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Abstract

This work shows that the demonstration of Proposition 15 of Germain et al. (2015) is
flawed and the proposition is false in a general setting. This proposition gave an inequal-
ity that upper-bounds the variance of the margin of a weighted majority vote classifier.
Even though this flaw has little impact on the validity of the other results presented in
Germain et al. (2015), correcting it leads to a deeper understanding of the C-bound, which
is a key inequality that upper-bounds the risk of a majority vote classifier by the moments
of its margin, and to a new result, namely a lower-bound on the C-bound. Notably, Ger-
main et al.’s statement that “the C-bound can be arbitrarily small” is invalid in presence
of irreducible error in learning problems with label noise. In this erratum, we pinpoint the
mistake present in the demonstration of the said proposition, we give a corrected version
of the proposition, and we propose a new theoretical lower bound on the C-bound.

Keywords: majority vote, ensemble methods, learning theory, PAC-Bayesian theory,
statistical learning

1. Introduction

Germain et al. (2015) synthetize several papers on the PAC-Bayesian analysis of majority
vote classifiers. A pivotal element of their analysis is a bound on the majority vote for
binary classification linking the risk of such predictors to the first and second moments of
the majority vote’s margins. This result, coined as the C-bound by Lacasse et al. (2006), is
obtained through the one-sided Chebyshev inequality.

Section 4.3 of Germain et al. (2015) introduces formally the C-bound as Theorem 11,
and many of its mathematical properties are demonstrated in Section 4.4 therein. Upon
further inspection, we have found one such property to be incorrect in general, namely, the
claim that “The C-bound can be arbitrarily small, even for large Gibbs risks” (Germain
et al., 2015). The said property was derived from their Proposition 15 which had a flaw
in its demonstration. In this erratum, after recalling the notation and definitions, we first
present Proposition 15 of Germain et al. (2015) and point out the error in its demonstration.
We then provide a concrete example where the result given by Proposition 15 of Germain
et al. (2015) does not hold. We proceed to demonstrate that Proposition 15 holds in the
specific case where the classification problem is devoid of label noise. Finally, we propose
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a new and more general alternative result which consists in an interesting property of the
C-bound in a general setting, namely that it is lower bounded by the expected value of the
variance of the labels.

It is important to mention that in Germain et al. (2015) the said Proposition 15 was
only used in the demonstration of Corollary 16 and that these results are not referenced
again thereafter. Therefore, the current erratum does not affect the validity of other results
presented in Germain et al. (2015), notably the PAC-Bayes guarantees and learning algo-
rithms sourced from the C-bound. Also, even if several subsequent papers cite or exploit
the C-bound, very few have mentioned the erroneous result. Up to our knowledge, it has
been solely mentioned by Segev et al. (2017) and Du and Swamy (2019). We have found
that the results presented in these two works remain valid despite the mistake we address
in this erratum.

2. Notation and Definitions

Throughout this paper, we employ the same notation and definitions used by Germain et al.
(2015) unless specified otherwise. That is, we consider a binary classification problem in
which each example (x, y) consists of an input x and output y belonging to the spaces X
and Y = {−1, 1} respectively. The examples are sampled i.i.d. according to a true unknown
distribution D over X × {−1, 1}. We consider H, a finite set of functions f : X → [−1, 1].
Each such f defines a “voter” in the context of majority vote rules. One may see the output
of a given voter f as a measurement of the confidence of the voter toward a given label.
For example, say we have two voters f1(x) = 0.1 and f2(x) = 0.9, then both voters lean
towards the label 1, but the former less confidently then the latter.

A weighted majority vote is defined by a distribution Q over H. Such a distribution
defines the weight given to each voter, denoted Q(f), which gives rise to the majority vote
classifier BQ(x) = sgn [Ef∼Q f(x)]. This majority vote is also called the Bayes classifier1

in the PAC-Bayesian literature, as opposed to the stochastic Gibbs Classifier GQ; with
Pr(GQ(x)=y) = 1

2 (1 + yEf∼Q f(x)) for y ∈ {−1, 1}. The probability that the majority
vote will make an incorrect prediction of the output for a given example drawn from distri-
bution D is called the risk of the majority vote, or Bayes risk2, and is denoted RD(BQ):

RD(BQ) = Pr
(x,y)∼D

(BQ(x) 6= y) = E
(x,y)∼D

I

(
E

f∼Q
y f(x) ≤ 0

)
,

where I(·) is the indicator function taking value 0 if the input is false and 1 otherwise.
Correspondingly, the probability that the Gibbs classifier makes an error is called the Gibbs
risk and is denoted RD(GQ):

RD(GQ) = Pr
(x,y)∼D

(GQ(x) 6= y) = E
(x,y)∼D

(
1

2
− 1

2
E

f∼Q
y f(x)

)
.

1. The term Bayes classifier, used by Germain et al. (2015), is established in the PAC-Bayesian literature.
It refers to a specific type of majority vote and is not to be confused with the prominent term Bayes
optimal classifier.

2. Similarly, the term Bayes risk is not to be confused with the more common Bayes error which refers to
the error made by the Bayes optimal classifier.
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The term Ef∼Q y f(x) shared by both Bayes risk and Gibbs risk definitions is a commonly
occurring expression in the context of majority votes. It is referred to as the margin of the
majority vote and is denoted MQ(x, y). Given that (x, y)∼D, Germain et al. (2015) study
the margin as a random variable which they denote MD

Q . A longstanding intermediate result
in PAC-Bayes analyses is the factor two bound between the Bayes Risk and the Gibbs risk
(Langford and Shawe-Taylor, 2002; McAllester, 2003). That is, for fixed distributions D
and Q, we have RD(BQ) ≤ 2RD(GQ). The C-bound (Lacasse et al., 2006; Germain et al.,
2015) is a finer upper bound on the Bayes risk and is defined using the variance and
first two moments of the margin MD

Q (denoted µ1(M
D
Q ) and µ2(M

D
Q ) respectively, with

µi(M
D
Q ) = E(x,y)∼D[MQ(x, y)]i). Equivalently, the C-bound can be expressed in terms of

the Gibbs risk RD(GQ) and the expected disagreement (denoted dDQ and defined below):

RD(BQ) ≤ CDQ =
Var(MD

Q )

µ2(MD
Q )

= 1−

(
µ1(M

D
Q )
)2

µ2(MD
Q )

= 1−
(1− 2RD(GQ))2

1− 2dDQ
,

where

µ1(M
D
Q ) = E

(x,y)∼D
E

f∼Q
y f(x) , µ2(M

D
Q ) = E

x∼DX

[
E

f∼Q
f(x)

]2
,

Var(MD
Q ) = µ2(M

D
Q )−

(
µ1(M

D
Q )
)2
, dDQ =

1

2

(
1− µ2(MD

Q )
)
.

In these definitions, DX denotes the marginal distribution on X for a given distribution D.1

We adopt this notation throughout the paper, as well as the use of DY|x to denote the
conditional distribution on the output space Y given a fixed input x ∈ X .

An important note has to be made about the notions of stochasticity and determinism
as they appear in the original paper. The generic use of these terms can be confusing to the
reader as it is sometimes unclear what is meant to be stochastic or deterministic in some
passages. To alleviate this ambiguity we differentiate three distinct sources of stochasticity
that are of importance in the studied framework.

Label noise. The stochasticity of the labels arises when for a given value of x ∼ DX , there
is a non-zero probability of observing more than one value of y ∼ DY|x.

Stochastic voters. Of note, Germain et al. (2015) introduced voters as functions of the
form f : X → [−1, 1], implying they were deterministic predictors. Nevertheless,
the property that a given voter is deterministic remains unused in their analysis of
majority votes. We may wish to consider stochastic voters, such as voters for which
the output follows some distribution. Say we consider a stochastic voter f∗ such that
for any given input x, the output of the voter is a random variable f∗(x) ∼Wx, where
Wx is a distribution over [−1, 1] that depends of the value x. To apply the work of
Germain et al. (2015), one needs only to consider f(x) as the expected output of the
stochastic voter f∗ given by f(x) = Ef∗(x)∼Wx

f∗(x). Doing so, the value f(x) will be
deterministic. Moreover, this is coherent with the idea that f(x) is the confidence of

1. The formula given above for µ2 is the result of an easy calculation (cf. Germain et al., 2015, Eq. (8))
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the voter towards a given label. The discussion in this erratum henceforth encompasses
both deterministic and stochastic voters and we use the general term voter to refer
to voters of both natures.

Stochastic majority vote. We specified that the Bayes classifier BQ is deterministic
while the Gibbs classifier GQ is stochastic. This distinction, made by Germain et al.
(2015), is meant to distinguish between the stochasticity that arises from sampling
a single voter (Gibbs) as opposed to averaging over the value of each voter f ∈ H
(Bayes). It is not meant to refer to the nature of the individual voters as we remind
that both Germain et al. (2015) and this erratum consider deterministic voters only.

We remind that this erratum is valid when considering the deterministic majority vote
classifier that embed the expected value of its voters for the Bayes risk of Equation (1). The
interested reader may note that the recent work of Zantedeschi et al. (2021) provide PAC-
Bayes bounds for stochastic majority votes where the voters weights are random variables.
While this is a related line of work, it differs from ours and Germain et al. (2015) as we
only consider majority votes for which the weight of each voter is fixed.

3. The Mistake

Let us recall the statement and proof of the problematic proposition from Germain et al.
(2015). The structure of the following proof is the same as in the original paper. However,
we chose to present each mathematical argument clearly according to the explanations given
by Germain et al. (2015) following their proof as many details are absent from the proof
itself. We believe this improves both the clarity of the proof and the subsequent discussion
of its flaw. Note that a similar result, equally erroneous, is stated without proof in Lacasse
et al. (2006, Proposition 3).

Erroneous result

Proposition 1 (Proposition 15 in Germain et al. (2015)) For any countable set of
voters H, any distribution Q on H, and any distribution D on X × {−1, 1}, we have

Var(MD
Q ) ≤

∑
f∈H

Q2(f) +
∑
f1∈H

∑
f2∈H
f2 6=f1

Q(f1)Q(f2) Cov
(x,y)∼D

(f1(x), f2(x)).

Proof We begin with the definition of the margin, which can be seen as a sum of random
variables, and develop the variance of the sum into the sum of covariances:

Var
(
MD

Q

)
= Var

(x,y)∼D
(MQ(x, y))

= Var
(x,y)∼D

∑
f∈H

Q(f)yf(x)


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Erroneous result

=
∑
f∈H

Q2(f) Var
(x,y)∼D

yf(x) +
∑
f1∈H

∑
f2∈H
f2 6=f1

Q(f1)Q(f2) Cov
(x,y)∼D

(yf1(x), yf2(x))

=
∑
f∈H

Q2(f) Var
(x,y)∼D

yf(x) +
∑
f1∈H

∑
f2∈H
f2 6=f1

Q(f1)Q(f2) Cov
(x,y)∼D

(f1(x), f2(x))

≤
∑
f∈H

Q2(f) +
∑
f1∈H

∑
f2∈H
f2 6=f1

Q(f1)Q(f2) Cov
(x,y)∼D

(f1(x), f2(x)).

The inequality is given by the fact that the definitions of y and f(x) implie yf(x) ∈ [−1, 1],
from which we infer that Var

(x,y)∼D
yf(x) ≤ 1 for all voters f ∈ H.

The problem in this demonstration arises when we simplify Cov(x,y)∼D (yf1(x), yf2(x))
to Cov(x,y)∼D (f1(x), f2(x)), which could also be written as Covx∼DX (f1(x), f2(x)). As
this final writing is independent of y, this equality would imply that the value y has no
effect in the expression Cov(x,y)∼D (yf1(x), yf2(x)). This simplification does not stand in
the general case as it is possible to find various examples of functions fi and distributions D
that do not satisfy this equality. As an example, consider f1(x) = 1, f2(x) = −1 and
Pry∼DY|x(y=1) = Pry∼DY|x(y=− 1) = 1

2 for any given value x ∈ X . Using these values, we
get the following, which disproves the equality assumed in the said simplification:

Cov(f1(x), f2(x)) = Cov(1,−1) = 0

Cov(yf1(x), yf2(x)) = Cov(y,−y) = −Cov(y, y) = −1.

4. Falsifying Proposition 1

Even though the demonstration of Proposition 1 is flawed, this does not necessarily imply
that the proposition itself does not stand. In principle, the proposition might be valid due
to a different argument. However, in order to show that Proposition 15 of Germain et al.
(2015) is indeed false, we introduce the following corollary. If Proposition 1 were true, then
so would Corollary 2 which follows directly from it.
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Erroneous result

Corollary 2 (Corollary 16 in Germain et al. (2015)) Given n independent voters
under a uniform distribution Q, we have

RD(BQ) ≤ CDQ ≤
1

n(1− 2dDQ)
=

1

n(1− 2RD(GQ))
.

To prove the above corollary, Germain et al. (2015) note that under the hypothesis
that the n voters are independents under a uniform distribution, Proposition 1 implies that
Var(MD

Q ) ≤ 1/n; the result then follows from the definition of the C-bound.

At first glance, the corollary seems intuitive. Increasing the number of voters should im-
prove the quality of the classification. Therefore, we would expect the C-bound to decrease.
The main problem with this result is that it implies that as the number of independent vot-
ers n goes to infinity, the right side goes to 0. This means that for any binary classification
problem, the risk of the majority vote can be made arbitrarily small by using a sufficiently
large set of independent voters. Though this may seem like a desirable property, it is not
realistic in the presence of label noise. In such case, the noise associated with the output y
given a certain x will induce a minimum amount of erroneous classification (i.e., irreducible
error). Notice that the label noise is an inherent property of a given distribution D, and
the irreducible error (also known as Bayes error in the literature) is achieved by an optimal
prediction rule for D. This irreducible error is not 0 in the presence of label noise, which
contradicts the statement of Corollary 2. To clearly illustrate this contradiction, consider
the following example.

Counter-example. Suppose a binary classification problem where each example (x, y)∼D
is such that x is drawn from the uniform distribution over a one dimensional input space
X = [0, 1], and the output is either y = 1 with probability p = 0.8 or y = −1 with prob-
ability 1 − p = 0.2 (that is, y is independent of x). Let us now consider a majority vote
classifier made from the set of deterministic votersH := {fi(x)} for i ∈ {1, 2, ..., n} such that
fi(x) = 1 if the ith decimal of x is greater or equal than 2, and fi(x) = −1 otherwise. As x
follows a uniform distribution over [0, 1], every decimal value will be taken from 0, 1, 2, ..., 9
with probability 0.1 for each value. Furthermore, the value of every decimal positions are
independent from one another, rendering the output of each voter mutually independent.
Finally, each voter fi ∈ H is given an equal weight of Q(fi) = 1/n.

According to Corollary 2, this majority vote should yield a C-bound that decreases
asymptotically to 0 as the number of voters n increases. Because RD(BQ) ≤ CDQ , this
implies that given a large enough amount of voters, it would be possible to predict with
almost certainty the noisy label y, which is uncorrelated to both the input x and the voters.
However, this result is clearly incorrect, as there is always a minimal probability of 2/10
to make a false prediction, i.e., RD(BQ) ≥ 0.2. Moreover, given the construction of data
distribution and the voters, we obtain from the definition of the C-bound CDQ = 400+144n

400+225n . It

is easy to see that the value CDQ does not go to 0 as n grows as we have CDQ > 0.64 for any
value n > 0. Thus, the C-bound does not possess the property stated by Corollary 2.
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In other words, the result of said corollary is incorrect as we have now given a coun-
terexample. Since the only argument in the demonstration of the corollary is the use of
Proposition 1, this implies that Proposition 1 is also incorrect.

5. Proposition 1 in a Setting Devoid of Label Noise

We have now shown that Proposition 1 is incorrect as stated in the general case, namely
when the labelling task includes label noise. The aim of the current section is to rectify
Proposition 1 in a setting devoid of label noise, by introducing new assumptions on the data
distribution and the voters. In the following section we build upon this knowledge a new,
correct and improved result that stands in the general case.

Even though the assumption that a given problem is devoid of label noise might not be
realistic in most applications, we can see this case as an easy classification problem where
an error of 0 should be achievable for some classifier. Given this assumption, we would thus
desire a majority vote made with “good enough” voters to come arbitrarily close to null
classification error. Moreover, we would expect a good bound on the risk of majority votes
to reflect this fact by being potentially arbitrarily small in this setting.

We begin by noting that the assumption that distribution D is devoid of label noise
implies that there exists a function that maps each input x to its correct label.

Assumption 1: Deterministic labels. The data distribution D is such that there
exists a function g : X → {−1, 1} for which y = g(x) for all (x, y) ∼ D, or equivalently
Pry∼DY|x

(
y=g(x)

)
= 1 for all x ∈ X .

The counter-example of the previous section also illustrates that uncorrelated voters do
not necessarily result in an accurate majority vote, as it does not imply that the input-
output correlation is taken into account. Thus, we need a second assumption, capturing
the fact that the majority vote must be made of “good enough” voters. Namely, we want
each voter to classify this input correctly with a probability larger than 1/2.

Assumption 2: Sufficiently accurate voters. For any given pair (x, y) ∼ D, for any
voter fi ∈ H, yfi(x) > 0; in other words, all voters are leaning towards the right label
(although with scores, i.e., varying confidence levels) in a non ambivalent manner (i.e.,
fi(x) 6= 0).

Given the definition of a voter fi, Assumption 2 implies that for any given input x in X
and any given voter fi in H, the expected output of fi(x) will agree with the true value of y,
meaning they will share the same sign. This assumption is very strong, as it will break when
a single voter does not classify a given x with sufficient probability. It may seem trivial that
under this assumption the majority vote will be correct every time and will thus have an
actual risk of 0. Recall however that the majority vote risk RD(BQ) only considers the sign
of the margin [yEf∼Q f(x)] on (x, y) ∼ D while the computation of the C-bound depends
on the value of the margin itself. In other words, the risk RD(BQ) depends on which label
the majority vote is most confident in but the C-bound further considers how confident the
vote is. This implies that various majority votes which make the same prediction (same
risk RD(BQ)) may have different C-bound as they may have different margins. Therefore,
the C-bound is not trivially 0 under the above assumptions.
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We now show that an updated Proposition 1 holds given these two new assumptions,
namely that the labels are deterministic and the voters are sufficiently accurate.

Proposition 3 (Proposition 15 in Germain et al. (2015) corrected) For any count-
able set of voters H, any distribution Q on H, and any distribution D on X ×{−1, 1} such
that there exists a function g : X → {−1, 1} for which y = g(x) and yf(x) > 0 for all
(x, y) ∼ D and f ∈ H, we have

Var(MD
Q ) ≤

∑
f∈H

Q2(f) +
∑
f1∈H

∑
f2∈H
f2 6=f1

Q(f1)Q(f2) Cov
(x,y)∼D

(f1(x), f2(x)) .

Proof Let g(x) be the labelling function assigning each value x to its true, and noiseless,
label y and let fi(x) be any voter taken from H. Since yfi(x) > 0 for any voter fi ∈ H
and for any given x, we have that the true labelling function g(x) and the voter fi(x) are
of the same sign. Thus, we always have g(x)fi(x) ≥ fi(x) ≥ −g(x)fi(x), which gives us the
following inequality:

E
x∼DX

(g(x)fi(x)) ≥ E
x∼DX

(fi(x)) ≥ − E
x∼DX

(g(x)fi(x))

⇐⇒ E
x∼DX

(g(x)fi(x)) ≥
∣∣∣∣ E
x∼DX

(fi(x))

∣∣∣∣
=⇒

[
E

x∼DX
(g(x)fi(x))

]2
≥
[

E
x∼DX

(fi(x))

]2
.

Since this inequality is true for each voter inH, we consider the previous inequality using
the functions fi and fj . Using the fact that for values a, b, c, d > 0 we have the implication
a < c, b < d ⇒ ab < cd, we get the following:[

E
x∼DX

(g(x)fi(x))

]2 [
E

x∼DX
(g(x)fj(x))

]2
≥
[

E
x∼DX

(fi(x))

]2 [
E

x∼DX
(fj(x))

]2
=⇒ E

x∼DX
(g(x)fi(x)) E

x∼DX
(g(x)fj(x)) ≥ E

x∼DX
(fi(x)) E

x∼DX
(fj(x)).

Since g(x)fi(x) > 0 for any x, we have that both terms on the left side of the inequality are
positive prior to being squared. Knowing this guarantees that the inequality still holds as
we take the square root on both sides. This inequality can then be used as follows:

Cov
(x,y)∼D

(yfi(x), yfj(x))

= E
(x,y)∼D

(y2fi(x)fj(x))− E
(x,y)∼D

(yfi(x)) E
(x,y)∼D

(yfj(x))

= E
(x,y)∼D

(1fi(x)fj(x))− E
(x,y)∼D

(g(x)fi(x)) E
(x,y)∼D

(g(x)fj(x))

≤ E
x∼DX

(fi(x)fj(x))− E
x∼DX

(fi(x)) E
x∼DX

(fj(x))

= Cov
x∼DX

(fi(x), fj(x))

= Cov
(x,y)∼D

(fi(x), fj(x)).
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The last equality only serves to highlight that since y is absent from both fi(x) and fj(x),
computing the covariance according to either the joint distribution D or the marginal dis-
tribution DX does not affect the result. We have now proven that under our new set
of hypothesis, the inequality Cov(x,y)∼D (yf1(x), yf2(x)) ≤ Cov(x,y)∼D (f1(x), f2(x)) al-
ways stands. We note that the original proof erroneously assumed this to be an equality.
Nonetheless, we can apply this new inequality to the original proof as follows:

Var
(x,y)∼D

(MQ(x, y)) = Var
(x,y)∼D

∑
f∈H

Q(f)yf(x)


=
∑
f∈H

Q2(f) Var
(x,y)∼D

yf(x) +
∑
f1∈H

∑
f2∈H
f2 6=f1

Q(f1)Q(f2) Cov
(x,y)∼D

(yf1(x), yf2(x))

≤
∑
f∈H

Q2(f) Var
(x,y)∼D

yf(x) +
∑
f1∈H

∑
f2∈H
f2 6=f1

Q(f1)Q(f2) Cov
(x,y)∼D

(f1(x), f2(x))

≤
∑
f∈H

Q2(f) +
∑
f1∈H

∑
f2∈H
f2 6=f1

Q(f1)Q(f2) Cov
(x,y)∼D

(f1(x), f2(x)).

The final inequality is given by the fact that Var
(x,y)∼D

yf(x) ≤ 1 for all voters f ∈ H.

We first point out that under these additional assumptions, Corollary 2 is also valid
as its proof is a direct consequence of Proposition 1. This implies that the risk of the
majority vote can be made arbitrarily small by increasing the amount of “good enough”
voters, which as stated previously, is not trivially true. Again, this proposition is intended
as a confirmation that the majority vote and C-bound behave well under the right (though
very strong) assumptions and not as a practical result.

6. Optimal Value of the C -Bound

The counter-example given in Section 4 was based on the knowledge that the risk of the
majority vote should never be inferior to minimal risk induced by the label noise in D. We
have shown in Section 5 that the C-bound can converge to the minimal risk in a setting
deprived of label noise by proving that in such a setting, using voters of sufficient quality
renders Corrolary 2 true. In this section, we aim to generalise this result to problems which
contain label noise. To do so, we introduce in Proposition 4 a theoretical lower-bound for
the C-bound for a given distribution D as well as the majority vote which achieves this
bound.

Proposition 4 For any distribution D, there exist a majority vote BQ such that

RD(BQ) ≤ CDQ = E
x∼DX

(
Var

y∼DY|x
(y)

)
.

Moreover, there is no majority vote which can produce a lower C-bound.
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Proof Let h(x) = Ey∼DY|x(y) and consider a majority vote BQ defined by a set of voters
H and a distribution Q over this set. The score given to any input x by said majority vote
BQ is given by

∑
f∈HQ(f)f(x). We first notice that this majority vote is equivalent to a

majority vote comprised of a single voter k(x) =
∑

f∈HQ(f)f(x) as the margin of both
majority vote would follow the same distribution. To see this, let MQ′(x, y) be the margin
function of this new majority vote where Q′ is a dirac distribution on the single voter k(x).
We then have

MQ(x, y) = E
f∼Q

[yf(x)] = y E
f∼Q

[f(x)] = yk(x) = E
k∼Q′

[yk(x)] = MQ′(x, y) .

Since both functions MQ(x, y) and MQ′(x, y) are equal for any value (x, y), both margins
(MD

Q′ and MD
Q ) will have the same distribution. We remind that the C-bound can be defined

using only the moments of its margin. Therefore, as both majority votes lead to the same
margin, they will possess the same C-bound. We therefore adopt this equivalent majority
vote which uses a single voter k(x) and the margin MD

Q for the remainder of the proof. We
then consider the definition of the C-bound and proceed as follows (recall that y ∈ {−1, 1},
and therefore y2 = 1):

CDQ = 1−

(
µ1(M

D
Q )
)2

µ2(MD
Q )

= 1−

(
E

(x,y)∼D
(yk(x))

)2

E
(x,y)∼D

(y2k(x)2)

= 1−

(
E

(x,y)∼D
(k(x)h(x))

)2

E
(x,y)∼D

(k(x)2)

≥ 1−
E

(x,y)∼D
(k(x)2) E

(x,y)∼D
(h(x)2)

E
(x,y)∼D

(k(x)2)

= 1− E
(x,y)∼D

(h(x)2) .

The above inequality is given by the Cauchy-Schwarz inequality. We can easily see that by
choosing k such that k(x) = h(x) for all x, the inequality becomes an equality. This
means that the value of the C-bound for a given distribution D is lower-bounded by
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1−E(x,y)∼D(h(x)2), which is always achievable. We can simplify this expression as follows:

CDQ = 1− E
(x,y)∼D

(h(x)2)

= 1− E
(x,y)∼D

[(
E

y∼DY|x
(y)

)2
]

= E
(x,y)∼D

[
1−

(
E

y∼DY|x
(y)

)2
]

= E
(x,y)∼D

[
E

y∼DY|x
(y2)−

(
E

y∼DY|x
(y)

)2
]

= E
(x,y)∼D

(
Var

y∼DY|x
(y)

)
.

Proposition 4 can be seen as a rigorous demonstration that Proposition 1, namely that
the C-bound can be made arbitrarily small for any given problem, is incorrect. By defini-
tion, it is clear that the C-bound is lower-bounded by the majority vote risk, which is an
irreducible term and greater than zero in the presence of noise. Nonetheless, as the original
erroneous proposition contradicted this claim, we wish to emphasise there is no inherent
contradiction in the definition of the C-bound. Indeed, we have proven that the C-bound
for any given majority vote is lower-bounded by a certain value, which will be greater than
0 if there is any label noise in the distribution D. This result also offers various interesting
realisations about the C-bound.

First, there exists a majority vote for any problem such that the C-bound is equal to the
mean value of the variance of y for a given input x taken over the input space. This hints
towards the fact that the C-bound may degrade quickly if there is significant label noise in
the data. For example, consider the classification problem introduced as a counter-example
in Section 3. In this case, we easily compute that the C-bound is lower bounded by the value
0.64. This is coherent with the previously found value CDQ = 400+144n

400+225n which converges to
the optimal value asymptotically. This means that for this problem, no majority vote can
produce a C-bound lower than 0.64. This is true even for a majority vote that would always
label y = 1, which would have true risk of 1/5. This suggests that the C-bound may be
too vacuous in settings where the label noise is significant. In fact, one may easily compute
that in a context where the label noise is at least 1

2 −
1

2
√
2
≈ 0.1464 for any given input x,

the C-bound is lower bounded by 1/2 for any given majority vote and is thus uninformative
as any voter with a risk greater than 1/2 behaves at least as poorly as a fair coin toss. This
differs from the original (erroneous) result of Corollary 2 which suggested that the C-bound
could be an optimal tool in any setting.

Second, we observe that if y is assigned deterministically, the value of the lower bound
of the C-bound is 0 due to the fact that Var(y|x) = 0. This is a very desirable property as
it suggests the C-bound could be arbitrarily small in a deterministic setting and is coherent
with Proposition 3.
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Finally, we notice that for the C-bound to be minimal, the optimal value of the ag-
gregated voters

∑
f∈HQ(f)f(x) given by the majority vote should be equal to h(x) =

Ey∼DY|x(y) for any given input x. This means that according to the C-bound, the confi-
dence of the prediction of a good majority vote for any given input should be representative
of the label noise in the distribution for said input. In other words, even though it is known
that the optimal classifier always assigns a given x to its most likely label, many majority
votes with vastly different margins can capture this behaviour. To minimise the C-bound,
a majority vote must also identify the exact label noise of the input x according to D. This
suggests that minimising the C-bound may lead to a model that is more informative about
the true distribution D when compared to selecting a model that simply minimises the risk.
Exploring such behaviour would however require further investigation which exceeds the
scope of this erratum and may be explored in future works.

7. Conclusion

Throughout this paper, we have pointed out the fact that Proposition 1 as it is stated in
Germain et al. (2015, Proposition 15) is flawed as well as the erroneous nature of the propo-
sition in an applied setting. We were able to correct the statement of the said proposition
in a noiseless setting based on the initial intuition given by the authors. This led to the
elaboration of a new proposition, Proposition 4, which holds in the general setting. We
believe this new property deepens the understanding of the C-bound, notably by demon-
strating its shortcomings in problems where a great amount of label noise is present as well
as providing new insights regarding the potential properties of models for which the value
of the C-bound is optimal.
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