⟩ is a continuous linear functional). Consequently, F0(h)

def
= L(Rh(x1), Rh(x2), . . . , Rh(xm))

= F0 ◦ PM(h), and hence the conclusion of Corollary 14 is just a restatement of Corollary 8.

Relaxations of some of the assumptions including compactness of E in Corollary 14 are easily
possible.

3. Framework of stochastic differential equations

We consider the d-dimensional SDE of the form

X(t) = x0 +

∫ t

0
b(X(s))ds+

∫ t

0
σ(X(s))dW (s), x0 ∈ Rd, (3.1)

where b : Rd → Rd and σ : Rd → Rd×d and W is a d-dimensional Brownian motion. We assume
that the functions b and σ are such that the above SDE admits a unique strong solution. This, for
example, holds when b and σ are locally Lipschitz and σσT is non singular. The functional forms of
b and σ are unknown, and our objective is to learn the SDE, that is, the associated driving functions

from high-frequency data Xt1:tm
def
= (X(t1), X(t2), . . . , X(tm)), where ∆ = ti − ti−1 ≪ 1.

Our approach to this problem is to first consider an optimization problem in an appropriate
RKHS. Assume that for each t ⩾ 0, the distribution of X(t) given X(0) = x0 admits a density
pt(·|x0) with respect to the Lebesgue measure on Rd. This, for example, exists when for each x,
σσT (x) is positive definite (see Rogers and Williams (2000)). The function pt(x|x0) satisfies the
Kolmogorov forward PDE (Fokker-Plank equation) ∂tpt(x|x0) = (L)∗pt(x|x0), p0(·|x0) = δx0 in
weak sense. Here (L)∗ is the adjoint of the generator L defined by

Lf(x) =
d∑

i=1

bi(x)∂if(x) +
1

2

∑
1⩽i,j⩽d

(σσT )ij(x)∂ijf(x), f ∈ C2(Rd,R).

By time-homogeneity, the transition density of X(t + s) given X(t) = x is of course given by
ps(·|x). Therefore the likelihood of the data as a function of b and the inverse covariance matrix
A = (σσT )−1, which is the joint density of Xt1:tm , is given by

L(b, A|Xt1:tm) =

m∏
i=1

p∆(X(ti)|X(ti−1)), t0 = 0, X(0) = x0. (3.2)

14



INFINITE-DIMENSIONAL OPTIMIZATION AND BAYESIAN LEARNING OF SDES

The natural loss function here is the negative log likelihood, − lnL, and the functions b and A =
(σσT )−1 are learned through minimizing it over an RKHS, subject to a penalty term. Now the
transition densities ps(·|·) are usually not available in closed form, and in practice, we often work
with a discretized version of the SDE (3.1). In this paper we will consider the Euler-Maruyama
approximation of (3.1) given by

X(ti) = X(ti−1) + b(X(ti−1)∆ + σ(X(ti−1))(W (ti)−W (ti−1)), ∆ = ti − ti−1 ≪ 1 (3.3)

which has a weak-error of order 1, same as the Milstein-scheme (Graham and Talay (2013)). The
advantage of Euler-Maruyama (EM) approximation, is that the transition density of the discretized
chain (3.3), which can be thought of as an approximation to that of the original process X , is simply
given by

pEM
∆ (x′|x) = Nd(x

′|x+ b(x)∆, σσT (x)∆).

Consequently, the likelihood function L in (3.2) will be approximated by LEM , the likelihood func-
tion of the EM chain (3.3), which is defined in a way similar to (3.2) with the approximate transition
densities pEM

∆ (X(ti)|X(ti−1)) replacing the exact p∆(X(ti)|X(ti−1)). Discretized chains corre-
sponding to Milstein-scheme or higher-order approximations like Runge-Kutta type schemes do not
have such simple closed forms of transition densities and are comparatively difficult to work with
for development of learning algorithms.

Since our objective is to learn vector-valued functions, the corresponding minimization problem
needs to be cast in RKHS corresponding to matrix-valued kernels (see Definition 11). Let κ0 :
Rd × Rd → Rd×d and κ1 : Rd × Rd → Rd2×d2 be reproducing kernels with associated RKHS
H0 and H1. Let H = H0 ⊕e H1, and J : [0,∞) → [0,∞] a strictly increasing function. Then
Corollary 12 gives the following result.

Theorem 15 Consider the following minimization problem

min
(b,A)∈H

− lnLEM (b, A|X(t1), X(t2), . . . , X(tm)) + J(∥(b, vecd×d(A))∥).

where A = (σσT )−1. Then there exists a solution to the above minimization problem and every
minimizer (b∗, A∗) is of the form

b∗(·) =
m∑
i=1

κ0(·, X(ti))β
∗
i , vecd×d(A)(·)) =

m∑
i=1

κ1(·, X(ti))α
∗
i β∗

i ∈ Rd, α∗
i ∈ Rd2

(3.4)

Here vecd×d(M) is vectorization of a d × d matrix M . The next part of the paper focuses on
estimating the weight coefficients in the summations in (3.4).

Computational aspects

The computational part of the paper focuses only on the nonparametric learning of the drift coeffi-
cient b from high-frequency data. More specifically, we consider Itô diffusion with unknown drift
function b but whose diffusion coefficient has the parametric form σ(x) = σ0(x)ς , with a known
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function σ0 : Rd → Rd×d and an unknown d × d parameter matrix ς . The transition density of the
discretized chain (3.3) in this case is given by

pEM
∆ (x′|x) = Nd(x

′|x+ b(x)∆, σ0(x)ςς
TσT

0 (x)∆), (3.5)

The assumption of parametric form of the diffusion coefficient was necessary to develop Gibbs al-
gorithms for learning b which is the focus of this part of the paper. Gibbs algorithm are easy to
implement and often the preferred choice in high-dimension compared to a traditional random-walk
Metropolis Hastings which requires a suitable proposal distribution. The case where both b and σ
are unknown functions will involve significantly different techniques and in particular will require
different MCMC algorithms and will be pursued in a future work. We however do note that the
framework in this paper covers the important class of SDEs with constant diffusion coefficients.

Estimating the minimizer: Now there are two approaches to estimate the minimizer b∗, or equiv-
alently, β∗ ≡ (β∗

1 , β
∗
2 , . . . , β

∗
m). The first obvious way is to solve the optimization problem either

by an optimization algorithm (e.g. stochastic gradient descent) or in closed form when it is possible
(e.g. in the case, the penalty function J(u) = ∥u∥2). This gives a point-estimate of β∗, a main
drawback of which, as already pointed out by Tipping (2001) in the regression case, is the absence
of a reliable measure of uncertainty. Any ad-hoc post processing of the estimate to get some quan-
tification of the uncertainty is artificial due to lack of probabilistic framework and often leads to
unreliable results.

A natural remedy to the above problem is a Bayesian approach, which is the focus of this paper.
This entails assigning a prior distribution pprior(·) on the weight vector β = (β1, β2, . . . , βm), and
estimating the posterior distribution, ppost(β|Xt1:tm). Justifying the finite expansion,

b(·) =
m∑
i=1

κ0(·, X(ti))βi (3.6)

as an “ideal form” of the drift function b by Theorem 15, the posterior distribution, ppost(β|Xt1:tm),
efficiently captures the uncertainty in our estimator in the m-dimensional parameter space. A com-
mon way to quantify and visualize uncertainty is to compute and plot (1 − α)%-Bayesain credible
bands around b using the posterior distribution, ppost(β|Xt1:tm). Since the closed form expressions
of the posterior distributions are almost never available, empirical methods need to be used for such
calculations.

The connection between the optimization problem and the Bayesian approach, as has been de-
scribed numerous times in the literature in other contexts (e.g. see MacKay (1992)), is the ob-
servation that the negative of the cost function in Theorem 15 (seen as a function of β) is the
log posterior-density of β under the prior pprior(β) ∝ exp{−J(β)}, where by a slight abuse of
notation, we denote J(β) = J(βTK0β) = J(∥b∥2) with b(·) =

∑m
i=1 κ0(·, X(ti))βi. Here,

K0 = ((κ0(X(ti), X(tj)))) is the Gram matrix associated with the kernel κ0. Thus β∗, the solu-
tion of the penalized optimization problem, is interpreted as a-posterior mode (MAP) of the posterior
distribution of β. Importantly, this observation shows that Bayesian approach allows one to use a
much larger class of priors on β than the class of penalty functions to achieve desired objectives
like sparsity; in particular, one can now use priors which do not have closed form expressions.
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3.1 Sparsity and Shrinkage priors

Since for the SDE model, the RKHS framework requires that the number of terms in the finite ex-
pansion of b equals the number of data-points, m, getting a sparse estimate of {βi : i = 1, 2, . . . ,m}
is necessary. This would not only lead to reduction in complexity but will protect us from an over-
parametrized model. But it is important to understand why a sparse solution is expected in this
case. Note that shrinkage priors in the context of SDEs hold an appeal that is interestingly different
from that in usual regression setups. Here our “predictors” come in the form of correlated data. An
efficient algorithm should not ideally place non-zero weights on all data-points that are very close
to each other. Data points clustered together in a small region of the data space, will not provide
information individually over and above what could be provided by few representative points of the
cluster. Such clusters can be typically formed by slow movement of SDE resulting in two succes-
sive data-points, X(ti) and X(ti+1), differing only by a little margin. It could also be formed by
multiple visits of the SDE trajectory to the same regions of the data space due to positive recurrence
or ergodicity of the system. In other words, the presence of both κ0(·, X(ti)) and κ0(·, X(tj) is
unnecessary in the finite-expansion of b when X(ti) and X(tj) are nearly identical, and only a sub-
set of {κ0(·, X(ti))} is relevant for learning b. In fact, this shows why we expect the methodology
of the paper to work for SDEs which are positive recurrent (ergodic). It guarantees that we have
enough data points to learn about the relevant weights βi, which might not be true for other types of
SDEs.

In the optimization framework, sparsity can be induced by different cost functions J in the
minimization problem

min
β

[
− lnLEM (b, A|X(t1), X(t2), . . . , X(tm)) + J(β)

]
with b(·) =

∑m
i=1 κ0(·, X(ti))βi. While l2 cost function often does not result in noticeable spar-

sity, other choices of J , for example, the lasso penalty of Tibshirani (1996) results in certain βi’s
becoming zero. Within the Bayesian framework, popular choices of shrinkage prior pprior(β) lie
in the normal scale-mixture family which in particular include t-prior (Tipping (2001)), double-
exponential (Park and Casella (2008)) and Horseshoe priors (Carvalho et al. (2009, 2010)). A sur-
vey of some of the popular shrinkage priors used for penalized regression problems can be found in
van Erp et al. (2019) (also see the references therein). The MAP estimate corresponding to double-
exponential prior of course is the same as the lasso estimate, but the posterior mode often lacks
nice theoretical properties and is also unsuitable from Bayesian perspective. In fact, a Bayesian
approach which touts model averaging does not expect model-averaged weights to be exactly zero!
It is more reasonable to consider a weaker-form of sparsity which aims to decrease ∥β∥ for some
suitable norm — resulting in shrinkage rather than selection of the weights.

In the Bayesian framework, an established method inducing shrinkage is by choosing appropri-
ate heavy-tailed distributions with sharp peak at 0 as shrinkage priors. While the sharp peak results
in shrinkage of most of the coefficients, the heaviness of the tail allows truly relevant weights to
shift away from 0. The use of shrinkage priors is a first, to our knowledge, in the context of SDE
models.

In this paper we use two types of priors on {βi} to induce sparsity - t-distributions and the Horse-
shoe distribution. Since the weights βi are vector valued, it should be noted that multidimensional
versions of the above prior distributions need to be used. While multidimensional t-distribution is
standard in the literature, such is not the case for Horseshoe. We describe a natural and easy-to-
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implement adaptation of the classical Horseshoe to d-dimension later in the section.

t-prior: To induce sparsity we assume multivariate td(·|ν, 0, U) prior with ν degrees of freedom on
each βi. Recall that the multivariate td(·|ν, µ, U) density function is given by

td(x|ν, µ, U) =
Γ ((ν + d)/2)

Γ(ν/2) det(U)1/2(νπ)d/2

[
1 +

1

ν
(x− µ)TU−1(x− µ))

]− ν+d
2

, x ∈ Rd.

(3.7)

Now td(·|ν, µ, U) can be written as a normal scale mixture with covariance matrix mixed with
inverse Wishart distribution; more specifically,

td(x|ν, µ, U) =

∫
Rd×d

Nd(x|µ, λ2)IWd(Λ|ν + d− 1, U) dΛ.

This facilitates Gibbs sampling of the posterior by the standard technique of augmentation of the
parameter space. To complete the Bayesian framework, we also need to assume prior on the starting
data point X(t1). We assume X(t1)|x0, {βi}, ςςt ∼ Nd(·|x0 + b(x0)∆, σ0(x)ς(σ0(x)ς)

T∆) with
hyperparameter x0. Notice that this prior is consistent with the dynamics of X (c.f (3.3) and (3.5))
and can be interpreted as follows: designating t1 − ∆ as the starting time, t = 0, we assume that
X(0) = x0, where we choose x0 to be close to the first observation X(t1). Ideally, we should assign
a proper prior to X(0), for example, a uniform prior on a small ball around X(t1), but simply fixing
X(0) = x0 near the data-point X(t1) (or equivalently, assigning Dirac δx0 prior to X(0)) does not
affect the performance of the algorithms. Our Bayesian hierarchical framework is described below.

Bayesian hierarchical framework I: t-prior

• X(t1 −∆) ≡ X(0) ∼ δx0 .

• {Xt1:tm = (X(t1), X(t2), . . . , X(tm)))
∣∣∣β, ς, x0} governed by the transition proba-

bilities (3.5), which is the result of Euler-Maruyama approximation, (3.3).

• Mean-zero Gaussian prior on the parameter β: for i = 1, 2, 3, . . . ,m, βi
iid∼ Nd(0,Λi),

where each ηi is a d× d positive definite matrix.

• Inverse Wishart prior on the hyperparameter Λi: Λi ∼ IWd(ν + d − 1, U) for i =
1, 2, . . . ,m.

• Inverse Wishart prior on the parameter ςςT : ςςT ∼ IWd(n, V ).

The Λi controls the strength of the coefficients βi and therefore the relevance of the data-point
X(ti). For one-dimensional SDEs, this is of course equivalent to putting an inverse-gamma prior
on the variance of the zero-mean normal distributions of βi.

For multidimensional SDEs, an alternate simpler t-like prior can also be assigned to βi by setting
Λi = λ2

i Id with 1-dimensional inverse gamma prior on the scalar λ2
i . The main advantage of the
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simpler prior is that it requires much less number of hyperparameters than the multi-dimensional
td-prior resulting in potential savings in computational complexity.

With the above priors, the conditional distribution of each of the parameters given the rest have
closed forms and can be deduced from Lemma 2. This results in the following Gibb’s algorithm for
(approximately) generating β, {Λi} and ςςT from the posterior distribution ppost(β, {Λi}, ςςT |Xt1:tm).

Algorithm 1: Gibb’s algorithm for high frequency data.
Input: The data Xt1:tm = (X(t1), X(t2), . . . , X(tm)), x0 discretization step ∆, number

of iterations L.
Output: β, ςςT , {Λi} from the posterior density.

1 while l < L do
2 Generate β|Xt1:tm , ςς

T , {Λi} ∼ Nd(·|µ,C) where µ and C are defined by (A.3).
Calculate the drift function b by (3.6).

3 Generate ςςT |Xt1:tm ,β, {Λi} ∼ IWd(n+m,Vpost), where Vpost is defined by (A.4).
4 Generate Λi|Xt1:tm ,β, ςς

T ∼ IWd(ν + d, U−1 + βiβ
T
i ), i = 1, 2, . . . ,m

independently.
5 l = l + 1.
6 end

Horseshoe type prior: We next employ a global-local class of priors from the normal scale-mixture
family which has potentially better shrinkage characteristics than the t-prior (Polson and Scott
(2011)). In our context of d-dimensional βj , this is described by

βj |Λj ,Ξ ∼ N (0,ΛjΞ), Λj ∼ pprior(Λj), Ξ ∼ pprior(Ξ).

Ξ, which denotes the global variance component, is akin to the regularization parameter in the
penalized optimization problem and its purpose is to attempt to shrink all the weights {βj}. This
requires Ξ to be small in some appropriate sense. The local variance component {Λj} should be
such that it can relax the shrinkage effect for those coefficients whose magnitude is large. Now it is
easy to see from Lemma 2 that

E [β|Xt1:tm , {Λj},Ξ] = (I − S)β̂MLE ,

where the shrinkage factor, S = (I + ς−2ηKT
0 K0)

−1 with η = diag(Λ1,Λ2, . . . ,Λm) ⊗ Ξ, and
β̂MLE = ∆(KT

0 K0)
−1K0ϑ is the standard MLE estimate of β based on the likelihood, LEM (b|Xt1:tm).

Here we assumed for simplicity that the diffusion coefficient, σ(x) ≡ ςI, ς ∈ R. This points to the
necessary characteristics of the prior distributions of the hyperparameters, Ξ and Λj : (a) pprior(Ξ)
should have a sharp peak at 0, and (b) pprior(Λj) should have heavy tails.

Instead of choosing d × d- dimensional probability distributions as priors for Λj and Ξ we set
Λj = λ2

jId×d and Ξ = τ2Id×d with one-dimensional priors on λ2
j and τ2 satisfying the above

criteria. These choices of priors require a much smaller number of hyperparameters, leading to
potentially significant savings in computational complexity while allowing an easier-to-implement
extension of 1-D global-local priors for multidimensional parameters.

If τ2 = 1, then an inverse gamma-prior on λ2
j leads to (a multidimensional version of) t-prior on

the βj . Although the inverse-gamma is popular as a choice of mixing distribution for the variance
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components (like λ2
j and τ2) of normal-scale mixture family of priors, it can be informative in cer-

tain cases leading to non-robust estimation of the βj . Moreover, for an inverse-gamma distribution,

pprior(τ
2) → 0 as τ2 → 0. Since p(τ2|Xt1:tm) ∝ p(Xt1:tm |τ2)pprior(τ2), p(τ2|Xt1:tm)

τ2→0→ 0
forcing the posterior distribution of τ to biased away from 0. In other words, with an inverse-gamma
prior on τ2, the posterior probability of τ2 to be near 0 is likely to be small. Thus low probability
is assigned to that part of the parameter space where benefits of shrinkage is desired! This has
already been pointed out for regression problems by Gelman (2006) (also see Polson and Scott
(2012)) and is also true for data from dynamical systems that are of interest in this paper. These
issues with the inverse-gamma prior can be mitigated by averaging its scale parameter with another
appropriate distribution, e.g. a gamma distribution (see Pérez et al. (2017)). This leads to a scaled
F-distribution. The density F(·|ν1, ν2, c) of F-distribution (or Beta-prime (2ν1, 2ν2) distribution
with scaling parameter c) with degrees of freedom ν1, ν2 and scaling parameter c is given by

F(z|ν1, ν2, c) =
Γ
(
ν1+ν2

2

)
Γ
(
ν2
2

)
Γ
(
ν1
2

)
cν1/2

z
ν1
2
−1(1 + z/c)−

ν1+ν2
2

=

∫
IG(z|ν2/2, θ) G(θ|ν1/2, c−1) dθ.

(3.8)

Elementary formal calculations show that

F(z|ν1, ν2, c)
z→0
≈ zν1/2−1, F(z|ν1, ν2, c)

z→∞
≈ z−ν2/2−1,

which in turn show that the first degree of freedom, ν1, controls the behavior of F-distribution
around zero, while the behavior in tails is controlled by the second degree of freedom, ν2. Choosing
a smaller value of ν1 < 2 will result in a pole at 0, and smaller values of ν2 will lead to heavier tails.
Formal calculations also indicate that

pprior(βj = 0|λ2
j ) =

∫
N (βj = 0|λ2

jτ
2I)F(τ2|ν1, ν2, c)dτ2

∝
∫

(τ2)(ν1−d)/2−1(1 + τ2/c)−(ν1+ν2)/2dτ2 = ∞

if ν1 ⩽ d, as the last integral then is proportional to integral of an improper F-density. F(ν1 =
ν2 = 1, c = 1)-prior on λ2

j and τ2 (or equivalently, Half-Cauchy(0,1)-prior on λj and τ ) leads to the
Horseshoe prior (or more precisely, a multidimensional version of it) on βj . However, in the case of
correlated temporal data from dynamical systems, these default choices of ν1 = ν2 = 1, c = 1, can
result in τ2 to be near-zero value shrinking all the weights βj substantially. It might be necessary
to adjust the degrees of freedom parameters to counter such strong shrinking force - for example,
by using a F-prior on λ2

j having heavier tails (that is, lower value of second degree of freedom, ν2)
than F(ν1 = ν2 = 1, c = 1) to recover the relevant weights.

The Bayesian hierarchical framework with the above choices is summarized below.
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Bayesian hierarchical framework II: Horseshoe-type priors

• X(t1 −∆) ≡ X(0) ∼ δx0 .

• {Xt1:tm

∣∣∣β, α} governed by the transition probabilities (3.5), which is the result of
Euler-Maruyama approximation, (3.3).

• Independent mean-zero Gaussian priors on the parameters βi: βi ∼ Nd(·|0, λ2
i τ

2Id),
where λ2

i , τ
2 ∈ [0,∞).

• Inverse Gamma priors on the hyperparameters λ2
i and τ2: λ2

i ∼ IG(·|αi, θi) for i =
1, 2, . . . ,m and τ2 ∼ IG(·|α0, θ0).

• Gamma priors on the hyperparameters θ0, θi: θi ∼ G(·|a, b), for i = 1, 2, . . . ,m, and
θ0 ∼ G(a0, b0).

• Inverse Wishart prior on the hyperparameters ςςT : ςςT ∼ IWd(·|n, V ).

Equation 3.8 leads to easy sampling of the parameters from the posterior distribution via Gibbs
sampling. This is summarized in the algorithm below, and the computational details are given in
Lemma 2 in the Appendix. The following notations are convenient for descriptions of Algorithm 2
and Lemma 2.

Notation: Let F denote the σ-field generated by Xt1:tm = (X(t1), X(t2), . . . , X(tm))), and the pa-
rameters β, ςςT , {λ2

i : i = 1, 2 . . . ,m}, τ2, {θi : i = 1, 2, . . . ,m}, θ0 (viewed as random variables
on the same probability space.). Let F−β be the σ-field generated by the above random elements ex-
cept β, F−{λ2

i }
the σ-field generated by the above random elements except {λ2

i : i = 1, 2, . . . ,m}.
The σ-fields F−ςςT ,F−{θi},F−θ0,{θi}, etc are defined similarly.

Algorithm 2: Gibb’s algorithm for high frequency data with Horseshoe prior.
Input: The data Xt1:tm , x0, discretization step ∆, number of iterations L.
Output: β, λ2

j , τ
2, ςςT from the posterior density.

1 while l < L do
2 Generate β|F−β ∼ Nd(·|µ,C) where µ and C are defined by (A.3). Calculate the drift

function b by (3.6).
3 Generate ςςT |F−ςςT ∼ IWd(n+m,Vpost), where Vpost is defined by (A.4).

4 Generate λ2
k|F−{λ2

i }
∼ IG

(
·
∣∣∣(d+ 2αk)/2,

1
2β

T
k βk/τ

2 + θk

)
, k = 1, 2, . . . ,m

independently.

5 Generate τ2|F−τ2 ∼ IG
(
·
∣∣∣(md+ 2α0)/2, θ0 + 1

2

∑m
k=1 β

T
k βk/λ

2
k

)
.

6 Generate {θk} and θ0 as θk|F−θ0,{θi} ∼ G
(
·|αk + a, b+ 1/λ2

k

)
, and

θ0|F−θ0,{θi} ∼ G
(
·|α0 + a0, b0 + 1/τ2

)
.

7 l = l + 1

8 end
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An alternate option would have been to impose independent one-dimensional Horseshoe prior
on each component βjl, l = 1, 2, . . . , d; j = 1, 2, . . . ,m. A version of this prior has previously
been used by one of the authors for a multi-outcome regression model in Kundu et al. (2021).
There the local shrinkage effects, while varying among individual predictor values, were shared
across multiple dimensions of the same predictor, and the global component varied across different
dimensions. While these types of priors may be more natural for the multi-outcome regression
models of Kundu et al. (2021) to allow more intra-dimensional variability, their use in the context
of multidimensional dynamical systems lacks strong justification. Rather the significantly higher
number of additional hyperparameters that these priors require will lead to substantial increase in
the complexity and run-time of the resulting Gibb’s algorithm.

4. Simulation Results

We next demonstrate the effectiveness of our algorithm for four SDE models. The SDEs considered
are ergodic with a unique stationary distribution. As mentioned earlier, this is exactly the class of
models where we expect our algorithms to work best. Ergodicity will ensure that the SDE will visit
the relevant states multiple times. This will lead to a sufficient number of data points corresponding
to each such states over a finite-time interval which in turn will result in more accurate learning of
the drift function b.

From a discrete path from each of the SDE models, we use our algorithms to generate samples
of β from the posterior distribution. The (posterior) mean of these β-samples gives the estimated
function b̂ via equation (3.6), which is plotted against the true b. We next used multiple samples
from the posterior distribution to calculate empirical 95% Bayesian credible bands around b. The
plots of these credible bands are given in the pictures below. The corresponding mean square error
(MSE) is also reported.

While closeness between b̂ and the true b demonstrates the effectiveness of our learning algo-
rithms, a further validation of the algorithm comes from matching the equilibrium (or the stationary)
distribution of the estimated SDE with that of the true one. This shows that the behavior of the es-
timated SDE matches with that of the true SDE at future times — further beyond the time-range
of the observed data. This is important as it demonstrates the predictive power of the learned SDE
model and shows that the closeness between the true and the estimated drift functions, b and b̂, is in-
deed due to the accuracy of the algorithms and not due to overfitting. The latter despite giving good
fit within the time-range of the data would often result in markedly different behaviors of the paths
of the corresponding SDEs at unobserved future times. The closeness between the two stationary
distributions is assessed through the Kolmogorov metric, supx |Fst(x)− F̂st(x)|, where Fst and F̂st

respectively denote the cumulative distribution functions (CDFs) of the stationary distributions of
the true and the estimated SDEs. Specifically, the former refers to the SDE driven by the true drift
function b and the diffusion parameter ς2 while the latter corresponds to the SDE driven by their
estimated versions b̂ and ς̂2.

We used Gaussian kernels for our simulation studies. Specifically, for the 1-D models, we used
the kernel κ0(x, y) = exp(−(x − y)2/2) and for the multidimensional Michaelis-Menten kinetics
in Model 3, we used κ0 = κ0I3.

For comparison purposes, we also calculated and plotted the estimator given by histogram, k-
nearest neighbors and kernel-based methods. Their expressions are given in the Appendix. The
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pictures below clearly demonstrate the accuracy of our algorithms over these existing methods.

Model 1: Double-well potential SDE
Our first model is an overdamped Langevin SDE representing the motion of a particle in a double-
well potential given by u(x) = x4 − 2x2. The trajectory of the particle depends on two factors: a
(deterministic) driving force b(x) = −u′(x) = 4(x−x3), and random perturbations modeled by an
additive Brownian noise. The potential has two wells (minimum energy states) located at ±1, and
the driving random noise occasionally makes the particle transition from one minima to the other.
The dynamics of the particle is thus highly non-linear and the corresponding SDE given by

dX(t) = 4X(t)(1−X2(t))dt+ ςdW (t).

Such SDEs are also important in mathematical finance. The two wells lead to a bimodal stationary
distribution whose density is given by

πst(x) ∝ exp

(
2x2 − x4

2ς2

)
.

Our data points come from the above SDE with ς = 1, and we use Algorithm 1 and Algorithm
2 to estimate the entire drift function b, and the diffusion parameter ς . For this we use a scaled
t(·|ν = 2, c = 1, µ = 0)-prior on the weights βk (that is, βk ∼ N (·|0, λ2

k), λ
2
k ∼ IG(1, 2))

in Algorithm 1 (with inverse-gamma replacing inverse-Wishart), and we use the parameters αi =
α0 = a = a0 = 1/2, b = b0 = 1 (that is, classical HS prior) for Algorithm 2. For both the
algorithms we use IG(1, 2)-prior on the diffusion-parameter ς2.

Figure 1 gives a visual representation of the performances of the algorithms: (a) plots the real
drift function b and the estimated b̂ in three cases - with no-shrinkage, shrinkage with t and HS
priors on the weights; (b) and (c) plot 95% credible intervals corresponding to t and HS priors, (d)
plots a histogram of the weights βk, which shows the effect of shrinkage priors; (e) compares the
stationary distributions of the SDE with estimated drift function b̂ in three cases (no-shrinkage, t
and HS shrinkage priors) with the true stationary distribution of the double-well potential SDE; (f)
shows the corresponding P-P plots.

Figure 1-(d) is noteworthy as it shows that both t and HS priors were successful in giving
sparse solutions for the weights, βi, with HS prior producing significantly higher degree of sparsity
compared to t-prior as evidenced from much sharper peak of the histogram near 0. At the same time
other figures show that both the shrinkage priors lead to almost identical b̂ matching the accuracy of
the estimate without shrinkage. The MSE and the Kolmogorov metric values in all the cases are in
the range 0.27-0.29 and 0.7 - 0.8, respectively.

Better accuracy is expected with more data, which can be either because of higher frequency of
observations (that is, lower value of ∆) or more observations over longer time range [0, T ].

T 40 40 40 80 60 20
∆ 0.025 0.05 0.1 0.05 0.05 0.05

t-prior 0.3035 0.3966 0.7234 0.2818 0.2971 0.5128
HS-prior 0.3258 0.4193 0.9442 0.2890 0.3362 0.7106

Table 1: MSE of b̂ for t and HS priors.
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Figure 1: Double-well potential SDE. a: comparison of estimated function b̂ with true b. b, c:
estimated function b̂ with the shaded areas showing the 95% confidence regions using t and HS
priors. d: histogram of βi’s. e: comparison of the stationary distributions of the SDE driven by
estimated b̂ and true b. f: PP-plots of the stationary distributions of the estimated SDE against that
of the original SDE.

T 40 40 40 80 60 20
∆ 0.025 0.05 0.1 0.05 0.05 0.05

t-prior 0.1494 0.2102 0.2047 0.0707 0.0627 0.2702
HS-prior 0.1325 0.2047 0.2486 0.0817 0.0913 0.2869

Table 2: Kolmogorov metric between the CDFs of the stationary distributions of the estimated and
true SDEs.

This is corroborated by Table 1 and Table 2, which list the values of MSE and the Kolmogorov
metric in two cases - (i) fixed observation-time range [0, T ], but increasing ∆, and (ii) fixed obser-
vation frequency ∆ but increasing time range [0, T ].

We finally plot the estimators based on existing methods. The smoothing effect of kernel is
visible in the traditional kernel-based estimator. It is clear that these methods cannot match the
accuracy of the estimators given by Algorithms 1 and 2.
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Figure 2: Comparison with other methods a: comparison of the estimated function b̂ using kernel-
based method with true b. b: comparison of the estimated function using histogram-based and
k-nearest-neighbor (kNN)-based (with k = 50) methods.

Model 2: Variant of Double-well potential SDE
Our second model is a variant of the above double-well potential SDE with a multiplicative

noise structure. The specific equation is given by

dX(t) = X(t)(1−X2(t))dt+ ς
√

1 +X(t)2dW (t).

The multiplicative noise adds to the complexity of the already complex nonlinear dynamics of the
original double-well process. The stationary density of the SDE is given by

πst(x) ∝ ς−2(1 + x2)2ς
−2−1 exp

(
−x2/ς2

)
. (4.1)

The stationary distribution is bimodal if ς < 1, but it becomes unimodal if ς ⩾ 1 with sharper peak
with increasing ς . We consider two cases, ς = 1 and ς = 0.5.
Case: ς = 1: We first consider (discrete) observations from (4.1) with true ς = 1, and use Algorithm
1 and Algorithm 2 to estimate the drift function b and the diffusion parameter ς . For Algorithm 1, we
use the same t-distribution as the last example. For Algorithm 2, classical HS prior was shrinking
all the weights βk to near 0, and it was necessary to use heavier-tailed distribution on the local
variance component λ2

k (than F(ν1 = 1, ν2 = 1, c = 1)-distribution) to counter the strong global
shrinkage effect of τ2. We use F(ν1 = 1, ν2 = 0.3, c = 1)-distribution on λ2

k and the usual
F(ν1 = 1, ν2 = 1, c = 1)-distribution on τ2, that is, the following values of hyperparameters:
αi = 0.5, α0 = a = a0 = 1/2, b = b0 = 1. As before, we use IG(1, 2)-prior on the diffusion-
parameter ς2 in both the algorithms. The efficacy of the algorithms is demonstrated in Figure
3. The MSE and the Kolmogorov metric values for cases corresponding to no-shrinkage, t-prior
and the above HS-type prior are comparable and are again in the range 0.24-0.27 and about 0.07,
respectively. The values of the estimate, ς̂2, given by Algorithm 1 and Algorithm 2 are 0.998 and
0.974, respectively. Again, the global-local setup of a HS-type prior (Algorithm 2) was able to
produce significantly higher shrinkage while achieving comparable level of accuracy.

As before, we list in Table 3 and Table 4 the values of MSE and the Kolmogorov metric in two
cases - (i) fixed observation-time range [0, T ], but increasing ∆, and (ii) fixed observation frequency
∆ but increasing time range [0, T ]. As expected, better accuracy is obtained with more observations,
with increasing time range [0, T ] of observations being more important than a fixed one with higher
frequency of observations (that is smaller ∆). This is natural as data over longer time range reveals
more about the behavior of the underlying SDE.
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Figure 3: Variant of double-well model (ς = 1). Descriptions of a, b, c, d, e, f are similar to that in
Figure 1.

T 40 40 40 80 60 20
∆ 0.025 0.05 0.1 0.05 0.05 0.05

t-prior 0.3609 0.4512 0.5632 0.2702 0.3443 0.8265
HS-type-prior 0.3838 0.3972 0.7868 0.2404 0.3319 0.8858

Table 3: MSE with different priors.

T 40 40 40 80 60 20
∆ 0.025 0.05 0.1 0.05 0.05 0.05

t-prior 0.107 0.1091 0.1291 0.071 0.1225 0.1826
HS-prior 0.1187 0.107 0.1259 0.077 0.1268 0.1708

Table 4: Kolmogorov metric between the CDFs with different prior.

Case: ς = 0.5: We also consider data points from (4.1) with ς = 0.5 over the interval [0, 40] (with
∆ = 0.05). As mentioned, the true stationary distribution in this case is distinctly bimodal. Bi-
modality and multiplicative noise make estimation of the drift function b particularly a challenging
task. Figure 4 compares the estimated and the true b, and the corresponding stationary distributions.
The hyperparameter values used in Algorithm 1 and Algorithm 2 are the same as in the previous
case.

The estimated b̂ for both the priors match closely with true b (on a large part of the x-axis),
and the estimator ς̂2 = 0.247 and 0.258, which is almost same as the true ς2 = 0.25. But here
Algorithm 1 with t-prior on the weights gives a much more accurate result than Algorithm 2 with
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Figure 4: Variant of double-well model (ς = 0.5). a: comparison of estimated function b̂ with true
b. b: comparison of the stationary distributions of the SDE driven by estimated b̂ and true b. c, d:
estimated function b̂ with the shaded areas showing the 95% confidence regions.

the HS-type prior. This is clear from the plots of the different stationary distributions, where HS
prior respectively underestimates and overestimates the modes at −1 and 1. The MSE values for
estimated b̂ corresponding to t and HS priors are respectively 0.051 and 0.04, which are comparable.
But the Kolmogorov metric between the CDFs of the true stationary distribution (c.f (4.1)) and the
stationary distribution with b̂ as the drift in the case of t and HS priors is respectively 0.05 and 0.17
showing the edge that the Algorithm 1 had in this case.

Finally, Figure 5 below shows the estimated b given by the existing methods.
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Figure 5: Comparison with other methods a: comparison of estimated function b̂ using kernel-based
method with true b. b: comparison of estimated function using histogram-based and k-nearest-
neighbor (kNN)-based (with k = 50) methods.

Model 3: Michaelis-Menten Kinetics
The Michaelis-Menten is a well-known model in enzymatic kinetics describing the enzymatic sub-
strate conversion process (Michaelis and Menten (2013); Srinivasan (2021)). The reaction system
is given by

E + S
k1−⇀↽−
k2

ES, ES
km1−−⇀↽−−
km2

E + P.

The full state of the system at time t is given by X(t) = (XE(t), XS(t), XES(t), XP ). The system
satisfies the conservation law: XE(t) + XES(t) = XE(0) + XES(0). This gives a reduced 3-
dimensional state which will still be denoted by X(t) = (XE(t), XS(t), XP ). The differential
equation describing the dynamics is governed by the drift function

b(x) = (−k1xExS − km2xExP + (km1 + k2)xES ,−k1xExS + km1xES , k2xES − km2xExP ).

Given a set of discrete observations from a stochastic version of this differential equation driven
by additive Brownian noise ς3×3B, with ς = 0.1I over time-range [0, 40] generated by taking
∆ = 0.04 and the conservation constant, XE(0)+XES(0) = 2, we use Algorithm 1 and Algorithm
2 to estimate the entire drift function b and the (constant) diffusion matrix ς . For Algorithm 1, we
use the hyperparameter values, ν = 5, U = 8I , and IW3(1 + dim, V = 2I3×3)-prior (where,
dimension, dim= 3) on ςςT . For Algorithm 1 we use the (multidimensional version of) classical
HS prior, and the same inverse-wishart prior on ςςT . The MSE values in both cases came out to be
about 0.004 (specifically, 0.00414 for HS and 0.00431 for t). Figure 6 - a, b and c, respectively,
plots the first, second and third component of both the estimator b̂ and the true b when HS-prior is
used with z-coordinate fixed at 1.073.

The estimated diffusion matrix (via Algorithm 2) is given by

ς̂ςT =

 0.01210109 0.0001914 −0.00020334
0.0001914 0.01170018 0.00014556

−0.00020334 0.00014556 0.01122171


which is very close to the true ςςT = 0.01I . The corresponding numbers for Algorithm 1 are very
similar.
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Figure 6: Michaelis-Menten Kinetics model with HS-prior. a, b, c show the plots of first, second
and third component of the functions b̂ and b with z fixed at 1.073. d shows a two-dimensional slice
of a at y = 1.060.

5. Discussion

The paper presents a novel theoretical and computational paradigm for stochastic dynamic models
which, on account of its generalizability, can potentially find its way to several interesting appli-
cations. We study two areas — (a) a class of infinite-dimensional optimization problems, which
is broader than what the classical Representer Theorem covers, (b) Bayesian approach to nonpara-
metric inference of stochastic dynamical systems. To our knowledge, this is the first instance of
the merging of Bayesian methods, RKHS theory and stochastic differential equations into a single
unified platform. The use of the resulting algorithms on data from well-known SDEs amply demon-
strates their ability to learn the true drift functions to a high degree of accuracy. Specifically, their
reliable prediction of long term dynamics beyond the range of data points is a strong testament to
this fact. The accuracy measures obtained under the M-M kinetics model lend strong credence to
the relevance of this approach for multivariate settings.

The hierarchical structure of the Bayesian framework makes the resulting inference scheme
computationally scalable while opening the door to several model extensions. For instance, a semi-
parametric model variant could be easily implemented in instances where the stochastic dynamics
is known only partially. It is also of interest to study the effectiveness of other types of shrink-
age priors in this context. These extensions would also broadly benefit from the convenience of
Gibbs sampling schemes similar to the ones showcased in this article. The ‘divide and conquer’
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approach intrinsically encoded in such schemes would typically allow for multiple computational
conveniences, like parallel computation as and when required.

Several ongoing works are focusing on more general models including sparse and noisy datasets,
dynamical systems with jumps and multiscale stochastic systems, each of which has its own unique
challenges. For example, for SDE models with noisy data the expansion in Theorem 15 does not
directly hold as the actual trajectory of the underlying SDE is never observed. The generality of the
optimization results in the first part of the paper will play a key role in these cases.
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Appendix A. Proofs and auxiliary results

The lemma below characterizes uniformly p.d. operators. A proof is given for completeness.

Lemma 1 Let Q ∈ L(H,H) be a self-adjoint, p.d. operator. Then the following are equivalent:

(i) Q is uniformly p.d. (ii) Range(Q) is closed. (iii) Q is surjective.

Proof (i) ⇒ (ii): Suppose that {Qhn} ⊂ Range(Q) such that Qhn → g as n → ∞. We need
to show that g = Qh for some h ∈ H. Notice that in particular {Qhn} is Cauchy. Since Q is
uniformly p.d., there exists λ > 0 such that ⟨Qh, h⟩ ⩾ λ∥h∥2. This implies {hn} is also a Cauchy
sequence, and hence by completeness of H there exists h such that hn → h. By continuity of Q,
we then have Qhn → Qh, and therefore, Qh = g.

(ii) ⇒ (iii): Suppose Range(Q)⊥ ̸= {0}. Let 0 ̸= y ∈ Range(Q)⊥. Now Qy ∈ Range(Q);
hence ⟨Qy, y⟩ = 0. But since Q is p.d. this means that y = 0; in other words, Range(Q)⊥ = {0}.
Since Range(Q) is closed by the hypothesis, we get from H = Range(Q) ⊕ Range(Q)⊥ that
Range(Q) = H.

(iii) ⇒ (i): Observe that since Q is self-adjoint and p.d., ⟨h′, h⟩Q
def
= ⟨Qh′, h⟩ defines a valid in-

ner product. Furthermore, since Q is surjective, Q−1 is a bounded linear operator, that is, Q−1 ∈
L(H,H). Now by Cauchy-Schwartz inequality, |⟨h′, h⟩Q| ⩽ ∥h′∥Q∥h∥Q. Taking h′ = Q−1h, we
get ∥h∥ ⩽ ∥Q−1∥1/2∥h∥Q which establishes (i).

Proof [Lemma 5] Define G∗ def
= infh∈HG(h) and observe that if G ≡ ∞, the assertion is trivially

true as then G∗ = ∞, and any h ∈ H solves the minimization problem. So we assume that
G(h) < ∞ for some h ∈ H. Then G∗ < ∞ (G∗ still could be −∞), and there exists a sequence
{hn} such that G(hn) → G∗, as n → ∞. Notice that this implies the sequence {∥hn∥} is bounded.
Indeed, if this is not true then lim supn→∞ ∥hn∥ = ∞. But the hypothesis on G then implies
that G∗ = lim supn→∞G(hn) = ∞, which contradicts the fact that G∗ < ∞. Consequently, by
Banach-Alaoglu (and Eberlein-Smulian theorem) there exists an h∗ ∈ H and a subsequence {nk}
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such that hnk

w→ h∗. By the weak sequential l.s.c. of G we conclude

G∗ = lim
k→∞

G(hnk
) ⩾ G(h∗) ⩾ inf

h∈H
G(h) = G∗.

This proves that the infimum of G is attained at h∗.

Proof [Theorem 6] (i) Fix h ∈ H. Write h = PMh + (I − PM)h. Next notice that since Q is
self-adjoint,

⟨Qh, h⟩ = ⟨QPMh+Q(I − PM)h,PMh+ (I − PM)h⟩
= ⟨QPMh,PMh⟩+ 2⟨Q(I − PM)h,PMh⟩+ ⟨Q(I − PM)h, (I − PM)h⟩
= ⟨QPMh,PMh⟩+ ⟨Q(I − PM)h, (I − PM)h⟩

because ⟨Q(I −PM)h,PMh⟩ = ⟨(I −PM)h,QPMh⟩ = 0, as (I −PM)h ∈ M⊥ and QPMh ∈
M (because of the assumption (c), QM ⊂ M). Since Q is p.s.d., it follows that ⟨Qh, h⟩ ⩾
⟨QPMh,PMh⟩ with equality only when (I − PM)h ∈ NQ.

Since F (h, ·) ⩾ F (PMh, ·) and F (h, ·) is non-decreasing by assumptions (a) and (b), we have

F
(
h, ⟨Qh, h⟩1/2

)
⩾ F

(
PMh, ⟨Qh, h⟩1/2

)
⩾ F

(
PMh, ⟨QPMh,PMh⟩1/2

)
. (A.1)

This proves both the first and the second assertions of (i). If F (h, ·) is strictly increasing, then the
second inequality in (A.1) is strict when (I −PM)h /∈ NQ. Now (I −PM)h ∈ M⊥. Therefore, if
NQ ⊂ M, or equivalently, NQ∩M⊥ = {0}, then the second inequality in (A.1) is strict if and only
if h ̸= PMh. Consequently, if h∗ ∈ H, is a global minimizer of (2.4), we must have h∗ = PMh∗,
or equivalently, h∗ ∈ M. This proves the last part of (i).

(ii) We prove the statement by contradiction. Let h0 be a local minimizer. Then there exists a r > 0
such that F

(
h0, ⟨Qh0, h0⟩1/2

)
⩽ F

(
h, ⟨Qh, h⟩1/2

)
for all h ∈ B(h0, r). Suppose that h0 /∈ M.

Then h0 ̸= PMh0. Consequently, by the previous proof ⟨Qh0, h0⟩ > ⟨QPMh0,PMh0⟩. For
0 ⩽ δ ⩽ 1, define hδ = δPMh0+(1−δ)h0. Note that by convexity of the mapping h → ⟨Qh, h⟩1/2,
for any 0 < δ < 1,

⟨Qhδ, hδ⟩1/2 ⩽ δ⟨QPMh0,PMh0⟩1/2 + (1− δ)⟨Qh0, h0⟩1/2 < ⟨Qh0, h0⟩1/2.

Thus for any 0 < δ < 1 by almost quasiconvexity of F (·, u) (c.f. Definition 3),

F
(
hδ, ⟨Qhδ, hδ⟩1/2

)
< F

(
hδ, ⟨Qh0, h0⟩1/2

)
⩽ F

(
h0, ⟨Qh0, h0⟩1/2

)
∨ F

(
PMh0, ⟨Qh0, h0⟩1/2

)
= F

(
h0, ⟨Qh0, h0⟩1/2

)
. (A.2)

The last equality is because F
(
h0, ⟨Qh0, h0⟩1/2

)
⩾ F

(
PMh0, ⟨Qh0, h0⟩1/2

)
due to the assump-

tion on F . Now notice that ∥hδ − h0∥ = δ∥(I − PM)h0∥ < r for sufficiently small δ, and hence
F
(
h0, ⟨Qh0, h0⟩1/2

)
⩽ F

(
hδ, ⟨Qhδ, hδ⟩1/2

)
for sufficiently small δ. But that is a contradiction to

(A.2).

(iii) is essentially a standard result in convex optimization.
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Proof [Corollary 8] (2.7) follows from Theorem 6-(i). The fact that M0 is nonempty (existence of
minimizer) is a direct consequence of Lemma 5 applied in the setting of Hilbert subspace M (recall
that M is closed). To see this we start by noting that the mapping h ∈ M → ⟨Qh, h⟩1/2 is weakly
l.s.c. This is because the sublevel sets

{
h ∈ M : ⟨Qh, h⟩1/2 ⩽ a

}
=
{
h ∈ M : ⟨Qh, h⟩ ⩽ a2

}
are weakly closed since they are strongly closed (as the mapping h ∈ M → ⟨Qh, h⟩ is strongly
continuous) and convex (due to convexity of h ∈ M → ⟨Qh, h⟩). Since J : [0,∞) → [0,∞) is
l.s.c. and increasing, the (composition) mapping h ∈ M → J

(
⟨Qh, h⟩1/2

)
is also weakly l.s.c.

Hence, because of the hypothesis that F0 is weakly sequentially l.s.c., the mapping h ∈ M →
F
(
h, ⟨Qh, h⟩1/2

)
is weakly sequentially l.s.c.

Now clearly (b) implies that lim suph∈M, ∥h∥→∞ F
(
h, ⟨Qh, h⟩1/2

)
= ∞. If (a) holds instead

of (b), then we just need to observe that lim suph∈M, ∥h∥→∞ J(⟨Qh, h⟩1/2) = ∞. This follows
as for some constant λ > 0, ⟨Qh, h⟩ ⩾ λ∥h∥2 for all h ∈ M (as Q

∣∣
M is uniformly p.d.) and

lim supu→∞ J(u) = ∞. Since F0 is bounded below, lim suph∈M, ∥h∥→∞ F (h, ⟨Qh, h⟩1/2) = ∞.
In either case, the assertion follows from Lemma 5.

Recall the notations described before Algorithm 2.

Lemma 2 Suppose that the joint distribution of Xt1:tm = (X(t1), X(t2), . . . , X(tm))) given the
parameters β and ςςT is described by the transition probabilities (3.5). Assume that

• βi|λ2
i , τ

2 ∼ Nd(·|0, λ2
i τ

2I),

• λ2
i |θi ∼ IG(·|αi, θi) for i = 1, 2, . . . ,m, τ2|θ0 ∼ IG(·|α0, θ0);

• θ0, θi, i = 1, 2, , . . . ,m are independent, and for each i = 1, 2, . . . ,m, θi ∼ G(·|a, b) and
θ0 ∼ G(·|a0, b0);

• ςςT : ςςT ∼ IWd(·|n, V ).

Then

(i) β|F−β ∼ N(·|µ,C) where

C−1 = ∆KT
0 DK0 + η−1, µ = CKT

0 Dϑ

Ddm×dm = diag
(
(σσT (X(t1)))

−1, (σσT (X(t2)))
−1, . . . , (σσT (X(tm)))−1

)
ηdm×dm = diag

(
λ2
1τ

2, λ2
2τ

2, . . . , λ2
mτ2

)
⊗ Id

ϑdm×1 = vecd×m (X(t1)− x0, X(t2)−X(t1), . . . , X(tm)−X(tm−1)) ,

(A.3)

and K0 = ((κ0(X(ti), X(tj)))) is the Gram matrix associated with κ0.

(ii) ςςT |F−ςςT ∼ IWd(n+m,Vpost), where

Vpost = ∆−1
m−1∑
k=0

(σ0(X(tk)))
−1 (ϑk+1 − b(X(tk)∆)(ϑk+1 − b(X(tk)∆)T

(
σT
0 (X(tk))

)−1
+ V.

(A.4)
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(iii) Conditioned on F−{λ2
i }

, λ2
k, k = 1, 2, . . . ,m are independent, and

λ2
k|F−{λ2

i }
∼ IG

(
·
∣∣∣(d+ 2αk)/2,

1

2
βT
k βk/τ

2 + θk

)
.

(iv) τ2|F−τ2 ∼ IG
(
·
∣∣∣(md+ 2α0)/2, θ0 + 1

2

∑m
k=1 β

T
k βk/λ

2
k

)
.

(v) Conditioned on F−θ0,{θi}, θ0, θk, k = 1, 2, . . . ,m are independent

θk|F−θ0,{θi} ∼ G
(
·|αk + a, b+ 1/λ2

k

)
, θ|G−θ0,{θi} ∼ G

(
·|α0 + a0, b0 + 1/τ2

)
.

Proof By a slight abuse of notation, we use f as a generic symbol for various conditional densities
below. Notice that

f (β|F−β) ∝ exp

{
−1

2

(
E0 +

m∑
k=1

βT
k βk/(λ

2
kτ

2)

)}
,

where

E0 = ∆−1
m−1∑
k=0

[
(ϑk+1 −∆b(X(tk)))

T
(
σσT (X(tk))

)−1
(ϑk+1 −∆b(X(tk)))

]
=

m−1∑
k=0

∆−1ϑT
k+1

(
σσT (X(tk))

)−1
ϑk+1 +∆bT (X(tk)

(
σσT (X(tk))

)−1
b(X(tk))

− 2ϑT
k+1

(
σσT (X(tk))

)−1
b(X(tk)).

Here ϑk+1 = X(tk+1)−X(tk), and recall that b(x) =
∑m

k=1 κ0(x,X(tk))βk. Now

b(X(tk)) =

m∑
j=1

κ0(X(tk), X(tj))βj = K0(X(tk), ∗)β,

and hence

m−1∑
k=0

ϑT
k+1

(
σσT (X(tk))

)−1
b(X(tk)) = ϑTDK0β

m−1∑
k=0

bT (X(tk)
(
σσT (X(tk))

)−1
b(X(tk)) =βTKT

0DK0β.

Since
∑m

k=1 β
T
k βk/(λ

2
kτ

2) = βTη−1β, it follows that

f (β|F−β) = N(β|µ,C),

where

C−1 = ∆KT
0DK0 + η−1, µ = CK0Dϑ
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with D as in (A.3). Next note that

f
(
ςςT |F−ςςT

)
∝ det

(
(ςςT )

)−m/2
exp

{
−1

2
E0
}
det
(
(ςςT )

)−(n+d+1)
2 exp

{
−1

2
tr
(
V (ςςT )−1

)}
=det

(
(ςςT )

)−(n+m+d+1)
2 exp

{
− 1

2
tr
[(

∆−1
m−1∑
k=0

σ−1
0 (X(tk))(ϑk+1 −∆b(X(tk)))

× (ϑk+1 −∆b(X(tk)))
T
(
σT
0 (X(tk))

)−1
+ V

)
(ςςT )−1

]}
,

which proves the assertion. Next note that

f
(
λ2
1, λ

2
2, . . . , λ

2
m|F−{λ2

i }

)
∝ (τ2)−md/2

m∏
k=1

(λ2
k)

−d/2 exp

{
−1

2
(λ2

kτ
2)−1βT

k βk}
}

×
m∏
k=1

(λ2
k)

−(αk+1) exp

{
− θk
λ2
k

}

∝
m∏
k=1

(λ2
k)

−(d+2αk)/2−1 exp

{
−
(
1

2
βT
k βk/τ

2 + θk

)
/λ2

k

}
,

which proves the assertion. Similarly,

f
(
τ2|F−τ2

)
= (τ2)−md/2

m∏
k=1

(λ2
k)

−d/2 exp

{
−1

2
(λ2

kτ
2)−1βT

k βk}
}
× (τ2)−(α0+1) exp

{
−θ0

τ2

}

∝ (τ2)−(md+2α0)/2−1 exp

{
−

(
θ0 +

1

2

m∑
k=1

βT
k βk/λ

2
k

)/
τ2

}
,

and (iv) follows. Finally notice that

f
(
θ, θ1, θ2, . . . , θm|F−θ,{θi}

)
∝

m∏
k=1

θαk
k (λ2

k)
−(αk+1) exp

{
− θk
λ2
k

}
× θα

0
(τ2)−(α0+1) exp

{
−θ0

τ2

}

×
m∏
k=1

θa−1
k exp {−bθk} × (θ0)a

0−1 exp
{
−b0θ0

}
∝

m∏
k=1

θαk+a−1
k exp

{
−(b+ 1/λ2

k)θk
}
× (θ0)α

0+a0−1 exp
{
−(b0 + 1/τ2)θ

}
which proves (v).

Appendix B. Some existing estimators

Histogram and nearest-neighbor-based estimators: First, the range [min(Xt1:tm),max(Xt1:tm)]
into n bins {Bi ≡ [min(Xt1:tm) + (i− 1)l,min(Xt1:tm) + il) : i = 1, 2, . . . , n} with equal length
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l = (max(Xt1:tm) − min(Xt1:tm))/n. The histogram-based regression estimator b̂hist(x) is then
defined as

bhist(x) =
1

∆

n∑
i=1

(
1Bi(x)

∑m−1
j=1 1Bi(X(tj))(X(tj+1)−X(tj))∑m−1

j=1 1Bi(X(tj))

)
.

In other words the weight that is assigned to each x lying in the bin Bi is the average of all
1
∆(X(tj+1) − X(tj)) such that X(tj)) falls into Bi (Tuckey (1961); Lamouroux and Lehnertz
(2009)). More sophisticated approaches rely on replacing the mean of the bins with the mean of the
k-nearest neighbors (Hegger and Stock (2009)).

Traditional kernel-based estimator: This method uses traditional Nadaraya-Watson type esti-
mates to circumvent assigning a simple average to each value of x (Lamouroux and Lehnertz
(2009)). Specifically, the kernel-based regression estimator b̂ker is given by

b̂ker(x) =
1

∆(m− 1)

m−1∑
j=1

wh,j(x)(X(tj+1)−X(tj)),

where wh,j(x) is the Nadaraya–Watson-estimator,

wh,j(x) =
Kh(x−X(tj))

(m− 1)−1
∑m−1

j=1 Kh(x−X(tj))
,

and h is the bandwidth of the kernel. (Lamouroux and Lehnertz (2009)) suggested the Epanechnikov
kernel, Kh(x) = max(0, 3

4
√
5
h−1(1− ( (xh

−1)2

5 )), which is what we used in Figures 2 and 5.
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