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Abstract

Positive-Unlabeled learning (PU learning) is a special case of semi-supervised binary classi-
fication where only a fraction of positive examples is labeled. The challenge is then to find
the correct classifier despite this lack of information. Recently, new methodologies have
been introduced to address the case where the probability of being labeled may depend on
the covariates. In this paper, we are interested in establishing risk bounds for PU learning
under this general assumption. In addition, we quantify the impact of label noise on PU
learning compared to the standard classification setting. Finally, we provide a lower bound
on the minimax risk proving that the upper bound is almost optimal.

Keywords: Statistical learning theory, Classification, Label noise, PU learning, Risk
bounds.

1. Introduction

Classic binary classification is a supervised machine learning task in which, from training
observations with given classes (positive or negative), one seeks to predict the class of new
data. However, in many realistic situations, the observed classes can be noisy. A case in
point is when the class assignment is subject to errors. In this paper, we are interested in
a special case of label noise, occurring when a fraction of positive instances is labeled and
none of the negative instances are. The unlabeled instances are either positive or negative:
their class is unknown.

This can be seen as a semi-supervised classification setting because only a fraction of the
observations is labeled. This semi-supervised classification task is called Positive-Unlabeled
Learning (PU learning). PU learning aims to build classifiers that find the right class
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(positive or negative) of a new data point given a training dataset of positive and unlabeled
observations.

PU learning is used in situations where it is difficult or costly to obtain or identify
reliable negative instances. For example, in the diagnosis of a disease, given the incubation
period of the disease, a patient with a negative test may still be carrying the disease (cf.
Chen et al., 2020). PU learning approach could be helpful in fatigue design of structures
in mechanics where testing can prove the presence of design flaws on a mechanical part
but cannot prove its absence. In the automotive industry, fatigue tests are performed to
determine if a part is critical: if a crack is observed before the end of the test, then the
part is declared critical. However, if no crack is observed, it does not mean that the part is
not critical. It may be possible to observe a crack by extending the test (cf. Coudray et al.,
2021). Other applications of PU learning exist in spam review detection (cf. Li et al., 2014;
Fusilier et al., 2015; He et al., 2020), text classification (cf. Liu et al., 2002, 2003), gene-
disease identification (cf. Yang et al., 2012, 2014; Nikdelfaz and Jalili, 2018), and anomaly
detection (cf. Ferretti et al., 2014; Luo et al., 2018; Jiang et al., 2018).

PU learning is, therefore, much more complex than learning from fully labeled data. The
situation is asymmetric as one usually wants to understand the positive class in contrast
with an unidentified negative class. The number of positive labeled examples is critical as
it is the only reliable information.

Different methodologies have been developed to address PU learning. A first class of
heuristic methods proceeds in two steps. The first step consists in identifying reliable
negative instances among the unlabeled observations: various methods exist like Spy (cf.
Liu et al., 2002) or Rocchio (cf. Li and Liu, 2003) methods. In the second step, a standard
supervised or semi-supervised classification method is used to build the PU classifier from
the positive labeled instances, reliable negative instances, and the remaining unlabeled
ones. A typical choice is Support Vector Machine (SVM). Some methods repeat both steps
iteratively until convergence. Bekker and Davis (2020) gave an exhaustive list of existing
methods for both steps. Good empirical results support these methods, but theoretical
guarantees are not discussed.

Another class of methodologies resorts to a modeling of the label noise and adapts
existing supervised classification methods to the PU learning setting. Most PU learning
methods in this category assume that the probability for a positive instance to be labeled
is constant and thus independent from the covariates. This situation is called Selected
Completely At Random (SCAR). However, in certain cases, the probability for a positive
instance to be labeled is influenced by its covariates. For example, in the diagnosis of a
disease, a carrier of the disease with symptoms is more likely to see a doctor and be diagnosed
than a carrier who is asymptomatic. This situation with a selection bias is called Selected
At Random (SAR). Under the SCAR assumption, since the noise for positive instances is
constant, the probability for an instance to be labeled is then proportional to the probability
for it to be positive: fully labeled classification and PU learning are then connected. Hence,
some algorithms use this property to derive consistent classifiers: Blanchard et al. (2010)
use Neyman-Pearson classification and Du Plessis et al. (2014) rewrite PU learning as a
cost-sensitive binary classification that can be solved through empirical risk minimization.
These approaches are supported by theoretical guarantees: consistency and risk bounds.
Mordelet and Vert (2014) suggest a bagging SVM method to solve PU learning tasks under
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the SCAR assumption, which proves efficient empirically. As mentioned above, the SCAR
assumption is unlikely to hold in many practical situations. Recently, several publications
have addressed PU learning when the probability of being labeled is instance-dependent
(Bekker et al., 2020; Gong et al., 2021).

From a theoretical point of view, risk bounds in the standard classification setting
have been extensively studied in the literature. The convergence rate of the excess risk
in classification is known to be less than a quantity proportional to

√
1/n where n is the

size of the training set (cf. Lugosi, 2002). In addition, this rate can be refined, reaching 1/n
under margin assumptions (Massart and Nédélec, 2006). Finally, these rates are proved to
be optimal in the minimax sense (cf. Lugosi, 2002; Massart and Nédélec, 2006).

Missing labels in PU learning can arise from different settings. In the two-sample setting,
the positive and unlabeled instances are sampled separately and are therefore not identically
distributed: it is a case-control situation. In the one-sample setting, all the instances are
i.i.d. and some positive instances are labeled. In the past few years, several papers have
studied excess risk upper bounds for PU learning classifiers in the case-control setting (cf.
Du Plessis et al., 2015; Niu et al., 2016; Vogel et al., 2020). In particular, Du Plessis et al.

(2014) showed a convergence rate in O
(√

1/nL +
√

1/nU

)
, where nL (nU ) denotes the

number of labeled (unlabeled) instances. More recently, Bekker et al. (2020) and Gong
et al. (2021) studied theoretical properties of PU learning under selection bias with specific
assumptions: the former establishes an upper bound on an empirical risk minimizer under
partial knowledge of the labeling mechanism, the latter focus on a parametric model.

In this work, we focus on PU learning in the one-sample setting. We establish new
risk bounds specifically adapted to PU learning under selection bias, meaning that the
label noise specific to PU learning is instance-dependent (Selected At Random assumption).
Unlike Gong et al. (2021), we do not make parametric assumptions. Contrary to Bekker
et al. (2020), who focused on the deviations between PU learning empirical risk and fully
supervised empirical risk, we provide an upper bound on the excess risk. The novelty of
this result also lies in its ability to quantify explicitly the impact of the label noise specific
to PU learning (propensity). We show that fast convergence rates can be achieved under
margin conditions similar to Massart and Nédélec (2006). Finally, we discuss the optimality
of this result by identifying a lower bound on the minimax risk.

The paper is organized as follows. In Section 2, we define the standard binary clas-
sification setting and recall some existing risk bounds. In Section 3, we move to the PU
learning setting, discuss the bias issue with labeled-unlabeled classification and introduce
an unbiased empirical risk. In Section 4, we present the main results of this paper: a general
upper bound on the excess risk for PU learning under instance-dependent label noise and
a lower bound on the minimax risk. In Section 5, we conclude and discuss some future
perspectives.

2. Standard Classification Setting

In this section, we introduce the standard classification setting and recall some risk bounds
results. This will be the opportunity to introduce general notations used throughout the
paper.
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2.1 General Setting

Let (X1, Y1), ..., (Xn, Yn) be independent couples of random variables in Rd × {0, 1} identi-
cally distributed according to some unknown probability distribution denoted P. For each
i, Xi is a covariate vector with marginal distribution PX and Yi is the class, either negative
(Yi = 0) or positive (Yi = 1). Let α = P (Y = 1) denote the class prior. Using P0 (P1) the
conditional distribution of X given that the class is negative, Y = 0 (positive, Y = 1), we
write the convenient decomposition:

PX = (1− α)P0 + αP1 . (1)

In classification, the goal is to find a classifier, i.e. a binary function g : Rd → {0, 1},
minimizing some risk function R. In this paper, R will denote the misclassification risk:

R (g) = P (g(X) 6= Y ) .

Given the regression function η(x) = P (Y = 1|X = x), the minimizer of misclassification
risk is Bayes classifier g∗ that depends explicitly on P:

g∗(x) = 1η(x)≥ 1
2
.

In order to assess how close a given classifier g is to the optimal one g∗, we are interested
in the excess risk ` (g, g∗):

` (g, g∗) = R (g)−R (g∗) .

Since P is unknown, neither g∗ nor the risk function R can be computed. We rely instead
on the training sample (X1, Y1), ..., (Xn, Yn) to build a classifier ĝ. Let r (g, (X,Y )) =
1g(X)6=Y the misclassification error for one observation, the true risk R can be estimated by
the empirical mean:

R̂n (g) =
1

n

n∑
i=1

r (g, (Xi, Yi)) .

An empirical classifier ĝ is then identified as a minimizer of the empirical risk over a
predefined class of classifiers G.

ĝ ∈ Argmin
g∈G

R̂n (g) .

This procedure is known as empirical risk minimization. Let gG be the minimizer of the
true risk R over G. The excess risk of the classifier ĝ can be decomposed as follows:

`(ĝ, g∗) =
(
R
(
gG
)
−R (g∗)

)
+
(
R (ĝ)−R

(
gG
))

where the first term is the approximation error depending on G, and the second one is the
statistical error. Since we are only interested in assessing the statistical error, we assume
that Bayes classifier g∗ belongs to G. Hence the first term vanishes. Note that ` (ĝ, g∗)
depends on P (through the risk R) and on the training sample (X1, Y1), ..., (Xn, Yn).
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2.2 Risk Bounds in the Standard Classification Setting

In order to assess the convergence rate of the excess risk ` (ĝ, g∗) in a non-asymptotic
framework, we need an upper bound on E [` (ĝ, g∗)]. Note that the expectation is taken
with respect to the distribution of the training sample P⊗n. Moreover, the upper bound
needs to be uniform over a set of distributions P. We introduce P (G) a set of probability
distributions on Rd × {0, 1} such that g∗ belongs to G. In this case, Lugosi (2002) proved
that for some absolute constant C1 > 0:

sup
P∈P(G)

E [` (ĝ, g∗)] ≤ C1

√
V

n
, (2)

where V is the Vapnik-Chervonenkis dimension of G (VC dimension, see Vapnik, 1999,
Chapter 3). We recall that the VC dimension is the maximum integer V such that there
exist V points x1, ..., xV in Rd shattered by G, namely classified in every way possible by
elements of G. In other words:

V = sup
v∈N∗

{
v s.t. ∃x1, ..., xv ∈ Rd, |{(g(x1), ..., g(xv)) , g ∈ G}| = 2v

}
.

The VC dimension V measures the complexity of class G and has to be finite for Equation 2
to be meaningful, which we assume for the rest of the paper.

The upper bound in Equation 2 remains true regardless of the form of the regression
function η. Actually, η is closely linked to the difficulty of the classification task: when η(x)
is close to 1/2, the observed class can be positive or negative with probability close to 1/2,
which makes the classification of x more difficult. Massart and Nédélec (2006) showed that
when η(x) is uniformly and symmetrically bounded away from 1/2 by a margin h >

√
V/n,

the upper bound on the risk excess can be improved. Let P (G, h) denote the subset of
probability distributions in P (G) such that for every x ∈ Rd, |2η(x)− 1| ≥ h. Massart and
Nédélec (2006) showed that there exists an absolute constant C2 > 0 such that:

sup
P∈P(G,h)

E [` (ĝ, g∗)] ≤ C2
V

nh

(
1 + log

(
nh2

V

))
. (3)

Hence, as the margin h gets higher, the classification task gets easier, and the convergence
rate can be improved up to 1/n, letting aside the logarithm. However, when h is smaller
than

√
1/n, Equation 2 remains better. Equation 3 provides fine control on the excess risk

depending on the difficulty of the classification task, accounted through h.
A lower bound was obtained by Lugosi (2002), extended by Massart and Nédélec (2006),

allowing to prove the optimality of the convergence rates. Note that the optimality of the
refined bound Equation 3 is up to the logarithmic term.

3. PU Learning Context

In the standard classification setting, the classes (Yi)1≤i≤n are observed. This is no longer
the case in PU learning where only an incomplete set of positive data is available, the
remaining is unlabeled. For each i, the observed label Si is 1 if the class Yi is positive and
selected (i.e. labeled). Otherwise, the label Si is 0. The true classes are affected by a
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class-dependent (thus asymmetric) label noise. The probability for a positive instance to
be labeled is generally called the propensity (Bekker and Davis, 2020), and it may depend
on the covariates:

e(x) = P (S = 1|Y = 1, X = x) .

Negative instances are never labeled:

P (S = 1|Y = 0, X = x) = 0 .

Note that the regression function associated with S is η̃(x) = P (S = 1|X = x). It depends
on this additional label noise:

η̃(x) = e(x) η(x) . (4)

The objective of PU learning is to use the incomplete information (X1, S1), ...(Xn, Sn) to
build a classifier able to predict the class Y given a new instance with covariates X.

This concept of completely asymmetric label noise was first pointed out by Elkan and
Noto (2008). It is now common to define two general types of assumptions: Selected
Completely At Random (SCAR) and Selected At Random (SAR).

SCAR: PU learning without selection bias. The propensity e(x) = e does not depend on the
covariates x. This applies in situations where every positive instance has an equal
probability of being selected (labeled). In this case, the conditional distributions
of X given Y = 1 (P1) and given S = 1 (P̃1) are the same. In other words, labeled
instances are a representative sub-sample of positive instances.

SAR: PU learning with selection bias. The probability for an instance to be selected
depends on its covariates. Hence, labeled instances are a biased sample of positive
instances. For example, in mechanical design, a specimen subjected to higher
stress is more likely to break, which results in a higher probability of a crack being
detected. This is clearly a situation where the SCAR assumption does not hold.

In this section, we focus on the definition of loss functions that enable learning in PU
learning setting. After explaining why labeled-unlabeled classifiers are limited, we will
introduce an unbiased empirical risk for PU learning under the SCAR assumption (cf.
Du Plessis et al., 2014), which generalizes to the SAR assumption (cf. Bekker et al., 2020).

3.1 Bias Issue with Labeled-Unlabeled Classification

A natural idea to address a PU learning problem is to consider labeled instances as positive
and every unlabeled instance as negative. Standard classification methods then allow to
identify a classifier ĝNT . In the literature, such a classifier is called a non-traditional clas-
sifier (Elkan and Noto, 2008) because it is meant to give good predictions on S instead of
Y . As the number of training examples increases, we can then expect ĝNT to get closer to
Bayes classifier g̃∗ for the classification of S given X, which is not what we are looking for.
Indeed, g̃∗ is a priori different from g∗ as the regression function η̃(x) = (Y = 1|X = x) is
different from η(x) (cf. Equation 4).

Nevertheless, in specific situations, the non-traditional classifier is robust to PU learning
label noise. Cannings et al. (2020) showed for example that g̃∗ = g∗ if:

e(x) ≥ 1

2η(x)
, for all x ∈ Rd such that η(x) ≥ 1

2
. (5)
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Note that this is part of a more general result from Cannings et al. (2020) that encompasses
binary classification with asymmetric and instance-dependent label noise. Under the con-
dition from Equation 5, any consistent non-traditional classifier is a consistent traditional
classifier. In other words, as the training sample size increases, ĝNT gets closer to g̃∗, which
is identical to g∗.

This condition requires every positive instance (η(x) > 1
2) difficult to classify (η(x) close

to 1
2) to have propensity close enough to 1. Instances easier to classify (η(x) close to 1)

can undergo label noise without harming the consistency. However, the label noise cannot
exceed 1

2 or, in other words, the propensity can never be smaller than 1
2 .

This condition is thus restrictive in the context of PU learning under the SAR assump-
tion for two main reasons. On the one hand, in many realistic situations, the propensity
(i.e. the probability for a positive instance to be labeled) is correlated to the difficulty
of classifying the observation. A positive instance difficult to classify tends to have a low
propensity, which clearly violates the condition given in Equation 5. On the other hand,
we cannot expect the propensity to be greater than 1

2 . In text classification or spam re-
view detection, as the process of labeling is both difficult and time-consuming, only a small
fraction of positive instances gets labeled, which suggests a propensity lower than 1

2 .

Before dealing with convergence rates, it is crucial to have methods for building consis-
tent classifiers under more general conditions than Equation 5.

3.2 Unbiased Empirical Risk Minimization Under the SCAR Assumption

In this subsection, we assume that the SCAR assumption is satisfied, which means that the
propensity is constant:

e(x) = em > 0 .

In order to compensate for label noise due to PU Learning under the SCAR assumption,
Du Plessis et al. (2014) showed in the case-control setting that a consistent classifier could
be found by minimizing an unbiased version of the risk. Using the convenient decomposition
of PX distribution (Equation 1), the misclassification risk can be rewritten only with PX
and P1.

R (g) = αP1 (g(X) 6= 1) + (1− α)P0 (g(X) 6= 0)

= α (P1 (g(X) 6= 1)− P1 (g(X) 6= 0)) + PX (g(X) 6= 0) . (6)

Therefore, as labeled instances are a representative sub-sample of positive instances, a
consistent classifier can be found by minimizing the following risk:

R̂SCARn (g) =
α

NL

n∑
i=1

1Si=1

[
1g(Xi)6=1 − 1g(Xi)6=0

]
+

1

n

n∑
i=1

1g(Xi)6=0 (7)

where NL =
∑n

i=1 1Si=1 is the number of labeled instances. Note that Du Plessis et al.
(2014) considered the case-control setting where the number of labeled instances NL is fixed,
which is slightly different from our setting. One of the main properties of R̂SCARn (g) is that
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it is an unbiased estimate of the true risk, as we have:

E
[
R̂SCARn (g)

]
= P (g(X) 6= Y ) .

The proof of Du Plessis et al. (2014) extends to the one-sample-setting where NL is random:

E
[
R̂SCARn (g)

]
=

n∑
i=1

E
[
α

NL
1Si=1E

[
1g(Xi) 6=1 − 1g(Xi) 6=0 |Si

]]
+ PX (g(X) 6= 0)

=
n∑
i=1

E
[
α

NL
1Si=1 [P (g(Xi) 6= 1 |Si)− P (Si = 1, g(Xi) 6= 0 |Si)]

]
+ PX (g(X) 6= 0)

= α
n∑
i=1

E
[
1Si=1

NL
(P1 (g(X) 6= 1)− P1 (g(X) 6= 0))

]
+ PX (g(X) 6= 0) (8a)

= α [P1 (g(X) 6= 1)− P1 (g(X) 6= 0)] + PX (g(X) 6= 0) . (8b)

Equation 8a results from the fact that under the SCAR assumption, the conditional distri-
bution of X given S = 1 is the same as the conditional distribution of X given Y = 1 (P1).
Finally, Equation 8b matches the decomposition of Equation 6, ending the proof.

Computing the risk R̂SCARn requires α to be known. Alternatively, another empirical
risk can be written:

R̂′
SCAR

n (g) =
1

n

n∑
i=1

[
1Si=1

em

(
1g(Xi)6=1 − 1g(Xi)6=0

)
+ 1g(Xi)6=0

]
. (9)

This risk remains unbiased and consistent but requires the knowledge of the constant

propensity em instead of the class prior α. The unbiasedness of R̂′
SCAR

n will be proved
in Subsection 3.3 as a special case of the more general SAR setting.

3.3 Extension to PU Learning Under the SAR Assumption

For now, PU learning under the SAR assumption is a difficult problem and there are only
a few results in the literature (cf. Bekker et al., 2020; He et al., 2018; Gong et al., 2021).
We recall that empirical risk minimization under the SCAR assumption requires extra
knowledge on the model (class prior or propensity). In practice, these parameters are
usually estimated (cf. Blanchard et al., 2010; Du Plessis and Sugiyama, 2014; Jain et al.,
2016; Ramaswamy et al., 2016; Bekker and Davis, 2018). In order to provide a consistent
empirical risk in the SAR setting, additional assumptions are needed to avoid identifiability
issues. In the literature, different settings have been studied. He et al. (2018) assume that
the propensity e(x) is an increasing function of η(x). Bekker et al. (2020) and Gong et al.
(2021) suggest a parametric model on the propensity. Bekker et al. (2020) also study the
case where the propensity is known for labeled instances which enables an empirical risk
minimization approach similar to Du Plessis et al. (2014).

In this paper, following Bekker et al. (2020), we will focus on PU learning under the
SAR assumption where the propensity is known for labeled instances. We argue that this
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setting is sufficient to derive interesting risk bounds and assess the difficulty of PU learning
tasks. However restrictive this assumption may seem, we insist that only the propensity
for labeled instances is needed; therefore, an exhaustive knowledge of the propensity is not
required. When the propensity is unknown, it could be estimated using prior knowledge
on the labeling mechanism (when available) or by defining a parametric model on the
propensity (Bekker et al., 2020; Gong et al., 2021). In this case though, the theoretical
analysis would have to account for the difference between the estimated propensity and the
true one. However, it is worth noting that the lower bound on the minimax risk established
in Subsection 4.2 does not require this assumption on the knowledge of the propensity.

Assuming that the propensity is known for labeled instances, Bekker et al. (2020) gener-
alized the empirical risk in Equation 9 to obtain an unbiased empirical risk for PU learning
under the SAR assumption. More particularly, they define the following loss function:

rSAR (g, (X,S)) =
1S=1

e(X)

(
1g(X)6=1 − 1g(X)6=0

)
+ 1g(X)6=0

=
1S=1

e(X)

(
21g(X)6=1 − 1

)
+ 1g(X)6=0 .

The empirical risk is then the empirical mean:

R̂SARn (g) =
1

n

n∑
i=1

rSAR (g, (Xi, Si)) . (10)

This time, the labeled instances are weighted by the inverse of their propensity. Clearly,

R̂′
SCAR

n in Equation 9 is a special case of R̂SARn under the SCAR assumption (e(x) = em).
Bekker et al. (2020) studied maximum deviations between this latter empirical risk

R̂SARn and the empirical risk for standard classification R̂n. They then used concentration
inequalities to derive an upper bound on the deviations between the two quantities with
high probability. As we are interested in studying the deviations between R̂SARn and the

true risk R directly, we compute the total expectation of E
[
R̂SARn (g)

]
= E [rSAR (g, (X,S))]

shedding light on the fact that for any g, R̂SARn (g) is an unbiased estimate of the true risk
R(g).

E [rSAR (g, (X,S))] = E [E [rSAR (g, (X,S)) |X]]

= E
[

1

e(X)

(
1g(X)6=1 − 1g(X)6=0

)
P (S = 1|X)

]
+ PX (g(X) 6= 0)

= E
[

1

e(X)

(
1g(X)6=1 − 1g(X)6=0

)
η(X)e(X)

]
+ PX (g(X) 6= 0)

= E
[(
1g(X)6=1 − 1g(X)6=0

)
1Y=1

]
+ PX (g(X) 6= 0)

= α (P1 (g(X) 6= 1)− P1 (g(X) 6= 0)) + PX (g(X) 6= 0)

= R(g) .

where the last line comes from Equation 6. Then, R̂SARn is indeed unbiased:

E
[
R̂SARn (g)

]
=

1

n

n∑
i=1

E [rSAR (g, (Xi, Si))] = P (g(X) 6= Y ) = R(g) . (11)
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It is important to note that, while the empirical risks R̂SCARn and R̂SARn in Equations
7 and 10 are here studied using the 0 − 1 loss, they can be defined for any arbitrary loss
function (cf. Du Plessis et al., 2014; Bekker et al., 2020).

4. Main Results

We are now in a position to state our results. First, we present an upper bound on the ex-
cess risk for PU learning under the SAR assumption. We then show that the rate achieved
is almost optimal by providing a lower bound on the minimax risk. Both bounds explicitly
quantify the impact of label noise specific to PU learning.

4.1 An Upper Bound for PU Learning Excess Risk Under the SAR
Assumption

We recall that, in PU learning, the true classes (Yi)1≤i≤n are no longer available for train-
ing. A classifier is then built as a minimizer of the unbiased empirical risk introduced in
Equation 10:

ĝPU ∈ Argmin
g∈G

R̂SARn (g) .

We recall that the risk R̂SARn is unbiased (Equation 11). Let RSARn denote the centered
empirical risk:

RSARn (g) = R̂SARn (g)− P (g(X) 6= Y ) .

Bekker et al. (2020) study the deviations between R̂SARn (ĝPU ) and R̂n (ĝPU ) and provide
an upper bound in the case where G is a finite family of classifiers. Besides, the influence
of e(·) on the upper bound is not discussed. Our objective here is to provide a uniform
upper bound on `(ĝPU , g

∗) and explicitly show its dependence in e(·). In our setting, G is
an infinite set of functions. Its complexity is controlled by its VC dimension V < +∞.
Following Massart and Nédélec (2006), we consider the following separability assumption,
which is key to work with the possibly uncountable class G:

(A1) There exists a countable subset G′ dense in G in the sense that for each g ∈ G, there
exists a sequence (gk)k≥0 of classifiers of G′ such that, for every (x, s) ∈ Rd × {0, 1}:

rSAR (gk, (x, s)) −→
k→+∞

rSAR (g, (x, s)) .

In other words, any classifier of g of G is ”arbitrarily close” to some element of G′.

In addition, we want our upper bound on the excess risk to account for the difficulty of the
classification task explicitly. Then, as |2η(x)− 1| quantify the difficulty of classifying x, we
introduce the following assumption (Massart and Nédélec, 2006):

(A2) ∃h > 0, ∀x ∈ Rd, |2η(x)− 1| ≥ h .

Assumption (A2) will be referred to as Massart margin assumption in the rest of the paper.

10
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Before stating our upper bound for PU learning under the SAR assumption, we intro-
duce the standard notations for maximum and minimum: for any couple of real (a, b), a∨ b
(a ∧ b) denotes the maximum (minimum) between a and b.

We are now able to state our first result.

Theorem 1 (Upper risk bound for PU learning under the SAR assumption)
Let ĝPU be a minimizer of the unbiased empirical risk for PU learning under the SAR
assumption:

ĝPU ∈ Argmin
g∈G

R̂SARn (g) .

Suppose that separability (A1) and Massart margin (A2) assumptions hold, and that the
propensity e(·) is greater than em > 0. Then, we have the following upper bound on the
excess risk:

E [` (ĝPU , g
∗)] ≤ κ1

[
V

n em h

(
1 + log

(
nh2

V
∨ 1

))
∧
√

V

n em

]
(12)

where κ1 > 0 is an absolute constant.

Remarks: The upper bound in Equation 12 is uniform on the set of probability distri-
butions for which g∗ ∈ G and Massart margin condition (A2) is satisfied with constant h
(P (G, h)). This can be re-written as follows:

sup
P∈P(G,h)

E [` (ĝPU , g
∗)] ≤ κ1

[
V

n em h

(
1 + log

(
nh2

V
∨ 1

))
∧
√

V

n em

]
(13)

Note that the assumption e(x) ≥ em is an assumption on the label noise. As the biased
regression function is η̃(x) = η(x) e(x) (cf. Equation 4), this assumption together with
assumption (A2) control the difficulty of the PU learning task.

In Equation 12, the convergence rate is of order O
(

V
nh em

)
(if we let aside the logarith-

mic term) when h is higher than
√
V/n em. When h becomes smaller than

√
V/n em, the

rate is of order O
(√

V/n em

)
. These two regimes are analogous to standard classification

risk bounds as recalled in Subsection 2.2. In particular, when em = 1, all positive examples
are labeled and we are then in a standard classification setting (S = Y ). In this case,
the upper bound exactly matches the known upper bound rates in the standard classifica-
tion setting (Equation 3 and Equation 2). Conversely, as em gets lower, the upper bound
increases. This means without surprise that PU learning deteriorates the generalization
bound: Theorem 1 quantifies this effect through the coefficients 1/em and 1/

√
em.

Let NL be the number of labeled instances in the training set. Under the SCAR as-
sumption (e(x) = em), n em from Equation 12 is linked to the expectation of the number of
labeled instances in the training set:

E [NL] = E

[
n∑
i=1

1Si=1

]
= nP (S = 1) = nα em

11
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where α = P (Y = 1) is the class prior. This illustrates a natural intuition on PU learning:
the upper bound on the excess risk is related to the number of fully labeled examples.
Hence, good prediction performances cannot be expected if the number of labeled examples
among the positives is too low or equivalently if the propensity is too low.

The detailed proof of Theorem 1 can be found in Appendix A. It consists in establish-
ing controls on the variance of increments of rSAR(·) and uniform bounds on the empirical

process
(
RSARn (g)

)
g∈G

. A general risk bound result for empirical risk minimizers is then

applied.

So far, we have provided an upper bound on generalization risk for unbiased empirical
risk minimization in PU learning under the SAR assumption. There is, however, no proof
that this rate is optimal. In other words, is there another procedure that can learn a
classifier ĝ that outperforms ĝPU? A lower bound will help to answer this question.

4.2 A Lower Bound on the Minimax Risk

In order to assess the optimality of the upper bound (Equation 12), we analyze and provide
a lower bound on the minimax risk.

The minimax risk is the risk of the classification procedure that performs best in the
worst case. For any given estimate ĝ, we recall that its generalization risk is measured as
E [` (ĝ, g∗)]. The minimax risk is denoted R (G, h) and is defined as follows:

R (G, h) = inf
ĝ∈G

[
sup

P∈P(G,h)
E [` (ĝ, g∗)]

]

where the infimum is taken over the set of functions ĝ of (Xi, Si)1≤i≤n such that ĝ belongs
to G.

The bound in Equation 13 is an obvious upper bound on the minimax risk. Theorem 2
establishes a lower bound on the minimax risk for PU learning under the SCAR assumption.
Proposition 3 extends it to the SAR assumption.

Theorem 2 (Lower bound on the minimax risk under the SCAR assumption)

Suppose that V ≥ 2 and n em ≥ V . Let h′ =
√

V
n em

.

Assuming e(x) = em, ∀x ∈ Rd, there exists an absolute constant κ2 > 0 such that:

(C1) if h ≥ h′:

R (G, h) ≥ κ2
V − 1

hn em
; (14)

(C2) if h ≤ h′:

R (G, h) ≥ κ2

√
V − 1

n em
. (15)

12
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Remarks

The lower bounds in Theorem 2 explicitly depend on V , n, h and em. The cases (C1) and
(C2) highlight a trade-off between the expected number of fully labeled instances (propor-
tional to n em), the complexity of the model V and the margin condition (A2) represented
by h. The restriction of these results to the standard classification setting (em = 1) exactly
matches existing results (see Massart and Nédélec, 2006). Theorem 2 moreover provides the
influence of propensity em in PU learning framework under the SCAR assumption. As for
the upper bound (cf. Theorem 1), the lower bound (Equation 14) is affected the same way
with a degradation of order 1/em over the minimax rate when Massart margin condition
(A2) is satisfied with h high enough, in case (C1). In this case, the lower bound rate almost
matches the upper bound up to a logarithmic factor. In the second case (C2), the lower
bound (Equation 15) is of order

√
V/n em which exactly matches the rate of the upper

bound in this regime. In this sense, ĝPU obtained through unbiased empirical risk mini-
mization is almost optimal as it almost achieves the minimax convergence rates. Finally,
it is important to note that this lower bound result remains valid when the propensity is
unknown, contrary to the upper bound where the knowledge of the propensity is required
to obtain ĝPU .

The detailed proof of Theorem 2 can be found in Appendix B.1. It makes use of sim-
ilar arguments as for minimax lower bounds in the standard classification setting. First,
the expression of the minimax risk is simplified by choosing a specific set of probabilities
satisfying the margin and noise conditions. Then Assouad lemma (Yu, 1997) is applied to
provide a lower bound on this simplified expression, where the singularity of PU learning
mainly interferes.

To extend the result to the SAR assumption, we need an extra condition:

(A3) ∀ ε > 0, ∃ (x1, ..., xV ) ∈
(
Rd
)V

scattered by G and such that:

sup
i∈{1,...,V }

e(xi) ≤ em + ε .

This assumption is technical. It is used in the first step of the proof of the minimax lower
bound as it allows us to choose a convenient family of discrete probability distributions
satisfying the noise assumptions. Assumption (A3) is fulfilled in natural situations, for
example, when e(·) is continuous and G is the set of linear classifiers in Rd.

Proposition 3 (Lower bound on the minimax risk under the SAR assumption)

Theorem 2 extends to the SAR assumption if the propensity e(·) greater than em > 0 and if
assumption (A3) is satisfied.

The proof of the above proposition can be found in Appendix B.2. The same remarks as
for Theorem 2 remain valid under the SAR assumption when assumption (A3) is satisfied.
In particular, in regimes (C1) and (C2), the minimax rate still matches the upper bound
rate Equation 12 up to the logarithmic factor.

13
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5. Conclusion

In this paper, we provided a theoretical study of PU learning under the SAR assumption,
i.e. when the probability for an instance to be labeled depends on its covariates. Assuming
partial knowledge of the propensity, a consistent classifier can be identified by minimizing
a conveniently weighted empirical risk. We established a general non-asymptotic upper
bound on the excess risk that naturally extends known risk bounds in the standard classifi-
cation setting. By providing a minimax lower bound, we then showed that the convergence
rates are optimal up to a logarithmic term. From a practical point of view, these bounds
help to understand the difficulty of the PU learning task in terms of the propensity. A
low propensity results in fewer positive instances labeled and, thus, a more difficult task.
Conversely, as the propensity tends to 1, the performances of PU learning tend to those
of fully supervised classification. Finally, both results show that fast rates can be achieved
under margin conditions.

As a future perspective, it would be interesting to study how some assumptions made
on the propensity could be relaxed. In particular, future work could assess whether or not
the theoretical guarantees proved in this paper still hold when the propensity is estimated.
Likewise, we may wonder if these results could be extended if the lower bound on the
propensity only holds with high probability. To bridge the gap between these theoretical
results and practical PU learning methodologies adapted to the SAR assumption, several
challenges remain open. For instance, the estimation of the propensity is a difficult problem.
Besides, minimizing the unbiased empirical risk in PU learning based on 0− 1 loss requires
solving computationally difficult combinatorial optimization problems. The use of convex
loss functions would facilitate the optimization. Then, it could be interesting to study how
our theoretical results extend to such cases.
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Appendix A. Proof of Theorem 1

The proof is organized as follows. We first state a general upper bound result for empirical
risk minimizers adapted to the case where the loss function takes values in an arbitrary
interval [a, b] with a < b (cf. Subsection A.1). Then, we show that the PU learning loss
function satisfies the assumptions of this general result (cf. Subsection A.2). Finally, we
deduce the upper bound as the solution of a fixed point equation (cf. Subsection A.3).

A.1 General Risk Upper Bound on Empirical Risk Minimizers

We begin by stating a general upper bound theorem for empirical risk minimizers.

Theorem 4 (General upper bound for empirical risk minimizers)
Let r be an unbiased loss function with values in [a, b], R̂n the empirical risk, and Rn the
centered empirical risk. Let g∗ denote the Bayes classifier and let ĝ be a minimizer of the
empirical risk over a class G for which we assume separability condition (A1). Let ` denote
the excess risk. We assume that:

(B1) there exists a positive and symmetric function d such that for any couple of classifiers
(g, g′):

V ar
[
r
(
g′, (X,S)

)
− r (g, (X,S))

]
≤ d2

(
g′, g

)
;

(B2) there exists a non-decreasing function w continuous on R+, such that x 7→ w(x)
x is

non-increasing on R∗+, with w(
√
b− a) ≥ b− a and ensuring for any classifier g:

d(g∗, g) ≤ w
(√

`(g∗, g)
)

;

(B3) there exists a non-decreasing function Φ continuous on R+, such that x 7→ Φ(x)
x is

non-increasing with Φ(b− a) ≥ b− a and ensuring:

∀h ∈ G′,
√
nE

[
sup

g∈G′,d(g,h)≤σ
Rn(h)−Rn(g)

]
≤ Φ(σ).

for every positive σ such that Φ(σ) ≤
√
n σ2

b−a , where G′ comes from separability con-
dition (A1).

Then there exists an absolute constant κ > 0 such that:

E [`(g∗, ĝ)] ≤ κ ε2
∗, (16)

where ε∗ is the unique positive solution of the following equation:
√
n ε2
∗ = Φ (w (ε∗)) . (17)

Proof The above result follows from the application of Massart and Nédélec’s theorem

(2006, Theorem 2) using the re-scaled risk r̃ = r−a
b−a and the functions d̃(g, g′) = d(g,g′)

b−a ,

w̃(x) = 1
b−a w

(
x
√
b− a

)
and Φ̃(x) = 1

b−aΦ ((b− a)x). This leads to the upper bound in
Equation 16 solution of Equation 17.

Note that now, contrary to Massart and Nédélec’s original result, (B2) and (B3) explicitly
involve the length of the interval [a, b]. This will be accounted for in our proof.
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A.2 Verification of Assumptions of Theorem 4 in the PU Learning Setting

We first recall the definition and the main property of PU learning loss function as defined
in Subsection 3.3. We then exhibit three functions d, w, Φ fulfilling conditions (B1), (B2)
and (B3). Hence we show that the general upper bound result (i.e. Theorem 4) can be
applied in PU learning context.

In the context of PU learning under the SAR assumption, we recall that the loss function
rSAR is defined as follows:

rSAR (g, (X,S)) =
1S=1

e(X)

(
21g(X) 6=1 − 1

)
+ 1g(X)6=0

where e(x) = P (S = 1 |Y = 1, X = x) is the propensity assumed to be known for labeled
observations. Knowing that the propensity greater than em > 0, the loss function is then

at values in
[
1− 1

em
, 1
em

]
, an interval of length:

Ce =
2

em
− 1 . (18)

We have seen that this empirical risk is an unbiased estimate of the true risk (cf. Equa-
tion 11):

E [rSAR (g, (X,S))] = P (g(X) 6= Y ) .

In order to apply the general upper bound theorem (Theorem 4) to the PU learning risk
minimizer, we need to identify three functions d, w, Φ satisfying conditions (B1), (B2) and
(B3). These functions are crucial since the upper bound is the solution of a fixed point
equation involving them. The choice of functions d, w and Φ will be a consequence of
Propositions 5, 6 and 7.

Proposition 5 For any pair of classifiers (g, g′):

V ar
[
rSAR

(
g′, (X,S)

)
− rSAR (g, (X,S))

]
≤ 2Ce E

[∣∣g(X)− g′(X)
∣∣2] ,

where Ce is given by Equation 18.

Remark A direct consequence of the above proposition is that the function d defined as:

d(g, g′) =
√

2Ce

√
E
[
|g(X)− g′(X)|2

]
(19)

satisfies condition (B1).
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Proof We first provide an upper bound on the variance of increments of rSAR:

V ar
[
rSAR (g)− rSAR

(
g′
)]
≤ E

[(
rSAR (g)− rSAR

(
g′
))2]

= E

[(
g(X)− g′(X)

)2(
1− 21S=1

e(X)

)2
]

= E

[(
g(X)− g′(X)

)2 E[(1− 21S=1

e(X)

)2

|X

]]

= E
[(
g(X)− g′(X)

)2(
1 + 4η(X)

1− e(X)

e(X)

)]
(20a)

≤
(

1 + 4
1− em
em

)
E
[(
g(X)− g′(X)

)2]
(20b)

≤ 2Ce E
[(
g(X)− g′(X)

)2]
.

We then use the fact that E [1S=1|X] = E [η(X) e(X)] to get Equation 20a. And Equa-
tion 20b results from the fact that η(X) is less than 1 and e(X) is greater than em.

Proposition 6 For any classifier g:

d(g, g∗) ≤
√

2Ce
h

√
`(g, g∗) .

for d defined in Equation 19.

Remark As a consequence, the function w defined as:

w(x) =

√
2Ce
h

x . (21)

satisfies Assumption (B2): w is continuous on R+, non-decreasing, such that x 7→ w(x)
x is

non-increasing and w
(√
Ce
)
≥ Ce, and such that:

d(g∗, g) ≤ w
(√

` (g∗, g)
)
.

Let h′ =
√
V/n em. Note that the function

w0(x) =
√

2Ce ∨ x
√

2Ce/h′ (22)

also satisfies assumption (B2).
Proof The excess risk can be expressed in terms of η(X) as follows:

`(g, g∗) = P (g(X) 6= Y )− P (g∗(X) 6= Y )

= E
[
|g(X)− g∗(X)|2 |2 η(X)− 1|

]
.

(23)

17



Coudray, Keribin, Massart, Pamphile

Then, using the margin assumption (A2) and the definition of d (cf. Equation 19), we
have the following lower bound on the excess risk:

`(g, g∗) = E
[
(g(X)− g∗(X))2 |2 η(X)− 1|

]
≥ hE

[
(g(X)− g∗(X))2

]
=

h

2Ce
d2(g, g∗) .

Taking the square root on both sides finishes the proof.

The next proposition states the existence of Φ fulfilling (B3). We recall that the subset
G′ ⊂ G is given by the separability assumption (A1) and that the constant Ce is defined in
Equation 18.

Proposition 7 Assume G has finite VC dimension V and G′ is given by separability as-
sumption (A1). There exists an absolute constant K ≥ 1 such that the function Φ defined
as

Φ(σ) = Kσ

√
V

[
1 + log

(
Ce
σ
∨ 1

)]
(24)

satisfies:

√
nE

[
sup

g∈G′,d(g,h)≤σ
RSARn (g0)−RSARn (g)

]
≤ Φ(σ)

for all g0 ∈ G′ and for every σ such that Φ(σ) ≤
√
n σ2

Ce
.

Proof We consider a fixed g0 ∈ G′ along the proof and use the notation:

W = sup
g∈G′,d(g,g0)≤σ

RSARn (g0)−RSARn (g) .

The main steps of the proof are: (i) rewrite W as the supremum of an empirical process
over a class of functions; (ii) split the expression of W into two terms depending on the sign
of (g0(x) − g(x)) (W+ and W−) that will be processed similarly and independently; (iii)
provide an upper bound on E [W+] using a symmetrization principle (cf. Bousquet et al.,
2003); (iv) apply a chaining inequality and Haussler bound (Bousquet et al., 2003; Massart
and Nédélec, 2006); (v) a few calculations finish the proof. This proof uses the notion of
entropy metrics: the definition and some useful properties are recalled in Appendix C.

(i) We start by rewriting the expression inside the supremum in W :

RSARn (g0)−RSARn (g) = R̂SARn (g0)− R̂SARn (g)− E
[
R̂SARn (g0)− R̂SARn (g)

]
=

1

n

n∑
i=1

(rSAR (g0, (Xi, Si))− rSAR (g, (Xi, Si)))− E
[
R̂SARn (g0)− R̂SARn (g)

]
=

1

n

n∑
i=1

(g0(Xi)− g(Xi))

(
21Si=1

e(Xi)
− 1

)
− E

[
(g(X)− g0(X))

(
21S=1

e(X)
− 1

)]
= (Pn − P) (fg),
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where Pnfg and Pfg denote the empirical mean and the expectation of the function fg:

fg : (x, s) 7→ (g0(x)− g(x))

(
21s=1

e(x)
− 1

)
.

Hence, denoting F(σ) = {fg : g ∈ G′, d(g0, g) ≤ σ}, we can write W as the supremum of
the empirical process (Pn − P)(·) over the set of functions F(σ):

W = sup
f∈F(σ)

(Pn − P)(f).

(ii) For any g ∈ G′, we can decompose fg depending on the sign of (g0(x)− g(x)):

fg (x, s) =

(
21s=1

e(x)
− 1

)
1g(x)>g0(x) −

(
21s=1

e(x)
− 1

)
1g0(x)>g(x) .

Then, introducing the following classes of functions

F+(σ) =

{
f : Rd × {0, 1} → R, ∃ g ∈ G′, f(x, s) =

[
21s=1

e(X)
− 1

]
1g(x)>g0(x) , d(g0, g) ≤ σ

}
F−(σ) =

{
f : Rd × {0, 1} → R, ∃ g ∈ G′, f(x, s) =

[
21s=1

e(X)
− 1

]
1g(x)<g0(x) , d(g0, g) ≤ σ

}
and the corresponding suprema

W+ = sup
f∈F+(σ)

(Pn − P)(f)

W− = sup
f∈F−(σ)

(P− Pn)(f),

we decompose E [W ] as follows:

E [W ] ≤ E
[
W+

]
+ E

[
W−

]
.

We now process both terms separately, focusing on W+ (the proof for the other term is
almost identical).

(iii) We first apply a symmetrization principle to provide an upper bound on E [W+]
depending on a Rademacher average (cf. Bousquet et al., 2003):

E
[
W+

]
≤ 2

n
E

[
sup

f∈F+(σ)

n∑
i=1

εif(Xi, Si)

]

where (εi)1≤i≤n are i.i.d. Rademacher variables (i.e. P (εi = 1) = P (εi = −1) = 1
2).
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(iv) Let δ2 = supf∈F+(σ) Pn
(
f2
)
∨ σ2. We apply a chaining inequality (lemma A.2,

Massart and Nédélec 2006) which gives us the following inequality:

E
[
W+

]
≤ 6√

n
E

δ +∞∑
j=0

2−j
√
H (2−j−1δ,F+(σ))

 (25)

where H is the universal entropy metric (cf. Appendix C).
Let A+ =

{
1g(x)>g0(x), g ∈ G′

}
, which can be considered as a set of classifiers and has

VC dimension V at most. Using the fact that H (·,F+(σ)) is non-increasing (cf. Proposition
9), we have ∀j ≥ 0:

H
(
2−j−1δ,F+(σ)

)
≤ H

(
2−j−1σ,F+(σ)

)
.

Applying Proposition 10, we obtain the following upper bound on the entropy of F+(σ)
in terms of the entropy of A+:

H
(
2−j−1δ,F+(σ)

)
≤ H

(
2−j−1 σ

Ce
, A+(σ)

)
.

We are then in a position to apply Haussler bound (Proposition 11), to get an upper
bound on the entropy in terms of the VC dimension of A+, which is no more than V :

H
(
2−j−1δ,F+(σ)

)
≤ κV

(
1 + log

(
2j+1Ce

σ
∨ 1

))
(26)

for some absolute constant κ > 1.

(v) Injecting Equation 26 in Equation 25, we get:

E
[
W+

]
≤ 6

√
κV

n

+∞∑
j=0

2−j

√
1 + log

(
2j+1

Ce
σ
∨ 1

) E [δ]

≤ C(σ)

√
V

n
E [δ] (27a)

≤ C(σ)

√
V

n

√
E [δ2] (27b)

where C(σ) = 12 (1 + log(2))
√
κ
√

1 + log
(
Ce
σ ∨ 1

)
. Equation 27a is a consequence of

technical Lemma 12 in Appendix D, Equation 27b follows from Cauchy-Schwartz inequality.
Now, we provide an upper bound on E

[
δ2
]

in terms of E [W+]:

E
[
δ2
]
≤ σ2 + E

[
sup

f∈F+(σ)
Pn
(
f2
)]

≤ σ2 + Ce E

[
sup

f∈F+(σ)
Pn (f)

]

≤ σ2 + Ce E

[
sup

f∈F+(σ)
(Pn − P) (f)

]
+ Ce sup

f∈F+(σ)
P(f) (28)
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Let f ∈ F+(σ) and define g ∈ G′ such that f(x, s) =
[

21s=1
e(x) − 1

]
1g0(x)>g(x) (and

d(g0, g) ≤ σ). We have:

P(f) = E
[
E
[

21S=1

e(X)
− 1|X

]
1g0(X)>g(X)

]
= E

[
(2η(X)− 1)1g0(X)>g(X)

]
≤ E

[
|g0(X)− g(X)|2

]
=
d2(g0, g)

2Ce

≤ σ2

2Ce

using Equation 19 and the definition of F+(σ). Note that the above upper bound does not
depend on f ∈ F+(σ). Hence, we can use it in Equation 28 to obtain:

E
[
δ2
]
≤ Ce E

[
W+

]
+

3

2
σ2

Hence, coming back to E [W+]:

E
[
W+

]
≤ C(σ)

√
V

n

√
Ce E [W+] +

3

2
σ2 .

Taking the square on both sides and solving the second-order inequation in E [W+] yields:

E
[
W+

]
≤ 1

2
C(σ)

√
V

n

(
C(σ)Ce

√
V

n
+

√
C(σ)2C2

e V

n
+ 6σ2

)
.

Therefore, whenever σ ≥ C(σ)Ce

√
V
n :

√
nE

[
W+

]
≤ 2σ C(σ)

√
V .

We can prove a similar upper bound on E [W−]. If we define Φ(σ) = 4σ C(σ)
√
V , for

all σ such that Φ(σ) ≤
√
n σ2

Ce
(condition of Proposition 7):

σ ≥ C(σ)Ce

√
V

n
.

Hence, we have the desired upper bound on E [W ]:

√
nE [W ] ≤ Φ(σ) .

Note that the constant K = 4C(σ) is greater than 1.
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A.3 Upper Bounds on the Risk

In the previous subsection, we checked that Theorem 4 can be applied to PU learning under
the SAR assumption. Hence, the upper bound on risk excess ε2

∗ is the unique solution to
the fixed point equation: √

n ε2
∗ = Φ (w(ε∗)) (29)

where w is given in Equation 21 (or w0 in Equation 22) and Φ in Equation 24.

w(x) =

√
2Ce
h

x ,

w0(x) =
√

2Ce ∨ x
√

2Ce
h′

,

Φ(σ) = Kσ

√
V

[
1 + log

(
Ce
σ
∨ 1

)]
.

We cannot explicitly solve this equation, but we can provide an upper bound on the
solution which is enough to complete the proof of Theorem 1. The choice of w as Equation 21
or Equation 22 leads to two different upper bounds (Subsections A.3.1 and A.3.2) that
together complete the proof of Theorem 1.

A.3.1 First Case

Using the known definitions of w in Equation 21 and Φ in Equation 24, Equation 29 can
be rewritten as:

√
n ε2
∗ = K ε∗

√
2Ce
h

√
V

[
1 + log

(√
Ce h√
2ε∗
∨ 1

)]
Because the logarithmic term is always non-negative and K ≥ 1, we get:

ε∗ ≥
√

2Ce V

nh
.

Using this on the logarithmic term, we obtain the following upper bound on ε∗:

ε∗ ≤ K
√

2Ce V

nh

√
1 + log

(√
nh

2
√
V
∨ 1

)

≤ K
√

2Ce V

nh

√
1 + log

(
nh2

V
∨ 1

)
Note that Ce ≤ 2

em
. Finally, we get the desired result:

ε2
∗ ≤ 4K2 V

nh em

[
1 + log

(
nh2

V
∨ 1

)]
.

�
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A.3.2 Second Case

We now consider Equation 29 where w is given by Equation 22. Note that the logarithmic
term is necessarily 0. If we assume that the solution ε∗ of Equation 29 satisfies ε∗ ≥

√
h′,

then w(x) = ε∗

√
2Ce
h′ . We obtain:

ε2
∗ ≤ 4K2

√
V

n em
.

Else, ε∗ ≤
√
h′ which implies that

ε2
∗ ≤ h′ =

√
V

n em
.

Both bounds provide the same convergence rate.
Paragraphs A.3.1 and A.3.2 together complete the proof of Theorem 1.

�

Appendix B. Proof of Minimax Lower Bounds

We remind the reader that the minimax risk is defined as:

R (G, h) = inf
ĝ∈G

[
sup

P∈P(G,h)
E [` (ĝ, g∗)]

]
.

The lower bound on the minimax risk is proved in Subsection B.1 for the SCAR assumption
(cf. Theorem 2) and in Subsection B.2 for the SAR assumption (cf. Proposition 3).

B.1 Under the SCAR Assumption (Proof of Theorem 2)

The proof consists in exhibiting a finite subset of probability distributions on which the
excess risk is worst. It is organized as follows: (i) we provide a lower bound on the minimax
risk expression by restricting ourselves to this subset of distributions; (ii) we use Massart
margin condition and simplify the remaining expression; (iii) the application of Assouad
lemma finishes the proof.

(i) We start by introducing a family of probability distributions that plainly exploits the
margin condition (A2). Let x1, ..., xV be V points of Rd shattered by G. This is possible
because the VC dimension of G is V . For some parameter p < 1

V−1 , we define a discrete

probability distribution on {x1, ..., xV } ⊂ Rd verifying:

P (X = xi) = p ∀ i ≤ V − 1 and P (X = xV ) = 1− p (V − 1) .

For some binary vector b ∈ {0, 1}V−1, we consider Pb the probability distribution such that:

∀ 1 ≤ i ≤ V − 1, Pb (Y = 1 |X = xi) =
1

2
[1 + (2 bi − 1) h]
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for h > 0. We can consider by default that each point in Rd \ {x1, ..., xV−1} has class 0
almost surely. This has no incidence on the rest of the proof. Moreover:

Pb (S = 1 |X = xi, Y = y) = y e(xi)

following the definition of propensity.
Hence, (Pb)b∈{0,1}V−1 defines a family of distributions on (X,S) that satisfies Massart

margin condition (A2) at its limit: the regression function |2η(xi)− 1| equals h for every
i ∈ {1, ...V − 1}. Furthermore, for every b ∈ {0, 1}V−1, the Bayes classifier g∗b is known:

∀ 1 ≤ i ≤ V − 1, g∗b (xi) = bi .

As (x1, ..., xV ) is shattered by G, g∗b necessarily belongs to G.
Hence, (Pb)b∈{0,1}V−1 ⊂ P (G, h) and therefore:

R (G, h) ≥ inf
ĝ∈G

[
sup

b∈{0,1}V−1

Eb [` (ĝ, g∗b )]

]
where Eb denotes the expectation according to Pb distribution.

(ii) Let ĝ be a classifier, function of the training sample (Xi, Si)1≤i≤n. We use the following
decomposition of ` (cf. Equation 23):

`(ĝ, g∗b ) = E [|2η(X)− 1| |ĝ(X)− g∗b (X)|] .

Combined with Massart margin condition (A2), this yields:

R (G, h) ≥ h inf
ĝ∈G

[
sup

b∈{0,1}V−1

Eb [|ĝ(X)− g∗b (X)|]

]

For every ĝ, we define b̂ such that:

b̂ = Argmin
b∈{0,1}V−1

EX [|g∗b (X)− ĝ(X)|]

where the expectation is taken with respect to the marginal distribution of X and condi-
tionally to the training sample. Hence, b̂ is a function of the training sample (Xi, Si)1≤i≤n.

By triangular inequality and then by definition of b̂:∣∣∣g∗
b̂
(X)− g∗b (X)

∣∣∣ ≤ ∣∣∣g∗
b̂
(X)− ĝ(X)

∣∣∣+ |ĝ(X)− g∗b (X)| ≤ 2 |ĝ(X)− g∗b (X)| .

Hence:

R (G, h) ≥ h

2
inf
ĝ∈G

[
sup

b∈{0,1}V−1

Eb
[∣∣∣g∗

b̂
(X)− g∗b (X)

∣∣∣]]

=
h

2
inf

b̂∈{0,1}V−1

[
sup

b∈{0,1}V−1

Eb
[∣∣∣g∗

b̂
(X)− g∗b (X)

∣∣∣]]

=
p h

2
inf

b̂∈{0,1}V−1

[
sup

b∈{0,1}V−1

Eb

[
V−1∑
i=1

1
bi 6=b̂i

]]
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where the last line is obtained by developing the expectation according to the marginal
distribution of X, which is discrete.

(iii) With this simplified expression, we apply Assouad lemma (cf. Yu, 1997) which pro-
vides the following general lower bound:

inf
b̂∈{0,1}V−1

[
sup

b∈{0,1}V−1

Eb

[
V−1∑
i=1

1
bi 6=b̂i

]]
≥ V − 1

2
(1−√γ n)

where γ is an upper bound on the square Hellinger distance between probability distributions
Pb and P′b on (X,S) when b and b′ only differ on one coordinate. Using technical Lemma
13 in Appendix D, we have the following upper bound on the square Hellinger distance
H2 (Pb,Pb′):

H2 (Pb,Pb′) ≤ 2 p em h
2 . (30)

Applying Assouad lemma together with Equation 30, we get the following inequality:

R (G, h) ≥ p h

4
(V − 1)

(
1−

√
2 p em h2 n

)
.

In case (C1), we choose p = 2
9 em h2 n

that is lower than 1
V−1 , we obtain the desired lower

bound on R (G, h):

R (G, h) ≥ V − 1

54 em hn
.

Else, in case (C2), we choose p = 2
9 em h′2 n

where we recall that h′ =
√

V
n em

. As h ≤ h′:

R (G, h) ≥ R
(
G, h′

)
≥ V − 1

54 em h′ n
≥ 1

54
√

2

√
V − 1

n em
.

�

B.2 Proof of Proposition 3

This proof relies on the same tools as SCAR assumption case. We alter (i) by choosing
x1, ..., xV satisfying assumption (A3) for ε > 0. (ii) remains unchanged. In (iii), the upper
bound in Equation 30 has to be replaced by 2 p h2 (em + ε). This yields the following lower
bounds:

1. in case (C1):

R (G, h) ≥ V − 1

54 (em + ε) hn
;

2. in case (C2):

R (G, h) ≥ 1

54
√

2

√
V − 1

(em + ε) hn
.

It remains to note that these lower bounds are valid for any ε > 0 to complete the proof.

�
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Appendix C. Universal Entropy Metric and Related Properties

In this section, we recall some definitions and properties concerning the universal entropy
metric. These properties are used for the proof of Proposition 7 in Appendix A.

Let us consider (Xi, Si)1≤i≤n i.i.d. random variables with values in Rd×{0, 1} and F a
set of functions on Rd × {0, 1}.

Definition 8 (Universal entropy metric, cf. Massart and Nédélec 2006)
Let ε > 0 and Q be a probability measure.
Define h (F , ε,Q) as the logarithm of the largest number N of functions f1, ..., fN separated

by a distance ε, namely EQ

[
(fi(X,S)− fj(X,S))2

]
> ε2, ∀i 6= j.

Then the universal entropy metric H (F , ε) is defined as:

H (F , ε) = sup
Q
h (F , ε,Q) .

Proposition 9 For a fixed F , H (F , ·) is a decreasing function.

Proposition 10 Let ψ be a function defined on Rd×{0, 1} and F be a family of functions
such that:

F = {(x, s) 7→ ψ(x, s) g(x, s) , g ∈ G}

where G is another family of functions on Rd × {0, 1}. Then:

∀ε > 0, H (F , ε) ≤ H
(
G, ε

||ψ||∞

)
.

Proof Let Q be a probability distribution andN such that h
(
G, ε
||ψ||∞

,Q
)
< log(N). Then,

for any set of functions g1, ..., gN , there is i 6= j such that EQ

[
(gi(X,S)− gj(X,S))2

]
≤(

ε
||ψ||∞

)2
. This implies that EQ

[
(ψ(X,S) [gi(X,S)− gj(X,S)])2

]
≤ ε2 and then that

h (F , ε,Q) < log(N).

Then, we have that h (F , ε,Q) ≤ h
(
G, ε
||ψ||∞

,Q
)

. Considering the supremum over the prob-

ability distributions Q, we obtain the desired result.

Finally, we recall Haussler bound, which provides an upper bound on the universal
entropy metric of a set of classifiers in terms of its VC dimension.

Proposition 11 (Haussler bound, cf. Bousquet et al. 2003)
Assuming that F is a set of indicator functions with finite Vapnik dimension V . Then,
∀ε > 0:

H (F , ε) ≤ κV
(
1 + log

(
ε−1 ∨ 1

))
where κ ≥ 1 is an absolute constant.
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Appendix D. Technical Lemmas

Lemma 12 Let Ce > 1 and σ > 0. Then:

+∞∑
j=0

2−j

√
1 + log

(
2j+1

Ce
σ
∨ 1

)
≤ 2 (1 + log(2))

√
1 + log

(
Ce
σ
∨ 1

)
Proof

+∞∑
j=0

2−j

√
1 + log

(
2j+1

Ce
σ
∨ 1

)
≤

+∞∑
j=0

2−j

√
1 + (j + 1) log(2) + log

(
Ce
σ
∨ 1

)

≤
+∞∑
j=0

2−j
√

1 + (j + 1) log(2)

√
1 + log

(
Ce
σ
∨ 1

)

≤
+∞∑
j=0

2−j
(

1 + (j + 1)
log(2)

2

)√
1 + log

(
Ce
σ
∨ 1

)

= 2 (1 + log(2))

√
1 + log

(
Ce
σ
∨ 1

)

Lemma 13 Let x1, ..., xV be vectors of Rd. Let e be a function on Rd with values in
(0, 1]. Let p ≤ 1

V−1 and consider (Pb)b∈{0,1}V−1 the family of probability distributions on

{x1, ..., xV } × {0, 1} defined in (i) (cf. Appendix B.1). If b and b′ are binary vectors of
{0, 1}V−1 which only differ at coordinate i, then:

H (Pb,Pb′) ≤ 2 p e(xi)h
2 .

Proof Recall that b and b′ only differ at coordinate i, hence:

H2 (Pb,Pb′) =
1

2

V∑
j=1

(√
Pb (X = xj , S = 1)−

√
Pb′ (X = xj , S = 1)

)2

+
1

2

V∑
j=1

(√
Pb (X = xj , S = 0)−

√
Pb′ (X = xj , S = 0)

)2

=
1

2

(√
Pb (X = xi, S = 1)−

√
Pb′ (X = xi, S = 1)

)2

+
1

2

(√
Pb (X = xi, S = 0)−

√
Pb′ (X = xi, S = 0)

)2
.

Let us now calculate the probabilities using the definition of Pb:

Pb (X = xi, S = 1) = p
e(xi)

2
[1 + (2bi − 1) h] ,

Pb (X = xi, S = 0) = p

(
1− e(xi)

2
[1 + (2bi − 1) h]

)
.
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Noting that either (bi, b
′
i) = (0, 1) or (bi, b

′
i) = (1, 0), we have in both cases:(√

Pb (X = xi, S = 1)−
√

Pb′ (X = xi, S = 1)
)2

= p e(xi)
[
1−

√
1− h2

]
,

and (√
Pb (X = xi, S = 0)−

√
Pb′ (X = xi, S = 0)

)2

= p

[
2− e(xi)− 2

√
1− e(xi)

2
(1 + h)

√
1− e(xi)

2
(1− h)

]
.

We then sum the two results together:

H2 (Pb,Pb′) =
p

2

[
2− e(xi)

√
1− h2 − 2

√
1− e(xi) +

e(xi)2

4
(1− h2)

]

= p

1− e(xi)

2

√
1− h2 −

√(
1− e(xi)

2

√
1− h2

)2

− e(xi)
(

1−
√

1− h2
)

= p

[
1− e(xi)

2

√
1− h2

]1−

√√√√√√1−
e(xi)

(
1−
√

1− h2
)

[
1− e(xi)

2

√
1− h2

]2


≤
p e(xi)

(
1−
√

1− h2
)

1− e(xi)
2

√
1− h2

≤ 2 p e(xi)h
2

In the above calculation, we applied the inequality 1−
√

1− h2 ≤ h2 for h2 ∈ [0, 1].
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Pascal Massart and Élodie Nédélec. Risk bounds for statistical learning. Annals of Statistics,
34(5), Oct 2006.

Fantine Mordelet and J-P Vert. A bagging SVM to learn from positive and unlabeled
examples. Pattern Recognition Letters, 37:201–209, 2014.

Ozra Nikdelfaz and Saeed Jalili. Disease genes prediction by HMM based PU-learning using
gene expression profiles. J. Biomed. Inf., 81:102–111, May 2018.

Gang Niu, Marthinus Christoffel Du Plessis, Tomoya Sakai, Yao Ma, and Masashi Sugiyama.
Theoretical comparisons of positive-unlabeled learning against positive-negative learning.
Advances in neural information processing systems, 29:1199–1207, 2016.

Harish Ramaswamy, Clayton Scott, and Ambuj Tewari. Mixture proportion estimation
via kernel embeddings of distributions. In International conference on machine learning,
pages 2052–2060. PMLR, 2016.

Vladimir Vapnik. The nature of statistical learning theory. Springer science & business
media, 1999.

30



Risk Bounds for PU Learning Under the Selected At Random Assumption
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