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Abstract

Electronic healthcare records (EHR) provide a rich resource for healthcare research. An
important problem for the efficient utilization of the EHR data is the representation of
the EHR features, which include the unstructured clinical narratives and the structured
codified data. Matrix factorization-based embeddings trained using the summary-level
co-occurrence statistics of EHR data have provided a promising solution for feature repre-
sentation while preserving patients’ privacy. However, such methods do not work well with
multi-source data when these sources have overlapping but non-identical features. To ac-
commodate multi-sources learning, we propose a novel word embedding generative model.
To obtain multi-source embeddings, we design an efficient Block-wise Overlapping Noisy
Matrix Integration (BONMI) algorithm to aggregate the multi-source pointwise mutual
information matrices optimally with a theoretical guarantee. Our algorithm can also be
applied to other multi-source data integration problems with a similar data structure. A
by-product of BONMI is the contribution to the field of matrix completion by considering
the missing mechanism other than the entry-wise independent missing. We show that the
entry-wise missing assumption, despite its prevalence in the works of matrix completion, is
not necessary to guarantee recovery. We prove the statistical rate of our estimator, which
is comparable to the rate under independent missingness. Simulation studies show that
BONMI performs well under a variety of configurations. We further illustrate the utility
of BONMI by integrating multi-lingual multi-source medical text and EHR data to per-
form two tasks: (i) co-training semantic embeddings for medical concepts in both English
and Chinese and (ii) the translation between English and Chinese medical concepts. Our
method shows an advantage over existing methods.

Keywords: Word embedding, data integration, singular value decomposition, transfer
learning.

c©2023 Doudou Zhou, Tianxi Cai and Junwei Lu.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v24/22-0642.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v24/22-0642.html


Zhou, Cai and Lu

1. Introduction

1.1 Background

Electronic health records (EHR) have been playing a more and more important role in
healthcare research ranging from disease phenotyping (Ahuja et al., 2020; De Freitas et al.,
2021; Liu et al., 2021) to precision medicine (Raghu et al., 2017; Parbhoo et al., 2017;
Sonabend et al., 2020; Zhou et al., 2022b). Despite the translational potential of EHR data,
generating reliable real-world evidence from EHR data has been highly challenging, in
part due to the significant heterogeneity across multiple healthcare centers. One approach
to generalizability and reproducibility is through consensus learning with multiple EHR
(multi-EHR). However, harmonizing data from multi-EHR for consensus learning is a major
roadblock due to the lack of interoperability across healthcare systems (Rajkomar et al.,
2018). The same clinical concepts can be represented by distinct codes or even different
languages such as English and Chinese at different healthcare systems (Hernandez et al.,
2009; Abhyankar et al., 2012). As a result, it is common for multiple data sources to have
overlapping but non-identical clinical codes.

Although common data model has been increasingly adopted to improve interoperability
across healthcare systems, significant discrepancies remain since most healthcare systems
have adopted some but not all existing ontologies such as the International Classification
of Disease (ICD) codes for diseases, Current Procedural Terminology (CPT) for procedures
(Hirsch et al., 2015), and Logical Observation Identifiers Names and Codes (LOINC) for
laboratory tests (Weeks and Pardee, 2019). One approach to harmonize data is to map local
EHR codes to common ontologies (Kume et al., 2019; Tournavitis et al., 2009; Baloukas
et al., 2010). Such an approach, generally requiring some level of manual effort and domain
knowledge is thus time and resource-intensive and not scalable (Baorto et al., 1998; Kume
et al., 2019). An alternative approach to data harmonization is through representation
learning, which has been highly successful in natural language processing (Mikolov et al.,
2013a). If a unified set of embeddings can be trained for all EHR codes across multiple
systems, these embedding vectors can bridge data from different sources and hence achieve
harmonization.

For training unified embeddings for all clinical concepts, the traditional one-hot approach
will suffer from the curse of dimension. To train embeddings for a large number of concepts
with observed relationship pairs, knowledge graph-based approaches (Wang et al., 2014;
Yao et al., 2019) have been shown as highly effective. However, large-scale EHR data
are typically represented as sequences of encounters over time. Based on co-occurrence
patterns of EHR codes, neural network-based methods such as the skip-gram algorithm
(Mikolov et al., 2013a; Pennington et al., 2014; Lin et al., 2019; Boag and Kané, 2017) have
been proposed. Training of the skip-gram algorithm can also be equivalently achieved via
performing singular value decomposition (SVD) on a pointwise mutual information (PMI)
matrix derived from co-occurrence summaries of EHR data (Levy and Goldberg, 2014; Beam
et al., 2019; Hong et al., 2021). The SVD-PMI algorithm is particularly appealing due to
its scalability and privacy-preserving since it only requires simple summary-level EHR data,
which can be shared across multiple systems.

However, these existing methods are ineffective in co-training embeddings for multi-
EHR data when the EHR codes from multiple sources overlap but are not identical. Neural
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network methods that require patient-level data are not feasible due to data-sharing con-
straints. The simple pre-training approach effectively assumes that code pairs that do not
appear in the same health system have low similarity, which is a poor assumption since
two distinct codes can represent the same clinical concepts in two systems due to coding
heterogeneity. To better accommodate coding heterogeneity, one may separately train em-
beddings within each EHR source and then follow up with an alignment step such that
codes shared at multiple systems have similar embeddings after alignment (Smith et al.,
2017; Kementchedjhieva et al., 2018; Conneau et al., 2018). However, such two-step meth-
ods are not efficient both computationally and statistically and are less generalizable to
settings with more than two sources.

In this paper, we propose the Block-wise Overlapping Noisy Matrix Integration (BONMI)
algorithm to co-train embeddings for clinical concepts from multiple sources. The BONMI
algorithm is built on top of a novel generative model similar to Arora et al. (2016, 2018)

but allows EHR codes or concepts to belong to multiple sources. Specifically, let w
(s,i)
t

denote the code the ith patient from the sth source receives at time t. We assume that the

probability of the code w
(s,i)
t taking value w is P(w

(s,i)
t = w | c(s,i)

t ) ∝ exp(x>wc
(s,i)
t ), where

xw is the underlying embedding representation of the specific code w assumed to be the

same for all sources w occurs, and c
(s,i)
t is some latent vector with a random walk on the

sphere associated with each patient in each source. Our model allows the multiple sources
to have overlapping but not identical corpora.

Under the proposed generative model, the SVD-PMI estimator consistently estimates
the underlying embeddings when there is a single data source (Arora et al., 2018; Lu et al.,
2023). With multiple sources, the PMI of code pairs that do not co-occur in the same
system is not observable. Under the proposed generative model, the underlying embeddings
for each code do not depend on the source and can be recovered based on data from the
source that contains the code. However, it is no longer feasible to estimate the embeddings
through simple decomposition of PMI matrices due to the missingness of co-pairs that do
not co-occur. We propose an efficient estimation procedure based on the low-rank nature
of the PMI matrices and the low-dimensional embedding vectors. Our idea connects to the
orthogonal Procrustes problem (Gower and Dijksterhuis, 2004; Schönemann, 1966; Gower,
1975), which has been widely used to align embeddings across languages in the machine
translation (Kementchedjhieva et al., 2018; Smith et al., 2017; Conneau et al., 2018; Søgaard
et al., 2018; Xing et al., 2015). We use an orthogonal transformation to align the eigenspace
of the two sub-matrices through their overlap, then complete the missing entries by the
inner products of the two low-rank components. Moreover, we generalize our method to the
multiple sources scenario by applying the method to each pair of the sub-matrices. Since
BONMI operates on matrices from any two sources, it is suitable for parallel computing.

1.2 Related Literature

Related works to BONMI can be classified into two categories: (i) matrix completion and (ii)
multi-source data integration. Matrix completion aims to recover a low-rank matrix given
a subset of its entries which may be corrupted by noise (Keshavan et al., 2010; Candès
and Recht, 2009). It has received considerable attention due to the diverse applications
such as collaborative filtering (Hu et al., 2008; Rennie and Srebro, 2005) and recommenda-
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tion systems. As reviewed in Nguyen et al. (2019), diverse algorithms have been proposed
including Frobenius norm minimization (Lee and Bresler, 2010), alternative minimization
(Haldar and Hernando, 2009; Tanner and Wei, 2016; Wen et al., 2012), optimization over
smooth Riemannian manifold (Vandereycken, 2013) and stochastic gradient descent (Koren
et al., 2009; Takács et al., 2007; Paterek, 2007; Sun and Luo, 2016; Ge et al., 2016, 2017;
Du et al., 2017; Ma et al., 2018). However, most existing literature on matrix completion
assumed that the observed entries are independently sampled (Keshavan et al., 2010; Chen
and Wainwright, 2015; Candes and Plan, 2010; Candès and Tao, 2010; Mazumder et al.,
2010; Chen, 2015; Keshavan et al., 2010; Chen and Wainwright, 2015; Zheng and Lafferty,
2016; Fazel, 2002; Candès and Recht, 2009; Cai et al., 2010; Tanner and Wei, 2013; Com-
bettes and Pesquet, 2011; Jain et al., 2010, e.g.), which does not hold in the current setting
as the missingness will always be block-wise.

On the other hand, many works on multi-source data integration analysis needed to
deal with the block-wise missingness for downstream analyses, such as model selection
(Xue and Qu, 2020), principal component analysis (PCA) (Cai et al., 2016; Zhu et al.,
2018), classification (Yuan et al., 2012; Xiang et al., 2014) and prediction (Yu et al., 2020).
However, these methods do not apply to the current problem since they need to use the
patient-level data and have additional model assumptions such as a classification model
(Yuan et al., 2012; Xiang et al., 2014) or a regression model (Yu et al., 2020; Xue and Qu,
2020). For example, Xue and Qu (2020) focused on the model selection when the covariates
were block-wise missing due to incomplete observations. They assumed a linear model
between the response and the covariates and showed the consistency of the estimation of
the linear coefficients. Although our problem can also be modeled through a regression
framework by using the observed entries to predict the missing entries, the independent
assumption required by Xue and Qu (2020) will be violated. Specifically, Xue and Qu
(2020) assumed not only that the covariates are independently sampled but also that the
observation errors are independent and normally distributed. If we fit Xue and Qu (2020)
to the current setting, both assumptions would be violated since the “covariates” and the
errors are not independently sampled. Cai et al. (2016) proposed a structured matrix
completion (SMC) algorithm that leverages the approximate low-rank structure to recover
the missing off-diagonal sub-matrix efficiently. However, the SMC algorithm considers a
noiseless scenario and does not allow for a multi-block missingness structure, ubiquitous
in the integrative analysis of multi-source or multi-view data. Since SMC operates on a
2 × 2 block matrix with a missing block in the off-diagonal sub-matrices, it cannot fully
utilize the observed information when applied to our problem. Approximation errors can
also make SMC fail to perform well with a lack of theoretical guarantee. As demonstrated
by our numerical studies, SMC performs poorly compared to BONMI in the presence of
noise in the case of two sources.

1.3 Our Contribution

Our paper extends the word vector generative model in Arora et al. (2016) to accommodate
multi-sources learning, which allows these sources to have overlapping but not identical en-
tities. We design an efficient algorithm BONMI to aggregate the multi-source PMI matrices
optimally with a theoretical guarantee to obtain multi-source embeddings. BONMI can also
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be applied to other multi-source data integration problems with a similar data structure. A
by-product of BONMI is the contribution to the field of matrix completion by considering
the missing mechanism other than the entry-wise independent missing. We show that the
entry-wise missing assumption, despite its prevalence in the works of matrix completion, is
not necessary to guarantee recovery. We prove the statistical rate of our estimator, which is
comparable to the rate under the independently missing assumption (Ma et al., 2018; Chen
and Wainwright, 2015; Negahban and Wainwright, 2012; Koltchinskii et al., 2011).

The rest of the paper is organized as follows. In Section 2, we introduce in detail the
proposed BONMI method. The theoretical properties of BONMI are analyzed in Section
3. Simulation results are shown in Section 4 to investigate the numerical performance of
the proposed method. A real data application is given in Section 5. Section 6 extends the
model to asymmetric matrices and concludes the paper. For space reasons, the proofs of
the main results are given in the supplement. In addition, some key technical tools used in
the proof of the main theorems are also developed and proved in the supplement.

2. Methodology

2.1 Notations

We first introduce some notations. We use bold-faced symbols to represent vectors and
matrices. For any vector v, ‖v‖ denotes its Euclidean norm. For any matrix A ∈ Rd×q, we
let σj(A) and λj(A) (if d = q) denote its respective jth largest singular value and eigenvalue.
The smallest singular value σmin(m,n)(A) will be denoted by σmin(A). We let ‖A‖, ‖A‖F,
‖A‖2,∞ and ‖A‖∞ respectively denote the spectral norm (i.e., the largest singular value),
the Frobenius norm, the `2/`∞ norm (i.e., the largest `2 norm of the rows), and the entry-
wise `∞ norm (the largest magnitude of all entries) of A. We let Aj,· and A·,j denote the
jth row and jth column of A, and let A(i, j) denote the (i, j) entry of A. Besides, we
use the symbol ≡ to denote ‘defined to be.’ For any integer d ≥ 1, we let [d] ≡ {1, ..., d}.
For indices sets Ω1 ⊆ [d] and Ω2 ⊆ [q], we use AΩ1,Ω2 to represent its sub-matrix with row
indices Ω1 and column indices Ω2.

We let On×r represent the set of all n × r orthonormal matrices. For a sub-Gaussian
random variable Y , its sub-Gaussian norm is defined as ‖Y ‖ψ2 = inf{t > 0 : Ee−Y

2/t2 ≤ 2}.
We use the standard notation f(n) = O(g(n)) or f(n) . g(n) to represent |f(n)| ≤ c|g(n)|
for some constant c > 0.

2.2 Model

We extend the log-linear model word production model proposed by Arora et al. (2016)
to multiple sources. Assume that we have m sources, and in the sth source, we have ns
independent sequences, which may be referred to as ns patients for EHR data. Let Vs be
the word set of the sth source with size Ns = |Vs|. For simplicity, we assume that each
sequence has length T . For the ith sequence from the sth source, the code sequence is

{w(s,i)
1 , . . . , w

(s,i)
T }. In short, for each sequence in the sth source, the occurrence probability

of a code w at time t is determined by its latent vector xw ∈ Rr and a discourse vector
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c
(s,i)
t ∈ Rr with the random walk on the sphere. Specifically,

P(w
(s,i)
t = w | c(s,i)

t ) =
exp(x>wc

(s,i)
t )∑

w′∈Vs exp(x>w′c
(s,i)
t )

.

Under this generative model, we are interested in estimating the clinical codes’ embeddings
{xw}w∈V∗ based on the summary statistics only such as the co-occurrence matrices to
preserve the privacy where V∗ = ∪ms=1Vs is the corpus of the clinical features from the
m sources. We further denote the corpus for all clinical features as V, where Vs ⊂ V is
generated by a binomial model. For the sth source, the corpus Vs is a random subset of V
sampled as

P(w ∈ Vs) = ps ∈ (0, 1), for w ∈ V and s ∈ [m] independently. (1)

Notice that it is not necessary to have V∗ = V. This model for {Vs}ms=1 allows the emergence
of new features which may have not been included by the current sources, such as COVID-
19 (Zhou et al., 2022a). When a new source is incorporated, some new features in V\V∗ can
occur in the new source. The PMI matrix PMI = {PMI(w,w′)}w,w′∈V of the population
corpus V is defined as

PMI(w,w′) = log
p(w,w′)

p(w)p(w′)
, for w,w′ ∈ V ,

where p(w) is the occurrence probability of the word w and p(w,w′) is the co-occurrence
probability of the words w and w′. Arora et al. (2016) showed that log p(w,w′) = ‖xw +
xw′‖2/(2r) − 2 logZ + o(1) and log p(w) = ‖xw‖2/(2r) − logZ + o(1) for some constant
Z, then derived that PMI(w,w′) ≈ x>wxw′/r (see, e.g., Theorem 2.2 of Arora et al. (2016)
and Proposition 4.4 of Lu et al. (2023)), which implies the rationale of recovering word
embeddings from the PMI matrices. With a bit of abuse of notation, we also define xw =
xw/
√
r as the word embedding. With a single hospital, PMI, while not directly observable,

can be estimated empirically, and hence performing an SVD of the empirical PMI can lead
to consistent estimators for xw. However, in the settings where different hospitals have
overlapping but non-identical codes, entries of PMI can not be directly estimated for code
pairs that do not belong to the same hospital.

On the other hand, the principal sub-matrices of PMI can be estimated from each
source. Let ps(w,w

′) be the co-occurrence probability of codes w and w′ in windows of size
q in the sth source, ps(w) =

∑
w′∈Vs ps(w,w

′) and the population PMI matrix for the sth

source PMIs ∈ RNs×Ns as

PMIs(w,w
′) = log

ps(w,w
′)

ps(w)ps(w′)
for w,w′ ∈ Vs .

The estimates of the PMI matrices using the co-occurrence statistics are

P̂MIs(w,w
′) = log

Cs(w,w′)
Cs(w, ·)Cs(w′, ·)

, for s ∈ [m] ,
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where Cs =
[
Cs(w,w′

]
w,w′∈Vs is the observed co-occurrence of word w with word w′ in the

window size q across all sequences of the sth source defined similar to Beam et al. (2019);
Lu et al. (2023):

Cs(w,w′) = |{(t, h) : |t− h| ≤ q and w
(s,i)
t = w,w

(s,i)
h = w′|t, h ∈ [T ], i ∈ [ns]}|

and Cs(w, ·) =
∑

w′∈Vs Cs(w,w
′). We then define the shifted positive PMI (SPPMI) matrix

estimator as
ŜPPMIs(w,w

′) = max{P̂MIs(w,w
′), η}, for s ∈ [m] ,

where η > −∞ is a given threshold value. In the theoretical analysis, one may show that
PMIs(w,w

′) is lower bounded by some constant with high probability under appropriate
assumptions (Lu et al., 2023). So the shifted positive PMI would be closer to the truth
than the original PMI with a high probability if η is chosen properly. According to Levy
and Goldberg (2014), the shifted positive PMI (SPPMI) can perform better than the PMI
matrix, with the reasoning being that humans tend to more easily associate positive values
(e.g. ‘Canada’ and ‘snow’) rather than negative ones (‘Canada’ and ‘desert’). The default
choice for η is set as 0, meaning no shift and setting negative PMI values as 0. Empirically,
we find that η = 0 works well. For ease of presentation, we will use the positive PMI matrix
(PPMI) matrix estimator as

P̂PMIs(w,w
′) = max{P̂MIs(w,w

′), 0}, for s ∈ [m]

throughout the paper, while our theorems still hold for other choices of η. Let Xs ∈ RNs×r

be the matrix whose rows are composed of the word embeddings in the sth source. Define

the error matrix Es = P̂PMIs −XsX
>
s . The estimated PPMI matrices approximate the

population PMI matrices thus approximating XsX
>
s such that

‖Es‖∞ . n
− 1

4
s T−

1
2 and ‖Es‖ . Nsn

− 1
4

s T−
1
2 ,

which follows straightforwardly from Lu et al. (2023) under some mild assumptions. In
reality, ns can be sufficiently larger than Ns. For example, in the EHR system, the number
of clinical codes is smaller than 10, 000 while the number of patients can be 23 million (Zhou
et al., 2022a).

Without loss of generality, we assume that V = [N ] and V∗ = [N0], where N0 = |V∗|,
otherwise we can rearrange the orders of codes. Let X = (x1, . . . ,xN )> ∈ RN×r be the
population embedding matrix and W∗ = XX>. We then have

Ws ≡ P̂PMIs = W∗
s + Es =

[
W∗(i, j)

]i∈Vs
j∈Vs + Es, for s ∈ [m] (2)

by the definition of Es. Define σs = ‖Es‖/
√
Ns. In our theoretical analysis, we only use the

operator norm of the error matrices Es. Therefore, our results can be applied to general
matrix integration problems.

Our task is to first recover W∗
0 = W∗

V∗,V∗ =
[
W∗(i, j)

]i∈V∗
j∈V∗ ∈ RN0×N0 , and then obtain

the embeddings X∗ = (x1, . . . ,xN0)> by performing SVD on the estimate of W∗
0. Let the

eigendecomposition of W∗ be
W∗ = U∗Σ∗(U∗)>, (3)
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where U∗ ∈ RN×r consists of orthonormal columns, and Σ∗ is an r×r diagonal matrix with
eigenvalues in a descending order, i.e., λmax = λ1 ≥ · · · ≥ λr = λmin > 0.

We first state two assumptions that are standard in existing literature (Candès and
Recht, 2009; Ma et al., 2018) for sample complexity and the incoherence condition which
basically assumes information is distributed uniformly among entries.

Assumption 1 (Incoherence condition) The coherence coefficient of U∗ satisfies µ0 =
O(1), where µ0 = µ(U∗) = N

r maxi∈[N ]

∑r
j=1 U∗(i, j)2.

Assumption 2 (Sample complexity) The sampling probability p0 = mins∈[m] ps satis-

fies p0 ≥ C
√
µ0r logN/N for some sufficiently large constant C. Besides, maxs∈[m] ps/p0 =

O(1).

Remark 1 Based on the observed data, we can estimate W∗
0 but not W∗, as we have no

information on {xw}w∈V\V∗. The inclusion of W∗ and the sampling model (1) of {Vs}ms=1

serves as a convenient random setup and links to the matrix completion literature. In
reality, the overlapping matrices are determined by dictionaries linking multiple sources
or ontologies such as the ICD and CPT codes commonly adopted in the EHR. Under the
sampling model (1), W∗

0 is a random sub-matrix of W∗. Instead of making assumptions on
W∗

0, which is a random object, we impose assumptions on W∗ (i.e., Assumption 1 above
and Assumption 4 in Section 3).

2.3 An Ideal Case

To illustrate the BONMI algorithm, we first consider an ideal case that the error matrices
{Es}ms=1 are zero and we observe the truth {W∗

s}ms=1 when m = 2. To simplify the notations,
we denote s\k ≡ Vs\Vk and s∩k ≡ Vs∩Vk when they are used as the subscripts of a matrix,
and recall that W∗

s ≡ W∗
Vs,Vs . Assume the two sampled sub-matrices are W∗

s and W∗
k.

Since the singular values are invariant under row/column permutations, without loss of
generality, we can rearrange our data matrices such that

W∗
s =

[
W∗

s\k,s\k W∗
s\k,s∩k

W∗
s∩k,s\k W∗

s∩k,s∩k

]
; W∗

k =

[
W∗

s∩k,s∩k W∗
s∩k,k\s

W∗
k\s,s∩k W∗

k\s,k\s

]
(4)

and

W∗
0 =

W∗
s\k,s\k W∗

s\k,s∩k W∗
s\k,k\s

W∗
s∩k,s\k W∗

s∩k,s∩k W∗
s∩k,k\s

W∗
k\s,s\k W∗

k\s,s∩k W∗
k\s,k\s

 . (5)

Recall that our goal is to recover W∗
0 based on the observed W∗

s and W∗
k. This can

be achieved by estimating the missing blocks W∗
s\k,k\s and W∗

k\s,s\k = W∗>
s\k,k\s by the

symmetry of W∗
0. As the missing entries are block-wise, a theoretical guarantee based on

the assumption of independent missing will fail in the current case. Instead, we propose a
method based on the orthogonal transformation, which exploits the following proposition.

Proposition 2 Suppose W∗ has eigendecomposition (3) and satisfies Assumptions 1 and 2.
Since max

{
rank(W∗

s), rank(W∗
k)
}
≤ rank(W∗) = r, we suppose the eigendecompositions

of W∗
s and W∗

k are

W∗
s = V∗sΣ

∗
s(V

∗
s)
> and W∗

k = V∗kΣ
∗
k(V

∗
k)
>,
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where V∗s and V∗k are the eigenvectors of W∗
s and W∗

k, respectively. We further decom-
pose V∗s and V∗k as V∗s = ((V∗s1)>, (V∗s2)>)>, V∗k = ((V∗k1)>, (V∗k2)>)> with V∗s2,V

∗
k1 ∈

R|Vs∩Vk|×r. Then with probability at least 1−O(1/N3), W∗
s\k,k\s in (5) can be exactly given

by
W∗

s\k,k\s = V∗s1(Σ∗s)
1/2G((Σ∗s)

1/2(V∗s2)>V∗k1(Σ∗k)
1/2)(Σ∗k)

1/2(V∗k2)> , (6)

where G(·) is a matrix value function defined as: G(C) = HZ> with HΩZ> the SVD of
C ∈ Rr×r.

Proposition 2 shows that, when there is no error, W∗
s\k,k\s can be recovered precisely based

on W∗
s and W∗

k with high probability. The proposition can be easily extended to the case
when m > 2.

2.4 BONMI Algorithm for Two Sources

When noise exists, we use the above idea but add an additional step of weighted average.
Since it is possible to observe the entries of W∗ more than once due to multiple sources, the
weighted average is a natural idea to reduce the variance of estimation in the existence of
noise. In reality, heterogeneity always exists which means the errors of different sources may
vary. As a result, we decide to use the weights inversely proportional to the error levels.
We start with the case m = 2 again. Currently, we decompose two overlapping matrices
Ws = W∗

s + Es and Wk = W∗
k + Ek as follows

Ws =

[
Ws

s\k,s\k Ws
s\k,s∩k

Ws
s∩k,s\k Ws

s∩k,s∩k

]
, Wk =

[
Wk

s∩k,s∩k Wk
s∩k,k\s

Wk
k\s,s∩k Wk

k\s,k\s

]
, for 1 ≤ s < k ≤ m.

Then we can combine Ws and Wk to obtain

W̃ =

Ws
s\k,s\k Ws

s\k,s∩k 0

Ws
s∩k,s\k Wa

s∩k,s∩k Wk
s∩k,k\s

0 Wk
k\s,s∩k Wk

k\s,k\s

 , (7)

where Wa
s∩k,s∩k ≡ αsWs

s∩k,s∩k + αkW
k
s∩k,s∩k is the weighted average of the overlapping part

with αi > 0, i = s, k and αs + αk = 1. The weights should ideally depend on the strength
of the error matrices, Es and Ek, to optimize estimation. We detail the estimation of the
weights in Section 2.5. To estimate W∗

s\k,k\s, let

W̃s =

[
Ws

s\k,s\k Ws
s\k,s∩k

Ws
s∩k,s\k Wa

s∩k,s∩k

]
and W̃k =

[
Wa

s∩k,s∩k Wk
s∩k,k\s

Wk
k\s,s∩k Wk

k\s,k\s

]
,

and the rank-r eigendecompositions of W̃s and W̃k be ṼsΣ̃sṼ
>
s and ṼkΣ̃kṼ

>
k , respectively.

Specifically, Ṽs and Ṽk can be decomposed block-wise such that Ṽs = (Ṽ>s1, Ṽ
>
s2)> and

Ṽk = (Ṽ>k1, Ṽ
>
k2)> where Ṽs2, Ṽk1 ∈ R|Vs∩Vk|×r. So the estimator of W∗

s\k,k\s is

W̃sk = Ṽs1Σ̃
1/2
s G(Σ̃1/2

s Ṽ>s2Ṽk1Σ̃
1/2
k )Σ̃

1/2
k Ṽ>k2, (8)

according to the Proposition 2. After getting W̃sk, we impute it back to W̃ to obtain

Ŵ =

Ws
s\k,s\k Ws

s\k,s∩k W̃sk

Ws
s∩k,s\k Wa

s∩k,s∩k Wk
s∩k,k\s

W̃>
sk Wk

k\s,s∩k Wk
k\s,k\s

 . (9)
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Then we can obtain the rank-r eigendecomposition of Ŵ, denoted as Ŵr = ÛΣ̂Û>, as an
estimate of W∗

0.

2.5 BONMI Algorithm

We next introduce the BONMI algorithm for recovering W∗
0, based on m ≥ 2 PPMI ma-

trices {Ws}s∈[m]. Our algorithm consists of three main steps: (I) aggregation of the m
matrices, (II) estimation of missing parts, and (III) low-rank approximation, as summa-
rized in Algorithm 1.

Algorithm 1: Block-wise Overlapping Noisy Matrix Integration (BONMI).

Input: m symmetric matrices {Ws}s∈[m] and the corresponding index sets

{Vs}s∈[m]; the rank r; N0 = | ∪ms=1 Vs|;
Step I (a) Estimation of weights: for 1 ≤ s ≤ m do

Let ÛsΣ̂s(Ûs)
> be the rank-r eigendecomposition of Ws. Estimate σs by

σ̂s = ‖Ws − ÛsΣ̂s(Ûs)
>‖/

√
Ns; (10)

end

Step I (b) Aggregation: Create W̃ ∈ RN0×N0 by (11).
Step II (a) Spectral initialization: for 1 ≤ s ≤ m do

Let ṼsΣ̃sṼ
>
s be the rank-r eigendecomposition of W̃VsVs .

end
Step II (b) Estimation of missing parts: for 1 ≤ s < k ≤ m do

Obtain W̃sk using Ṽs, Σ̃s, Ṽk, Σ̃k by (8). If a missing entry (i, j) is estimated
by multiple pairs of sources (s, k), choose the one estimated by the pair with

the smallest σ̂2
s + σ̂2

k. Denote the imputed matrix as Ŵ.

end
Step III Low rank approximation: Obtain the rank-r eigendecomposition of
Ŵ: Ŵr = ÛΣ̂Û>.
Output: X̂ = ÛΣ̂

1
2 .

Step I: Aggregation. We first aggregate {Ws}s∈[m] to obtain W̃ similar to the m = 2
case, which requires an estimation for the weights {αs}s∈[m]. Similar to standard meta-
analysis, the optimal weight for the sth source can be chosen as σ−2

s . We estimate σs as
by σ̂s = ‖Ws − ÛsΣ̂sÛ

>
s ‖/
√
Ns, where ÛsΣ̂sÛ

>
s is the rank-r eigendecomposition of Ws.

We then create the matrix W̃ ∈ Rn×n as follows

W̃(i, j) =

m∑
s=1

αsijW
s(vsi , v

s
j )1(i, j ∈ Vs), (11)

for all pairs of (i, j) such that Sij ≡
∑m

s=1 1(i, j ∈ Vs) > 0, where vsi denotes the row(column)
index in Ws corresponding to the ith row(column) of W∗

0, and αsij = 1
σ̂2
s

(∑m
k=1 1(i, j ∈

Vk)σ̂−2
k

)−1
. The entries in the missing blocks with Sij = 0 are initialized as zero.

10
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Remark 3 It is natural to use the inverse of noise variances as the weights to aggregate
multiple observations, for instance, weighted least squares (Ruppert and Wand, 1994). Here
we follow the same routine, and the choice is direct since, intuitively, in this way, we can
minimize the variance of the noise of the overlapping matrices. A formal analysis is provided
in Section S.2.3.

Step II: Imputation. We next impute the missing entries with Sij = 0. For 1 ≤ s ≤ k ≤
m, we impute the entries of W̃ corresponding to (Vs\Vk) × (Vk\Vs) using W̃s ≡ W̃Vs,Vs
and W̃k the same way as (8). If a missing entry (i, j) can be estimated by multiple pairs
of sources (s, k), we choose the one estimated by the pair with the smallest σ̂2

s + σ̂2
k. After

Steps I and II, all missing entries of W̃ are imputed, and we denote the imputed matrix as
Ŵ.

Remark 4 When a missing entry can be estimated from multiple source pairs, it may be
desirable to use a weighted average of these estimates. However, determining an optimal
set of weights is more challenging in this case compared to Step I because the variances of
these estimates are difficult to estimate. We instead choose the estimate based on the source
pairs with the highest overall quality as measured by σ̂2

s + σ̂2
k.

Step III: Low-raxnk approximation. Finally, we factorize Ŵ by rank-r eigendecomposi-
tion to obtain the final estimator: Ŵr ≡ ÛΣ̂Û>.

Remark 5 (Computational complexity) The main computational cost of the BONMI
algorithm comes from the eigendecomposition, which is of order O(

∑m
s=1 |Vs|2r). The

estimation step involves matrix multiplication and a singular value decomposition of a
r × r matrix for each source pair s and k, resulting in a computational cost of order
O(
∑

1≤s<k≤m |Vs||Vk|r). Thus, the overall computational cost is of order

O
(∑m

s=1 |Vs|2r +
∑

1≤s<k≤m |Vs||Vk|r
)

= O
(
(
∑m

s=1 |Vs|)2r
)
.

In comparison, the computational complexity of the gradient descent-based algorithms is
O
(
T (
∑m

s=1 |Vs|)2r
)
, where T is the iteration complexity dependent on the pre-set precision

ε. Existing algorithms set T = n/r log(1/ε) (Sun and Luo, 2016), T = r2 log(1/ε) (Chen
and Wainwright, 2015), and T = log(1/ε) (Ma et al., 2018). Thus, the BONMI algorithm
is more computationally efficient compared to these algorithms.

3. Theoretical Analysis

In this section, we investigate the theoretical properties of the algorithm. We first present
some general assumptions required by our theorems. To this end, we define the condition
number τ ≡ λ1(W∗)/λr(W

∗) = λmax/λmin. Besides, we need conditions to bound the noise
strength and the condition number.

Assumption 3 Let σ ≡ maxs∈[m] σs. Then σ satisfies σ � λmin

√
p0/N .

Assumption 4 τ ≡ λ1(W∗)/λr(W
∗) = λmax/λmin = O(1). Throughout this paper, we

assume the condition number is bounded by a fixed constant, independent of the problem
size (i.e., N and r).

11
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Remark 6 Assumptions 1-4 are standard assumptions in many existing literature (Ma
et al., 2018; Chen and Wainwright, 2015; Negahban and Wainwright, 2012; Koltchinskii
et al., 2011), whereas different rates are required. Specifically, in Assumption 2, we only
require the sampling probability to be of the order O(

√
logN/N), which can tend to zero

when the population size tends to infinity. In our setting, the sample size of each source is
about N2p2

0. Then we have N2p2
0 ≥ C2µ0rN logN . Relatively, Ma et al. (2018) requires that

the sample size satisfies N2p ≥ Cµ3
0r

3N log3N for some sufficiently large constant C > 0
where p is the entrywise sampling probability. In Assumption 3, the sampling probability p0

and the eigenvalue λmin can vary with N . Compared to Ma et al. (2018), they require the

noise satisfies σ � λmin

√
p

Nκ3µ0r log3N
. Our signal-to-noise ratio assumption has the same

order as theirs up to some constants and log factors since µ0, r, and κ are assumed to be
constants.

The parameter of interest is W∗
0 with eigendecomposition W∗

0 = X∗(X∗)> = U∗0Σ
∗
0(U∗0)>.

Let X̂ = ÛΣ̂1/2 be the output of Algorithm 1 and define K = rµ0τ . The upper bound for
the estimation errors of X∗ (which is identifiable up to an orthogonal transformation) and
hence W∗

0 under the special case of m = 2 is presented in Theorem 7.

Theorem 7 Under Assumptions 1, 2, 3, and 4, when m = 2, with probability at least
1−O(N−3), there exists OX ∈ Or×r such that

• if p0 = o(1/ logN) or p0 is bounded away from 0, we have

‖X̂OX −X∗‖ . {(1− p0)K2 + 1}K√
λmin

√
Nσ; (12)

• otherwise,

‖X̂OX −X∗‖ . {(1− p0)K2(p0 logN) + 1}K√
λmin

√
Nσ. (13)

Remark 8 Besides the spectral norm upper bound for X̂, we can also obtain upper bound
of other metrics such as ‖X̂X̂>−X∗(X∗)>‖, ‖X̂OX−X∗‖F and ‖X̂X̂>−X∗(X∗)>‖F using
the following inequalities ‖X̂OX −X∗‖F ≤

√
2r‖X̂OX −X∗‖ and ‖X̂X̂> −X∗(X∗)>‖F ≤√

2r‖X̂X̂> −X∗(X∗)>‖ ≤ 2
√

2r‖Ŵ −X∗(X∗)>‖, where the bound of ‖Ŵ −X∗(X∗)>‖ is
derived in the proof of Theorem 7.

Remark 9 Here we compare our result with the state of art result in matrix completion
literature (Ma et al., 2018) under the random missing condition. However, we should no-
tice that their theorems don’t hold under the current missing pattern since their entrywise
independent sampling assumption is violated. Their operator norm error converges to

‖X̂OX −X∗‖ . σ

λmin(W∗
0)

√
N0

p
‖X∗‖ , (14)

where p is the entrywise sampling probability under their setting. We can show that p ≈
1−2(p0−p2

0)2/(2p0−p2
0)2 = (2−p2

0)/(2−p0)2, N0 ≈ N(2p0−p2
0) ≈ Np0, λmin(W∗

0) ≈ p0λmin

12
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and ‖X∗‖ ≈
√
p0rµ0λmax (see the proof of Theorem 7). As a result, their error bound (14)

reduces to

‖X̂OX −X∗‖ . (2− p0)
√
K√

λmin

√
Nσ. (15)

When p0 → 1, our rate is (12), which has a difference with (15) in the order of
√
K;

when p0 → 0, our rate is (12) or (13), which has the difference with (15) in the order of
K5/2 max{1, p0 logN}. It means that our rate is the same as theirs up to some constants or
log factors, which means that the error bound can be similar even under different sampling
scenarios. The additional factor K may be caused by the dependence of the sampling pattern.

Remark 10 The minimax lower bound for matrix completion has been established under
the random missing setting (Candès and Tao, 2010; Koltchinskii et al., 2011; Lounici, 2011;

Negahban and Wainwright, 2012). For example, the lower bound for inf
Ŵ0

supW∗
0∈W ‖Ŵ0−

W∗
0‖2 is σ

√
N0r/p (Lounici, 2011, Theorem 3), where W = {W∗

0 ∈ RN0×N0 : ‖W0‖∞ ≤
a, rank(W∗

0) ≤ r}, σ2 is the variance of the Gaussian noise in the observations and p is
their entry-wise sampling probability. If the rate is adapted to our setting, it can be rewritten
as
√
Np0r(2 − p0)σ following the analysis of Remark 9. While in the proof of Theorem 7,

we also show that Ŵ defined in (9) satisfies ‖Ŵ−W∗
0‖2 .

√
Np0(2− p0)K2σ. Thus, our

upper bound matches the minimax rate with regard to the sample size N and the sampling
probability p0, with a difference of the factor K2/

√
r = r3/2µ2

0τ
2.

Remark 11 The sampling model (1) assumes independence within each source. Under
certain models of dependence, our theoretical results remain valid, as discussed in Supple-
mentary S.5.

Based on Theorem 7, we generalize it to m > 2 sources and derive the following theorem.

Theorem 12 Given 0 < ε < 1, let m = dlog ε/ log(1 − p0)e. Under Assumptions 1, 2, 3,

and 4, with probability at least 1−O
( log2 ε

log2(1−p0)N3

)
, we have n ≥ (1− ε)N and there exists

OX ∈ Or×r such that

• if p0 = o(1/ logN) or p0 is bounded away from 0, we have

‖X̂OX −X∗‖ .
{

1 +
(1− p0)K2 log2 ε

log2(1− p0)

√
p0

1− (1− p0)m

}
K

√
N0

λmin
σ; (16)

• otherwise,

‖X̂OX −X∗‖ .
{

1 +
(1− p0)K2(p0 logN) log2 ε

log2(1− p0)

√
p0

1− (1− p0)m

}
K

√
N0

λmin
σ. (17)

Remark 13 The above theorem gives us guidance on how many sources we need to recover
enough parts of W∗. The order of m can be |1/ log(1 − p0)| ≈ 1/p0 when p0 is small.
Besides, compared to (12) and (13), the rates of (16) and (17) have only difference in the
log terms, which means that even we choose m of the maximum order above, the rate of our
error bounds will not change too much.

13



Zhou, Cai and Lu

Remark 14 The multi-source embeddings have diverse applications, for example, the ma-
chine translation (Mikolov et al., 2013b; Xing et al., 2015; Shi et al., 2020) or code mapping
(Hernandez et al., 2009; Zhou et al., 2012; Fidahussein and Vreeman, 2014). To be specific,
for each pair of sources (s, k), we can match the entity i ∈ Vs\Vk to some entity j ∈ Vk
such that

j = arg max
l∈Vk

cos(X̂i, X̂l) where cos(X̂i, X̂l) = (X̂i)
>X̂l/

(
‖X̂i‖‖X̂l‖

)
.

If cos(X̂i, X̂j) is larger than a threshold c, we can translate the entity i from the sth source
(language) to the entity j in the kth source (language). We can determine c by either
setting a desired sensitivity using test data or through cross-validation with translated pairs
or a specificity that can be approximated by the distribution of cosine similarity of related
but not synonymous pairs. Once we obtain the spectral error bound of ‖X̂OX − X∗‖, we
can utilize it to construct the bound of the translation accuracy. For example, we can
bound ‖X̂i − X̂j‖ when X∗i = X∗j or P

(
cos(X̂i, X̂j) ≥ c

)
when cos(X∗i ,X

∗
j ) ≤ c0 for some

c0. According to the translation procedure, the translation accuracy can depend on the
bound supl∈Vk |cos(X̂i, X̂l)− cos(X∗i ,X

∗
l )| where i ∈ Vs\Vk. To bound the quantity, we need

additional assumptions on the structures of the underlying matrix W∗. For instance, if the
entities i and j are synonym or translated pairs in different languages, then cos(X∗j ,X

∗
i ) > c1

for some constant c1, otherwise, cos(X∗j ,X
∗
i ) ≤ c0 for some c0 < c1.

4. Simulation

In this section, we examine the performance of Algorithm 1 from extensive simulation
studies for various values of p0, m, and σ.

4.1 Comparable Methods

We compare with SMC (Cai et al., 2016) and a state-of-the-art matrix completion algorithm
under the uniform sampling assumption, vanilla gradient descent (VGD) (Ma et al., 2018).
Since SMC can only be applied to complete a single missing block, we use it to complete
the missing blocks of each pair of sources. After all missing blocks are imputed, we use the
rank-r SVD to obtain the low-rank estimator for SMC. For VGD, the input is the partially
observed matrix W̃ created in Step I (b) of Algorithm 1, where the unobserved entries are
treated as missing values. They will also produce an estimator for X∗. Another standard
approach is to use one data source as pre-training and the new data sources to continue
training. This effectively corresponds to imputing the missing blocks of the PMI matrix as
zero. We call the method ‘Pre-trained’.

Besides, a potential application of BONMI is machine translation. To be specific, in
reality, the overlapping parts may not be known fully. For instance, {Ws}s∈[m] are mul-
tilingual co-occurrence matrices or PMI matrices (Levy and Goldberg, 2014), then each
vertex is a word and the overlapping parts are created by bilingual dictionaries, which are
limited in some low-resource languages and always cover only a small proportion of the
corpora. In this case, BONMI can utilize these matrices and their known overlap to train
multilingual word embeddings (i.e., X̂). For the words not known in the overlapping set,
if their embeddings (i.e., rows of X̂) are close enough, it means that they have a similar
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meaning and should be translated to each other. We evaluate the translation precision in
the simulation setting (iii). As a baseline, we also compare BONMI to the popular orthog-
onal transformation method (Smith et al., 2017) which uses the single-source embeddings

X̂s = ÛsΣ̂
1/2
s for s ∈ [m]. We denote the method as ‘Orth’.

For all methods, we use the true rank r for simplicity in the following numeric experi-
ments. We propose a data-driven method for choosing r for real-world problems in Section
5. To validate this proposed tuning strategy for r, we evaluate the performance of all
algorithms using the estimated r in simulations. As summarized in Supplementary S.6,
the relative performance of different algorithms shares a similar pattern as those given in
Section 4.3 with BONMI outperforming other competing methods.

4.2 Data Generation Mechanisms and Evaluation Metrics

Throughout, we fix N = 25, 000 and r = 200 which are comparable to our real data. We
then generate the word embedding matrix X = U∗(Σ∗)

1
2 and therefore W∗ = U∗Σ∗(U∗)>,

where Σ∗ is a diagonal matrix whose diagonal elements are generated independently from
the uniform distribution U(

√
N, 4
√
N). The matrix U∗ is drawn randomly from the Haar

measure. Specifically, we generate a matrix H ∈ RN×r with i.i.d. standard Gaussian entries,
then apply the QR decomposition to H and assign U∗ with the Q part of the result. To
generate data for the sth source, we generate a sequence of independent Bernoulli random
variables with success rate p0: δs = (δs1, . . . , δ

s
N ) to form the index set Vs = {i : δsi =

1, i ∈ [N ]}, for s ∈ [m]. We then generate the error matrix Es ∈ R|Vs|×|Vs| with its upper
triangular block including the diagonal elements from the normal distribution N(0, σ2

s) and
lower triangular block decided by symmetry, where we let the noise level σs vary across the
m sources.

We consider three settings with the first two focusing on the task of matrix completion
and setting (iii) focusing on the downstream task of machine translation. For the matrix
completion task, we consider two settings: (i) m = 2, σs = 0.1s, and let p0 vary from 0.1 to
0.3; (ii) p0 = 0.1, σs = 0.1, and let m vary from 2 to 6. For the machine translation task,
we consider the setting (iii) where we let m = 2, 3, p0 = 0.1, σs = sσ and let a noise level σ
vary from 0.3 to 0.5.

To evaluate the performance of matrix completion, we use the relative F-norm and

spectral norm errors of the estimation of W∗
0 defined as errF(Ŵ,W∗

0) =
‖Ŵ−W∗

0‖F
‖W∗

0‖F
and

err2(Ŵ,W∗
0) =

‖Ŵ−W∗
0‖

‖W∗
0‖

. To evaluate the overall performance of machine translation in

setting (iii), we additionally generate test data for evaluation. Specifically, we additionally
sample ntest = 2000 vertices from V\V∗ where V∗ = ∪ms=1Vs, denoted as Vtest, and combine
Vtest and Vs to get V ′s = Vtest ∪ Vs as the final vertex set of the sth source. We then use V ′s
to generate Ws. Notice now Es ∈ R|V

′
s|×|V ′s|. However, we treat elements of Vtest as unique

across the m sources, which means that we will not combine elements of Vtest in Algorithm
1. The role of Vtest is exactly the testing set in machine translation. We average the m− 1
translation precision from the sth source to the 1st source, s = 2, . . . ,m. The translation
precision is defined as follows: for i ∈ Vtest, we can get its embedding in the sth source
corresponding to one row in X̂, denoted as X̂i. Then we find its closest vector X̂j for j ∈ V ′1
with the largest cosine similarity as illustrated in Remark 14. If the jth element from the
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(a) setting (i): fix m = 2 and range p0 from 0.1 to 0.3.
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(b) setting (ii): fix p0 = 0.1 and range m from 2 to 6.

Figure 1: Simulation results of settings (i) and (ii). The relative estimation errors of W∗
0

are presented.

1st source and the ith element from the sth source are the same element in V∗, we treat it
as a correct translation. The precision of the sth source is the ratio of correct translations
among the test set Vtest in the sth source.

4.3 Results

We summarize simulation results averaged over 50 replications for settings (i)-(ii) in Figure
1 and setting (iii) in Figure 2. BONMI outperforms all competing methods across the three
settings. In settings (i) and (ii), the results of the F-norm and spectral norm errors are
consistent. In setting (i), we can see that the relative errors of all methods decrease when
the observation rate p0 increases as expected. The advantage of BONMI in the accuracy
of matrix completion is more pronounced when the observation rate p0 is low. When p0 is
very small, SMC tends to fail. In setting (ii), the error of BONMI decreases as m increases,
which is due to the information gained from multiple sources. However, both the naive pre-
training method and VGD do not always perform better as m increases. Overall, BONMI
dominates all competing methods across different choices of m.
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Figure 2: setting (iii): fix p0 = 0.1 and range σ from 0.3 to 0.5.

Figure 3: The aggregation of the four PPMI matrices. The four sources all have an over-
lapping with each other source.

5. Real Data Analysis

In this section, we apply BONMI to obtain clinical concept embeddings using multiple PPMI
matrices in two different languages, English and Chinese. The clinical concepts in English
have been mapped to Concept Unique Identifiers (CUIs) in the Unified Medical Language
System (UMLS) (Humphreys and Lindberg, 1993). Our goal is to enable the integration of
multiple PPMI matrices to co-train clinical concept embeddings for both CUIs and Chinese
clinical terms.

The input data ensemble consists of three CUI PPMI matrices and one Chinese PPMI
matrix. The three CUI PPMI matrices are independently derived from three data sources
(i) 20 million clinical notes at Stanford (Finlayson et al., 2014); (ii) 10 million notes of
62K patients at Partners Healthcare System (PHS) (Beam et al., 2019); and (iii) health
records from MIMIC-III, a freely accessible critical care database (Johnson et al., 2016).
The multi-source raw data consist of the text data (i) and the EHR data (ii) and (ii), which
are prepossessed in the same way as Beam et al. (2019) and Hong et al. (2021) to generate
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the CUI-level co-occurrence matrices. The PPMI matrices are then obtained following
Section 2.2. We choose sub-matrices from these sources by thresholding the frequency of
these CUI and keeping those with semantic types related to medical concepts. Finally, we
obtain the Stanford, PHS, and MIMIC PPMI matrices with 8922, 10964, and 8524 CUIs
respectively. The mean overlapping CUIs of any two sources is 4480 and the total number
of the unique CUIs of the three sources is 17963.

Multiple Chinese medical text data sources, such as medical textbooks and Wikipedia,
are also collected. We then build a PPMI matrix of 8628 Chinese medical terms. A Chinese-
English medical dictionary is used to translate these Chinese medical terms to English,
which are further mapped to CUI. Finally, we obtain 4201 Chinese-CUI pairs, and we use
2000 pairs as the training set (the known overlapping set) and the other 2201 pairs as the
test set to evaluate the translation precision. An illustration of the aggregation of the three
CUI PPMI matrices and one Chinese PPMI matrix is presented in Figure 3.

From each method, we obtain the embedding vectors for all entities by performing an
SVD on the imputed PPMI matrix obtained from each method, respectively. To evaluate the
quality of the obtained embedding, we compare the cosine similarity of trained embeddings
against the gold standard human annotations of the concept similarity and relatedness. We
considered two sets of human annotated relatedness and similarity: (I) 200 pairs of Chinese
medical terms randomly selected and annotated by four clinical experts; and (II) 566 pairs
of UMLS concepts in English previously annotated by eight researchers in Pakhomov et al.
(2010). The Chinese medical terms were also translated into English and mapped to the
UMLS CUI while the 566 UMLS concepts in English were also translated into Chinese. Each
concept pair thus can be viewed as CUI-CUI pair (CUI), Chinese-Chinese pair (Chinese),
and Chinese-CUI pair (Cross). The gold standard human annotation assigns each concept
pair a relatedness and similarity score, defined as the average score from all reviewers. For
each concept pair, we compare the cosine similarity of their associated embeddings against
the human annotations of their similarity and relatedness. We evaluate the quality of the
embeddings based on (a) the rank correlation between the cosine similarity and human
annotation; and (b) the accuracy in translating Chinese medical terms to CUIs in English.
The Precision@k is defined similarly to the translation accuracy in Section 4. The difference
is that when the truth CUI is among the CUIs with the top k largest cosine similarity to
the Chinese term, then it is treated as a correct translation. Precision@k is the ratio of the
correct translations given a k. Here we choose k as 5, 10 and 20.

To choose the rank of the matrix, we analyze the eigen decay of the matrices. The
eigen decay has been widely used to determine the rank of low-rank matrices, for example,
in principal component analysis (Jolliffe, 2005), word embedding (Hong et al., 2021) and
network analysis (Arroyo et al., 2021). We calculate the eigen decay of the overlapping sub-
matrices of each pair of sources and choose the rank r that makes the cumulative eigenvalue
percentage of at least one of the matrices more than 95%, which is 300. We then use r = 300
for all methods.

Finally, to compare with the neural-based embeddings, we also include a BERT-based al-
gorithm CODER (mediCal knOwledge embeDded tErm Representation) proposed by Yuan
et al. (2022). The CODER algorithm is trained on top of BERT (Devlin et al., 2019) with
contrastive learning on the multi-lingual relation pairs from UMLS (Bodenreider, 2004)
to improve medical term embedding. We use the pre-trained model of Yuan et al. (2022),
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whose input is the code descriptions, where we use the preferred English terms for CUIs and
Chinese terms, and the output of CODER is the CUI and Chinese embeddings of dimension
768.

Besides, the machine translation accuracy can suffer from the limited size of the Chinese
corpus. On the other hand, CODER embeddings utilize the multi-lingual semantic informa-
tion from code descriptions, which serves as complementary information to the PMI-based
embeddings. As a result, we use the CODER embeddings to assist the machine transla-
tion task by concatenating their embeddings with the EHR-based embeddings (denoted by
‘method+’, e.g., ‘BONMI+’).

5.1 Results

We present the results of BONMI and other competing methods in Table 1. We can observe
that all methods other than SMC perform similarly when assessing the relatedness and
similarity of Chinese-Chinese and CUI-CUI since these pairs belong to the same corpus.
However, BONMI outperforms other methods when evaluating relatedness and similarity
between Chinese-CUI pairs that belong to the missing blocks. BONMI also attains higher
accuracy in the translation task. This suggests that BONMI has the advantage over existing
methods in providing embedding vectors that enable an accurate assessment of relatedness
between entity pairs that do not belong to the same corpus.

6. Discussion and Conclusion

6.1 Generalization

We consider the completion of the PMI matrices and the estimation of multi-source embed-
dings in this paper. However, we also notice that there exist many applications involving
the completion of missing blocks for asymmetric matrices, for example, genomic data in-
tegration (Cai et al., 2016), multimodality data analysis (Xue and Qu, 2020), and other
applications mentioned in the introduction. Hence, in this section, we introduce an algo-
rithm designed for asymmetric matrices without repeated observations. Now assume that
W∗ ∈ RN×D of rank r is asymmetric with λmax = σ1(W∗) > λmin = σr(W

∗) > 0. Here W∗

does not have to come from the inner product of word embeddings but can be any low-rank
matrix. Furthermore, we have a noisy-corrupted matrix W such that W = W∗ + E. For
the sth source, we sample two index sets Vs1 ⊆ [N ] and Vs2 ⊆ [D] independently such that
for each i ∈ [N ] and j ∈ [D] , we assign i to Vs1 with probability ps1 and j to Vs2 with
probability ps2 independently:

P(i ∈ Vs1) = ps1 ∈ (0, 1), for i ∈ [N ], P(j ∈ Vs2) = ps2 ∈ (0, 1), for j ∈ [D], s ∈ [m] .

With the index sets Vs1 and Vs2, a matrix Ws is observed

Ws = WVs1,Vs2 , for s ∈ [m] . (18)

Let V∗1 = ∪ms=1Vs1 and V∗2 = ∪ms=1Vs2, then our task is to recover

W∗
0 ≡W∗

V∗1 ,V∗2 =
[
W∗(i, j)

]i∈V∗1
j∈V∗2

∈ Rn1×n2 , where N0 = |V∗1 | and D0 = |V∗2 |.
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Table 1: Results of the integration of four PPMI matrices: (a) rank correlation between
the pairwise cosine similarity of estimated embedding vectors from the completed
matrix and the similarity or relatedness from human annotation; (b) accuracy in
translation based on the estimated embedding vectors.

(a) Rank correlation with human annotations
Source Type Set BONMI Pre-train SMC VGD CODER

Chinese

Rel I 0.741 0.756 0.066 0.761 0.519
Rel II 0.661 0.659 0.327 0.663 0.482
Sim I 0.707 0.724 0.105 0.731 0.715
Sim II 0.716 0.728 0.271 0.726 0.469

CUI

Rel I 0.678 0.639 0.369 0.643 0.398
Rel II 0.604 0.598 0.141 0.592 0.351
Sim I 0.615 0.601 0.243 0.582 0.741
Sim II 0.634 0.635 0.171 0.622 0.451

Cross

Rel I 0.671 0.408 0.321 0.418 0.502
Rel II 0.655 0.424 0.301 0.358 0.424
Sim I 0.607 0.322 0.369 0.339 0.724
Sim II 0.699 0.445 0.335 0.399 0.428

(b) Translation accuracy
BONMI+ Pre-train+ SMC+ VGD+ CODER

Precision
@5 0.708 0.617 0.569 0.614 0.553
@10 0.766 0.683 0.633 0.677 0.621
@20 0.812 0.728 0.691 0.719 0.683

Without loss of generality, we assume V∗1 = [N0] and V∗2 = [D0]. The estimation procedure
is summarized in Algorithm 2.

The model (18) is more general than (2) in two ways: (i) (18) considers the asymmetric
matrix and (ii) (18) does not assume repeated observations. To be specific, the overlapping
parts of Ws are the same for different sources, which means that they are only observed once,
and Step I Aggregation in Algorithm 1 is not applicable now. The two relaxations make
the model (18) more flexible and realistic for the applications mentioned above. However,
if one does have repeated observations from each source with the heterogeneous noise level,
a weighted aggregation procedure similar to Step I (b) of Algorithm 1 can be applied and
will not affect the theoretical guarantee of the estimator.

Assume that W∗
0 has SVD W∗

0 = U∗0Σ
∗
0(V∗0)> = X∗(Y∗)>, where U∗0 ∈ RN0×r are the

left-singular vectors, V∗0 ∈ RD0×r are the right-singular vectors, and Σ∗0 is an r× r diagonal
matrix with singular values in a descending order. In addition, X∗ = U∗0(Σ∗0)1/2 ∈ RN0×r

and Y∗ = V∗0(Σ∗0)1/2 ∈ RD0×r. Let X̂ = ÛΣ̂1/2 and Ŷ = V̂Σ̂1/2 be the output of Algorithm
2. Without loss of generality, assume N = max{N,D } and p0 = mins∈[m]{ ps1, ps2 }.
Similar results to Theorem 7 and Theorem 12 can be provided. For example, when m = 2,
if p0 = o(1/ logN

)
or p0 is bounded away from zero, we can prove that under similar
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Algorithm 2: BONMI for asymmetric matrices.

Input: m matrices {Ws}s∈[m] and the corresponding index sets
{
Vs1,Vs2

}
s∈[m]

;

the rank r; N0 = | ∪ms=1 Vs1| and D0 = | ∪ms=1 Vs2|;
Step I Aggregation: Create W̃ ∈ RN0×D0 as follows:

W̃(i, j) = Ws(vs1i , v
s2
j ) if i ∈ Vs1 and j ∈ Vs2 for some s ∈ [m]

for all pairs of (i, j) such that Sij ≡
∑m

s=1 1(i ∈ Vs1, j ∈ Vs2) > 0, where vs1i (vs2j )
denotes the row(column) index in Ws corresponding to the ith row(jth column) of
W∗

0, and the entries in the missing blocks with Sij = 0 are initialized as zero.
Step II (a) Spectral initialization: for 1 ≤ s ≤ m do

Let ŨsΣ̃sṼ
>
s be the rank-r SVD of Ws.

end
Step II (b) Estimation of missing parts: for 1 ≤ s < k ≤ m do

Obtain W̃sk and W̃ks using Ũs, Σ̃s, Ṽs, Ũk, Σ̃k, Ṽk:

W̃sk ≡ Ũs1Σ̃
1/2
s G(Σ̃1/2

s Ũ>s2Ũk1Σ̃
1/2
k )Σ̃

1/2
k Ṽ>k2 ,

W̃ks ≡ Ũk2Σ̃
1/2
k G(Σ̃

1/2
k Ṽ>k1Ṽs2Σ̃

1/2
s )Σ̃1/2

s Ṽ>s1 .

Here Ũs = (Ũ>s1, Ũ
>
s2)>, Ũs = (Ṽ>s1, Ṽ

>
s2)>, Ũk = (Ũ>k1, Ũ

>
k2)>, and

Ṽk = (Ṽ>k1, Ũ
>
k2)> are decomposed similarly to (8). W̃sk and W̃sk are used

like in (9). If a missing entry (i, j) is estimated by multiple pairs of sources
(s, k), choose the one estimated by the first pair. Denote the imputed matrix

as Ŵ.
end

Step III Low rank approximation: Obtain the rank-r SVD of Ŵ:
Ŵr = ÛΣ̂V̂>.
Output: Û, Σ̂, V̂.

assumptions,

‖X̂OX −X∗‖ . {(1− p0)K2 + 1}K√
λmin

√
Nσ , ‖ŶOY −Y∗‖ . {(1− p0)K2 + 1}K√

λmin

√
Nσ ,

and otherwise,

‖X̂OX −X∗‖ . {(1− p0)K2(p0 logN) + 1}K√
λmin

√
Nσ ,

‖ŶOY −Y∗‖ . {(1− p0)K2(p0 logN) + 1}K√
λmin

√
Nσ ,

for some rotation matrices OX ,OY ∈ Or×r. The proofs are the simple extensions of the
proof of Theorem 7 and Theorem 12.
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6.2 Conclusion

This paper proposes BONMI, which aims at multi-source learning. Our method is computa-
tionally efficient with a theoretical guarantee. The performance of our algorithm is verified
by simulation and real data analysis. For theoretical guarantee, we require the sampling
probability of each source to have the order of

√
logN/N , which is a small order of N and

can be satisfied easily in many applications. Besides, we extend BONMI to asymmetric
matrices without repeated observations for other potential applications such as genomic
data integration.
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Willie Boag and Hassan Kané. Awe-cm vectors: Augmenting word embeddings with a
clinical metathesaurus. arXiv preprint arXiv:1712.01460, 2017.

Olivier Bodenreider. The unified medical language system (umls): integrating biomedical
terminology. Nucleic acids research, 32(suppl 1):D267–D270, 2004.

Jian-Feng Cai, Emmanuel J. Candès, and Zuowei Shen. A singular value thresholding
algorithm for matrix completion. SIAM Journal on Optimization, 20(4):1956–1982, 2010.

Tianxi Cai, T Tony Cai, and Anru Zhang. Structured matrix completion with applications
to genomic data integration. Journal of the American Statistical Association, 111(514):
621–633, 2016.

Emmanuel J Candes and Yaniv Plan. Matrix completion with noise. Proceedings of the
IEEE, 98(6):925–936, 2010.

Emmanuel J Candès and Benjamin Recht. Exact matrix completion via convex optimiza-
tion. Foundations of Computational Mathematics, 9(6):717, 2009.

Emmanuel J Candès and Terence Tao. The power of convex relaxation: Near-optimal
matrix completion. IEEE Transactions on Information Theory, 56(5):2053–2080, 2010.

Yudong Chen. Incoherence-optimal matrix completion. IEEE Transactions on Information
Theory, 61(5):2909–2923, 2015.

Yudong Chen and Martin J Wainwright. Fast low-rank estimation by projected gradient
descent: General statistical and algorithmic guarantees. arXiv preprint arXiv:1509.03025,
2015.

Patrick L Combettes and Jean-Christophe Pesquet. Proximal splitting methods in signal
processing. In Fixed-point algorithms for inverse problems in science and engineering.
Springer, 2011.

Alexis Conneau, Guillaume Lample, Marc’Aurelio Ranzato, Ludovic Denoyer, and Hervé
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Technical supplementary material to

Multi-source Learning via Completion of Block-wise
Overlapping Noisy Matrices

This document contains the supplementary material to the paper “Multi-source Learning
via Completion of Block-wise Overlapping Noisy Matrices”. We mainly provide technical
details of proving Proposition 2, Theorems 7, and 12 here.

S.1. Proof of Proposition 2

Proof First, we prove rank(W∗
s∩k,s∩k) = r. Let Nsk ≡ |Vs ∩ Vk|, then by Lemma S.1, we

have

Nsk ≥
3pspkN

2
≥ Cµ0r logN

holds with probability 1−O(1/N3) for some sufficiently large constant C, where the second
inequality comes from Assumption 2. Then, by Lemma S.2, we have

λr(W
∗
s∩k,s∩k) ≥ σmin(U∗s∩k)λr(Σ

∗)σmin(U∗s∩k) ≥
nskλmin

2N
> 0

with probability 1 − 1/N3. As a result, rank(W∗
s∩k,s∩k) = r with probability as least

1 − O(1/N3). Under this event, since W∗
s∩k,s∩k is a principal sub-matrix of W∗

s , we have
rank(W∗

s) ≥ rank(W∗
s∩k,s∩k) = r. Besides, W∗

s is a principal sub-matrix of W∗, we have
rank(W∗

s) ≤ rank(W∗) = r. Combining the two inequalities, we have rank(W∗
s) = r. The

same conclusion holds for W∗
k. We then prove that W∗

s\k,k\s has the representation of (6).

Recall the eigen-decomposition of W∗ = U∗Σ∗(U∗)> and by definition we will have

W∗
s∩k,s∩k = U∗s∩kΣ

∗(U∗s∩k)
> = V∗s2Σ

∗
s(V

∗
s2)> = V∗k1Σ

∗
k(V

∗
k1)>, (S.1)

which also implies that rank(V∗s2) = rank(V∗k1) = r. Multiplying V∗k1 on the both sides of
the last equation, we obtain

V∗s2(Σ∗s)
1/2(Σ∗s)

1/2(V∗s2)>V∗k1 = V∗k1(Σ∗k)
1/2(Σ∗k)

1/2(V∗k1)>V∗k1

and the following equation

V∗k1(Σ∗k)
1/2 = V∗s2(Σ∗s)

1/2R̂,

where R̂ = (Σ∗s)
1/2(V∗s2)>V∗k1

(
(V∗k1)>V∗k1

)−1
(Σ∗k)

−1/2. It is easy to verify that R̂>R̂ = Ir
and then it is obvious that

R̂ = arg min
R∈Or×r

‖V∗s2(Σ∗s)
1/2R−V∗k1(Σ∗k)

1/2‖F.

Then by Lemma 22 of Ma et al. (2018), we prove that R̂ = G
(
(V∗s2(Σ∗s)

1/2)>V∗k1(Σ∗k)
1/2
)
.

Again by (S.1), we have

(U∗s∩k)
> = Σ

∗−1
(
(U∗s∩k)

>U∗s∩k
)−1

(U∗s∩k)
>V∗k1Σ

∗
k(V

∗
k1)>. (S.2)
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In addition, we have

U∗s∩kΣ
∗(Us\k)

> = W∗
s∩k,k\s = V∗k1Σ

∗
k(V

∗
k2)>. (S.3)

Combining (S.2) and (S.3), we have

(U∗s∩k)
>V∗k1{(V∗k1)>V∗k1}−1(V∗k2)>

= Σ
∗−1
(
(U∗s∩k)

>U∗s∩k
)−1

(U∗s∩k)
>V∗k1Σ

∗
k(V

∗
k1)>V∗k1{(V∗k1)>V∗k1}−1(V∗k2)>

= Σ
∗−1
(
(U∗s∩k)

>U∗s∩k
)−1

(U∗s∩k)
>V∗k1Σ

∗
k(V

∗
k2)>

= Σ
∗−1
(
(U∗s∩k)

>U∗s∩k
)−1

(U∗s∩k)
>U∗s∩kΣ

∗(Us\k)
> = (Us\k)

>,

(S.4)

where the first equation comes from (S.2) and the second equation comes from (S.3). Finally,

V∗s1(Σ∗s)
1/2G((Σ∗s)

1/2(V∗s2)>V∗k1(Σ∗k)
1/2)(Σ∗k)

1/2(V∗k2)>

= V∗s1(Σ∗s)
1/2(Σ∗s)

1/2(V∗s2)>V∗k1{(V∗k1)>V∗k1}−1(Σ∗k)
−1/2(Σ∗k)

1/2(V∗k2)>

= U∗s\kΣ
∗(U∗s∩k)

>V∗k1{(V∗k1)>V∗k1}−1(V∗k2)>

= U∗s\kΣ
∗(U∗k\s)

> = W∗
s\k,k\s,

where the first equation comes from R̂ = G
(
(V∗s2(Σ∗s)

1/2)>V∗k1(Σ∗k)
1/2
)
, the second equa-

tion comes from V∗s1Σ
∗
s(V

∗
s2)> = W∗

s\k,s∩k = U∗s\kΣ
∗(U∗s∩k)

>, and the third equation

comes from (S.4). Then we finish the proof.

S.2. Proof of Theorem 7

When m = 2, we adopt the notations of Section 2.4 by assuming the two observed sub-
matrices are Ws and Wk. To prove the theorem, recall that W̃sk defined by (8) is the

estimate of W∗
s\k,k\s, the main effort lies on the perturbation bound of ‖W̃sk −W∗

s\k,k\s‖.
After we obtain it, the perturbation bound of ‖Ŵ −W∗‖ can also be figured out. As

a result, the error of the rank r factorization of Ŵ can also be bounded, which leads to
Theorem 7. Before we derive ‖W̃sk −W∗

s\k,k\s‖, we need the basic spectral properties of
W∗

0 defined in (5), W∗
s , W∗

k defined in (4), which are presented in the Section S.2.1.

S.2.1 Characterization of The Underlying Matrix

Recall that Ns = |Vs|, Nk = |Vk| and Nsk = |Vs ∩ Vk|. First, by Lemma S.1, we have

plN

2
≤ Nl ≤

3plN

2
, for l = s, k and

pspkN

2
≤ Nsk ≤

3pspkN

2
(S.5)

hold simultaneously with probability 1−O(1/N3). Throughout, our analysis is conditional
on (S.5). By Proposition S.3, we have

λr(W
∗
l ) ≥

Nlλmin

2N
≥ plλmin

4
, for l = s, k
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hold simultaneously with probability 1 − 2/N3 since by the Assumption 2, we have Nl ≥
Np0/2 ≥ 16µ0r(log r + logN3), l = s, k. Then by Lemma S.4, we will have

µl = µ(V∗l ) =
Nl

r
max

i=1,...,nl

r∑
j=1

V∗l (i, j)
2 ≤ 2τµ0, l = s, k.

In addition, by Proposition S.5, we have

λ1(W∗
l ) ≤

nlrµ0

N
λmax ≤

3plrµ0

2
λmax, for l = s, k.

As a result, we have the condition number of W∗
l :

τl = λ1(W∗
l )/λr(W

∗
l ) ≤ 6rµ0τ, for l = s, k.

S.2.2 Imputation Error

After we characterize the spectral properties of W∗
0 defined in (5), W∗

l , l = s, k, we begin to

control ‖W̃sk −W∗
s\k,k\s‖. Using the notations of Proposition 2 and Section 2.4, we define

A = V∗s(Σ
∗
s)

1/2; B = V∗k(Σ
∗
k)

1/2; Ã = Ṽs(Σ̃s)
1/2; B̃ = Ṽk(Σ̃k)

1/2;

A1 = V∗11(Σ∗1)1/2; A2 = V∗12(Σ∗1)1/2; B1 = V∗21(Σ∗2)1/2; B2 = V∗22(Σ∗1)1/2;

Ã1 = Ṽ11(Σ̃1)1/2; Ã2 = Ṽ12(Σ̃1)1/2; B̃1 = Ṽ21(Σ̃2)1/2; B̃2 = Ṽ22(Σ̃2)1/2

(S.6)

and QA = G(Ã>A), QB = G(B̃>B), Õ = G(Ã>2 B̃1). It is easy to see that

W̃sk = Ã1Õ
>B̃>2 = Ã1QA(Q>AÕ>QB)Q>BB̃>2 = Ã1QAG(Q>BB̃>1 Ã2QA)Q>BB̃>2 . (S.7)

Then by Proposition 2, we have

‖W̃sk −W∗
s\k,k\s‖ = ‖(Ã1QA)(Q>AÕ>QB)(Q>BB̃>2 )−A1O

>B>2 ‖

=‖(Ã1QA)(Q>AÕ>QB)(Q>BB̃>2 )−A1(Q>AÕ>QB)(Q>BB̃>2 )

+ A1(Q>AÕ>QB)(Q>BB̃>2 )−A1(Q>AÕ>QB)B>2

+ A1(Q>AÕ>QB)B>2 −A1O
>B>2 ‖

≤‖B̃2‖‖Ã1QA −A1‖+ ‖Ã1‖‖B̃2QB −B2‖+ ‖A1‖‖B2‖‖Q>AÕ>QB −O‖.

Applying Proposition S.9, Lemma S.6, Lemma S.7, Lemma S.10, with f(p0, N) defined in
(S.18), we have

‖W̃sk −W∗
s\k,k\s‖

. (1− p0)(‖B‖‖ÃQA −A‖+ ‖A‖‖B̃QB −B‖+ ‖A‖‖B‖‖Q>AÕ>QB −O‖)

. (1− p0)
{
rµ0τ + f(p0, N)2(rµ0τ)2

}
(‖Ẽ1‖+ ‖Ẽ2‖)

. (1− p0)(rµ0τ)2f(p0, N)2
√
Np0σ

with probability 1−O(1/N3).
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S.2.3 Completion Error

After we impute the missing blocks, we can bound ‖Ŵ −W∗‖ where Ŵ is defined as (9).
Notice that

Ŵ = W∗ + Ẽ + F̃, (S.8)

where

Ẽ =

Es
s\k,s\k Es

s\k,s∩k O

Es
s∩k,s\k αsE

s
s∩k,s∩k + αkE

k
s∩k,s∩k Ek

s∩k,k\s

O Ek
k\s,s∩k Ek

k\s,k\s

 ,
and

F̃ =

 O O W̃sk −W∗
s\k,k\s

O O O

W̃>
sk −W∗

k\s,s\k O O

 .
Then we only need to bound ‖Ẽ‖ and ‖F̃‖. It is easy to see that ‖F̃‖ = ‖W̃sk −W∗

s\k,k\s‖,
then we only need to bound ‖Ẽ‖. It is easy to see that ‖Ẽ‖ ≤ ‖Es‖ + ‖Ek‖ .

√
Np0σ.

However, to give some intuition on the choice of αs and αk, we consider a special case that
the entries of Es and Ek are independent mean zero sub-Gaussian random variables with
sub-Gaussian norm σ. Then by Corollary 3.3 of Bandeira and van Handel (2016), we have

E‖Ẽ‖ . σ∗ + σ
√

logN0,

where σ = max{σs, σk} and σ∗ = maxi

√∑
j EẼ2

ij . It is easy to see that

σ∗ = max{
√
Nsσs,

√
Nkσk,

√
(Ns −Nsk)σ2

s + (Nk −Nsk)σ
2
k +Nsk(α2

sσ
2
s + α2

kσ
2
k)}.

In addition, by Lemma 11 and Proposition 1 of Chen and Wainwright (2015), there exists
a universal constant c > 0 such that

P{‖Ẽ‖ ≥ c(σ∗ + σ logN0)} ≤ N−12
0 .

In order to minimize ‖Ẽ‖ with regard to αs and αk, the best we can do is to minimize its
upper bound. It is easy to see that

(α∗1, α
∗
2) = (σ2

2/(σ
2
1 + σ2

2), σ2
1/(σ

2
1 + σ2

2)) = arg min
α1+α2=1,α1>0,α2>0

α2
1σ

2
1 + α2

2σ
2
2.

In reality, we do not know σs and σk, but we can estimate them by (10). Since

α2
1σ

2
1 + α2

2σ
2
2 ≤ (α2

1 + α2
2)σ2 ≤ (α1 + α2)2σ2 = σ2,

we have σ∗ ≤
√
N0σ. So ‖Ẽ‖ . σ∗ ≤

√
N0σ with probability at least 1 − N−12

0 ≥ 1 −
O(1/N3). By N0 = Ns + Nk − Nsk ≤ 3Nps/2 + 3Npk/2 − Npspk/2 . Np0, we get
σ∗ .

√
Np0σ. Finally, we have

‖Ŵ −W∗‖ ≤ ‖Ẽ‖+ ‖F̃‖ .
√
Np0σ + (1− p0)(rµ0τ)2f(p0, N)2

√
Np0σ.

The inequality still holds if the sub-Gaussian assumption does not hold.
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S.2.4 Low-rank Approximation

The last step is to do rank-r eigendecomposition on Ŵ to obtain Ŵr = ÛΣ̂Û> = X̂X̂>

where X̂ = ÛΣ̂1/2. Then there exists an orthogonal matrix OX such that

‖X̂OX −X∗‖ . ‖Ŵ −W∗‖rµ0τ√
λr(W∗

0)
.
‖Ŵ −W∗‖rµ0τ√

λminp0

. {(1− p0)(rµ0τ)2f(p0, N)2 + 1}rµ0τ

√
N

λmin
σ.

by a similar proof as Lemma S.7 and the fact that λr(W
∗
0) ≥ λr(W∗

s) ≥ p0λmin/4. Finally,
this upper bound holds with probability at least 1 − O(1/N3) by the probability union
bound.

S.3. Proof of Theorem 12

We know that N0 ∼ Binomial(N, 1 −
∏m
s=1(1 − ps)), so by the same argument to Lemma

S.1, we have

N{1−
m∏
s=1

(1− ps)}/2 ≤ N0 ≤ 3N{1−
m∏
s=1

(1− ps)}/2

with probability 1−O(1/N3). As a result,

{1− (1− p0)m}λmin . λr(W
∗
0) ≤ λ1(W∗

0) . {1− (1− p0)m}rµ0λmax (S.9)

by a similar argument as in the proof of Theorem 7 and the Assumption 2 that ps/p0 = O(1).

In addition, let E = Ŵ −W∗
0, then by a similar decomposition as in (S.8), we will have

‖E‖ ≤ ‖Ẽ‖+

m−1∑
s=1

m∑
k=s+1

‖Tsk ◦ (W̃sk −W∗
s\k,k\s)‖

where Ẽ ∈ Rn×n with

Ẽ(i, j) =

m∑
s=1

αsijE
s(vsi , v

s
j )1(i, j ∈ Vs), for Sij > 0

and Ẽ(i, j) = 0 for Sij = 0. Here we denote ◦ as the Hadamard product operator and
Tsk, s 6= k ∈ [m] are 0/1 matrices decided by the Algorithm 1. According to the Algorithm
1, the nonzero entries of Tsk, s 6= k ∈ [m] are block-wise, which implies that

‖Tsk ◦ (W̃sk −W∗
s\k,k\s)‖ ≤ ‖W̃sk −W∗

s\k,k\s‖.

Then, by the proof of Theorem 7, we have ‖Ẽ‖ .
√
Np0σ and

‖W̃sk −W∗
s\k,k\s‖ . (1− p0)(rµ0τ)2f(p0, N)2

√
Np0σ

hold simultaneously with probability 1−O(m2/N3) for 1 ≤ s < k ≤ m. As a result,

‖Ŵ −W∗
0‖ . m(m− 1)(1− p0)(rµ0τ)2f(p0, N)2

√
Np0σ +

√
Np0σ
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and

‖X̂OX −X∗‖ . ‖Ŵ −W∗
0‖rµ0τ√

λr(W∗
0)

.

By (S.9), we have

‖X̂OX −X∗‖ .
{

1 +m2(1− p0)(rµ0τ)2f(p0, N)2

√
p0

1− (1− p0)m

}
rµ0τ

√
N

λmin
σ

with probability 1−O(m2/N3). Given 0 < ε < 1, we have

P{N0 < (1− ε)N} = O
( 1

N3

)
when m ≈ log(ε−

√
3 logN

2N )/ log(1−p0) by the fact that N0 ∼ Binomial(N, 1−
∏m
s=1(1−ps))

and the Bernstein inequality. Since limN→∞
√

logN/N = 0 we have m ≈ log ε/ log(1− p0).
Finally, we have

‖X̂OX −X∗‖ .
{

1 +
log2 ε

log2(1− p0)
(1− p0)(rµ0τ)2f(p0, N)2

√
p0

1− (1− p0)m

}
rµ0τ

√
N

λmin
σ

with probability 1−O(m2/N3).

S.4. Details of the Proof of Theorem 7

Here we present some key lemmas and propositions needed for our proof of Theorem 7.

Lemma S.1 (The dimension of the sub-matrices) Under the assumption that

ps ≥ p0 ≥ C
√
µ0rτ logN/N,

for some sufficiently large constant C, we have

psN

2
≤ Ns ≤

3psN

2
and

pspkN

2
≤ Nsk ≤

3pspkN

2
, s 6= k, s, k ∈ [m] (S.10)

with probabilities 1−O(m2/N3).

Proof By the Bernstein inequality, we have

P{Y ≤ pn− t} ≤ exp{−
1
2 t

2

np(1− p) + 1
3 t
} and P{Y ≥ pn+ t} ≤ exp{−

1
2 t

2

np(1− p) + 1
3 t
}

if Y ∼ Binomial(n, p). Since Ns ∼ Binomial(N, ps) and Nsk ∼ Binomial(N, pspk), let
t = ps

2 , we have

P{psN
2
≤ Ns ≤

3psN

2
} ≥ 1− 2 exp{−3psN

28
}.

Similarly, we have

P{pspkN
2

≤ Nsk ≤
3pspkN

2
} ≥ 1− 2 exp{−3pspkN

28
}.
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In addition, by ps ≥ p0 ≥ C
√
µ0rτ logN/N , we have exp{−3psN/28} = O(1/N3) and

exp{−3pspkN/28} = O(1/N3). Finally, by the probability union bound, (S.10) holds with
probability 1−O(m2/N3).

Lemma S.2 (Lemma 5, Cai et al. (2016)) Suppose U ∈ RN×r (N ≥ r) is a fixed ma-
trix with orthonormal columns. Denote µ = max1≤i≤N

N
r

∑r
j=1 u

2
ij. Suppose we uniform

randomly draw n rows (with or without replacement) from U and denote it as UΩ, where Ω
is the index set. When n ≥ 4µr(log r + c)/(1− α)2 for some 0 < α < 1 and c > 1, we have

σmin(UΩ) ≥
√
αn

N

with probability 1− 2e−c.

By Lemma S.2, we will directly have the following proposition.

Proposition S.3 Let α = 1
2 and c = log 2N3 in Lemma S.2, then when

Ns ≥ 16µ0r(log r + log 2N3),

we have σmin(U∗Vs) ≥
√

Ns
2N with probability 1−1/N3. In addition, under the event, we have

λr(W
∗
s) = λr(U

∗
VsΣ

∗(U∗Vs)
>) ≥ σmin(U∗Vs)λr(Σ

∗)σmin(U∗Vs) ≥
Nsλmin

2N
.

Lemma S.4 (Incoherence condition of the sub-matrices) Recall that V∗sΣ
∗
s(V

∗
s)
> is

the rank-r eigendecomposition of W∗
s. Assume that λr(W

∗
s) ≥ Nsλmin

2N . Then the incoherence
of V∗s satisfies

µs ≡ µ(V∗s) =
Ns

r
max

i=1,...,ns

r∑
j=1

V∗s(i, j)
2 ≤ 2τµ0.

Proof Since W∗
s = U∗VsΣ

∗(U∗Vs)
> = V∗sΣ

∗
s(V

∗
s)
>, we have

V∗s = U∗Vs(Σ
∗)

1
2 O>s (Σ∗s)

− 1
2

where Os = (Σ∗s)
− 1

2 (V∗s)
>U∗Vs(Σ

∗)
1
2 ∈ Or×r. Then

r∑
j=1

V∗s(i, j)
2 ≤

r∑
j=1

U∗Vs(i, j)
2‖(Σ∗s)−

1
2 ‖2‖(Σ∗)

1
2 ‖2 ≤ rµ0

N

λmax

λr(W∗
s)

As a result,

µs =
Ns

r
max

i=1,...,ns

r∑
j=1

V∗s(i, j)
2 ≤ Nsµ0

N

σmax

σr(W∗
s)
≤ 2λmax

λmin
µ0 = 2τµ0.
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Proposition S.5 (Upper bound of the operator norm of the sub-matrices) We have

λ1(W∗
s) ≤ min{1, Nsrµ0

N
}λmax for s ∈ [m].

Proof It is obviously that λ1(W∗
s) = λ1(U∗VsΣ

∗(U∗Vs)
>) ≤ σmax(U∗Vs)

2λmax(Σ∗) ≤ λmax

because σmax(U∗Vs) ≤ 1. Besides, we have ‖U∗Vs‖
2 ≤ Ns‖U∗Vs‖

2
2,∞ ≤ Nsrµ0/N where the

first inequality comes from the property of `2/`∞ norm and the second inequality comes
from µ0 = µ(U∗) and the definition of incoherence.

S.4.1 Error Matrix

Recalling that W̃s ≡ W̃Vs,Vs , we characterize the operator norm of W̃s −W∗
s , s ∈ [m] in

the Lemma S.6.

Lemma S.6 Let Ẽs := W̃s −W∗
s , s ∈ [m]. Under Assumptions 2, 3, and the condition

psN/2 ≤ ns ≤ 3psN/2, s ∈ [m], we have

‖Ẽs‖ .
√
Np0σ �

p0λmin

4
≤ λr(W∗

s), s ∈ [m]

with probability 1−O(m/N3).

Proof Recall that

W̃s(v
s
i , v

s
j ) = W̃(i, j) =

m∑
k=1

αkijW
k(vki , v

k
j )1(i, j ∈ Vk), i, j ∈ Vs.

We then have

Ẽs(v
s
i , v

s
j ) =

m∑
k=1

αkijE
k(vki , v

k
j )1(i, j ∈ Vs), i, j ∈ Vs

and it is easy to see ‖Ẽs‖ ≤ maxk∈[m] ‖Êk‖ .
√
Nsσ, s ∈ [m]. In addition, Ns ≤ 3psN/2

leads to
‖Ẽs‖ .

√
Np0σ, s ∈ [m]

with probability at least 1−O(m/N3), and based on Assumption 3, we have

‖Ẽs‖ �
p0λmin

4
≤ λr(W∗

s), s ∈ [m].

We then bound ‖ÃQA −A‖ and ‖B̃QB −B‖ for the case m = 2 in the following lemma.

Lemma S.7 Based on the notation on Section S.2.2 with the assumptions that ‖Ẽl‖ �
λr(W

∗
l ) and τl = λ1(W∗

l )/λr(W
∗
l ), l = s, k are bounded, we have

‖ÃQA −A‖ . τs√
λr(W∗

s)
‖Ẽs‖ and ‖B̃QB −B‖ . τk√

λr(W∗
k)
‖Ẽk‖.
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Proof Define Qs = G(Ṽ>s V∗s), Qk = G(Ṽ>k V∗k) and recall that QA = G(Ã>A) and

QB = G(B̃>B). The key decomposition we need is the following:

ÃQA −A = Ã(QA −Qs) + Ṽs[Σ̃
1
2
s Qs −Qs(Σ

∗
s)

1
2 ] + (ṼsQs −V∗s)(Σ

∗
s)

1
2 . (S.11)

For the spectral norm error bound, the triangle inequality together with (S.11) yields

‖ÃQA −A‖ ≤ ‖Σ̃
1
2
s ‖‖QA −Qs‖+ ‖Σ̃

1
2
s Qs −Qs(Σ

∗
s)

1
2 ‖+

√
λ1(Σ∗s)‖ṼsQs −V∗s‖,

where we have also used the fact that ‖Ṽs‖ = 1. Recognizing that ‖W̃s −W∗
s‖ = ‖Ẽs‖ �

λr(W
∗
s) and the assumption that λ1(W∗

s)/λr(W
∗
s) is bounded, we can apply Lemmas 47,

46, 45 of Ma et al. (2018) to obtain

‖QA −Qs‖ .
1

λr(W∗
s)
‖Ẽs‖,

‖Σ̃
1
2
s Qs −Qs(Σ

∗
s)

1
2 ‖ . 1√

λr(W∗
s)
‖Ẽs‖,

‖ṼsQs −V∗s‖ .
1

λr(W∗
s)
‖Ẽs‖.

These taken collectively imply the advertised upper bound

‖ÃQA −A‖ .
√
λ1(W∗

s)

λr(W∗
s)
‖Ẽs‖+

1√
λr(W∗

s)
‖Ẽs‖ .

√
τs√

λr(W∗
s)
‖Ẽs‖,

where we also utilize the fact that ‖Σ̃s‖ ≤ ‖Σ∗s‖+‖Ẽs‖ ≤ 2‖Σ∗s‖ = 2‖W∗
s‖ and λ1(W∗

s)/λr(W
∗
s)

is bounded. Similarly, we have

‖B̃QB −B‖ .
√
τk√

λr(W∗
k)
‖Ẽk‖.

Combined with the fact that τl = λ1(W∗
l )/λr(W

∗
l ) ≤ 6rµ0τ, l = s, k, we have

‖ÃQA −A‖ .
√
rµ0τ√
λr(W∗

s)
‖Ẽs‖ and ‖B̃QB −B‖ .

√
rµ0τ√
λr(W∗

k)
‖Ẽk‖.

S.4.2 Probability Bound for Submatrix

Lemma S.8 Denote R ∈ Rd×d for the square diagonal matrix whose jth diagonal entry is
yj, where {yj}nj=1 is a sequence of independent 0− 1 random variables with common mean

p. Let B ∈ Rq×d with rank r and d > max{e2, r2}.

• If p = o(1/ log d) or p is bounded away from 0 for all d, we have

P{‖BR‖ ≥ Cp
1
2 ‖B‖} ≤ δ (S.12)
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• else,

P{‖BR‖ ≥ Cp
1
2

√
p log d‖B‖} ≤ δ (S.13)

for some universal positive constant C and δ = 1/d3.

Proof By Theorems 3.1 and 4.1 of Tropp (2008), we have

Ek‖BR‖ ≤ 6
√

max{k, 2 log r} p

1− p
max
|T |≤p−1

[
∑
j∈T
‖bj‖k2]1/k +

√
p‖B‖. (S.14)

for k ∈ [2,∞) where EkX = (E|X|k)1/k and the `1 to `2 operator norm ‖ · ‖1→2 computes
the maximum `2 norm of a column. In addition, bj is the jth column of B and T ⊂ [d].
Since ‖bj‖2 ≤ ‖B‖, we have

max
|T |≤p−1

[
∑
j∈T
‖bj‖k2]1/k ≤ (p−1‖B‖k)1/k = p−1/k‖B‖.

As a result,

Ek‖BR‖ ≤ p
1
2 {

6
√

max{k, 2 log r}p
1
2
− 1

k

1− p
+ 1}‖B‖ (S.15)

for k ∈ [2,∞). In addition, it is obviously that Ek‖BR‖ ≤ ‖B‖. When p ≥ 1
2 , we have

p
1
2 {

6
√

max{k, 2 log r}p
1
2
− 1

k

1− p
+ 1} ≥ p

1
2 {12

√
2 log rp

1
2
− 1

k + 1} ≥ 1√
2
{12
√

log r + 1} > 1

and when p < 1
2 we have

p
1
2 {

6
√

max{k, 2 log r}p
1
2
− 1

k

1− p
+ 1} < p

1
2 {12 max

√
{k, 2 log r}p

1
2
− 1

k + 1}.

As a result, we have
Ek‖BR‖ ≤ c1(p, r, k)‖B‖

where c1(p, r, k) = min{1, p
1
2 {12

√
max{k, 2 log r}p

1
2
− 1

k +1}}. Let k0 = log d ≥ 2 log r. Then
by Markov inequality, we have

P{‖BR‖ ≥ p
1
2 {δ−1/k0c1(p, r, k0)/

√
p}‖B‖} ≤ δ. (S.16)

We discuss the (S.16) dependent on the conditions of p.
Case 1: 0 < p < c3/ log d for all d > 0 and some fixed constant c3 > 0. Then δ−1/q0 = e3

is a constant. In addition,
√
k0p

1
2
− 1

k0 ≤ √c3{c3/ log d}−1/ log d < c4 for some constant c4

since lim
x→∞

x1/x = 1 is bounded. As a result, c1(p, r, k0)/
√
p ≤ 12c4 + 1 is also bounded.

Case 2: p ≥ c5 for all d > 0 and some fixed constant 0 < c5 < 1. Then let c6 = 1/
√
c5

and we have
P{‖BR‖ > p

1
2 c6‖B‖} ≤ δ (S.17)

since ‖BR‖ ≤ ‖B‖ almost surely.
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Case 3: p = g(d)/ log d for some function g(d) > 0 which satisfies lim
d→∞

g(d) = ∞

and lim
d→∞

g(d)/ log d = 0. We still have δ−1/k0 = e3. In addition, c1(p, r, k0)/
√
p ≤

12
√
k0p

1
2
− 1

k0 + 1 ≤ 12
√
g(d)( log d

g(d) )1/ log d + 1 ≤ c7

√
g(d) = c7

√
p log d for some constant

c7 since (log d/g(d))1/ log d is bounded.
Based on Case 1, 2 and 3, letting C = max{e3(12c4+1), c6, e

3c7}, we will get the result.

Let c1 = limN→∞ p0 and c2 = limN→∞ p0 logN . Define

f(p0, N) = 1(c1 > 0 or c2 = 0) + {1− 1(c1 > 0 or c2 = 0)}
√
p0 logN. (S.18)

Then we have the following proposition.

Proposition S.9 Based on the definition of (S.7), under the assumption that p0 is bounded
away from 1, e.g., limN0→∞ p0 < 1, directly apply Lemma S.8, we will get

‖Ã1QA −A1‖ .
√

1− p0‖ÃQA −A‖; ‖Ã2QA −A2‖ .
√
p0f(p0, N)‖ÃQA −A‖;

‖B̃2QB −B2‖ .
√

1− p0‖B̃QB −B‖; ‖B̃1QA −B1‖ .
√
p0f(p0, N)‖B̃QB −B‖;

‖Ã1‖ .
√

1− p0‖Ã‖; ‖A1‖ .
√

1− p0‖A‖;

‖A2‖ .
√
p0f(p0, N)‖A‖; ‖B̃1‖ .

√
p0f(p0, N)‖B̃‖;

‖B̃2‖ .
√

1− p0‖B̃‖; ‖B2‖ .
√

1− p0‖B‖;
(S.19)

with probability 1− 10/N3.

S.4.3 Orthogonal Procrustes Problem

Lemma S.10 (Orthogonal Procrustes problem) Based on the definition of (S.7), the
condition of (S.19), Assumption 2, λ1(W∗

l ) ≤ 3p0rµ0/2λmax, λr(W
∗
l ) ≥ plλmin/4, ‖Ẽl‖ �

λr(W
∗
l ), l = s, k, and Nsk ≥ 64rµ0τ(log r + log 2N3), we have

‖Q>BÕQA −O‖ . f(p0, N)2rµ0τ

p0λmin
{‖Ẽs‖+ ‖Ẽk‖} (S.20)

with probability 1− 2/N3.

Proof First,

‖A>2 B1 −Q>AÃ>2 B̃1QB‖ ≤ ‖A2‖‖B̃1QB −B1‖+ ‖B̃1‖‖Ã2QA −A2‖

≤ p0f(p0, N)2{‖A‖‖B̃QB −B‖+ ‖B̃‖‖ÃQA −A‖}

≤ 2p0f(p0, N)2{‖A‖‖B̃QB −B‖+ ‖B‖‖ÃQA −A‖}

. p0f(p0, N)2{

√
rµ0τλ1(W∗

s)

λr(W∗
k)
‖Ẽk‖+

√
rµ0τλ1(W∗

k)

λr(W∗
s)
‖Ẽs‖}

≤ p0f(p0, N)2rµ0τ{‖Ẽs‖+ ‖Ẽk‖}

40



Multi-source Learning via Completion of Block-wise Overlapping Noisy Matrices

where the second inequality comes from (S.19), the third inequality comes from ‖B̃‖ ≤√
‖W∗

k‖+ ‖Ẽk‖ ≤
√

2‖W∗
k‖ ≤ 2‖B‖ and the last inequality comes from Lemma S.7. In

addition, since

σr−1(A>2 B1) ≥ σr(A>2 B1) = σr((V
∗
s2)>(Σ∗s)

1/2(Σ∗k)
1/2V∗k1)

≥ σmin(V∗s2)
√
λr(Σ∗s)λr(Σ

∗
k)σmin(V∗k1)

and again by p0 ≥ C
√
µ0rτ logN/N , we will have p0 ≥

√
64rµ0τ(log r + log 2N3)/N . Then

by Lemma S.2, σmin(V∗s2)σmin(V∗k1) ≥ p0/6 holds with probability 1− 2/N3. Then

σr−1(A>2 B1) ≥ σr(A>2 B1) ≥ p2
0λmin/24.

So we can apply Lemma 23 of Ma et al. (2018) to get

‖Q>AÕQB −O‖ ≤
‖A>2 B1 −Q>AÃ>2 B̃1QB‖
σr−1(A>2 B1) + σr(A>2 B1)

≤ p0f(p0, N)2rµ0τ

2p2
0λmin/24

{‖Ẽs‖+ ‖Ẽk‖} .
f(p0, N)2rµ0τ

p0λmin
{‖Ẽs‖+ ‖Ẽk‖}.

(S.21)

S.5. Discussion about Dependent Sampling

In this section, we explore the relaxation of the independence model (1) to accommodate a
wider range of scenarios. To do this, we introduce a dependent model

{ps}ms=1 ∼ Pm, (S.22)

where the probabilities {ps}ms=1 are drawn from an m-dimension distribution Pm over the
sample space (C

√
µ0r logN/N, 1)m with a sufficiently large constant C. There are no other

restrictions on the distribution Pm, so {ps}ms=1 can be highly dependent. Conditioning on
{ps}ms=1, we assume that

I(w ∈ Vs | ps) for w ∈ V and s ∈ [m] independently, and P(w ∈ Vs | ps) = ps. (S.23)

This model allows the dependence for the emergence of corpora which is decided by Pm.
Specifically, we have

P(w1 ∈ Vs, w2 ∈ Vs) 6= P(w1 ∈ Vs)P(w2 ∈ Vs)

when Var(ps) > 0 and

P(w1 ∈ Vs, w2 ∈ Vk) 6= P(w1 ∈ Vs)P(w2 ∈ Vk)

when Cov(ps, pk) 6= 0 for s 6= k. As a result, if w1 belongs to Vs, it may influence the
occurrence probability of other codes for Vs and Vk for k 6= s.

Despite these changes, our theorems still hold under the model defined by (S.22) and
(S.23). Specifically, conditioning on {ps}ms=1, we can still guarantee the overlapping matrices
are of rank r and apply Lemma S.8. Following the same analysis, we can prove the same
bounds as Theorems 7 and 12.
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S.6. Additional Simulation Results

To validate the data-driven method for choosing r in Section 5, we rerun all simulations in
Section 4 while only replacing the true rank with the estimated one for all methods. We
observe a similar pattern to the results in Section 4.3, and BONMI still performs the best.
The results are presented in Figures 4.
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(a) setting (i): fix m = 2 and range p0 from 0.1 to 0.3.
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(b) setting (ii): fix p0 = 0.1 and range m from 2 to 6.
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Figure 4: Simulation results of settings (i) and (ii). The relative estimation errors of W∗
0

are presented. setting (iii): fix p0 = 0.1 and range σ from 0.3 to 0.5.
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