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Abstract
Massive data bring the big challenges of memory and computation for analysis. These
challenges can be tackled by taking subsamples from the full data as a surrogate. For
functional data, it is common to collect multiple measurements over their domains,
which require even more memory and computation time when the sample size is large.
The computation would be much more intensive when statistical inference is required
through bootstrap samples. Motivated by analyzing large-scale kidney transplant
data, we propose an optimal subsampling method based on the functional L-optimality
criterion for functional generalized linear models. To the best of our knowledge, this is
the first attempt to propose a subsampling method for functional data analysis. The
asymptotic properties of the resultant estimators are also established. The analysis
results from extensive simulation studies and from the kidney transplant data show
that the functional L-optimality subsampling (FLoS) method is much better than the
uniform subsampling approach and can well approximate the results based on the full
data while dramatically reducing the computation time and memory.
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1. Introduction

Functional data are data collected at multiple times, spatial locations or any other
continuum (Ramsay and Silverman, 2002; Morris, 2015; Wang et al., 2016). Our research
is motivated by the analysis of a massive functional data set arising from studying organ
transplantation. Organ transplantation is one of the great advances in modern medicine
and is the ultimate effective means to treat diseases. It is necessary because it can replace
those unusable organs of the recipients and make the recipients’ life continue to be relayed
and endless, but at the same time, the transplantation surgery is complex and expensive.
The organ transplant data from the Organ Procurement Transplant Network/United
Network for Organ Sharing (Optn/UNOS) as of September 2020 is a massive functional
data, which is available at https://optn.transplant.hrsa.gov/ with the permission of
OPTN/UNOS. This data set collects the basic description (for example, age, race, gender,
and height) of about 500,000 recipients of kidney transplants at the time of transplant
since October 1, 1987, and their information during the followed-up period (for example,
serum creatinine, recipient status and the follow-up time), which can be used to check
whether the transplant was successful. The health status of the kidney can be measured
by checking the estimated glomerular filtration rate (eGFR) with details shown in Section
6.1.

For this kind of massive functional data set, too much computing memory is required
when using the full data for analysis, sometimes even exceeding the available computational
resources. When the sample size of functional data is large, we also have to increase the
computational efficiency. For instance, one important tool in functional data analysis
(FDA) is the functional generalized linear model (James, 2002; Cardot and Sarda, 2005;
Müller and Stadtmüller, 2005; Crainiceanu et al., 2009; McLean et al., 2014), which
describes the relationship between the functional predictors and the scalar response from
an exponential family distribution (for example, the Binomial distribution and Poisson
distribution). An iterative optimization procedure is needed to estimate the functional
generalized linear model. The corresponding computational complexity is O(nK + InK2)
when using the penalized B-splines method (Cardot et al., 2003; Xiao, 2019), where n
is the sample size of functional data, K is the number of knots, and I is the number of
iterations. Usually, the number of knots, K, is chosen to be relatively large to capture the
local features of the functional coefficients. We also need to select the optimal smoothing
parameter by the Bayesian information criterion (BIC). Consequently, when the number
of functional data is large, the computing time based on the full data may be too long.

To tackle the above computing challenges, an effective method is to take random
subsamples from the massive data as a surrogate. The existing subsampling literature
mainly focuses on models with only scalar variables. For instance, Ma et al. (2015) used
the probabilities based on statistical leverage scores to randomly subsample data and
established the asymptotic properties of the resultant estimators for linear regression. A
method named information-based optimal subdata selection (IBOSS) proposed by Wang
et al. (2019) selects subsample data deterministically without involving random sampling.
Ai et al. (2021) investigated the optimal subsampling method under the A-optimality
criterion (OSMAC) for generalized linear models. A Poisson subsampling method based
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on the A-optimality or L-optimality criterion was used for maximum quasi-likelihood
estimation in Yu et al. (2022). And Ma et al. (2022) studied the asymptotic normality
and asymptotic unbiasedness of the leveraging sampling estimator. We refer the readers
to Yao and Wang (2021) for a recent review of optimal subsampling methods of massive
data when both the response and the predictors are scalar.

It is worth mentioning that there is little work on subsampling in the field of FDA.
The simplest subsampling method to solve the computing challenges with functional
predictors is to draw the sample uniformly at random, which will perform poorly when the
leverage scores are non-uniform. Moreover, in order to make the B-spline approximation
asymptotically unbiased, a relatively large K is usually chosen. A roughness penalty
is used to ensure the smoothness of the estimator, which results in the variance of the
subsample estimator too complicated to be adapted by IBOSS in Wang et al. (2019) and
Cheng et al. (2020). In addition, IBOSS is based on the order statistics of each scalar
predictor variable. The functional predictor variable in the functional linear model is a
curve and is difficult to be ordered. As a result, IBOSS is not suitable for the subsampling
with functional predictors.

In this paper, we first estimate the functional coefficient using the subsampling data,
and derive the asymptotic distribution of the general subsampling estimator. Then, we ob-
tain the optimal subsampling probabilities by minimizing the asymptotic integrated mean
squared errors (IMSE) and propose the functional L-optimality criterion. The derived opti-
mal subsampling probability is not only related to the predictors but also the responses. In
comparison, uniform subsampling treats every subject equally, which ignores the different
information from subjects. Lastly, we attain the optimal subsampling estimator based on
the optimal subdata drawn according to the optimal probability calculated above. Our
proposed method is called the functional L-optimality subsampling (FLoS) method in
this article. We establish the asymptotic results of the FLoS estimators for the functional
generalized linear model. In addition, an R package SubsamplingFunPredictors has
been developed for implementing the FLoS method. The R package and the R codes for
the simulation studies can be downloaded at https://github.com/caojiguo/FLoS.

To the best of our knowledge, this is the first attempt to propose the subsampling
method for functional data analysis. The FLoS method has several advantages. (1)
The computing complexity for this method is O(nK). It is significantly faster than
O(nK + InK2) when using the full data. (2) The root integrated mean square errors
(RIMSEs) of the estimators using the FLoS method are smaller than those using the
uniform subsampling method. (3) We can calculate the subsampling probabilities on each
subset independently. Therefore, distributed parallel computing can be adapted based
on the FLoS method. (4) One by-product of the FLoS method is to make statistical
inferences using multiple subsampling datasets in parallel computing, which has a more
obvious advantage in reducing computing time.

The rest of this article is organized as follows. In Section 2, we briefly introduce the
functional generalized linear model and the estimation based on the full data. Section 3
derives the optimal subsampling strategy and the optimal subsampling algorithm based
on the functional L-optimality criteria for the estimator of the functional coefficient. The
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asymptotic behaviours for the optimal subsampling estimator are also investigated in
this section. The evaluation of the numerical performance of our proposed estimator via
simulation studies is presented in Section 4. We also illustrate our method by analyzing a
real data set in Section 5. Some conclusions and discussions are provided in Section 6.

2. Model and Full Data Estimation

This article studies optimal subsampling in regression with a functional predictor and
a discrete scalar response. Let Y be a scalar response, and Z(t) be a process defined on a
domain [a, b], the form of the basic functional generalized linear model can be expressed
as:

E(Y |X) = ψ

(
α+

∫ b

a
Z(t)β(t)dt

)
,

where α is the intercept, β(t) is the unknown slope function, ψ(·) is a twice continuously
differentiable function and the function ψ−1(·) is called the link function.

We use the B-spline basis functions (de Boor, 1978) to approximate the functional
coefficient β(t). On the domain [a, b], we define a knot sequence with K interior knots
a = k0 < k1 < . . . < kK < kK+1 = b. For pth degree B-spline basis, we define the
additional knots: k−p = k−p+1 = · · · = k−1 = k0, and kK+1 = kK+2 = · · · = kK+p+1. For
p ≥ 1, let S(p+ 1; k) = {s(·) ∈ Cp−1[a, b] : s is a degree p polynomial on each [kj , kj+1]}
be the space of polynomial splines of degree p, where Cp−1([a, b]) is the collection of all
functions that have p− 1 order bounded continuous derivatives on [a, b]. According to the
definition of B-spline basis functions, the order is equal to p+ 1, and the total number of
basis functions with degree p and K interior knots is K + p+ 1. Denote the pth degree
B-spline basis for S(p+ 1; k) as Np+1(t) = (Nj,p+1(t) : −p ≤ j ≤ K)T (Schumaker, 1981).
And let sβ(t) = NT

p+1(t)cβ ∈ S(p+1, k) be the approximation to the functional coefficient
β(t) (Claeskens et al., 2009), where NT

p+1(t) is the transpose of Np+1(t).
Suppose the full data Fn = {(zi(t), yi), i = 1, . . . , n; t ∈ [a, b]} consists of n independent

and identically distributed (i.i.d) observations of (Y,Z(t), t ∈ [a, b]). Denote xi(t) =
(1, zi(t))

T , X(t) = (x1(t), · · · ,xn(t))T ,

N(t) =

(
1/(b− a) 0
0K+p+1 Np+1(t)

)
,

Ni =
∫ b
a N(t)xi(t)dt, N =

∫ b
a X(t)NT (t)dt = (N1, . . . ,Nn)T , where 0K+p+1 is a

(K + p + 1) × 1 vector with all elements equal to 0. Combining the maximum quasi-
likelihood estimator in the generalized linear model (Chen et al., 1999; Yu et al., 2022) and
the penalized B-splines, we can obtain the penalized quasi-likelihood estimator β̂PQL(t) =

(α̂PQL, β̂PQL(t))T = NT (t)ĉPQL of the functional coefficient vector β(t) = (α, β(t))T ,
where ĉPQL = (α̂PQL, ĉ

T
β,PQL)T can be obatined by solving the following equation:

QPQL(c) =

n∑
i=1

{yi − ψ(NT
i c)}Ni − λDc = 0, (1)
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with c = (α, cTβ )T and the non-negative smoothing parameter λ. In the above criterion, the
first term is the quasi-likelihood function (Chen et al., 1999; Yu et al., 2022), and the second
term is the roughness penalty that aims to enforce smoothness of β̂PQL(t), where N (q)

p+1(t)

is the qth order derivative of Np+1(t) with q ≤ p, Dq =
∫ b
a {N

(q)
p+1(t)}{N (q)

p+1(t)}Tdt, and

D =

(
0 0TK+p+1

0K+p+1 Dq

)
.

3. The FLoS Method

In this section, we propose an optimal subsampling algorithm and then establish the
asymptotic properties of the resultant estimators.

3.1 Subsample estimator

Denote the full data as Fn = {(zi(t), yi), i = 1, . . . , n; t ∈ [a, b]}. Let ηi be the
indicator variable, that is, ηi = 1 if (zi(t), yi; t ∈ [a, b]) is included in the subdata, and
ηi = 0 otherwise. Thus, ηi ∼ Bernoulli(pi) with

∑n
i=1 pi = 1. The subsample penalized

quasi-likelihood estimator, denoted as β̃PQL(t) is given by β̃PQL(t) = NT (t)c̃PQL, where
c̃PQL can be obtained through the equation

Q∗PQL(c) :=
n∑
i=1

Ri{yi − ψ(NT
i c)}Ni/(Lpi)− λDc = 0. (2)

where Ri =
∑L

l=1 ηil denotes the total number of times that the i-th observation is selected
into the sample out of the L sampling steps, Ri ∼ Binomial(L, pi), and the objective
function is weighted by the sampling probabilities pi.

In addition, let Ψ = Diag(ψ̇(NT
1 c), · · · , ψ̇(NT

n c)), G
ψ
k,n = NTΨN/n and Hψ

k,n =

Gψ
k,n + λD/n, where ψ̇(·) is the first order deriative of ψ(·). In the following theorem, we

give the asymptotic normality of the subsample estimator.

Theorem 1 Under Assumptions 1-7, for any given t, as L, n→∞, we have
{
NT (t)

Hψ,−1
k,n W ψ

p Hψ,−1
k,n N(t)/L

}−1/2
(β̃PQL(t)− β(t))→ N(02, I2), where

W ψ
p = n−2

n∑
i=1

E
{(
yi − ψ(NT

i c)
)2}

NiN
T
i /pi. (3)

In (3), the term E
{(
yi − ψ(NT

i c)
)2} is unknown, so the optimal subsampling proba-

bilities are not directly implementable based the asymptotic covariance matrix of β̃PQL(t).
Next, we establish the asymptotic normality of estimator β̃PQL(t) in approximating the
full data estimator β̂PQL(t) to obtain the optimal subsampling probabilities.
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Theorem 2 Under Assumptions 1-7, for any given t, as L, n→∞, conditionally on Fn
in probability,

{
NT (t)Hψ,−1

k,n V ψ
p H

ψ,−1
k,n N(t)/L

}−1/2
(β̃PQL(t) − β̂PQL(t)) → N(02, I2),

where V ψ
p = n−2

∑n
i=1{yi − ψ(NT

i ĉPQL)}2NiN
T
i /pi.

3.2 Optimal subsampling probabilities

For the functional coefficients, IMSE is a measure of the quality of their estimators.
We want to find the optimal subsampling probabilities that minimize the IMSE of β̃PQL

in approximating β̂PQL, where the IMSE is defined as follows

IMSE(β̃PQL − β̂PQL) =

∫ b

a
NT (t)(Hψ

k,n)−1V ψ
p (Hψ

k,n)−1N(t)/L. (4)

In (4), L−1(Hψ
k,n)−1V ψ

p (Hψ
k,n)−1 is the asymptotic covariance matrix of c̃PQL − ĉPQL,

where Hψ
k,n depends on the chosen smoothing parameter λ. In addition, from (4),

we can see that only V ψ
p depends on the sampling probability pi and the integral∫ b

a N
T (t)(Hψ

k,n)−1V ψ
p (Hψ

k,n)−1N(t) ≤
∫ b
a N

T (t)(Hψ
k,n)−1V ψ

p∗(Hψ
k,n)−1N(t) if V ψ

p ≤ V ψ
p∗ .

We propose to obtain the optimal subsampling probability by minimizing V ψ
p . Several

criteria exist for minimizing the matrix. Here we choose to minimize the trace of the matrix
V ψ
p . Note that L−1V ψ

p is the asymptotic covariance matrix of (Hψ
k,n)−1(c̃PQL − ĉPQL),

where (Hψ
k,n)−1(c̃PQL − ĉPQL) is a linear transformation of the estimator c̃PQL − ĉPQL.

Thus, minimizing tr(V ψ
p ) to obtain the optimal subsampling probability is termed the

functional L-optimality criterion, which is the functional version of the L-optimality
defined in Pukelsheim (2006) and Atkinson et al. (2007).

Theorem 3 If the subsampling probabilities pi, i = 1, . . . , n, are chosen as

pFLoS
PQL,i =

|yi − ψ(NT
i ĉPQL)|‖Ni‖2∑n

i=1 |yi − ψ(NT
i ĉPQL)|‖Ni‖2

, (5)

then tr(V ψ
p ) attains its minimum, where ‖Ni‖2 = (NT

i Ni)
1/2.

The subsampling probabilities (5) are related with the predictors and the response.
Suppose the response yi ∈ {0, 1}, i = 1, . . . , n, we study the effect of the response on the
subsampling probabilities. For the individuals with response yi = 1, a smaller estimated
probability ψ(NT

i ĉPQL) using full data results in a larger subsampling probability pFLoS
PQL,i.

On the other hand, for the samples with yi = 0, the subsampling probability pFLoS
PQL,i

increases as the estimated probability ψ(NT
i ĉPQL) increases. As a result, this subsampling

method is more likely to select those samples that are more easily misclassified, which
means this method improves the robustness of the subsample estimator.

Note that the corresponding computational complexity of ĉPQL in (5) using full data
is O(InK2). Therefore, we need to replace ĉPQL by a pilot estimator, say ĉ0

PQL, which
can be obtained by a uniform subsample with the sample size L. In addition, we need to
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choose the smoothing parameter λ, the degree p of the B-spline basis, and the number of
knots K. In the penalized spline method, the choice of K is not crucial (Cardot et al.,
2003), as the roughness of the estimator is controlled by a roughness penalty, rather
than the number of knots. Usually, in practice, we choose p = 3 and K is chosen to be
relatively large so that local features of β(t) can be captured. Once K and p are fixed, we
can select the smoothing parameter λ by minimizing BIC. Using the full data to select
the optimal λ is computationally expensive. Therefore, we need to select the tuning
parameter by BIC using the optimal subsample data. We give the practical subsampling
procedure for the functional generalized linear model in Algorithm 1.

Algorithm 1: FLoS Algorithm for Functional Generalized Linear Model

Input :Data: (Ni, yi; i = 1, . . . , n), where Ni = (1,
∫ b
a zi(t)N

T
p+1(t)dt)T .

• Step 1: Draw a subsample of size L using the uniform sampling probabilities
p0
i = 1/n, and use it to obtain the pilot estimator ĉ0

PQL with λ = 0.

• Step 2: Applying ĉ0
PQL, we can get the approximate optimal subsampling

probabilities pFLoS,ĉ0

PQL,i :

p
FLoS,ĉ0PQL

PQL,i =
|yi − ψ(NT

i ĉ
0
PQL)|‖Ni‖2∑n

i=1 |yi − ψ(NT
i ĉ

0
PQL)|‖Ni‖2

,

Using the subsampling probabilities p
FLoS,ĉ0PQL

PQL,i to draw a random subsample with
replacement of size L. Denote the subsample as (N∗i , y

∗
i ), with associated

subsampling probabilities p
∗FLoS,ĉ0PQL

PQL,i .

• Step 3: Given λ, we can obtain the estimate c̆PQL
FLoS(λ) through solving

Q∗FLoS
PQL (c) =

L∑
i=1

(y∗i − ψ(N∗Ti c))Ni/(Lp
∗FLoS,ĉ0PQL

PQL,i )− λDc = 0, (6)

thus, based on the optimal subsample data, we can use BIC to choose the optimal
tuning parameter λ.

Output :Once we obtain the optimal λ, we can get the final estimator
β̆FLoS

PQL (t) = NT (t)c̆PQL
FLoS.

In Algorithm 1, we need to use an iterative procedure, such as Newton’s method
introduced in Appendix C, to get the pilot estimator and solve Equation (6). In step 1 &
3, it takes O(nK) computing complexity to calculate the matrix N and the subsampling
probabilities. To get the pilot estimator ĉ0

PQL in step 2, the computing complexity is
O(I0LK

2) where I0 is the number of iterations. In step 4, each iteration takes O(LK2)
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computing complexity and the whole procedure requires O(I4LK
2) with the number of

iterations I4. Thus, when the full data size n is very large, total computing complexity
O(nK + I0LK

2 + I4LK
2) ≈ O(nK) is smaller than the total computing complexity

based on full data O(nK+InK2) ≈ O(InK2). Thus, Algorithm 1 can reduce computing
complexity dramatically. Algorithm 1 is also naturally suited for distributed storage
and parallel computing. We can divide the full data into several subsets, simultaneously
compute the Ni and optimal subsample probabilities on each subset. Combining the
optimal subsample probabilities of each subset, we can get the indices of a random
subsample in the full data and use these indices to extract the corresponding data on each
subset. The asymptotic result of the estimator obtained from Algorithm 1 is presented
Theorem 4.

Theorem 4 Under Assumptions 1-7, for any given t, as L → ∞ and n → ∞, condi-

tionally on Fn in probability,
{
NT (t)(Hψ

k,n)−1V ψ
FLoS(Hψ

k,n)−1N(t)/L
}−1/2

(β̆FLoS
PQL (t) −

β̂PQL(t))→ N(02, I2), in distribution, where V ψ
FLoS has the minimum trace, and it has the

explicit expression V ψ
FLoS = n−1

∑n
i=1 |yi − ψ(NT

i ĉPQL)|NiN
T
i /‖Ni‖2 × n−1

∑n
i=1 |yi −

ψ(NT
i ĉPQL)|‖Ni‖2.

3.3 Extension

Our proposed method can be extended to the following functional generalized linear
model with multiple functional predictors by several modifications:

E(Y |X) = ψ

(
α+

M∑
m=1

∫ b

a
Zm(t)βm(t)dt

)
,

where Y is the scalar response, Zm(t),m = 1, ...,M is functional predictor defined on do-
main [a, b]. Then, the penalized quasi-likelihood estimator β̂PQL(t) = (α̂PQL, β̂1,PQL(t), · · · ,
β̂M,PQL(t))T and β̂m,PQL(t) = NT

p+1(t)ĉm,PQL, where ĉPQL = (α̂PQL, c
T
1,PQL, · · · , cTM,PQL)T

is the solution of the following equation:

QPQL(c) =
n∑
i=1

{
yi − ψ

(
NT
i c
)}
Ni −

M∑
m=1

λmDqcm = 0, (7)

with Ni =
(
α,
∫ b
a zi1(t)NT

p+1(t)dt, · · · ,
∫ b
a ziM (t)NT

p+1(t)dt
)T

. Let Zm(t) = (z1m(t), · · · ,

znm(t))T , for each predictor zm(t), we compute a matrix Nm =
∫ b
a Zm(t)NT

p+1(t)dt.
Denote N = (1n,N1, · · · ,NM ) be the column catenation of the n× 1 vector of 1s 1n,
N1, · · · ,NM and corresponding set D = diag(0,Dq, · · · ,Dq), where D is the matrix
with 0 and M blocks Dq in its main diagonal and zeros elsewhere. After replacing N and
Dq by new defined N and D, respectively, the estimations and algorithms described in
Section 2 and Section 3.1 can be carried out to estimate β1(t), . . . , βM (t) simultaneously.
It is worth mentioning that we can simultaneously compute all matrix N1, . . . ,NM .
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4. Simulation Studies

We evaluate the performance of the proposed subsample estimators in terms of both
estimations efficiency and computational efficiency in this section.

4.1 Simulation I

In this section, we evaluate the finite sample performance of the functional L-optimality
subsampling method described in Algorithm 1 for estimating the functional logistic
regression in comparison with the uniform subsampling method. We set the true functional
coefficient β(t) = 8×sin(0.85πt). Denote the inverse logistic function as ψ(·) = exp(·)/(1+
exp(·)) and p(xi) = ψ(

∫ 1
0 xi(t)β(t)dt). We generated responses y(xi) ∼ Binomial(1, p(xi))

as pseudo-Bernoulli random variables with probability p(xi). The functional predictor
xi(t) is generated by xi(t) =

∑
aijBj(t), where Bj(t) are cubic B-spline basis functions

defined on 66 equally spaced knots in [0, 1]. We consider the following four different
scenarios to generate the basis coefficients aij :

• Scenario I. The coefficients aij are i.i.d from N(0, 6). Figure 9 (a) in Appendix
B shows that in the simulated data set under this scenario, the distribution of the
probability p(xi) is symmetric about 0.5 and the number of 1’s and the number of
0’s in the responses are roughly equal.

• Scenario II. We generate the coefficients aij from the t distribution with 2 degrees
of freedom and zero mean, namely, aij

iid∼ t2. For this scenario, Figure 9 (b) in
Appendix B shows that the probability p(xi) is symmetric about 0.5 and is less
uniform than those p(xi) of Scenario I. Similar to Scenario I, in the simulated data
set under Scenario II, the number of 1’s and the number of 0’s in the responses are
roughly equal.

• Scenario III. Similar with the setting in Wang et al. (2018), the coefficients aij are
iid from N(0.3, 6). In this scenario, the distribution of probability p(xi) is skewed
left and about 63.53% of responses are 1, which is shown in Figure 9 (c) in Appendix
B. This data set illustrates imbalanced data.

• Scenario IV. The coefficients aij are iid from N(−0.8, 6). The data set generated
under this scenario is an example of rare events data with about 17.85% of responses
as 1, which is similar to the rare event data used in Wang et al. (2018). Figure 9
(d) in Appendix B shows that the distribution of probability p(xi) is skewed right.

Figure 1 displays a random subset of 10 curves for the functional predictor xi(t) under
four scenarios when the sample size n = 105. It shows that the variation among the
functional predictor xi(t) is the smallest when aij is generated from a normal distribution,
while the variation is the largest when aij is generated from a t distribution (Scenario II).
It means that the data generated under Scenarios I, III, and IV is more uniform.

To evaluate the computational efficiency of the subsampling strategies, we record the
CPU times (in seconds) of the two subsampling strategies and using the full data. This
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Figure 1: Ten examples of the simulated functional predictor xi(t) under four scenarios
in Simulation I when the full sample size is n = 105.
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paper uses the R programming language (enhanced R distribution Microsoft R 4.0.2) to
implement each method. All computations are carried out on a computation platform
with Intel Xeon 5 Cpu with 4 cores and 8G memory. Based on 300 replications, Table 1
displays the computation time for different combinations of the full data size n and the
subsample size L under Scenario I. The results under the other three scenarios are similar
and thus omitted. Table 1 shows that the functional L-optimality subsampling method
is significantly faster than using the full data. The difference between the functional
L-optimality subsampling method and the uniform subsampling method is small. In the
implementation, we make the number of knots K = d1.25×n1/4e according to Assumption
5, where dae means the least integer greater than or equal to a. When the full data size
n = 5× 106, the size of the basis matrix of Ni is about 2.6GB and the computing time
for using full data exceeds 18 minutes. Moreover, the basis matrix needs about 8.3GB
memory under the full data size n = 107, which goes beyond the maximum memory of a
general PC with 8G memory, so the estimation using the full data is not feasible. In this
case, for the functional L-optimality subsampling method and the uniform subsampling
method, we can take advantage of parallel computing to calculate the basis matrix N
and the subsampling probability pFLoS,ĉ0

PQL,i . We then use the optimal subsampling data to
estimate the functional generalized linear model.

Table 1: The computing time (in seconds) for estimating the functional generalized
linear model in Simulation I using the functional L-optimality subsampling (FLoS)
method and the uniform sampling (UNIS) method when the full data size n = 105,
106, 5× 106 and n = 107. When the full data size n = 107, the estimation is beyond
the computing memory and fails when using the full data.

n L FLoS UNIS FULL

n = 105
300 0.036 0.017

4.2533000 0.143 0.118
5000 0.225 0.194

n = 106
500 0.224 0.052

86.8785000 0.544 0.333
10000 0.862 0.630

n = 5× 106
1000 1.348 0.184

1107.4578000 2.390 1.161
20000 4.085 2.854

n = 107
3000 6.571 0.543

Fail20000 13.062 3.281
50000 24.163 7.835

The simulation is repeated 300 times. The performances of the functional L-optimality
subsampling method and the uniform subsampling method are measured by the root
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IMSEs (RIMSEs) for the estimators:

RIMSE =

√∫
(β̆(t)− β(t))2dt.

The first row of Figure 2 displays the mean of the RIMSEs against the subsample size
L = 300, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000 for full data size n = 105.
When the full data size n = 106 and the subsample size L = 500, 800, 1100, 1500, 2000, 2500,
3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500, 10000, the
figures of the RIMSEs for two subsample methods against the subsample size are resented
in the second row of Figure 2. For full data size is n = 5× 106 and subsample size L =
1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500,
9000, 9500, 10000, 11000, 12000, 13000, 14000, 15000, 16000, 17000, 18000, 19000, 20000, the
bottom row of Figure 2 shows the RIMSEs against subsample size L.

Figure 2 shows that the functional L-optimality subsampling method outperforms
the uniform subsampling approach for all scenarios under different full data sizes. The
RIMSEs for both subsampling methods decrease and tend to stay stable as the subsample
size increases. When the full data size is fixed, the more imbalanced the data, the greater
the advantage of the functional L-optimality subsampling method over the uniform
subsampling approach. Figure 3 shows that our method can still outperform the uniform
subsampling approach when the proportion of 1’s in the responses reaches around 5.88%
(aij ∼ N(−2.5, 6)) or even around 1.85% of the full data set with n = 105 (aij ∼
N(−3.5, 6)). On the other hand, when the data is extremely rare data (for example,
about 0.05% of 1’s in the responses with n = 105, that is, aij ∼ N(−4.5, 6)), neither
subsampling methods nor the method using the full data work well. In Scenario II when
the variation among functional predictors is larger, Figure 2 (b), (f) and (j) show that
the functional L-optimality subsampling method also dominates the uniform subsampling
approach.

To compare the performance of the two subsampling methods on the classification
accuracy, Figure 4 displays proportions of correct classifications (PCC), which is defined
as:

PCC =
#{yi = 1 and ψ(NT

i ĉPQL) > 0.5}+ #{yi = 0 and ψ(NT
i ĉPQL) ≤ 0.5}

n
.

(8)
Based on the PCC criterion, Figure 4 also shows that the PCC for the two methods
increases and will stay stable as the subsample size L increases. In addition, the functional
L-optimality subsampling method performs better than the uniform subsampling approach
in all four scenarios. Although the two methods do not perform very well for Scenario
II, the functional L-optimality subsampling method is still significantly better than the
uniform subsampling approach. In summary, regardless of whether the variation among
the generated functional predictors is large or the responses are imbalanced, our proposed
functional L-optimality subsampling method is better than the uniform subsampling
approach.
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Figure 2: The average of the root integrated mean squared error (RIMSE) of the
estimated functional coefficient β̆(t) in the functional logistic regression model (Simulation
II) by using the functional L-optimality subsampling (FLoS) method and the uniform
subsampling (UNIS) approach under four scenarios with various subsample sizes L when
the full data size n = 105 (Panels (a)-(d)), 106 (Panels (e)-(h)), and 5 × 106 (Panels
(i)-(l)).
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Figure 3: The average of the root integrated mean squared error (RIMSE) of the
estimated functional coefficient β̆(t) in the functional logistic regression model (Simulation
II) by using the functional L-optimality subsampling (FLoS) method and the uniform
subsampling (UNIS) approach from the rare event data with 5.88% or 1.85% of 1’s in the
response when the full data size n = 105.

4.2 Simulation II

In this section, we evaluate the finite sample performance of the proposed subsampling
method described in Algorithm 1 for estimating the functional Poisson regression in
comparison with the uniform subsampling approach. We set the true functional coefficient
β(t) = sin(0.5πt). Denote ψ(·) = exp(·) and λ(xi) = ψ(

∫ 1
0 xi(t)β(t)dt), then we generated

responses y(xi) ∼ Poisson(λ(xi)) with the mean λ(xi). The simulation designs of the
functional predictors xi(t) are the same as in Simulation I, except that we consider the
following three different scenarios to generate the basis coefficients aij .

• Scenario I. The basis coefficients aij are i.i.d from the standard normal distribution,
namely, aij ∼ N(0, 1). Figures 10 (a) and (d) in Appendix B show that the
distribution of the expected value λ(xi) ranges from 0.6 to 1.5 and is approximately
symmetric about 1. About 70% of the responses are equal to 0 or 1.

• Scenario II. We generate the basis coefficients aij from the t distribution with 4
degrees of freedom and the variance is 1, namely, aij

iid∼ t4(0.5, 1). Figures 10 (b)
and (e) in Appendix B shows that the λ(xi) varies from 0.6 to 1.5, and about 80%
of responses lie between 0-2.

• Scenario III. We generate the basis coefficients aij from the uniform distribution
between 0 and 4, namely, aij

iid∼ U(0, 4). Figures 10 (c) and (f) in Appendix B show
that the expected value λ(xi) ranges from 2 to 6 and the distribution of responses
is more uniform than in Scenario I and II.
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Figure 4: The average of the proportions of correct classifications (PCC) defined in
(8) in the functional logistic regression model (Simulation II) by using the functional
L-optimality subsampling (FLoS) method and the uniform subsampling (UNIS) approach
under four scenarios with various subsample sizes L when the full data size n = 105

(Panels (a)-(d)), 106 (Panels (e)-(h)), and 5× 106 (Panels (i)-(l)).
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Figure 5: The average of the root integrated mean squared error (RIMSE) of the estimated
functional coefficient β̆(t) in the functional Poisson regression model by using the functional
L-optimality subsampling (FLoS) method and the uniform subsampling (UNIS) approach
under three scenarios with various subsample sizes L when the full data size n = 105

(Panels (a)-(c)), 106 (Panels (d)-(f)), and 5× 106 (Panels (g)-(i)).

16



Functional L-Optimality Subsampling

Same as in Simulation I, we chooseK = d1.25∗n1/4e in this section. Based on 300 repli-
cations, Figure 5 displays the mean of RIMSEs of the estimated functional coefficient β̆(t)
in the functional Poisson regression model when using the functional L-optimality subsam-
pling method and the uniform subsampling approach under three scenarios when the full
data size n = 105, 106, and 5× 106. For full data size n = 105, we let subsample size L =
300, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000, 7500,
8000. The subsample size L = 600, 800, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000,
5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500, 10000 when the full data size is n = 106.
And the subsample size L = 800, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000,
11000, 12000, 13000, 14000, 15000, 16000, 17000, 18000, 19000, 20000 for full data size n =
5×106. Figure 5 shows that the functional L-optimality subsampling method outperforms
the uniform subsampling approach for all three scenarios with different full data sizes.
These numerical results are consistent with our theoretical results that the functional
L-optimality subsampling method aims to minimize the IMSE of β̆(t) in approximating
the estimator using the full data. Besides, when the full data size is fixed, the RIMSEs of
β̆(t) using both methods become smaller and tend to stay stable as the subsample size L
increases.

5. Kidney Transplant Data

The kidneys are a pair of organs in the human body, whose primary function is to
remove waste from the body through the production of urine and to regulate the chemical
(electrolyte) composition of the blood. Renal failure means that the kidneys can no longer
remove wastes and maintain electrolyte balance, which will threaten a human’s life. Renal
failure can be divided into acute renal failure and chronic renal failure. Regarding the
treatment of chronic renal failure, one method is a kidney transplant. A successful kidney
transplant can restore normal renal function to the patients and extend their survival time.
After kidney transplantation, kidney transplant recipients still face a high probability of
losing transplant function. It is also important to follow up the graft function and predict
the patient’s expected lifespan after a kidney transplant.

Creatinine is the waste product of creatine, which the muscles use to make energy.
Typically, creatinine travels from the blood to the kidneys where it leaves the body in the
urine. A high level of creatinine in the blood indicates that the kidney is not working
correctly. On the other hand, only looking at how much creatinine is in the blood is not
the best way to check how well the kidneys are working, because the level of creatinine in
blood is related to age, race, gender, and body size. In other words, what’s considered
“normal” depends on these factors. The best way to know if kidneys are working properly
is by looking at the glomerular filtration rate (GFR), which considers the creatinine level
and the associated factors simultaneously (Keong et al., 2016; Dong et al., 2018, 2019,
2021; Shi et al., 2021; Dong et al., 2023). For adults (Age≥ 19), we use the Chronic
Kidney Disease Epidemiology Collaboration (CKD-EPI, Levey et al. (2009)) equation to
obtain the estimated glomerular filtration rate (eGFR, mL/min/1.73m2). For children
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Figure 6: The mean eGFR curves for the group of recipients who die or need to be
re-transplanted during the sixth to tenth year after the transplant (Y = 0) and the group
of recipients who have lived for at least ten years after transplant (Y = 1).

(Age≤ 18), we use the Schwartz formula (Schwartz et al., 2009) to estimate the glomerular
filtration rate.

Our objective is to predict whether kidney transplant recipients can survive over ten
years based on their eGFR trajectories in the first six years after kidney transplant. The
data resource used in this section is the kidney transplant data from the Optn/UNOS.
After matching data and deleting missing data, there are n = 130313 recipients who
have lived for at least six years after kidney transplant. We divide these recipients into
two categories: the first category is the 30590 (23.3%) recipients who die or need to be
re-transplanted during the sixth to tenth year after the transplant (Y = 0), and the
other category is the 100713 (76.7%) recipients who have lived for at least ten years after
transplant (Y = 1). Figure 6 display the mean eGFR trajectories for these two categories.
It shows that the mean eGFR curve of Y = 1 is higher than that of Y = 0, which is
consistent with the fact that a higher eGFR means a better renal function. For those
recipients who have not lived for ten years after transplant, the eGFR shows a significant
downward trend. On the contrary, the eGFR curve remains stable for those recipients
who have lived for ten years after transplant.

We consider fitting a functional logistic regression model:

E(Yi|eGFRi) = ψ

(
α+

∫ 6

0
eGFRi(t)× β(t)dt

)
. (9)

Figure 7 (a) displays the histogram of the log of the subsampling probabilities pFLoS
PQL in

the the functional L-optimality subsampling method. It shows that the subsampling
probabilities for different samples are very different. Because we do not know the true
functional coefficient, we adopt the empirical root integrated mean square error (eRIMSE)
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Figure 7: (a) Histogram of the log of the subsampling probabilities pFLoS
PQL in the functional

L-optimality subsampling method. (b) The logarithm of the empirical integrated mean
square error (eIMSE) defined in (10) for the estimated functional coefficient using the
functional L-optimality subsampling (FLoS) method and the uniform subsampling (UNIS)
approach with different subsample sizes.

as the criterion for comparing two subsampling methods, which is defined as

eRIMSE = S−1
S∑
s=1

√∫
(β̆(s)(t)− β̂(t))2dt, (10)

where β̆(s)(t) is the estimated functional coefficient using the s-th subsample data set,
and β̂(t) is the estimator using the full data. Figure 7 (b) displays the logarithm of
the empirical integrated mean square error (eIMSE) defined in (10) for the estimated
functional coefficient using both subsampling methods. It indicates that the functional
L-optimality subsampling method has smaller eIMSEs than the uniform subsampling
approach for all subsample sizes.

Figure 8 displays the estimated functional coefficient for the functional logistic re-
gression model (9) by using the full data and using L = 5000 data subsampled with the
functional L-optimality subsampling method. The two estimated functional coefficients
are almost identical. Figure 8 also provides the corresponding 95% point-wise confidence
interval for the functional coefficient based on 1000 subsampling datasets with the sub-
sample size L = 5000 by using the functional L-optimality subsampling method. It shows
that only the functional coefficient is significantly non-zero only from the fourth year
after the transplant. Therefore, the information on eGFR during the 4th to the 5.5th
year is more helpful to predict whether a recipient can live beyond ten years.
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Figure 8: The red dotted line is the estimated β(t) based on the full fata for predicting
whether the recipient can live for at least 10 years after transplant based on the eGFR
information in about the first six years. The black solid curve is the averaged estimated
β(t) using the FLoS method based on 1000 subsampling datasets with subsample size
L = 5000. The blue dashed lines are 95% point-wise confidence limits on the curve based
on 1000 subsampling datasets with the subsample size L = 5000.

6. Conclusions and Discussions

We propose the functional L-optimality subsampling method for estimating the func-
tional generalized linear model to address the challenges brought when using extraordinary
amounts of functional data. The asymptotic results of the subsample estimators have
also been established. Several simulation studies show that our proposed method is
computationally feasible and outperforms the uniform subsampling method for massive
data. The proposed subsampling method is also demonstrated by analyzing the kidney
transplant data. For the kidney transplant data, we find that the subsample estimators
can well approximate the results obtained from the full data.

In this paper, we consider the subsampling for the scalar on function regressions.
There are other functional regressions, such as function on scalar regressions (Zhu et al.,
2012; Luo et al., 2016; Li et al., 2017; Cai et al., 2022) and function on function regressions
(Sun et al., 2018; Cai et al., 2021a,b). For these two types of regressions, how to subsample
is still an open problem. We will pursue these problems in our future research.

Supplementary Materials

R package: An R package SubsamplingFunPredictors has been developed for imple-
menting the proposed method. The R package and a demonstration are provided (Subsam-
plingFunPredictors_0.1.0.tar.gz, GNU zipped tar file) at https://github.com/caojiguo/
FLoS.
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R code: We provide the R codes at https://github.com/caojiguo/FLoS, which can
be used to replicate the simulation studies included in the article.
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Appendix A. Assumptions

Before we present some assumptions used in the theorems, we first define some
notations. If 0 < m <∞, Lm is defined as the space of functions f(t) over the interval
[a, b] such that

∫ b
a |f(t)|mdt <∞. With this convention, Lm is treated as a Banach space

with the norm ‖f‖m = (
∫ b
a |f(t)|mdt)1/m. When m = 2, we obtain the Hilbert space L2

with the inner product 〈f, g〉 =
∫ b
a f(t)g(t)dt and the L2 norm ‖f‖2. And Rm∗ is also a

Hilbert space for a positive integer m∗. We also define 〈u,v〉 = uTv as the inner product
of vector u and v.

Assumption 1 Let υ be a nonnegative integer, and κ ∈ (0, 1] such that d = υ+κ ≥ p+1.
We assume the unknown slope function β(·) ∈ H(d)([a, b]), which is the class of function
f on [a, b] whose υth deriative exists and satisfies a Lipschitz condition of order κ:
|f (υ)(t)− f (υ)(s)| ≤ Cυ|s− t|κ, for s, t ∈ [a, b] and some constant Cυ > 0.

Assumption 2 For the functional predictor Z(t), it holds that E(‖Z‖44) <∞. In addition,
the scalar response Y satisfies that E(Y 4) <∞.

Assumption 3 For the roughness penalty, we assume tuning parameter λ satisfies that
λ = o(n1/2K1/2−2q). Besides, we assume q ≤ p.

Assumption 4 Let δj = kj+1−kj and δ = max0≤j≤K(kj+1−kj). There exists a constant
M > 0, such that

δ/ min
0≤j≤K

(kj+1 − kj) ≤M, max
0≤j≤K−1

|δj+1 − δj | = o(K−1). (11)
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In addition, let Gψ
k,n = NTΨN/n and Hψ

k,n = (Gψ
k,n + λ/nD). The smallest eigenvalue

of Gψ
k,n is greater than cG/K, where cG is a positive constant.

Assumption 5 The number of knots K = o(
√
n) and K = ω(n1/(2d+1)), where K =

ω(n1/(2d+1)) means K/n1/(2d+1) →∞ as n→∞.

Assumption 6 We assume max1≤i≤n(npi)
−1 = op(

√
L) and L = o(K2).

Assumption 7 Let Q̇PQL(γ, y) be the first order derivative of QPQL(γ, y) with respect to
γ. The function Q̇PQL(γ, y) < 0 for η ∈ R and y in the range of the response variable. The
functions ψ(·), and the first order derivative of ψ(·) are continuous. There exist positive
constants cQ and CQ such that cQ ≤ Q̇PQL(γ, y) ≤ CQ. And for each z, var(Y |Z = z)

and ψ−1(
∫ b
a α+ z(t)β(t)dt) are nonzero.

Remark 5 Assumption 1 is about the smoothness of the slope function, which has been
widely used in the literature of nonparametric estimation (Liu et al., 2013; Kim and
Wang, 2021; Yu et al., 2020). Assumption 2 gives some moment conditions on scalar
response and functional predictor. Combing ‖Dq‖∞ = O(K2q−1) with Assumption 3, we
can get ‖λD‖∞ = o(n1/2K−1/2). Thus, we can get ‖Hψ

k,n‖∞ = O(1/K). Note that (11)
in Assumption 4 implies that δ ∼ K−1, that is, δ and K−1 are rate-wise equivalent. The
second condition in Assumption 4 implies that the functional predictor Z(t) is away from
zero in every small area of the domain [a, b], which is reasonable to make the functional
coefficient β(t) estimable in the whole domain [a, b]. As mentioned in Ai et al. (2021),
Assumption 6 restricts the weights in the estimation equation (2) and ensures the order
of the extremely small subsampling probabilities. Besides, this assumption gives the order
of the subsampling size L. Assumption 7 is a common assumption used under the quasi-
likelihood framework (Carroll et al., 1997; Wang and Cao, 2018; Yu et al., 2020; Kim
and Wang, 2021). And Q̇PQL(η, y) < 0 ensures the uniqueness of the solution (7).

Appendix B. Additional Simulation Studies

This appendix includes the additional figures of the simulation studies in Section 4
and three additional simulation studies to show the good performances of the proposed
functional L-optimality subsampling method.

B.1 Simulation I and II (Continued)

This section lists two additional plots (Figures 9 - 10) of Simulation I and II in the
manuscript. Give one full data set with size n = 105 as an example, Figure 9 shows the
histogram for p(xi) under four scenarios in Simulation I. Figure 10 shows the histogram
for λ(xi) and the response yi under three scenarios in Simulation II based on one full
data set with n = 105.

22



Functional L-Optimality Subsampling

0

1000

2000

3000

4000

0.00 0.25 0.50 0.75 1.00

p(Y)

F
re

q
u
e
n
c
y

(a) Scenario I

0

5000

10000

15000

20000

25000

0.00 0.25 0.50 0.75 1.00

p(Y)
F

re
q
u
e
n
c
y

(b) Scenario II

0

2000

4000

6000

0.00 0.25 0.50 0.75 1.00

p(Y)

F
re

q
u
e
n
c
y

(c) Scenario III

0

5000

10000

15000

0.00 0.25 0.50 0.75 1.00

p(Y)

F
re

q
u
e
n
c
y

(d) Scenario IV

Figure 9: The histogram of a random example for p(xi) under four scenarios in Simulation
I when the full data size is n = 105.
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Figure 10: The histogram of a random example for E(yi) = λ(xi) (Panels (a)-(c)) and yi
(Panels (d)-(e)) under three scenarios in Simulation II when the full data size is n = 105.

B.2 Simulation III

In this section, we want to study the finite sample performance of the functional
L-optimality subsampling method described in Algorithm 1 for estimating the functional
logistic regression when the true underlying smoothness of X(t) across time is different.
We set the true functional coefficient β(t) = 1.8× sin(0.85πt). Denote the inverse logistic
function as ψ(·) = exp(·)/(1 + exp(·)) and p(xi) = ψ(

∫ 1
0 xi(t)β(t)dt), then we generated
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responses y(xi) ∼ Binomial(1, p(xi)) as pseudo-Bernoulli r.v.s with probability p(xi). We
consider the following two different scenarios to generate the functional predictor xi(t):

• Scenario I. The functional predictor xi(t) is generated by xi(t) =
∑
aijBj(t),

where Bj(t) are cubic B-spline basis functions defined on 12 equally spaced knots
in [0, 1], and the coefficients aij are i.i.d from N(0, 6).

• Scenario II. When t ∈ [0, 0.5], xi(t) is generated by xi(t) =
∑
aijBj(t), where

Bj(t) are cubic B-spline basis functions defined on 12 equally spaced knots in [0, 0.5]
and the coefficients aij are i.i.d from N(0, 6). For t ∈ (0.5, 1], xi(t) =

∑
aijBj(t),

where Bj(t) are constant B-spline basis functions defined on 15 equally spaced knots
in [0.5, 1] and aij

iid∼ N(0, 6).

In Figure 11, we give one example of the functional predictor xi(t) under Scenario
I and II, respectively. From Figure 11-(a), it is evident that the smoothness of xi(t)
from Scenario I stays the same in the whole region. Figure 11-(b) displays an example
of xi(t) curve from Scenario II. From this figure, we can see that xi(t) shows differ-
ent levels of smoothness in the whole region, smooth when 0 < t < 0.5, but rough
when 0.5 < t < 1. Let the full sample sizes n = 105 and the subsampling sizes
L = 200, 300, 500, 800, 1000, 1200, 1400, 1600, 1800, 2200, 2500, 2800, 3000. Based on 300
replications, As shown in Figure 12, the improvement of FLoS relative to UNIS about
RIMSE under scenario II is larger than that under scenario I. Then we can say that our
proposed method FLoS has greater advantages when the smoothness of X(t) across time
is different.
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Figure 11: An example of the simulated functional predictor xi(t) under two scenarios in
Simulation III when the full sample size is n = 105.
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Figure 12: The comparison of the improvement in terms of the root integrated mean
squared errors (RIMSE) using the functional L-optimality subsampling (FLoS) over using
the uniform subsampling (UNIS) approach under two scenarios.

B.3 Simulation IV

In this simulation study, we want to assess the variability of our proposed functional
L-optimality subsampling method described in Algorithm 1. We set the true functional
coefficient β(t) = 8×sin(0.85πt). Denote the inverse logistic function as ψ(·) = exp(·)/(1+
exp(·)) and p(xi) = ψ(

∫ 1
0 xi(t)β(t)dt). We generate responses y(xi) ∼ Binomial(1, p(xi))

as pseudo-Bernoulli random variables with probability p(xi). The functional predictor
xi(t) is generated by xi(t) =

∑
aijBj(t), where Bj(t) are cubic B-spline basis functions

defined on 66 equally spaced knots in [0, 1] and the basis coefficients aij
iid∼ N(0, 6).

Given one full data set with n = 105, Figure 13-(a), Figure 13-(b) and 13-(c) plot
the true functional coefficient β(t) (solid) and its 100 subsample estimators (dotted)
based on the functional L-optimality subsampling method when the subsample size
L = 1000, 2000, 3000 respectively. They show that the subsample estimators are close to
the true curve and the gray area becomes narrow as the subsample size increases, especially
for 0.1 < t < 0.4. The estimators have less variability with the subsample size increasing.
Moreover, to study the variability across the whole domain [0, 1], we also give the boxplot
(Figure 13-(d)) of the RIMSE based on 300 times subsampling procedure and subsam-
ple size L = 300, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000, 2200, 2500, 2800, 3000.
Figure 13-(d) shows that the variability of the RIMSE decreases when the subsample
size increases. In addition, to compare the variability of the subsample estimators using
our proposed functional L-optimality subsampling method with that using the uniform
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subsampling method, we present the standard deviation of the RIMSE of subsample
estimators using two methods in Figure 14. Figure 14 displays that our method performs
better than the uniform subsampling method in terms of the standard deviation.
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Figure 13: (a)-(c) The estimated functional coefficient β̆(t) (gray dotted curves) obtained
by the functional L-optimality subsampling (FLoS) method when the subsample size
L = 1000, 2000, 3000 and the full data size n = 105. The red solid curves are true β(t).
(d) Boxplot of the root integrated mean squared errors (RIMSE) of the subsampling
estimators using the FLoS method under different subsample sizes when the full data size
n = 105.

B.4 Simulation V

To study the performance of the proposed functional L-optimality subsampling method
described in Algorithm 1 when the functional predictor xi(t) is smooth, We set the true
functional coefficient β(t) = 1.8 × sin(0.85πt). Denote the inverse logistic function as
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Figure 14: The standard deviation (sd) of the root integrated mean squared errors
(RIMSE) of the estimated functional coefficient β̆(t) in the functional logistic regression
model (Simulation IV) by using the functional L-optimality subsampling (FLoS) method
and the uniform subsampling (UNIS) approach under with various subsample sizes L
when the full data size n = 105.

ψ(·) = exp(·)/(1 + exp(·)) and p(xi) = ψ(
∫ 1

0 xi(t)β(t)dt), then we generated responses
y(xi) ∼ Binomial(1, p(xi)) as pseudo-Bernoulli r.v.s with probability p(xi). The functional
predictor xi(t) is generated by xi(t) =

∑
aijBj(t), where Bj(t) are cubic B-spline basis

functions defined on 20 equally spaced knots in [0, 1]. The basis coefficients aij are
generated as ai1

iid∼ N(0, 6), aij = ai,j−1 + Λij and Λij
iid∼ N(0, 0.5) for 1 ≤ i ≤ n and

j ≥ 2.
Figure 15 displays one example of the simulated functional predictor xi(t), which shows

that the functional predictor xi(t) is smooth. When the full sample size n = 105 and the
subsample size L = 300, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000, 2200, 2500, 2800,
3000, we show the mean RIMSE of the estimators based on 300 replications in Figure 16-(a).
And Figure 16-(b) displays the mean RIMSE of the estimators using two subsampling meth-
ods with n = 106 and subsample size L = 500, 800, 1100, 1500, 2000, 2500, 3000, 3500, 4000,
4500, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500, 10000. Figure 16-(c) and
Figure 16-(d) also show the PCCs with different subsample size under n = 105 and
n = 106, respectively. From this figure, it is clear that when the functional predictor xi(t)
is smooth, the proposed method is superior to the uniform subsampling method, both for
RIMSEs and PCCs.

Appendix C. Estimation Steps for Functional Generalized Linear
Model

In this section, we provide the estimation procedure for the functional generalized
linear model to estimate the coefficient function β(·) by solving the equation (1). Now we

27



Liu, You and Cao

4

6

8

0.00 0.25 0.50 0.75 1.00

t

x
(t

)

Figure 15: An example of the simulated functional predictor xi(t) under the setting of
Simulation V when the full data size n = 105.

can apply the Newton–Raphson algorithm to iteratively solve it. The detailed estimation
steps are given below:

Step 0. Obtain an initial estimate c0.

Step 1. At the (k + 1)th iteration,

c
(k+1)
PQL = c

(k)
PQL + Q̇−1

PQL(c
(k)
PQL)QPQL(c

(k)
PQL). (12)

Step 2. Repeat Step 1 until convergence is reached.

Appendix D. Proof

This section includes the detailed proofs of the theoretical results. To prove our
theorems in the manuscripts, we start by proving the following lemmas.

D.1 Some Lemmas

To prove our theorems in the manuscripts, we start by proving the following lemmas.

Lemma 6 Under Assumptions 1, sβ(t)− β(t) = ba(t) + o(K−d).

Proof The proof of this lemma can be found in Barrow and Smith (1978).

Lemma 7 Under Assumption 2, 4, 5 and 7, (i) there exists constants CG > cG > 0 such
that

cGK
−1 ≤ ρmin(Gψ

k,n) ≤ ρmax(Gψ
k,n) ≤ CGK−1,
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Figure 16: The average of the root integrated mean squared errors (RIMSE) (Panels
(a)-(b)) and the proportions of correct classifications (PCC) defined in (8) (Panels (c)-
(d)) in the functional logistic regression model (Simulation V) by using the functional
L-optimality subsampling (FLoS) method and the uniform subsampling (UNIS) approach
with various subsample sizes L when the full data size is n = 105 and n = 106, respectively.
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where ρmin and ρmax denote the smallest and largest eigenvalues of a matrix, respectively.
(ii) we can have ‖Gψ

k,n‖∞ = O(K−1).

Proof Using the result in (i), (ii) can be derived directly from Lemma 6.3 and Lemma
6.4 in (Zhou et al., 1998). We only give the proof of (i). For any non-zero vector
µ = (µ1, · · · , µK+p+1)T with ‖µ‖ = 1, note that

ρmin(Gψ
k,n) = minµTGψ

k,nµ, ρmax(Gψ
k,n) = maxµTGψ

k,nµ.

According to the definition of Gψ
k,n, we get

µTGψ
k,nµ =

1

n
µTNTΨNµ

=
1

n

n∑
i=1

ψ̇(NT
i c)µ

TNiN
T
i µ

=
1

n

n∑
i=1

ψ̇(NT
i c)

K+p+1∑
j=1

µjNij

2

.

For |
∑K+p+1

j=1 µjNij |, by the property
∑K+p+1

j=1 Np+1,j(t) = 1, we have∣∣∣∣∣∣
K+p+1∑
j=1

µjNij

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫ K+p+1∑

j=1

µjNp+1,j(t)zi(t)dt

∣∣∣∣∣∣
≤
∫ ∣∣∣∣∣∣

K+p+1∑
j=1

µjNp+1,j(t)zi(t)

∣∣∣∣∣∣ dt
≤
∫ 

K+p+1∑
j=1

µ2
jNp+1,j(t)z

2
i (t)

1/2K+p+1∑
j=1

Np+1,j(t)

1/2
 dt

=

∫ 
K+p+1∑

j=1

µ2
jNp+1,j(t)z

2
i (t)

1/2
 dt

≤
∫ K+p+1∑

j=1

|µj ||zi(t)|N1/2
p+1,j(t)

 dt

=

K+p+1∑
j=1

|µj |
∫
|zi(t)|N1/2

p+1,j(t)dt

≤
K+p+1∑
j=1

|µj |
(∫

z2
i (t)dt

)1/2(∫
Np+1,j(t)dt

)1/2

.
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By the property
∫
Np+1,j(t)dt = O(K−1) and Assumption 2, one has

∣∣∣∑K+p+1
j=1 µjNij

∣∣∣ =

O(K−1/2). Next, by Assumption 2, µTGψ
k,nµ ≤ CGK

−1. Applying the second condition
in Assumption 4, cGK−1 ≤ ρmin(Gψ

k,n) holds as well. This completes the proof of (i).

Lemma 8 Under Assumptions 3 and 4, we can get (i) ‖Dq‖∞ = O(K2q−1); (ii) there
are two positive constants cD < CD such that cDK2q−1‖µ‖22 ≤ µTDqµ ≤ CDK2q−1‖µ‖22.

Proof (i) LetNp+1−q(t) = (Nj,p+1−q(t) : −p+q ≤ j ≤ K)T , from the derivative formula
for B-spline functions (de Boor, 1978), we can get

s
(q)
β (t) = NT

p+1−q(t)c
(q),

where c(q) are defined recursively via

c(1) = ∇1c,

c(q) = ∇qc
(q−1),

∇1

= (p+ 1− 1)×


−1

k1−k−p+1

1
k1−k−p+1

0 · · · 0

0 −1
k−p+2−k−p+3

1
k−p+2−k−p+3

· · · 0
...

...
. . . . . .

...
0 0 · · · −1

kK+p−kK
1

kK+p−kK

 ,

∇q

= (p+ 1− q)×


−1

k1−k−p+q

1
k1−k−p+q

0 · · · 0

0 −1
k−q+1−k−p+2

1
k−q+1−k−p+2

· · · 0
...

...
. . . . . .

...
0 0 · · · −1

kK+p+1−q−kK
1

kK+p+1−q−kK

 ,

∇1 is a (K+p+1−1)×(K+p+1) dimensional matrix and∇q is a (K+p+1−q)×(K+p+1)
dimensional matrix. So, we can rewrite the second penalty term in (1) as λcT∆T

qR∆qc,
where the matrix R =

∫ b
a Np+1−q(t)N

T
p+1−q(t)dt and ∆q = ∇1 . . .∇q. Note that (A1)

implies that δ ∼ K−1, i.e., δ and K−1 are rate-wise equivalent. Moreover, by definition
‖∆l‖∞ = O(K), l = 1, . . . , q, thus, ‖∆q‖∞ = O(δ−q) = O(Kq). And, from the definition
of B-spline, we can get ‖R‖∞ = O(K−1). Because Dq = ∆T

qR∆q, the desired result
holds. For (ii), it can be derived from Lemma 6.1 in Cardot et al. (2003) and the proof of
it is omitted.
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Lemma 9 Under Assumption 2-5 and 7, (i) there are some positive constants cH < CH
such that

cHK
−1 ≤ ρmin(Hψ

k,n) ≤ ρmax(Hψ
k,n) ≤ CHK−1.

(ii) ‖Hψ
k,n‖∞ = O(K−1).

Proof Under Assumption 3, it can be directly derived from Lemma 7 and 8.

Lemma 10 Under Assumptions 2, 4, 6 and 7, as n,L→∞, in probability,

1

n

n∑
i=1

Ri
Lpi

ψ̇(NT
i c)NiN

T
i −

1

n

n∑
i=1

ψ̇(NT
i c)NiN

T
i = op|Fn

(1). (13)

Proof Direct calculation shows that conditionally on Fn,

E

{
1

n

n∑
i=1

Ri
Lpi

ψ̇(NT
i c)NiN

T
i |Fn

}
=

1

n

n∑
i=1

ψ̇(NT
i c)NiN

T
i .

Let Gψ,∗
k,n = n−1

∑n
i=1Riψ̇(NT

i c)NiN
T
i /(Lpi), then Gψ,∗

k,n − G
ψ
k,n = n−1

∑n
i=1(Ri −

Lpi)ψ̇(NT
i c)NiN

T
i /(Lpi). For any component of Gψ,∗

k,n −G
ψ
k,n, we have

E
{
Gψ,∗j1j2
k,n −Gψ,j1j2

k,n |Fn
}2

=
1

n2L

n∑
i=1

1− pi
pi

{
ψ̇(NT

i c)
(
NiN

T
i

)j1j2}2

≤ 1

n2L

n∑
i=1

1

pi

{
ψ̇(NT

i c)
(
NiN

T
i

)j1j2}2

≤max(
1

nLpi
)
1

n

n∑
i=1

{
ψ̇(NT

i c)
(
NiN

T
i

)j1j2}2

=op(
1√
L

)O(K−2) = op(1).

Thus, through Chebyshev’s inequality, the desired conclusion follows.

Lemma 11 Under Assumptions 1 - 7, conditional on Fn, as n,L→∞,
√
L

n
V ψ
p
−1/2

Q∗PQL(ĉPQL)→ N(0, 1),

in distribution.
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Proof Direct calculation shows that

E
{

1

n
Q∗PQL(ĉPQL)|Fn

}
=

1

n
QPQL(ĉPQL) = 0,

and

Var
{

1

n
Q∗PQL(ĉPQL)|Fn

}
=

1

n2L

n∑
i=1

1

pi

{
yi − ψ(NT

i ĉPQL)
}2
NiN

T
i −

1

n2L

n∑
i=1

{
yi − ψ(NT

i ĉPQL)
}2
NiN

T
i

=
1

L
V ψ
p − op(1).

Next, we check the Lindeberg-Feller condition under the conditional distribution. Denote
$i = 1

n

{
Ri
Lpi

{
yi − ψ(NT

i ĉPQL)
}
Ni − λDĉPQL

}
. For any ε > 0,

n∑
i=1

E
{
‖$i‖2I(‖$i‖ > ε)|Fn

}
≤1

ε

n∑
i=1

E
{
‖$i‖3|Fn

}
≤ 1

n3

n∑
i=1

{
E(
R3
i |yi − ψ(NT

i ĉPQL)|3‖Ni‖3

L3p3
i

|Fn) + ‖λDĉPQL‖3
}

=
1

n3

n∑
i=1

(L(L− 1)(L− 2)p3
i + 3L(L− 1)p2

i + Lpi)|yi − ψ(NT
i ĉPQL)|3‖Ni‖3

L3p3
i

+ o(K−3)

=op(1),

where the last equality holds by Assumptions 1 - 7. By Lindeberg-Feller central limit
theorem, the desired result follows.

Lemma 12 Under Assumptions 1 - 7, as n,L→∞,

√
L

n
W ψ

p
−1/2

Q∗PQL(c)→ N(0, 1),

in distribution, where

W ψ
p =

1

n2

n∑
i=1

E(yi − ψ(NT
i c))

2NiN
T
i

pi
.
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Proof Note that

E
{

1

n
Q∗PQL(c)

}
= E

{
E
{

1

n
Q∗PQL(c)|Fn

}}
=

1

n

n∑
i=1

Ni(ψ(< zi,β >)− ψ(NT
i c))−

1

n
λDc

=o((nK)−1/2),

and

Var
{

1

n
Q∗(c)

}
= E

{
Var

{
1

n
Q∗(c)|Fn

}}
+ Var

{
E
{

1

n
Q∗(c)|Fn

}}
. (14)

For the first term in (14), we can get

E
{
Var

{
1

n
Q∗PQL(c)|Fn

}}
=E

{
1

n2L

n∑
i=1

(yi − ψ(NT
i c))

2NiN
T
i

pi
− 1

n2L

n∑
i=1

(yi − ψ(NT
i c))

2NiN
T
i

}

=
1

n2L

n∑
i=1

E(yi − ψ(NT
i c))

2NiN
T
i

pi
− 1

n2L

n∑
i=1

E(yi − ψ(NT
i c))

2NiN
T
i

=
1

L
W ψ

p −O(
1

nLK
).

Similarly, we deal with the second term in (14),

Var
{
E
{

1

n
Q∗PQL(c)|Fn

}}
= Var

{
1

n

n∑
i=1

Ni(yi − ψ(NT
i c))− λDc

}

=
1

n2

∑
i=1

σ2NiN
T
i

= O(
1

nK
).

Under Assumption 1 - 7, 1
LW

ψ
p = o(K−1L−1/2). Consequently,

Var
{

1

n
Q∗PQL(c)

}
=

1

L
W ψ

p +O(
1

nK
).

Next, we check the Lindeberg-Feller condition, denote

ζi =
1

n

{
Ri
Lpi

{
yi − ψ(NT

i c)
}
Ni − λDc

}
.
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For any ε > 0,
n∑
i=1

E
{
‖ζi‖2I(‖ζi‖ > ε)

}
≤1

ε

n∑
i=1

E
{
‖ζi‖3

}
≤ 1

n3

n∑
i=1

{
E(
R3
i |yi − ψ(NT

i c)|3‖Ni‖3

L3p3
i

) + ‖λDc‖3
}

=
1

n3

n∑
i=1

(L(L− 1)(L− 2)p3
i + 3L(L− 1)p2

i + Lpi)E|yi − ψ(NT
i c)|3‖Ni‖3

L3p3
i

+ o(K−3)

=op(1),

where the last equality holds by Assumptions 1 - 7. By Lindeberg-Feller’s central limit
theorem, the desired result follows.

D.2 Proof of Main results

Proof of Theorem 1. By Taylor expansion, we can get

0 =
1

n
Q∗PQL(c̃PQL) =

1

n
Q∗PQL(c) +

1

n
Q̇∗PQL(c)(c̃PQL − c) + op(1),

where Q̇∗PQL(c) is the first derivations of Q∗PQL(c) about c, and

Q̇∗PQL(c) = −
n∑
i=1

Ri/(Lpi)ψ̇(NTc)NiN
T
i − λD = −nGψ,∗

k,n − λD
∆
= −nHψ,∗

k,n .

It is obviously that

c̃PQL − c =

{
− 1

n
Q̇∗PQL(c)

}−1 1

n
Q∗PQL(c) +

{
− 1

n
Q̇∗PQL(c)

}−1

· op(1),

and given t, we have

β̃PQL(t)− β(t) = NT (t)

{
− 1

n
Q̇∗PQL(c)

}−1 1

n
Q∗PQL(c) +NT (t)

{
− 1

n
Q̇∗PQL(c)

}−1

· op(1)

+ sβ(t)− β(t)

= NT (t)

{
− 1

n
Q̇∗PQL(c)

}−1 W ψ
p

1/2

√
L

√
LW ψ

p
−1/2 1

n
Q∗PQL(c)

+NT (t)

{
− 1

n
Q̇∗PQL(c)

}−1

· op(1) + sβ(t)− β(t).

(15)
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From Lemma 10, we can get that Gψ,∗
k,n −G

ψ
k,n → 0 and Hψ,∗

k,n −H
ψ
k,n → 0 as n,L→∞.

Thus, (15) can be written as

β̃PQL(t)− β(t) = NT (t)Hψ
k,n

W ψ
p

1/2

√
L

√
LW ψ

p
−1/2 1

n
Q∗PQL(c) +NT (t)Hψ

k,n · op(1)

+ sβ(t)− β(t).

(16)

For Theorem 1, applying (16), as n,L→∞, it holds that

(NT (t)(Hψ
k,n)−1W ψ

p (Hψ
k,n)−1N(t))−1/2

√
L(β̃PQL(t)− β(t))

=(NT (t)(Hψ
k,n)−1W ψ

p (Hψ
k,n)−1N(t))−1/2

√
LNT (t)Hψ

k,n

W ψ
p

1/2

√
L

√
LW ψ

p
−1/2 1

n
Q∗PQL(c)

+ op(1).

Therefore, from Assumption 6, Lemma 12 and Slutsky’s theorem, we conclude that as
n,L→∞, with probability approaching one,

(NT (t)(Hψ
k,n)−1W ψ

p (Hψ
k,n)−1N(t))−1/2

√
L(β̃PQL(t)− β(t))→ N(02, I2).

Proof of Theorem 2. With Lemma 10 and 11, and the similar reasoning as the proof
for Theorem 1, we can prove Theorem 2. So, the details are omitted.

Proof of Theorem 3. Note that

tr(V ψ
p ) = tr

[
1

n2

n∑
i=1

{yi − ψ(NT
i ĉPQL)}2NiN

T
i

pi

]

=
1

n2

n∑
i=1

tr

[
{yi − ψ(NT

i ĉPQL)}2NiN
T
i

pi

]

=
1

n2

n∑
i=1

{yi − ψ(NT
i ĉPQL)}2‖Ni‖22
pi

=
1

n2
(

n∑
i=1

pi)
n∑
i=1

{yi − ψ(NT
i ĉPQL)}2‖Ni‖22
pi

≥ 1

n2

{
n∑
i=1

|yi − ψ(NT
i ĉPQL)|‖Ni‖2

}2

,

where the last step is from the Cauchy-Schwarz inequality and the equality holds if
and only if when pi ∝ |yi − ψ(NT

i ĉPQL)|‖Ni‖2. And, to satisfy
∑n

i=1 pi = 1, we let
pi =

|yi−ψ(NT
i ĉPQL)|‖Ni‖2∑n

i=1 |yi−ψ(NT
i ĉPQL)|‖Ni‖2

.
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Proof of Theorem 4. Following the proof of Lemma 12, when pi = p
FLoS,ĉ0PQL

PQL,i , we
have

V ψ
p =

1

n2

n∑
i=1

(yi − ψ(NT
i ĉPQL))2NiN

T
i

pi

=
1

n

n∑
i=1

{yi − ψ(NT
i ĉPQL)}2NiN

T
i

|yi − ψ(NT
i ĉ

0
PQL)|‖Ni‖2

× 1

n

n∑
i=1

|yi − ψ(NT
i ĉ

0
PQL)|‖Ni‖2

≡ Ṽ ψ
1 × Ṽ

ψ
2 .

Now we want to prove that Ṽ ψ
1 − V

ψ
1 = op(1) and Ṽ ψ

2 − V
ψ

2 = op(1), where V ψ
1 and

V ψ
2 have the same expression of Ṽ ψ

1 and Ṽ ψ
2 , respectively, except that yi − ψ(NT

i ĉ
0
PQL)

is replaced by yi − ψ(NT
i ĉPQL). Combining ĉPQL − c = op(1) with ĉ0

PQL − c = op(1),
we can get ĉ0

PQL − ĉPQL = op(1), thus, |ψ(NT
i ĉ

0
PQL) − ψ(NT

i ĉPQL)| = op(1) for each i.

Therefore, E
{
|ψ(NT

i ĉ
0
PQL)− ψ(NT

i ĉPQL)|
}
→ 0 and |yi−ψ(NT

i ĉPQL)|
|yi−ψ(NT

i ĉ0PQL)| ≤ C1, where C1 is
a positive constant. Note that

|Ṽ ψ
1 − V

ψ
1 | =

1

n

∣∣∣∣∣
n∑
i=1

{yi − ψ(NT
i ĉPQL)}2NiN

T
i

|yi − ψ(NT
i ĉ

0
PQL)|‖Ni‖2

−
n∑
i=1

{yi − ψ(NT
i ĉPQL)}NiN

T
i

‖Ni‖2

∣∣∣∣∣
≤ 1

n

n∑
i=1

∣∣∣∣∣(yi − ψ(NT
i ĉPQL))(ψ(NT

i ĉ
0
PQL)− ψ(NT

i ĉPQL))NiN
T
i

|yi −NT
i ĉ

0|‖Ni‖2

∣∣∣∣∣
≤ C1

n

n∑
i=1

∣∣∣∣∣(ψ(NT
i ĉ

0
PQL)− ψ(NT

i ĉPQL))NiN
T
i

‖Ni‖2

∣∣∣∣∣
≤ C1

n

n∑
i=1

|(ψ(NT
i ĉ

0
PQL)− ψ(NT

i ĉPQL))|
∣∣∣∣NiN

T
i

‖Ni‖2

∣∣∣∣ .
And

|Ṽ ψ
2 − V

ψ
2 | =

1

n

∣∣∣∣∣
n∑
i=1

|yi − ψ(NT
i ĉ

0
PQL)|‖Ni‖2 −

n∑
i=1

|yi − ψ(NT
i ĉPQL)|‖Ni‖2

∣∣∣∣∣
≤ 1

n

n∑
i=1

∣∣(ψ(NT
i ĉ

0
PQL)− ψ(NT

i ĉPQL))‖Ni‖2
∣∣ .

For any ε > 0, by Chebyshev’s inquality

P

{
1

n

n∑
i=1

|ψ(NT
i ĉ

0
PQL)− ψ(NT

i ĉPQL)|
∣∣∣∣NiN

T
i

‖Ni‖2

∣∣∣∣ > ε

}

≤ 1

εn

n∑
i=1

E
{
|ψ(NT

i ĉ
0
PQL)− ψ(NT

i ĉPQL)|
} ∣∣∣∣NiN

T
i

‖Ni‖2

∣∣∣∣
→0.
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and

P

{
1

n

n∑
i=1

|ψ(NT
i ĉ

0
PQL)− ψ(NT

i ĉPQL)‖Ni‖2 > ε

}

≤ 1

εn

n∑
i=1

E
{
|ψ(NT

i ĉ
0
PQL)− ψ(NT

i ĉPQL)|
}
‖Ni‖2

→0.

Thus, Ṽ ψ
1 −V1 = op(1), Ṽ ψ

2 −V
ψ

2 = op(1) and Ṽ ψ
1 ×Ṽ2−V ψ

1 ×V
ψ

2 = Ṽ ψ
1 ×Ṽ

ψ
2 −V

ψ
FLoS =

op(1).
Next, using a similar proof to the proof for Theorem 2, we can finish the proof of

Theorem 4.
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