Journal of Machine Learning Research 24 (2023) 1-40 Submitted 6/22; Revised 9/23; Published 9/23

From Understanding Genetic Drift to a Smart-Restart
Mechanism for Estimation-of-Distribution Algorithms*

Weijie Zheng ZHENGWELJIE@QHIT.EDU.CN
School of Computer Science and Technology

International Research Institute for Artificial Intelligence

Harbin Institute of Technology, Shenzhen, 518055, China

Benjamin Doerrf DOERRQLIX.POLYTECHNIQUE.FR
Laboratoire d’Informatique (LIX)

Ecole Polytechnique, CNRS

Institut Polytechnique de Paris, Palaiseau, 91120, France

Editor: Sathiya Keerthi

Abstract

Estimation-of-distribution algorithms (EDAs) are optimization algorithms that learn a dis-
tribution from which good solutions can be sampled easily. A key parameter of most EDAs
is the sample size (population size). Too small values lead to the undesired effect of genetic
drift, while larger values slow down the process.

Building on a quantitative analysis of how the population size leads to genetic drift, we
design a smart-restart mechanism for EDAs. By stopping runs when the risk for genetic
drift is high, it automatically runs the EDA in good parameter regimes.

Via a mathematical runtime analysis, we prove a general performance guarantee for
this smart-restart scheme. For many situations where the optimal parameter values are
known, this shows that the restart scheme automatically finds these optimal values, leading
to the asymptotically optimal performance.

We also conduct an extensive experimental analysis. On four classic benchmarks, the
smart-restart scheme leads to a performance close to the one obtainable with optimal
parameter values. We also conduct experiments with PBIL (cross-entropy algorithm) on
the max-cut problem and the bipartition problem. Again, the smart-restart mechanism
finds much better values for the population size than those suggested in the literature,
leading to a much better performance.

Keywords: Estimation-of-distribution algorithms, genetic drift, restart strategy, ran-
domized search heuristics, theory of computing

1. Introduction

Different from solution-oriented optimization heuristics such as local search, simulated an-
nealing, or genetic algorithms, estimation-of-distribution algorithms (EDAs) (Larrafiaga
and Lozano, 2002; Pelikan et al., 2015) try to learn a probability distribution on the search
space (“probabilistic model of the search space”) that allows to sample good solutions.

*. A preliminary version (Doerr and Zheng, 2020a), prepared while the first author was with Southern
University of Science and Technology, was published in the proceedings of GECCO 2020.
1. Corresponding author.

(©2023 Weijie Zheng and Benjamin Doerr.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v24/22-0628.html.


https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v24/22-0628.html

ZHENG AND DOERR

EDAs are iterative in nature, that is, in each iteration they sample a certain number (“pop-
ulation size”) of solutions, evaluate their quality, and update the previous model based on
these solutions and their quality.

The population size is crucial for the optimization behavior and the performance of the
EDA. Clearly, a large population size increases the cost of a single iteration. However, a
small population size means that the model update relies only on a few samples and thus
is heavily influenced by the random nature of the samples. The effect that model updates
are influenced more by the randomness in the sampling process than by the guidance of the
objective function is known as genetic drift.

Genetic drift can be detrimental to the performance of an EDA. As an example, let us
discuss the performance of the univariate marginal distribution algorithm (UMDA) (Miihlen-
bein and Paass, 1996) with artificial frequency margins {1/n,1—1/n} on the DECEPTIVE-
LEADINGBLOCKS problem with problem size n. Lehre and Nguyen (2019, Theorem 4.9)
have shown that if the population size is small, more precisely, A = Q(logn) No(n), and the
selective pressure is standard (/A > 14/1000), then the expected runtime is at least expo-
nential in . In contrast, if the population size is large enough, that is, A = Q(nlogn) and
again p = ©(\), then with high probability the UMDA finds the optimum in A(n/2+2elnn)
function evaluations (Doerr and Krejca, 2021a, Theorem 5). This runtime bound is roughly
proportional to the population size A, indicating (no lower bounds were shown in (Doerr
and Krejca, 2021a)) that the optimal population size is just above the regime leading to
the detrimental behavior observed in (Lehre and Nguyen, 2019), but that further increases
of the population size are again costly.

The essential reason for this performance pattern, quantified precisely by Doerr and
Zheng (2020b), but known already since the ground-breaking works of Shapiro (2002a,
2005, 2006), is that small population sizes can lead to strong genetic drift, that is, the
random fluctuations of the sampling frequencies caused by the randomness in the sampling
of search points eventually move some sampling frequencies towards a boundary of the
frequency range that is not justified by the fitness.

We refer to the recent survey of Krejca and Witt (2020a) for a detailed discussion of
the known runtime results for EDAs and only give a high-level summary here. For most of
the results presented there, a minimum population size is necessary and then the runtime is
roughly proportional to the population size. This suggests again that for small population
sizes, no good performance guarantees could be proven (because of the genetic drift effect),
whereas from a certain population size on this effect disappears and the runtime becomes
roughly proportional to the population size (stemming from the fact that the cost of one
iteration is proportional to the population size). In the presence of such a runtime behavior,
naturally, choosing the appropriate population size is a key challenge in the effective usage
of EDAs.

We note that genetic drift does not in absolutely all cases lead to a bad performance. For
example, independently in (Dang et al., 2019; Witt, 2019) it was shown that the UMDA
optimizes ONEMAX in time O(nlogn) also for logarithmic population sizes, which are
clearly in the regime with strong genetic drift. In (Dang et al., 2019), it was also shown
that the runtime of the UMDA on LEADINGONES is at most quadratic when A = Q(logn) N
O(n/logn), which is again in the regime with strong genetic drift. So these results show
that a good performance is also possible in the presence of strong genetic drift. We note,



FROM UNDERSTANDING GENETIC DRIFT TO A SMART-RESTART MECHANISM FOR EDAS

however, that the same runtimes of O(nlogn) and O(n?) can also be obtained in the regime
with low genetic drift, see again (Dang et al., 2019; Witt, 2019), and we note further that
no example is known where an EDA has an asymptotically better performance in the strong
genetic drift regime than outside of it. We finally note that the very careful experimental
analysis in (Lengler et al., 2021) shows a good runtime of the cGA on ONEMAX both in a
range with strong genetic drift and in a range with low genetic drift (but not in between),
but the runtimes observed in the former are still higher than in the latter. The experiments
in (Dang et al., 2019) consider only two values for the population size p, namely /n with
strong genetic drift and \/nlogn with low genetic drift, of the UMDA optimizing ONEMAX
and BINVAL. For both values good runtimes are observed, slightly better ones for the value
in the genetic drift regime. However, since only two population sizes are implemented,
it is not clear if really the strong genetic drift regime leads to better runtimes or if the
best runtimes are observed for a value in the regime with low genetic drift, but different
from the one regarded in (Dang et al., 2019). In the light of all these results, and also our
experimental results in Section 5, it appears very justified to generally prefer running EDAs
in the regime with low genetic drift.

Given the observation that genetic drift often leads to unfavorable results, there have
been attempts to define EDAs that are not prone to genetic drift (Shapiro, 2002b; Branke
et al., 2007; Friedrich et al., 2016; Doerr and Krejca, 2020). While these led to some
promising results, due to their restricted evaluation (only on ONEMAX, BINVAL, LEADING-
ONEs, NEEDLE, and NK-landscape) and in the light of the negative result (Doerr and
Krejca, 2020, Theorem 4), in this work we prefer to discuss how to set the parameters for
established EDAs in a way that they do not suffer from genetic drift.

Setting the parameters of an optimization heuristic right is a known challenge. The
most direct way is to try to understand how the parameter influences the performance of
the algorithm on a given problem and then set the parameter accordingly. When done via
experimental means, this approach can be time-consuming, and usually only gives informa-
tion for a particular problem of a particular size. Mathematical approaches can determine
optimal parameter values over larger classes of instances and problems sizes (see, e.g. (Witt,
2013) for such a result), but they require a deep expertise and usually can only be applied
to simple benchmark problems.

An easier way to approach the parameter tuning problem is to find ways to automatically
set the (or some) parameters. This can be done on-the-fly, that is, the algorithm tries
to learn what are good parameter values and adjusts the parameters accordingly while
running, or via separate runs of the algorithm with different parameter values. From our
understanding of genetic drift, we do not see how an on-the-fly parameter choice of the
population size can be successful for an EDA. On the one hand, it is difficult to see during
the run of the algorithm whether a model update is justified by the fitness or rather caused
by unlucky samplings of the individuals. On the other hand, once the EDA has suffered
from genetic drift, it is not clear how to repair the probabilistic model.

For this reason, we shall concentrate on approaches that use several runs of the EDA
with different parameter values, and this in a way that the algorithm user does not need to



ZHENG AND DOERR

take care of this parameter in any way. For EDAs having a single parameter such as the
compact genetic algorithm, this will result in a parameter-less EDA.!

Harik and Lobo (1999) proposed two strategies to remove the population size of crossover-
based genetic algorithms. One basic strategy is doubling the population size and restarting
when all individuals’ genotypes have become identical. The drawback of this strategy is the
long time it takes to fulfill this termination criterion after genetic drift has become detrimen-
tal. Harik and Lobo proposed a second strategy in which multiple populations with different
sizes run simultaneously, smaller population sizes may use more function evaluations, but
are removed once their fitness value falls behind the one of larger populations. Their ex-
perimental results showed that their genetic algorithm with this second strategy only had
a small performance loss over the same genetic algorithm with optimal parameter settings.
Many extensions of this strategy and applications to other optimization algorithms (includ-
ing EDAs) have followed. These gave rise to the extended compact genetic algorithm (Lima
and Lobo, 2004), the hierarchical Bayesian optimization algorithm (Pelikan and Lin, 2004),
and many other algorithms.

In the TIPOP-CMA-ES, Auger and Hansen (2005) use another strategy to remove the
population size as a parameter to be set by the algorithm user. They restart the kernel
algorithm, the (up, \)-CMA-ES, with twice the population size (and the other parameters
unchanged) once one of five predefined criteria is reached. Four of these criteria build
the covariance matrix or evolution paths and thus are specific to the CMA-ES. The other
criterion only depends on the objective function and thus can be used also with other
algorithms (this is what we shall do in Section 6.2). This criterion triggers a restart if
among the last 10 + [30n/A] (where n is the problem size and A is the population size)
generations, the range of the best objective function values is zero, or the range of these
values together with all function values of the current generation is below a predefined
threshold.

Goldman and Punch (2014) proposed the parameter-less population pyramid, called P3,
to iteratively construct a collection of populations. In P3, the population in the pyramid
expands iteratively by first adding a currently not existing solution obtained by some local
search strategy into the lowest population, and then utilizing some model-building methods
to expand the population in all hierarchies of the pyramid. Since initially no population
exists in the pyramid, this algorithm frees the practitioner from specifying a population
size.

In (Doerr, 2021, Section 2.4) a strategy was proposed that builds on parallel runs of
EDAs with exponentially growing population sizes. With a suitable strategy to assign
computational resources, this strategy needs no criterion when to abort a run and still
leads to a runtime which is only by a logarithmic factor above the runtime stemming from
the optimal (problem- and algorithm-specific) population size of the EDA.

Our contribution: The above parameter-less strategies can be used to automatically
find good population sizes, but they are all not specific to the problem of preventing genetic
drift. In this work, we aim at profiting from our understanding of genetic drift, in particular,
from the recent mathematical analysis (Doerr and Zheng, 2020b) which quantifies when

1. Not surprisingly, many mechanisms to remove parameters have themselves some parameters. The name
parameter-less might still be justified when these hyperparameters have a less critical influence on the
performance of the algorithm.



FROM UNDERSTANDING GENETIC DRIFT TO A SMART-RESTART MECHANISM FOR EDAS

genetic drift can arise. In very simple words, taking the compact genetic algorithm (cGA),
the most simple univariate EDA, as an example, this result shows that genetic drift has
a significant influence on the sampling frequency of a bit when the number of iterations
exceeds 4p% (Doerr and Zheng, 2020b, Proof of Theorem 6), where yu is the hypothetical
population size of the cGA, the only parameter of this algorithm, which plays the same
role as the population size in other EDAs. We can use this insight to design the following
smart-restart version of the cGA. Our smart-restart mechanism? starts with running the
c¢GA with hypothetical population size u = 2, the smallest possible value for this parameter.
After 442 iterations, this run is aborted and a new run is started with a randomly initialized
probabilistic model, however with twice the hypothetical population size. Each new run
is aborted when the time limit of 442 iterations is reached and a new run with twice the
parameter value is started. With this procedure, the cGA always runs in a regime in which
the risk for genetic drift is considered low. The doubling scheme of the parameter value not
only ensures that the possibly more effective smaller values are used first, but also ensures
that their influence on the total runtime is small in the case where only a large value is
successful. Like any EDA; this is an anytime algorithm, so it can be stopped at any time
and then the best solution seen so far is returned.

In more detail and generality, the quantitative analysis in (Doerr and Zheng, 2020b)
showed that for each of the three main univariate EDAs cGA, UMDA, and PBIL, both
with frequency boundaries and without, there is a number C' such that the probability
that a particular sampling frequency of the EDA running with (hypothetical) population
size p within the first ¢ function evaluations is strongly affected by genetic drift, is at
most 2exp(—Cp?/t). This number C' depends on the EDA and on the value of its other
parameters (in a manner made precise in (Doerr and Zheng, 2020b)). Hence in all cases,
genetic drift affects a sampling frequency after ©(u?) function evaluations, however, the
implicit constant may depend on the precise setting. For this reason, we shall formulate
our general smart-restart scheme, applicable to all these EDAs, with a hyperparameter b,
called budget factor, such that a run with parameter value pu is aborted after bu? function
evaluations. In our asymptotic analyses, we allow that b takes sub-constant values. The
main motivation for this is that when taking b = ©(1/logn), we can apply a union-bound
argument to show that none of the n sampling frequencies is strongly affected by genetic
drift. For the increase of y in the next stage of the algorithm, for reasons of generality,
we not only consider doubling y, but multiplying it by some number U > 1, called update
factor. We note that we have just introduced two hyperparameters for a mechanism that
controls one algorithm parameter. However, as we shall see in our analyses, both theoretical
and experimental, both hyperparameters are not critical for the performance of the smart-
restart scheme. Taking b = 1/1In(n) and U = 2 gave the best asymptotic runtimes in our
theoretical result and uniformly gave good results in our experiments.

As said before, our smart-restart mechanism can be combined with any of the three
main univariate EDAs, and in fact, with any heuristic A having a parameter p such one
can speculate that the runtime from a certain (unknown) value fi on is roughly linear in
. For this general setting, we prove the following mathematical runtime guarantee. We
assume that there are numbers ji and T such that A with all parameter value p > fi solves

2. The authors are thankful to an anonymous reviewer of (Doerr and Zheng, 2020a) for suggesting this
name.



ZHENG AND DOERR

the given problem in time pT with probability p > 1 — % Such a runtime behavior is

very often observed in EDAs, see, e.g., (Krejca and Witt, 2020a). We prove that under this
assumption, our smart-restart mechanism with update factor U and budget factor b solves
the problem in expected time

U? 1—p)U? T2 U
< + (1—-p) >max{bﬁ2,}+1_(pﬂT,

U2—1 " 1—(1-p)U? b 1—p)U

which is O(max{bji?, %2, fT'}) when treating U and p as constants.

When combining this result with several known runtime guarantees for classic EDAs
(we refer to Section 4.2 for the details), we easily derive that the smart-restart scheme with
b = 0(1/logn) in these situations has the same asymptotic runtime as the original EDA
with optimal (problem-specific and often non-trivial to find) value for u. This in particular
holds for the analysis of the cGA on noisy ONEMAX functions, where the optimal value for
u depends also on the intensity of the noise, hence the parameter tuning problem is further
complicated by the fact that usually the noise intensity is not known.

We then conduct an extensive experimental analysis. We mostly concentrate on the cGA.
This algorithm has a single parameter only and this is directly controlling the strength of
the model update, so it appears best to study in isolation how the model update strength
and automated searches for its best value influence the performance of an EDA.

Since a good experimental understanding of how the model update strength influences
the runtime does not yet exist, and since it aids in interpreting our results for the parameter-
less versions of the cGA, we also conduct experiments for the original cGA with different
static parameter values. We thus ran the original cGA as well as the (parameter-less)
parallel-run ¢cGA from (Doerr, 2021) and our (parameter-less) smart-restart cGA on the
benchmarks ONEMAX, LEADINGONES, JUMP, and DECEPTIVELEADINGBLOCKS, both in
the absence of noise and with additive centered Gaussian posterior noise as considered
in (Friedrich et al., 2017). For the original cGA and the noiseless scenario, this analy-
sis confirms, for the first time experimentally for most of these benchmarks, that small
population sizes can be detrimental and that from a certain population size on, a roughly
linear increase of the runtime can be observed. It also confirms experimentally the insight
of the (asymptotic) theory result (Doerr, 2021) that, with the right population size, the
cGA can be very efficient on JUMP functions. For example, we measure a median run-
time of 4 - 105 on the JuMmP function with n = 50 and k = 10, parameters for which, e.g.,
the classic (1 + 1) EA would take more than 107 iterations (the (1 + 1) EA is the most
basic evolutionary algorithm, using a population size of one, creating one offspring from
the single parent via standard bit-wise mutation, and replacing the parent by the offspring
if the offspring is at least as good as the parent). In the noisy settings, we observe that
the population sizes suggested (for ONEMAX) by the theoretical analysis (Friedrich et al.,
2017) are much higher (roughly by a factor of 1,000) than what is really necessary, leading
to runtime increases of similar orders of magnitudes.

The parameter-less versions of the cGA, namely the parallel-run version and the smart-
restart version with budget factors b = 16 and b = 1/1In(n), generally perform very well.
Their runtimes are, naturally, larger than the runtimes observed for the optimal static
parameter value (which depends heavily on the problem and the noise level), but they clearly



FROM UNDERSTANDING GENETIC DRIFT TO A SMART-RESTART MECHANISM FOR EDAS

avoid the often catastrophic performances in the strong genetic-drift regime. Overall, the
smart-restart cGA with cautious budget factor b = 1/1In(n) appears best, in particular, for
the two more difficult benchmarks JuMpP and DECEPTIVELEADINGBLOCKS.

We also extend our smart-restart mechanism to a more complex EDA, population-based
incremental learning (PBIL), which can be seen as a variant of the cross-entropy algo-
rithm (Costa et al., 2007; De Boer et al., 2005). Since this algorithm has three parameters,
it is not immediately obvious how to use our smart-restart approach. We solve this problem
by keeping the selection pressure 7 = u/\ and the learning rate p as parameters and by set-
ting the sample size A via the smart-restart mechanism (again guided by (Doerr and Zheng,
2020b, Theorem 3)). We apply this algorithm to two combinatorial optimization problems
from the literature (Rubinstein and Kroese, 2004), the max-cut problem and the bipartition
problem. Our empirical results show that the smart-restart mechanism uses much better
values for the population size than the hand-crafted parameters of the previous work (Ru-
binstein and Kroese, 2004), resulting in significant speed-ups. We also implemented the
two restart strategies from (Harik and Lobo, 1999; Auger and Hansen, 2005) discussed ear-
lier. In our experiments, our smart-restart mechanism shows better performance on both
combinatorial optimization problems.

We note that this version extends our preliminary version (Doerr and Zheng, 2020a),
and differs largely in the following ways. Both in the mathematical runtime analysis and in
the experiments, we also consider the presence of additive posterior noise for the cGA. To
demonstrate that our general approach is feasible also for other EDAs ((Doerr and Zheng,
2020a) only considers the cGA), we add a runtime analysis for the smart-restart UMDA and
evaluate a smart-restart version of PBIL (cross-entropy algorithm) with two other restart
strategies for comparison on two combinatorial problems. Finally, this version contains all
mathematical proofs that had to be omitted in (Doerr and Zheng, 2020a) for reasons of
space.

The remainder of this paper is structured as follows. Section 2 introduces the prelimi-
naries including a detailed description of the related algorithms and benchmark functions.
The newly-proposed smart-restart mechanism will be stated in Section 3. Section 4 shows
our theoretical results. Section 5 contains our experimental analyses on classic benchmark
functions. The extension of our mechanism to the PBIL and an experimental analysis of this
algorithm on two combinatorial problems are presented in Section 6. Section 7 concludes
our paper.

2. Preliminaries

2.1 Algorithms

In this paper, we consider algorithms maximizing pseudo-Boolean functions f : {0,1}" — R.
We regard so-called anytime algorithms, that is, algorithms that can be stopped at any time,
and then return the best solution seen so far. In practice, such algorithms are run with
some user-specified termination criterion. In our mathematical analyses, we regard the time
it takes until an optimum is generated if the algorithm is not stopped prematurely. For
that reason, we do not specify a termination criterion here.

Since our smart-restart mechanism builds on an original heuristic, such as the cGA
of Harik et al. (1999) or the UMDA of Miihlenbein and Paass (1996), and since we will



ZHENG AND DOERR

compare our smart-restart cGA with the parallel-run ¢cGA (Doerr, 2021), this subsection
will give a brief introduction to these algorithms. We shall, in Section 6, also discuss
the general performance of our smart-restart PBIL (cross-entropy algorithm), and for the
convenience of reading, we will introduce this algorithm in Section 6.

In the following, we shall use Xj = (X/,,..., X/,) € {0,1}" to denote the i-th bitstring
in the g-th iteration of the algorlthm and Xg for the J-th bit of X7. We use p? = (pf,...,p%)
to denote the (univariate) probabilistic model learned in the g- th iteration and pg for the
j-th entry of pY.

2.1.1 THE COMPACT GENETIC ALGORITHM

The compact genetic algorithm (cGA) with hypothetical population size p samples two
individuals in each generation and moves the sampling frequencies by an absolute value of
1/p towards the bit values of the better individual. Usually, and so do we, in order to avoid
frequencies reaching the absorbing boundaries 0 or 1, the artificial margins 1/n and 1 —1/n
are utilized, that is, we restrict the frequency values to be in the interval [1/n,1 — 1/n].
The following Algorithm 1 shows the details. As is common in runtime analysis, we do not
specify a termination criterion. When talking about the runtime of an algorithm, we mean
the first time (measured by the number of fitness evaluations) an optimum was sampled.

Algorithm 1 The ¢cGA to maximize a function f: {0,1}" — R with hypothetical popula-
tion size p
1;p0:(%,%,“_’2) [01]
2: forg=1,2,... do
%%Sample two individuals X7, X§

3: fori=1,2do

4: for j=1,2,...,ndo

5: X}, + 1 with probability pf ~! and X7, 0 with probability 1 —p?~ !
6: end for

7:  end for

%% Update of the frequency vector
8 if f(X{) > f(XJ) then

9 pl=pt L (X] - XT)
10:  else

11: p=pit+1 L (X5 — XY)
12:  end if

13:  p? = min{max{1, p'},1 -1}
14: end for

2.1.2 THE UNIVARIATE MARGINAL DISTRIBUTION ALGORITHM

The univariate marginal distribution algorithm (UMDA) samples A individuals in each
generation and selects the best p individuals to learn its probabilistic model. More precisely,
the new sampling frequency p; of the i-th bit is taken as the ratio of ones in the i-th bit
of the u selected individuals. Similar to the cGA, the artificial margins 1/n and 1 —1/n
are utilized to avoid the frequencies reaching the boundaries 0 or 1. See Algorithm 2 for
details.



FROM UNDERSTANDING GENETIC DRIFT TO A SMART-RESTART MECHANISM FOR EDAS

Algorithm 2 The UMDA (with sample size A, and selection size ) to maximize a function
f:{0,1}" - R
L= (4L e
2: forg=1,2,... do
%%Sample A individuals X{, ..., X{

3: fori=1,2,...,Ado

4: for j=1,2,...,ndo

5: X} ; < 1 with probability p?71 and X7, « 0 with probability 1 — p§771
6: end for

7:  end for

%% Update of the frequency vector
8:  Let X{,..., X7 be the best y individuals (tie broken randomly)

9 p= i g:l X,;-q
10:  p9 = min{max{%,p’}, 1— %L
11: end for

2.1.3 THE PARALLEL-RUN CGA

The parallel EDA mechanism was proposed by Doerr (2021) as a side result when discussing
the connection between runtime bounds that hold with high probability and the expected
runtime. For the cGA, this mechanism yields the following parallel-run ¢GA. In the initial
round ¢ = 1, we start process £ = 1 to run the cGA with population size p = 2¢71
for 1 generation. In round ¢ = 2,3,..., all running processes j = 1,...,¢ — 1 run 2¢~1
generations and then we start process £ to run the cGA with population size u = 2¢~1 for
Zf;é 2¢ generations. The algorithm terminates once any process has found the optimum.
Algorithm 3 shows the details of the parallel-run cGA.

Based on the following assumption, Doerr (2021) proved that the expected runtime for
this parallel-run ¢GA is at most 647 (logy(aT) + 3).

Assumption (Doerr, 2021): Consider using the cGA with population size 1 to maxi-
mize a given function f. Assume that there are unknown fi and 7T such that the cGA for all
population sizes p > i optimizes this function f in uT fitness evaluations with probability
at least 3.

1

Algorithm 3 The parallel-run ¢cGA to maximize a function f :{0,1}" — R

1: Process 1 runs ¢cGA (Algorithm 1) with population size p = 1 for 1 generation

2: for round ¢ =2,... do

3:  Processes 1,...,¢—1 continue to run for another 2°~! generations, one process after the other
one

4:  Start process £ to run cGA (Algorithm 1) with population size u = 2! to maximize f and
run it for Zf;é 2¢ generations

5: end for




ZHENG AND DOERR

2.2 Benchmark Functions

To understand the performance of the mechanism proposed in this work, we regard four basic
benchmark functions (detailed in Section 2.2.1 below). They are all popular benchmarks in
the analysis of evolutionary algorithms, so they are well-understood both from a theoretical
and an experimental point of view, which helps interpreting our results. To further test
the performance of the proposed approach in a more complicated setting, we also consider
a noisy environment (detailed in Section 2.2.2). We shall, in Section 6, also conduct an
experimental investigation of the PBIL (cross-entropy algorithm) on particular instances
of two combinatorial optimization problems (namely those suggested in (Rubinstein and
Kroese, 2004) to show the power of this algorithm), but since these results cannot be easily
compared to the other ones, among others, because no theory exists for these instances, we
describe these problems not here, but in Section 6.

2.2.1 BAsic BENCHMARK FUNCTIONS

We selected the four benchmark functions ONEMAX, LEADINGONES, JUMP, and DECEP-
TIVELEADINGBLOCKS as optimization problems. All four problems are defined on binary
representations (bit strings) and we use n to denote their length, that is, all are functions
f:{0,1}" - R.

The OneMax problem is one of the easiest benchmark problems. The ONEMAX fitness
of a bit string is simply the number of ones in the bit string. Formally, the ONEMAX
function value of any x = (x1,...,zy,) € {0,1}" is defined by

f(x) = anwl
i=1

Having the perfect fitness-distance correlation, most evolutionary algorithms find it easy
to optimize ONEMAX. A common and often easy to prove runtime is ©(nlogn) (Miihlen-
bein, 1992; Garnier et al., 1999; Jansen et al., 2005; Witt, 2006; Rowe and Sudholt, 2014;
Doerr and Kiinnemann, 2015; Antipov and Doerr, 2021; Oliveto et al., 2022). For EDAs,
apparently, the runtime of ONEMAX is more complicated. The known results for EDAs
are the following. The first mathematical runtime analysis for EDAs by Droste (2006) to-
gether with the recent work (Sudholt and Witt, 2019) shows that the cGA can efficiently
optimize ONEMAX in time ©(u+/n) when p > Ky/nln(n) for some sufficiently large con-
stant K. As the proofs of this result show (and the same could be concluded from the
general result (Doerr and Zheng, 2020b)), in this parameter regime there is little genetic
drift. Throughout the runtime, with high probability, all bit frequencies stay above %. For
hypothetical population sizes below the y/nlogn threshold, the situation is less understood.
However, the lower bound of Q(u!/3n) valid for all = O (m) proven in (Lengler

et al., 2021) together with its proof shows that in parts of this regime the cGA suffers from
genetic drift, leading to (mildly) higher runtimes.

For another EDA, the UMDA with sampling population size A and selected population
size p, a runtime of Q(A\y/n+nlogn) for p = O(A) and X € poly(n) is shown in (Krejca and
Witt, 2020b). Upper bounds were independently proven in (Witt, 2019; Dang et al., 2019).
For p = ©(A), (Witt, 2019) proves a runtime of O(An) for A = Q(log n)No(n) and a runtime
of O(\y/n) for A = Q(y/nlogn) Nn®W. Replacing the restriction = O(\) with A = Q(u),

10



FROM UNDERSTANDING GENETIC DRIFT TO A SMART-RESTART MECHANISM FOR EDAS

in (Dang et al., 2019), an upper bound of O(An) is obtained for A = Q(logn) N O(y/n) and
one of O(Ay/n) for A = Q(y/nlogn).

The LeadingOnes benchmark is still an easy unimodal problem, however, typically
harder than ONEMAX. The LEADINGONES value of a bit string is the number of ones in it,
counted from left to right, until the first zero. Formally, the LEADINGONES function value
of any x = (z1,...,2y) € {0,1}" is defined by

f(x) = i f[ ).

i=1j=1

How simple randomized search heuristics optimize LEADINGONES is extremely well under-
stood (Droste et al., 2002; Jansen et al., 2005; Witt, 2006; Bottcher et al., 2010; Sudholt,
2013; Doerr, 2019; Lissovoi et al., 2020; Sudholt, 2021; Doerr et al., 2021), many EAs op-
timize this benchmark in time ©(n?). Surprisingly, no theoretical results are known on
how the ¢cGA optimizes LEADINGONES. However, the runtime of the UMDA with popu-
lation sizes pu = ©(A) with suitable implicit constants and A = 2(logn) was shown to be
O(nAlog(\) + n?) (Dang et al., 2019) and, recently, ©(n)) for A = Q(nlogn) (Doerr and
Krejca, 2021b). We remark that (Doerr and Zheng, 2020b) for this situation shows that
genetic drift occurs when A = O(n) (with suitable implicit constants). Consequently, these
results show a roughly linear influence of A on the runtime when A is (roughly) at least
linear in n, but below this value, there is apparently no big penalty for running the EDA
in the genetic drift regime. For the cGA, we will observe a different behavior, which also
indicates that translating general behaviors from one EDA to another, even within the class
of univariate EDAs, has to be done with caution.

The Jump benchmark is a class of multimodal fitness landscapes of scalable difficulty.
For a difficulty parameter k, the fitness landscape is isomorphic to the one of ONEMAX
except that there is a valley of low fitness of width k around the optimum. More precisely,
all search points in distance 1 to k£ — 1 from the optimum have a fitness lower than all other
search points. Formally, the JuMPy, function (with & € [1..n]) is defined by

E+>qx, if Yz, <n—korx=1"
f@) = :
n—y i, x;, else,

for any x = (z1,...,2,) € {0,1}™.

Recent results (Hasenohrl and Sutton, 2018; Doerr, 2021) show that when p is large
enough, then the cGA can optimize JUMP functions quite efficiently and significantly more
efficient than many classic evolutionary algorithms. We omit some details and only mention
that for k not too small, a runtime exponential in k results from a population size u that is
also exponential in k. This is much better than the Q(n*) runtime of typical mutation-based
evolutionary algorithms (Droste et al., 2002; Doerr et al., 2017; Doerr, 2022; Rajabi and
Witt, 2022) or the n°*) runtime bounds shown for several crossover-based algorithms (Dang
et al., 2016; Antipov et al., 2022). We note that O(n) and O(nlogn) runtimes have been
shown in (Whitley et al., 2018; Rowe and Aishwaryaprajna, 2019), however, these algorithms
appear quite problem-specific (Witt, 2023) and have not been regarded in other contexts so
far. It was not known whether the runtime of the cGA becomes worse in the regime with

11



ZHENG AND DOERR

genetic drift, but our experimental results now show an enormously weak performance in
this regime.

The DeceptiveLeadingBlocks benchmark was introduced in (Lehre and Nguyen,
2019). It can be seen as a deceptive version of the LEADINGONES benchmark. In DE-
CEPTIVELEADINGBLOCKS, the bits are partitioned into blocks of length two in a left-to-
right fashion. The fitness is computed as follows. Counting from left to right, each block
that consists of two ones contributes two to the fitness, until the first block is reached
that does not consist of two ones. This block contributes one to the fitness if it consists
of two zeros, otherwise it contributes zero. All further blocks do not contribute to the
fitness. Formally, the DECEPTIVELEADINGBLOCKS (requiring n is even) function value of
any = (z1,...,2,) € {0,1}" is defined by

2m + 1, if Z[1.2m] = 12™ and Tom+1 = Tam+2 = 0,
f(z) =4 2m, if 2[1_2m) = 1*™ and Tomi1 + Tomi = 1,
n, if v =1™.

The main result in (Lehre and Nguyen, 2019) is that when 1 = ©(A) and A = o(n), the
expected runtime of the UMDA on DECEPTIVELEADINGBLOCKS is exp(§2(A)). We note
that when A = o(n), already after a quadratic runtime strong genetic drift is encountered
according to (Doerr and Zheng, 2020b). When A = Q(nlogn), a runtime guarantee of at
most (1+ o(1))2An holds with high probabilitiy (Doerr and Krejca, 2021a). Hence for this
function and the UMDA as an optimizer, the choice of the population size is again very
important. This was the reason for including this function into our set of test problems and
the results indicate that indeed the cGA shows a behavior similar to what the mathematical
results showed for the UMDA.

We note that (Lehre and Nguyen, 2019) also shows an expected runtime of O(nAlog A+
n?) when p = Q(logn) and A = Q(p?), which is an unusually high selection pressure.
Other runtime results on the DECEPTIVELEADINGBLOCKS function include several O(n?)
runtime guarantees for classic EAs (Lehre and Nguyen, 2019) as well as a ©(n?) runtime
for the Metropolis algorithm and an O(nlogn) runtime guarantee for the significance-based
cGA (Wang et al., 2021). Till now, there is no theoretical runtime analysis for the cGA.

2.2.2 ADDITIVE CENTERED GAUSSIAN POSTERIOR NOISE

In practical applications, one often encounters various forms of uncertainty. One of these
is a noisy access to the objective function. Friedrich et al. (2017) analyzed how the cGA
optimizes the ONEMAX problem under additive centered Gaussian posterior noise. They
proved that for all noise intensities (variances o of the Gaussian distribution), there is
a population size u = p(o?) which depends only polynomially on o2 (that is, u(o?) is a
polynomial in 2) so that the cGA with this population size efficiently solves the ONEMAX
problem. This was called graceful scaling. They also provided a restart scheme that obtains
this performance without knowledge of the noise intensity (however, it requires to know the
polynomial u(o?)). Hence these results show that the cGA can deal well with the type of
noise regarded, and much better than many classic evolutionary algorithms (see the lower
bounds in (Gieflen and Ko6tzing, 2016; Friedrich et al., 2017)), but this still needs an action
by the algorithm user, namely an appropriate choice of the population size u.

12



FROM UNDERSTANDING GENETIC DRIFT TO A SMART-RESTART MECHANISM FOR EDAS

As we shall show in this work, our restart scheme is also able to optimize noisy versions
of ONEMAX and many other problems, but without knowing the polynomial u(c?) and
using significantly more efficient values for the population size. For ONEMAX, we prove
rigorously that we obtain essentially the performance of the original cGA with the best
choice of the population size (Theorem 9), where we profit from the fact that the runtime
analysis of (Friedrich et al., 2017) shows that the cGA also for noisy ONEMAX functions
essentially satisfies our main assumption that from a certain population size on, the runtime
of the cGA is at most proportional to the population size.

We conduct experiments for various benchmark functions in this noise model. They
indicate that also for problems different from ONEMAX, the graceful scaling property holds.
However, they also show that much smaller population sizes suffice to cope with the noise.
Consequently, our smart-restart cGA (as well as the parallel-run ¢cGA from (Doerr, 2021))
optimizes ONEMAX much faster than the algorithms proposed in (Friedrich et al., 2017).
This is natural since the parameter-less approaches also try smaller (more efficient in case of
success) population sizes, whereas the approaches in (Friedrich et al., 2017) use a population
size large enough that one can prove via mathematical means that they will be successful
with high probability.

We now make precise the additive centered Gaussian noise model. We take the common
assumption that whenever the noisy fitness of a search point is regarded in a run of the
algorithm, its noisy fitness is computed anew, that is, with newly sampled noise. This
avoids that a single exceptional noise event misguides the algorithm for the remaining
run. A comparison of the results in (Sudholt and Thyssen, 2012) (without independent
reevaluations) and (Doerr et al., 2012) (with reevaluations) shows how detrimental sticking
to previous evaluations can be. We regard posterior noise, that is, the noisy fitness value
is obtained from a perturbation of the original fitness value (independent of the argument)
as opposed to prior noise, where the algorithm works with the fitness of a perturbed search
point. We regard additive perturbations, hence the perceived fitness of a search point x is
f(z) + D, where f is the original fitness function and D is an independent sample from
a distribution describing the noise. Since we consider centered Gaussian noise, we always
have D ~ N (0, 0?), where N'(0, 0%) denotes the Gaussian distribution with expectation zero
and variance o2 > 0. Obviously, the classic noise-free optimization scenario is subsumed by
the special case 02 = 0.

3. The Smart-Restart Mechanism

In this section, we introduce our smart-restart mechanism. It can be applied to any ran-
domized search heuristic A having an integral parameter u and it makes sense when we
can assume that the algorithm has a good performance from a certain value for y on, a
situation often encountered in EDAs. In contrast to the parallel-run mechanism proposed
in (Doerr, 2021), which applies to the same scenario, the smart-restart mechanism does not
run processes in parallel, which is an advantage from the implementation point of view.
The main advantage we aim for is that by predicting when runs with a certain parameter
value become hopeless, we can abort these runs and save runtime.

As in (Doerr, 2021), in this exposition we let ourselves be guided by the cGA as base al-
gorithm A as it is maybe the simplest algorithm in which a parameter behavior as sketched

13



ZHENG AND DOERR

above is encountered. To decide when to abort a run, we use the first tight quantification
of the genetic drift effect of the EDAs by Doerr and Zheng (2020b). In detail, they proved
that in a run of the cGA with hypothetical population size u a frequency of a neutral bit
will reach the boundaries of the frequency range in an expected number of at most 4% gen-
erations (equivalent to 8 fitness evaluations), which is asymptotically tight. By Markov’s
inequality the probability that a boundary is reached in bu?,b > 8, fitness evaluations, is at
least 1 — 8/b.

This finding inspires the following restart scheme (for any randomized search heuristic
A with a parameter p), also described in Algorithm 4. We repeat running algorithm A with
increasing values for u, each time until we decide to abort such a run. For the ¢-th run,
¢ =1,2,..., we use the parameter value py = 20!, that is, we start with a small value
u = 2 and increase u by a factor of U > 1, called update factor, from one run to the next.
We abort the /-th run after By = bu? fitness evaluations, where b is the second parameter of
the restart scheme, called budget factor. As before, we do not specify a termination criterion
since for our analysis we just count the number of fitness evaluations until a desired solution
is found.

We shall discuss the settings of the parameters U and b later in more detail. As a
motivating example, we note that for the cGA by taking b = 16, the above Markov bound
argument shows that in each such run, each bit has a probability of at most % to be
subject to strong genetic drift. Hence this restart scheme manages to run the cGA in a way
that genetic drift does not affect too many bits. We shall later see that a budget factor
b= 0(1/logn) can even ensure that none of the bits is subject to strong genetic drift.

Algorithm 4 The smart-restart mechanism with update factor U and budget factor b
applied to an algorithm A4 with parameter p for the maximization of a function f : {0,1}" —
R.
1: for £=1,2,... do
2:  Run A with parameter value p, = 2U*~"! for B, = bu? fitness evaluations on the maximization
problem f
3: end for

4. Theoretical Analyses

In this section, we prove mathematical runtime guarantees for our smart-restart mechanism.

4.1 A General Performance Guarantee

We follow the general approach of (Doerr, 2021, Section 2.4) of assuming that the runtime
increases linearly with the population size from a given minimum size i on. We do not
restrict this property for the cGA with population size p, but for the general EDA (or any
randomized search heuristic) with a parameter p.

Assumption (L): Let p € (0,1]. Consider using an EDA (or a randomized search
heuristic) with parameter p to maximize a given function f. Assume that there are unknown
i and T such that the EDA (or randomized search heuristic) for all parameter values p > i
optimizes f within uT fitness evaluations with probability at least p.

14



FROM UNDERSTANDING GENETIC DRIFT TO A SMART-RESTART MECHANISM FOR EDAS

This Assumption (L) is identical to the assumption taken in (Doerr, 2021) except that
there p was required to be at least 3/4, whereas we allow a general positive p (but note
that we will require p > 1 — UQ, hence a small p limits the choice of U). Since most existing
runtime analyses give bounds with success probability 1 — o(1), this difference is, of course,
not very important. We note that the proof of the result in (Doerr, 2021) requires p to be
at least 3/4, but we also note that an elementary probability amplification argument (via
independent restarts) allows to increase the success probability of a given algorithm, so that
the result of (Doerr, 2021) becomes applicable to this modified algorithm.

Under this Assumption (L), we obtain the following result. We note that it is non-
asymptotic, which later allows to easily obtain asymptotic results also for non-constant
parameters. We note that when assuming p and U to be constants (which is very natural),
then the bound becomes O(max{bii?,T? /b, iT}).

Theorem 1 LetU > 1 andb > 0. Consider using the smart-restart mechanism on an EDA
(or a randomized search heuristic) with update factor U and budget By = b,u%,ﬂ =1,2,...,
optimizing a function f satisfying Assumption (L) with p € (1 — %, 1]. Then the expected
time until the optimum of f is generated is at most

U? (1-p)U? o, T? pU .
S I S, L
<U2—1+1—(1—p)U2 max ) b S T o

fitness evaluations.

Proof Let ¢ = min{¢ | 2U! > i, B, > 2U*"'T}. With By, = bu2 and p, = 201,
we have ¢/ = min{¢ | 2U" > ,b(2U 12 > 2UIT} = min{¢ | 204! > 3,20 >
T/b}, that is, ¢ = min{¢ | 207! > max{ji, T/b}}. Then it is not difficult to see that
Ul -1 < U max{ji, T/b} and that for any ¢ > ¢, the population size p, := 2U*"! satisfies
we > fand By > pyT. Hence, according to the assumption, we know the EDA (randomized
search heuristic) with such a p, optimizes f with probability at least p in time u,/7. We
pessimistically assume that the optimum is not reached before the parameter value increases
to pe. Now the expected time when the smart-restart EDA (randomized search heuristic)
finds the optimum of f is at most

-1 i—1
S Bi+p- 20T+ Z (1- (Z Boyj+ 2Uf’+i—1T)
i=1 i=1 7=0

-1 i—1
_ZB +p- 2Uf*1T+Z 1-p)'pY. Boyj+2pU*~ 1TZ 1—p)'U’
7=0
£ v v (1-pU
=Y Bi+2pU _1T+ZBZI+]p Z (1=p) +2pU" T T
=1 7=0 i=j+1 ( _p)
-1 1 -1
—p)t 2pU* ~'T
=3B By
2 *Z R e A i
-1 -1
2pU T
=3B (1= p) ™' Bpyj+ —
Z +Z TS

15



ZHENG AND DOERR

where the second equality uses (1 — p)U € [0,1) from p € (1 — #, 1]. With B, = bu? =
b(2U*1)2 = 4bU?~2, we further compute

S g Sy yitip,, 4 U
;BZ+;J(1 Py Beva 1-(1-pU
_ = 22 | o NG AR r20 252 2pU" T
— ;4bU +]§)(1 p)’ tavU +71_(1_p)U
4b(U' =2 - 1)  4b(1 —p)U*' 2 2pUY T
S 1—(1-pUZ " 1-(1-pU
- bU? max{ji®, T?/b*} N b(1 — p)U? max{ji%, T?/b?} pULT
= U2 -1 1—(1—p)U? 1—(1—-pU

_ U2 (1—p)U2 ~9 T2 pU -
- <U2—1+1—(1—p)U2 max b, S

where the second equality uses (1—p)U? € [0,1) from p € (1— %, 1] and the first inequality
uses 207 1 < U max {2, T?/b?}. [ |

For comparison, we recall that the complexity of the parallel-run ¢GA from (Doerr,
2021).

Theorem 2 (Doerr (2021, Theorem 2)) The expected number of fitness evaluations for
the parallel-run ¢cGA optimizing a function f satisfying Assumption (L) with p > 3/4 is
O (T log(AT)).

Since the choice b = O(T'/fi) gives an asymptotic runtime of O(gT") for the smart-
restart cGA, we see that with the right choice of the parameters the smart-restart cGA can
outperform the parallel-run ¢cGA slightly. This shows that it indeed gains from its ability
to abort unprofitable runs.

Our main motivation for regarding Assumption (L) was that this runtime behavior is
often observed both in theoretical results (see, e.g., the survey (Krejca and Witt, 2020a))
and in experiments (see Section 5). Unfortunately, some theoretical results were only proven
under the additional assumption that p is polynomially bounded in n, that is, that u =
O(nc) for some, possibly large, constant C. For most of these results, we are convinced
that the restriction on p is not necessary, but was only taken for convenience and in the
light that super-polynomial values for y would imply not very interesting super-polynomial
runtimes. To extend such results to our smart-restart ¢cGA in a formally correct manner,
we now prove a version of Theorem 1 applying to such settings. More precisely, we regard
the following assumption. Similar to Assumption (L), we do not restrict this property to
the cGA with the population size as parameter.

Assumption (L’): Let p € (0,1]. Consider using an EDA (or a randomized search
heuristic) with parameter p to maximize a given function f. Assume that there are unknown
i, pt, and T such that the EDA (or randomized search heuristic) for all parameter values
fi < p < pt optimizes f within T fitness evaluations with probability at least p.

We prove the following result.

16



FROM UNDERSTANDING GENETIC DRIFT TO A SMART-RESTART MECHANISM FOR EDAS

Theorem 3 LetU > 1 andb > 0. Consider using the smart-restart mechanism on an EDA
(or a randomized search heuristic) with update factor U and budget By = b,u?, (=1,2,...,
optimizing a function f satisfying Assumption (L’) with p € (1 — %, 1). Let ¢' := min{/ |
U > i, By > 2UTY and £ := {{ € Z | £ > ¢',2U < pt}. Then, apart from
when an exceptional event of probability at most (1 —p)|5| holds, the expected time until the
optimum of f is generated is at most

U? (1-pU? o, T? pU ~
b2, — V4 P2 gr
<U2—1+1—(1—p)U2 MmN S S T = o

fitness evaluations.

Proof Let A be the event that none of the runs of the EDA (or randomized search
heuristic) with parameter pp = 20! at most xT finds the optimum of f. As in the proof
of Theorem 1, each of the runs using parameter u,, £ € £, with probability at least p finds
the optimum. Hence the event A occurs with probability at most (1 — p)w.

Let us condition on the event —A. Under this event, the smart-restart EDA (or ran-
domized search heuristic) surely finds the optimum before the parameter value is increased
beyond pt. Note that when running the EDA (or randomized search heuristic) with a
parameter value of at most u™, the Assumptions (L) and (L’) are identical. For that rea-
son, analogous to the first paragraph of the proof of Theorem 1, we see that any £ € £ a run
of the EDA (or randomized search heuristic) with parameter p, = 2U¢~! finds the optimum
of f in time p,T with probability at least p/ Pr[~A] > p. Consequently, analogous to that
proof, the expected runtime conditional on —A is at most

El—l , max{ﬁ}ffl . i—l , .
S Bi+p- 20T+ > (1—p)p Y Bey+20" T (1)
i=1 i=1 j=0

This expression is identical to the corresponding one in the proof of Theorem 1 except that
the second sum is not taken over the range i € Z>1, but only the range i € [1.max{L}—/].
Since these sums involve positive terms only, we can bound (1) from above in exactly the
same way as in the proof of Theorem 1. This shows our claim. |

4.2 Specific Runtime Results

The following examples show how to combine our general runtime analysis with known
runtime results to obtain performance guarantees for smart-restart EDAs on several specific
problems.

4.2.1 ONEMAX AND JUMP

We recall the following runtime results for the cGA on ONEMAX (Sudholt and Witt, 2019)
and Jump (Doerr, 2021) as well as for the UMDA on ONEMAX (Witt, 2019; Dang et al.,
2019). As common, by runtime we mean the number of fitness evaluations until the optimum
is sampled. This is, essentially, two times the number of generations until the optimum is
sampled for the cGA, and A times this generation number for the UMDA.

17



ZHENG AND DOERR

Theorem 4 (Sudholt and Witt (2019); Doerr (2021); Witt (2019); Dang et al.
(2019)) Let K > 0 be a sufficiently large constant and let C' > 0 be any constant. Consider
the ¢cGA with Ky/nlnn < p < n® and the UMDA with Kynlnn < pu < n® and \ =
O(pn) (Witt, 2019) (or the UMDA with p > Ky/nlnn and X\ > au for sufficiently large
constant a > 1 (Dang et al., 2019)).

e The expected runtimes on the ONEMAX function are O(uy/n) for the ¢cGA (Sudholt
and Witt, 2019, Theorem 2) and O(A/n) for the UMDA, see (Witt, 2019, Theo-
rem 10) and (Dang et al., 2019, Theorem 9).

o With probability 1 —o(1), the optimum of the JUMP function with jump size k < % Inn
is found by the cGA in time O(uv/n) (Doerr, 2021, Theorem 9).

With the optimal parameters, that s, with the smallest applicable population sizes, these
runtimes are all O(nlogn).

With Theorem 3, we have the following result.

Theorem 5 Consider the smart-restart cGA with update factor U > 1 optimizing the JUMP
function with jump size k < % Inn or the ONEMAX function, or the smart-restart UMDA
with update factor U > 1 optimizing the ONEMAX function. Then, apart from a rare event
of probability at most n=*Y) | we have the following estimates for the expected runtime.

e [f the budget factor b is ©(1/logn), then the expected runtime is O(nlogn).

o If the budget factor b is between Q(1/log?n) and O(1), then the expected runtime is
O(nlog®n).

Proof For the smart-restart cGA, we note that the JUMP result (more specifically, the
“with probability 1 — o(1)” clause) also applies to ONEMAX simply because the Jump
function with jump size £ = 1 has a fitness landscape that can in a monotonic manner be
transformed into the one of the ONEMAX function. Hence for n sufficiently large, we have
Assumption (L) satisfied with i = Ky/nlnn, ut = n® T = O(y/n), and p = 1 — o(1).
Consequently, for any (constant) U > 1 we have p € (1—%7 1). Given the above information
on i and T, we see that any b € n=°1) N () gives that ¢ = min{¢ | 201 > i, B, >
20T} = (1 £ 0(1))3 logy(n). Since pt =nY, we have |£] = (1 +0(1))(C — 3) logy(n).
For the results where Theorem 4 only gives bounds on the expected runtime, we note
that such statements can easily be transferred to a statement with a given probability via
Markov’s bound Pr[¢ > cE[{]] < 1/c for any ¢ > 1. Consequently, for the smart-restart
UMDA with the population size A as parameter of interest, we can set p € (1 — %7 1) for
any (constant) U > 1 to satisfy Assumption (L) together with i = K\/nlnn, u* = n¢,
and T' = O(y/n). Hence, the same arguments as above also show the other claims. |

Hence, the smart-restart cGA and smart-restart UMDA with b = ©(1/logn) have essen-
tially the same time complexity as the original cGA and UMDA with optimal population size
(see Theorem 4). A constant value for b results in a slightly inferior runtime of O(n log?n),
which is also the runtime guarantee for the parallel-run ¢cGA (Theorem 2).

18



FROM UNDERSTANDING GENETIC DRIFT TO A SMART-RESTART MECHANISM FOR EDAS

4.2.2 LEADINGONES AND DECEPTIVELEADINGBLOCKS

As discussed in Section 2.2.1, no theoretical runtime guarantees exists for the cGA on the
LEADINGONES and DECEPTIVELEADINGBLOCKS functions. For the UMDA, the following
results are known.

Theorem 6 (Doerr and Krejca (2021a,b)) Let K > 0 and C > 1 be sufficiently large
constants. Consider the UMDA selecting ;v > Knlnn best from the sampling population
with size A > C'y.

e The expected runtime on the LEADINGONES function is O(An) (Doerr and Krejca,
2021b, Theorem 5).

e With probability 1 — o(1), the optimum of the DECEPTIVELEADINGBLOCKS is found
in time O(An) (Doerr and Krejca, 2021a, Theorem 3).

With the optimal parameter choice, that is, the smallest admissible population sizes, these
runtimes are O(n?logn).

For simplicity, we could just require A = Cu and Theorem 6 still holds. For n suffi-
ciently large, we have Assumption (L) with respect to the parameter \ satisfied with
i = CKnlnn,T = O(n), and p = 1 — o(1). Consequently, for any (constant) U > 1
we have p € (1 — %, 1). Given the above information on ji and T, and with Theorem 1, we
have the following result.

Theorem 7 Consider the smart-restart UMDA with update factor U > 1 and constant
selection pressure in UMDA optimizing the LEADINGONES or DECEPTIVELEADINGBLOCKS
function. Then we have the following estimates for the expected runtime.

o If the budget factor b is ©(1/logn), then the expected runtime is O(n?logn).

o If the budget factor b is between Q(1/log?n) and O(1), then the expected runtime is
O(n?log?n).

Hence, our smart-restart UMDA with b = ©(1/logn) has essentially the same time com-
plexity as the original UMDA (Theorem 6) with optimal population sizes A and pu.

4.2.3 Noisy ONEMAX

For another example, we recall the runtime of the cGA (without artificial margins) on the
ONEMAX function with additive centered Gaussian noise from (Friedrich et al., 2017).

Theorem 8 (Friedrich et al. (2017, Theorem 5)) Let h : [0,00) — [0,00) and h €
w(1)NneM). Consider the n-dimensional ONEMAX function with additive centered Gaussian
noise with variance o > 0. Then with probability 1 — o(1), the cGA (without margins)
with population size u = h(n)o?y/nlogn has all frequencies at 1 in O(uo?\/nlog(un)) =
O(h(n)o*nlog?n) iterations.

19



ZHENG AND DOERR

We note that here the cGA is used without restricting the frequencies to the interval
[1/n,1 — 1/n|, whereas more commonly (and in the remainder of this paper) the cGA is
equipped with the margins 1/n and 1 — 1/n to avoid that frequencies reach the absorbing
boundaries 0 or 1. Since our general runtime results do not rely on such implementation
details but merely lift a result for a particular cGA to its smart-restart version, this poses
no problems for us. As a side remark, though, we note that we are very optimistic that
the above result from (Friedrich et al., 2017) holds equally for the setting with frequency
margins.

More interestingly, the runtime result above is not of the type that for p sufficiently
large, the expected runtime is O(uT") for some T (since p appears also in the log(un) term).
Fortunately, with Theorem 3 at hand, we have an easy solution. By only regarding values of
p that are at most n® for some constant C' (which we may choose), the log(un) term can by
bounded by O(logn). Since the minimal applicable p (the & in the notation of Theorem 3)
depends on o2, this also implies that we can only regard polynomially bounded variances,
but it is clear that any larger variances can be only of a purely academic interest. We thus
formulate and prove the following result. We note that with more work, we could also have
extended Theorem 1 to directly deal with the runtime behavior described in Theorem 8.
For example, we could exploit that the geometric series showing up in the analysis do not
change significantly when an extra logarithmic term is present. However, this appears to
be a lot of work for a logarithmic term for which it is not even clear if it is necessary in the
original result. Hence, we will not discuss them and focus on the following result.

Theorem 9 Let C > 1 and U > 1. Let h : [0,00) — [0,00) and h € w(1) N n°W.
Consider the smart-restart cGA with the update factor U and budget factor b optimizing
the n-dimensional ONEMAX function with additive centered Gaussian noise with variance
02 < nC. Then outside a rare event holding with probability n=*M) | the following runtime
estimates are true.

o Ifb=0(1/h(n)), then the expected runtime is O(h(n)o*nlog?n).

o Ifb=0(1)NQ1/log?n), then the expected runtime is O(h(n)o*nlog®n).

Proof By Theorem 8, we have Assumption (L’) satisfied with i = h(u)o?y/nIn(n),
pt = n%¢, T = O(c*/nlogn), and p = 1 — o(1). Consequently, any b € n~°1) N ne)
gives that ¢ = min{¢ | 2U°~! > fi, B, > 2U*"'T} = (1 + o(1))(3 logy(n) + logy(0?)) <
(1+0(1))Clogy(n). Since ut = n2, we have |£| > (1+0(1))C log;;(n). With Theorem 3,
we have proven our claim. [ |

We remark that the parallel-run ¢cGA has an expected runtime of O(h(n)o*nlog3n)
outside a rare event of probability n=«).

5. Experimental Results

In this section, we experimentally analyze the smart-restart mechanism proposed in this
work. We concentrate on the smart-restart cGA, since the cGA is one of the best-unterstood

20



FROM UNDERSTANDING GENETIC DRIFT TO A SMART-RESTART MECHANISM FOR EDAS

EDASs and since it has only a single parameter which governs exactly how strong the update
of the probabilistic model is in each iteration. We regard PBIL as a more complex EDA in
Section 6.

Since, apart from the analysis of the cGA on ONEMAX by Lengler et al. (2021), such
data is not yet available, we start with an investigation of how the runtime of the original
c¢GA depends on the (hypothetical) population size u. This will in particular support the as-
sumption, underlying our smart-restart strategy and the parallel-run strategy from (Doerr,
2021), that the runtime can be excessively large when pu is below some threshold, and
moderate and linearly increasing with p when p is larger than this threshold.

We then analyze the performance of the two existing approaches to automatically find
good values for p. Our focus is on understanding how one can relieve the user of an EDA
from the difficult task of setting this parameter, not on finding the most efficient algorithm
for the benchmark problems we regard. For this reason, we do not include other algorithms
in this investigation. We note, though, that EDAs have shown a superior performance
on the JuMP and DECEPTIVELEADINGBLOCKS benchmarks (Hasendhrl and Sutton, 2018;
Doerr, 2021; Wang et al., 2021), so clearly these are interesting algorithms for these two
problems.

5.1 Experimental Settings

We ran the original ¢cGA (with varying population sizes), the parallel-run ¢cGA, and our
smart-restart ¢cGA (with two budget factors) on four benchmark problems, both without
noise and in the presence of Gaussian posterior noise of four different strengths. For each
experiment for the parallel-run ¢cGA and our smart-restart cGA, we conducted 20 indepen-
dent trials. Due to the often extremely large runtimes in the regime with genetic drift, only
10 independent trials were conducted for the original cGA. The detailed settings for our
experiments were as follows.

e Benchmark functions and problem sizes: ONEMAX (problem size n = 100), LEADING-
ONES (n = 50), JumMP (n = 50 and jump size k¥ = 10), and DECEPTIVELEADING-
Brocks (n = 30). The population size for ONEMAX was chosen identical to the one
used in (Friedrich et al., 2017), namely n = 100. For the other three problems, tak-
ing into account the longer runtimes, we chose relatively small problem sizes. Since
for these our experimental results fit the known theoretical results (see Sections 2.2
and 4.2), we are confident that they are still representative.

e Noise model: additive centered Gaussian posterior noise with variances o = {0,n/2,
n,2n,4n} as described in Section 2.2.2.

e Termination criterion: Since the original ¢cGA with unsuitable population sizes often
did not find the optimum in a reasonable time, we imposed the following maximum
numbers of generations and aborted the run after this number of generations: [n*Inn]
for ONEMAX, n° for LEADINGONES, n¥/2 for Jump, and 10n° for DECEPTIVELEAD-
INGBLOCKS. We did not define such a termination criterion for the parameter-less
versions of the ¢cGA since they always found the optimum in an affordable time.

e Population size of the original cGA: p = 2110 for ONEMAX and LEADINGONES,
p = 20918 for Jump, and p = 201 for DECEPTIVELEADINGBLOCKS. The reason

21



ZHENG AND DOERR

for omitting the range p = 208 for Jump is the large runtime observed on this
benchmark for small population sizes.

e Budget factor b for the smart-restart cGA: 16 and 1/Inn. As explained in the intro-
duction, the budget factors b = 16 and ©(1/Inn) are two proper choices. We chose
the constant 1 based on the experimental results on JUMP and DECEPTIVELEADING-
BLOCKS without noise (noise variance o2 = 0) in Figures 3 and 4.

e Update factor U for the smart-restart cGA: 2. Doubling the parameter value after
each unsuccessful run (U = 2) is a natural choice. We note that in (Doerr and Zheng,
2020a), we also did some experiments with U = 1/2, but these mostly gave inferior
results.

5.2 Experimental Results and Analysis I: The cGA with Different Population
Sizes

The curves in Figures 1-4 (excluding the three right-most points on the z-axis) show the
runtime (number of fitness evaluations) of the original cGA with different population sizes
when optimizing our four benchmarks under Gaussian noise with different variances (in-
cluding the noise-free setting 0> = 0). Given are the median runtime together with the first
and third quartiles. When a run was stopped because the maximum number of function
evaluations was reached, we simply and bluntly counted the runtime up to this point as
runtime. Clearly, there are better ways to handle such incomplete runs, but since a fair
computation for these inefficient parameter ranges is not too important, we did not start a
more elaborate evaluation. To ease the comparison, we also plotted the run budgets B = by’
which the smart-restart algorithm with budget factor b would have with population size u.

The results displayed in Figures 1-4 typically show that the runtime of the cGA is
roughly unimodal in the population size u. For values of p smaller than the optimal value,
the runtime steeply increases and is accompanied by larger variances. For larger values of
1, we typically observe a moderate, roughly linear increase of the runtime. The variances
are relatively small here.

Let us regard these results in some more detail. For ONEMAX, we see a perfect unimodal
runtime behavior. The minima of the runtime curves are not strongly pronounced, but
for population sizes smaller than the optimum one by a factor of four or more, drastic
performance losses are observed. For larger population sizes, a roughly linear increase of
the runtime is well visible. We also note that the optimal population size increases with the
noise level, which fits the intuition that larger noise levels lead to larger runtimes, which
need larger population sizes to prevent genetic drift throughout the runtime.

Our experiments do not show the bimodal runtime behavior observed in (Lengler et al.,
2021). This is not suprising given that the bimodal pattern is very weak. In Figure 2
in (Lengler et al., 2021), the runtime pattern for relatively large problem size n = 1000
shows a global minimum at p ~ 130 (where the genetic drift is low as also shown in that
figure). There is a second (local) minimum at around g ~ 12, but its runtime is only
around 4% smaller than the runtime at the local maximum between the two minima. Given
these small differences, seen for problem size n = 1000 in 3000 independent runs, it is not
surprising that our experiments, conducted for smaller problem size and larger ranges of

22



FROM UNDERSTANDING GENETIC DRIFT TO A SMART-RESTART MECHANISM FOR EDAS

1010 Runtime for solving the OneMax function, n=100
+42=0
o*=n/2
1 08 L +02=n 7
¥ +02=2n i
_I_g'2=4n
6L - 16u2 ]
107 ¢ - - ) E
i T (/Inn)p I ]
A F I I ]
10 3 . E
I I
102 L 1 - 1 ol 1 L L L L L
1 3 5 7 9 para 16 1/Inn

Figure 1: The median number of fitness evaluations (with the first and third quartiles) of the
original ¢cGA with different p (logy 1 € {1,2,...,10}), the parallel-run ¢cGA (“para”), and
the smart-restart cGA with two budget factors (b = 16 and b = 1/Inn) on the ONEMAX
function (n = 100) under Gaussian noise with variances 02 = 0,n/2,n,2n,4n in 20 inde-
pendent runs (10 runs for the original cGA).

i (resulting in much larger ranges of the runtimes), cannot detect this bimodal runtime
behavior.

For LEADINGONES, we observe a more pronounced optimal value for p. Reducing p
below this level leads to a clear increase of the runtime, typically at least by a factor of
10 for each halving of p (which is still less drastic than for ONEMAX or JuMP functions).
Interestingly, the optimal population size is relatively independent from the noise level (say
compared to the ONEMAX results). We have no explanation for this.

For JumP functions, the optimal p-value is again less pronounced, however reducing
the population size p below the efficient values immediately gives a catastrophic increase
of the runtime, almost always leading to all runs being stopped because the maximum
number of generations is reached. In the very narrow transition regime between efficient and
catastrophic optimization, we observe large variances of the runtime. This could indicate
that there is not a continuous increase of the typical runtime, but rather an increase of the
probability that a run enters an unfavorable situation, e.g., caused by genetic drift.

We recall that we ran the parameter-less versions of the algorithm without a termination
criterion (since they always found the optimum), so it is for this reason that some of these
runtimes appear larger than those for small static values of u (which were just stopped after
nk/2 = 50° = 312,500,000 iterations, i.e., 6.25 - 10°® fitness evaluations, when not optimum
was found before that).

The runtime behavior on DECEPTIVELEADINGBLOCKS is harder to understand. There
is a clear “linear regime” from p = 2% or p = 2'° on, again with very small variances.
There is also a steep increase of the runtimes roughly starting at 2%, In between these

23



ZHENG AND DOERR

Runtime for solving the LeadingOnes function, n=50

10 E T T T
i +4%=0
109;, o*=n/2 |
£ _I_0_2=n
108k +o?=2n |
: +o2=4n
[ o 2
. 164 |
10" F o 2 E
(1/Inn)p I ]
10°F :
E I i ]
I 1
10° ¢ I : 1
— I
l04 I . I I I
1 3 5 7 9 para 16 1/lnn

Figure 2: The median number of fitness evaluations (with the first and third quartiles) of the
original ¢cGA with different p (logy 1 € {1,2,...,10}), the parallel-run ¢cGA (“para”), and
the smart-restart cGA with two budget factors (b = 16 and b = 1/Inn) on the LEADING-
ONES function (n = 50) under Gaussian noise with variances o = 0,n/2,n,2n,4n in 20
independent runs (10 runs for the original cGA).

two regimes, the runtime behavior is hard to understand. The noisy runs show a small
increase of the runtime in this middle regime together with slightly increased variances.
The noise-free runs, however, are massively slower than the noisy ones, with large variances
and a decent number of unsuccessful runs. We have no explanation for this.

Apart from the runtimes on DECEPTIVELEADINGBLOCKS (though to some extent also
here, namely in the noisy runs), our results indicate a runtime behavior as described in
Assumption (L). We have no proof for the fact that this behavior is caused by the effect of
genetic drift and such a proof is most likely not easy to give. For this work, however, such
a proof is not indispensable — what counts is that our understanding of genetic drift led to
the development of the smart-restart scheme, which both in mathematical runtime analyses
and in experiments showed a good performance and this is without the need to tune the
hypothetical population size of the cGA (which is, in turn, indispensable when using static
parameters as shown by our experiments).

As a side result, this data confirms that the cGA has a good performance on noise-free
JUMP functions, not only in asymptotic terms as proven in (Hasenohrl and Sutton, 2018;
Doerr, 2021), but also in terms of actual runtimes for concrete problem sizes. On a JuMP
function with parameters n = 50 and k& = 10, a classic mutation-based algorithm would run
into the local optimum and from there would need to generate the global optimum via one
mutation. For standard bit mutation with mutation rate %, this last step would take an

expected time of n*(-)"* which for our values of n and k is approximately 2.2 - 1017.

n—

With the asymptotically optimal mutation rate of % determined in (Doerr et al., 2017), this

24



FROM UNDERSTANDING GENETIC DRIFT TO A SMART-RESTART MECHANISM FOR EDAS

Runtime for solving the Jump function, (n,k)=(50,10)

10 7
v -
10"¢ 5
107 ¢ E
e !
10°F 02=n/2 3
; _I_o'zzn
07 o2 -- ,,
_I_O'2=4n J_
6 4
1075 =~ 1642
== (1/In n)p?
]05 1 1 1 1 I I I I
10 12 14 16 18 para 16 1/lnn

Figure 3: The median number of fitness evaluations (with the first and third quartiles) of
the original cGA with different p (log, 1o € {9,10,...,18}), the parallel-run cGA (“para”),
and the smart-restart cGA with two budget factors (b = 16 and b = 1/Inn) on the Jump
function with (n, k) = (50, 10) under Gaussian noise with variances 02 = 0,n/2,n,2n, 4n in
20 independent runs (10 runs for the original cGA).

time would still be approximately 7.3 - 10'°. In contrast, the median optimization time of
the cGA with p € 2115-18) is always below 4 - 106,

Our data also indicates that a good performance of the cGA can often be obtained with
much smaller population sizes (and thus more efficiently) than what previous theoretical
works suggest. For example, in (Friedrich et al., 2017) a population size of w(o?y/nlogn)
was required for the optimization of a noisy ONEMAX function via the ¢cGA. In their exper-
iments on a noisy ONEMAX function with n = 100 and 2 = n, a population size (called K
in (Friedrich et al., 2017) to be consistent with some previous works) of u = 7o2/n(Inn)? ~
148,000 was used, which led to a runtime of approximately 200,000 (data point for o2 = 100
interpolated from the two existing data points for 02 = 64 and 0> = 128 in the left chart of
Figure 1 in (Friedrich et al., 2017)). In contrast, our experiments displayed in Figure 1 sug-
gest that population sizes between 64 and 256 are already well sufficient and give runtimes
clearly below 20,000.

We have to admit that we do not fully understand this number 200,000 from (Friedrich
et al., 2017) and expect that it should be much larger. Our skepticism is based both on
theoretical and experimental considerations. On the theoretical side, we note that even
in the absence of noise and with the frequency vector having the (for this purpose) ideal
value 7 = (3,...,3), the sum |||y of the frequency values increases by an expected value
of O(i\/ﬁ) only (with small leading constant; an absolute upper bound of i\/ﬁ follows,
e.g., easily from (Berend and Kontorovich, 2013)). Hence after only 200,000 iterations,
the frequency sum ||7|; should still be relatively close to n/2. Since the probability to
sample the optimum is [[}*;(1 — ;) < exp(—||7|1), it appears unlikely that the optimum

25



ZHENG AND DOERR

Runtime for solving the DLB function, n=30
i +2=0
100 o°=n/2

: +o?=n
~+¢%=0n ]
-~ | Ho%=4n 3
g - 16;12 ]
177 (1/In n)p2

2 5 8 11 14 para 16 1/Inn

Figure 4: The median number of fitness evaluations (with the first and third quartiles) of
the original cGA with different p (logy p € {1,2,...,14}), the parallel-run ¢cGA (“para”),
and the smart-restart ¢cGA with two budget factors (b = 8 and b = 0.5/lnn) on the
DECEPTIVELEADINGBLOCKS function (n = 30) under Gaussian noise with variances 0% =
0,n/2,n,2n,4n in 20 independent runs (10 runs for the original cGA).

is sampled within that short time. Our experimental data displayed in Figure 1 suggests
an affine-linear dependence of the runtime on p when p is at least 28. From the median
runtimes for p = 2% and p = 2'0, which are Ty = 24,384 and Tjo = 48,562, we would
thus estimate a runtime of T'(u) = Ty + (T10 — To) (i — 22)27 for p > 210, in particular,
T(70%\/n(Inn)?) = 7,010,551 for the data point 0? = 100 and n = 100. To resolve this
discrepancy, we conducted 20 runs of the cGA with p = [70?\/n(Inn)? + §], o2 = 100,
n = 100 and observed a median runtime of 5,728,969 (and a low variance, in fact, all 20
runtimes were in the interval [5,042,714;6,131,522]). So most likely, the number of 200,000
given in (Friedrich et al., 2017) is not correct, and the price for the large value of u is
significantly larger than what the 200,000 suggests.

5.3 Experimental Results and Analysis II: Runtimes of the Parallel-Run cGA
and the Smart-Restart cGA

The three right-most items on the z-axis in Figures 1-4 show the runtimes of the parallel-
run cGA and the smart-restart cGA (with two budget factors b). Figures 1-4 also plot the
two budgets (number of fitness evaluations) 16u? and (1/Inn)u? corresponding to b = 16
and 1/Inn respectively.

The intersection point of the runtime curve of the cGA and the budget curve is a good
indication for the p-value with which the smart-restart cGA finds the optimum, and thus it is
also a good indication for the runtime of the smart restart cGA. For example, the smallest u
such that the 162 curve is above the noiseless LEADINGONES curve is 1 = 2°. Consequently,

26



FROM UNDERSTANDING GENETIC DRIFT TO A SMART-RESTART MECHANISM FOR EDAS

we expect the smart-restart cGA with budget factor 16 to not find the optimum of the
noiseless LEADINGONES functions in the runs with = 2,4, 8,16, but only in the run with
u = 32. For this reason, the runtime of this smart-restart cGA should be equal to the
runtime of the original cGA with p = 32 plus 16 - 22 + 16 - 42 + 16 - 82 4 16 - 162 = 5440,
which fits roughly to our experimental data.

We note that for most runtime curves of the classic cGA, the intersection points with the
budget curves are in the linear regime, which means that the corresponding smart-restart
cGA avoids spending much time in the inefficient genetic drift regime. Some intersection
points, e.g., those for the (1/In(n))u? budget in the LEADINGONES figure, are far in the
linear regime. This indicates that the corresponding smart restart cGA misses the better
(smaller) p-values that are already outside the genetic drift regime. As the curves for the
original cGA and the performances of the smart-restart cGA show, the performance loss
of this miss is not too large. It is clearly much less than the catastrophic performance loss
from running the cGA in the regime with strong genetic drift.

In more detail, we see that for the easy functions ONEMAX and LEADINGONES under
all noise assumptions, the smart-restart cGA with both values of b has a smaller runtime
than the parallel-run ¢GA. This can be explained from the runtime data of the original cGA
in the corresponding figures: Since the runtimes are similar for several population sizes, the
parallel-run cGA with its strategy to assign a similar budget to different population sizes
wastes computational power, which the smart-restart cGA saves by aborting some processes
early and not starting others. For both functions, the larger budget factor typically is
superior. This fits again to the data on the original cGA, where we see the smaller budget
factor curve intersecting the runtime curve clearly in the linear regime.

More interesting are the results for JuMP and DECEPTIVELEADINGBLOCKS. We recall
that here a wrong choice of the population size can be catastrophic, so these are the two
functions where not having to choose the population size is a big advantage for the user.
What is clearly visible from the data is that here the smaller budget factor is preferable for
the smart-restart cGA. This fits our previously gained intuition that for these two functions,
genetic drift is detrimental. Hence there is no gain from continuing a run that is suffering
from genetic drift (we note that there is no way to detect genetic drift on the fly — a frequency
can be at a (wrong) boundary value due to genetic drift or at a (correct) boundary value
because of a sufficiently strong fitness signal).

What is clear as a general rule is that both algorithms, the parallel-run ¢cGA and the
smart-restart ¢cGA with the small fitness evaluation budget factor, clearly do a good job
in successfully running the ¢cGA with a reasonable population size — recall that for both of
the difficult functions, a wrong choice of the population size can easily imply that the cGA
does not find the optimum in 10® iterations.

6. Smart-Restart PBIL (Cross-Entropy Algorithm)

To see how smart-restart EDAs perform on combinatorial optimization problems and also
to discuss a third EDA in this work, we now conduct an experimental analysis of population-
based incremental learning (PBIL) (cross-entropy algorithm) on two optimization problems
it was applied to in the literature. For comparison, two other restart strategies originally
designed for evolutionary algorithms are also adapted to PBIL and implemented.

27



ZHENG AND DOERR

6.1 Smart-Restart Population-Based Incremental Learning (Smart-Restart
Cross-Entropy)

Besides the cGA and UMDA, in (Doerr and Zheng, 2020b) also a theoretical analysis of
the boundary hitting time caused by genetic drift in the algorithm PBIL (Baluja, 1994;
Baluja and Caruana, 1995) was conducted. This algorithm is identical to the basic version
of the cross-entropy (CE) algorithm for discrete optimization (Costa et al., 2007; De Boer
et al., 2005).%> It further includes the UMDA (Miihlenbein and Paass, 1996) and the -
max-min ant system (A-MMAS) (Stiitzle and Hoos, 2000), a classic ant colony optimization
algorithm, as special cases.

The general procedure of PBIL is to sample A individuals and select p best individuals
to learn the current probabilistic model with learning rate p. An alternative parameteri-
zation, which we shall also prefer to ease the comparison with previous works, is to have
as parameters (besides the learning rate p) the sample size A and the selection pressure 7,
which define p via g = [pA]. Similar to the other EDAs regarded in this work, we also use
the artificial margins {1/n,1 — 1/n} to prevent a premature convergence. The pseudocode
of this algorithm is given in Algorithm 5.

Algorithm 5 The algorithm PBIL (with learning rate p, sample size A, and selection
pressure 77) to maximize a function f: {0,1}" - R
L= e
2: forg=1,2,... do
%%Sample A individuals X{,... XY

3 fori=1,2...,\do

4: for j=1,2,...,ndo

5: X} ; « 1 with probability p]gfl and X7, « 0 with probability 1 — p§771
6: end for

7:  end for

%% Update of the frequency vector
8:  Let X{,..., X7 be the best 4 = [nA] individuals (ties broken randomly)

- P =L X+ (1t
10:  p? = min{max{%,p'} 1 -1}

11: end for

Recall that (Doerr and Zheng, 2020b, Theorem 3) proved that for PBIL, the frequency
of a neutral bit moves out of the interval (cﬁ, 1—- cﬁ) for a constant c € (%, %) in at most

16 p 16 pA
2—1/c p? 2—1/c p?
tion. With the notation of the selection pressure n = p/A and by Markov’s inequality, the

generations in expectation, that is, at most fitness evaluations in expecta-

3. We point out a possible tiny difference between PBIL and CE. According to the algorithm description
of the CE algorithm in (Costa et al., 2007) and in the textbook (Rubinstein and Kroese, 2004, Algo-
rithm 2.4.1), the CE algorithm selects all individuals with fitness at least the fitness of the p-th best
solution for the model update, whereas PBIL selects exactly u best solutions breaking possible ties at
random. However, the code provided in (Rubinstein and Kroese, 2004, Page 275) and also the recent
pseudocode in (Wu et al., 2017, Algorithm 1) both have a fixed cutoff (and they do not discuss the
problem of tie-breaking; more precisely, the tie-breaking is determined by how the sorting routine breaks
the ties; since we are talking about random samples, it is clear anyway that the tie-breaking is not
important). Given this state of the art, we prefer to think of the CE algorithm as also working with a
fixed cutoff, and thus say that PBIL and CE are identical, as also said in (Krejca and Witt, 2020b).

28



FROM UNDERSTANDING GENETIC DRIFT TO A SMART-RESTART MECHANISM FOR EDAS

probability that a boundary is reached in bA?,b > %, fitness evaluations, is at least
1— 167

=1/ Hence, it fits into the framework of the smart-restart mechanism as discussed
in Section 3. We thus obtain a smart-restart PBIL by letting the smart-restart mechanism
control the parameter A and keeping the parameters p and 7 fixed.

6.2 Other Restart Strategies

In Section 1, we mentioned several other generic strategies to remove the population size as
a parameter of an algorithm. The two most interesting restart strategies among these shall
be included in our experimental investigation, namely the classical strategy from (Harik
and Lobo, 1999) (we only consider the first strategy of that work as the other strategy
is a parallel-run strategy) and the well-cited strategy of Auger and Hansen (2005). Both
restart strategies are not originally designed for an EDA, hence we need to adapt them to
the PBIL.

The first strategy of Harik and Lobo (1999) restarts a crossover-based genetic algorithm
when all individuals have become identical. As a reasonable analog for PBIL, we take the
criterion that all entries of the probabilistic model p? are at the boundaries or close to them.
More precisely, when using the frequency margins {1/n,1 — 1/n}, the restart criterion is
that for all ¢ = 1,...,n, we have p/ € {1/n,1 — 1/n}. For PBIL without margins, we
conduct a restart when p! € (0,1/n?) U (1 —1/n% 1) for all i = 1,...,n. Note that we
cannot set all p! € {0,1} as the criterion for PBIL without margins, since the frequencies
in a run of PBIL never reach (but approach) 0 or 1 for sufficiently large n.

The strategy of Auger and Hansen (2005) contains five criteria to trigger a restart with
a larger population size for the CMA-ES. Four of the five relate to the covariance matrix or
the evolution path and thus are specific to CMA-ES. For these, we did not find a natural
analog for EDAs. Hence in our analysis for the PBIL, we only discuss their criterion related
to the fitness. Here a restart is triggered if the range of the best fitnesses among the last
L =10+ [30n/\] iterations is zero or the range of these best fitnesses and the best fitnesses
in the current iteration is below a predefined threshold e. Algorithm 6 gives the pseudocode
for these two restart strategies (adapted to PBIL). We use HL and AH as shorthands for
the two strategies.

Algorithm 6 Two adapted restart mechanisms from (Harik and Lobo, 1999; Auger and
Hansen, 2005) with update factor U applied to an algorithm A with parameter A for the
maximization of a function f: {0,1}" — R.
1: for /=1,2,... do
2:  Run A with parameter value A\, = 2U°~! for arbitrarily long time on the maximization prob-
lem f until one of the following situations happens.

e For HL, at a certain iteration g, for alli = 1,...,n, p/ € {1/n,1—1/n} for A with margins
or pf € (0,1/n?)U (1 —1/n%1) for A without margins

e For AH, at a certain iteration g, maxV — minV = 0 or maxV’' — min V' < ¢ where
V={vs=L .. 0971}, V' =V UVY, L is the predefined memory size, v* is the best fitness
value at generation ¢, and VY is the samples at the generation g

3: end for

29



ZHENG AND DOERR

We note a central difference between our restart strategy (Algorithm 4) and the two
from Algorithm 6. Our smart-restart strategy stops each parameter trial when a prespec-
ified computational budget (based on a general understanding of genetic drift in EDAs) is
reached. In contrast, HL and AH try to detect on the fly when a situation is reached from
which further progress appears difficult.

6.3 Experiments on Two Combinatorial Problems

We empirically test the smart-restart PBIL on two combinatorial problems, namely the max-
cut problem and the bipartition problem in the settings used in the textbook (Rubinstein
and Kroese, 2004). We recall that our focus is to understand how effective the smart-restart
scheme is in finding an efficient value for the sample size A\. For that reason, we conduct
experiments with the PBIL/CE algorithm as proposed in (Rubinstein and Kroese, 2004)
and with our smart-restart version of it, but we do not regard other EDAs. We also regard
the two other restart mechanisms discussed above.

6.3.1 OPTIMIZATION PROBLEMS

Now we briefly introduce the two problems regarded in this section. Both were used in the
textbook (Rubinstein and Kroese, 2004) to demonstrate the power of the CE algorithm.

In the maz-cut problem, the input consists of an undirected graph G = (V, E) together
with edge weights w : E — R. The target is to find a partition (V1, V2) of the node set
V such that the sum of the weights of the edges from V; to Vs is maximized. The max-
cut problem is NP-complete and APX-hard. The best known approximation algorithm
is a 0.878-approximation algorithm based on semi-definite programming by Goemans and
Williamson (1995).

In the bipartition problem, we are given the same input data, but now in addition
the sizes of V3 and V, are prescribed. Again, the target is to maximize the sum of the
weights of the edges from V; to V5. This problem is again NP-complete and APX-hard. An
approximation algorithm with minimally weaker approximation ratio than the Goemans-
Williamson algorithm for the max-cut problem was given by Austrin et al. (2016).

Both problems can easily be modeled as pseudo-Boolean optimization problems. For
both, Rubinstein and Kroese (2004) propose synthetic problem instances with clear struc-
tures so that the unique optimal solution is known in advance. The precise details are not
important to understand the remainder, so we omit the details and refer the interested
reader to (Rubinstein and Kroese, 2004, Pages 46-49) for the max-cut problem and (Rubin-
stein and Kroese, 2004, Pages 145-147) for the bipartition problem.

6.3.2 EXPERIMENTAL SETTINGS

In all our experiments, we use the problems as proposed and modeled in Rubinstein and
Kroese (2004). In our implementation of the core PBIL, we use the Matlab code provided
in (Rubinstein and Kroese, 2004, Pages 274-276). This code is formulated for the max-
cut problem. For the bipartition problem, in addition we use our own implementation of
the random partition generation algorithm (Rubinstein and Kroese, 2004, Algorithm 4.6.1)
(since no code for this algorithm is given in Rubinstein and Kroese (2004)). This algo-
rithm is used to sample a partition with prescribed sizes of the partition classes and given

30



FROM UNDERSTANDING GENETIC DRIFT TO A SMART-RESTART MECHANISM FOR EDAS

marginal distributions, which is the only difference between the PBIL for the max-cut and
the partition problem.

We note that the Matlab code in (Rubinstein and Kroese, 2004, Pages 274-276) does
not use the artificial margins. We speculate that their absence did not create problems
because of the relatively large population sizes used in their experiments. As discussed in
Section 2.1.1, the artificial margins {1/n,1—1/n} are usually utilized to avoid the frequencies
reaching the absorbing boundaries 0 or 1. To obtain a complete picture, we shall conduct
experiments both with and without margins.

We use the following settings, again taken from (Rubinstein and Kroese, 2004).

e Max-cut problem: We use a problem size of n = 400. For the PBIL, the learning
rate is p = 1, the selection pressure is 7 = 0.1, and the sample size is A = 1,000. These
are the settings from (Rubinstein and Kroese, 2004, Table 2.3), where we note that
the notation there writes («, p, N) where we use (p,n, A).

e Bipartition problem: We use a problem size of n = 600. For the algorithm param-
eters, we use p = 0.7, n = 0.01, and A = 6,000 as in (Rubinstein and Kroese, 2004,
Table 4.7).4

In the experiments with the smart-restart PBIL, we used the PBIL kernel as above
(with the same values for p and 7), and only the value of A was set via the smart-restart
mechanism. The following shows the hyperparameter choices for the smart-restart PBIL,
which were identical for both optimization problems.

e Update factor U: We used the same (natural) value U = 2 as in our experiments
with the smart-restart cGA.

e Budget factor b: We used the two factors b = 96pi2 and b = GPQI% (depending on

the values of n and p as used in the PBIL kernel). That is, b = 96 - % = 9.6 and
621 =0.6/Inn asn = 0.1 and p = 1 for PBIL on the max-cut problem (Rubinstein

12Inmn

and Kroese, 2004, Table 2.3), and b = 96% = Z—S and 60%01%1” = 49?nn as n = 0.01
and p = 0.7 for the bipartition problem (Rubinstein and Kroese, 2004, Table 4.7).
The motivation for these choices is as follows. We recall that in our experiments on
the smart-restart cGA, we chose the budget factor b = 16 so that the probability
of detecting the genetic drift is at least 1/2. We chose b = 1/Inn since the order
©(1/logn) allows a union bound over all n frequencies, and we chose the precise
value b = 1/In(n) based on preliminary experiments. For smart-restart PBIL, to

ensure a detection probability of at least 1/2, we set b = % as discussed in

Section 6.1. For the ¢ € (1/2,1/4/2), we chose ¢ = 3/5 as roughly the middle point in

this interval. This explains our choice b = % = 96%. Since this first value of b

is 6/)% times the 16, the first value for smart-restart cGA, for reasons of comparability

we set the second value of b also 6% times 1/Inn (the second value of b for the
smart-restart ¢cGA), that is, 6;;21%'

4. (Rubinstein and Kroese, 2004, Table 4.7) does not specify the value of p, so we used p = 0.7 as specified
in the preceding table (Rubinstein and Kroese, 2004, Table 4.6).

31



ZHENG AND DOERR

All algorithms were terminated only when the optimum is found.

In the experiments with the two restart mechanisms discussed in Section 6.2, we used
the same PBIL kernel with the same (7, p) and initial A = 2 as in the experiments with the
smart-restart PBIL. For the AH restart strategy, the memory size L = 10 + [30n/A] and
the threshold ¢ = 107!2 are set as in the original paper (Auger and Hansen, 2005) (their
notation for € is Tolfun). Since in our experiments the runs with AH (when using frequency
margins) took extremely long, in our experiments we terminate the algorithm the first time
the number of fitness evaluations exceeds 1.5 x 107 for the max-cut problem, and 3 x 10 for
the bipartition problem. We note that in our experiments, all 20 runs of our smart-restart
PBIL (with or without margins) reached the optimum within these limits.

6.3.3 EXPERIMENTAL RESULTS AND ANALYSES

Figure 5 shows the runtimes (measured by the number of fitness evaluations) of the original
PBIL with margins, our smart-restart PBIL with margins, and HL with margins, utilizing
the settings described above. We did not plot AH with margins as it fails to reach the global
optimum in all 20 runs. We easily see a good performance of our smart-restart PBIL. For
example, in terms of the median runtime (the red line in each box), the smart-restart
PBIL with both values for b has a smaller runtime than the PBIL with the population
size suggested in (Rubinstein and Kroese, 2004) for both problems, and better than the
HL for the max-cut problem. For the bipartition problem, the smart-restart PBIL with
smaller b shows a clear superiority over the HL. We notice the large variances for b = 96pi2
for the bipartition problem and b = 6;;21#71 for the max-cut problem, but we have no
explanation for these. These variances, however, do not change our general impression
that the smart-restart approach is generally preferable over using fixed parameters with the
values suggested in (Rubinstein and Kroese, 2004).

To understand the influence of using frequency margins, we collect the median results
among 20 independent runs of the different algorithms without margins in Table 1. For
comparison, we also record the results from the runs with margins from Figure 5. From
Table 1, we deduce that the (common) usage of the margins is usually beneficial also for this
problem setting, with the exception of the AH strategy. For AH, a restart is triggered when
for a certain time interval no or only small fitness changes are observed. Here, apparently,
margins are not helpful as they prevent the samples from becoming too similar. We note
that also without margins, our smart-restart PBIL succeeds in finding the optimum, albeit
with larger runtimes. The runtime increase is most drastic for the larger budget factor as
here more time is spent in a run, hence more time is lost, when a frequency due to genetic
drift has reached the wrong boundary value.

When not using frequency margins, the ranking of the four algorithms is the same for
both combinatorial problems: The smart-restart strategy with small b performs best, then
HL, AH, and the smart-restart strategy with the large b. This is somewhat intuitive when
recalling the ideas behind these strategies. The smart-restart strategy with small b tries to
estimate the first time when some frequency reaches a boundary due to genetic drift. HL
restarts when all frequencies have actually reached the boundaries. AH restarts when only
small fitness changes happen in fixed-length intervals of iterations (where we recall that the
original AH strategy contained four more criteria that were specific to the CMA-ES). The

32



FROM UNDERSTANDING GENETIC DRIFT TO A SMART-RESTART MECHANISM FOR EDAS

«10* Max-cut «10% Bipartition

‘ 16
_I_ —
14| ! 1
257 — :
12 ¢ 1 1
T 1
1
2f|—:'—| - 11 10 | $
1
1
I . gt [ ]
15+t ! . _
6 |
o 4L
1’ J 4’ 1 1
= . L
4 2, L i
o> o \ o> oof \
RS S » RS S\ »
SRS S SRR

Figure 5: Boxplots of runtimes of the original PBIL (with margins), the smart-restart PBIL
(with margins) with two budget factors (b = 96-} and 6_5{ ), and HL-restart PBIL (with
margins) on the max-cut problem (n = 400) (Rubinstein and Kroese, 2004, Table 2.3) and
bipartition problem (n = 600) (Rubinstein and Kroese, 2004, Table 4.7) in 20 independent

runs.

smart-restart strategy with large b tries to estimate the time when a fixed frequency (hence
also the typical frequency) reaches the boundaries. In this light, it is natural that the smart-
restart strategy with a small budget factor performs better than the one with a large factor
as it suffices that a single frequency is stuck at the wrong boundary to prevent finding the
optimum. The fact that the HL strategy of checking whether all frequencies have reached
a boundary performs relatively well, could suggest that the estimates of the smart-restart
strategy with a small budget are still relatively conservative, and that possibly a restart
could have been triggered even earlier. It is not totally surprising that the general fitness-
dependent AH strategy has a harder stand than the strategies based on the mechanics of
EDAs (but, as said, the original AH strategy was designed for the CMA-ES and included
criteria exploiting the mechanics of the CMA-ES).

Similar to the results in Section 5, we observe that our smart-restart PBIL with the
smaller budget clearly achieves very good runtimes, no matter with or without margins.

7. Conclusion

Choosing the parameters that control the genetic drift of estimation-of-distribution algo-
rithms is one of the key difficulties for the practical usage of EDAs. To overcome this

33



ZHENG AND DOERR

Table 1: The median runtime for original, smart-restart, HL-restart, and AH-restart PBIL
with and without margins on the max-cut and bipartition problems in 20 independent runs.
The minimal median runtimes are in the bold font. 5 of 20 runs for the original PBIL without
margins on the max-cut failed to find the optimum due to reaching the wrong boundaries.
All 20 runs of the AH-restart PBIL with margins cannot reach the global optimum within
the maximal number of the function evaluations.

Problem  Margins PBIL b= 96#2 b= 6{)21#” HL AH
Max-cut With 19,000 8,908 8,430 19,932 > 1.5 x 107

Without 20,000 849,292 19,182 20,268 119,900
Bipartition With 84,000 58,376 26,942 45,665 >3 x 10°
Without 84,000 702,344 26,430 61,838 221,161

difficulty, we proposed a smart-restart mechanism that removes this parameter from the
algorithm. Our mechanism is a simple restart strategy with exponentially growing popu-
lation size, but different from previous works it sets a prior fitness evaluation budget for
each population size based on a recent quantitative analysis estimating when genetic drift
is likely to occur.

Under a reasonable assumption on how the runtime depends on the population size, we
theoretically analyzed our scheme and observed that it can lead to asymptotically optimal
runtimes for the cGA and the UMDA.

Via extensive experiments on ONEMAX, LEADINGONES, JuMP, and DECEPTIVELEAD-
INGBLOCKS, we showed the efficiency of the smart-restart cGA, also when compared with
the parallel-run ¢cGA. The results for the original cGA with different population sizes ex-
perimentally show that the population size is crucial for the performance of the cGA and
that the theoretically suggested population size can be far away from the right one.

We also applied our smart-restart mechanism to the PBIL on two combinatorial prob-
lems. Our experiments showed again the efficiency of the smart-restart PBIL compared to
the PBIL with the original settings and other restart strategies.

The problem of how to cope with genetic drift, naturally, is equally interesting for mul-
tivariate EDAs such as (Bonet et al., 1996; Pelikan and Miihlenbein, 1999; Miihlenbein
and Mahnig, 1999; Harik et al., 2006; Probst and Rothlauf, 2020). For these, however, our
theoretical understanding is limited to very few results such as (Zhang and Miihlenbein,
2004; Lehre and Nguyen, 2019; Doerr and Krejca, 2023). In particular, a quantitative un-
derstanding of genetic drift comparable to (Doerr and Zheng, 2020b) is completely missing.
Another interesting question is if dynamic choices of the population size in EDAs can be
fruitful. In classic EAs, dynamic parameter choices have recently been used very success-
fully to overcome the difficulty of finding a suitable static parameter value, see, e.g., the
survey (Doerr and Doerr, 2020). How to use such ideas for EDAs is currently not at all
clear.

34



FROM UNDERSTANDING GENETIC DRIFT TO A SMART-RESTART MECHANISM FOR EDAS

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No.
62306086), Science, Technology and Innovation Commission of Shenzhen Municipality
(Grant No. GXWD20220818191018001), Guangdong Basic and Applied Basic Research
Foundation (Grant No. 2019A1515110177).

This work was also supported by a public grant as part of the Investissement d’avenir
project, reference ANR-11-LABX-0056-LMH, LabEx LMH.

This work has profited from many scientific discussions at the Dagstuhl Seminar
22081 “Theory of Randomized Optimization Heuristics” and the Dagstuhl Seminar 22182
“Estimation-of-Distribution Algorithms: Theory and Applications”.

References

Denis Antipov and Benjamin Doerr. A tight runtime analysis for the (1 + A) EA. Algorith-
mica, 83:1054-1095, 2021.

Denis Antipov, Benjamin Doerr, and Vitalii Karavaev. A rigorous runtime analysis of the
(I4+ (A, A)) GA on jump functions. Algorithmica, 84:1573-1602, 2022.

Anne Auger and Nikolaus Hansen. A restart CMA evolution strategy with increasing popu-
lation size. In IEEE Congress on Fvolutionary Computation, CEC 2005, volume 2, pages
1769-1776. IEEE, 2005.

Per Austrin, Siavosh Benabbas, and Konstantinos Georgiou. Better balance by being biased:
a 0.8776-approximation for max bisection. ACM Transactions on Algorithms, 13, 2016.

Shumeet Baluja. Population-based incremental learning: A method for integrating genetic
search based function optimization and competitive learning. Technical report, Carnegie
Mellon University, 1994.

Shumeet Baluja and Rich Caruana. Removing the genetics from the standard genetic
algorithm. In International Conference on Machine Learning, ICML 1995, pages 38—46.
Morgan Kaufmann, 1995.

Daniel Berend and Aryeh Kontorovich. A sharp estimate of the binomial mean absolute
deviation with applications. Statistics and Probability Letters, 83:1254-1259, 2013.

Jeremy S. De Bonet, Charles Lee Isbell Jr., and Paul A. Viola. MIMIC: finding optima by
estimating probability densities. In Advances in Neural Information Processing Systems,
NIPS 1996, pages 424-430. MIT Press, 1996.

Siintje Bottcher, Benjamin Doerr, and Frank Neumann. Optimal fixed and adaptive muta-
tion rates for the LeadingOnes problem. In Parallel Problem Solving from Nature, PPSN
2010, pages 1-10. Springer, 2010.

Jiirgen Branke, Clemens Lode, and Jonathan L. Shapiro. Addressing sampling errors and
diversity loss in UMDA. In Genetic and Evolutionary Computation Conference, GECCO
2007, pages 508-515. ACM, 2007.

35



ZHENG AND DOERR

Andre Costa, Owen Dafydd Jones, and Dirk Kroese. Convergence properties of the cross-
entropy method for discrete optimization. Operations Research Letters, 35:573-580, 2007.

Duc-Cuong Dang, Tobias Friedrich, Timo Ko6tzing, Martin S. Krejca, Per Kristian Lehre,
Pietro S. Oliveto, Dirk Sudholt, and Andrew M. Sutton. Escaping local optima with di-
versity mechanisms and crossover. In Genetic and Evolutionary Computation Conference,

GECCO 2016, pages 645-652. ACM, 2016.

Duc-Cuong Dang, Per Kristian Lehre, and Phan Trung Hai Nguyen. Level-based analysis
of the univariate marginal distribution algorithm. Algorithmica, 81:668-702, 2019.

Pieter-Tjerk De Boer, Dirk P. Kroese, Shie Mannor, and Reuven Y. Rubinstein. A tutorial
on the cross-entropy method. Annals of Operations Research, 134:19-67, 2005.

Benjamin Doerr. Analyzing randomized search heuristics via stochastic domination. Theo-
retical Computer Science, 773:115-137, 2019.

Benjamin Doerr. The runtime of the compact genetic algorithm on Jump functions. Algo-
rithmica, 83:3059-3107, 2021.

Benjamin Doerr. Does comma selection help to cope with local optima? Algorithmica, 84:
1659-1693, 2022.

Benjamin Doerr and Carola Doerr. Theory of parameter control for discrete black-box
optimization: provable performance gains through dynamic parameter choices. In Ben-
jamin Doerr and Frank Neumann, editors, Theory of Fvolutionary Computation: Recent
Developments in Discrete Optimization, pages 271-321. Springer, 2020. Also available at
https://arxiv.org/abs/1804.05650.

Benjamin Doerr and Martin S. Krejca. Significance-based estimation-of-distribution algo-
rithms. IEEE Transactions on Evolutionary Computation, 24:1025-1034, 2020.

Benjamin Doerr and Martin S. Krejca. The univariate marginal distribution algorithm
copes well with deception and epistasis. Fvolutionary Computation, 29:543-563, 2021a.

Benjamin Doerr and Martin S. Krejca. A simplified run time analysis of the univariate
marginal distribution algorithm on LeadingOnes. Theoretical Computer Science, 851:
121-128, 2021b.

Benjamin Doerr and Martin S. Krejca. Bivariate estimation-of-distribution algorithms can
find an exponential number of optima. Theoretical Computer Science, 971:114074, 2023.

Benjamin Doerr and Marvin Kiinnemann. Optimizing linear functions with the (1 + \)
evolutionary algorithm—different asymptotic runtimes for different instances. Theoretical
Computer Science, 561:3-23, 2015.

Benjamin Doerr and Weijie Zheng. From understanding genetic drift to a smart-restart
parameter-less compact genetic algorithm. In Genetic and Evolutionary Computation
Conference, GECCO 2020, pages 805-813. ACM, 2020a.

36


https://arxiv.org/abs/1804.05650

FROM UNDERSTANDING GENETIC DRIFT TO A SMART-RESTART MECHANISM FOR EDAS

Benjamin Doerr and Weijie Zheng. Sharp bounds for genetic drift in estimation-of-
distribution algorithms. IEEFE Transactions on Evolutionary Computation, 24:1140-1149,
2020b.

Benjamin Doerr, Ashish Ranjan Hota, and Timo Ko&tzing. Ants easily solve stochastic
shortest path problems. In Genetic and Evolutionary Computation Conference, GECCO
2012, pages 17-24. ACM, 2012.

Benjamin Doerr, Huu Phuoc Le, Régis Makhmara, and Ta Duy Nguyen. Fast genetic
algorithms. In Genetic and Evolutionary Computation Conference, GECCO 2017, pages
777-784. ACM, 2017.

Benjamin Doerr, Carola Doerr, and Johannes Lengler. Self-adjusting mutation rates with
provably optimal success rules. Algorithmica, 83:3108-3147, 2021.

Stefan Droste. A rigorous analysis of the compact genetic algorithm for linear functions.
Natural Computing, 5:257-283, 2006.

Stefan Droste, Thomas Jansen, and Ingo Wegener. On the analysis of the (141) evolutionary
algorithm. Theoretical Computer Science, 276:51-81, 2002.

Tobias Friedrich, Timo Kétzing, and Martin S. Krejca. EDAs cannot be balanced and stable.
In Genetic and Evolutionary Computation Conference, GECCO 2016, pages 1139-1146.
ACM, 2016.

Tobias Friedrich, Timo Koétzing, Martin S. Krejca, and Andrew M. Sutton. The compact
genetic algorithm is efficient under extreme Gaussian noise. IEEE Transactions on Evo-
lutionary Computation, 21:477-490, 2017.

Josselin Garnier, Leila Kallel, and Marc Schoenauer. Rigorous hitting times for binary
mutations. Evolutionary Computation, 7:173-203, 1999.

Christian Gieflen and Timo Ko6tzing. Robustness of populations in stochastic environments.
Algorithmica, 75:462-489, 2016.

Michel X. Goemans and David P. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. Journal of the
ACM, 42:1115-1145, 1995.

Brian W. Goldman and William F. Punch. Parameter-less population pyramid. In Genetic
and Evolutionary Computation Conference, GECCO 201/, pages 785-792. ACM, 2014.

Georges R. Harik and Fernando G. Lobo. A parameter-less genetic algorithm. In Ge-
netic and Evolutionary Computation Conference, GECCO 1999, pages 258-265. Morgan
Kaufmann, 1999.

Georges R. Harik, Fernando G. Lobo, and David E. Goldberg. The compact genetic algo-
rithm. IEEE Transactions on Fvolutionary Computation, 3:287-297, 1999.

37



ZHENG AND DOERR

Georges R. Harik, Fernando G. Lobo, and Kumara Sastry. Linkage learning via probabilistic
modeling in the extended compact genetic algorithm (ECGA). In Scalable Optimization
via Probabilistic Modeling, pages 39—61. Springer, 2006.

Viaclav Hasendhrl and Andrew M. Sutton. On the runtime dynamics of the compact genetic
algorithm on jump functions. In Genetic and FEvolutionary Computation Conference,
GECCO 2018, pages 967-974. ACM, 2018.

Thomas Jansen, Kenneth A. De Jong, and Ingo Wegener. On the choice of the offspring
population size in evolutionary algorithms. Fvolutionary Computation, 13:413-440, 2005.

Martin Krejca and Carsten Witt. Theory of estimation-of-distribution algorithms. In Ben-
jamin Doerr and Frank Neumann, editors, Theory of Evolutionary Computation: Recent
Developments in Discrete Optimization, pages 405-442. Springer, 2020a. Also available
at https://arxiv.org/abs/1806.05392.

Martin S. Krejca and Carsten Witt. Lower bounds on the run time of the Univariate
Marginal Distribution Algorithm on OneMax. Theoretical Computer Science, 832:143—
165, 2020b.

Pedro Larranaga and José Antonio Lozano, editors. Estimation of Distribution Algorithms.
Springer, 2002.

Per Kristian Lehre and Phan Trung Hai Nguyen. On the limitations of the univariate
marginal distribution algorithm to deception and where bivariate EDAs might help. In
Foundations of Genetic Algorithms, FOGA 2019, pages 154-168. ACM, 2019.

Johannes Lengler, Dirk Sudholt, and Carsten Witt. The complex parameter landscape of
the compact genetic algorithm. Algorithmica, 83:1096-1137, 2021.

Claudio F. Lima and Fernando G. Lobo. Parameter-less optimization with the extended
compact genetic algorithm and iterated local search. In Genetic and Fvolutionary Com-
putation Conference, GECCO 2004, pages 1328-1339. Springer, 2004.

Andrei Lissovoi, Pietro S. Oliveto, and John Alasdair Warwicker. Simple hyper-heuristics
control the neighbourhood size of randomised local search optimally for LeadingOnes.
FEvolutionary Computation, 28:437-461, 2020.

Heinz Miihlenbein. How genetic algorithms really work: mutation and hillclimbing. In
Parallel Problem Solving from Nature, PPSN 1992, pages 15-26. Elsevier, 1992.

Heinz Miihlenbein and Thilo Mahnig. FDA — a scalable evolutionary algorithm for the
optimization of additively decomposed functions. Ewvolutionary Computation, 7:353-376,
1999.

Heinz Miihlenbein and Gerhard Paass. From recombination of genes to the estimation of
distributions I. Binary parameters. In Parallel Problem Solving from Nature, PPSN 1996,
pages 178—187. Springer, 1996.

38


https://arxiv.org/abs/1806.05392

FROM UNDERSTANDING GENETIC DRIFT TO A SMART-RESTART MECHANISM FOR EDAS

Pietro S. Oliveto, Dirk Sudholt, and Carsten Witt. Tight bounds on the expected runtime
of a standard steady state genetic algorithm. Algorithmica, 84:1603-1658, 2022.

Martin Pelikan and Tz-Kai Lin. Parameter-less hierarchical BOA. In Genetic and Evolu-
tionary Computation Conference, GECCO 2004, pages 24-35. Springer, 2004.

Martin Pelikan and Heinz Miihlenbein. The bivariate marginal distribution algorithm. In
Advances in Soft Computing, pages 521-535. Springer, 1999.

Martin Pelikan, Mark Hauschild, and Fernando G. Lobo. Estimation of distribution algo-
rithms. In Janusz Kacprzyk and Witold Pedrycz, editors, Springer Handbook of Compu-
tational Intelligence, pages 899-928. Springer, 2015.

Malte Probst and Franz Rothlauf. Harmless overfitting: Using denoising autoencoders in
estimation of distribution algorithms. Journal of Machine Learning Research, 21:1-31,
2020.

Amirhossein Rajabi and Carsten Witt. Self-adjusting evolutionary algorithms for multi-
modal optimization. Algorithmica, 84:1694-1723, 2022.

Jonathan E. Rowe and Aishwaryaprajna. The benefits and limitations of voting mechanisms
in evolutionary optimisation. In Foundations of Genetic Algorithms, FOGA 2019, pages
34-42. ACM, 2019.

Jonathan E. Rowe and Dirk Sudholt. The choice of the offspring population size in the
(1, A) evolutionary algorithm. Theoretical Computer Science, 545:20-38, 2014.

Reuven Y. Rubinstein and Dirk P. Kroese. The cross-entropy method: a unified approach to
combinatorial optimization, Monte-Carlo simulation, and machine learning, volume 133.
Springer, 2004.

Jonathan L. Shapiro. The sensitivity of PBIL to its learning rate, and how detailed bal-
ance can remove it. In Foundations of Genetic Algorithms, FOGA 2002, pages 115-132.
Morgan Kaufmann, 2002a.

Jonathan L. Shapiro. Scaling of probability-based optimization algorithms. In Advances in
Neural Information Processing Systems, NIPS 2002, pages 383-390. MIT Press, 2002b.

Jonathan L. Shapiro. Drift and scaling in estimation of distribution algorithms. Fvolutionary
Computing, 13:99-123, 2005.

Jonathan L. Shapiro. Diversity loss in general estimation of distribution algorithms. In
Parallel Problem Solving from Nature, PPSN 2006, pages 92-101. Springer, 2006.

Thomas Stiitzle and Holger H. Hoos. MAX-MIN ant system. Future Generation Computer
Systems, 16:889-914, 2000.

Dirk Sudholt. A new method for lower bounds on the running time of evolutionary algo-
rithms. IEEE Transactions on Evolutionary Computation, 17:418-435, 2013.

39



ZHENG AND DOERR

Dirk Sudholt. Analysing the robustness of evolutionary algorithms to noise: refined runtime
bounds and an example where noise is beneficial. Algorithmica, 83:976-1011, 2021.

Dirk Sudholt and Christian Thyssen. A simple ant colony optimizer for stochastic shortest
path problems. Algorithmica, 64:643-672, 2012.

Dirk Sudholt and Carsten Witt. On the choice of the update strength in estimation-of-
distribution algorithms and ant colony optimization. Algorithmica, 81:1450-1489, 2019.

Shouda Wang, Weijie Zheng, and Benjamin Doerr. Choosing the right algorithm with hints
from complexity theory. In International Joint Conference on Artificial Intelligence,
IJCAI 2021, pages 1697-1703. ijcai.org, 2021.

Darrell Whitley, Swetha Varadarajan, Rachel Hirsch, and Anirban Mukhopadhyay. Explo-
ration and exploitation without mutation: solving the jump function in ©(n) time. In
Parallel Problem Solving from Nature, PPSN 2018, Part II, pages 55—66. Springer, 2018.

Carsten Witt. Runtime analysis of the (x + 1) EA on simple pseudo-Boolean functions.
FEvolutionary Computation, 14:65-86, 2006.

Carsten Witt. Tight bounds on the optimization time of a randomized search heuristic on
linear functions. Combinatorics, Probability & Computing, 22:294-318, 2013.

Carsten Witt. Upper bounds on the running time of the univariate marginal distribution
algorithm on OneMax. Algorithmica, 81:632—667, 2019.

Carsten Witt. How majority-vote crossover and estimation-of-distribution algorithms cope
with fitness valleys. Theoretical Computer Science, 940:18-42, 2023.

Zijun Wu, Michael Kolonko, and Rolf H. Mohring. Stochastic runtime analysis of the cross-
entropy algorithm. IEEFE Transactions on Evolutionary Computation, 21:616-628, 2017.

Qingfu Zhang and Heinz Miihlenbein. On the convergence of a class of estimation of distri-
bution algorithms. IEEE Transactions on Evolutionary Computation, 8:127-136, 2004.

40



	Introduction
	Preliminaries
	Algorithms
	The Compact Genetic Algorithm
	The Univariate Marginal Distribution Algorithm
	The Parallel-run cGA

	Benchmark Functions
	Basic Benchmark Functions
	Additive Centered Gaussian Posterior Noise


	The Smart-Restart Mechanism
	Theoretical Analyses
	A General Performance Guarantee
	Specific Runtime Results
	OneMax and Jump
	LeadingOnes and DeceptiveLeadingBlocks
	Noisy OneMax


	Experimental Results
	Experimental Settings
	Experimental Results and Analysis I: The cGA with Different Population Sizes
	Experimental Results and Analysis II: Runtimes of the Parallel-Run cGA and the Smart-Restart cGA

	Smart-Restart PBIL (Cross-Entropy Algorithm)
	Smart-Restart Population-Based Incremental Learning (Smart-Restart Cross-Entropy)
	Other Restart Strategies
	Experiments on Two Combinatorial Problems
	Optimization Problems
	Experimental Settings
	Experimental Results and Analyses


	Conclusion

