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Abstract

We study a family of adversarial multiclass classification problems and provide equiva-
lent reformulations in terms of: 1) a family of generalized barycenter problems introduced
in the paper and 2) a family of multimarginal optimal transport problems where the number
of marginals is equal to the number of classes in the original classification problem. These
new theoretical results reveal a rich geometric structure of adversarial learning problems
in multiclass classification and extend recent results restricted to the binary classification
setting. A direct computational implication of our results is that by solving either the
barycenter problem and its dual, or the MOT problem and its dual, we can recover the
optimal robust classification rule and the optimal adversarial strategy for the original ad-
versarial problem. Examples with synthetic and real data illustrate our results.

Keywords: Adversarial learning, Multiclass classification, Optimal transport, Multi-
marginal optimal transport, Wasserstein barycenter, Generalized barycenter problem

1. Introduction

In this paper we study, from analytical and geometric perspectives, the problem of adver-
sarial learning in multiclass classification. By multiclass classification we mean the task of
assigning classes î in a set of K available classes to all inputs x̂ in some feature space X
based on the observation of training pairs z = (x, i). The adversarial component of the
problem refers to the desire of producing classification rules that are robust to data pertur-
bations. Mathematically speaking, this means studying optimization problems of the form:

inf
f∈F

sup
µ̃∈P(Z)

{R(f, µ̃)− C(µ, µ̃)} . (1)

Here, F denotes the set of all probabilistic multiclass classifiers —see section 2; µ denotes
the observed data distribution, which in general is some probability measure on the space
Z = X × {1, . . . ,K}, but which for simplicity can be thought of as an empirical measure
associated to a finite training data set; C represents a notion of “distance” between data
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distributions; R(f, µ̃) is a risk functional relative to a data distribution µ̃ (thought of as
a perturbation of µ) and a choice of loss function, which in this paper will be restricted
to be the 0-1 loss. Problem (1) can be interpreted as a game between a learner and an
adversary : the learner’s goal is to find a classifier with small risk, while the adversary tries
to find a data perturbation µ̃ that makes the risk for the learner large. The adversary has
an implicit budget to perform their actions: the adversary can not choose a µ̃ that is too
far away (relative to C) from the original data distribution µ.

For a large family of functionals C in (1) we show that the adversarial problem (1) is
equivalent to a multimarginal optimal transport problem (MOT) of the form:

inf
π∈ΠK(µ)

∫
c(z1, . . . , zK)dπ(z1, . . . , zK), (2)

where c is a cost function discussed in detail throughout the paper and ΠK(µ) is a space
of couplings specified in section 2.1. As part of this equivalence, we explicitly describe how
to construct solutions to the original problem (1) from solutions to the problem (2) and
its dual, offering in this way new computational strategies for solving problem (1). Since
most algorithms for OT are primal-dual (i.e., they simultaneously search for solutions to
both the primal OT problem and its dual), it is actually possible to construct a saddle
solution (f∗, µ∗) for (1) by running one such OT algorithm. The equivalence between (1)
and (2) that we study here is an extension to the multi-class case of a series of recent results
connecting adversarial learning in binary classification with optimal transport: Bhagoji,
Cullina, and Mittal (2019); Nakkiran (2019); Pydi and Jog (2021a,b); Garćıa Trillos and
Murray (2022).

In order to establish the equivalence between (1) and (2), we develop another interest-
ing equivalent reformulation of (1) that reveals a rich geometric structure of the original
adversarial problem. This reformulation takes the form of a generalized barycenter problem

inf
λ,µ̃1,...,µ̃K

λ(X ) +
∑
i∈[K]

C(µi, µ̃i) s.t. λ ≥ µ̃i, i ∈ [K],

which is a novel variant of the Wasserstein barycenter problems introduced in Agueh and
Carlier (2011); Carlier and Ekeland (2010). In the classical Wasserstein barycenter problem,
given K probability measures %1, . . . , %K defined over a Polish space X and a cost c : X×X →
[0,∞], one tries to find a probability measure % such that the summed cost of transporting
each of the %i onto % is as small as possible. In our generalized problem, we try to find
a nonnegative measure λ (no longer necessarily a probability measure) such that the total
mass of λ plus the summed cost of transporting each µi (not necessarily having the same
total mass) onto some part of λ is as small as possible. Here transporting a µi onto some
part of λ means we want to find a measure µ̃i ≤ λ and transport µi to µ̃i in the classical
optimal transport sense. This problem will be studied in detail in section 3. We prove
that these generalized barycenter problems can be written as appropriate MOT problems,
a result that is analogous to ones in Agueh and Carlier (2011); Carlier and Ekeland (2010)
for standard Wasserstein barycenter problems.

From the equivalence with the generalized barycenter problem we will be able to deduce
that optimal adversarial attacks can always be obtained as suitable barycenters of K or
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less points in the original training data set. Also, from this reformulation we will be able
to recognize the structure of the cost function c in (2): for the adversary to obtain their
optimal strategy, they can actually localize their problem to sets of K or fewer data points
—see section 2.1. Other theoretical, methodological, and computational implications of
these reformulations will be pursued in future work. See section 6 for a discussion on future
directions for research.

In contrast to many of the existing applications of OT to ML, it is worth emphasizing
that in this work OT arises naturally in connection with a learning problem, rather than as
a particular way to address a certain machine learning task. For the growing literature in
multimarginal optimal transportation this paper offers new examples of cost functions wor-
thy of study. MOT is a rich topic that has been developed over the years from theoretical
and applied perspectives. After the first mathematical analysis of general MOT problems
in Gangbo and Świech (1998), there have been numerous subsequent papers establishing
geometric and analytic results (e.g., Kim and Pass (2013); Pass (2015); Kitagawa and Pass
(2015); Chiappori, McCann, and Pass (2017)) for MOT problems. MOT problems have also
been used extensively in applications. For example, they appear in the so-called density
functional theory in physics Seidl, Gori-Giorgi, and Savin (2007); Buttazzo, De Pascale,
and Gori-Giorgi (2012); Cotar, Friesecke, and Klüppelberg (2013); Mendl and Lin (2013);
Colombo, De Pascale, and Di Marino (2015), and in economics Ekeland (2005); Chiappori,
McCann, and Nesheim (2010); Carlier and Ekeland (2010). In the machine learning commu-
nity, researchers have recently explored many interesting applications, including generative
adversarial networks(GANs) Choi, Choi, Kim, Ha, Kim, and Choo (2018); Cao, Mo, Zhang,
Jia, Shen, and Tan (2019) and Wasserstein Barycenters Agueh and Carlier (2011); Cuturi
and Doucet (2014); Benamou, Carlier, Cuturi, Nenna, and Peyré (2015); Carlier, Ober-
man, and Oudet (2015); Srivastava, Li, and Dunson (2018); Delon and Desolneux (2020),
where MOTs are used. Recent works like Di Marino and Gerolin (2020); Haasler, Ringh,
Chen, and Karlsson (2021) develop a connection between the Schrödinger bridge problem
and MOT. MOT problems have been extended to the unbalanced setting —see Beier, von
Lindheim, Neumayer, and Steidl (2021).

1.1 Outline of paper

The rest of the paper is organized as follows. In section 2, we introduce most mathematical
objects and notation used throughout the rest of the paper. We also introduce the gen-
eralized Wasserstein barycenter problem, which can be interpreted as dual of the original
adversarial problem (1), and define in detail the MOT problem (2). In section 3, we study
the aforementioned generalized Wasserstein barycenter problem and prove its equivalence
with 1) a stratified barycenter problem and 2) a first version of an MOT problem. In sec-
tion 4 we discuss the equivalence between (1) and (2) through the duality results in earlier
sections. In section 5, we present a collection of examples and numerical experiments whose
goal is to illustrate the theory developed throughout the paper and provide further insights
into the geometric structure of adversarial learning in multiclass classification. Finally, we
wrap-up the paper in section 6 by presenting some conclusions and discussing some future
directions for research.
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2. Preliminaries

Throughout the paper (X , d) will be a Polish space, [K] := {1, . . . ,K} with K ≥ 2, and
Z := X × [K]. We regard X as the feature space of our learning problem and [K] as the
set of classes or labels.

Let µ be a finite positive Borel measure (not necessarily a probability measure) over Z.
Given i ∈ [K], we use µi to represent the positive measure over X defined as

µi(A) := µ (A× {i}) , (3)

for all measurable subsets A of X . In the sequel, we use µ to represent a fixed data
distribution, which we regard as an observed data distribution or training data distribution,
and use µ̃ to represent any other arbitrary finite positive measure over Z. Through this
paper we useM+(X ) andM+(Z) to denote the set of finite positive (Borel) measures over
X and Z, respectively.

Through this paper, the cost function in (1) will take the form:

C(µ, µ̃) := min
π∈Γ(µ,µ̃)

∫
cZ(z, z̃)dπ(z, z̃),

for some cost function cZ : Z ×Z → [0,∞]. Here and in the remainder of the paper the set
Γ(·, ·) represents the set of couplings between two positive measures over the same space;
for example, Γ(µ, µ̃) denotes the set of positive measures over Z × Z with first marginal
equal to µ and second marginal equal to µ̃.

Assumption 1 The function cZ will be assumed to have the following structure:

cZ(z, z̃) =

{
c(x, x̃) if i = ĩ

∞ if i 6= ĩ,

for some lower semi-continuous function c : X × X → [0,∞].
The function c will be further assumed to satisfy c(x, x) = 0 for all x ∈ X and the

following compactness and coercivity properties:

• if {xn}n∈N is a bounded sequence in (X , d) and {x′n}n∈N is a sequence in X satisfying
supn∈N c(x

′
n, xn) < ∞, then {(x′n, xn)}n∈N is precompact in X × X (with the induced

product metric).

The structure of cZ described in Assumption 1 is standard in the literature of adversarial
learning and can be motivated by the fact that in many applications of interest it is natural
to think that the “true” label associated to a perturbation x̃ of a data point x coincides with
the true label of the original x. Naturally, this is simply a modeling choice, and other cost
structures of interest can be studied elsewhere. The lower semicontinuity and compactness
assumptions on c are technical requirements that we use in the remainder. All cost functions
of interest satisfy these properties —see the examples below.

If we decompose µ and µ̃ into measures µi, µ̃i as in (3), it is possible to write C(µ, µ̃) as

C(µ, µ̃) =
∑
i∈[K]

C(µi, µ̃i),
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abusing notation slightly and interpreting C(µi, µ̃i) as

C(µi, µ̃i) = min
π∈Γ(µi,µ̃i)

∫
c(x, x̃)dπ(x, x̃). (4)

Remark 2 Let us emphasize that we define C(µi, µ̃i) = +∞ whenever the set of couplings
Γ(µ̃i, µi) is empty, which is the case if µi and µ̃i have different total mass.

We introduce two notions that will be used throughout our analysis. Given a lower
semi-continuous function f : X → R, we define

f c(x) := inf
x′∈X
{f(x′) + c(x′, x)}, (5)

and given an upper semi-continuous function g : X → R, we define

gc̄(x′) := sup
x∈X
{g(x)− c(x′, x)}. (6)

Example 1 Let ε > 0 and let c(x, x̃) be given by

c(x, x̃) = cε(x, x̃) =

{
0 if d(x, x̃) ≤ ε
∞ if d(x, x̃) > ε

.

The parameter ε can be interpreted as the adversarial budget: the larger the value of ε, the
wider the space of actions available to the adversary. The cost c satisfies Assumption 1
provided that closed balls with finite radius in (X , d) are compact.

Notice that in this case, the c-transform f c of a given function f takes the form:

f c(x) = inf
x′ : d(x,x′)≤ε

f(x′).

In this setting, the adversarial problem (1) can be written as

inf
f∈F

sup
µ̃ :W∞(µ,µ̃)≤ε

R(f, µ̃).

where W∞(µ, µ̃) is the ∞-OT distance between µ and µ̃ relative to the distance function:

δ(z, z̃) :=

{
d(x, x̃) if y = ỹ,

∞ otherwise.

Remark 3 In the literature of machine learning there are many different versions of ad-
versarial problems for supervised tasks, but two versions are particularly popular: data-
perturbing adversarial learning (e.g., seePydi and Jog (2021a)) and distributional perturbing
adversarial learning (e.g., see Blanchet and Murthy (2019); Blanchet, Kang, and Murthy
(2019)). For a rigorous analysis, distributional perturbing adversarial learning is more
adequate since data-perturbing adversarial learning lacks measurability in some cases. Fur-
thermore, putting some technical details aside, one can prove that distributional perturbing
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adversarial learning encompasses data-perturbing adversarial learning: see Pydi and Jog
(2021a).

The main focus in this paper is based on the distributional setting, where given a data
distribution µ, an adversary can select a new distribution µ̃ in a neighborhood of the original
distribution µ determined by C. Pydi and Jog (2021b) summarizes other adversarial models
and discusses connections between them.

Example 2 Let p > 0 and let c(x, x̃) be given by

c(x, x′) = cp(x, x′) :=
1

τ
(d(x, x′))p,

for some constant τ > 0. For this choice of cost c, it is possible to show, through a formal
argument whose details we omit, that problem (1) can be written as

inf
f∈F

sup
µ̃ :Wp(µ,µ̃)≤ε

R(f, µ̃),

for some ε > 0 and for Wp(µ, µ̃) the p-OT distance between µ and µ̃ relative to the distance
function δ from Example 1. The relation between τ and ε is not explicit, but, qualitatively,
small values of τ should correspond to small values of ε.

Notice that in this case the c-transform f c of a given function f takes the form:

f c(x) = inf
x′∈X

f(x′) +
1

τ
d(x, x′)p.

If f is bounded below by a constant, it follows that f c is always continuous (in the d metric)
regardless of the continuity properties of the original f .

The solution space F in (1) is the full set of weak partitions, or probabilistic classifiers,
defined by

F :=
{
f : X → ∆[K] : f Borel measurable

}
,

where

∆[K] :=

(ui)i∈[K] : 0 ≤ ui ≤ 1,
∑
i∈[K]

ui = 1

 ,

i.e., ∆K is the set of probability distributions over [K]. In other words, at each x ∈ X , f(x)
is a probability distribution over [K] representing the likelihood, according to the specific
classifier f chosen by the learner, that a given x belongs to any of the available classes.
Probabilistic classifiers are widely used in applications as they allow for the use of standard
optimization techniques when training models. We want to highlight that the fs in F are
only assumed to be Borel measurable. This means that the learner in problem (1) can be
considered to be agnostic to any specific model for the classifiers and in that sense (1) can be
interpreted as a robust generalization of the notion of Bayes classifier studied in statistical
learning.

For a given u ∈ ∆[K] and a given i ∈ [K], we define the loss:

`(u, i) := 1− ui.
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Notice that `(ej , i) is equal to 1 if i 6= j and 0 if i = j. ` thus extends the 0-1 loss to weak
classifiers, and from now on we will refer to it simply as the 0-1 loss. For a given pair (f, µ̃)
we define the risk:

R(f, µ̃) := E
(X̃,Ỹ )∼µ̃[`(f(X̃), Ỹ )] =

∑
i∈[K]

∫
X

(1− fi(x̃))dµ̃i(x̃),

which can be regarded as a bilinear functional R(·, ·) : F×M+(Z) −→ R+. For convenience,
we introduce the so-called classification power for a pair (f, µ̃) ∈ F ×M+(Z), which is
defined by

B(f, µ̃) :=
∑
i∈[K]

∫
X
fi(x̃)dµ̃i(x̃). (7)

With these new definitions, problem (1) is immediately seen to be equivalent to

sup
f∈F

inf
µ̃∈M+(Z)

{B(f, µ̃) + C(µ, µ̃)} . (8)

Moreover, if we denote by B̃∗µ the optimal value of (8), and by R∗µ the optimal value of (1),
we have the identity:

R∗µ = µ(Z)− B̃∗µ.

We write µ(Z) explicitly, although for the most part µ(Z) can be thought of as being equal
to one.

The dual of (8) is obtained by swapping the sup and the inf:

inf
µ̃∈M+(Z)

sup
f∈F
{B(f, µ̃) + C(µ, µ̃)} . (9)

Notice that the value of (9) is always greater than or equal to the value of (8). Instead
of attempting to invoke an abstract minimax theorem implying the equality of these two
quantities at this stage, we prefer to defer this discussion to later sections where in fact we
will prove that, under Assumption 1, there is no duality gap in this problem. In what
follows we focus on the dual problem (9) and only return to problem (8), which is equivalent
to the original adversarial problem (1), in section 4.3. Notice, however, that the statement
of Theorem 6 mentions the adversarial problem explicitly.

For fixed µ̃, notice that

sup
f∈F
{B(f, µ̃) + C(µ, µ̃)} = sup

f∈F

∑
i∈[K]

∫
X
fi(x̃)dµ̃i(x̃) + C(µ, µ̃)


= sup

f∈F

∑
i∈[K]

∫
X
fi(x̃)dµ̃i(x̃)

+ C(µ, µ̃).

Introducing a new variable λ, a positive measure over X , we can rewrite the latter sup as:

inf
λ
λ(X ) s.t.

∫
X
g(x)d(λ− µ̃i)(x) ≥ 0 for all g ≥ 0, i ∈ [K];
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the constraint in λ can be simply written as λ ≥ µ̃i for all i ∈ [K]. Combining the above
with the structure of the cost C(µ, µ̃), we conclude that problem (9) is equivalent to the
generalized barycenter problem mentioned in the introduction:

B∗µ := inf
λ,µ̃1,...,µ̃K

λ(X ) +
∑
i∈[K]

C(µi, µ̃i) : λ ≥ µ̃i for all i ∈ [K]

 , (10)

where we use the notation B∗µ for future reference; see Figure 1 for a pictorial explanation.

μ1

μ3

μ2

λ
μ2

μ3

μ1

Figure 1: Picture for (10). µi’s are first moved to µ̃i’s and λ is chosen to cover all µ̃i’s: it
is the smallest positive measure which is larger than all µ̃i’s.

Remark 4 It is straightforward to see from (9) that B∗µ is 1-homogeneous in µ. That is,
if a > 0, then B∗aµ = aB∗µ.

2.1 The MOT problem

2.1.1 General MOT problems

Before providing the details of our MOT problem (2), it is worth introducing the generic
MOT problem first. Let S1, . . . ,SK be fixed spaces and let c : S1×· · ·×SK → R∪{+∞,−∞}
be a cost function. For each 1 ≤ k ≤ K, let νk ∈ P(Sk) be a Borel probability measure. The
MOT problem associated to the cost function c and the measures ν1, . . . , νK is the following
(possibly infinite dimensional) linear optimization problem with K-marginal constraints:

inf
π∈Π(ν1,...,νK)

∫
S1×···×SK

c(ξ1, . . . , ξK)dπ(ξ1, . . . , ξK),

where

Π(ν1, . . . , νK) := {π ∈ P(S1 × · · · × SK), s.t., for every i, i-th marginal of π = νi}.
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MOTs are generalizations of the standard (two marginals) optimal transport (OT) problems
and their duals take the form:

sup
φ∈Φ


K∑
j=1

∫
Sj
φj(ξj)dνj(ξj)

 , (11)

where Φ is the set of all φ = (φ1, . . . , φK) ∈
∏K
j=1 L

1(νj) such that

K∑
j=1

φj(ξj) ≤ c(ξ1, . . . , ξK), ∀(ξ1, . . . , ξK) ∈ S1 × · · · × SK .

One of the most popular examples of MOT problems is connected to the Wasserstein
Barycenter problem over P(X ); see Ekeland (2005); Chiappori, McCann, and Nesheim
(2010); Agueh and Carlier (2011). Let c : X × X → R ∪ {+∞,−∞} be a fixed pairwise
cost function. In the Wasserstein barycenter problem the goal is to find a solution ν∗ to
the problem

inf
ν′

∑
i∈[K]

C(ν ′, νi) where C(ν, νi) := inf
π∈Π(ν,νi)

∫
X×X

c(x′, x)dπ(x′, x).

Such ν∗ can be interpreted as an “average” or barycenter of the input measures ν1, . . . , νK
relative to the cost C. It can then be showed that the above Wasserstein barycenter problem
is equivalent to solving the following MOT problem

inf
π∈Π(ν1,...,νK)

∫
XK

c(x1, . . . , xK)dπ(x1, . . . , xK),

where
c(x1, . . . , xK) := inf

x′∈X

∑
i∈[K]

c(x′, xi).

Indeed, let π∗ be a minimizer of the above MOT problem. Defining ν∗ = T#π, where
T (x1, . . . , xK) := argminx′

∑
i∈[K] c(x

′, xi), i.e., defining ν∗ as the pushforward measure of
π∗ with respect to the barycenter mapping T , one can recover a solution to the original
barycenter problem. Conversely, one can use a Wasserstein barycenter ν∗ and couplings πi
realizing the costs C(ν∗, νi) to build a solution to the MOT problem; see more details in
Agueh and Carlier (2011).

2.1.2 From adversarial robustness to MOT

Now we are ready to state problem (2) precisely. For this, we will need to modify the space
Z and in particular add an extra element to it that will be denoted by the symbol 4. The
marginals of the couplings in the desired MOT problem will be probability measures over
the set Z∗ := Z ∪ {4}. More precisely, letting Pi represent the projection onto the i-th
coordinate, we consider the set:

ΠK(µ) :=

{
π ∈ P(ZK∗ ) : Pi]π =

1

2µ(Z)
µ(· ∩ Z) +

1

2
δ4 for all i ∈ [K]

}
. (12)
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Notice that in this set all K marginals are the same. Dividing by the factor 1
2µ(Z) , the set

ΠK(µ) is made to be consistent with the literature on multimarginal optimal transport,
where sets of couplings are typically assumed to be probability measures.

Let us now discuss the cost function for the desired MOT problem. For a given tuple
(z1, . . . , zK) in ZK∗ , often denoted by ~z in the sequel for convenience, we define

c(z1, . . . , zK) := B∗µ̂~z , (13)

where µ̂~z is the positive measure (not necessarily a probability measure) defined as:

µ̂~z :=
1

K

K∑
l s.t. zl 6=4

δzl .

Recall that B∗µ̂~z is equal to (10) (alternatively, equal to (9)) when µ is equal to µ̂~z. In this
sense, c(z1, . . . , zK) of (13) is the value of the generalized barycenter problem given µ̂~z as
the data distribution, or local generalized barycenter problem.

Remark 5 Notice that µ̂~z is a probability measure if and only if no element in the tuple ~z
is 4.

Following the literature of MOT, the dual of our MOT problem can be written as

sup
φ∈Φ


K∑
j=1

∫
X×[K]

φj(zj)
1

2µ(Z)
dµ(zj) +

1

2

K∑
j=1

φj(4)

 , (14)

where

Φ :=

φ = (φ1, . . . , φK) ∈
K∏
j=1

L1
( 1

2µ(Z)
µ+

1

2
δ4
)

:

K∑
j=1

φj(zj) ≤ B∗µ̂~z , ∀~z ∈ ZK∗

 . (15)

We will later show that under Assumption 1 there is no duality gap between the MOT
problem and its dual (14) —see Corollary 31.

One of the main results of the paper is the following.

Theorem 6 Suppose that Assumption 1 holds. Let µ be a finite positive measure over
Z. Then (9) is equivalent to the MOT problem (2) with set of couplings ΠK(µ) defined as
in (12), and cost function c defined as in (13). Specifically,

1

2µ(Z)
B∗µ = min

π∈ΠK(µ)

∫
c(z1, . . . , zK)dπ(z1, . . . , zK).

Furthermore, (8) = (9). In addition, from a solution pair (π∗, φ∗) for the MOT problem
and its dual one can obtain a solution pair (f∗, µ̃∗) for (9) and its dual, i.e. problem (8).
The pair (f∗, µ̃∗) is also a saddle point for the original adversarial problem (1).

10



MOT formulation of adversarial multiclass classification

One immediate consequence of Theorem 6 is that with the identity

R∗µ = µ(Z)− B̃∗µ,

one can compute R∗µ, the optimal adversarial risk, by finding the optimal value of the equiv-
alent MOT problem. To find the latter, one could attempt to use one of the off-the-shelf
algorithms in computational optimal transport. Some algorithms to solve generic MOTs
that have been developed recently include the ones proposed in see Benamou, Carlier, Cu-
turi, Nenna, and Peyré (2015); Benamou, Carlier, and Nenna (2019); Lin, Ho, Cuturi, and
Jordan (2019); Tupitsa, Dvurechensky, Gasnikov, and Uribe (2020); Haasler, Ringh, Chen,
and Karlsson (2021); Altschuler and Boix-Adsera (2021); Carlier (2022). Our numerical
results for a subsample of MNIST and CIFAR 10, shown in Figure 6, are obtained using the
algorithm discussed in Lin, Ho, Cuturi, and Jordan (2019), also known as MOT Sinkhorn
algorithm; see subsection 5.3 for more details. We want to warn the reader, however, that
off-the-shelf MOT algorithms may suffer an excessive computational burden when K goes
beyond 4. For this reason, it is important to develop algorithms that exploit the structure
of our MOT problem, which, as we will discuss below, has the structure of a generalized
barycenter problem. An investigation on more specific algorithms is left for future work.

The proof of Theorem 6 is presented throughout section 4; the expression for (f∗, µ̃∗)
in terms of (φ∗, π∗) is presented in Corollary 33. Given the definition of the cost function
c, Theorem 6 states that the adversarial problem localizes to data sets consisting of K or
less equally weighted points. More precisely, the problem for the adversary reduces to first
determining their actions when facing arbitrary distributions supported on K or fewer data
points, and then finding an optimal grouping for the data in order to assemble their global
strategy. The ghost element, 4, indicates when fewer than K points are being grouped by
the adversary. We highlight that it is not always (globally) optimal for the adversary to
group together points from all the K different classes whenever it is possible.

We emphasize that from the solution to the MOT and its dual, one can directly obtain
an optimal adversarial attack and an optimal classification rule for the original adversarial
problem. Note that problem (2) is a problem solved by the adversary: ideally, the adversary
wants to group together points (z1, . . . , zK) for which there is a low classification power B∗µ̂~z
(or alternatively large robust risk). On the other hand, the dual of (2) can be interpreted
as a maximization problem solved by the learner. We formalize this novel connection in
subsection 4.3: see Corollary 33.

In order to prove Theorem 6, we will first obtain a series of equivalent reformulations
of problem (10) which will reveal a rich geometric structure of the adversarial problem and
will facilitate the connection with the desired MOT problem. These equivalent formulations
are of interest in their own right.

3. The generalized barycenter problem

We begin this section by proving that the generalized barycenter problem always has at
least one solution. In the following subsections we will then discuss a series of equivalent
problems to the generalized barycenter problem, their duals, and some geometric properties
of their solutions.
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Proposition 7 Suppose that c is a lower semicontinuous cost satisfying the property that
for any compact set E ⊂ X there exists a compact set F ⊂ X such that for all x ∈ E, x′ ∈
F, x′′ ∈ X \ F we have c(x, x′) ≤ c(x, x′′). Given finite positive measures µ1, . . . , µK and c
as above, there exists at least one solution to problem (10).

Remark 8 If c is a cost that satisfies Assumption 1, then c satisfies the hypothesis of
Proposition 7.

Remark 9 Nearly identical arguments can be used to prove that the various reformulations
of (10) that we will consider throughout this section have minimizers. For this reason, in
what follows, we will simply assume the existence of minimizers without explicitly proving
their existence.

Proof Using transportation plans to compute the cost C(µi, µ̃i) in (10), we can rewrite
the problem in the following form

inf
λ, π1,...,πK

λ(X ) +
∑
i∈[K]

∫
X×X

c(x, x′)dπi(x, x
′)


s.t. πi(X × E) ≤ λ(E), πi(E ×X ) = µi(E) for all i ∈ [K], ∀E ⊆ X Borel.

Note that a feasible solution to this problem exists since we may choose λ, π1, . . . , πK such
that λ :=

∑
i∈[K] µi and for all f ∈ Cc(X × X )

∫
X×X f(x, x′)dπi(x, x

′) :=
∫
X f(x, x)dµi(x).

Also note that with these choices, the problem attains the value
∑

i∈[K] µi(X ).
Let λn, πn1 , . . . , π

n
K be a sequence of feasible solutions such that

t := inf
λ,π1,...,πK

λ(X ) +
∑
i∈[K]

∫
X×X

c(x, x′)dπi(x, x
′)

= lim
n→∞

λn(X ) +
∑
i∈[K]

∫
X×X

c(x, x′)dπni (x, x′).

From our work above and the nonnegativity of the transport cost, λn(X ) is uniformly
bounded by

∑
i∈[K] µi(X ). Furthermore, we may assume that for any Borel set E∑

i∈[K]

∫
X×E

dπni (x, x′) ≥ λn(E),

otherwise we could delete mass from λn and attain a smaller value. Given some ε > 0, let
Eε ⊂ X be a compact set such that

∑
i∈[K] µi(X \ Eε) ≤ ε. Let Fε be a compact set such

that for all x ∈ Eε, x′ ∈ Fε and x′′ ∈ X \ Fε we have c(x, x′) ≤ c(x, x′′). If λn gives more
than ε to X \Fε then some of this mass must be transported to Eε. Since the transportation
cost would be cheaper if the excess mass was placed inside of Fε instead of X \Fε, it follows
that λn(X \ Fε) ≤ ε. Therefore, the λn are a tight family.

The tightness of λn and µ1, . . . , µK implies that πn1 , . . . , π
n
K are a tight family. Therefore,

we can extract a subsequence that converges weakly to a limit λ∗, π∗1, . . . , π
∗
K . From the

lower semicontinuity of the cost, it follows that {λ∗, π∗1, . . . , π∗K} is a minimizer.

12
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3.1 A first MOT reformulation of (16) and geometric consequences

In the rest of what follows, we shall let SK denote the power set of [K] except for the empty
set and for every i ∈ [K] we let SK(i) = {A ∈ SK : i ∈ A}. We can reduce (10) to a more
concrete problem by partitioning λ and each of µi’s properly, eliminating the variables µ̃i’s
from the optimization. We start with the following observation.

Lemma 10 Let u1, . . . , uK ∈ [0, 1] be such that maxi=1,...,K ui = 1. Then there exists a
collection of non-negative scalars {rA}A∈SK such that the following two conditions hold:

1. 1 =
∑

A∈SK rA.

2. ui =
∑

A∈SK(i) rA for all i = 1, . . . ,K.

Proof Without loss of generality we can assume that the ui are arranged in increasing
order. That is,

0 ≤ u1 ≤ u2 ≤ . . . ,≤ uK = 1.

Let i′ be the first i such that ui > 0. We set

r{i′,...,K} := ui′

r{i′+1,...,K} := ui′+1 − ui′
r{i′+2,...,K} := ui′+2 − ui′+1

...

r{K} := 1− uK−1.

and rA = 0 for all other sets. It is straightforward to check that the collection {rA}A∈SK
defined in this way satisfies the required conditions.

Proposition 11 Problem (10) is equivalent to

inf
{λA,µi,A:i∈[K],A∈SK}

∑
A∈SK

{
λA(X ) +

∑
i∈A

C(λA, µi,A)

}
s.t.

∑
A∈SK(i)

µi,A = µi for all i ∈ [K].

(16)

Proof We split the proof into two parts.
Step 1: Suppose that λ, µ̃1, . . . , µ̃K is feasible for problem (10). In particular, λ ≥ µ̃i

for all i. Let us denote by dµ̃i
dλ the Radon-Nikodym derivative of µ̃i w.r.t. λ. Notice that

dµ̃i
dλ ≤ 1 because λ dominates µ̃i. Moreover, without the loss of generality we can assume

that for every x ∈ spt(λ) we have maxi=1,...,K
dµ̃i
dλ (x) = 1, for otherwise we could modify λ

and potentially reduce the energy in (10) while maintaining the constraints.
For each x ∈ spt(λ) we apply Lemma 10 with ui(x) := dµ̃i

dλ (x) to obtain a collection of
scalars {rA(x)}A∈SK satisfying:

13
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(i) 1 =
∑

A∈SK rA(x).

(ii) ui(x) =
∑

A∈SK(i) rA(x) for all i = 1, . . . , k.

Notice that the functions rA(·) can be constructed in a measurable way as it follows from
the proof of Lemma 10. For each A ∈ SK we define the measure λA as

dλA
dλ

(x) := rA(x),

and for A and i ∈ A we define
µ̃i,A := λA.

See Figure 2 (a) for an illustration of the λA’s. From the above definitions and the properties
of the functions rA we deduce∑

A∈SK

dλA(x) =
∑
A∈SK

rA(x)dλ(x) = dλ(x)

and ∑
A∈SK(i)

dµ̃i,A(x) =
∑

A∈SK(i)

rA(x)dλ(x) =
dµ̃i
dλ

(x)dλ(x) = dµ̃i(x).

Now, let πi ∈ Γ(µi, µ̃i) be a coupling realizing the cost C(µi, µ̃i), i.e., a minimizer of (4),
and use the disintegration theorem to write it as

dπi(x, x̃) = dπ∗i (x|x̃)dµ̃i(x̃),

where dπ∗i (·|x̃) is the conditional of x given x̃ according to the joint distribution π∗i . For
each A ∈ SK and i ∈ A we define the measure πi,A according to

dπi,A(x, x̃) := dπ∗i (x|x̃)dµ̃i,A(x̃).

Finally, we set µi,A to be the first marginal of πi,A.
It is now straightforward to show that {λA, µi,A} is feasible for (16). Moreover,

λ(X ) +
k∑
i=1

C(µi, µ̃i) ≥
∑
A∈SK

{
λA(X ) +

∑
i∈A

C(λA, µi,A)

}
.

Step 2: Conversely, suppose that {λA}A, {µi,A}A is feasible for (16). Set λ :=∑
A∈SK λA and for every i let µ̃i :=

∑
A∈Sk(i) λA. Clearly we have λ ≥ µ̃i for all i. Moreover,

let πi,A ∈ Γ(µi,A, λA) realizing the cost C(λA, µi,A). See (b) of Figure 2 to understand how
µi,A is transported to λA. Finally, for each i we set

πi :=
∑

A∈SK(i)

πi,A.

With these constructions it is now straightforward to show that∑
A∈SK

{
λA(X ) +

∑
i∈A

C(λA, µi,A)

}
≥ λ(X ) +

k∑
i=1

C(µi, µ̃i).

14
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λ{1,3}

λ{1,2}

λ{1,2,3}

λ{1}
λ{2}

λ{2,3}
λ{3}

λ{1,3}

λ{1,2}

λ{1,2,3}

λ{1} μ1,{1}

μ1,{1,3}
μ1,{1,2,3}

μ1,{1,2}

μ1

(a) (b)

Figure 2: (a) : Illustration of a partition of λ. (b) : Illustration of the transport from µ1,A’s
to λA’s.

λ{1,3}

λ{1,2}

λ{1,2,3}

λ{1}
λ{2}

λ{2,3}
λ{3}

μ1,{1}

μ1,{1,2,3}μ1,{1,2} μ1,{1,3}

μ2,{2,3}

μ2,{1,2,3}

μ2,{1,2}μ2,{2}

μ3,{3}μ3,{2,3}
μ3,{1,3}

μ3,{1,2,3}

Figure 3: Picture for (16). Each of µi,A’s is transported to λA for all i ∈ A.

Remark 12 Figure 3 illustrates the partitions for λ and the µi’s. To keep notation from
getting too complicated, in the sequel we shall assume that µi,A is defined for all i ∈ [K] and
A ⊆ SK , however, note that if i /∈ A, then µi,A plays no role in the optimization (16).

Suppose that for some A ∈ SK we fix a choice of µi,A for all i ∈ A. With the µi,A fixed,
we can determine the corresponding optimal λ∗A = λ∗A(µ1,A, . . . , µK,A) by solving the classic
Wasserstein barycenter problem. Indeed, the optimal choice must be an element of

argmin
λA

∑
i∈A

C(λA, µi,A). (17)

Note that here we do not need to consider the mass of λA, since the value of the optimization
problem will be +∞ if λA does not have the same mass as all of the µi,A (or if the µi,A
themselves do not all have the same mass).
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It is well known that problem (17) can be reformulated as a multimarginal optimal
transport problem Agueh and Carlier (2011); see also our subsection 2.1.1. To that end,
given A ⊆ [K], define cA : XK → R

cA(x1, . . . , xK) := inf
x′∈X

∑
i∈A

c(x′, xi), (18)

and TA : XK → X
TA(x1, . . . , xK) := argmin

x′∈X

∑
i∈A

c(x′, xi). (19)

Remark 13 If argminx′∈X
∑

i∈A c(x
′, xi) is not unique, we can consider using an additional

selection procedure. For example, when X = Rd we can still recover a unique mapping by
choosing TA to be the element of argminx′∈X

∑
i∈A c(x

′, xi) that is closest (in the Euclidean
distance) to the Euclidean barycenter 1

|A|
∑

i∈A xi.

With the definition of cA, we can rewrite (17) as the multimarginal optimal transport
problem

inf
πA

∫
XK

cA(x1, . . . , xK)dπA(x1, . . . , xK) s.t. Pi#πA = µi,A for all i ∈ A, (20)

where Pi is the projection map (x1, . . . , xK) 7→ xi. Again, even though πA is defined over
XK , only the coordinates i where i ∈ A play a role in the optimization problem. Indeed,
cA is independent of the other coordinates and we only have marginal constraints for i ∈ A.

Using (20) we can now eliminate λA and all of the µi,A’s from problem (16) and refor-
mulate the optimization as the multimarginal problem

inf
{πA:A∈SK}

∑
A∈SK

∫
XK

(
cA(x1, . . . , xK) + 1

)
dπA(x1, . . . , xK)

s.t.
∑

A∈SK(i)

Pi#πA = µi for all i ∈ [K].
(21)

The next two propositions formally prove the equivalence between (16) and (21). They
will also allow us to establish some important geometric properties of optimal generalized
barycenters.

Proposition 14 Let c be a cost satisfying Assumption 1. Given measures µ1, . . . , µK ,
let {πA}A∈SK be a feasible solution to (21). For each (x1, . . . , xK) ∈ XK and A ∈ SK , let
fA(x1, . . . , xK) be a choice of element in TA(x1, . . . xK), where we recall the definition of
TA(x1, . . . , xK) from (19).

If for each A ∈ SK and i ∈ A we set λ̃A = fA#πA and µ̃i,A = Pi#πA, then {λ̃A, µ̃i,A :
A ∈ SK , i ∈ A} is a feasible solution to (16) and∑

A∈SK

λ̃A(X ) +
∑
i∈A

C(λ̃A, µ̃i,A) ≤
∑
A∈SK

∫
XK

(
cA(x1, . . . , xK) + 1

)
dπA(x1, . . . , xK).
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Proof Since
∑

A∈SK(i) Pi#πA = µi, it is automatic that
∑

A∈SK(i) µ̃i,A = µi. Since push-

forwards do not affect the total mass of a measure, so we also have µ̃i,A(X ) = λ̃A(X ) for all
A ∈ SK and i ∈ A. Hence, {λ̃A, µ̃i,A}A∈SK ,i∈A is a feasible solution to (16).

For each A ∈ SK and i ∈ A, choose ϕi,A, ψi,A ∈ Cb(X ) that satisfy, for all x, x′ ∈ X ,

ϕi,A(x)− ψi,A(x′) ≤ c(x, x′).

We can then compute∫
X
ϕi,A(xi)dµ̃i,A(xi)−

∫
X
ψi,A(x′)dλ̃A(x′)

=

∫
X
ϕi,A(xi)dµ̃i,A(xi)−

∫
XK

ψi,A(fA(x1, . . . , xK))dπA(x1, . . . , xK)

≤
∫
X
ϕi,A(xi)dµ̃i,A(xi) +

∫
XK

(
c
(
xi, fA(x1, . . . , xK)

)
− ϕi,A(xi)

)
dπA(x1, . . . , xK)

=

∫
XK

c
(
xi, fA(x1, . . . , xK)

)
dπA(x1, . . . , xK).

Thus, ∑
i∈A

∫
X
ϕi,A(xi)dµ̃i,A(xi)−

∫
X
ψi,A(x′)dλ̃A(x′)

≤
∫
XK

∑
i∈A

c
(
xi, fA(x1, . . . , xK)

)
dπA(x1, . . . , xK)

=

∫
XK

cA(x1, . . . , xK)dπA(x1, . . . , xK),

where we have used the definition of fA, TA, and cA to obtain the last equality. Hence,∑
A∈SK

λ̃A(X ) +
∑
i∈A

∫
X
ϕi,A(xi)dµ̃i,A(xi)−

∫
X
ψi,A(x′)dλ̃A(x′)

≤
∑
A∈SK

∫
XK

(
cA(x1, . . . , xK) + 1

)
dπA(x1, . . . , xK).

Taking the supremum over all admissible choices of ϕi,A, ψi,A and exploiting the dual for-
mulation of optimal transport,∑

A∈SK

λ̃A(X ) +
∑
i∈A

C(λ̃A, µ̃i,A) ≤
∑
A∈SK

∫
XK

(
cA(x1, . . . , xK) + 1

)
dπA(x1, . . . , xK),

which is the desired result we want.

In the next proposition we will show that any feasible solution of problem (16) induces a
feasible solution of (21) with lesser or equal value. This will prove the equivalence between
problems (16) and (21) and will provide a powerful geometric characterization of optimal
generalized barycenters.
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Proposition 15 Let c be a cost satisfying Assumption 1. Given measures µ1, . . . , µK , let
µi,A, λA be feasible solutions to problem (16). Let γi,A ∈M(X ×X ) be an optimal plan for
the transport of µi,A to λA with respect to the cost c. Let γA ∈ M(XK+1) such that for all
i ∈ A and g ∈ Cb(X × X )∫

XK+1

g(xi, x
′)dγA(x1, . . . , xK , x

′) =

∫
XK+1

g(xi, x
′)dγi,A(xi, x

′).

If we define π̃A on XK such that for any h ∈ Cb(XK) we have∫
XK

h(x1, . . . , xK)dπA(x1, . . . , xK) =

∫
XK+1

h(x1, . . . , xK)dγA(x1, . . . , xK , x
′),

then π̃A is a feasible solution to (21) and∑
A∈SK

∫
XK

(
cA(x1, . . . , xK) + 1

)
dπ̃A(x1, . . . , xK) ≤

∑
A∈SK

λA(X ) +
∑
i∈A

C(λA, µi,A).

Therefore, (16) = (21).

Proof We begin by noting that the marginal constraints on γA are compatible in the sense
that for any g ∈ Cb(X ) and i ∈ A we have∫

X
g(x′)dγi,A(xi, x

′) =

∫
X
g(x′)dλA(x′).

Thus, each γA is well-defined.

Using the definition of dπ̃A and then cA, it follows that∑
A∈SK

∫
XK

(
cA(x1, . . . , xK) + 1

)
dπ̃A(x1, . . . , xK)

=
∑
A∈SK

∫
XK+1

(
cA(x1, . . . , xK) + 1

)
dγA(x1, . . . , xK , x

′)

≤
∑
A∈SK

∫
XK+1

(
1 +

∑
i∈A

c(xi, x
′)
)
dγA(x1, . . . , xK , x

′)

=
∑
A∈SK

∫
XK+1

(
1 +

∑
i∈A

c(xi, x
′)
)
dγi,A(xi, x

′)

=
∑
A∈SK

λA(X ) + C(µi,A, λA)

where the final equality follows from the fact that γi,A is an optimal plan for the transport
of µi,A to λA.

In addition to proving the equivalence between problems (16) and (21), Proposition
14 and Proposition 15 have the following very important geometric consequences.
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Corollary 16 Let c be a cost satisfying Assumption 1. Given measures µ1, . . . , µK , let
λ be an optimal generalized barycenter and let {λA}A∈SK be a decomposition of λ and
{µi,A}A∈SK(i) a decomposition of each µi that are optimal for (16). Recalling (19), let
TA(x1, . . . , xK) := argminx∈X

∑
i∈A c(x, xi). If we define TA := {TA(x1, . . . , xK) : x1 ∈

spt(µ1), . . . , xK ∈ spt(µK)} and T = ∪A⊆[K]TA, then λA(X ) = λA(TA), λ(X ) = λ(T ) and
the optimal measures µ̃i in (10) can be assumed to satisfy µ̃i(X ) = µ̃i(T ) as well.

In particular, if fA(x1, . . . , xK) is a choice of element from TA(x1, . . . , xK) for each
A ∈ SK and (x1, . . . , xK) ∈ XK , then there exists an optimal barycenter λf such that
λf (X ) = λf (F ) where F =

⋃
A∈SK

⋃
(x1,...xK)∈spt(µ1)×···×spt(µK) fA(x1, . . . , xK).

Remark 17 In the case where we have a tuple (x1, . . . , xK) ∈ spt(µ1)×· · ·× spt(µK) such
that

∑
i∈A c(x, xi) = +∞ for all x ∈ X , we set TA(x1, . . . , xK) = ∅.

Proof From Proposition 15, we can use {λA}A∈SK and {µi,A}A∈SK ,i∈A to construct
measures {π̃A}A∈SK with∑

A∈SK

∫
XK

(
cA(x1, . . . , xK) + 1

)
dπ̃A(x1, . . . , xK) ≤

∑
A∈SK

λA(X ) +
∑
i∈A

C(λA, µi,A). (22)

From Proposition 14, we can then use π̃A to construct decompositions {λ̃A}A∈SK and
{µ̃i,A}A∈SK ,i∈A such that∑

A∈SK

λ̃A(X ) +
∑
i∈A

C(λ̃A, µ̃i,A) ≤
∑
A∈SK

∫
XK

(
cA(x1, . . . , xK) + 1

)
dπ̃A(x1, . . . , xK). (23)

Examining the proof of Proposition 15, it follows that the inequality in (22) is strict if
λA(X ) > λA(TA). In that case, combining (22) and (23) would contradict the optimality of
λ. Therefore, λA(TA) = λA(X ). The final statements follow from the constraints satisfied
by the µ̃i and the construction in Proposition 14.

When µ1, . . . , µK are supported on a finite set of points, Corollary 16 has the following
consequence.

Corollary 18 If µ1, . . . , µK are measures that are supported on a finite set of points and c
is a cost satisfying Assumption 1, then there exists a solution λ to the optimal generalized
barycenter problem (10) that is supported on a finite set of points.

In particular, if each µi is supported on a set of ni points, then there exists an optimal
barycenter that is supported on at most

∑
A∈SK

∏
i∈A ni ≤ 2K

∏K
i=1 ni points.

Remark 19 Notice that the bound mentioned at the end of Corollary 18 is a worst case
bound. In practice, especially when data sets have a favourable geometric structure, the
optimal barycenter λ may have a much sparser support. See section 5.2.

Proof For each i ∈ [K] we can assume there exists a finite set Xi ⊂ X such that µi is
supported on Xi. For each A ∈ SK , let fA : XK

i → X be a function such that

fA(x1, . . . , xK) ∈ TA(x1, . . . , xK)
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for all (x1, . . . , xK) ∈ XK
i , where we recall the definition of TA from (19). We can now

construct the set
F =

⋃
A∈SK

⋃
(x1,...,xK)∈

∏K
i=1Xi

{fA(x1, . . . , xK)},

which is necessarily finite. Indeed, if we set ni = |Xi|, then F has at most
∑

A∈SK
∏
i∈A ni

elements. By Corollary 16, there exists an optimal barycenter supported on F only.

3.2 A second MOT reformulation of (16)

Note that in problem (21) we need to find a distribution πA for each A ∈ SK . Hence, it
is natural to wonder if we can reformulate problem (21) in such a way that we only need
to find a single distribution γ. Here one must be careful, as the previous formulations of
the problem do not require the input distributions µ1, . . . , µK to have the same mass. As
a result, if we try to work over a space of probability distributions whose marginals are
µ1, . . . , µK , then we cannot recover the full generality of (21).

To overcome this difficulty, we will define γ over the slightly larger space (X × [0, 1])K .
The extra coordinate will help us track the mass associated to each label i. Define c̃ :
(X × [0, 1])K → R by

c̃((x1, r1), . . . , (xK , rK))

:= inf
m:SK→R

∑
A∈SK

mA

(
cA(x1, . . . , xK) + 1

)
s.t.

∑
A∈SK(i)

mA = ri. (24)

For each i ∈ [K], let P̃i be the projection ((x1, r1), . . . , (xK , rK)) 7→ xi. In what follows, we
use (~x,~r) to denote the tuple ((x1, r1), . . . , (xK , rK)). We then claim that problem (21) is
equivalent to

inf
γ

∫
(X×[0,1])K

c̃(~x,~r)dγ(~x,~r) s.t. P̃i#(riγ) = µi for all i ∈ [K]. (25)

Proposition 20 Problems (21) and (25) are equivalent, and thus (25) is also equivalent
to (9), (10) and (16).

Proof Given a feasible solution π{1}, . . . , π[K] to problem (21), define γ such that for every

continuous and bounded function f : (X × [0, 1])K → R we have∫
(X×[0,1])K

f(~x,~r)dγ(~x,~r) =
∑
A∈SK

∫
XK

f
(
(x1, χA(1)), . . . , (xK , χA(K))

)
dπA(x1, . . . , xK).

where χA(i) = 1 if i ∈ A and zero otherwise. We can then check that γ is feasible for (25),
since for any function g : X → R∫

(X×[0,1])K
rig(xi)dγ

(
~x,~r) =

∑
A∈SK(i)

∫
XK

g(xi)dπA(x1, . . . , xK)

=

∫
X
g(xi)dµi(xi),
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where the final equality uses the fact that
∑

A∈SK(i) Pi#πA = µi.

Next, we observe that for anyA ∈ SK and a tuple of the form ((x1, χA(1)), . . . , (xK , χA(K))
)

we have

c̃((x1, χA(1)), . . . , (xK , χA(K))
)
≤ cA(x1, . . . , xK) + 1.

Therefore,∫
(X×[0,1])K

c̃(~x,~r)dγ(~x,~r) ≤
∑
A∈SK

∫
XK

(
cA(x1, . . . , xK) + 1

)
dπA(x1, . . . , xK).

Conversely, suppose that γ is a feasible solution to (25). Given a tuple (~x,~r), let

mA(~x,~r) ∈ argmin
m:SK→R

∑
A∈SK

mA

(
cA(x1, . . . , xK) + 1

)
s.t.

∑
A∈SK(i)

mA = ri.

Given A ∈ SK define πA such that for any continuous and bounded function h : XK → R
we have∫

XK
h(x1, . . . , xK)dπA(x1, . . . , xK) =

∫
(X×[0,1])K

h(x1, . . . , xK)mA(~x,~r)dγ(~x,~r).

We can then check that for any continuous and bounded function g : X → R

∑
A∈SK(i)

∫
XK

g(xi)dπA(x1, . . . , xK) =

∫
(X×[0,1])K

rig(xi)dγ(~x,~r)

=

∫
X
g(xi)µi(xi),

where we have used the fact that
∑

A∈SK(i)mA(~x,~r) = ri in the first equality. Thus, our
construction gives us a feasible solution to (21). Evaluating the objective in (21) we see
that ∑

A∈SK

∫
XK

(cA(x1, . . . , xK) + 1)dπA(x1, . . . , xK)

=

∫
(X×[0,1])K

∑
A∈SK

mA(~x,~r)(cA(x1, . . . , xK) + 1)dγ(~x,~r)

=

∫
(X×[0,1])K

c̃(~x,~r)dγ(~x,~r)

where the final equality uses the definition of c̃ and our choice of mA(~x,~r). Thus, the two
problems have the same optimal value and any feasible solution to one problem can be
easily converted into a feasible solution to the other.
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3.3 Localization

In this section we show that the cost function c̃ in problem (25) is equal to B∗µ̂ for a measure µ̂
that depends on the arguments of c̃. This result can be interpreted as a localization property
for problem (10) (and hence for problem (9) as well). Compare with the discussion after
Theorem 6.

Lemma 21 Let x̃1, . . . , x̃k ∈ X , and let 0 ≤ r̃1, . . . , r̃k ≤ 1. Then c̃((x̃1, r̃1), . . . , (x̃K , r̃K))
defined in (24) is equal to B∗µ̂, where

µ̂ :=
∑
i∈[K]

r̃iδ(x̃i,i).

Proof To prove this claim we first notice that by Proposition 20 B∗µ̂ is equal to

inf
γ

∫
(X×[0,1])K

c̃(~x,~r)dγ(~x,~r),

where γ is in the constraint set of problem (25). For a feasible γ, notice that γ must
concentrate on the set {(~x,~r) : xi = x̃i, i ∈ [K]}. Applying the disintegration theorem to γ,
we can rewrite the objective function evaluated at γ as∫

[0,1]K
c̃((x̃1, r1), . . . , (x̃K , rK))dγr(r1, . . . , rK),

where γr is a positive measure over [0, 1]K satisfying the constraints:∫
[0,1]

ridγr(r1, . . . , rK) = r̃i, ∀i = 1, . . . ,K. (26)

It is clear that the map associating a feasible γ to a γr satisfying (26) is onto, and thus, we
can rewrite B∗µ̂ as

B∗µ̂ = inf
γr

∫
[0,1]K

c̃((x̃1, r1), . . . , (x̃K , rK))dγr(r1, . . . , rK)

= inf
γr

∫
[0,1]K

inf
{mA}A∈G(r1,...,rK)

 ∑
A∈SK

mA(1 + cA(x̃1, . . . , x̃K))

 dγr(r1, . . . , rK)

= inf
γr

inf
{mA}A∈G

∫
[0,1]K

 ∑
A∈SK

mA(r1, . . . , rK) · (1 + cA(x̃1, . . . , x̃K))

 dγr(r1, . . . , rK)

= inf
{mA}A∈G

inf
γr

∫
[0,1]K

 ∑
A∈SK

mA(r1, . . . , rK) · (1 + cA(x̃1, . . . , x̃K))

 dγr(r1, . . . , rK).

In the above, the set G(r1, . . . , rK) is the set of {mA}A∈SK satisfying the constraints in (24)
for the specific tuple

(
(x̃1, r1), . . . , (x̃K , rK)

)
, while G is the set of {mA}A where each mA

is a functions with inputs r1, . . . , rK satisfying {mA(r1, . . . , rK)}A ∈ G(r1, . . . , rK).

22



MOT formulation of adversarial multiclass classification

We can now write the term∫
[0,1]K

 ∑
A∈SK

mA(r1, . . . , rk) · (1 + cA(x̃1, . . . , x̃k))

 dγr(r1, . . . , rK)

=
∑
A∈SK

mA,γ(1 + cA(x̃1, . . . , x̃k)),

where we define

mA,γr :=

∫
mA(r1, . . . , rk)dγr(r1, . . . , rK).

Notice that ∑
A∈SK(i)

mA,γr =
∑

A∈SK(i)

∫
[0,1]K

mA(r1, . . . , rk)dγr(r1, . . . , rK)

=

∫
[0,1]K

 ∑
A∈SK(i)

mA(r1, . . . , rk)

 dγr(r1, . . . , rK)

=

∫
[0,1]K

ridγr(r1, . . . , rK)

= r̃i.

Conversely, notice that given a collection of functions m̃A satisfying the constraint in (24)
for the tuple (x̃1, r̃1), . . . , (x̃K , r̃K), it is straightforward to find γr such that m̃A = mA,γr

for all A. It now follows that

B∗µ̂ = inf
m̃A

∑
A

m̃A(1 + cA(x̃1, . . . , x̃k)) = c̃((x̃1, r̃1), . . . , (x̃K , r̃K)),

as we wanted to prove.

3.4 Dual Problems

In this section we discuss the dual problems of the different formulations of the generalized
barycenter problem studied in section 16.

Proposition 22 The dual problems to (10), (21), and (25) can be written as

sup
f1,...,fK∈Cb(X )

∑
i∈[K]

∫
X
f ci (xi)dµi(xi)

s.t. fi(x) ≥ 0,
∑
i∈[K]

fi(x) ≤ 1, for all x ∈ X , i ∈ [K],
(27)

sup
g1,...,gK∈Cb(X )

∑
i∈[K]

∫
X
gi(xi)dµi(xi)

s.t.
∑
i∈A

gi(xi) ≤ 1 + cA(x1, . . . , xK) for all (x1, . . . , xK) ∈ XK , A ∈ SK ,
(28)
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and

sup
h1,...,hK∈Cb(X )

∑
i∈[K]

∫
X
hi(xi)dµi(xi)

s.t.
∑
i∈[K]

rihi(xi) ≤ c̃(~x,~r) for all (~x,~r) ∈ (X × [0, 1])K ,
(29)

respectively.
Let f1, . . . , fK ; g1, . . . , gK ; h1, . . . , hK be feasible solutions to problems (27), (28), and

(29) respectively. Problems (28) and (29) have the same feasible set and hence are identical.
Furthermore, g′i := f ci is a feasible solution to (28) and f ′i = max{gi, 0}c̄ is a feasible
solution to (27), hence the optimization of (28) can be restricted to nonnegative gi that
satisfy gi = gc̄ci . In particular, (27), (28), and (29) all have the same optimal value.

Proof The derivation of the dual problems is standard.
To see the equivalence between problems (28) and (29), fix some h1, . . . , hK that are fea-

sible for (29) and choose some B ∈ SK and (x1, . . . , xK) ∈ XK such that cB(x1, . . . , xK) <
∞. Choose

m∗ ∈ argmin
m:SK→R

∑
A∈SK

mA(1 + cA(x1, . . . , xK)) s.t.
∑

A∈SK(i)

mA = χB(i),

where χB(i) = 1 if i ∈ B and zero otherwise. Note that the choice mA = 1 if A = B and
mA = 0 otherwise is feasible for the above optimization. Therefore, the optimality of m∗

implies that

1 + cB(x1, . . . , xK) ≥
∑
A∈SK

m∗A(1 + cA(x1, . . . , xK))

= c̃((x1, χB(1)), . . . , (xk, χB(k))
)

≥
∑
i∈[K]

rihi(xi)

=
∑
i∈B

hi(xi).

Thus, we see that the hi are feasible for (28) since B and (x1, . . . , xK) were arbitrary.
Conversely, fix some g1, . . . , gK that are feasible for (28) and some (~x,~r) ∈ (X × [0, 1])K .

Choose
n∗ ∈ argmin

m:SK→R

∑
A∈SK

mA(1 + cA(x1, . . . , xK)) s.t.
∑

A∈SK(i)

mA = ri,

and observe that ∑
i∈[K]

rigi(xi) =
∑
i∈[K]

gi(xi)
∑

A∈SK(i)

n∗A

=
∑
A∈SK

n∗A
∑
i∈A

gi(xi)

≤
∑
A∈SK

n∗A(1 + cA(x1, . . . , xK))

= c̃((x1, r1), . . . , (xK , rK)),
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where we used the feasibility of the gi. Thus, the gi are feasible for (29). Since both
problems are optimizing the same functional over the same constraint set, we see that (28)
and (29) are identical.

Now suppose that f1, . . . , fK and g1, . . . , gK are feasible solutions to problems (27) and
(28) respectively and define g′i = f ci and f ′i = max{gi, 0}c̄. Given A ∈ SK , x1, . . . , xK ∈ XK ,
and r > 0 we can choose xr such that∑

i∈A
c(xr, xi) ≤ r + cA(x1, . . . , xK).

Then we see that∑
i∈A

g′i(xi) ≤
∑
i∈A

f(xr) + c(xr, xi) ≤ r + 1 + cA(x1, . . . , xK).

Letting r → 0, we see that the g′i are feasible for (28). Hence, the optimal value of (28)
cannot lie strictly below the optimal value of (27).

It remains to verify the feasibility of the f ′i . We begin by showing that if g1, . . . , gK
are feasible for (28) then max{g1, 0}, . . . ,max{gK , 0} are also feasible. Fix A ∈ SK and
(x1, . . . , xK) ∈ XK . Let A′ = {i ∈ A : gi(xi) > 0}. We then see that∑

i∈A
max{gi(xi), 0} =

∑
i∈A′

gi(xi) ≤ 1 + cA′(x1, . . . , xK) ≤ 1 + cA(x1, . . . , xK)

where the final inequality follows from the definition of cA and the fact that A′ ⊆ A. Now
we are ready to verify the feasibility of the f ′i . Clearly f ′i(x) ≥ 0 since c(x, x) = 0 for all
x ∈ X . Given x ∈ X , fix r > 0 and for each i ∈ [K], choose xi,r ∈ X such that

(max{gi, 0})c̄(x) ≤ max(gi(xi,r), 0)− c(xi,r, x) + r.

We then have∑
i∈[K]

max{gi, 0}c̄(x) ≤
∑
i∈[K]

max{gi(xi,r), 0} − c(xi,r, x) + r

≤ 1 + r + c[K](x1,r, . . . , xk,r)−
∑
i∈[K]

c(xi,r, x),

where the final inequality follows from the feasibility of max{gi, 0}. Now from the definition
of c[K], the last line is bounded above by 1 + r. Sending r → 0 we are done.

Notice that the above arguments prove that whenever g1, . . . , gK are feasible for (28),
then max{g1, 0}c̄c, . . . ,max{gK , 0}c̄c are also feasible for (28). Since u ≤ uc̄c for any function
u : X → R, it follows that∑

i∈[K]

∫
X
gi(x)dµi(x) ≤

∑
i∈[K]

∫
X

max{gi, 0}c̄c(x)dµi(x).

Since we showed that max{gi, 0}c̄ was feasible for (27), it follows that (28) cannot attain
a larger value than (27). Hence, we have shown that (28) and (27) have the same optimal
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value.

We now want to show that the dual problems attain the same values as the original pri-
mal problems. We begin with a minimax lemma for the following partial optimal transport
problem.

Lemma 23 Suppose that c is a bounded Lipschitz cost that satisfies the hypotheses of
Proposition 7. If B ⊂ M(X ) is a weakly compact and convex set, then given measures
µ1, . . . , µK ,∈M(X ), let we have the following minimax formula

min
ρ,νi∈B,νi≤ρ

∑
i∈[K]

C(µi, νi)

= max
ϕi,ψi∈Cb(X )

min
ρ∈B

∑
i∈[K]

∫
X
ϕi(x)dµi(x)− ψi(x′)dρ(x′)

s.t. ϕi(x)− ψi(x′) ≤ c(x, x′), ψi(x′) ≥ 0.

Proof Using the dual formulation of optimal transport, we can write

C(µi, νi) = sup
ϕi,ψi∈Φc

Ji(νi, ϕi, ψi) s.t. ϕi(x)− ψi(x′) ≤ c(x, x′).

where

Ji(νi, ϕi, ψi) =

∫
X
ϕi(x)dµi(x)− ψi(x)dνi(x),

and Φc = {(ϕi, ψi) ∈ Cb(X ) × Cb(X ) : ϕi(x) − ψi(x
′) ≤ c(x, x′) for all x, x′ ∈ X}.

For each ϕi, ψi ∈ Cb(X ) fixed, the mapping (ρ, νi) 7→ Ji(νi, ϕi, ψi) is linear and lower
semicontinuous with respect to the weak convergence of measures. For any ρ, νi fixed, the
mapping (ϕi, ψi) 7→ Ji(νi, ϕi, ψi) is linear and upper semicontinuous with respect to strong
convergence in Cb(X ). Since the constraint sets νi ≤ ρ and Φc are convex, we are in a
situation where Sion’s minimax theorem applies. Therefore,

min
ρ,νi∈B,νi≤ρ

sup
ϕi,ψi∈Φc

∑
i∈[K]

Ji(νi, ϕi, ψi) = sup
ϕi,ψi∈Φc

min
ρ,νi∈B,νi≤ρ

∑
i∈[K]

Ji(νi, ϕi, ψi)

Since

min
νi≤ρ

∑
i∈[K]

Ji(νi, ϕi, ψi) =
∑
i∈[K]

∫
X
ϕi(x)dµi(x)−max(ψi(x

′), 0)dρ(x′),

we have

min
ρ,νi∈B,νi≤ρ

∑
i∈[K]

C(µi, νi) = sup
ϕi,ψi∈Φc

min
ρ∈B

∑
i∈[K]

∫
X
ϕi(x)dµi(x)−max(ψi(x

′), 0)dρ(x′).

If we replace ϕi by ψci and ψi by max(ψi, 0)cc̄ then the value of the problem can only im-
prove. Since we assume that c is bounded and Lipschitz, it follows that ψci and ψc̄ci are
bounded and Lipschitz. Thus, we can restrict the supremum to a compact subset of Φc

where ψi ≥ 0. Thus, the supremum is actually attained by some pair (ϕ∗i , ψ
∗
i ) ∈ Φc with
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ψ∗i ≥ 0, ϕ∗i = (ψ∗i )
c and (ψ∗i )

cc̄ = ψ∗i .

Using Lemma 23 we can prove that there is no duality gap for bounded and Lipschitz
costs. We will then show that there is no duality gap for general costs by approximation.

Proposition 24 Given measures µ1, . . . , µK and a bounded Lipschitz cost c satisfying the
assumptions in Proposition 7, suppose that λ, µ̃1, . . . , µ̃K are optimal solutions to (10).
If ϕ∗i , ψ

∗
i ∈ Cb(X ) are the optimal Kantorovich potentials for the partial transport of µi to

λ (c.f Lemma 23), then ϕ∗1, . . . , ϕ
∗
K are optimal solutions to problem (28), ψ∗1, . . . , ψ

∗
K are

optimal solutions to (27), and the values of (27)-(29) are equal to (10). In other words,
there is no duality gap.

Proof If we fix some convex weakly compact subset B ⊂ M(X ) containing λ, then it
follows from Lemma 23 and the optimality of λ that there exists ϕ∗i , ψ

∗
i such that

λ(X ) +
∑
i∈[K]

C(µi, µ̃i) = min
ρ∈B

ρ(X ) +
∑
i∈[K]

∫
X
ϕ∗i (x)dµi(x)− ψ∗i (x′)dρ(x′), (30)

ψ∗i (x
′) ≥ 0, and (ϕ∗i )

c̄(x′) = ψ∗i (x
′), (ψ∗i )

c(x) = ϕ∗i (x) for all 1 ≤ i ≤ K and x, x′ ∈ X . If
there exists x′ ∈ X such that

∑
i∈[K] ψ

∗
i (x
′) > 1, then we can make the right hand side

of (30) smaller than the left hand side by choosing ρ = Mδx′ for some sufficiently large
value of M . Hence, it follows that

∑
i∈[K] ψ

∗
i (x) ≤ 1 everywhere. Thus, the ψ∗i are feasible

solutions to problem (27) and, by Proposition 22 (ψ∗i )
c = ϕ∗i are feasible solutions to (28).

Finally, if we choose ρ = 0, it follows that

(10) = λ(X ) +
∑
i∈[K]

C(µi, µ̃i) ≤
∑
i∈[K]

ϕ∗i (x)dµi(x) ≤ (28) = (27) ≤ (10)

where the second last equality follows from Proposition 22 and the last inequality holds
trivially by duality. Therefore, we can infer that there is no duality gap.

Proposition 25 Given measures µ1, . . . , µK , if c is a cost that satisfies Assumption 1,
then problems (27)-(29) all have the same value as (10).

Remark 26 Note that we do not claim that the supremums in (27)-(29) are attained.

Proof Let η : [0,∞)→ [0,∞) be a smooth strictly increasing function such that η(x) = x
for x ≤ 1 and η(x) ≤ 2 for all x ∈ [0,∞). For each j ∈ Z+, define

c̃j(x, x
′) := inf

(x1,x′1)∈X×X
c(x1, x

′
1) + jd(x, x1) + jd(x′, x1),

and cj(x, x
′) := jη(

c̃j(x,x
′)

j ). It then follows that cj is a bounded Lipschitz cost that satisfies
the assumptions of Proposition 7. Since c is lower semicontinuous it is straightforward to
check that cj converges to c pointwise everywhere.
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Let αj and βj denote the optimal values of Problems (10) and (28) respectively with
cost cj . From Proposition 24 we know that αj = βj . Let α, β denote the optimal values
of Problems (10) and (28) respectively with the original cost c. Since we already know that
β ≤ α, our goal is to show that α ≤ β.

Exploiting the fact that cj is increasing with respect to j, if gj01 , . . . , g
j0
K is a feasible

solution to (28) for the cost cj0 , then it is also a feasible solution to (28) for c. Therefore,
limj→∞ βj ≤ β.

On the other hand, let λj and µ̃j1, . . . , µ̃
j
K be optimal solutions to (10) with the cost cj .

Let πji be the optimal transport plan between µi and µ̃ji . Arguing as in Proposition 7, it

follows that λj and πji are tight with respect to j. Thus, there exists a subsequence (that

we do not relabel) such that λj converges weakly to some λ and πji converges weakly to
some πi. Fix some j0 and note that for all j ≥ j0

αj = λj(X ) +
∑
i∈[K]

∫
X
cj(x, x

′)dπji (x, x
′) ≥ λj(X ) +

∑
i∈[K]

∫
X
cj0(x, x′)dπji (x, x

′).

Therefore,

lim inf
j→∞

αj ≥ λ(X ) +
∑
i∈[K]

∫
X
cj0(x, x′)dπi(x, x

′).

Taking a supremum over j0, it follows that

lim inf
j→∞

αj ≥ λ(X ) +
∑
i∈[K]

∫
X
c(x, x′)dπi(x, x

′) ≥ α.

Thus, α ≤ lim infj→∞ αj = lim infj→∞ βj = β. Thanks to Proposition 22, it follows that
(10) and (27)-(29), all have the same optimal value.

4. Proof of Theorem 6

In this section, we prove Theorem 6 and return to the adversarial problem (1).

4.1 Theorem 6: upper bound

First we show that

1

2µ(Z)
B∗µ ≤ inf

π∈ΠK(µ)

∫
ZK∗

c(z1, . . . , zK)dπ(z1, . . . , zK).

To see this, recall that B∗µ is, according to Proposition 20, equal to

inf
γ∈Υµ

∫
(X×[0,1])K

c̃(~x,~r)dγ(~x,~r) s.t. P̃i#(riγ) = µi for all i ∈ [K].

Here and in what follows we use Υµ to denote the set of positive measures satisfying
P̃i#(riγ) = µi for all i ∈ {1, . . . ,K}.
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Let π ∈ ΠK(µ), and for given ~z = (z1, . . . , zK) ∈ ZK∗ , let γ~z ∈ Υµ̂~z be a solution for
problem (25) (when µ = µ̂~z). We define a measure γ as follows:∫

(X×[0,1])K
h(~x,~r)dγ(~x,~r) :=

∫
ZK∗

(∫
(X×[0,1])K

h(~x,~r)dγ~z(~x,~r)

)
dπ(z1, . . . , zK)

for every test function h : (X × [0, 1])K → R.
We check that γ ∈ Υ 1

2µ(Z)
µ. Indeed, for any test function g : X → R we have:

∫
(X×[0,1])K

rig(xi)dγ(~x,~r) =

∫
ZK∗

(∫
(X×[0,1])K

rig(xi)dγ~z(~x,~r)

)
dπ(z1, . . . , zK)

=
1

K

∫
ZK∗

 ∑
j:zj 6=4

g(xj)1ij=i

 dπ(z1, . . . , zK)

=
1

2µ(Z)

∫
X
g(x)dµi(x).

Let us now compute the cost associated to this γ:∫
(X×[0,1])K

c̃(~x,~r)dγ(~x,~r) =

∫
ZK∗

(∫
(X×[0,1])K

c̃(~x,~r)dγ~z(~x,~r)

)
dπ(z1, . . . , zK)

=

∫
ZK∗

B∗µ̂~zdπ(z1, . . . , zK)

=

∫
ZK∗

c(z1, . . . , zK)dπ(z1, . . . , zK).

Combining the above with Remark 4, we conclude that

1

2µ(Z)
B∗µ = B∗ 1

2µ(Z)
µ

= inf
γ∈Υ 1

2µ(Z)
µ

∫
(X×[0,1])K

c̃(~x,~r)dγ(~x,~r) ≤ inf
π∈ΠK(µ)

∫
ZK∗

c(~z)dπ(~z).

4.2 Theorem 6: lower bound

Now, it is sufficient to show

inf
π∈ΠK(µ)

∫
c(z1, . . . , zK)dπ(z1, . . . , zK) ≤ 1

2µ(Z)
B∗µ.

First, observe that for any φ ∈ Φ we have:

K∑
j=1

∫
X×[K]

φj(zj)
1

2µ(Z)
dµ(zj) +

1

2

K∑
j=1

φj(4)

=
∑
i∈[K]

∫
X

( K∑
j=1

φj(xi, i) +
K∑
j=1

φj(4)
) 1

2µ(Z)
dµi(xi).
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For each i ∈ [K], define

ψi(xi) :=

K∑
j=1

φj(xi, i) +

K∑
j=1

φj(4).

It is thus clear from the above computation and definition that

K∑
j=1

∫
X×[K]

φj(zj)
1

2µ(Z)
dµ(zj) +

1

2

K∑
j=1

φj(4) =
∑
i∈[K]

∫
X
ψi(xi)

1

2µ(Z)
dµi(xi). (31)

Our goal is now to show that {ψi : i ∈ [K]} is feasible for problem (28) (working with
the normalized measure 1

2µ(Z)µ). We start with a preliminary lemma and an example
illustrating the strategy behind the proof of this fact. The precise statement appears in
Proposition 28 below.

Lemma 27 Given (z1, . . . , zK) ∈ ZK∗ , let A = {j ∈ [K] : zj 6= 4}. Suppose that for each
j ∈ A zj = (xj , j). Then, for each φ ∈ Φ,

K∑
j=1

φj(zj) ≤
1

K
+

1

K
cA. (32)

Proof Since φ ∈ Φ, it suffices to show that

B∗µ̂~z ≤
1

K
+

1

K
cA,

where

µ̂~z =
K∑

l s.t. zl 6=4

1

K
δzl =

∑
j∈A

1

K
δzj =

∑
j∈A

1

K
δ(xj ,j).

For simplicity, assume that A = {1, . . . , S}. By Lemma 21,

B∗µ̂~z = c̃((x1,
1

K
), . . . , (xS ,

1

K
), (xS+1, 0), . . . , (xK , 0)),

where we can pick xS+1, . . . , xK arbitrarily. Let mA = 1
K and mA′ = 0 for A′ 6= A. It is

easy to check that such m is feasible for (24) since rs = 1
K for 1 ≤ s ≤ S and rj = 0 for

j /∈ A. So, (24) implies

c̃((x1,
1

K
), . . . , (xS ,

1

K
), (xS+1, 0), . . . , (xK , 0)) ≤ 1

K
+

1

K
cA.

The conclusion follows.

We now present specific examples which illustrate why {ψi : i ∈ [K]} is feasible for (28),
that is, we need to show that for any (x1, . . . , xK) ∈ XK and for any A ∈ SK we have∑

i∈A
ψi(xi) ≤ 1 + cA.
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Let K = 4 and suppose that A = {1, 2, 3}. Expanding the ψi’s we get:

ψ1(x1) + ψ2(x2) + ψ3(x3) =
∑
i∈[3]

4∑
j=1

φj(xi, i) + 3

4∑
j=1

φj(4),

or, after a rearrangement of the summands:

φ1(x1, 1) + φ2(x2, 2) + φ3(x3, 3) + φ4(4)

+φ2(x1, 1) + φ3(x2, 2) + φ4(x3, 3) + φ1(4)

+φ3(x1, 1) + φ4(x2, 2) + φ1(x3, 3) + φ2(4)

+φ4(x1, 1) + φ1(x2, 2) + φ2(x3, 3) + φ3(4)

+2
4∑
j=1

φj(4).

We can bound the first line above using (32):

φ1(x1, 1) + φ2(x2, 2) + φ3(x3, 3) + φ4(4) ≤ 1

4
+

1

4
cA.

The same argument holds for the second, third and fourth lines. For the last line, notice
that c(4, . . . ,4) = 0. Hence, the last line is bounded above by 0 and we can now deduce
that

ψ1(x1) + ψ2(x2) + ψ3(x3) ≤ 1 + cA.

The above situation becomes less trivial if |A| is much smaller than K. To illustrate, let
K = 9 and suppose that A = {1, 2}. Rearranging the φj ’s as above we will not be able to
obtain the desired upper bound since the total number of φj(4)’s available is in this case
K|A| = 18 while the required number of φj(4)’s in the analogous arrangement as above
would be at least K(K − |A|) = 63. To overcome this problem, we need to rearrange the
φj ’s further in order to reduce the required number of φj(4)’s and deduce from this refined
analysis the desired upper bound.

First of all, construct a 9 × 9 arrangement in the following way: for the k-th row in
the arrangement, let the k-th and the (k + 1)-th elements be φk(x1, 1) and φk+1(x2, 2),
respectively, and let the remaining elements be “empty”. Note that here k and k + 1 are
considered modulo 9; for example, 10 ≡ 1 mod 9, and an empty element means literally
no element. We merge rows in the following way: merge together the 1-st, the 3-rd, the
5-th and the 7-th rows, i.e. replace empty elements for none-empty ones coming from other
rows; likewise, merge together the 2-nd, the 4-th, the 6-th and the 8-th rows; finally, keep
the 9-th row as is. By the above construction, the 1-st, the 3-rd, the 5-th and the 7-th rows
share no common φj . Let ∅j denote an empty element at the j-th coordinate. The resulting
arrangement can be written as:

φ1(x1, 1), φ2(x2, 2), φ3(x1, 1), φ4(x2, 2), φ5(x1, 1), φ6(x2, 2), φ7(x1, 1), φ8(x2, 2), ∅9,
∅1, φ2(x1, 1), φ3(x2, 2), φ4(x1, 1), φ5(x2, 2), φ6(x1, 1), φ7(x2, 2), φ8(x1, 1), φ9(x2, 2),

φ1(x2, 2), ∅2, ∅3, ∅4, ∅5, ∅6, ∅7, ∅8, φ9(x1, 1),
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with the first row representing the merge of rows 1-3-5-7, the second row representing the
merge of rows 2-4-6-8, and the last row representing row 9.

Notice that the above arrangement contains all φj(xs, s)’s. Furthermore, the number of
∅j for each 1 ≤ j ≤ 9 is exactly 1. Filling ∅j ’s with φj(4)’s, and using the fact that the
number of φj(4)’s for each 1 ≤ j ≤ 9 is 2, it follows that

ψ1(x1) + ψ2(x2) =
4∑
j=1

(
φ2j−1(x1, 1) + φ2j(x2, 2)

)
+ φ9(4)

+ φ1(4) +

4∑
j=1

(
φ2j(x1, 1) + φ2j+1(x2, 2)

)
+ φ1(x2, 2) +

8∑
j=2

φj(4) + φ9(x1, 1)

+

9∑
j=1

φj(4).

Observe that for (z1, . . . , zK) = ((x1, 1), (x2, 2), . . . , (x1, 1), (x2, 2),4), µ̂~z = 4
9δ(x1,1) +

4
9δ(x2,2). Factoring out the 4 (see Remark 4) and applying (32), what we obtain is

4∑
j=1

(
φ2j−1(x1, 1) + φ2j(x2, 2)

)
+ φ9(4) ≤ B∗µ̂~z ≤

4

9
+

4

9
cA.

Similarly, the second and third lines can be bounded by 4
9 + 4

9cA and 1
9 + 1

9cA, respectively.

Since
∑9

j=1 φj(4) ≤ 0, it follows that

ψ1(x1) + ψ2(x2) ≤ 1 + cA.

The above two situations help us illustrate the general strategy for proving that the
resulting ψi are feasible: the idea is to arrange summands appropriately so that we can
utilize Lemma 27 in the most effective way possible. In the following proposition we state
precisely our aim and prove it by such strategy.

Proposition 28 Let (φ1, . . . , φK) ∈ Φ be a feasible dual potential. For each i ∈ [K], define

ψi(xi) :=

K∑
j=1

φj(xi, i) +

K∑
j=1

φj(4), xi ∈ X .

Then {ψi : i ∈ [K]} is feasible for (28).

Proof Fix K and A ∈ SK . Without loss of generality, assume that A = {1, . . . , S}. We
need to show that ∑

i∈A
ψi(xi) ≤ 1 + cA. (33)

32



MOT formulation of adversarial multiclass classification

First, suppose K is divisible by S. For each 1 ≤ s ≤ S and 1 ≤ j ≤ K, let

u(s, j) :=

{
(s+ j − 1 mod S) if s+ j − 1 6= 0 mod S

S if s+ j − 1 = 0 mod S.

Rearranging the sum of the ψ’s, it follows that

∑
i∈A

ψi(xi) =

K∑
j=1

S∑
s=1

φj(xs, s) + S

K∑
j=1

φj(4)

=
S∑
s=1

K∑
j=1

φj(xu(s,j), u(s, j)) + S
K∑
j=1

φj(4).

Note that for each 1 ≤ s ≤ S, |{u(s, j) : 1 ≤ j ≤ K}| = K
S , and hence

µ̂~z =
S∑

u(s,j)=1

K
S

K
δ(xu(s,j),u(s,j)).

Factoring out K
S and applying (32),

K∑
j=1

φj(xu(s,j), u(s, j)) ≤ K

S

( 1

K
+

1

K
cA
)

=
1

S
+

1

S
cA.

Since
∑K

j=1 φj(4) ≤ 0, it is deduced that

∑
i∈A

ψi(xi) =
S∑
s=1

K∑
j=1

φj(xu(s,j), u(s, j)) + S
K∑
j=1

φj(4)

≤
S∑
s=1

( 1

S
+

1

S
cA
)

= 1 + cA,

proving the desired inequality in the first case.
Now suppose that K is not divisible by S. For each 1 ≤ s ≤ S and each 1 ≤ k ≤ K, let

v(s, k) :=

{
(s+ k − 1 mod K) if s+ k − 1 6= 0 mod K

K if s+ k − 1 = 0 mod K.

Construct a K × K arrangement in the following way: for each 1 ≤ s ≤ S we set the
v(s, k)-th element to be φv(s,k)(xs, s), and we set the remaining elements to be empty. We
use ∅j to denote an empty element at the j-th coordinate. Note that the k-th row has
φv(1,k)(x1, 1), . . . , φv(S,k)(xS , S) as non-empty elements, which are placed from the v(1, k)-
th coordinate to the v(S, k)-th coordinate, while it has (K − S) many empty elements. For
example, the 3-rd row is

∅1, ∅2, φ3(x1, 1), . . . , φS+2(xS , S), ∅S+3, . . . , ∅K .
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We split this case into two further subcases.

First, assume that bKS c = 1. In this case, we have K(K−S) ≤ KS. For each 1 ≤ k ≤ K,
collect all the φj(4)’s such that j /∈ Ak := {v(1, k), . . . , v(S, k)}. Notice that for fixed j,
the number of k’s such that j /∈ Ak is exactly K − S since all φj(xs, s)’s are contained in
this arrangement and bKS c = 1. In other words, the total number of ∅j is smaller than the
total number of φj(4). From the above and an application of (32), we deduce that

∑
i∈A

ψi(xi) =

K∑
k=1

( S∑
s=1

φv(s,k)(xs, s) +
∑
j /∈Ak

φj(4)
)

+ (2S −K)

K∑
j=1

φj(4)

≤
K∑
k=1

( 1

K
+

1

K
cA
)

= 1 + cA,

proving the desired inequality in this case.

Finally, assume that bKS c > 1. Here the idea is to merge bKS c-many rows to a single
row. We do this in the following way: for each 1 ≤ s ≤ S, we merge together the s-th
row, the (S + s)-th row, . . . , and the ((bKS c− 1)S + s)-th row, to obtain a single row which
will be re-indexed by s. In the original arrangement, since the ((m − 1)S + s)-th row has
φv(s,(m−1)S+1)(x1, 1), . . . , φv(s,mS)(xS , S) as non-empty elements, the rows that get merged

share no common φj . We keep the last (K−bKS cS)-many rows in the original arrangement
the same, and for convenience we let the indices of these rows be unchanged. After this
procedure, we obtain S-many merged rows and (K −bKS cS)-many remaining original rows.
Now, it is necessary to count, for every fixed j, the total number of empty elements ∅j in this
new arrangement. If the number of ∅j ’s was smaller than or equal to S for all 1 ≤ j ≤ K,
we would be done since the number of φj(4) is S for each j, whence it would be possible
to replace the ∅j ’s with φj(4)’s. We show that this is indeed the case.

For each merged row, its non-empty elements are

φv(s,1)(x1, 1), . . . , φv(s,S)(xS , S), . . . , φv(s,(bK
S
c−1)S+1)(x1, 1), . . . , φv(s,bK

S
cS)(xS , S).

Observe that for each merged row, the index j of ∅j varies from v(s, bKS cS + 1) to v(s,K).
The definition of v(s, k) yields that

v(s, bK
S
cS + 1) = bK

S
cS + s if 1 ≤ s ≤ K − bK

S
cS, (34)

v(s, bK
S
cS + 1) = bK

S
cS + s−K if K − bK

S
cS + 1 ≤ s ≤ S (35)

and

v(s,K) = K if s = 1, (36)

v(s,K) = s− 1 if 2 ≤ s ≤ S. (37)

To count the total number of ∅j ’s in the merged rows, let’s consider the following sub-cases.
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(i) bKS cS + 1 ≤ j ≤ K : By (34), if 1 ≤ s ≤ K − bKS cS, then the s-th row has ∅j for
bKS cS+ s ≤ j ≤ K. Also, by (35) and (37), if K−bKS cS+ 1 ≤ s ≤ S, then no merged
row has such ∅j . Hence, the number of ∅j is j − bKS cS.

(ii) S ≤ j ≤ bKS cS : It follows from (34) and (35) that either v(s, bKS cS + 1) > bKS cS
or v(s, bKS cS + 1) < S. Similarly, it follows from (36) and (37) that either v(s,K) >
bKS cS or v(s,K) < S. Since the index j of ∅j of the s-th merged row varies from
v(s, bKS cS + 1) to v(s,K), the number of ∅j is 0.

(iii) S−(K−bKS cS)+1 ≤ j ≤ S−1 : By (35) and (37), if S−(K−bKS cS)+1 ≤ j ≤ S−1,
then ∅j appears from the (j + 1)-st merged row to the S-th merged row. Hence, the
number of ∅j is S − j.

(iv) 1 ≤ j ≤ S− (K−bKS cS) : Similar to (iii), if 1 ≤ j ≤ S− (K−bKS cS), then ∅j appears
from the (j + 1)-st merged row to the S-th merged row. Hence, the number of ∅j is
K − bKS cS.

To summarize, in the merged rows

the number of ∅j =


j − bKS cS for bKS cS + 1 ≤ j ≤ K,
0 for S ≤ j ≤ bKS cS,
S − j for S − (K − bKS cS) + 1 ≤ j ≤ S − 1,

K − bKS cS for 1 ≤ j ≤ S − (K − bKS cS).

(38)

Now, it remains to count the total number of ∅j in the last (K−bKS cS)-many remaining
original rows. In this part, each row has only S-many non-empty elements. Recall that we
still use the same index k for these remaining rows. Precisely, for bKS cS + 1 ≤ k ≤ K, the
k-th row has

φv(1,k)(x1, 1), φv(2,k)(x2, 2), . . . , φv(S,k)(xS , S).

Recall that Ak := {v(1, k), . . . , v(S, k)}. To count the total number of ∅j ’s in the original
rows, let’s consider the following sub-cases.

(i) bKS cS + 1 ≤ j ≤ K. : If 1 ≤ j + 1− k ≤ S, by the definition of v(s, k), then j ∈ Ak.
In other words, each k-th row has ∅j for k > j. Hence, the number of ∅j is K − j.

(ii) S ≤ j ≤ bKS cS : From the definition of v(s, k) and the range of k, we deduce that
if bKS cS + 1 ≤ k ≤ K, then v(1, k) > bKS cS and v(S, k) < S. In other words, ∅j for
S ≤ j ≤ bKS cS appears in every row. Hence, the number of ∅j is K − bKS cS.

(iii) S−(K−bKS cS)+1 ≤ j ≤ S−1 : Since bKS cS+1 ≤ k ≤ K, if v(S, k) = S+k−K < j,
then j /∈ Ak. This yields that if bKS cS+ 1 ≤ k ≤ K −S+ j, then the k-th row has ∅j .
Hence, the number of ∅j is K − bKS cS − S + j.

(iv) 1 ≤ j ≤ S − (K − bKS cS) : Since v(S, bKS cS + 1) = S − (K − bKS cS), if 1 ≤ j ≤
S − (K − bKS cS) and bKS cS + 1 ≤ k ≤ K, then j ∈ Ak. Hence, the number of ∅j is 0.
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To summarize, in the remaining original rows

the number of ∅j =


K − j for bKS cS + 1 ≤ j ≤ K,
K − bKS cS for S ≤ j ≤ bKS cS,
K − bKS cS − S + j for S − (K − bKS cS) + 1 ≤ j ≤ S − 1,

0 for 1 ≤ j ≤ S − (K − bKS cS).

(39)

Combining (38) with (39), the total number of ∅j is always exactly equal to K − bKS cS
which is always less than S. This allows us to replace every ∅j with a φj(4). Accordingly,
using

∑
φj(4) ≤ 0, we deduce that

∑
i∈A

ψi(xi) ≤
∑

merged rows

∑
v(s,j)

φv(s,j)(xs, s) +
∑

l 6=v(s,j)

φl(4)


+

∑
remaining rows

∑
v(s,j)

φv(s,j)(xs, s) +
∑

l 6=v(s,j)

φl(4)

 .

Let’s focus on the first summation over merged rows. Notice that there are bKS cS many non-
empty elements and the set of arguments of such non-empty elements is {(x1, 1), . . . , (xS , S)}.
Thus,

µ̂~z =
S∑
s=1

bKS c
K

δ(xs,s).

Factoring out bKS c and applying (32), we obtain

∑
v(s,j)

φv(s,j)(xs, s) +
∑

l 6=v(s,j)

φl(4) ≤
bKS c
K

+
bKS c
K

cA.

On the other hand, for the second summation over remaining rows, there are S many
non-empty elements. Thus,

µ̂~z =

S∑
s=1

1

K
δ(xs,s).

(32) immediately implies∑
v(s,j)

φv(s,j)(xs, s) +
∑

l 6=v(s,j)

φl(4) ≤ 1

K
+

1

K
cA.

Note that the number of merged rows is S and the number of remaining original rows is
K − bKS cS, respectively. Combining all arguments, we can infer that

∑
i∈A

ψi(xi) ≤
bKS cS
K

+
bKS cS
K

cA +
K − bKS cS

K
+
K − bKS cS

K
cA

= 1 + cA,
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obtaining the desired inequality in the last remaining case.

In summary, we have proved that for a given φ = (φ1, . . . , φK) ∈ Φ, its associated
(ψ1, . . . , ψK) (which satisfies (31)) is feasible for (28). Consequently, this leads to

(14) ≤ 1

2µ(Z)
(28) (40)

In turn, by the equivalence between (28) and (10) by Proposition 25, this automatically
implies that

(14) ≤ 1

2µ(Z)
B∗µ.

Finally, combining with Corollary 31 below (which establishes that under Assumption 1
there is no duality gap for the MOT problem (2)) we obtain the desired inequality relating
the minimum value for the MOT problem and B∗µ.

4.3 Returning to the adversarial problem (1)

We begin by establishing that, under Assumption 1, the cost c is lower semi-continuous
with respect to a suitable notion of convergence.

Proposition 29 Let Z∗ = Z ∪ {4} on which 4 is considered as an isolated point. Let d̂
be defined according to:

d̂(z, z′) :=


d(x, x′) if i = i′,
∞ if i 6= i′ or z = 4 and z′ ∈ Z(vice-versa),
0 if z = z′ = 4.

Define d̂K on ZK∗ by

d̂K((z1, . . . , zK), (z′1, . . . , z
′
K)) := max

i∈[K]
d̂(zi, z

′
i).

Recall
c(z1, . . . , zK) := B∗µ̂~z

where µ̂~z is defined as

µ̂~z :=
1

K

K∑
l s.t. zl 6=4

δzl .

Under Assumption 1, c is lower semi-continuous on (ZK∗ , d̂K).

Remark 30 Note that (ZK∗ , d̂K) is still a Polish space.

Proof Suppose ~zn = (zn1 , . . . , z
n
K) converges to ~z = (z1, . . . , zK) in (ZK∗ , d̂k). Without loss

of generality, assume that z1, . . . , zL = 4 for all 1 ≤ L ≤ K. If L = K, the claim would
be trivial and so we can focus on the case L < K. By the definition of d̂K , without loss
of generality we can further assume that zn1 , . . . , z

n
L = 4 for all n, and likewise, for each
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L + 1 ≤ j ≤ K, we can assume that inj = ij for all n, for otherwise the convergence would

not hold due to the definition of d̂K .
By Lemma 21 we have

c(zn1 , , . . . , z
n
K) = B∗µ̂~zn = inf

m:SK→R

∑
A⊆{L+1,...,K}

mA

(
cA(xnL+1, . . . , x

n
K) + 1

)
, (41)

where the min ranges over all {mA}A⊆{L+1,...,K} such that
∑

A∈SK(i)∩{L+1,...,K}mA = 1
K , ∀i =

L+ 1, . . . ,K.
We now claim that for every A ⊆ {L+ 1, . . . ,K},

cA(xL+1, . . . , xK) ≤ lim inf
n→∞

cA(xnL+1, . . . , x
n
K).

Indeed, if the right hand side is equal to +∞, then there is nothing to prove. If the right
hand side is finite, we may then find a sequence {x̃n}n∈N such that

lim inf
n→∞

∑
i∈A

c(x̃n, xni ) = lim inf
n→∞

cA(xnL+1, . . . , x
n
K) <∞.

By the compactness property in Assumption 1 it follows that up to subsequence (not
relabeled) we have that {x̃n}n∈N converges toward a point x̃ ∈ X . Combining with the
lower semi-continuity of c, we deduce that

cA(xL+1, . . . , xK) ≤
∑
i∈A

c(x̃, xi) ≤ lim inf
n→∞

cA(xnL+1, . . . , x
n
K),

as we wanted to show.
Returning to (41), we can find for each n ∈ N a collection of feasible {mn

A}A⊆{L+1,...,K}
such that

lim inf
n→∞

∑
A⊆{L+1,...,K}

mn
A

(
cA(xnL+1, . . . , x

n
K) + 1

)
= lim inf

n→∞
c(zn1 , . . . , z

n
K).

Using the Heine-Borel theorem in Euclidean space, we can assume without the loss of
generality that for every A, mn

A converges to some mA as n→∞. The resulting collection of
mA is feasible for the problem defining c(z1, . . . , zK) and thus, using the lower semicontinuity
of cA established earlier, we deduce:

c(z1, . . . , zK) ≤
∑

A⊆{L+1,...,K}

mA

(
cA(xnL+1, . . . , x

n
K) + 1

)
≤ lim inf

n→∞
c(zn1 , . . . , z

n
K).

Corollary 31 (Duality of MOT) Under Assumption 1,

inf
π∈ΠK(µ)

∫
Z∗K

c(z1, . . . , zK)dπ(z1, . . . , zK)

= sup
φ∈Φ


K∑
j=1

∫
X×[K]

φj(zj)
1

2µ(Z)
dµ(zj) +

1

2

K∑
j=1

φj(4)

 .

Furthermore, a minimizer π∗ exists, hence the infimum is indeed the minimum.
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Proof From Proposition 29 it follows that the cost function c(z1, . . . , zK) is lower semi-
continuous on (ZK∗ , d̂K), which is a Polish space. Applying Theorem 1.3 in Villani (2003),
which is stated for the usual optimal transport, but that can be generalized to the MOT
setting, we obtain the desired duality. The existence of a minimizer π∗ follows from the
lower semi-continuity of c(z1, . . . , zK) and the compactness of ΠK(µ).

Corollary 32 Under Assumption 1, (8)=(9).

Proof By the upper bound from section 4.1 we have

1

2µ(Z)
B∗µ ≤ min

π∈ΠK(µ)

∫
c(z1, . . . , zK)dπ(z1, . . . , zK).

On the other hand, from (40) and Corollary 31 we have

min
π∈ΠK(µ)

∫
c(z1, . . . , zK)dπ(z1, . . . , zK) = (14) ≤ 1

2µ(Z)
(28) ≤ 1

2µ(Z)
B∗µ.

Combining these two inequalities we conclude that all the above terms must be equal. In
particular, (28) = B∗µ. Finally, by Proposition 22 we know that (28) = (27) = (8). In
particular, (9) = B∗µ = (8).

Corollary 33 Suppose that Assumption 1 holds and that (π∗, φ∗) is a solution pair for
the MOT problem and its dual. Define f∗ and µ̃∗ according to:

f∗i (x̃) := sup
x∈spt(µi)

max


K∑
j=1

φ∗j (x, i) +
K∑
j=1

φ∗j (4), 0

− c(x, x̃)


and for any test function h on X ,∫

X
h(x̃)dµ̃∗i (x̃) :=

∫
ZK∗

{∫
X
h(x̃)dµ̃∗~z,i(x̃)

}
dπ∗(~z),

where µ̃∗~z,i is the i-th marginal of µ̃∗~z, an optimal adversarial attack which achieves c(z1, . . . , zK)
given ~z = (z1, . . . , zK). Suppose f∗ is measurable. Then (f∗, µ̃∗) is a saddle for problem
(1).

Remark 34 Here, we do not claim that f∗ is in general measurable. However, if either c
is continuous or µ is an empirical measure with a finite support, then f∗ can be shown to
be measurable. See Remark 5.5 and Remark 5.11 in Villani (2009).

Notice that the supremum in the definition of f∗i , is only taken over spt(µi).

Proof We will show that (f∗, µ̃∗) is a saddle point for problem (9). More explicitly, we
show that for any f ∈ F and for any µ̃,

B(f, µ̃∗) + C(µ, µ̃∗) ≤ B(f∗, µ̃∗) + C(µ, µ̃∗) ≤ B(f∗, µ̃) + C(µ, µ̃). (42)
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First we compute B(f∗, µ̃∗) + C(µ, µ̃∗). Notice that

B(f∗, µ̃∗) + C(µ, µ̃∗) =
K∑
i=1

∫
X
f∗i (x̃i)dµ̃

∗
i (x̃i) +

K∑
i=1

C(µi, µ̃
∗
i )

=
∑
A∈SK

∑
i∈A

{∫
X
f∗i (x̃i)dλ

∗
A(x̃i) + C(µi,A, λ

∗
A)

}

=
∑
A∈SK

{∫
XK

(∑
i∈A

f∗i (TA(~x)) + cA(~x)
)
dπ∗A(~x)

}
,

where λ∗A and π∗A correspond to µ̃∗. By the construction of f∗i and (6),

∑
i∈A

f∗i (TA(~x)) =
∑
i∈A

sup
x′

max


K∑
j=1

φ∗j (x
′, i) +

K∑
j=1

φ∗j (4), 0

− c(x′, TA(~x))


= max

 sup
x′i:i∈A

∑
i∈A

( K∑
j=1

φ∗j (x
′
i, i) +

K∑
j=1

φ∗j (4)
)
− cA(x′i : i ∈ A)

 , 0


≤ max

{
sup

{
1 + cA(x′i : i ∈ A)− cA(x′i : i ∈ A)

}
, 0
}

≤ 1,

where the third inequality follows from (33). Hence,

B(f∗, µ̃∗) + C(µ, µ̃∗) ≤
∑
A∈SK

∫
XK

(
1 + cA(~x)

)
dπ∗A(~x)

=

∫
ZK∗

c(z1, . . . , zK)dπ∗(z1, . . . , zK)

= B∗µ.

On the other hand, the definition of f∗i implies that for any xi in the support of µi we have

f∗i (x̃i) ≥
K∑
j=1

φ∗j (xi, i) +
K∑
j=1

φ∗j (4)− c(x̃i, xi). (43)
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Using
∑

A∈SK(i) µi,A = µi and (43), the optimality of φ∗ implies that

B(f∗, µ̃∗) + C(µ, µ̃∗) =
∑
A∈SK

∑
i∈A

{∫
X×X

(
f∗i (x̃i) + c(x̃i, xi)

)
dπ∗i (x̃i, xi)

}

≥
∑
A∈SK

∑
i∈A


∫
X×X

( K∑
j=1

φ∗j (xi, i) +
K∑
j=1

φ∗j (4)
)
dπ∗i (x̃i, xi)


=
∑
A∈SK

∑
i∈A


∫
X

( K∑
j=1

φ∗j (xi, i) +
K∑
j=1

φ∗j (4)
)
dµi,A(xi)


=

K∑
j=1

∫
Z
φj(zj)dµ(zj) + µ(Z)

K∑
j=1

φj(4)

= B∗µ.

Here π∗i denotes an optimal coupling between µi and µ̃∗i which correspond to π∗A’s. From
the above we infer that

B(f∗, µ̃∗) + C(µ, µ̃∗) = B∗µ.

Now we can prove (42). The first inequality of (42) is straightforward, since the definition
of B∗µ in (10) and the optimality of µ̃∗ imply that

B(f, µ̃∗) + C(µ, µ̃∗) ≤ sup
f∈F
{B(f, µ̃∗) + C(µ, µ̃∗)} = B∗µ = B(f∗, µ̃∗) + C(µ, µ̃∗).

For the second inequality of (42), let arbitrary µ̃ be fixed and πi ∈ Γ(µ̃i, µi) be an
optimal coupling for each i ∈ [K]. Then,

B(f∗, µ̃) + C(µ, µ̃) =
∑
i∈[K]

∫
X
f∗i (x̃)dµ̃i(x̃) +

∑
i∈[K]

C(µ̃i, µi)

=
∑
i∈[K]

∫
X×X

(f∗i (x̃) + c(x, x̃)) dπi(x, x̃).

Applying (43) yields that

B(f∗, µ̃) + C(µ, µ̃) ≥
∑
i∈[K]

∫
X×X

 K∑
j=1

φ∗j (x, i) +
K∑
j=1

φ∗j (4)

 dπi(x, x̃)

=
∑
i∈[K]

∫
X×X

 K∑
j=1

φ∗j (x, i) +
K∑
j=1

φ∗j (4)

 dµi(x)

= B∗µ

= B(f∗, µ̃∗) + C(µ, µ̃∗).

Therefore, (f∗, µ̃∗) is a saddle point for (9), hence for (8) and (1) also.
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Remark 35 Many recent papers have tried to analyze adversarial learning from a game-
theoretic perspective Bose, Gidel, Berard, Cianflone, Vincent, Lacoste-Julien, and Hamilton
(2020); Meunier, Scetbon, Pinot, Atif, and Chevaleyre (2021); Pydi and Jog (2021b). This
approach is natural: the learner aims at maximizing the classification power B∗µ while the
adversary aims at maximizing the loss R∗µ(hence to minimize B∗µ): this is a standard zero-
sum game. Our main results thus provide a way to build Nash equilibria for the adversarial
problem using a series of equivalent formulations taking the form of generalized barycenter
problems or MOTs.

Corollary 36 Let π∗ be a solution of the MOT problem (2) and let F : ZK∗ → ZK∗ be
defined according to

F (z1, . . . , zK) = (zσ(1), . . . , zσ(K)),

for σ : [K] → [K] a permutation. Then any convex combination of F]π
∗ and π∗ is also a

solution.

Proof This follows immediately from the fact that the cost function c is invariant under
permutations and the fact that all marginals of π∗ are the same.

5. Examples and Numerical experiments

Through this section, the cost c is as in Example 1. This cost has been widely used in
adversarial learning literature and distributional robust optimization literature. Examples
in this section illuminate how our general framework of generalized barycenter and MOT
finds applications in practice.

5.1 Recovery of the binary case

Consider the binary case K = 2. Our goal is to show that our results recover the result in
Garćıa Trillos and Murray (2022).

Let z1, z2 ∈ Z∗. If both z1 and z2 are 4, then c(z1, z2) = 0. If only one of them is
4, then the cost is 1

2 . Finally, consider the case where z1, z2 6= 4. First assume that
i1 = i2 = 1. In that case,

µ̂~z =
1

2
δ(x1,1) +

1

2
δ(x2,1).

Since only class 1 is represented in this configuration, there is no meaningful adversarial
attack in this case, and thus,

B∗µ̂~z = 1.

Assume now that i1 = 1 and i2 = 2. In that case,

µ̂~z =
1

2
µ̂1 +

1

2
µ̂2 =

1

2
δ(x1,1) +

1

2
δ(x2,2),

and the adversary can attack meaningfully if and only if d(x1, x2) ≤ 2ε. Thus,

B∗µ̂~z =

{
1
2 if d(x1, x2) ≤ 2ε,
1 if d(x1, x2) > 2ε.
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To summarize,

c(z1, z2) =


1
2 if i1 6= i2 and d(x1, x2) ≤ 2ε,
1 if i1 = i2 or d(x1, x2) > 2ε,
1
2 if exactly one of zi’s is 4,
0 if z1 = z2 = 4.

In Garćıa Trillos and Murray (2022), it is proved that

B∗µ = inf
π̃∈Γ(µ,µ)

∫
Z×Z

(costε(z1, z2) + 1

2

)
dπ̃(z1, z2),

where

costε(z1, z2) =

{
0 if i1 6= i2 and d(x1, x2) ≤ 2ε,
1 if i1 = i2 or d(x1, x2) > 2ε.

In other words, in the binary case, it is unnecessary to introduce the element4. To illustrate
this point, assume for simplicity that µ(Z) = 1. Notice that every π̃ ∈ Γ(µ, µ) induces a
π ∈ Π2(µ) as follows:∫

Z∗×Z∗
ϕ(z1, z2)dπ(z1, z2) :=

1

2

∫
Z×Z

ϕ(z1, z2)dπ̃(z1, z2) +
1

2
ϕ(4,4),

where ϕ : Z∗ ×Z∗ → R is an arbitrary test function. The cost associated to the induced π
is:

2

∫
Z∗×Z∗

c(z1, z2)dπ(z1, z2) =

∫
Z×Z

c(z1, z2)dπ̃(z1, z2) =

∫
Z×Z

(costε(z1, z2) + 1

2

)
dπ̃(z1, z2).

On the other hand, let π be a solution for the MOT problem (2) (such a solution exists
thanks to Proposition 31). Thanks to Corollary 36, we can assume without loss of
generality that

π(A×A′) = π(A′ ×A),

for all A,A′ measurable subsets of Z∗. We now define π̃ according to:∫
Z×Z

ϕ̃(z1, z2)dπ̃(z1, z2) := 2

∫
Z×Z

ϕ̃(z1, z2)dπ(z1, z2)

+

∫
Z×{4}

ϕ̃(z1, z1)dπ(z1, z2) +

∫
{4}×Z

ϕ̃(z2, z2)dπ(z1, z2),

for test functions ϕ̃ : Z × Z → R. It follows that π̃ ∈ Γ(µ, µ). Moreover, from the above
formula and the expressions for the cost c we get∫
Z×Z

(costε(z1, z2) + 1

2

)
dπ̃(z1, z2) =

∫
Z×Z

c(z1, z2)dπ̃(z1, z2) = 2

∫
Z∗×Z∗

c(z1, z2)dπ(z1, z2).

The above computations show that our results indeed recover those from Garćıa Trillos
and Murray (2022) for the binary case.
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5.2 Toy example: three points distribution

Let’s assume that K = 3 and µ is such that

µ1 = ω1δx1 , µ2 = ω2δx2 , µ3 = ω3δx3 ,

for three points x1, x2, x3 in Euclidean space. Without loss of generality, assume further
that ω1 ≥ ω2 ≥ ω3 > 0 and

∑
ωi = 1. Let ε > 0 be given and consider the cost from

Example 1 with d as the Euclidean distance (for simplicity). We will explicitly construct
an optimal robust classifier and an optimal adversarial attack for this problem. Even in
this simple scenario, one can observe non-trivial situations.

Since for every µ̃i such that W∞(ωiδxi , µ̃i) ≤ ε we have∫
X
fi(xi)dµ̃i(xi) =

∫
B(xi,ε)

fi(xi)dµ̃i(xi),

where B(x, r) = {x′ : d(x, x′) ≤ r}, we can assume without loss of generality that spt(µ̃i) ⊆
B(xi, ε). Notice that it is sufficient to consider f ∈ F restricted to B(x1, ε) ∪ B(x2, ε) ∪
B(x3, ε) (in fact, problem (1) can not disambiguate the values of f outside of this set). We
consider 4 non-trivial configurations and one trivial one. Figure 4 below illustrates how the
adversary perturbs the original data distribution in each of the non-trivial cases.

Case 1. d(xi, xj) > 2ε for all 1 ≤ i 6= j ≤ 3. This is a trivial case. We claim that for any
µ̃i such that W∞(ωiδxi , µ̃i) ≤ ε, ((1B(x1,ε)

,1B(x2,ε)
,1B(x3,ε)

), (µ̃1, µ̃2, µ̃3)) is a saddle point

for (1). This is straightforward, since spt(µ̃i)∩ spt(µ̃j) = ∅, and thus it can be deduced that
(1B(x1,ε)

,1B(x2,ε)
,1B(x3,ε)

) is a dominant strategy for the learner. It is easy to check that
B∗µ = 1 in this case.

Case 2. There is some x such that d(x, xi) ≤ ε for all 1 ≤ i ≤ 3. We claim that
((1, 0, 0), (ω1δx, ω2δx, ω3δx)) is a saddle point. First, ωiδx is feasible for all 1 ≤ i ≤ 3, since
x ∈ B(xi, ε) for all i. Now, given (ω1δx, ω2δx, ω3δx), the best strategy for the learner is to
choose class 1 deterministically for all points, since ω1 ≥ ω2 ≥ ω3. On the other hand, given
(1, 0, 0), any adversarial attack yields the same classification power. From this we conclude
that ((1, 0, 0), (ω1δx, ω2δx, ω3δx)) is indeed a saddle point. Notice that B∗µ = ω1 in this case.

Case 3. Two points are close to each other while the other point is far from them. For
simplicity, we only consider the case d(x1, x2) ≤ 2ε, d(x1, x3) > 2ε and d(x2, x3) > 2ε. The
other cases are treated similarly. Let x12 = x1+x2

2 , and define f̂ = (1B(x1,ε)∪B(x2,ε)
, 0,1B(x3,ε)

)

and µ̂ = (ω1δx12 , ω2δx12 , µ̃3) for arbitrary µ̃3 with W∞(µ̃3, ω3δx3) ≤ ε. We claim that (f̂ , µ̂)
is a saddle point. For any (f1, f2, f3) ∈ F we have

Bµ(f, µ̂) =

∫
X
f1(x)ω1δx12(x) +

∫
X
f2(x)ω2δx12(x) +

∫
X
f3(x)dµ̃3(x)

= ω1f1(x12) + ω2f2(x12) +

∫
X
f3(x)µ̃3(x)

≤ ω1 + ω3

=

∫
X
1B(x1,ε)∪B(x2,ε)

ω1δx12(x) +

∫
X

0ω2δx12(x) +

∫
X
1B(x3,ε)

dµ̃3(x).
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On the other hand, given (1B(x1,ε)∪B(x2,ε)
, 0,1B(x3,ε)

), for any (µ̃1, µ̃2, µ̃3),

Bµ(f̂ , µ̃) =

∫
X
1B(x1,ε)∪B(x2,ε)

dµ̃1(x) +

∫
X

0 dµ̃2(x) +

∫
X
1B(x3,ε)

dµ̃3(x)

= ω1 + ω3

= Bµ(f̂ , µ̂)

where the second equality follows from the assumption on the configuration of points. The
above computations imply the claim. In this case B∗µ = ω1 + ω3.

Case 4. d(xi, xj) ≤ 2ε for any xi, xj but B(x1, ε) ∩ B(x2, ε) ∩ B(x3, ε) = ∅. Note that
when K = 2, d(x1, x2) ≤ 2ε if and only if B(x1, ε) ∩ B(x2, ε) 6= ∅. However, when K ≥ 3,
these cases are not equivalent anymore. There are two subcases to consider depending on
the magnitudes of the weights (ω1, ω2, ω3).

Case 4 - (i) ω1 < ω2 + ω3. In this case, we can find some αi ∈ [0, ωi] for all 1 ≤ i ≤ 3
such that

α1 = ω2 − α2, α2 = ω3 − α3 and α3 = ω1 − α1.

Precisely,

α1 =
ω1 + ω2 − ω3

2
, α2 =

ω2 + ω3 − ω1

2
, and α3 =

ω3 + ω1 − ω2

2
.

Note that for all i, αi ≥ 0 since ω1 ≤ ω2 + ω3. Let x12 ∈ B(x1, ε) ∩ B(x2, ε), x13 ∈
B(x1, ε) ∩B(x3, ε) and x23 ∈ B(x2, ε) ∩B(x3, ε). Construct the following measures

µ̂1 :=
(
α1δx12 + (ω1 − α1)δx13

)
=
(
(
ω1 + ω2 − ω3

2
)δx12 + (

ω1 − ω2 + ω3

2
)δx13

)
,

µ̂2 :=
(
α2δx23 + (ω2 − α2)δx12

)
=
(
(
ω2 + ω3 − ω1

2
)δx23 + (

ω2 − ω3 + ω1

2
)δx12

)
,

µ̂3 :=
(
α3δx13 + (ω3 − α3)δx23

)
=
(
(
ω3 + ω1 − ω2

2
)δx13 + (

ω3 − ω1 + ω2

2
)δx23

)
.

Observe that at each xij , µ̂i and µ̂j put the same mass: it is natural since, otherwise, the
learner will choose a class which puts more mass at xij . So, this gives a hint about what
would be the best adversarial attack. The adversary gathers classes as much as possible
and distributes them as uniform as possible.

Let Aij = Aji := B(xi, ε) ∩ B(xj , ε) and Ai = B(xi, ε) \ (Aij ∪ Aik). One can observe
that since d(xi, xj) ≤ 2ε for any xi, xj but B(x1, ε) ∩ B(x2, ε) ∩ B(x3, ε) = ∅, B(xi, ε) =
Aij∪̇Aik∪̇Ai for each i. Here ∪̇ denotes a disjoint union. Also, since W∞(µ̃i, ωiδxi) ≤ ε,
it must be the case that Aij ∩ spt(µ̃k) = ∅ if k 6= i, j. For each 1 ≤ i ≤ 3, construct the
following weak partition:

f̂i(x) :=


1 if x ∈ Ai,
1
2 if x ∈ Aij ,
0 if x /∈ B(xi, ε).

f̂ is a weak partition since B(xi, ε) = Aij∪̇Aik∪̇Ai and B(x1, ε) ∩ B(x2, ε) ∩ B(x3, ε) = ∅.
We claim that (f̂ , µ̂) is a saddle point. Note that a straightforward computation yields
Bµ(f̂ , µ̂) = 1

2 .
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Given (µ̂1, µ̂2, µ̂3), for any (f1, f2, f3) ∈ F ,

Bµ(f, µ̂) =

∫
X
f1(x)dµ̂1(x) +

∫
X
f2(x)dµ̂2(x) +

∫
X
f3(x)dµ̂3(x)

= (
ω1 + ω2 − ω3

2
)f1(x12) + (

ω1 + ω3 − ω2

2
)f1(x13) + (

ω2 + ω3 − ω1

2
)f2(x23)

+ (
ω1 + ω2 − ω3

2
)f2(x12) + (

ω1 + ω3 − ω2

2
)f3(x13) + (

ω2 + ω3 − ω1

2
)f3(x23)

= (
ω1 + ω2 − ω3

2
)(f1(x12) + f2(x12)) + (

ω1 + ω3 − ω2

2
)(f1(x13) + f3(x13))

+ (
ω2 + ω3 − ω1

2
)(f2(x23) + f3(x23))

≤ (
ω1 + ω2 − ω3

2
) + (

ω1 + ω3 − ω2

2
) + (

ω2 + ω3 − ω1

2
)

=
1

2
,

where the second to last inequality follows from the fact that
∑
fi(x) ≤ 1 and the last

equality follows from the fact that
∑
ωi = 1. Given (f̂1, f̂2, f̂3), on the other hand, for any

(µ̃1, µ̃2, µ̃3)

Bµ(f̂ , µ̃) =

∫
X
f̂1(x)dµ̃1(x) +

∫
X
f̂2(x)dµ̃2(x) +

∫
X
f̂3(x)dµ̃3(x)

=
µ̃1(A12) + µ̃2(A12)

2
+
µ̃1(A13) + µ̃3(A13)

2
+
µ̃2(A23) + µ̃3(A23)

2
+ µ̃1(A1) + µ̃2(A2) + µ̃3(A3).

Note that since W∞(µ̃i, ωiδxi) ≤ ε, spt(µ̃i) ∩ Aj = ∅ for any µ̃i and for any i 6= j. To
minimize the above, the adversary should put spt(µ̃i) ⊆ Aij ∪ Aik for all i. Also, at the
minimum, it must be the case that µ̃i(Aij) = µ̃j(Aij), otherwise the adversary would be
able decrease the classification power further. Combining all arguments, we can deduce

Bµ(f̃ , µ̃) ≥ µ̃1(A12) + µ̃2(A12)

2
+
µ̃1(A13) + µ̃3(A13)

2
+
µ̃2(A23) + µ̃3(A23)

2
=

1

2
,

which verifies the claim. In this case, B∗µ = 1
2 .

In fact, it is unavoidable to introduce weak partitions f ∈ F . Let f = (1F1 ,1F2 ,1F3) be
any strong partition, i.e. F1∪̇F2∪̇F3 = ∪B(xi, ε). We will show that for any µ̃, (f, µ̃) cannot
be a saddle point. Assume that B(x1, ε) ⊆ F1. Since d(x1, x2) ≤ 2ε and d(x1, x3) ≤ 2ε, it
must be the case that F1∩B(x2, ε) 6= ∅ and F1∩B(x3, ε) 6= ∅. These facts yield that optimal
µ̃2 and µ̃3 for the adversary must satisfy spt(µ̃2) ⊆ F1∩B(x2, ε) and spt(µ̃3) ⊆ F1∩B(x3, ε).
This configuration gives a classifying power ω1 since the learner can only detect class 1
perfectly and always misclassifies others.

However, given any such (µ̃1, µ̃2, µ̃3), the learner has an incentive to modify a classifying
rule. Let F ′1 := F1 \ (spt(µ̃2) ∪ spt(µ̃3)), F ′2 := F2 ∪ spt(µ̃2) and F ′3 := F3 ∪ spt(µ̃3). Then,
this classifying rule perfectly classifies. Precisely, there exists a deviation for the learner,
f ′ = (1F ′1 ,1F ′2 ,1F ′3), such that

1 = B(f ′, µ̃) > B(f, µ̃) = ω1.

46



MOT formulation of adversarial multiclass classification

Assume that B(x1, ε) 6⊆ F1. Since (F1, F2, F3) is a partition, it must be the case that
either F2 ∩B(x1, ε) 6= ∅ or F3 ∩B(x1, ε) 6= ∅. Without loss of generality, assume the former
case only. The other cases are analogous. F2∩B(x1, ε) 6= ∅ yields that an optimal µ̃1 for the
adversary must satisfy spt(µ̃1) ⊆ F2. Then, a corresponding classifying power is at most
ω2 + ω3 since the learner always misclassifies class 1.

However, given any such (µ̃1, µ̃2, µ̃3), the learner has an incentive to modify a classifying
rule again. Let F ′1 := F1 ∪ spt(µ̃1), F ′2 := F2 \ spt(µ̃1) and F ′3 := F3. Similar as above,
letting f ′ = (1F ′1 ,1F ′2 ,1F ′3), such that

1 = B(f ′, µ̃) > ω2 + ω3 ≥ B(f, µ̃).

Therefore, any strong partition f = (1F1 ,1F2 ,1F3) cannot sustain a saddle point in this
case.

We want to emphasize that the same reasoning still holds for other cases. In other
words, even this simple discrete measures, it is necessary to extend strong partition to weak
partition in order to achieve the minimax value.

Case 4 - (ii) ω1 ≥ ω2 + ω3. In this case, no matter how the adversary perturbs the
distribution, there will always be an excess mass from class 1 that won’t be matched to
other classes. Motivated by this observation, let κ = ω1 − (ω2 + ω3) ≥ 0 and consider the
following measures (µ̂1, µ̂2, µ̂3):

µ̂1 = ω2δx12 + ω3δx13 + κδx1 ,

µ̂2 = ω2δx12 ,

µ̂3 = ω3δx13 .

Consider (f̂1, f̂2, f̂3) = (1, 0, 0). We claim that (f̂ , µ̂) = ((f̂1, f̂2, f̂3), (µ̂1, µ̂2, µ̂3)) is a saddle
point. Note that a straightforward computation yields Bµ(f̂ , µ̂) = ω1.

For any (f1, f2, f3) ∈ F ,

Bµ(f, µ̂) =

∫
X
f1(x)dµ̂1(x) +

∫
X
f2(x)dµ̂2(x) +

∫
X
f3(x)dµ̂3(x)

= ω2f1(x12) + ω3f1(x13) + κf1(x1) + ω2f2(x12) + ω3f3(x13)

= ω2(f1(x12) + f2(x12)) + ω3(f1(x13) + f3(x13)) + κf1(x1)

≤ ω2 + ω3 + κ

= ω1.

On the other hand, for any feasible (µ̃1, µ̃2, µ̃3),

Bµ(f̂ , µ̃) =

∫
X
f̂1(x)dµ̃1(x) +

∫
X
f̂2(x)dµ̃2(x)

∫
X
f̂3(x)dµ̃3(x) = ω1.

The claim follows. In this case, B∗µ = ω1. Here, ω1 ≥ 1
2 , since ω1 ≥ ω2 + ω3 and

∑
ωi = 1.

In the case that ω1 = ω2 + ω3, both Case 4 -(i) and Case 4 -(ii) provide B∗µ = 1
2 , which

shows the consistency.
We now show that the adversary has no incentive to use the point x23, in contrast to

what happens in Case 4 -(i). Fix a small η > 0, and suppose that the adversary moves η
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mass from each of ω2δx2 and ω3δx3 to the point x23, respectively. Construct corresponding
measures:

µ̃1 = (ω2 − η)δx12 + (ω3 − η)δx13 + κ′δx1 ,

µ̃2 = ηδx23 + (ω2 − η)δx12 ,

µ̃3 = (ω3 − η)δx13 + ηδx23

where κ′ = ω1 − (ω2 + ω3 − 2η) = κ + 2η. We show that µ̃ can not be a solution to the
adversarial problem by showing that the learner can select a strategy f̃ for which

Bµ(f̃ , µ̃) > ω1.

Indeed, we can select f̃ := (1B(x1,ε)
, 0,1X\B(x1,ε)

). It follows that

Bµ(f̃ , µ̃) =

∫
X
f̃1(x)dµ̃1(x) +

∫
X
f̃2(x)dµ̃2(x) +

∫
X
f̃3(x)dµ̃3(x)

= (ω2 − η) + (ω3 − η) + κ′ + η = ω1 + η > ω1.

Notice that while the geometry of points x1, x2, x3 in case 4 -(i) and case 4 -(ii) is the same,
the geometries of the corresponding optimal adversarial attacks are determined by the full
distribution µ and not just by the geometry of its support. In fact, the optimal adversarial
attacks µ̃ and the optimal barycenter measure λ depend on not only the geometry of the
support of µ but also the magnitudes of its marginals, µi’s.

5.3 Numerical Experiments

In this section we illustrate our theoretical results numerically. We obtain robust classifiers
for synthetic data sets and compute optimal adversarial risks for two popular real data sets:
MNIST and CIFAR.

From the perspective of numeric, our aim is to solve the MOT problem (2) and its
dual for an empirical measure µ whose support consists of n data points. We use Sinkhorn
algorithm for concreteness. Introduced in Cuturi (2013), Sinkhorn algorithm has been one
of the central algorithmic tools in computational optimal transport in the past decade. This
algorithm, originally introduced in the context of standard (2-marginal) optimal transport
problems, was extended to MOTs in Benamou, Carlier, Cuturi, Nenna, and Peyré (2015);
Benamou, Carlier, and Nenna (2019). Works that study the computational complexity of
generic MOT problems include: Lin, Ho, Cuturi, and Jordan (2019); Tupitsa, Dvurechensky,
Gasnikov, and Uribe (2020); Haasler, Ringh, Chen, and Karlsson (2021); Carlier (2022). In
particular, Lin, Ho, Cuturi, and Jordan (2019) and Tupitsa, Dvurechensky, Gasnikov, and
Uribe (2020) prove the complexity of MOT Sinkhorn algorithm to be Õ(K3nKε−2) and
Õ(K3nK+1ε−1), respectively, where ε is the error tolerance.

In our first illustration, we consider a data set (x1, y1), . . . (xn, yn) in R2 × {1, 2, 3}
obtained by sampling yi uniformly from {1, 2, 3} and then xi from a certain Gaussian
distribution with parameters depending on the outcome of yi. We consider the cost c = cε
from Example 1 with d the Euclidean distance in R2 and different values of ε. In Figure
5 we show the labels assigned to the data by the (approximate) robust classifier, which we
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Figure 4: Illustrations of the adversarial attacks in all cases from section 5.2. Weights on
arrows indicate the amount of mass the adversary moves to a perturbed point.
x’s are the support of λ in (10). One observes that the support of λ depends on
both the geometry of data distributions and their magnitudes.

computed using Corollary 33 for the dual potentials φj generated by the MOT Sinkhorn
algorithm.

In our second illustration, we use the mutlimarginal version of Sinkhorn algorithm to
compute the adversarial risk R∗µ (i.e. the optimal value of (1)) for µ an empirical measure
supported on a subset of either the CIFAR or MNIST data sets. In both cases we consider
samples belonging to one of four possible classes in order to decrease the computational
complexity of the problem. We use the cost c from Example 1 for different values of ε and
two choices of d: the Euclidean distance `2 and the `∞ distance. The results are shown in
Figure 6. We can observe that for the CIFAR data set the two distance functions behave
similarly: while not the same, the plots exhibit a similar qualitative behavior. For the
MNIST data set, on the other hand, the situation is markedly different: in contrast to the
plot for the `2 distance, the adversarial risk with `∞ distance varies dramatically as ε grows.
This observation is consistent with the findings in Pydi and Jog (2021a) for the binary case.

We emphasize that Figure 6 only provides approximations of the true adversarial risk
R∗µ. Indeed, recall that R∗µ = 1−B∗µ. Approximating B∗µ using the MOT Sinkhorn algorithm
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Figure 5: Three Gaussians in R2. One can observe that as ε grows the robust classifying
rule becomes simpler, as expected.

will always produce an upper bound for B∗µ since the regularization term effectively restricts
the solution space of (2). Thus, the multimarginal Sinkhorn algorithm always yields a lower
bound for the true R∗µ. Of course, one can always compute a tighter lower bound by reducing
the regularization parameter η at the expense of increasing the computational burden.

As way of conclusion for this section we provide pointers to the literature discussing the
computational complexity of the Wasserstein barycenter problem; Wasserstein barycenter
problems are specific instances in the MOT family. On the one hand, Altschuler and
Boix-Adserà (2022) prove certain computational hardness of the barycenter problem in
the dimension of the feature space (here X ). On the other hand, Altschuler and Boix-
Adsera (2021) present an algorithm that can get an approximate solution of the optimal
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Figure 6: Adversarial risks (1) computed using the multimarginal Sinkhorn algorithm. η is
the entropic regularization parameter of the Sinkhorn algorithm. The maximum
adversarial risk in all cases is 0.75 because we consider 4 classes and an equal
number of points in each class. Due to the entropic penalty, the multimarginal
Sinkhorn algorithm always gives an upper bound for the optimal classification
power B∗µ, hence gives a lower bound for the adversarial risk R∗µ.

barycenter in polynomial time for a fixed dimension of the feature space. While our MOT
is not the standard barycenter problem, it is still a generalized version thereof, and thus,
it is reasonable to expect that the structure of our problem can be used in the design of
algorithms that perform better than off-the-shelf MOT solvers. We leave this task for future
work.

6. Conclusions and future directions

In this paper we have discussed a series of equivalent formulations of adversarial problems
in the context of multiclass classification. These formulations take the form of problems in
optimal transport, specifically, multimarginal optimal transport and (generalized) Wasser-
stein barycenter problem. Besides providing a novel connection between apparently unre-
lated fields, we have also discussed a series of theoretical and computational implications
emanating from these equivalences. In what follows we briefly expand this discussion, while
at the same time provide a few perspectives on future work.
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First, it is of interest to design scalable algorithms for solving the MOT problem (2).
In general, MOT problems are not scalable in the number of marginals of the problem.
However, this may not necessarily be an issue for our MOT problem, since it possesses
a special structure that, as we discussed throughout section 3, allows us to interpret the
desired MOT problem as a generalized barycenter problem; barycenter problems, at least in
their standard version, are known to scale much better than general MOT problems. Tailor-
specific algorithms for our MOT problem can take advantage of the favourable geometric
structure of a given data set. Indeed, if a data set is such that there is only a small number
of classes (much smaller than K) that interact with each other at the scale implicitly
specified by the cost c (think of Example 1), then the effective size of problem (2) will be
considerably smaller than the size of the worst case setting —see the reformulation (21).

Second, it would be of interest to use (1) to help in the training of robust classifiers
within specific families of models. Notice that (1) is model free from the perspective of the
learner, but in applications practitioners may be interested in solving a problem like:

inf
f∈G

sup
µ̃∈P(Z)

{R(f, µ̃)− C(µ, µ̃)} ,

which differs from (1) in the family of classifiers G, which may be strictly smaller than F ; for
example, G could be a family of neural networks, kernel-based classifiers, or other popular
(parametric) models. There are two ways in which problem (1) is still meaningful for the
above model-specific problem: 1) the optimal µ̃∗ computed from the problem (1) can be
used as a way to generate adversarial examples that could be used during training of the
desired model; 2) the optimal value of (1) can serve as a benchmark for robust training
within any family of models.

Third, more theoretical understanding of optimal dual potentials and robust classifiers
is required. As stated in Corollary 33, an optimal robust classifier can be obtained from
solutions to (14), or, equivalently, from (28) and (29). However, unless c is continuous,
even the existence of Borel measurable dual potentials is not guaranteed, and hence neither
is the existence of optimal robust classifiers. At this stage, it is thus necessary to assume
that the classifier intorduced in Corollary 33 is Borel measurable. This measurability
issue, i.e., that a robust classifier may not be Borel measurable, has been discussed not
only in the adversarial training community Pydi and Jog (2021b); Awasthi, Frank, and
Mohri (2021a,b); Frank (2022); Frank and Niles-Weed (2022), but also more generally in
the distributional robust optimization community, e.g., Blanchet and Murthy (2019). In
general, at this point only the existence of universally measurable robust classifier f∗ can
be guaranteed. Whether there exist Borel measurable robust classifiers for discontinuous
costs (like the one in Example (1)) is a question that we hope to explore in future work.

Finally, it is of interest to investigate the geometric content that profiles like the ones
presented in Figure 6 carry about a specific data set. As illustrated in Figure 6, these curves
are specific signatures (adversarial signatures) of a given data distribution, and thus, they
may be potentially used to capture similarities and discrepancies between different data
sets.

The above are just but a few directions currently under investigation that emanate from
this work.
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