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Abstract

This paper is motivated by structured sparsity for deep neural network training. We study
a weighted group l0-norm constraint, and present the projection and normal cone of this
set. Using randomized smoothing, we develop zeroth and first-order algorithms for mini-
mizing a Lipschitz continuous function constrained by any closed set which can be projected
onto. Non-asymptotic convergence guarantees are proven in expectation for the proposed
algorithms for two related convergence criteria which can be considered as approximate
stationary points. Two further methods are given using the proposed algorithms: one with
non-asymptotic convergence guarantees in high probability, and the other with asymptotic
guarantees to a stationary point almost surely. We believe in particular that these are
the first such non-asymptotic convergence results for constrained Lipschitz continuous loss
functions.

Keywords: structured sparsity, L0-norm, Lipschitz continuity, stochastic optimization,
non-asymptotic convergence

1. Introduction

This paper focuses on training deep neural networks with structured sparsity using a con-
strained optimization approach. A structured sparsity constraint allows for a simpler neural
network architecture to be selected which can be deployed on low-resource devices. Research
on sparsity in deep learning is vast, for a thorough background see (Hoefler et al., 2021).
Though much of this research is of a heuristic nature, our focus is on algorithms with
theoretical convergence guarantees. The problem is modelled as

min
w∈Rd

f(w) s.t. w ∈ C (1)

where C is a weighted group l0-norm constraint defined in Section 3. This work examines the
Euclidean projection operator and the normal cone of C, and develops new non-asymptotic
convergence results for general zeroth and first-order stochastic projected algorithms for as-
sumptions on f(w) applicable for a wide range of architectures in deep learning (Davis et al.,
2020). In particular, the function f is only assumed to be Lipschitz continuous on a compact
set, taking the form of the expected value of an integrable stochastic loss function F (w, ξ),
f(w) := E[F (w, ξ)] , where ξ ∈ Rp is a random vector from a probability space (Ω,F , P ).
In the context of supervised learning, given samples ξi = (xi, yi) for i = 1, 2, ...,M, where
{xi} is a feature set, {yi} is a label set, and F (w, ξi) is the loss associated with sample i,
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f(w) can be replaced in (1) by its approximation f̂(w) =M−1
∑M

i=1 F (w, ξi).

The next section summarizes the required definitions and notation which will be used
throughout the paper. Section 3 presents the weighted group l0-norm constraint. Section
4 gives an overview of related works focusing on algorithms with theoretical convergence
guarantees for Lipschitz continuous loss functions. Section 5 gives the detailed assumptions
on F (w, ξ), and presents the technique of using randomized smoothing to overcome the
non-differentiability of the loss function. In Section 6 the Euclidean projection operator
and the normal cone for the proposed constraint set are given. Section 7 presents the
Stochastic Projected Algorithm (SPA), which has a zeroth and a first-order version, with
new non-asymptotic convergence results for two related convergence criteria, and a method
using SPA which has an asymptotic convergence guarantee to a stationary point almost
surely. Section 8 shows how backpropagation can be used in conjunction with the first-
order version of SPA for a wide range of deep learning architectures and validates its use
in Section 9 where the theory of Section 7 is applied to train a neural network. Section 10
concludes the work. All proofs of results can be found in the Appendices A-E.

2. Preliminaries

For a set S, let the notation x
S−→ w mean x → w with x ∈ S, and for a discontinuous

function h, x
h−→ w indicates that x→ w with h(x)→ h(w). For a function h : Rd → R,

lim sup
x→w

h(x) := inf
γ>0

(
sup

0<||x−w||2<γ
h(x)

)
.

For a set-valued mapping G : Rd ⇒ Rd,

Lim sup
x→w

G(x) := {y ∈ Rd : ∃ sequences xk → w and yk → y with yk ∈ G(xk) ∀k ∈ N}.

For w ∈ S, the Fréchet normal cone equals

N̂(w, S) := {y ∈ Rn : lim sup

x
S−→w

〈y, x− w〉
||x− w||2

≤ 0}

and the Mordukhovich normal cone equals

N(w, S) = Lim sup

x
S−→w

N̂(x, S).

When w /∈ S, N(w, S) = N̂(w, S) := {∅}. For more information about normal cones see for
example Mordukhovich (2013).

For an extended real-valued function h : Rd → R∪{±∞}, when finite, let ∂̂h(w) denote
its Fréchet subdifferential, defined as

∂̂h(w) := {y ∈ Rn : lim inf
x→w

f(x)− f(w)− 〈y, x− w〉
||x− w||2

≥ 0},
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and let ∂h(w) denote its Mordukhovich subdifferential,

∂h(w) := Lim sup

x
h−→w

∂̂h(x).

Assuming that f(w) is locally Lipschitz continuous and S is closed, a necessary condition
for w to be locally optimal for the problem

min
w∈Rd

f(w) s.t. w ∈ S

is for (Rockafellar and Wets, 2009, Theorem 8.15 & 9.13)

0 ∈ ∂f(w) +N(w, S). (2)

As a non-asymptotic convergence criterion for optimization algorithms, for an ε > 0, w is
an ε-stationary point when

dist(0, ∂f(w) +N(w, S)) ≤ ε.

Let ∂f(w) denote the Clarke subdifferential which equals ∂f(w) = co{∂f(w)}, where
co{·} is the convex hull, given that f(w) is locally Lipschitz continuous (Rockafellar and
Wets, 2009, Theorem 9.61). When f(w) is Clarke regular, meaning that its one-sided direc-
tional derivative exists and for all v ∈ Rd f ′(w; v) = max

g∈∂f(w)
〈g, v〉 (Clarke, 1990, Proposition

2.1.2 (b) & Definition 2.3.4), the Clarke subdifferential coincides with the Fréchet and Mor-
dukhovich subdifferentials (Rockafellar and Wets, 2009, Theorem 9.61 & Corollary 8.11).

In this work, we will consider a relaxed version of (2), which we call a Clarke-Mordukhovich
(C-M) stationary point:

0 ∈ ∂f(w) +N(w, S). (3)

Let B(x, r) := {x+ z : ‖z‖2 < r} be the open Euclidean ball centered at x with radius
r, let B(x, r) be the corresponding closed Euclidean ball, and let Br := {z ∈ Rd : |zi| ≤
r for i = 1, 2, ..., d} denote the closed l∞-ball with radius r > 0 centered at 0.

We will also consider the Clarke ε-subdifferential,

∂εf(w) := co{∂f(x) : x ∈ B(w, ε)},

which was introduced in (Goldstein, 1977). This type of subdifferential has recently been
used in the non-asymptotic convergence analysis of minimization algorithms for uncon-
strained Lipschitz continuous functions, see (Zhang et al., 2020; Metel and Takeda, 2022;
Kornowski and Shamir, 2021) for more background. Besides its use for non-asymptotic con-
vergence analysis, it holds that lim

ε→0
∂εf(w) = ∂f(w) (Zhang et al., 2020, Lemma 7), which

motivates the proposed C-M stationary point (3) for our asymptotic convergence analysis.
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The indicator function of a set S equals

δS(w) =

{
0 if w ∈ S
∞ otherwise,

and 2S denotes its power set. For a random variable X, let PX denote the probability
measure induced by the random variable X, i.e. for a Borel set S, PX(S) = P ({ω ∈ Ω :
X(ω) ∈ S}). For an n ∈ N, let [n] := {1, 2, ..., n} and [n]−1 := {0, 1, ..., n − 1}. When
studying the computational complexity of algorithms we will use the notation Õ which is
the standard big O notation with logarithmic terms ignored, e.g. logk(x) = Õ(1) for any
k ∈ R.

3. Weighted group l0-norm constraint

The l0-norm counts the number of non-zero elements in a vector w ∈ Rd,

||w||0 :=

d∑
i=1

1{w∈Rd:wi 6=0}(w).

For an n ≤ d, let {wi}ni=1 be a partition of w, where wi is of dimension di for each i ∈ [n]
and

∑n
i=1 di = d. The weighted group l0-norm constraint is then defined as

C := {w ∈ Rd :

n∑
i=1

pi1{wi 6=0}(w) ≤ m},

where pi > 0 is a finite penalty associated with the subset of decision variables wi, {wi 6=
0} denotes the set {w ∈ Rd : ∃j ∈ [di], w

i
j 6= 0}, and m > 0 is the maximum allowable

aggregate penalty. The choice of the partition can be made to simplify a neural network’s
architecture, for example each wi can be the weights and bias of a neuron in a fully connected
layer or of a filter in a convolutional layer. If m is an upper bound on the available memory
to store w on a device, then each pi can be the amount of memory required for each wi. We
assume that each pi ≤ m. If there exists a pi > m, the associated decision variables wi can
be removed without affecting problem (1). For the Euclidean projection operator ΠC(·) to
be nonempty, it is sufficient that C is a closed set (Rockafellar and Wets, 2009, Example
1.20), which is verified in the next proposition.

Proposition 1 C is a closed set.

4. Related works

The projection and normal cone of C are presented in Section 6, which is an extension of the
analysis of the l0-norm constraint in (Bauschke et al., 2014). Non-asymptotic convergence
to an expected ε-stationary point has been established for the proximal mini-batch SGD
algorithm under the assumption that the function f has a Lipschitz continuous gradient in
(Xu et al., 2019). In general, neural networks are not differentiable so this result cannot be
applied. More appropriate for deep learning optimization is the assumption that f(w) is
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(locally) Lipschitz continuous.

For asymptotic convergence results, in (Davis et al., 2020), the stochastic subgradi-
ent algorithm is proven to converge asymptotically to a Clarke stationary point almost
surely for locally Lipschitz functions which admit a Whitney stratifiable graph, for step-
sizes approaching zero in the limit, with an extension to the proximal stochastic subgradient
algorithm. In (Bianchi et al., 2022), the authors consider a fixed step-size and model the
randomness of stochastic gradients in a manner more congruent with using SGD for locally
Lipschitz loss functions, and prove a convergence result in probability to the set of Clarke
stationary points. The authors also consider a projected SGD algorithm, in particular for
closed Euclidean balls, which ameliorates some technical assumptions. A locally Lipschitz
continuous generalized-differentiable (Norkin, 1980) function with a convex and closed con-
straint is considered in (Ruszczyński, 2020). Asymptotic convergence to a Clarke stationary
point for a stochastic subgradient method with averaging is proven.

Non-asymptotic convergence for a zeroth-order algorithm is presented in (Nesterov and
Spokoiny, 2017) for the minimization of deterministic Lipschitz continuous functions using
Gaussian smoothing. Non-asymptotic convergence results for first-order methods in terms
of the Clarke ε-subdifferential, in the deterministic and stochastic setting are given in (Zhang
et al., 2020), under the assumption that loss functions are directionally-differentiable, and in
the stochastic setting in (Metel and Takeda, 2022) using iterate perturbation. A comparison
of our convergence criteria and computational complexity is given in Section 7.

5. Randomized smoothing of f(w)

To overcome the non-differentiability of f(w), the original problem can be replaced by a
smoothed approximation (see Proposition 6),

min
w∈Rd

fα(w) s.t. w ∈ C ∩Bβ,

where fα(w) := E[f(w+u)] for a random vector u : Ω→ Rd uniformly distributed over B α
2

for an α > 0. All ui are mutually independent random variables with marginal probability
distributions equal to

Pui =

{
1
α if |ui| ≤ α

2

0 otherwise.

The added constraint Bβ for a β > 0 is to allow us to assume that f(w) is only Lipschitz
continuous over a compact set around zero. If f(w) is Lipschitz continuous over Rd, this
constraint can be removed by setting β = ∞. The assumptions on F (w, ξ) are similar to
those used in (Metel and Takeda, 2022). For a κ > β + α

2 , we assume that F (w, ξ) is a
BBκ×Rp-measurable function, where B(·) denotes the Borel σ-algebra. We assume that for

each ξ ∈ Rp, F (w, ξ) is continuous in w ∈ Bκ, and for a measurable function L0(ξ), F (w, ξ)
is L0(ξ)-Lipschitz continuous,

|F (w, ξ)− F (w′, ξ)| ≤ L0(ξ)||w − w′||2, (4)
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for all w,w′ ∈ Bκ and for all ξ ∈ Rp outside of a Borel null set. It is assumed that L0(ξ)
is square integrable, Q := E[L0(ξ)2] < ∞. It follows that f(w) is Lipschitz continuous in
w ∈ Bκ.

Proposition 2 The function f is L0 := E[L0(ξ)]-Lipschitz continuous over Bκ.

Given that f(w) is Lipschitz continuous over w ∈ Bκ, it is differentiable almost ev-
erywhere over w ∈ Bβ+α/2 by Rademacher’s theorem (Heinonen, 2004, Theorem 3.1). The

function∇f may not be defined on a null set in Bβ+α/2, so we define ∇̃f(w) to be a BBβ+α/2-

measurable function which for every w ∈ Bβ equals ∇f(w + u) for almost every u over
(Bα/2,BBα/2 , Pu). Similarly, the function F (w, ξ) is differentiable almost everywhere over

the product measure space (Bβ+α/2 × Rp,BBβ+α/2×Rp ,m× Pξ), where m is the Lebesgue

measure restricted to Borel sets (Metel and Takeda, 2022, Property 1). We define ∇̃F (w, ξ)
to be a BBβ+α/2×Rp-measurable function, which for every w ∈ Bβ equals ∇F (w + u, ξ) for

almost every (u, ξ) over (Bα/2×Rp,BBα/2×Rp , Pu×Pξ). Applying the results of (Bolte and

Pauwels, 2021), it is verified in Section 8 that the output of backpropagation has the key
properties of ∇̃F (w, ξ), namely measurability and being equal to ∇F (w, ξ) almost every-
where for conditions which are widely applicable for deep learning applications.

Another approach to overcome the non-differentiability of f(w) is to consider a zeroth-
order algorithm. As proposed in (Gupal, 1977), an unbiased stochastic estimation of the
gradient of fα(w) can be computed using the following finite-difference functions, df : R2d →
Rd and dF : R2d+p → Rd, defined component-wise as

dfi(w, u\i) :=f(w1 + u1, ..., wi−1 + ui−1, wi +
α

2
, wi+1 + ui+1, ..., wd + ud)

−f(w1 + u1, ..., wi−1 + ui−1, wi −
α

2
, wi+1 + ui+1, ..., wd + ud),

and

dFi(w, u\i, ξ) :=F (w1 + u1, ..., wi−1 + ui−1, wi +
α

2
, wi+1 + ui+1, ..., wd + ud, ξ)

−F (w1 + u1, ..., wi−1 + ui−1, wi −
α

2
, wi+1 + ui+1, ..., wd + ud, ξ),

where u\i := [u1, ..., ui−1, ui+1, ..., ud]
T .1

5.1 Properties of fα(w)

Given the assumptions made about the use of randomized smoothing and the stochastic
function F (w, ξ), the following are resulting properties of fα(w) which will be useful in Sec-
tion 7 for the analysis of the proposed training algorithms. For some similar results when
f(w) is Lipschitz continuous over Rd and the random vector u is Gaussian, see (Nesterov
and Spokoiny, 2017). Gupal (1977) motivated the use of uniform perturbation over l∞-balls,

1. We use the notation df(w, u) and dF (w, u, ξ), but then switch to dfi(w, u\i) and dFi(w, u\i, ξ) to make
it clear that there is no ui argument for the ith component function.
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where similar results to Propositions 3 and 6 can be found.

The following proposition proves that unbiased estimates of ∇fα(w) can be generated
using ∇̃f , ∇̃F , df , or dF with samples of u and ξ.

Proposition 3 For all w ∈ Bβ,

∇fα(w) = E[∇̃f(w + u)] =E[∇̃F (w + u, ξ)]

= α−1E[df(w, u)]=α−1E[dF (w, u, ξ)].

The next proposition relates the gradient of fα(w) with the Clarke ε-subdifferential of f(w).

Proposition 4 Assume that κ > β +
√
dα2 . For all w ∈ Bβ with α̂ =

√
dα2 , ∇fα(w) ∈

∂α̂f(w).

Proposition 4 required a stronger condition on κ to ensure that ∂α̂f(w) is well-defined,
meaning that the Clarke subdifferential is only being considered for values of x ∈ Rd where
f(w) is Lipschitz continuous on a neighbourhood of x. The following proposition focuses
on properties of fα(w) and its relation to f(w).

Proposition 5

1. fα(w) is L0-Lipschitz continuous for w ∈ Bβ.

2. For all w ∈ Bβ, |fα(w)− f(w)| ≤ αL0

√
d
12 .

3. For a closed set S, let w∗α and w∗ be minimizers of fα(w) and f(w) respectively for

w ∈ S ∩Bβ, then |fα(w∗α)− f(w∗)| ≤ αL0

√
d
12 .

4. For any two values w,w′ ∈ Bβ, |fα(w)− fα(w′)| ≤ 2β
√
dL0.

The following proposition gives the Lipschitz constant of ∇fα(w), and will be referred
to as the smoothness of fα(w).

Proposition 6 For all w ∈ Bβ, ∇fα(w) is 2α−1
√
dL0-Lipschitz continuous.

Considering the sample mean of a mini-batch of estimators of ∇fα(w), the next propo-
sition gives bounds on the trace of their covariance matrices and on the expected value of
their squared l2-norm, which will be used in the convergence analysis of Section 7.

Proposition 7 For all w ∈ Bβ,

1. E[||∇fα(w)− 1
Mα

∑M
i=1 dF (w, ui, ξi)||22] ≤ dQ

M

2. E[||∇fα(w)− 1
M

∑M
i=1 ∇̃F (w + ui, ξi)||22] ≤ Q

M

3. E[|| 1
Mα

∑M
i=1 dF (w, ui, ξi)||22] ≤ dQ

4. E[|| 1
M

∑M
i=1 ∇̃F (w + ui, ξi)||22] ≤ Q,

where {ui} and {ξi} are independent samples of u and ξ.
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6. Properties of C ∩Bβ

In this section we give the projection onto C ∩ Bβ, and its Fréchet and Mordukhovich
normal cones. For the projection and normal cone of the set {w ∈ Rd : ||w||0 ≤ m}, see
(Bauschke et al., 2014). The projection onto C∩Bβ requires solving a 0-1 knapsack problem.
This problem is NP-complete, though it can be solved in pseudo-polynomial time when all
pi ∈ Z>0 and m ∈ Z>0, which holds when allocating memory as described in Section 3. For
further background on this problem and algorithms see (Kellerer et al., 2004).

6.1 Projection onto C ∩Bβ

The next proposition shows how the projection onto C ∩ Bβ can be computed using a 0-1
knapsack problem.

Proposition 8 For any w ∈ Rd, let Z∗ equal the set of optimal solutions of the 0-1 knapsack
problem,

max
z∈{0,1}n

n∑
i=1

zi(||wi||22 − ||max(|wi| − β, 0)||22) (5)

s.t.
n∑
i=1

zipi ≤ m,

where ||max(|wi| − β, 0)||22 :=
∑di

j=1(max(|wij | − β, 0))2. The projection ΠC∩Bβ (w) equals

ΠC∩Bβ (w) = {x ∈ Rd : ∃z∗ ∈ Z∗, xi = sgn(wi) min(|wi|, β) if z∗i = 1,

xi = 0 otherwise ∀i ∈ [n]},

where xi = sgn(wi) min(|wi|, β) denotes xij = sgn(wij) min(|wij |, β) for j = 1, 2, ..., di.

The following remark gives the projection onto C, which can be verified by taking β →∞
in Proposition 8.

Remark 9 For the projection onto C for any w ∈ Rd, the 0-1 knapsack problem (5) becomes

max
z∈{0,1}n

n∑
i=1

zi||wi||22 (6)

s.t.

n∑
i=1

zipi ≤ m.

If Z∗ equals the set of optimal solutions of (6), then the projection ΠC(w) equals

ΠC(w) = {x ∈ Rd : ∃z∗ ∈ Z∗, xi = wi if z∗i = 1, xi = 0 otherwise ∀i ∈ [n]}.
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6.2 Normal cones of C ∩Bβ

Assume that w ∈ C ∩Bβ, and let I(w) := {i ∈ [n] : wi 6= 0} be the indices of the subsets of
non-zero weights, and let J(w) := {j ∈ [n] \ I(w) :

∑
i∈I(w) pi + pj ≤ m} be the indices of

subsets which are zero, but are not constrained to be. The following proposition gives the
Fréchet normal cone to the set C ∩Bβ.

Proposition 10 For any w ∈ C ∩Bβ,

N̂(w,C ∩Bβ) =

{
y ∈ Rd : ∀i ∈ I(w) ∪ J(w), ∀j ∈ [di], y

i
j ∈


R≥0 if wij = β

0 if |wij | < β

R≤0 if wij = −β

}
. (7)

The following remark gives the Fréchet normal cone to the set C, which can be verified
by taking β →∞ in Proposition 10.

Remark 11 For any w ∈ C,

N̂(w,C) = {y ∈ Rd : ∀i ∈ I(w) ∪ J(w), yi = 0}.

Let Y := {X ⊆ 2[n] : I(w) ⊆ X,
∑

i∈X pi ≤ m and
∑

i∈X pi + pj > m ∀j /∈ X}, which
contains all of the sets of indices X containing I(w) which make the constraint

∑
i∈X pi ≤ m

tight, in the sense that no further feasible index can be added to X. The next proposition
gives the Mordukhovich normal cone to the set C ∩Bβ.

Proposition 12 For any w ∈ C ∩Bβ,

N(w,C ∩Bβ) =

{
y ∈ Rd : ∃X ∈ Y,∀i ∈ X,∀j ∈ [di], y

i
j ∈


R≥0 if wij = β

0 if |wij | < β

R≤0 if wij = −β

}
. (8)

The next remark gives the Mordukhovich normal cone to the set C.

Remark 13 For any w ∈ C,

N(w,C) = {y ∈ Rd : ∃X ∈ Y, yi = 0 ∀i ∈ X}.
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7. Training Algorithm

Algorithm 1 Stochastic Projected Algorithm (SPA)

Input: w1 ∈ S ∩Bβ, η > 0, K ∈ Z>0, M ∈ Z>0

R ∼ uniform{2, ...,K + 1}
for k = 1, 2, ..., R− 1 do

Sample uk,i ∼ Pu for i = 1, ...,M
Sample ξk,i ∼ Pξ for i = 1, ...,M

(1) wk+1 ∈ ΠS∩Bβ (wk − η
Mα

∑M
i=1 dF (wk, uk,i, ξk,i))

OR
(2) wk+1 ∈ ΠS∩Bβ (wk − η

M

∑M
i=1 ∇̃F (wk + uk,i, ξk,i))

end for
Output: wR

The following convergence results of SPA (Algorithm 1) are applicable for any constraint
set S which is closed and for which there exists a computable element of the Euclidean pro-
jection onto S ∩ Bβ. If (4) holds for all w,w′ ∈ Rd, then the projection operator can be
simplified to ΠS . The proof of Theorem 15 is an adaptation of the proof of (Xu et al., 2019,
Theorem 2). For some similar results of this section for a first-order algorithm for uncon-
strained problems see (Metel and Takeda, 2022). SPA has two settings: (1) is a zeroth-order
and (2) is a first-order algorithm. The algorithm requires that w1 ∈ S∩Bβ. A simple choice
is to pick an arbitrary w0 ∈ Rd and to set w1 ∈ ΠS∩Bβ (w0), but when training a neural

network with S = C and a high sparsity level, there is a risk of initializing the neural
network with layer collapse (Hoefler et al., 2021, Page 20), where all weights in a layer are
set to zero, disconnecting the network. We highlight that the initial w1 ∈ S ∩ Bβ can be
chosen to ensure that there are non-zero weights in each layer, or any other desired property.

We consider two convergence criteria. A solution w is an expected (ε1, ε2)-stationary
point if

|fα(w)− f(w)| ≤ ε1 for all w ∈ Bβ, and E[dist(0,∇fα(w) +N(w, S ∩Bβ))] ≤ ε2,

which guarantees that w is an expected ε2-stationary point for a smooth approximation
of f(w) with a uniform error from f(w) within ε1. A solution w is an expected (ε3, ε4)-
stationary point if

α̂ ≤ ε3 and E[dist(0, ∂fα̂(w) +N(w, S ∩Bβ))] ≤ ε4,

which can be seen as a relaxation of an expected ε4-stationary point, replacing the Mor-
dukhovich with a Clarke α̂-subdifferential. It will also be used in Theorem 20 for a method
with an asymptotic convergence guarantee to a C-M stationary point. These convergence
criteria are related as for sufficiently small α an (ε1, ε2)-stationary point implies an (ε3, ε4)-
stationary point with ε3 =

√
dα2 and ε4 = ε2 using Proposition 4.
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The next proposition verifies the existence of a Borel measurable selection of the pro-
jection operator ΠS∩Bβ (·), and of the measurability of the distance functions used in the

convergence criteria. By the assumptions that F (w, ξ) and ∇̃F (w, ξ) are Borel measurable,
the iterates {wk} from SPA are measurable using such a selection of ΠS∩Bβ (·). This propo-

sition also covers C-M stationary points, i.e. ∂0f(w) = ∂f(w) (Goldstein, 1977, Corollary
2.5).

Proposition 14 Let S be a closed set. There exists a measurable selection of ΠS∩Bβ (·).
For any 0 ≤ ε ≤ α

2 dist(0, ∂εf(w) +N(w, S ∩Bβ)), and dist(0,∇fα(w) +N(w, S ∩Bβ)) are
Borel measurable functions in w ∈ Bβ.

Together with Proposition 5.2, the following theorem presents the non-asymptotic con-
vergence to an expected (ε1, ε2)-stationary point of SPA.

Theorem 15 Let η = α
3ρ
√
dL0

for ρ > 0 and let τ ≥ 0 such that ρ+ τ > 1. For a solution

from SPA given any choice of w1 ∈ S ∩Bβ, K ∈ Z>0, and M ∈ Z>0, it holds that

E[dist(0,∇fα(wR) +N(wR, S ∩Bβ))2] ≤C1
2α−1

√
dL0∆

K
+ C2

υQ

M
, (9)

where

∆ ≥ fα(w1)− fα(w∗α)

≤ min

(
2β
√
dL0, f(w1)− f(w∗) + αL0

√
d

3

)
(10)

for minimizers w∗α and w∗ of fα(w) and f(w) respectively for w ∈ S∩Bβ, C1 := 2(1+3ρ)
(τ+ρ−1) +3ρ,

C2 := 4(1+3ρ)
(τ+ρ−1)

(
1
2 + 2

3
Mτ
ρ2

)
+ 3, and υ :=

{
d if using (1)

1 if using (2).

Inequality (10) gives valid choices for ∆ which are easier to compute and related to the true
loss function f . Using Theorem 15 and Proposition 4, the following corollary holds.

Corollary 16 Assume that κ > β +
√
dα2 and α̂ =

√
dα2 . Let η, ρ, τ , ∆, C1, and C2 be

defined as in Theorem 15. For a solution from SPA given any choice of w1 ∈ S ∩ Bβ,
K ∈ Z>0, and M ∈ Z>0, it holds that

E[dist(0, ∂fα̂(wR) +N(wR, S ∩Bβ))2] ≤ C1
2α−1

√
dL0∆

K
+ C2

υQ

M
. (11)

The parameter τ is not required and in fact τ > 0 results in the constant term

4(1 + 3ρ)

(τ + ρ− 1)

(
2

3

τ

ρ2

)
υQ

in the expansion of the right-hand-side of (9) and (11). The parameter τ is included so
that the convergence bounds are applicable for any step-size η > 0, though it will likely be

11
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poor unless Q ≈ 0. A large
√
d, such as for deep neural networks, will result in a small

step-size η as well as require a large K to get an adequate convergence guarantee. The
inclusion of τ is also an attempt to remedy this when Q ≈ 0, i.e. replacing ρ > 0 and
τ = 0 with ρ′ > 0 and τ ′ > 0 such that ρ′ + τ ′ = ρ will increase η and decrease C1. For
the remainder of this section we will assume that τ = 0, which results in C1 and C2 being

equal to Cτ=0
1 := 2+3ρ+3ρ2

ρ−1 and Cτ=0
2 := 9ρ−1

ρ−1 . Table 1 presents some choices for ρ resulting

in Cτ=0
1 and Cτ=0

2 being integer-valued.

Table 1: Some choices for ρ.

ρ 4
3

5
3 2 5

Cτ=0
1 34 23 20 23

Cτ=0
2 33 21 17 11

The following corollary gives the computational complexity to guarantee an expected
(ε1, ε2) or (ε3, ε4)-stationary point in terms of the number of either dF (wk, uk,i, ξk,i) or
∇̃F (wk + uk,i, ξk,i) computations, which will be referred to as gradient calls, and in terms
of the number of projections.

Corollary 17 Running SPA as described in Theorem 15 with α = ε1

L0

√
d
12

, τ = 0,

K =

⌈
C1

√
4

3

dL2
0∆

ε1ε22

⌉
, and M =

⌈
C2

2υQ

ε22

⌉

guarantees an expected (ε1, ε2)-stationary point. Assuming that κ > β + ε3, and setting
α = 2ε3√

d
, τ = 0,

K =

⌈
C1

2dL0∆

ε3ε24

⌉
, and M =

⌈
C2

2υQ

ε24

⌉
guarantees an expected (ε3, ε4)-stationary point. Using these choices of α, τ , K, and M give
gradient call complexities of O(ε−1

1 ε−4
2 ) and O(ε−1

3 ε−4
4 ), and projection operator complexities

of O(ε−1
1 ε−2

2 ) and O(ε−1
3 ε−2

4 ) to achieve an expected (ε1, ε2) and (ε3, ε4)-stationary point,
respectively.

The next corollary gives the computational complexity for an (ε1, ε2) or (ε3, ε4)-stationary
point with a probability of at least 1 − γ for any γ ∈ (0, 1) using the method proposed in
(Ghadimi and Lan, 2013, Section 2.2). SPA is required to be run r ∈ Z>0 times, generating
r different solutions, with the result holding for the solution which minimizes the distance
to stationarity using a sample mean approximation of ∇fα(w).

Corollary 18 For any γ ∈ (0, 1) and ε1, ε2 > 0 or ε3, ε4 > 0, with κ > β + ε3, assume that
SPA is run r := d− ln(cγ)e times for any c ∈ (0, 1) according to Theorem 15 with τ = 0,

12
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α = ε1

L0

√
d
12

or α = 2ε3√
d

,

K =

⌈
C1

√
4

3

dL2
0∆

ε1(ε′2)2

⌉
and M =

⌈
C2

2υQ

(ε′2)2

⌉
, or

K =

⌈
C1

2dL0∆

ε3(ε′4)2

⌉
and M =

⌈
C2

2υQ

(ε′4)2

⌉
,

where ε′2 =

√
ε22−6ψQ

T
4e , ε′4 =

√
ε24−6ψQ

T
4e , ψ = d− ln(cγ)e

(1−c)γ , e := exp(1), and T = d6φψ Q
ε22
e or

T = d6φψ Q
ε24
e for any φ > 1, outputting solutions W := {w1, ..., wr}. Let {ui}Ti=1 and

{ξi}Ti=1 be independent samples of u and ξ, and let w∗ ∈W be chosen such that

w∗ ∈ argmin
w∈W

dist(0, G(w) +N(w, S ∩Bβ)), (12)

where

G(w) :=

{
1
Tα

∑T
i=1 dF (w, ui, ξi) if using (1)

1
T

∑T
i=1 ∇̃F (w + ui, ξi) if using (2)

in SPA. It follows that w∗ is an (ε1, ε2) or (ε3, ε4)-stationary point with a probability of at
least 1−γ, it is generated with Õ

(
ε−1
1 ε−4

2 + γ−1ε−2
2

)
or Õ

(
ε−1
3 ε−4

4 + γ−1ε−2
4

)
gradient calls,

and Õ
(
ε−1
1 ε−2

2

)
or Õ

(
ε−1
3 ε−2

4

)
projections.

The optimization problem (12) requires knowledge of the normal cone of S ∩ Bβ as
given in Proposition 12 for S = C, and is solved by computing the distance dist(0, G(w) +
N(w, S ∩ Bβ)) Õ(1) times, once for each w ∈ W . The binary integer program discussed
in the next proposition can be found in the proof, see (38), but its requirement is only for
pathological cases in neural network training when a solution equals wi = 0 for an i ∈ [n]
which is not constrained to be zero.

Proposition 19 If Y = I(w) as defined above Proposition 12, dist(0, G(w) + N(w,C ∩
Bβ)) = ||G(w) + v||2 where

vij =

{
0 if i ∈ I(w) and ¬U ij
−Gij(w) otherwise,

where U ij := (|wij | = β) ∧ (sgn(Gij(w)) = − sgn(wij)) for i ∈ [n] and j ∈ di. When there
exists an X ∈ Y such that X \ I(w) 6= {∅}, assume that {pi} ⊂ Q>0. The distance
dist(0, G(w) + N(w,C ∩ Bβ)) can be computed by solving a binary integer program with
|[n] \ I(w)| binary variables.

Comparison of computational complexity
Our gradient call complexity matches that of (Nesterov and Spokoiny, 2017, Section 7) to
achieve an expected (ε1, ε2)-stationary point for an unconstrained deterministic function f .
Their random gradient-free oracle only requires two function evaluations, whereas df(w, u)

13
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requires 2d function evaluations. The Gaussian smoothing is computationally appealing
but we would need to assume that f(w) is Lipschitz continuous over Rd as the function
calls within df(w, u) would now be evaluated at any point in Rd given the expanded im-
age of normal random variables compared to u ∈ B α

2
. In (Metel and Takeda, 2022) the

same computational complexity is proven for an expected (ε3, ε4)-stationary point for un-
constrained stochastic functions. In (Zhang et al., 2020), a better computational complexity
of Õ(ε−1

3 ε−3
4 ) is proven to achieve an (ε3, ε4)-stationary point in high probability in the de-

terministic setting. In the stochastic setting, (Zhang et al., 2020) proves a computational
complexity of Õ(ε−1

3 ε−4
4 ) to achieve an expected (ε3, ε4)-stationary point similar to our work.

The next theorem proves that the set of solutions from running SPA with increasing
accuracy has an asymptotic convergence guarantee to a C-M stationary point almost surely.

Theorem 20 Let {εi3} and {εi4} be strictly decreasing positive sequences approaching 0 in
the limit, with αi, Ki and M i set to guarantee an expected (εi3, ε

i
4)-stationary point running

SPA according to Corollary 17 assuming that κ > β+ε13. Assume that SPA is run according
to Theorem 15 with τ = 0, α = αi, K = Ki, and M = M i for i = 1, 2, ..., giving solutions
{wi}. If β is finite, there exists an accumulation point w of {wi} and it is a C-M stationary
point almost surely. Otherwise, any accumulation point w of {wi} is a C-M stationary point
almost surely.

8. Using Backpropagation

This section considers computing ∇̃F (w, ξ) using backpropagation for a problem setting
entailing a wide range of deep learning applications. This is demonstrated using the results
of (Bolte and Pauwels, 2021). Assume that ξ maps to a countable number of values {ξi}∞i=1

almost surely, P(ξ ∈ {ξi}∞i=1) = 1, and assume that for each ξk ∈ {ξi}∞i=1, F (w, ξk) for
w ∈ Rd can be written as a composition of locally Lipschitz continuous functions {σj}j∈Ik ,
for an index set Ik, and assume that the functions {σj}j∈Ik are definable in the same o-
minimal structure.

Proposition 21 (Bolte and Pauwels, 2021, Corollary 5) For each ξk ∈ {ξi}∞i=1 set ∇̃F (w, ξk)

equal to the output of backpropagation using a measurable selection ∇̃σj(·) ∈ ∂σj(·), which

exists, for all j ∈ Ik, and for ξ /∈ {ξi}∞i=1 set ∇̃F (w, ξ) = a for any a ∈ Rd. ∇̃F (w, ξ)
is Borel measurable for (w, ξ) ∈ Rd+p and equals the gradient of F (w, ξ) for almost every
(w, ξ) ∈ Rd+p.

We focus on the o-minimal structure of the ordered real exponential field, Rexp,< :=
R(+, ·, 0, 1, <, exp), which provides a wide class of definable functions typically found in
deep learning architectures. For a short background on o-minimal structures see for example
(Wilkie, 2007). The next proposition verifies the validity of using backpropagation for the
building blocks used in the neural network considered in the next section, and also contains
a sufficient background on o-minimal structures to understand the result. Other activation
functions typically used in deep learning can be shown to have the following properties
as well. We refer to what is computed during backpropagation as a bp gradient. Conv2d
and MaxPool2d are defined as tensor-valued functions, but it is sufficient to consider their
component functions separately.
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Table 2: Parameters for MN and FMN datasets for s ∈ {0.65, 0.5}. All parameters were
estimated or given explicitly by the theory of the paper given the choices for κ,
(ε1, ε2), and ρ, except β = 0.99(κ− α/2), which satisfies κ > β + α

2 .

L0 Q ∆ α β η K M

MN 8.53E-2 7.49E-3 2.31 6.42E-2 1.66E-1 4.76E-4 4.38E5 2

FMN 1.09E-1 1.22E-2 2.30 5.05E-2 1.93E-1 2.68E-4 7.07E5 3

Proposition 22 The affine map, ReLU, the component functions of Conv2d and Max-
Pool2d, and the loss function CrossEntropyLoss are definable in the o-minimal structure of
Rexp,<, and their bp gradients are measurable selections of their Clarke subdifferentials.

9. Training a Neural Network

We trained a Lenet-5 type neural network on the MNIST (MN) and FashionMNIST (FMN)
datasets constrained by C ∩ Bβ. The projection operator ΠC∩Bβ (·) was computed using a

branch-and-bound (BNB) algorithm to solve the 0 − 1 knapsack problem (5). A sampling
approach was used to empirically estimate L0, Q, and ∆. Details of the neural network
architecture, the BNB algorithm, and the sampling approach can be found in Appendix F.

The constants L0 and Q are non-decreasing in κ, but it was observed that our estimates
can be decreased significantly by decreasing κ without having much of an impact on training
performance. This enabled reasonable choices for the required number of epochs implied
by Corollary 17 with a choice of κ = 0.2 and 0.22 for the MN and FMN datasets. We
focused on the first-order version of SPA and ran it according to Corollary 17 to achieve
an expected (ε1, ε2)-stationary point for ε1 = ε2 = 1/3. For the MN and FMN datasets, ρ
was chosen as ρ = 2.5 and 2.75 to minimize the required number of epochs, searching over
a grid of 0.25 increments. We want to highlight that these parameters were chosen solely
to ensure an adequate number of epochs, and similar or better solutions are expected for
larger κ, smaller (ε1, ε2), with reasonable values of ρ, e.g. within the domain of Table 1, but
will require longer training times.

Weights and biases were grouped together by filter and neuron for the convolutional and
fully connected layers to generate the partition {wi}ni=1, where n = 236. The penalty pi for
i ∈ [n] was set to the dimension of each subset wi, pi = di. The parameter m of C was chosen
as m = (1− s)d where s ∈ (0, 1) is the chosen sparsity level and d = 44426. Trying different
values of s at 0.05 increments, layer collapse occurred with w1 = ΠC∩Bβ (w0) for randomly

initialized w0 and s = 0.7, so we restricted these experiments to s ≤ 0.65. The values of α,
K, and M were set according to Corollary 17, and β was set to β = 0.99(κ − α/2), such
that κ > β+ α

2 following Section 5. The value of η was set according to Theorem 15. Table
2 presents the values of the aforementioned estimated or computed parameters.
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Figure 1: Test set accuracy and training set loss of PSGD and SPA. The numbers equal
the sparsity level s.
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SPA was compared to projected mini-batch SGD (PSGD) using the same parameteriza-
tion but with no randomized smoothing, i.e. uk,i = 0 ∀k, i, and unconstrained mini-batch
SGD (SGD), run identically to PSGD but with no projection. All algorithms were run 3
times for dKM/Me epochs, whereM = 60, 000 is the training set size, with the output av-
eraged together. The experiments were run in Python 3.6.13 with Pytorch 1.8.1 on a server
running Ubuntu 18.04.5 LTS with an Intel Xeon E5-2698 v4 CPU and an Nvidia Titan V
GPU. Figure 1 plots the test set accuracy and the training set loss. The performance of
SPA and PSGD are very similar, with better performance in earlier epochs with s = 0.5,
and with all algorithms converging closely to SGD in later epochs.

The 0-1 knapsack problem did not pose a significant computational bottleneck to the
training. An experiment measuring the computation time of ΠC∩Bβ (·) was conducted for

the first 100 projections of 100 trials of the experimental setup of FMN-SGD-065. The
projection was found to be the most challenging for w0, with an average computation time
of 0.168 seconds, with the remaining projections having an average computation time of
0.0790 seconds.

10. Conclusion

This paper studied theoretical aspects of structured sparsity for deep neural network train-
ing. A weighted group l0-norm constraint was proposed and the projection operator and
normal cone of this set were presented. The computational complexities of a zeroth and
first-order stochastic projection algorithm for constrained Lipschitz continuous loss func-
tions were given for (ε1, ε2) and (ε3, ε4)-stationary points in expectation and high probability,
as well as a method with an asymptotic convergence guarantee to a C-M stationary point
almost surely.

Appendix A. Section 3 Proof

Proof of Proposition 1 For a point x ∈ {wi 6= 0}, choosing a j such that xij 6= 0, it

follows that B(x, |xij |/2) ∈ {wi 6= 0} as well, proving that {wi 6= 0} is an open set. The
lower level sets of pi1{wi 6=0}(w),

{w ∈ Rd : pi1{wi 6=0}(w) ≤ λ} =


Rd for pi ≤ λ
{wi 6= 0}c for 0 ≤ λ < pi

{∅} for λ < 0

are closed for all λ ∈ R, which holds if and only if pi1{wi 6=0}(w) is a lower semicontinuous
function (Rockafellar and Wets, 2009, Theorem 1.6). A function h is lower semicontinuous
at w̄ ∈ Rd if lim infw→w̄ h(w) ≥ h(w̄) (Rockafellar and Wets, 2009, Definition 1.5). For all
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w̄ ∈ Rd,

lim inf
w→w̄

n∑
i=1

pi1{wi 6=0}(w) ≥
n∑
i=1

lim inf
w→w̄

pi1{wi 6=0}(w)

≥
n∑
i=1

pi1{w̄i 6=0}(w̄),

where the second inequality uses the lower semicontinuity of each pi1{w̄i 6=0}(w̄). The lower
semicontinuity of

∑n
i=1 pi1{wi 6=0}(w) proves that its lower level set C is closed.

Appendix B. Section 5 Proofs

Proof of Proposition 2 Given that E[L0(ξ)2] < ∞ it holds that L0(ξ) is integrable,
E[L0(ξ)] <∞ (Folland, 1999, Proposition 6.12). For any w,w′ ∈ Bκ,

|f(w)− f(w′)|=|E[F (w, ξ)− F (w′, ξ)]|
≤E[|F (w, ξ)− F (w′, ξ)|]
≤E[L0(ξ)||w − w′||2]

=L0||w − w′||2,

where the first inequality uses Jensen’s inequality and the second inequality holds given
that (4) holds for almost all ξ ∈ Rp.

Proof of Proposition 3 Let w ∈ Bβ, let {hj} ⊂ R be a sequence such that 0 < |hj | ≤
κ − (β + α

2 ) with lim
j→∞

hj → 0, and let ei equal the ith unit coordinate vector. Given the

Lipschitz continuity of f(w) over Bκ,

lim
j→∞

h−1
j (f(w + u+ hjei)− f(w + u)) = ∇̃if(w + u)

for almost every u ∈ Bα/2. For all j ∈ N,

|h−1
j ||f(w + u+ hjei)− f(w + u)| ≤ L0|h−1

j ||hjei| = L0 ∈ L1(Pu).

Applying the dominated convergence theorem,

E
[
∇̃if(w + u)

]
= lim

j→∞
E[h−1

j (f(w + u+ hjei)− f(w + u))]

= lim
j→∞

h−1
j (fα(w + hjei)− fα(w)).
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Given that E[|∇̃if(w+ u)|] ≤ L0 (Metel and Takeda, 2022, Lemma 6), we can use Fubini’s
theorem,

E
[
∇̃if(w + u)

]
=

1

αd

∫ α/2

−α/2
· · ·
∫ α/2

−α/2

∫ α/2

−α/2
· · ·
∫ α/2

−α/2

∫ α/2

−α/2
∇̃if(w + u)duidu1 · · · dui−1dui+1 · · · dud

=
1

αd

∫ α/2

−α/2
· · ·
∫ α/2

−α/2

∫ α/2

−α/2
· · ·
∫ α/2

−α/2
dfi(w, u\i)du1 · · · dui−1dui+1 · · · dud

= α−1E[dfi(w, u\i)],

where the second equality uses the fundamental theorem of calculus for Lebesgue inte-
grals given that ∇̃if(w + u) = ∇if(w + u) for almost all u ∈ [−α/2, α/2]d: For a fixed
u′\i ∈ [−α/2, α/2]d−1, let u′(ui) := [u′1, ..., u

′
i−1, ui, u

′
i+1, ..., u

′
d]
T for ui ∈ [−α/2, α/2]. As-

sume that u′\i is chosen such that f(w + u′(ui)) is differentiable with ∇̃if(w + u′(ui)) =

∇if(w + u′(ui)) for almost all ui ∈ [−α/2, α/2]. Given that f(w + u′(ui)) is absolutely

continuous for ui ∈ [−α/2, α/2],
∫ α/2
−α/2 ∇̃if(w + u′(ui))dui = dfi(w, u

′
\i). Since this holds

for almost all u′\i ∈ [−α/2, α/2]d−1, the second equality holds.

The equality E[∇̃f(w+u)] = E[∇̃F (w+u, ξ)] holds by (Metel and Takeda, 2022, Prop-
erty 2), where it is shown that for almost all u ∈ Bα/2, ∇̃f(w + u) = Eξ[∇̃F (w + u, ξ)] in
our problem setting.

As w ∈ Bβ and the sequence {hi} ⊂ Bκ−(β+α
2

) were arbitrary, for all w ∈ Bβ,

α−1E[dfi(w, u\i)] = E[∇̃Fi(w + u, ξ)]

= E[∇̃if(w + u)]

= lim
h→0

h−1(fα(w + hei)− fα(w))

=
∂fα
∂wi

(w)

= ∇ifα(w), (13)

where the third equality holds using the sequential criterion of a limit, and the last equality
holds given that the partial derivatives are (Lipschitz) continuous: For any w,w′ ∈ Bβ,

|α−1E[dfi(w, u\i)]− α−1E[dfi(w
′, u\i)]|

≤α−1E[|dfi(w, u\i)− dfi(w′, u\i)|]
≤2α−1L0||w − w′||2,

where a proof of the last inequality can be found at (15). Given that for any w ∈ Bβ,

α−1E[|dFi(w, u\i, ξ)|] ≤ α−1E[L0(ξ)α] = L0,

Fubini’s theorem can be applied:

α−1E[dFi(w, u\i, ξ)] = α−1Eu\i [Eξ[dFi(w, u\i, ξ)]]

= α−1E[dfi(w, u\i)]

= ∇ifα(w)
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from (13).

Proof of Proposition 4 Given that u ∈ B α
2
, w + u ∈ B(w,

√
dα2 ) ⊂ Bκ, hence ∂α̂f(w) =

co{∂f(x) : x ∈ B(w, α̂)} is well defined. The gradient ∇f(w + u) ∈ ∂f(w + u) wherever
f(w+ u) is differentiable (Clarke, 1990, Proposition 2.2.2), which is for almost all u ∈ B α

2
.

It follows that for almost all u ∈ B α
2
, ∇̃f(w + u) ∈ ∂α̂f(w) and ∇fα(w) = E[∇̃f(w + u)] ∈

∂α̂f(w).

Proof of Proposition 5

1. For all w,w′ ∈ Bβ,

|fα(w)− fα(w′)| = |E[f(w + u)− f(w′ + u)]| ≤ L0||w − w′||2.

2. For all w ∈ Bβ,

|fα(w)− f(w)| = |E[f(w + u)− f(w)]| ≤ L0E[||u||2] ≤ L0

√
d

12
a,

where the expected distance from u to the origin is bounded by

E[‖u‖2] ≤

√√√√E[
d∑
i=1

u2
i ]=
√
d
√
E[u2

i ] =
√
d
α√
12
.

3. This can be proven by contradiction. Assuming that fα(w∗α)− f(w∗) > αL0

√
d
12 and

given that fα(w∗)− f(w∗) ≤ αL0

√
d
12 from statement 2,

fα(w∗α) > αL0

√
d

12
+ f(w∗) ≥ fα(w∗),

contradicting the optimality of w∗α for fα(w). Similarly if f(w∗)− fα(w∗α) > αL0

√
d
12 ,

statement 2 gives f(w∗α)− fα(w∗α) ≤ αL0

√
d
12 , from which

f(w∗) > αL0

√
d

12
+ fα(w∗α) ≥ fα(w∗),

contradicting the optimality of w∗ for f(w).

4. For any two values w,w′ ∈ Bβ,

|fα(w)− fα(w′)| = |E[f(w + u)]− E[f(w′ + u)]|
= |E[f(w + u)− f(w′ + u)]|
≤ E[L0||w − w′||2]

≤ L0

√√√√ d∑
i=1

(2β)2

= L0

√
d2β.
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Proof of Proposition 6 From Proposition 3,

||∇fα(w)−∇fα(w′)||2 =α−1||E[df(w, u)− df(w′, u)]||2

=α−1

√√√√ d∑
i=1

(E[dfi(w, u\i)− dfi(w′, u\i)])2. (14)

Focusing on dfi(w, u\i)− dfi(w′, u\i),

|dfi(w, u\i)− dfi(w′, u\i)|

=|f(w1 + u1, ..., wi−1 + ui−1, wi +
α

2
, wi+1 + ui+1, ..., wd + ud)

−f(w1 + u1, ..., wi−1 + ui−1, wi −
α

2
, wi+1 + ui+1, ..., wd + ud)

−f(w′1 + u1, ..., w
′
i−1 + ui−1, w

′
i +

α

2
, w′i+1 + ui+1, ..., w

′
d + ud)

+f(w′1 + u1, ..., w
′
i−1 + ui−1, w

′
i −

α

2
, w′i+1 + ui+1, ..., w

′
d + ud)|

≤|f(w1 + u1, ..., wi−1 + ui−1, wi +
α

2
, wi+1 + ui+1, ..., wd + ud)

−f(w′1 + u1, ..., w
′
i−1 + ui−1, w

′
i +

α

2
, w′i+1 + ui+1, ..., w

′
d + ud)|

+|f(w′1 + u1, ..., w
′
i−1 + ui−1, w

′
i −

α

2
, w′i+1 + ui+1, ..., w

′
d + ud)

−f(w1 + u1, ..., wi−1 + ui−1, wi −
α

2
, wi+1 + ui+1, ..., wd + ud)|

≤2L0||w − w′||2. (15)

Plugging (15) into (14),

||∇fα(w)−∇fα(w′)||2 ≤α−1

√√√√ d∑
i=1

(2L0||w − w′||2)2

=α−1
√
d2L0||w − w′||2.

Proof of Proposition 7 To streamline the proof, let G := 1
M

∑M
i=1 g

i, where

gi :=

{
α−1dF (w, ui, ξi) for 1 and 3

∇̃F (w + ui, ξi) for 2 and 4.
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Proof of 1 and 2:

E[||∇fα(w)−G||22] =E[||E[G]−G||22]

=E
[ d∑
j=1

(E[Gj ]−Gj)2

]

=E
[ d∑
j=1

(
1

M

M∑
i=1

(E[Gj ]− gij))2

]

=
1

M2
E
[ d∑
j=1

( M∑
i=1

(E[Gj ]− gij)2 + 2

M∑
i=1

i−1∑
l=1

(E[Gj ]− gij)(E[Gj ]− glj)
)]

=
1

M2

d∑
j=1

M∑
i=1

E[(E[Gj ]− gij)2]

=
1

M

d∑
j=1

E[(E[Gj ]− gij)2]

=
1

M

d∑
j=1

(E[Gj ]
2 − 2E[Gj ]E[gij ] + E[(gij)

2])

=
1

M

d∑
j=1

(−E[Gj ]
2 + E[(gij)

2])

≤ 1

M

d∑
j=1

E[(gij)
2].

For 1:

1

M

d∑
j=1

E[(gij)
2] =

1

M

d∑
j=1

E[(α−1dFj(w, u
i
\j , ξ

i))2]

=
1

α2M

d∑
j=1

E[dFj(w, u
i
\j , ξ

i)2]

≤ 1

α2M

d∑
j=1

E[L0(ξ)2α2]

=
d

M
E[L0(ξ)2]. (16)
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For 2:

1

M

d∑
j=1

E[(gij)
2] =

1

M

d∑
j=1

E[∇̃F (w + ui, ξi)2]

=
1

M
E[||∇̃F (w + ui, ξi)||22]

≤ 1

M
E[L0(ξ)2], (17)

where the last inequality follows from (Metel and Takeda, 2022, Lemma 6).

Proof of 3 and 4:

E[||G||22] =E[|| 1

M

M∑
i=1

gi||22]

=E[
d∑
j=1

(
1

M

M∑
i=1

gij)
2]

≤E[
d∑
j=1

1

M

M∑
i=1

(gij)
2]

=E[
d∑
j=1

(gij)
2],

where the inequality uses Jensen’s inequality. For 3, from (16):

E[
d∑
j=1

(gij)
2] ≤dE[L0(ξi)2],

and for 4, from (17):

E[

d∑
j=1

(gij)
2] ≤E[L0(ξi)2].

Appendix C. Section 6 Proofs

Proof of Proposition 8 Following (Rockafellar and Wets, 2009, Chapter 1.G.), the pro-
jection of a point w onto C ∩Bβ can be written as

ΠC∩Bβ (w) = argmin
x∈Rd

{δC∩Bβ (x) +

n∑
i=1

||xi − wi||22}.
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For the squared distance function of a point w ∈ Rd from C ∩Bβ,

d2
C∩Bβ

(w) = inf
x∈Rd

{δC∩Bβ (x) +
n∑
i=1

||xi − wi||22},

let x∗ be a minimizer. If (x∗)i 6= 0 then it will be the optimal solution of

min
x∈Rdi

||xi − wi||22

s.t. |xij | ≤ β j = 1, 2, ..., di,

equal to (x∗)ij = sgn(wij) min(|wij |, β) for j = 1, 2, ..., di, with the optimal objective value of

||max(|wi| − β, 0)||22. The function d2
C∩Bβ

can then be written as

d2
C∩Bβ

(w) = min
z∈{0,1}n

n∑
i=1

zi||max(|wi| − β, 0)||22 + (1− zi)||wi||22

s.t.

n∑
i=1

zipi ≤ m,

where each zi decides if xi is allowed to be non-zero. This optimization problem has the
same set of optimal solutions as

min
z∈{0,1}n

n∑
i=1

zi(||max(|wi| − β, 0)||22 − ||wi||22)

s.t.
n∑
i=1

zipi ≤ m,

and

max
z∈{0,1}n

n∑
i=1

zi(||wi||22 − ||max(|wi| − β, 0)||22)

s.t.
n∑
i=1

zipi ≤ m,

written in the form of a maximization to match the standard format of knapsack problems.

Proof of Proposition 10 Let RHS equal the right-hand side of (7) and for simplicity let
I := I(w) and J := J(w). If w = 0, then RHS = 0 ∈ N̂(w,C ∩ Bβ). Assuming w 6= 0, let
v ∈ RHS and m̂ := mini∈I ||wi||2/2. For all x ∈ B(w, m̂) ∩ C ∩ Bβ =: D, I ⊆ I(x). Given
that x ∈ C and I ⊆ I(x), I(x) ⊆ I ∪ J : If not, then there exists a j ∈ I(x) \ I such that
j /∈ J , but this implies that

∑
i∈I(x) pi + pj ≥

∑
i∈I pi + pj > m, which contradicts that

x ∈ C. Given that I(x) ⊆ I ∪ J for all x ∈ D,

〈v, x− w〉 =
∑
i/∈I∪J

〈vi, xi − wi〉+
∑
i∈I∪J

∑
j∈[di]

vij(x
i
j − wij) ≤ 0 (18)
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since for i /∈ I ∪ J , xi = wi = 0 and for i ∈ I ∪ J , given that x ∈ Bβ, vij(x
i
j − wij) ≤ 0 from

(7). From (18),

inf
γ>0

(
sup

0<||x−w||2<γ
x∈C∩Bβ

〈v, x− w〉
||x− w||2

)
≤ sup

0<||x−w||2<m̂
x∈C∩Bβ

〈v, x− w〉
||x− w||2

≤ 0

and v ∈ N̂(w,C ∩Bβ).

For a v ∈ N̂(w,C ∩Bβ), assume there exists an i ∈ I ∪ J and j ∈ [di] for which it does
not hold that

vij ∈


R≥0 if wij = β

0 if |wij | < β

R≤0 if wij = −β.

Consider the sequence {xk} with elements equal to

(xlm)k =

{
wlm + εkv

l
m if l = i and m = j

wlm otherwise

with 
0 < εk ≤ −2 β

vij
if vij < 0 and wij = β

0 < εk ≤
β−|wij |
|vij |

if vij 6= 0 and |wij | < β

0 < εk ≤ 2 β
vij

if vij > 0 and wij = −β,

to ensure that {xk} ⊂ Bβ, and assume that εk → 0. It holds that xk
C∩Bβ−−−−→ w, since

I(xk) ⊆ I ∪ i for all k ∈ N. For any γ > 0, there exists a Kγ ∈ N such that for k > Kγ ,
0 < ||xk − w||2 < γ, hence

sup
0<||x−w||2<γ
x∈C∩Bβ

〈v, x− w〉
||x− w||2

≥ 〈v, xk − w〉
||xk − w||2

=
εk(v

i
j)

2

εk|vij |
= |vij | > 0,

which contradicts that v ∈ N̂(w,C ∩Bβ).

Proof of Proposition 12 Let RHS equal the right-hand side of (8) and let I := I(w) and

J := J(w). For any v ∈ N(w,C ∩Bβ), there exists sequences xk
C∩Bβ−−−−→ w and vk → v with

vk ∈ N̂(xk, C ∩ Bβ) for all k ∈ N. We first want to show that for k ∈ N sufficiently large,
there exist X(vk) ∈ Y such that X(vk) ⊆ I(xk) ∪ J(xk), implying that vk ∈ RHS.

Assuming w 6= 0, there exists an N ∈ N such that for all k > N , maxi∈[n] ||xik −wi||2 <
mini∈I ||wi||2/2, implying that I ⊆ I(xk). Given that I ⊆ I(xk), there exists an X(vk) ∈ Y
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such that X(vk) ⊆ I(xk)∪J(xk): We can choose X(vk) such that I(xk) ⊆ X(vk) given that
I ⊆ I(xk) and xk ∈ C. If X(vk) 6⊂ I(xk)∪ J(xk), then there exists a j ∈ X(vk) \ I(xk) such
that j /∈ J(xk), but this implies that

∑
i∈X(vk) pi ≥

∑
i∈I(xk) pi + pj > m, which contradicts

that X(vk) ∈ Y .

For the case when w = 0, I = {∅}, hence we can choose X(vk) such that I(xk) ⊆ X(vk),
from which it must hold again that X(vk) ⊆ I(xk) ∪ J(xk). Given the existence of an
X(vk) ∈ Y such that X(vk) ⊆ I(xk)∪J(xk), vk ∈ RHS for all k > N , from which it follows
that v ∈ RHS given that RHS is a closed set: For any w ∈ Rd,

N i
j(w) :=

y ∈ Rd : yij ∈


R≥0 if wij = β

0 if |wij | < β

R≤0 if wij = −β


is a closed set, the intersection of closed sets⋂

∀i∈X
∀j∈[di]

N i
j(w) (19)

for an X ∈ Y is closed, and the finite union of sets (19) over X ∈ Y

RHS =
⋃
X∈Y

⋂
∀i∈X
∀j∈[di]

N i
j(w)

is closed.

Let v ∈ RHS and X(v) ∈ Y such that ∀i ∈ X(v) and ∀j ∈ [di],

vij ∈


R≥0 if wij = β

0 if |wij | < β

R≤0 if wij = −β.

Consider the sequence {xk} equal to

xik =


wi if i ∈ I
εik if i ∈ X(v) \ I
0 otherwise,

where for a j ∈ [di], 0 < (εij)k ≤ β and (εij)k → 0, and (εil)k = 0 for all l ∈ [di] \ {j}

and k ∈ N. It holds that xk
C∩Bβ−−−−→ w, the sets I(xk) = X(v) and J(xk) = {∅}, hence

v ∈ N̂(xk, C) for all k ∈ N , proving that v ∈ N(w,C). We note that for the case X(v) = I,
v ∈ N̂(w,C) ⊆ N(w,C) (Mordukhovich, 2013, Eq. (1.6))
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Appendix D. Section 7 Proofs

Proof of Proposition 14 The measurability of ΠS∩Bβ (·) follows from (Rockafellar and

Wets, 2009, Exercise 14.17 (b)). In particular, the set S ∩ Bβ is closed and can be con-
sidered as a constant (measurable) set valued function S ∩ Bβ : Rd ⇒ Rd. Given that the
projection operator is a closed (in particular a nonempty and compact) set-valued mapping
(Rockafellar and Wets, 2009, Exercise 1.20), there exists a measurable selection (Rockafellar
and Wets, 2009, Corollary 14.6).

The restriction that ε ≤ α
2 is to ensure that ∂εf(w) is well defined given that it is only

assumed that κ > β + α
2 . The set valued mapping ∂εf(w) is outer semicontinuous for

w ∈ Bβ, see (Goldstein, 1977, Lemma 2.6) for a proof that (Rockafellar and Wets, 2009,
Definition 5.4) holds, as is N(w, S ∩ Bβ) for w ∈ Rd given that S ∩Bβ is closed (Rock-
afellar and Wets, 2009, Theorem 5.7 (a); Page 202). Since ∂εf(w) is bounded, given that
∂εf(w) ⊆ B(0, L0) (Clarke, 1990, Proposition 2.1.2 (a)), ∂εf(w) + N(w, S ∩ Bβ) is outer
semicontinuous for w ∈ Bβ (Rockafellar and Wets, 2009, Proposition 5.51 (b)). The func-
tion dist(0, ∂εf(w) + N(w, S ∩ Bβ)) is then lower semicontinuous for w ∈ Bβ (Rockafellar
and Wets, 2009, Proposition 5.11), hence Borel measurable. The Borel measurability of
dist(0,∇fα(w) +N(w, S ∩Bβ)) holds since fα(w) is Lipschitz continuous (Proposition 5.1),
continuously differentiable (Proposition 6), hence ∇fα(w) = ∂fα(w) (Clarke, 1990, Page
10).

Proof of Theorem 15 For simplicity let

Gk :=

{
1
Mα

∑M
i=1 dF (wk, uk,i, ξk,i) if using (1)

1
M

∑M
i=1 ∇̃F (wk + uk,i, ξk,i) if using (2)

in SPA, where we assume k ∈ [K]. Given that

wk+1 ∈ argmin
x∈Rd

{δS∩Bβ (x) + ||x− (wk − ηGk)||22} (20)

and ||x− (wk − ηGk)||22 is differentiable (Rockafellar and Wets, 2009, Theorem 6.12),

−2ηGk − 2(wk+1 − wk) ∈N(wk+1, S ∩Bβ)

=⇒ −Gk − η−1(wk+1 − wk) ∈N(wk+1, S ∩Bβ)

=⇒∇fα(wk+1)−Gk − η−1(wk+1 − wk) ∈∇fα(wk+1) +N(wk+1, S ∩Bβ),

27



Metel

where the second inclusion holds since N(wk+1, S∩Bβ) is a cone. The final inclusion implies
that

dist(0,∇fα(wk+1) +N(wk+1, S ∩Bβ))2

≤||∇fα(wk+1)−Gk − η−1(wk+1 − wk)||22
=||∇fα(wk+1)−Gk||22 − 2η−1〈∇fα(wk+1)−Gk, wk+1 − wk〉+ η−2||wk+1 − wk||22
=||∇fα(wk+1)−∇fα(wk) +∇fα(wk)−Gk||22
− 2η−1〈∇fα(wk+1)−Gk, wk+1 − wk〉+ η−2||wk+1 − wk||22

≤3

2
||∇fα(wk+1)−∇fα(wk)||22 + 3||∇fα(wk)−Gk||22

− 2η−1〈∇fα(wk+1)−Gk, wk+1 − wk〉+ η−2||wk+1 − wk||22
≤6α−2dL2

0||wk+1 − wk||22 + 3||∇fα(wk)−Gk||22
− 2η−1〈∇fα(wk+1)−Gk, wk+1 − wk〉+ η−2||wk+1 − wk||22

=(6α−2dL2
0 + η−2)||wk+1 − wk||22 + 3||∇fα(wk)−Gk||22

− 2η−1〈∇fα(wk+1)−∇fα(wk) +∇fα(wk)−Gk, wk+1 − wk〉
≤(6α−2dL2

0 + η−2)||wk+1 − wk||22 + 3||∇fα(wk)−Gk||22
+ 4α−1

√
dL0η

−1||wk+1 − wk||22 − 2η−1〈∇fα(wk)−Gk, wk+1 − wk〉

=(6α−2dL2
0 + 4α−1

√
dL0η

−1 + η−2)||wk+1 − wk||22 + 3||∇fα(wk)−Gk||22
− 2η−1〈∇fα(wk)−Gk, wk+1 − wk〉, (21)

where the second inequality uses Young’s inequality:

||∇fα(wk+1)−∇fα(wk) +∇fα(wk)−Gk||22

=||∇fα(wk+1)−∇fα(wk)||22 + 2〈 1√
2

(∇fα(wk+1)−∇fα(wk)),
√

2(∇fα(wk)−Gk)〉

+||∇fα(wk)−Gk||22

≤3

2
||∇fα(wk+1)−∇fα(wk)||22 + 3||∇fα(wk)−Gk||22,

and the third and fourth inequalities use the smoothness of fα(w). By the optimality of
wk+1 in (20),

δS∩Bβ (wk+1) + ||wk+1 − (wk − ηGk)||22 ≤δS∩Bβ (wk) + ||ηGk||22
=⇒δS∩Bβ (wk+1) + ||wk+1 − wk||22 + 2η〈wk+1 − wk, Gk〉 ≤δS∩Bβ (wk)

=⇒ ||wk+1 − wk||22 + 2η〈wk+1 − wk, Gk〉 ≤0

=⇒ 1

2η
||wk+1 − wk||22 + 〈wk+1 − wk, Gk〉 ≤0, (22)
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where the third inequality holds since wk is feasible for k ∈ {1, ...,K + 1}. Continuing from
(22),

fα(wk+1) +
1

2η
||wk+1 − wk||22 + 〈wk+1 − wk, Gk −∇fα(wk)〉

≤fα(wk) + α−1
√
dL0||wk+1 − wk||22 (23)

=⇒2η−1〈wk+1 − wk, Gk −∇fα(wk)〉

≤2η−1(fα(wk)− fα(wk+1))− η−2||wk+1 − wk||22 + 2α−1
√
dL0η

−1||wk+1 − wk||22, (24)

where the first inequality uses the smoothness of fα(w) (Nesterov, 2004, Lemma 1.2.3):

fα(wk+1) ≤fα(wk) + 〈∇fα(wk), wk+1 − wk〉+ α−1
√
dL0||wk+1 − wk||22.

Plugging (24) into (21),

dist(0,∇fα(wk+1) +N(wk+1, S ∩Bβ))2

≤(6α−2dL2
0 + 4α−1

√
dL0η

−1 + η−2)||wk+1 − wk||22 + 3||∇fα(wk)−Gk||22
+2η−1(fα(wk)− fα(wk+1))− η−2||wk+1 − wk||22 + 2α−1

√
dL0η

−1||wk+1 − wk||22
=(6α−2dL2

0 + 6α−1
√
dL0η

−1)||wk+1 − wk||22 + 3||∇fα(wk)−Gk||22 + 2η−1(fα(wk)− fα(wk+1))

=6α−1
√
dL0(α−1

√
dL0 + η−1)||wk+1 − wk||22 + 3||∇fα(wk)−Gk||22 + 2η−1(fα(wk)− fα(wk+1)).

(25)

Rearranging (23) and using Young’s inequality again for the second inequality,

(
1

2η
− α−1

√
dL0)||wk+1 − wk||22

≤fα(wk)− fα(wk+1) + 〈wk+1 − wk,∇fα(wk)−Gk〉

≤fα(wk)− fα(wk+1) +
α−1
√
dL0

2
||wk+1 − wk||22 +

α

2
√
dL0

||∇fα(wk)−Gk||22

=⇒(
1

2η
− 3α−1

√
dL0

2
)||wk+1 − wk||22

≤fα(wk)− fα(wk+1) +
α

2
√
dL0

||∇fα(wk)−Gk||22

=⇒1

2
(θ + η−1 − 3α−1

√
dL0)||wk+1 − wk||22

≤fα(wk)− fα(wk+1) +
α

2
√
dL0

||∇fα(wk)−Gk||22 +
θ

2
||wk+1 − wk||22 (26)

for an arbitrary θ ∈ R. Focusing on ||wk+1 − wk||22,

wk+1 ∈ argmin
x∈Rd

{δS∩Bβ (x) + ||x− (wk − ηGk)||2}

=⇒||wk+1 − (wk − ηGk)||2 ≤ ||wk − (wk − ηGk)||2 = ||ηGk||2. (27)
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Using the reverse triangle inequality and (27),

||wk+1 − wk|| − ||ηGk||2 ≤ ||wk+1 − wk + ηGk||2
=⇒||wk+1 − wk|| ≤ 2||ηGk||2,

and applying this bound in (26) assuming that θ ≥ 0,

1

2
(θ + η−1 − 3α−1

√
dL0)||wk+1 − wk||22

≤fα(wk)− fα(wk+1) +
α

2
√
dL0

||∇fα(wk)−Gk||22 + 2θη2||Gk||22. (28)

Assuming that θ + η−1 − 3α−1
√
dL0 > 0 and plugging (28) into (25),

dist(0,∇fα(wk+1) +N(wk+1, S ∩Bβ))2

≤6α−1
√
dL0(α−1

√
dL0 + η−1)

1
2(θ + η−1 − 3α−1

√
dL0)

(
fα(wk)− fα(wk+1) +

α

2
√
dL0

||∇fα(wk)−Gk||22

+ 2θη2||Gk||22
)

+ 3||∇fα(wk)−Gk||22 + 2η−1(fα(wk)− fα(wk+1))

=⇒ E[dist(0,∇fα(wk+1) +N(wk+1, S ∩Bβ))2]

≤6α−1
√
dL0(α−1

√
dL0 + η−1)

1
2(θ + η−1 − 3α−1

√
dL0)

(
E[fα(wk)− fα(wk+1)] +

α

2
√
dL0

E[||∇fα(wk)−Gk||22]

+ 2θη2E[||Gk||22]
)

+ 3E[||∇fα(wk)−Gk||22] + 2η−1E[fα(wk)− fα(wk+1)]

=⇒ E[dist(0,∇fα(wR) +N(wR, S ∩Bβ))2]

≤ 1

K

K∑
k=1

(
6α−1

√
dL0(α−1

√
dL0 + η−1)

1
2(θ + η−1 − 3α−1

√
dL0)

(
E[fα(wk)− fα(wk+1)] +

α

2
√
dL0

E[||∇fα(wk)−Gk||22]

+ 2θη2E[||Gk||22]
)

+ 3E[||∇fα(wk)−Gk||22] + 2η−1E[fα(wk)− fα(wk+1)]

)
≤6α−1

√
dL0(α−1

√
dL0 + η−1)

1
2(θ + η−1 − 3α−1

√
dL0)

(
E[fα(w1)− fα(wK+1)]

K
+

α

2
√
dL0

υQ

M
+ 2θη2υQ

)
+ 3

υQ

M
+

2η−1

K
E[fα(w1)− fα(wK+1)]

≤6α−1
√
dL0(α−1

√
dL0 + η−1)

1
2(θ + η−1 − 3α−1

√
dL0)

(
fα(w1)− fα(w∗)

K
+
( α

2
√
dL0M

+ 2θη2
)
υQ

)
+ 3

υQ

M
+

2η−1

K
(fα(w1)− fα(w∗))

≤6α−1
√
dL0(α−1

√
dL0 + η−1)

1
2(θ + η−1 − 3α−1

√
dL0)

(
∆

K
+
( α

2
√
dL0M

+ 2θη2
)
υQ

)
+ 3

υQ

M
+

2η−1∆

K
, (29)

where the third last inequality uses Proposition 7 and the last inequality uses that ∆ ≥
fα(w1) − fα(w∗). It holds that fα(w1) − fα(w∗) ≤ 2β

√
dL0 from Proposition 5.4 and
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fα(w1) − fα(w∗α) ≤ f(w1) − fα(w∗α) + αL0

√
d
12 ≤ f(w1) − f(w∗) + αL0

√
d
3 using Proposi-

tions 5.2 and 5.3.

Let θ = 3τα−1
√
dL0 and η−1 = 3ρα−1

√
dL0 for τ ≥ 0 and ρ > 0 such that τ + ρ > 1.

Continuing from (29),

E[dist(0,∇fα(wR) +N(wR, S ∩Bβ))2]

≤6α−1
√
dL0(α−1

√
dL0 + 3ρα−1

√
dL0)

1
2(τ + ρ− 1)3α−1

√
dL0

(
∆

K
+
( α

2
√
dL0M

+
τ

ρ2

2α

3
√
dL0

)
υQ

)
+ 3

υQ

M
+

6ρα−1
√
dL0∆

K

=
6α−2dL2

0(1 + 3ρ)
1
2(τ + ρ− 1)3α−1

√
dL0

(
∆

K
+
( 1

2M
+

τ

ρ2

2

3

) α√
dL0

υQ

)
+ 3

υQ

M
+

6ρα−1
√
dL0∆

K

=
4α−1

√
dL0(1 + 3ρ)

(τ + ρ− 1)

(
∆

K
+
( 1

2M
+

τ

ρ2

2

3

) α√
dL0

υQ

)
+ 3

υQ

M
+

6ρα−1
√
dL0∆

K

=

(
2(1 + 3ρ)

(τ + ρ− 1)
+ 3ρ

)
2α−1

√
dL0∆

K
+

(
4(1 + 3ρ)

(τ + ρ− 1)

(
1

2
+

2

3

Mτ

ρ2

)
+ 3

)
υQ

M
.

Proof of Corollary 17 In order for |fα(w) − f(w)| ≤ ε1 for all w ∈ Bβ, we require
α ≤ ε1

L0

√
d
12

from Proposition 5.2, and for α̂ ≤ ε3, we require α ≤ 2ε3√
d

from Corollary 16. To

ensure that E[dist(0,∇fα(w)+N(w, S∩Bβ))] ≤ ε or E[dist(0, ∂fα̂(wR)+N(wR, S∩Bβ)] ≤ ε
for ε = ε2 or ε4, using (9) or (11) and Jensen’s inequality, it is sufficient for

C1
2α−1

√
dL0∆

K
+ C2

υQ

M
≤ ε2.

Taking y ∈ (0, 1), we choose K and M such that

C1
2α−1

√
dL0∆

K
≤ yε2

and

C2
υQ

M
≤ (1− y)ε2,

which results in requiring

C1
2α−1

√
dL0∆

yε2
≤ K (30)

and

C2
υQ

(1− y)ε2
≤M.
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Assuming SPA is run for the full K iterations, the number of gradient calls will equal KM .
Considering the bound on KM,

C1
2α−1

√
dL0∆

yε2
C2

υQ

(1− y)ε2
≤ KM, (31)

minimizing the left-hand side of (31) in terms of y gives y = 0.5, and minimizing the left-
hand side of (30) in terms of α sets α = ε1

L0

√
d
12

or α = 2ε3√
d
. Using these values for α and y

gives the bounds for K of

C1

√
4

3

dL2
0∆

ε1ε22
≤ K

for an (ε1, ε2)-solution, and

C1
2dL0∆

ε3ε24
≤ K

for an (ε3, ε4)-solution. The bound for M equals

C2
2υQ

ε2
≤M

for ε = ε2 or ε4.

Taking the choices of K and M given in this corollary and the upper bound of KM
for the total number of gradient calls gives the gradient call complexities of O(ε−1

1 ε−4
2 ) and

O(ε−1
3 ε−4

4 ) to achieve an expected (ε1, ε2) and (ε3, ε4)-stationary point, respectively. Given
that one projection is done per iteration, the projection operator complexities are O(ε−1

1 ε−2
2 )

and O(ε−1
3 ε−2

4 ).

Proof of Corollary 18 Following (Ghadimi and Lan, 2013, Equation 2.28),

dist(0, G(w∗) +N(w∗, S ∩Bβ))2

= min
w∈W

dist(0, G(w) +N(w, S ∩Bβ))2

= min
w∈W

dist(0,∇fα(w) +N(w, S ∩Bβ) +G(w)−∇fα(w))2

≤ min
w∈W
{2 dist(0,∇fα(w) +N(w, S ∩Bβ))2 + 2||G(w)−∇fα(w)||22}

≤ min
w∈W

2 dist(0,∇fα(w) +N(w, S ∩Bβ))2 + max
w∈W

2||G(w)−∇fα(w)||22, (32)

where the first inequality holds since

dist(0,∇fα(w) +N(w, S ∩Bβ) +G(w)−∇fα(w))2

= min
ν∈N(w,S∩Bβ)

||∇fα(w) + ν +G(w)−∇fα(w)||22

= min
ν∈N(w,S∩Bβ)

||∇fα(w) + ν||22 + 2〈∇fα(w) + ν,G(w)−∇fα(w)〉+ ||G(w)−∇fα(w)||22

≤ min
ν∈N(w,S∩Bβ)

2||∇fα(w) + ν||22 + 2||G(w)−∇fα(w)||22
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using Young’s inequality. Using Young’s inequality again for the first inequality and (32)
for the second inequality,

dist(0,∇fα(w∗) +N(w∗, S ∩Bβ))2

≤ 2 dist(0, G(w∗) +N(w∗, S ∩Bβ))2 + 2||∇fα(w∗)−G(w∗)||22
≤ 4 min

w∈W
dist(0,∇fα(w) +N(w, S ∩Bβ))2 + 4 max

w∈W
||G(w)−∇fα(w)||22 + 2||∇fα(w∗)−G(w∗)||22

≤ 4 min
w∈W

dist(0,∇fα(w) +N(w, S ∩Bβ))2 + 6 max
w∈W

||G(w)−∇fα(w)||22. (33)

Let the right-hand side of (9) be denoted as

D := C1
2α−1

√
dL0∆

K
+ C2

υQ

M
.

Considering the first term of (33),

P
(

4 min
w∈W

dist(0,∇fα(w) +N(w, S ∩Bβ))2 ≥ 4eD

)
=Πr

i=1P(4 dist(0,∇fα(wi) +N(wi, S ∩Bβ))2 ≥ 4eD)

≤e−r

using Markov’s inequality. For the second term of (33), using Proposition 7 and Boole’s
inequality,

P
(

6 max
w∈W

||G(w)−∇fα(w)||22 ≥ 6ψ
υQ

T

)
=P
( r⋃
i=1

{
6||G(wi)−∇fα(wi)||22 ≥ 6ψ

υQ

T

})
≤ r
ψ
.

Combining these two probability inequalities together, for the left-hand side of (33),

P
(

dist(0,∇fα(w∗) +N(w∗, S ∩Bβ))2 ≥ 4eD + 6ψ
υQ

T

)
≤P
(

4 min
w∈W

dist(0,∇fα(w) +N(w, S ∩Bβ))2 + 6 max
w∈W

||G(w)−∇fα(w)||22 ≥ 4eD + 6ψ
υQ

T

)
≤P
(
{4 min

w∈W
dist(0,∇fα(w) +N(w, S ∩Bβ))2 ≥ 4eD}

∪ {6 max
w∈W

||G(w)−∇fα(w)||22 ≥ 6ψ
υQ

T
}
)

≤e−r +
r

ψ
. (34)

An upper bound on the total number of gradient calls required for computing W and
G(w) for w ∈ W is equal to r(KM + T ). Using (34), the minimization of r(KM + T )
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while ensuring that P(dist(0,∇fα(w∗) +N(w∗, S ∩Bβ)) > ε2/4) ≤ γ, where α = ε1

L0

√
d
12

and

ε2/4 = ε2, or α = 2ε3√
d

and ε2/4 = ε4 (assuming that κ > β + ε3) can be written as

min
r,K,M,
T,ψ

r(KM + T )

s.t. 4e

(
C1

2α−1
√
dL0∆

K
+ C2

υQ

M

)
+ 6ψ

υQ

T
≤ ε22/4 (35)

e−r +
r

ψ
≤ γ

r,K,M, T ∈ Z>0, ψ > 0.

Writing (35) as

C1
2α−1

√
dL0∆

K
+ C2

υQ

M
≤
ε22/4 − 6ψ υQT

4e
,

we set K and M according to Corollary 17 to find an expected (ε1, ε
′
2) or (ε3, ε

′
4)-

stationary point for ε′2 =

√
ε22−6ψ υQ

T
4e or ε′4 =

√
ε24−6ψ υQ

T
4e assuming that ε22/4 − 6ψ υQT > 0:

K∗ =

⌈
C1

2

χ

dL2
0∆

ε1/3(ε′2/4)2

⌉
and M∗ =

⌈
C2

2υQ

(ε′2/4)2

⌉
,

where ε1/3 = ε1 or ε3, ε′2/4 = ε′2 or ε′4, and χ =
√

3 or L0 for an expected (ε1, ε
′
2) or

(ε3, ε
′
4)-stationary point, respectively. The optimization problem then becomes

min
r,T,ψ

r(K∗M∗ + T )

s.t. e−r +
r

ψ
≤ γ (36)

ε22/4 − 6ψ
υQ

T
> 0 (37)

r, T ∈ Z>0, ψ > 0.

For any c ∈ (0, 1), let

e−r ≤ cγ and
r

ψ
≤ (1− c)γ.

Setting r and ψ to r∗ = d− ln(cγ)e and ψ∗ = d− ln(cγ)e
(1−c)γ is then valid for (36). For any φ > 1,

setting T to T ∗ = d6φψ∗ υQ
ε2
2/4

e is valid for (37). The total number of gradient calls then

34



Training with Lipschitz Loss and Weighted Group l0-norm

equals

r∗
(
K∗M∗ + T ∗

)
=r∗

(⌈
C1

2

χ

dL2
0∆

ε1/3(ε′2/4)2

⌉⌈
C2

2υQ

(ε′2/4)2

⌉
+ T ∗

)

=r∗
(C1

2

χ

dL2
0∆

ε1/3
ε2
2/4
−6ψ∗ υQ

T∗

4e


C2

2υQ

ε2
2/4
−6ψ∗ υQ

T∗

4e

+ T ∗
)

≤r∗
(⌈

C1
2

χ

4edL2
0∆

ε1/3ε
2
2/4(1− φ−1)

⌉⌈
C2

8eυQ

ε22/4(1− φ−1)

⌉
+ T ∗

)

=d− ln(cγ)e
(⌈

C1
2

χ

4edL2
0∆

ε1/3ε
2
2/4(1− φ−1)

⌉⌈
C2

8eυQ

ε22/4(1− φ−1)

⌉
+

⌈
6φ
d− ln(cγ)e
(1− c)γ

υQ

ε22/4

⌉)
,

where the inequality holds since

ε22/4 − 6ψ∗
υQ

T ∗
= ε22/4 − 6ψ∗

υQ

d6φψ∗ υQ
ε2
2/4

e
≥ ε22/4 − 6ψ∗

υQ

6φψ∗ υQ
ε2
2/4

= ε22/4(1− φ−1),

and the gradient call complexity equals Õ
(
ε−1
1 ε−4

2 + γ−1ε−2
2

)
or Õ

(
ε−1
3 ε−4

4 + γ−1ε−2
4

)
for an

(ε1, ε2) or (ε3, ε4)-stationary point with probability 1 − γ. The number of projection com-
putations is upper bounded by r∗K∗ which has a complexity of Õ

(
ε−1
1 ε−2

2

)
or Õ

(
ε−1
3 ε−2

4

)
.

Proof of Proposition 19 For simplicity let I := I(w). The distance function

dist(0, G(w) +N(w,C ∩Bβ)) = min
v∈N(w,C∩Bβ)

||G(w) + v||2.

When Y = I, we only need to focus on two subsets of [n]: I and [n] \ I. Each subset of
elements vi for i ∈ I is set to its optimal value while following Proposition 12: when wij = β,

it is required that vij ≥ 0, hence it is optimal to set vij = 0 when Gij(w) ≥ 0 and to set

vij = −Gij(w) when Gij(w) < 0. Similarly, when wij = −β, it is required that vij ≤ 0, and it

is optimal to set vij = 0 when Gij(w) ≤ 0 and to set vij = −Gij(w) when Gij(w) > 0. When

i ∈ I and |wij | < β, it is required that vij = 0. When i /∈ I, vij is a free variable which is

optimally set to vij = −Gij(w) for all j ∈ [di].

When there exists an X ∈ Y such that X \ I(w) 6= {∅}, and assuming that {pi} ⊂ Q>0,
C can be written equivalently with parameters {p′i} = {cpi} and m′ = cm for a c ∈ Z>0

sufficiently large such that {p′i} ⊂ Z>0, so without loss of generality we can assume that
{pi} ⊂ Z>0.

The distance function has the same optimal solutions as

min
v∈N(w,C∩Bβ)

||G(w) + v||22,
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which can be written as

min ||G(w) + v||22
s.t.

∑
i∈I

pi +
∑
i/∈I

zipi ≤ m∑
i∈I

pi +
∑
i/∈I

zipi + (1− zj)pj ≥ (1− zj)(bmc+ 1) ∀j /∈ I

vij =

{
−Gij(w) if U ij
0 otherwise

∀i ∈ I, ∀j ∈ [di]

vij = −Gij(w)(1− zi) ∀i /∈ I, ∀j ∈ [di]

zi ∈ {0, 1} ∀i /∈ I.

Using Proposition 12, the first two constraints determine an X equal to I and the indices
for which zi = 1, where the second constraint enforces that

∑
i∈I pi +

∑
i/∈I zipi + pj > m,

given the integrality of {pi}, for j /∈ X, i.e. zj = 0. The third and fourth constraints set
each subset of elements vi for i ∈ I and i /∈ I to their optimal value, respectively. For the
fourth constraint, when zi = 1, i.e. i ∈ X, vi must be set to vi = 0 given that wi = 0, and
when zi = 0, vi is free to be chosen as vi = −Gi(w) to minimize the objective.

The final binary integer program to compute dist(0, G(w) +N(w,C ∩Bβ) is as follows,
removing the v decision variables.

min
∑
i/∈I

||Gi(w)||22zi (38)

s.t.
∑
i∈I

pi +
∑
i/∈I

zipi ≤ m∑
i∈I

pi +
∑
i/∈I

zipi + (1− zj)pj ≥ (1− zj)(bmc+ 1) ∀j /∈ I

zi ∈ {0, 1} ∀i /∈ I.

Given an optimal solution z∗ to (38), let y∗ be defined as

(yij)
∗ =

{
0 if U ij
1 otherwise

∀i ∈ I, ∀j ∈ [di]

(yij)
∗ = z∗i ∀i /∈ I, ∀j ∈ [di].

It follows that dist(0, G(w) +N(w,C ∩Bβ) =
√∑

i∈[n]

∑
j∈di(G

i
j(w))2(yij)

∗.

Proof of Theorem 20 If β is finite, {wi} ⊂ Bβ is a bounded sequence and there exists an
accumulation point w of {wi}. Otherwise, assume there exists an accumulation point w of
{wi}. For simplicity, let {wi} be redefined as a subsequence of {wi} such that lim

i→∞
wi = w.
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Since ||ζ||2 ≤ L0 for all ζ ∈ ∂f(w) for all w ∈ Bβ (Clarke, 1990, Proposition 2.1.2) and
0 ∈ N(w, S ∩Bβ),

dist(0, ∂f(w) +N(w, S ∩Bβ)) = dist(0, ∂f(w) +N(w, S ∩Bβ) ∩B(0, 2L0))

for w ∈ Bβ: If ζ ∈ ∂f(w), ν ∈ N(w, S ∩Bβ), and ||ν||2 > 2L0, then by the reverse triangle
inequality, ||ζ + 0||2 ≤ L0 < ||ν||2 − ||ζ||2 ≤ ||ν + ζ||2.

Given that N(w, S∩Bβ) is outer semicontinuous (proof of Proposition 14), for all ω1 > 0,
there exists an ω2 > 0 such that

N(ŵ, S ∩Bβ) ∩B(0, 2L0) ⊆ N(w, S ∩Bβ) +B(0, ω1) (39)

for all ŵ ∈ B(w,ω2) (Rockafellar and Wets, 2009, Proposition 5.12).

For any i ∈ N there exists an I ∈ N such that for all j > I, wj is an expected
(
εi3
2 ,

εi4
2i

)
-

stationary point and ||wj −w||2 ≤ min(
εi3
2 , ω

i
2), where ωi2 > 0 is chosen such that (39) holds

for ω1 =
εi4
2i , ω2 = ωi2, and w = w. For such wj , B(wj ,

εi3
2 ) ⊂ B(w, εi3), hence

{∂f(w) : w ∈ B(wj , εi3/2)} ⊆ {∂f(w) : w ∈ B(w, εi3)},

and ∂εi3/2
f(wj) ⊆ ∂εi3f(w). In addition,

εi4
2i
≥E[dist(0, ∂εi3/2

f(wj) +N(wj , S ∩Bβ))]

=E[dist(0, ∂εi3/2
f(wj) +N(wj , S ∩Bβ) ∩B(0, 2L0))]

≥E[dist(0, ∂εi3
f(w) +N(wj , S ∩Bβ) ∩B(0, 2L0))]

≥E[dist(0, ∂εi3
f(w) +N(w, S ∩Bβ) +B(0, εi4/(2i)))]. (40)

Using the reverse triangle inequality for the first inequality,

dist(0, ∂εi3
f(w) +N(w, S ∩Bβ) +B(0, εi4/(2i)))

= min
z∈∂

εi3
f(w)+N(w,S∩Bβ)

y∈B(0,εi4/(2i))

||z + y||2

≥ min
z∈∂

εi3
f(w)+N(w,S∩Bβ)

y∈B(0,εi4/(2i))

||z||2 − ||y||2

= dist(0, ∂εi3
f(w) +N(w, S ∩Bβ))− εi4

2i

=⇒E[dist(0, ∂εi3
f(w) +N(w, S ∩Bβ) +B(0, εi4/(2i)))]

≥E[dist(0, ∂εi3
f(w) +N(w, S ∩Bβ))]− εi4

2i
. (41)
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Applying (41) in (40),

E[dist(0, ∂εi3
f(w) +N(w, S ∩Bβ))] ≤ εi4

i
.

From Markov’s inequality,

P[dist(0, ∂εi3
f(w) +N(w, S ∩Bβ) ≥ 1

i
] ≤ εi4.

The sets

Vi := {w ∈ Rd : dist(0, ∂εi3
f(w) +N(w, S ∩Bβ) ≥ 1

i
}

are monotonically increasing: Vi ⊆ Vi+1, as dist(0, ∂εi3
f(w)+N(w, S∩Bβ) ≤ dist(0, ∂εi+1

3
f(w)+

N(w, S ∩ Bβ) and 1
i >

1
i+1 . The limit lim

i→∞
Vi =

⋃
i≥1

Vi exists (Bartle, 1995, Excecise 2.F.),

and is Borel measurable as a countable union of measurable sets, given that the functions
dist(0, ∂εi3

f(w) +N(w, S ∩Bβ) are Borel measurable from Proposition 14.

We now want to prove that lim
i→∞

Vi = {w ∈ Rd : dist(0, ∂f(w) + N(w, S ∩ Bβ) > 0}.

For any w ∈
⋃
i≥1

Vi there exists an i ≥ 1 such that dist(0, ∂f(w) + N(w, S ∩ Bβ) ≥

dist(0, ∂εi3
f(w)+N(w, S∩Bβ) ≥ 1

i > 0, hence w ∈ {w ∈ Rd : dist(0, ∂f(w)+N(w, S∩Bβ) >

0}.

For a w ∈ {w ∈ Rd : dist(0, ∂f(w)+N(w, S∩Bβ) > 0}, let ω = dist(0, ∂f(w)+N(w, S∩
Bβ). As was shown with N(w, S ∩ Bβ), given that the Clarke subdifferential is an upper
semicontinuous set valued mapping (Clarke, 1990, Proposition 2.1.5 (d)), for all ω1 > 0,
there exists an ω2 > 0 such that ∂f(ŵ) ⊂ ∂f(w)+B(0, ω1) for all ŵ ∈ B(w,ω2), from which
it follows that ∂ω2f(w) ⊆ co{∂f(w) + B(0, ω1)} = ∂f(w) + B(0, ω1), given that ∂f(w) is
convex, and

dist(0, ∂ω2f(w) +N(w, S ∩Bβ)) ≥ dist(0, ∂f(w) +B(0, ω1) +N(w, S ∩Bβ)). (42)

Just as in proving (41), dist(0, ∂f(w) +B(0, ω1) +N(w, S ∩Bβ)) can be bounded below:

dist(0, ∂f(w) +B(0, ω1) +N(w, S ∩Bβ)) ≥ ω − ω1. (43)

Choosing ω1 = ω
2 , there exists an ω2 > 0 such that dist(0, ∂ω2f(w) + N(w, S ∩ Bβ)) ≥ ω

2
from (42) and (43). A J ∈ N exists such that for all i ≥ J , εi3 ≤ ω2. Setting I ≥ max{J, 2

ω},

dist(0, ∂εi3
f(w) +N(w, S ∩Bβ)) ≥ 1

i
,

i.e. w ∈ Vi, for all i ≥ I, proving that lim
i→∞

Vi = {w ∈ Rd : dist(0, ∂f(w)+N(w, S∩Bβ) >

0}.
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It holds that P[dist(0, ∂f(w) +N(w, S ∩Bβ)) = 0] = 1 as

P[dist(0, ∂f(w) +N(w, S ∩Bβ)) > 0] = lim
i→∞

P[dist(0, ∂εi3
f(w) +N(w, S ∩Bβ) ≥ 1

i
]

≤ lim
i→∞

εi4 = 0,

where the equality holds given that Vi ⊆ Vi+1 (Shreve, 2004, Theorem A.1.1).

Appendix E. Section 8 Proofs

Proof of Proposition 21 For all j ∈ Ik, ∂σj(·) is outer semicontinuous (Clarke, 1990,
Proposition 2.1.5 (d); Rockafellar and Wets, 2009, Theorem 5.19), hence measurable (Rock-
afellar and Wets, 2009, Exercise 14.9). There then exists a measurable selection ∇̃σj(·) ∈
∂σj(·) for all j ∈ Ik (Rockafellar and Wets, 2009, Theorem 14.6).

As the product and sum of real-valued Borel measurable functions, see (Bolte and
Pauwels, 2021, Algorithm 3), ∇̃F (w, ξk) is Borel measurable in w ∈ Rd for each ξk ∈ {ξi}∞i=1.
By the assumption that for each i ∈ {1, 2, ...}, all {σj}j∈Ii are definable in the same o-
minimal structure, the Clarke subdifferentials {∂σj}j∈Ii are definable conservative fields
in said o-minimal structure as well (Bolte and Pauwels, 2021, Remark 8), hence for each
ξk ∈ {ξi}∞i=1, ∇̃F (w, ξk) will equal the gradient of F (w, ξk) for almost every w ∈ Rd fol-

lowing (Bolte and Pauwels, 2021, Corollary 5). Further, ∇̃F (w, ξ) will equal the gradi-
ent of F (w, ξ) for all (w, ξ) ∈ Rd+p except on a countable number of null sets: The set
{(w, ξ) : w ∈ Rd, ξ /∈ {ξi}∞i=1} which has measure zero by assumption, and potentially a null
set within {(w, ξ) : w ∈ Rd, ξ = ξi} for i ∈ {1, 2, ...}.

For an a′ ∈ R, if a′ ≥ aj ,

{(w, ξ) ∈ Rd+p : ∇̃Fj(w, ξ) > a′} =∪∞i=1{w ∈ Rd, ξ = ξi : ∇̃Fj(w, ξ) > a′},

otherwise

{(w, ξ) ∈ Rd+p : ∇̃Fj(w, ξ) > a′}= ∪∞i=1 {w ∈ Rd, ξ = ξi : ∇̃Fj(w, ξ) > a′}
∪ {(w, ξ) : w ∈ Rd, ξ ∈ Rp \ (∪∞i=1ξi)},

showing that ∇̃F (w, ξ) is Borel measurable for (w, ξ) ∈ Rd+p.

Proof of Proposition 22 For the goal of showing that functions are definable in the
o-minimal structure of Rexp,<, we will give a very short background on definable sets,
which will serve our proofs. An atomic formula is a relation symbol {>,=} applied
to terms which are made up of finitely many applications of the functions {+, ·, exp} to
variables {w1, w2, ...} and constants taken from R.2 Formulas are finitely many applica-
tions of boolean operations {∨,∧,¬} and the existential quantifier ∃ to atomic formulas.

2. O-minimality is shown for definable sets with parameters, in our case, taken from R, so we can extend
the constants from {0, 1} to R.
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For a formula φ, a definable set in Rd is the subset X ⊆ Rd such that φ is true. Let
Γg := {(w, y) ∈ Rd+q : g(w) = y} be the graph of a function g : Rd → Rq. A definable
function is a function whose graph is definable, and a function g : Rd → Rq is definable
if and only if each of its coordinate functions gi(w) for i ∈ [q] are definable (Coste, 1999,
Exercise 1.10). The composition of definable functions is definable, as is the addition and
multiplication of definable functions (Coste, 1999, Exercise 1.11).

Affine Map (AM): The graph of AM(w, b) := 〈w, x〉+ b for variables w ∈ Rd, b ∈ R,
and constants x ∈ Rd,

ΓAM = {(w, b, y) ∈ Rd+2 : 〈w, x〉+ b = y}

is definable, its gradient∇AM(w, b) = [xT , 1]T is measurable as a constant, with∇AM(w, b) =
∂AM(w, b) since it is continuous.

ReLU: The graph of ReLU(w) for w ∈ R,

ΓReLU ={(w, y) ∈ R2 : (w > 0 ∧ w = y) ∨ (¬(w > 0) ∧ y = 0)}

is definable, its bp derivative ReLU′(w) = 1{w∈R:w>0} is the indicator function of a mea-

surable set, and for w ∈ R, ReLU′(w) ∈ ∂ReLU(w), which equals the subdifferential from
convex analysis (Clarke, 1990, Proposition 2.2.7).

Conv2d: Each of its component functions is an affine mapping, i.e. a filter being
applied to the input layer, hence each component function of Conv2d is definable with a
measurable gradient.

MaxPool2d: Each of its component functions equals MP(w) := max
i∈[H]−1

j∈[W ]−1

wij for a subset

w ∈ RH×W of the input layer. The graph of this function can be written as

ΓMP = {(w, y) ∈ RH×W+1 : ∨ i∈[H]−1

j∈[W ]−1

(
(wij = y) ∧k∈[H]−1

l∈[W ]−1

¬(wkl > wij)
)
}.

Looping through (i, j), the bp gradient of MP(w) is set to 1 for the first pair of indices
(i, j) such that wi,j = MP(w), with the remaining entries of the gradient set to 0. The bp
gradient can be expressed recursively as

∇ijMP(w) =
( ∏
k∈[H]−1

l∈[W ]−1

1{w∈RH×W :wij≥wkl}
)(

1−
∑

k∈[i]−1

l=[W ]−1

∇klMP(w)−
∑
l∈[j]−1

∇ilMP(w)
)
,

which is the product and subtraction of real-valued measurable functions. Let E(w) be the
set of pairs (i, j) such that wij = MP(w), E(w) := {(i, j) ∈ [H]−1× [W ]−1 : wij = MP (w)},
and let eij be a matrix of dimension H ×W equal to 1 at entry (i, j) and equal to 0 oth-
erwise, for each (i, j) ∈ E(w). The Clarke subdifferential of MP (w) equals ∂MP(w) =
co{eij : (i, j) ∈ E(w)} (Clarke, 1990, Proposition 2.3.12), hence ∇MP(w) ∈ ∂MP(w).
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Crossentropyloss (CL): For C classes, Crossentropyloss takes the form of

CL(w) := − log

(
ewt∑C−1
i=0 ewi

)
,

where t is the index of the target class. The graph of this function can be written as

ΓCL(w) = {(w, y) ∈ RC+1 :
C−1∑
i=0

ewi = eyewt},

hence CL(w) is definable. The gradient is continuous, with components equal to

∇tCL(w) =
ewt∑C−1
i=0 ewi

− 1

and for j 6= t,

∇jCL(w) =
ewj∑C−1
i=0 ewi

,

therefore measurable with ∇CL(w) = ∂CL(w).

Appendix F. Details of Section 9

Details of the neural network architecture:

Following Pytorch, let Conv2d(i, o, k) denote a 2D convolutional layer with i input and
o output channels, using k × k × i sized filters, with a stride of 1 and 0 padding. Let
MaxPool2d(2, 2) be a 2D max pool layer with a window size of 2 × 2, stride of 2, and 0
padding, and let Linear(i, o) be a fully connected layer with i and o being the number of
inputs and outputs. The trained neural network then takes the following form:

Input→ Conv2d(1, 6, 5)→ ReLu→ MaxPool2d(2, 2)→ Conv2d(6, 16, 5)

→ReLu→ MaxPool2d(2, 2)→ Conv2d(16, 120, 4)→ ReLu→ Linear(120, 84)

→ReLu→ Linear(84, 10)→ CrossEntropyLoss→ Output.

Overview of the BNB implementation:

We note that since {pi} ⊂ Z>0 for this specific application, with m = b(1 − s)dc, dy-
namic programming could have been used to compute ΠC∩Bβ (·), but the BNB approach

was implemented to be applicable for {pi} ⊂ R>0, m ∈ R>0, and the real-valued objective
coefficients of (5), which follows Section 3 where minimal assumptions were placed on {pi}
and m.

For simplicity let yi := (||wi||22− ||max(|wi| −β, 0)||22). For each node of the search tree,
where a 0-1 knapsack problem is considered with subsets of the decision variables already
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assigned 1 and 0, the lower bound of the problem uses the Greedy-Split algorithm described
in (Kellerer et al., 2004, Chapter 2.1) for the undetermined decision variables. Let s be the
index of the critical item (Kellerer et al., 2004, Section 2.2). The upper bound is computed
following (Kellerer et al., 2004, Equation 5.12) when there exists valid indices s−1 and s+1,
or else as (Kellerer et al., 2004, Equation 5.9) when s = 0, where for both computations the
floor operators are not employed as generally {yi} /∈ Z>0.

Before branching if the upper bound is greater than the global lower bound, significant
algorithm speed up was observed by checking if zs dominates or is dominated by a zi already
set to 0 or 1. We say that zj dominates zk if either yj ≥ yk and pj < pk or yj > yk and
pj ≤ pk. Before branching with zs = 0, we checked that zs does not dominate a zi = 1,
and before branching with zs = 1, we checked that zs is not dominated by a zi = 0. If one
of these cases occurred, the branch was abandoned as the resulting solution would not be
optimal.

Estimation of L0, Q, and ∆:

We took q = 250 samples {ξi}qi=1 and q pairs of sampled points {(wj , vj)}qj=1 ⊂ Bκ. The

points wj are uniformly sampled in Bκ−ι for ι = 0.01/κ, and each point vj is sampled
uniformly near wj , in wj +Bι. The estimate of L0(ξi) is

L̂0(ξi) = max
j∈[q]

|F (wj)− F (vj)|
||wj − vj ||2

.

The estimate of L0 is L̂0 = mean(L̂0(ξi)) and the estimate of Q equals Q̂ = mean(L̂0(ξi)
2).

For each run, an estimate of ∆, ∆l for l ∈ [3], was computed. Given the randomly generated
wl0, wl1 = ΠS∩Bβ (wl0). For each ξi of the training set, F (wl1 + ui, ξi) was computed for a

sample ui ∼ Pu, and the average of these values, over i, were computed to estimate fα(wl1),
which was taken as ∆l given that fα(w∗) ≥ 0. The estimate of ∆ was then chosen as
∆ = maxl∈[3] ∆l.
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