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Abstract

We develop a theory of limits for sequences of dense abstract simplicial complexes, where
a sequence is considered convergent if its homomorphism densities converge. The limiting
objects are represented by stacks of measurable [0, 1]-valued functions on unit cubes of
increasing dimension, each corresponding to a dimension of the abstract simplicial complex.
We show that convergence in homomorphism density implies convergence in a cut-metric,
and vice versa, as well as showing that simplicial complexes sampled from the limit objects
closely resemble its structure. Applying this framework, we also partially characterize the
convergence of nonuniform hypergraphs.

Keywords: Simplicial complex, graphon, stochastic topology, topological data analysis,
graph limit

1. Introduction

The theory of graph limits has been one of the most fruitful developments in modern combi-
natorics, with applications ranging from extremal graph theory to statistical physics (Borgs
et al., 2008, 2012; Lovász, 2012). Beyond combinatorics, graphs are undeniably of great
interest in machine learning and data science applications, where they are used to reflect
“geometry” in data (Bronstein et al., 2017). Moreover, graphs can be viewed as specific
types of more general objects that capture higher-order relationships, such as simplicial
complexes (Schaub et al., 2021). Given the fruitful applications of the theory of graphons
in data science (Ruiz et al., 2020; Roddenberry et al., 2021; Navarro and Segarra, 2022;
Coppini, 2022; Maskey et al., 2023), it is natural to ask how a similar theory can be devel-
oped for higher-order relational objects. Viewing graphs as (abstract) simplicial complexes
of dimension one, we aim to develop such a theory for limiting objects of simplicial com-
plexes. Indeed, recent work in stochastic topology has studied the topological properties of
large random simplicial complexes, characterizing their connectivity and (co)homology (Bo-
browski and Krioukov, 2022).

An example of such a random simplicial complex is a random geometric Čech complex.
Let µ be a probability measure on Rd for some integer d ≥ 1, and let ε > 0 be a real number.
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Denote the support of µ by X = supp(µ), and treat X as a metric probability space, with
the metric inherited from Rd. For some fixed ε > 0, we consider the Čech complex of X in
Rd with radius ε, which is defined as the infinite simplicial complex Čε(X ,Rd) composed of
all finite subsets of X with diameter strictly less than ε.
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Figure 1: Čech complexes from a
bouquet of circles in R2.

Denoting by Tubε/2(X ,Rd) the set of all points

in Rd that are less than ε/2-away from X , the set
of all open balls of radius ε/2 centered at points in
X is a cover of Tubε/2(X ,Rd) by contractible open
sets. The nerve theorem then implies that the geo-
metric realization of the Čech complex Čε(X ,Rd) is
homotopy equivalent to Tubε/2(X ,Rd). As an exam-
ple, let X be a bouquet of two unit circles in R2, that
is, the union of two circles of unit radius centered at
(−1, 0) and (1, 0) respectively, as pictured in Figure 1,
and let µ be the uniform measure on X . Clearly, the
space Tubε/2(X ,R2) (pictured in Figure 1 as the gray
shaded region) is homotopy equivalent to X for any
ε < 2.

The field of topological data analysis (TDA) (Carlsson, 2009) has leveraged this idea
to great success, replacing troublesome computations about the topological structure of
complicated spaces with more tractable computations on approximations formed from point
clouds, such as the Čech, or more commonly, Vietoris-Rips complex. In practice, TDA
applications typically do not have access to the entire space X ; rather, a finite set of n
points Xn = {X1, . . . , Xn} in X sampled i.i.d. according to the probability measure µ
is available, from which the Čech complex Čε(Xn,Rd) is formed. This Čech complex is
used as an “estimate” of sorts for Čε(X ,Rd). If the space X is compact, one can show
that as n → ∞, the space Xn with the Euclidean metric almost surely converges to X in
the Gromov-Hausdorff metric. This implies, for instance, convergence of the persistence
diagrams of Xn to that of X in the bottleneck distance (Chazal et al., 2009). Returning to
our example of the bouquet of circles, see in Figure 1 that a finite subset Xn ⊂ X yields a
Čech complex that preserves the topological features of the space, for example, having a free
fundamental group of rank two. Observe that sampling more points would not introduce
any additional topological features to the constructed complex.

However, convergence of this sort is not as easy to establish when X is not compact.
For instance, the case when X = Rd and µ is a radially symmetric power-law, exponential,
or Gaussian distribution was considered by Adler et al. (2014), where they showed that
under many circumstances, highly nontrivial homological features emerge in ways that vary
with n, precluding the convergence results mentioned above. We consider an alternative
way to describe the convergence of the Čech complexes Čε(Xn,Rd) to Čε(X ,Rd). Observe
that each Čε(Xn,Rd) is a random induced subcomplex of Čε(X ,Rd), with nodes distributed
i.i.d. according to the probability measure µ. This motivates a preliminary definition of
convergence for simplicial complexes: we say that a sequence of finite simplicial complexes
Kn is convergent if for all k ≥ 1 and all finite simplicial complexes F with vertex set [k],
the probability that the induced subcomplex of k nodes chosen uniformly at random from
Kn is equal to F is convergent. That is to say, the distribution of uniformly sampled
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induced subcomplexes of any fixed size converges as n → ∞. We indicate this further
subsampling operation in red in Figure 1. In this case, for instance, it holds for all n that
the probability of subsampling a cycle on k < bπ/ arcsin(ε/2)c nodes from Čε(Xn,R2) is
zero. The characterization of convergence via the distribution of induced substructures is
closely related to the theory of graphons (Borgs et al., 2008). Following this approach,
we develop an analogous limit theory for simplicial complexes. We consider a sequence
of simplicial complexes to be convergent if their homomorphism densities converge, which
we show to be equivalent to convergence in a cut-metric. The limiting object of such a
convergent sequence is described in terms of a collection of symmetric kernel functions on
the sequence of unit cubes1 of increasing dimension; we dub these objects complexons.2

These objects closely relate to graphons in the random complex models that they induce,
with two representations that correspond to either the usual presentation of a simplicial
complex as a collection of finite sets closed under restriction, or the presentation in terms of
its facets. The main results of this work relate the cut-metric and homomorphism densities
for the limit objects of large, dense simplicial complexes.

Theorem (Informal). If two complexons are close in the cut-metric, then they yield sim-
ilar random simplicial complexes by sampling. Conversely, if they yield similar random
simplicial complexes by sampling, then they are close in the cut-metric.

This is stated more formally in Theorem 14. As part of the proof, it will also be shown
that large simplicial complexes drawn from a complexon concentrate in the cut-metric, and
thus have similar homomorphism densities to the complexon.

The paper is organized as follows. After covering preliminaries in Section 2, complexons
and random sampling from complexons are defined in Section 3. The main results are
stated in Section 4, with most proofs relegated to the appendix. Some remarks relating
complexons to other notions in the literature, including the convergence of nonuniform
hypergraphs under certain conditions, are made in Section 5.

1.1 Related Work

In graph limit theory, a key idea is to reduce extremely large graphs into simpler objects by
treating them as distributions of random subgraphs. The study of such limits was initiated
by Lovász and Szegedy (2006), and further developed by Borgs et al. (2008, 2012). These no-
tions relate to exchangeable random arrays, considered originally by Aldous (1981); Hoover
(1979) and related to random graphs by Diaconis and Janson (2007). The work of Elek
and Szegedy (2012) extended this approach to dense, uniform hypergraphs by considering
analogous notions of homomorphism convergence and cut-metrics, which was further stud-
ied by Zhao (2015). The general approach of relating homomorphism densities and some
cut-metric has been applied to form limit theories for other combinatorial objects as well,
such as partially ordered sets (Janson, 2011) and random cographs (Stufler, 2021).

The theory of large, random simplicial complexes for modeling higher-order interactions
in network science has been quite active recently, with approaches from topological data
analysis, dynamical systems, and signal processing (Schaub et al., 2021; Battiston and Petri,

1. Or, more generally, powers of a Borel probability space. See Section 5.3 for more details.
2. Following the concluding remarks of Bobrowski and Krioukov (2022).
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2022). A series of recent papers considered the topological properties of large, random
simplicial complexes (Costa and Farber, 2016, 2017a,b). Indeed, a type of limiting object
for simplicial complexes similar to the Rado graph was considered by Farber et al. (2021),
which arises as the limit of a dense random simplicial complex on countably many nodes,
in a certain regime. In the context of TDA, the study of persistent homology of random
subsamples of metric measure spaces has been considered in great detail by Chazal et al.
(2014, 2015, 2017). In particular, the persistence homology of persistence barcodes of
random subsets of compact metric measure spaces is considered. This is in contrast to
our work in two ways. First, the simplicial complexes we consider are not required to
be modeled by an underlying metric measure space. Second, complexons naturally model
simplicial complexes where not only the nodes are random (in that the nodes themselves
are positioned in space according to some distribution), but where the faces connecting
them are random. Initial studies of random complexes in noncompact spaces have been
undertaken by Adler et al. (2014); Owada and Bobrowski (2020), where the (persistent)
homological structure of point clouds drawn from distributions of unbounded support in Rd
are considered. In the observation of what they dub “topological crackle,” the robustness
of TDA methods to potentially unbounded noise is studied. Both of these works consider
simplicial complexes determined via fixed rules applied to random sets of points, which
varies from our study of complexes that are random even when conditioned on a fixed set
of points. We refer the reader to the excellent survey paper of Bobrowski and Krioukov
(2022) for more references on the emerging topic of large, random simplicial complexes.

There has also been a body of literature studying regularity lemmas and limit theories
for hypergraphs (Rödl and Skokan, 2004; Gowers, 2006, 2007; Tao, 2006; Elek and Szegedy,
2012; Zhao, 2015; Balasubramanian, 2021). These works are concerned with studying uni-
form hypergraphs, where each hyperedge has some fixed cardinality. This stands in contrast
to our work, as simplicial complexes are inherently nonuniform (unless of course, they are
merely graphs, which are 2-uniform hypergraphs). We also develop a partial theory of lim-
its of nonuniform hypergraphs in Section 5.4, framed by the upper and lower bounds of a
hypergraphs by simplicial complexes.

2. Preliminaries

The notation [n] denotes the set of integers {1, 2, . . . , n}. A simplicial complex3 K is a finite
collection of finite sets that is closed under restriction, that is, the taking of subsets. The
collection of sets in K with cardinality d + 1 is denoted by K(d), and we call that set the
set of d-simplices. For a d-simplex σ, we say that dimσ = d. The set K(0) is referred to
as the set of nodes, with the alternative notation V(K), when convenient. We denote the
cardinality of V(K) by v(K). Although K(0) is a set of singleton sets, we will find it useful
sometimes to identify said singleton sets with their constituent elements. The sets K(1)

and K(2) are sometimes referred to as the sets of edges and triangles, respectively. If K is
such that for all c > d, K(c) = ∅, then we say that K is a simplicial complex of dimension
d. We denote the smallest such d by dimK. A simple graph, for instance, is a simplicial
complex of dimension one. It will also be useful to consider weighted simplicial complexes.

3. Strictly speaking, we are concerned with abstract simplicial complexes. However, we will never refer to
the geometric realization, so we will omit the word abstract.
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A weighted simplicial complex (H,ω) is taken to be the power set H = 2V(H) for some finite
V(H), and a function ω : H → [0, 1], where ω is called the weight function. It is assumed
that ω(V(H)) = 1 and ω(∅) = 1.

For a simplicial complex K, the set of facets of K is the collection of maximal sets in K,
that is, the sets in K that are subsets of no other sets in K, denoted K◦. Observe that the
set of facets of a simplicial complex completely characterizes the simplicial complex, as the
simplicial complex can be reconstructed by taking the set of facets and all of their subsets.
The set of antifacets of K is the collection of minimal sets in 2V(K)\K, that is, the collections
of nodes that do not constitute a simplex, but whose strict subsets do constitute a simplex,
denoted K◦. Similarly, the set of antifacets of a simplicial complex completely characterize
the simplicial complex, as the simplicial complex can be reconstructed by taking the set of
all strict subsets of the antifacets. We define the facets of a weighted simplicial complex
not by changing the underlying set, but by changing the weight function. For a weighted
simplicial complex (H,ω), the faceted weighted simplicial complex (H◦, ω◦) is such that
H◦ = H, and for each σ ∈ H◦,

ω◦(σ) =
∏
σ′⊆σ

ω(σ′).

2.1 Homomorphism Densities

Much like in the theory of dense graph limits, we characterize simplicial complexes in terms
of their homomorphism densities. For two simplicial complexes F,K, a homomorphism from
F to K is a map φ : V(F ) → V(K) such that for any σ ∈ F (d), it holds that φ(σ) ∈ K(d),
that is, a homomorphism is a simplex-preserving map. An induced homomorphism is an
injective homomorphism from F to K with the added condition that σ ∈ F (d) if and
only if φ(σ) ∈ K(d), that is, an injective homomorphism that also preserves non-simplices.
We denote the number of homomorphisms and induced homomorphisms from F to K by
hom(F,K) and ind(F,K), respectively.

Normalizing these quantities appropriately yields homomorphism densities. Homomor-
phism densities answer the following type of question: given a uniformly chosen (injective)
random map φ : V(F ) → V(K), what is the probability that that map is an (induced)
homomorphism? More precisely, we respectively define the homomorphism density and
induced homomorphism density of F in K as

t(F,K) =
hom(F,K)

v(F )v(K)

tind(F,K) =
ind(F,K)

P (v(K), v(F ))
,

where P (n, k) is the number of k-permutation of n, that is, the number of injective maps
from a set of cardinality k into a set of cardinality n.

2.2 The Cut Distance

The homomorphism densities characterize the distribution of subcomplexes in a simplicial
complex. This may be thought of as looking at local structures in a simplicial complex.
On the other hand, the cut-metric characterizes simplicial complexes in a global way. The
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cut-norm is defined for a multidimensional matrix (Frieze and Kannan, 1999, Section 6) in
the following way. For finite sets X1, X2, . . . , Xr, let A :

∏
j Xj → R. For subsets Sj ⊆ Xj

for j ∈ [r], put

A(S1, . . . , Sr) =
∑

e∈
∏
j Sj

A(e).

The (normalized) cut-norm of A is defined as

‖A‖� =
max {|A(S1, . . . , Sr)| : Sj ⊆ Xj for j ∈ [r]}∏

j |Xj |
.

Let K1,K2 be simplicial complexes such that V(K1) = V(K2). For some d ≥ 1,
let A1,d :

∏d+1
j=1 V(K1) → {0, 1} be the indicator function of d-simplices in K1, that is,

A1,d(i1, . . . , id+1) = 1 if and only if {i1, . . . , id+1} ∈ K
(d)
1 . Define A2,d in the same way for

K2. The d-dimensional labeled cut-distance between K1 and K2 is defined as follows:

d�,d(K1,K2) = ‖A1,d −A2,d‖�.

We extend this definition to weighted simplicial complexes (K3, ω) by puttingA3,d(i1, . . . , id+1) =
ω({i1, . . . , id+1}), and using the normalized cut-norm for the metric as before. This allows
us to compare weighted and unweighted simplicial complexes.

Observe that the d-dimensional labeled cut-distance finds the maximal collection of
subsets S1, . . . , Sd+1 ⊆ V(K1) such that the number of d-simplices contained in

∏
j Sj differs

maximally between K1 and K2. More precisely, for arbitrary subsets S1, . . . , Sd+1 ⊆ V(K1),
put

K
(d)
1 (S1, . . . , Sd+1) =

σ ∈ K(d) : σ ∈
∏
j

Sj

 ,

and similarly define4 K
(d)
2 (S1, . . . , Sd+1). Then, one can see that

d�,d(K1,K2) =
maxSj⊆Xj :j∈[d+1]

∣∣∣|K(d)
1 (S1, . . . , Sd+1)| − |K(d)

2 (S1, . . . , Sd+1)|
∣∣∣

v(K)d+1
.

The d-dimensional labeled cut-distance describes how different two simplicial complexes
may look when observing d-simplices across partitions of the node set.

The distances d�,d for d ≥ 1 are each only able to characterize the difference between two
complexes in a single dimension at a time. We define the labeled cut-distance by taking a
weighted sum of all such distances. Namely, for a nonnegative, summable sequence (αj)j≥1

of real numbers, put

d�(K1,K2; (αj)) =

∞∑
j=1

αjd�,j(K1,K2).

Again, this definition naturally extends to include weighted simplicial complexes as well.

4. We abuse the notation σ ∈
∏
j Sj here, meaning that some tuple formed by permuting the elements of

σ is contained in the Cartesian product.
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The family of labeled cut-distances are dependent upon the assumption that the node
sets of K1 and K2 are equal in size and correspond to one another. We now consider the
case where two simplicial complexes have node sets that do not align. As a preliminary
definition, for a nonnegative, summable sequence (αj)j≥0, and two simplicial complexes
K1,K2 such that v(K1) = v(K2), put

δ̂�(K1,K2; (αj)) = min
φ:V(K2)→V(K1)

d�(K1, φ(K2); (αj)),

where φ ranges over bijective maps from V(K2) to V(K1). That is to say, δ̂� first finds the
optimal alignment between the two simplicial complexes, and then compares them via d�.

With this in hand, we now extend the definition to handle simplicial complexes whose
node sets differ in size. First, for an integer m > 0, define the m-blowup of a simpli-
cial complex K as the simplicial complex mK where V(mK) = V(K) × [m], and a set
{(vi, ji)}d+1

i=1 ∈ (mK)(d) if and only if {vi}d+1
i=1 ∈ K(d), where we assume that {vi}d+1

i=1 is a
set of cardinality d+ 1 (no duplicate nodes). Then, for two simplicial complex K1,K2 such
that v(Ki) = ni, define the unlabeled cut-distance as

δ�(K1,K2; (αj)) = lim
m→∞

δ̂�(mn2K1,mn1K2; (αj)).

The unlabeled cut-distance blows both simplicial complexes up by a very large factor, so
that it can then find a very fine alignment between them, amounting to a so-called fractional
overlay of the node sets. Indeed, δ� can be equivalently defined in terms of a minimizing
fractional overlay of the node sets (see Lovász, 2012, Eq. 8.10), but we omit that discussion
here.

3. Complexons and Random Sampling

As in the theory of graph limits, the convergence of a sequence of simplicial complexes can
be defined in terms of homomorphism densities. Let K1,K2, . . . be a sequence of simplicial
complexes. We say that the sequence (Kn)n≥1 is convergent if for all simplicial complexes
F , it holds that (t(F,Kn))n≥1 is a convergent sequence. The remainder of this paper is
devoted to understanding the appropriate limiting objects for such convergent sequences.

The appropriate analogs for graphons in this case are functions on the disjoint union of
unit cubes of dimension greater than or equal to 2. A complexon is a measurable5 function

W :
⊔
d≥1

[0, 1]d+1 → [0, 1],

such that W is measurable and totally symmetric. That is to say, the restriction of W
to each [0, 1]d+1 is measurable and symmetric in its coordinates. We find it convenient to
assume that W ([0, 1]) = 1 and W (∅) = 1, that is, W evaluated on the “empty tuple” has
unit value. We denote the set of all complexons by W.

In the same way that a simplicial complex as a collection of sets closed under restric-
tion can be equivalently described by its facets, we formulate a faceted complexon. For a

5. In this paper, “measurable” means Borel-measurable. The properties considered are not sensitive to
differences on sets of measure zero, so one could also consider the Lebesgue measure.
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complexon W , the faceted complexon W ◦ is a totally symmetric measurable function W ◦ :⊔
d≥1[0, 1]d+1 → [0, 1] obeying the following rule. For all d ≥ 1, (x1, . . . , xd+1) ∈ [0, 1]d+1,

put

W ◦(x1, . . . , xd+1) =
∏

σ⊆[d+1]

W (xσ),

where xσ denotes the coordinates of (x1, . . . , xd+1) indexed by σ (this is well-defined, by the
total symmetry of the complexon W ). Prematurely interpreting the values taken by W as
“probabilities” of simplices existing conditioned on the existence of their faces, the faceted
complexon W ◦ intuitively describes the probability of a simplex existing. For instance, if
W (x1, x2, x3) = 1, but W (x1, x2) = W (x1, x3) = W (x2, x3) = 0.5, then W ◦(x1, x2, x3) =
0.125, reflecting the closure of a simplicial complex under restriction.

3.1 Complexons as Random Simplicial Complex Models

A complexon induces a distribution of random simplicial complexes via a simple sampling
procedure. Let W be a complexon, and Sn = {x1, . . . , xn} be a set of n points contained
in [0, 1], for some integer n ≥ 1. From W and Sn, define a weighted simplicial complex
H = W [Sn] so that V(H) = [n], H = 2[n], and each σ ∈ H has weight ω(σ) = W (xσ). From
the weighted simplicial complex H, we randomly sample an unweighted simplicial complex
in the following way. Let K be a simplicial complex, and put V(K) = [n]. Inductively for
d ≥ 1, for each d + 1-subset σ ⊆ [n] such that every strict subset of σ is contained in K,
include σ in K with probability ω(σ) (that is, the weight of the simplex σ in H). Upon
termination, this yields a finite simplicial complex K. We call the distribution from which
K is drawn K(H).

Noting that H is defined based on the complexon W via the set Sn, we randomize the set
Sn to yield a more general random simplicial complex model. Let Sn be such that x1, . . . , xn
are i.i.d. samples from the uniform distribution probability distribution on [0, 1]. Then, the
random simplicial complex sampled from W [Sn] with random Sn is denoted K(n,W ).

The distribution K(n,W ) can be thought of in the same way as the lower model of Far-
ber et al. (2022). Indeed, it can be constructed by taking the largest simplicial complex
contained in a random hypergraph on node set [n] whose hyperedges σ ⊆ [n] exist indepen-
dently each with probability W (xσ). Moreover, the faceted complexon W ◦ can be used via
the upper model of Farber et al. (2022) to yield the distribution K(n,W ). Again, take a
random hypergraph H on the node set [n] whose hyperedges σ ⊆ [n] exist independently
each with probability W ◦(xσ). Taking K to be the smallest simplicial complex that contains
H, it can be shown that K is distributed according to K(n,W ). We go in to more detail
on the relationship between complexons and hypergraph limits in Section 5.4.

3.2 Homomorphisms in Complexons

Motivated by the random sampling model K(n,W ), the homomorphism densities t and tind
can be naturally generalized to complexons. Let F be a simplicial complex, and identify
V(F ) = [n] for some n ≥ 1. The homomorphism density of F in a complexon W asks the
following question: what is the probability that F is contained in the random simplicial
complex K(n,W )? Based on this question, we directly define the homomorphism density
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of F in a complexon W . Put

t(F,W ) =

∫
[0,1]V(F )

∏
σ∈F

W (xσ)dx. (1)

The question of the homomorphism density can also be posed in terms of facets. Put

t(F ◦,W ◦) =

∫
[0,1]V(F )

∏
σ∈F ◦

W ◦(xσ)dx. (2)

A simple comparison of the integrands of (1) and (2) yields the following result, further
justifying the name “faceted complexon” for W ◦.

Lemma 1. For any simplicial complex F and complexon W , it holds that t(F,W ) =
t(F ◦,W ◦).

In the case of graphons, the induced homomorphism density is computed in a fashion
similar to (1), but with a product over all antifacets included in the integrand. For simplicial
complexes, taking the product over all non-simplices would be redundant, as the non-
existence of an edge, for instance, implies the non-existence of all higher-order simplices
that would contain that edge. Treating a graph with no isolated nodes as a simplicial
complex of dimension one, notice that the facets of a graph are its edges, and the antifacets
are its non-edges. Based on this, we write the induced homomorphism density of F in W
as follows:

tind(F,W ) =

∫
[0,1]V(F )

∏
σ∈F

W (xσ)
∏
τ∈F◦

(1−W (xτ )) dx.

The following result can be shown by unrolling definitions, in order to relate the induced
homomorphism densities and random samples of a complexon:

Lemma 2. For a complexon W and a simplicial complex F such that V(F ) = [n], it holds
that

tind(F,W ) = P {K(n,W ) = F} .

In graph theory, we are typically concerned with properties of graphs that do not change
under the relabeling of nodes. Similarly, in graph limit theory, we typically describe prop-
erties of complexons up to measure-preserving transformations of [0, 1]. For complexons,
a property of this type holds for homomorphism densities. Let φ : [0, 1] → [0, 1] be a
measure-preserving transformation, and for a complexon W , define

W φ(x1, . . . , xd+1) = W (φ(x1), . . . , φ(xd+1))

for all d ≥ 1 and x ∈ [0, 1]d+1. The following result proceeds directly from the definition of
the (induced) homomorphism density.

Lemma 3. Let W be a complexon, and φ : [0, 1]→ [0, 1] a measure-preserving transforma-
tion. Then, for all simplicial complexes F ,

t(F,W ) = t(F,W φ)

tind(F,W ) = tind(F,W φ).
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3.3 The Cut Distance

Similar to the family of cut-distances for simplicial complexes, we define cut-distances for
complexons. Let W1,W2 be complexons, and d ≥ 1 some integer. The d-dimensional labeled
cut-distance between W1 and W2 is defined as follows:

d�,d(W1,W2) = sup
S1,...,Sd+1∈B[0,1]

∣∣∣∣∣
∫
∏
j Sj

(W1(x)−W2(x)) dx

∣∣∣∣∣ ,
where B[0, 1] denotes the Borel σ-field on the interval [0, 1]. This relates to the cut-norm
defined for general measurable functions U :

⊔
d≥1[0, 1]d+1 → R:

‖U‖�,d = sup
S1,...,Sd+1∈B[0,1]

∣∣∣∣∣
∫
∏
j Sj

U(x)dx

∣∣∣∣∣ ,
so that d�,d(W1,W2) = ‖W1 −W2‖�,d. Alternatively, the cut-norm can be written as

‖U‖�,d = sup
f1,...,fd+1:[0,1]→[0,1]

∣∣∣∣∣
∫

[0,1]d+1

U(x)f1(x1) · · · fd+1(xd+1)dx

∣∣∣∣∣ ,
where f1, . . . , fd+1 are taken to be measurable functions from [0, 1] to [0, 1].

Following (Borgs et al., 2008, Eq. 7.2), restricting the sets considered in the d-dimensional
labeled cut-distance to be pairwise disjoint only changes the distance by a constant factor
depending on d.

Lemma 4. Let W1,W2 ∈ W be complexons, and let d ≥ 1. Put S as the collection of
pairwise disjoint sets S1, . . . , Sd+1 ∈ B[0, 1]. Then,

sup
(S1,...,Sd+1)∈S

∣∣∣∣∣
∫
∏
j Sj

(W1(x)−W2(x))dx

∣∣∣∣∣ ≤ 1

(d+ 1)d+1
d�,d(W1,W2).

The proof follows the presentation of Janson (2013, Lemma E.2).
Proof Let A = {Ai}ni=1 be an n-equipartition of [0, 1] (that is, a partition of [0, 1] into n
measurable subsets all with measure 1/n). Let I be an element of [d+ 1]n chosen uniformly
at random. For each j ∈ [d+ 1], define Bj =

⋃
m:I(m)=j Am.

For any measurable sets S1, . . . , Sd+1, the sets S1 ∩ B1, . . . , Sd+1 ∩ Bd+1 are pairwise
disjoint, so that

E

[∣∣∣∣∣
∫
∏
j Sj∩Bj

(W1(x)−W2(x))dx

∣∣∣∣∣
]
≤ sup

(S1,...,Sd+1)∈S

∣∣∣∣∣
∫
∏
j Sj

(W1(x)−W2(x))dx

∣∣∣∣∣ . (3)

Moreover,

E

[∫
∏
j Sj∩Bj

(W1(x)−W2(x))dx

]
=

∑
i1 6=... 6=id+1∈[n]

∫
∏
j Sj∩Aij

W1(x)−W2(x)

(d+ 1)d+1
dx. (4)

10
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One can see that the right-hand side of (4) approaches the quantity

1

(d+ 1)d+1

∫
∏
j Sj

(W1(x)−W2(x))dx

as n→∞. Combining (3) and (4) concludes the proof.

As the labeled d-dimensional cut-distance only considers the value of complexons on
[0, 1]d+1, we define a cut-distance that considers all dimensions. Let (αj)j≥1 be a nonnega-
tive, summable sequence of real numbers. For complexons W1,W2, put

d�(W1,W2; (αj)j≥1) =
∑
j≥1

αjd�,j(W1,W2).

One can clearly see that for any complexons W1,W2,

d�(W1,W2; (αj)j≥1) ≤
∑
j≥1

αj

∫
[0,1]j+1

|W1(x)−W2(x)|dx. (5)

We extend this definition to finite nonnegative sequences α1, . . . , αd by implicitly assuming
that αj = 0 for j > d.

The labeled cut-distance implicitly assumes a correspondence between the domains
of W1 and W2. Intuitively, this corresponds to coupling the distributions K(n,W1) and
K(n,W2) (for any n ≥ 1) in such a way that the points x1, . . . , xn ∈ [0, 1] are always equal
for K(n,W1) and K(n,W2).

To decouple the domains, we define the unlabeled cut-distance between W1 and W2 by
taking the infimum over measure preserving transformations of the domain. Put, again for
a (finite or infinite) nonnegative summable sequence (αj)j≥1,

δ�(W1,W2; (αj)j≥1) = inf
φ:[0,1]→[0,1]

d�(W1,W
φ
2 ; (αj)j≥1),

where φ ranges over measure-preserving transformations. Similar to (5), we have the in-
equality

δ�(W1,W2; (αj)j≥1) ≤ inf
φ:[0,1]→[0,1]

∑
j≥1

αj

∫
[0,1]j+1

|W1(x)−W φ
2 (x)|dx.

The definition of the unlabeled cut-distance for simplicial complexes in terms of the
limiting distance under blowups motivates an immediate representation of simplicial com-
plexes as complexons, closely resembling the representation of graphs as graphons via “pixel
pictures.” For a simplicial complex K whose nodes are identified as V(K) = [n], de-
fine a complexon WK in the following way. Define the sets Pj = [(j − 1)/n, j/n) for
j ∈ [n]. Then, for each {j1, . . . , jd+1} ∈ K, put WK(x1, . . . , xd+1) = 1 for all per-
mutations of (x1, . . . , xd+1) ∈

∏d+1
`=1 Pj` . Otherwise, put WK(x1, . . . , xd+1) = 0. If in-

stead of a simplicial complex K we have a weighted simplicial complex (H,ω), we put
WH(x1, . . . , xd+1) = ω({j1, . . . , jd+1}).

11
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For a simplicial complex K and a complexon W , we will find it convenient to use the
notation d�(K,W ) and δ�(K,W ) to refer to d�(WK ,W ) and δ�(WK ,W ), respectively.
Moreover, the complexon corresponding to a simplicial complex preserves the cut-distance
and all homomorphism densities. The following lemma summarizes this, in a way similar
to (Lovász, 2012, Eq. 7.2 and Lemma 8.9), so we omit the proof here.

Lemma 5. For any simplicial complexes F,K and any nonnegative, summable sequence
(αj)j≥1,

t(F,K) = t(F,WK)

δ�(F,K; (αj)) = δ�(WF ,WK ; (αj)).

Moreover, if V(F ) = V(K), then, under any identification of V(F ) with [n],

d�(F,K; (αj)) = d�(WF ,WK ; (αj)).

Furthermore, if (H,ω) is a weighted simplicial complex such that V(F ) = V(H), then

d�(F,H; (αj)) = d�(WF ,WH ; (αj)).

4. Main Results

In this section, we characterize the space of complexons equipped with the cut-distance,
and show how the cut-distance relates to the homomorphism densities. In particular, we
show that they induce equivalent, compact topologies on the space of complexons. Our
treatment closely follows that of Lovász and Szegedy (2006); Borgs et al. (2008).

4.1 The Counting Lemma

We begin by showing how closeness in the cut-distance yields closeness in the sense of
homomorphism densities.

Lemma 6 (Counting Lemma). Let F be a simplicial complex. Define the sequences αj =
|(F ◦)(j)|, βj = |F (j)|, γj = |F (j)| + |(F◦)(j)| for j ≥ 1. Then, for complexons U,W , the
following three inequalities hold:

|t(F,U)− t(F,W )| ≤ δ�(U◦,W ◦; (αj)j≥1)

|t(F,U)− t(F,W )| ≤ δ�(U,W ; (βj)j≥1)

|tind(F,U)− tind(F,W )| ≤ δ�(U,W ; (γj)j≥1).

This result is analogous to (Lovász and Szegedy, 2006, Lemma 4.1), with a similar proof
as well.
Proof We establish the first inequality, as the other two follow from a similar argument.
Order the elements of F ◦ as {σ1, . . . , σm}, where m = |F ◦|. For x ∈ [0, 1]V(F ), t ∈ [m],
define

Xt(x) =

(∏
s<t

U◦(xσs)

)
·

(∏
s>t

W ◦(xσs)

)
· (U◦(xσt)−W ◦(xσt)) .

12
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One can check that

|t(F,U)− t(F,W )| =

∣∣∣∣∣
∫

[0,1]V(F )

m∑
t=1

Xt(x)dx

∣∣∣∣∣
=

∣∣∣∣∣∣
m∑
t=1

∫
[0,1]V(F )\σt

∫
[0,1]σt

Xt(x)
∏
j∈σt

dxj
∏

j∈V(F )\σt

dxj

∣∣∣∣∣∣ .
For all t ∈ [m], it holds that ∏

s<t

U◦(xσs)
∏
s>t

W ◦(xσs) ∈ [0, 1],

This implies via Lemma 1 that

|t(F,U)− t(F,W )| ≤

∣∣∣∣∣
m∑
t=1

d�,dimσt(U
◦,W ◦)

∣∣∣∣∣
= d�(U◦,W ◦; (αj)j≥1).

Taking the infimum over measure-preserving transformations W φ yields the first inequality,
via Lemma 3. The proofs of the second and third inequalities proceed similarly.

This result is perhaps not too surprising. Thinking of the cut-metric as describing the
global differences between complexons, closeness globally forces closeness locally (that is,
in the sense of homomorphism densities). More formally, for any simplicial complex F , the
homomorphism density t(F, ·) : W → [0, 1] is continuous with respect to the cut-distance
δ�(·, ·; (αj)j≥1) for any strictly positive, summable sequence (αj)j≥1. This can be shown
using the usual ε-δ definition of continuity, choosing for a given simplicial complex F and
ε > 0

δ =
ε

dimF ·maxj |F (j)| ·mink∈[dimF ] αk
.

Note then that δ�(U,W ; (αj)j≥1) < δ implies |t(F,U) − t(F,W )| < ε. Similarly, since
tind(F,W ) = P {K(n,W ) = F} for any simplicial complex F with V(F ) = [n], closeness in
the cut-metric forces two complexons to yield similar random sampling models, particularly
for small n.

4.2 The Sampling Lemma

Before proving the inverse of Lemma 6, we establish a concentration result for samples
K(n,W ): namely, we show that sufficiently large samples drawn from a complexon will be
close in the cut-distance. Formally,

Lemma 7 (Sampling Lemma). Let W be a complexon. Let n ≥ 1 be an integer, and
α1, . . . , αd be a finite nonnegative sequence. Then, with probability at least 1−exp (−n/(2 log2 n)),
it holds that

δ�(W ◦,K(n,W ); (αj)) ≤
12 · 2d + 1√

log2 n

d∑
j=1

αj .

13
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We leave the proof to Section A. As a corollary of Lemma 7, it can be shown via the
Borel-Cantelli Lemma that every faceted complexon W ◦ arises as the limit of a sequence of
simplicial complexes. That is,

Corollary 8. Let α1, . . . , αd be a finite nonnegative sequence. For a complexon W , the se-
quence of simplicial complexes (K(n,W ))n≥1 converges to W ◦ in the cut-distance δ�(·, ·; (αj))
with probability 1.

4.3 The Inverse Counting Lemma

We are now ready to state the inverse of Lemma 6.

Lemma 9 (Inverse Counting Lemma). Let U,W be two complexons, and suppose that for
some d ≥ 1, n ≥ 2, for all simplicial complexes F on n nodes of dimension d,

|t(F,U)− t(F,W )| ≤ 0.999 · 2−((1+n)d+2)

Then, for all finite nonnegative sequences α1, . . . , αd,

δ�(U◦,W ◦; (αj)) ≤
24 · 2d + 2√

log2 n

d∑
j=1

αj .

We leave the proof to Section B. The bound in Lemma 9 is only useful for log2 n & 24·2d,
with homomorphism densities that are extremely close. However, it does demonstrate that
the cut-distance, a quantity determined by a Lebesgue integral on a continuous domain over
all possible Borel sets of certain dimension, can be characterized by a collection of quantities
determined by finite objects. Keeping in mind that this bound is generic, holding for any
possible pair of complexons, one would expect it to be much better if considered on a tamer
family of complexons, for example, those that are stepfunctions on some coarse partition of
[0, 1]. Indeed, we have the following result for stepfunctions.

Proposition 10. Let U,W be two complexons. Suppose for some integer m ≥ 1, U and
W are both stepfunctions on respective equipartitions PU ,PW , each with at most m steps.
Furthermore, suppose that for some d ≥ 1, n ≥ 2, for all simplicial complexes F on n nodes
of dimension d,

|t(F,U)− t(F,W )| ≤ 0.999 · 2−((1+n)d+2).

Then, for all finite nonnegative sequences α1, . . . , αd,

δ�(U◦,W ◦; (αj)) ≤
√
m(4d+ 5) + 4√

n

d∑
j=1

αj .

We omit the proof, as the argument is a mere simplification of the proofs of Lemmas 7
and 9. By making the stronger assumption that the complexons of interest are stepfunctions
on coarse equipartitions of [0, 1], Proposition 10 presents an inverse counting lemma that
holds for n & md2.
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4.4 Topology of the Space of Complexons

Denote the set of all complexons byW, and let (αj)j≥1 be a nonnegative, summable sequence
of real numbers. If two complexons W1,W2 ∈ W only differ on a set of measure zero,
then d�(W1,W2; (αj)j≥1) = 0. Indeed, the labeled cut-distance is only a pseudometric
on W. Furthermore, the unlabeled cut-distance δ� can take value zero if there exists a
measure-preserving bijection φ : [0, 1]→ [0, 1] such that W1 and W φ

2 only differ on a set of
measure zero, and is thus also a pseudometric. The following result states that, topologically
speaking, the choice of (αj) in this construction does not matter too much.

Lemma 11. Let (αj)j≥1 and (βj)j≥1 be strictly positive, summable sequences of real num-
bers. Then, the cut-metrics δ�(·, ·; (αj)j≥1) and δ�(·, ·; (βj)j≥1) are topologically equivalent
pseudometrics on W.

With Lemmas 6, 9 and 11 in mind, we endow W with a topology determined by any
strictly positive, summable sequence (αj)j≥1. In particular, we define the canonical topology
on W as the topology determined by the pseudometric

γ(U,W ; (αj)j≥1) = δ�(U◦,W ◦; (αj)j≥1),

for an arbitrary strictly positive, summable sequence (αj)j≥1. Observe that the pseudomet-
ric γ behaves similarly to the unlabeled cut-distance δ�, except it first applies the faceting
map to the arguments, to reflect the fact that when considering homomorphism densities,
the faceted complexon is a better descriptor – indeed, one can check that the faceting map
is a contractive mapping with respect to the cut-distance δ�. We also find it useful to define
the δ-topology on W as the topology determined by the pseudometric δ�, again for some
strictly positive, summable sequence. The following result about the canonical topology on
W is immediate.

Proposition 12. LetW0 ⊂ W be the set of complexons that arise from simplicial complexes,
that is, for every W ∈ W0, there is some simplicial complex K such that W = WK . Then,
W0 is dense in W in the canonical topology.

Our primary result of this section establishes the compactness ofW with respect to this
topology.

Theorem 13 (Compactness). The space W with the canonical topology is compact.

We leave the proofs of Lemma 11, Proposition 12, and Theorem 13 to Section C. So far,
we have established that the space of complexons with the canonical topology is “essentially
finite,” in that it can be approximated by finitely many (Theorem 13) finite simplicial
complexes (Proposition 12) in the cut-metric. This implies, for instance, that the space of
complexons W with the pseudometric γ is complete.

The canonical topology on W can also be defined based on homomorphism densities.

Theorem 14 (Equivalence of Cuts and Homomorphisms). Let (aj)j≥1 be a strictly posi-
tive, summable sequence of real numbers. Noting that there are countably many simplicial

15



Roddenberry and Segarra

complexes (up to isomorphism), let (Fj)j≥1 be an enumeration of the set of all isomorphism
classes of simplicial complexes. Define a pseudometric ρ on W so that for any U,W ∈ W,

ρ(U,W ; (aj)) =
∞∑
j=1

aj · |t(Fj , U)− t(Fj ,W )|.

Then, the topology on W induced by ρ is equal to the canonical topology.

Proof We prove that a sequence of complexons W1,W2, . . . is convergent in the canonical
topology if and only if it is convergent with respect to the pseudometric ρ.

(If). Let ε > 0 be given, and suppose Wm → W in the canonical topology. Let M be
such that

∑
j>M aj < ε/2. Then, by Lemma 6, there exists some m0 such that for all

j ≤M,m > m0, it holds that

|t(Fj ,Wm)− t(Fj ,W )| < ε

2M maxk≤M ak
.

It follows, then, that for all m > m0, ρ(Wm,W ; (aj)j≥1) < ε. Since ε was given arbitrarily,
this implies that Wm →W in the topology induced by ρ, as desired.

(Only if). Let ε > 0 be given, and let (αj)j≥1 be an arbitrary strictly positive, summable
sequence. Suppose Wm →W in the topology induced by ρ. Let d be such that

∑
j>d αj <

ε/2. Put n such that

24 · 2d + 2√
log2 n

d∑
j=1

αj <
ε

2
.

Noting that there are only finitely many isomorphism classes of simplicial complexes on n
nodes of dimension d, let M be such that for every simplicial complex F on n nodes of
dimension d, there is some j ≤M such that F ∼= Fj . By assumption, there is some m0 such
that for all j ≤M,m > m0

|t(Fj ,Wm)− t(Fj ,W )| < 0.999 · 2−((1+n)d+2).

By Lemma 9, this implies that

δ�(W ◦m,W
◦; (αj)j≥1) ≤ 24 · 2d + 2√

log2 n

d∑
j=1

αj +
∑
j>d

αj < ε.

Since ε was given arbitrarily, this implies that Wm → W in the canonical topology, as
desired.

Observe that the pseudometric ρ in Theorem 14 is defined for an arbitrary strictly
positive, summable sequence (aj)j≥1 and enumeration (Fj)j≥1: this indicates that, similar
to the δ-topology as described by Lemma 11, the topology induced by ρ is not dependent on
the particular sequence (aj)j≥1 and enumeration (Fj)j≥1. In other words, there is a “hom-
topology” on W that is pseudometrizable by any such ρ. Moreover, one can see that a
sequence (Wm)m≥1 converges in the hom-topology if and only if for all simplicial complexes
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F , t(F,Wm) is a convergent sequence. Theorem 14, then, indicates that the canonical
topology on W is the topology defined by convergence in homomorphism densities.

Indeed, by the definition of the canonical topology on W, two complexons U,W are
identified with each other if and only if they are indistinguishable by sampling, which is
a property that holds modulo sets of measure zero across the faceted complexons, rather
than the original complexons themselves. The identification of complexons by the canonical
topology not only ignores differences on sets of measure zero, which have no consequence
in sampling and homomorphism densities, but also enforces a “consistency structure across
different dimensions” as suggested by Bobrowski and Krioukov (2022), by considering the
faceted version.

5. Discussion and Remarks

By Theorem 14, homomorphism densities are sufficient to characterize complexons in the
cut-metric. This yields a characterization of limit objects for sequences of simplicial com-
plexes. Indeed, recall that sequence (Kn) for n ≥ 1 of simplicial complexes is said to
be convergent if for all simplicial complexes F , the sequence (t(F,Kn))n≥1 is convergent.
Equivalently, by Lemma 5, the sequence (Kn) is convergent if for all simplicial complexes
F , the sequence (t(F,WKn)) is convergent. Applying Theorem 14, this is equivalent to
convergence of the sequence (WKn) in the canonical topology. Since W is compact in the
canonical topology (see Theorem 13), the limit of the sequence (WKn) is itself an element
W ∈ W. It is in this sense that we say W (or any equivalent complexon in the canonical
topology) is “the limit of” the sequence of simplicial complexes (Kn) as n→∞.

In the remainder of the paper, we discuss how complexons relate to some other notions
in the literature.

5.1 Limits of partially ordered sets

Limits of partially ordered sets (posets) in homomorphism density were considered by Jan-
son (2011), where it was shown that any sequence of partially ordered sets whose homomor-
phism densities converge have a limit representable by a kernel on an ordered probability
space. It was conjectured that all such kernels can be taken to be defined on the ordered
probability space [0, 1] with the Lebesgue measure, which was affirmed by Hladkỳ et al.
(2015). In the context of this work, one may wonder if limits of sequences of simplicial
complexes could be understood as posets. Indeed, a simplicial complex K carries with it
a strict partial order determined by set inclusion, yielding the partially ordered set (K,⊂).
Moreover, since the simplices have a notion of dimension, there is a rank function associated
with (K,⊂), yielding a graded poset (K,⊂, dim).

A simplicial homomorphism from a simplicial complex F into K is a poset homomor-
phism as considered by Janson (2011), but has some additional structure. Namely, a sim-
plicial homomorphism φ : V(F ) → V(K) is rank-preserving as a poset homomorphism, in
that dim(σ) = dim(φ(σ)) for all σ ∈ F . General poset homomorphisms as considered by
Janson (2011) do not require the rank to be preserved. It is interesting to see how the rank-
preservation condition on these poset homomorphisms yields a significantly different limit
structure, namely a complexon, as opposed to a kernel on an ordered probability space.
Indeed, finite graded posets may be treated as abstract cell complexes, of which abstract
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simplicial complexes are a special type – this suggests that the symmetry conditions of
complexons may be relaxed in order to yield limit objects for more general combinatorial
structures.

5.2 Local Consistent Random Simplicial Complexes

We have studied the limits of dense sequences of simplicial complexes via complexons,
but this is not the only obvious limiting structure. Another such object for the graph
case is a locally consistent random graph model (Lovász, 2012, Chapter 11.2). Analogous
structures exist for simplicial complexes. A random complex model is a sequence (µn)n≥1

of probability measures such that, for all n ≥ 1, µn is a probability measure on the set
of simplicial complexes K such that V(K) = [n], and if K and K ′ are isomorphic, then
µn(K) = µn(K ′).

The random complex model (µn) is said to be consistent if for any simplicial complex
K on nodes [n− 1], we have

µn−1(K) = µn
({
F : V(F ) = [n], F ′ = K

})
,

where F ′ = K indicates that the removal of the node n from F yields the simplicial complex
K. Furthermore, if for all n > 1, and disjoint subsets S, T ⊆ [n], the random simplicial
complexes determined by taking the induced subcomplex on S, T of a simplicial complex
sampled following µn are independent, we say that (µn) is local.

Indeed, any simplicial complex K yields a random complex model. Define, for n ≥ 1,
the probability measure µK,n such that for any simplicial complex F with V(F ) = [n]

µK,n(F ) = tind(F,K).

The following result, following (Lovász, 2012, Theorem 11.7), links convergent sequences
of simplicial complexes to local consistent random complex models.

Theorem 15. Let a convergent sequence of simplicial complexes K1,K2, . . . with v(Km)→
∞ as m→∞ be given. Define, for all n ≥ 1 and all simplicial complexes F with V(F ) = [n],
the probability measure

µn(F ) = lim
m→∞

µKm,n(F ),

noting that the sequence K1,K2, . . . being convergent implies the limit exists. Then, the
sequence (µn)n≥1 forms a local consistent random complex model. Conversely, every local
consistent random complex model arises this way.

The proof follows that of (Lovász, 2012, Theorem 11.7) almost exactly, so we omit
it here. Furthermore, an initial connection with complexons is stated in the following
result (compared to Lemma 2).

Proposition 16. Let W be a complexon. Define, for all n ≥ 1, the probability measure for
simplicial complexes F on nodes [n]

µn(F ) = P {K(n,W ) = F} = tind(F,W ).

Then, the sequence (µn)n≥1 forms a local consistent random complex model.
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Viewing the sampled simplicial complexes from a complexon as being equivalently sam-
pled from a local consistent random complex model is a helpful perspective for establishing
convergence of a complexon’s samples in the cut-metric. In particular,

Proposition 17. Let (µn)n≥1 be a local consistent random complex model. For each n ≥ 1,
independently draw a simplicial complex Kn on nodes [n] according to the distribution µn.
Then, with probability 1,

(i) The sequence (Kn) is convergent

(ii) For all n, limm→∞ µKm,n = µn.

In particular, if (µn = K(n,W ))n≥1 for some complexon W , we have that a sequence of
increasingly large simplicial complexes sampled from a complexon converges to W ◦ with
probability 1.

We also omit the proof, as it resembles that of (Lovász, 2012, Lemma 11.8) with very
little modification. Propositions 16 and 17 together indicate that for a given complexon W
and a sequence of increasingly large simplicial complexes (Kn ∼ K(n,W ))n≥1, Kn → W ◦

with probability 1. That is to say, we can (almost surely) generate a sequence converging to
an arbitrary complexon by simply taking a sequence of large simplicial complexes sampled
from it. Indeed, this recovers Corollary 8.

5.2.1 Homogeneous random complexes

Some simple instances of local consistent random complex models have been described in
the literature. We go through the dense variants of these models, specifying both the
corresponding complexon and the random complex model.

Linial and Meshulam (2006); Meshulam and Wallach (2009) considered the homological
connectivity of random simplicial complexes generated in the following way. For some real
number p ∈ [0, 1] and integers d > 1, n ≥ 1, a random simplicial complex Kn,p is formed on

the node set [n] by including all d− 1 simplices on [n], and including each element of
( [n]
d+1

)
independently with probability p. This model is known as the “Linial-Meshulam model.”
One can define a complexon whose samples are distributed in this way. Define W ∈ W so
that for all x ∈ [0, 1]c+1 for c < d, we have W (x) = 1, and for all x ∈ [0, 1]d+1 we have
W (x) = p. It is clear to see that for all n, the random simplicial complex K(n,W ) follows
the Linial-Meshulam model.

If the Linial-Meshulam assumes a fully-connected (d−1)-skeleton and fills in d-simplices
at random, the random flag, or clique, complex (Kahle, 2009) does the opposite. The flag
complex, again for some p ∈ [0, 1], yields a random complex on nodes [n] by beginning with
an Erdős-Rényi random graph Gn with edge probability p, and then taking the maximal
simplicial complex whose 1-skeleton is equal to Gn. This can also be expressed with an
appropriately constructed complexon. Define W ∈ W so that for all x ∈ [0, 1]2, W (x) = p,
and otherwise W (x) = 1. Then, the random simplicial complex K(n,W ) is a random flag
complex.

As a generalization of both of these, Costa and Farber (2016) considers random simplicial
complexes parameterized by a sequence of coefficients p1, p2, p3, . . . contained in [0, 1]. The
multiparameter, or Costa-Farber, random simplicial complex is distributed according to
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K(n,W ), where W is such that for all x ∈ [0, 1]d+1, W (x) = pd. Further work showed
that in the dense, or medial, regime of p ≤ pj ≤ P for some 0 < p ≤ P < 1 for all j,
the dth homology group of such a random complex in a given dimension is nontrivial for
n in a logarithmically-sized interval, being trivial elsewhere with high probability (Farber
and Mead, 2020). That is to say, as n → ∞, the homology group of a fixed dimension
for complexes sampled according to K(n,W ) vanishes with probability tending to one. For
some complexons, particularly those bounded away from zero in correspondence with the
medial regime studied by Farber and Mead (2020), it is seemingly difficult then to speak of
the “homological structure of a complexon” in general. As an example, consider a simplicial
complex K on n nodes with a nonzero first Betti number. Then, consider some simplicial
complex on n′ � n nodes sampled from WK , which will likely have a much larger first Betti
number. Thus, the Betti numbers are in some sense destroyed when going from a simplicial
complex to its corresponding complexon.

These three models are all instances of homogeneous random simplicial complexes, where
the probability of a simplex existing is dependent only on its dimension. For a complexon
W , this corresponds to W being constant on [0, 1]d+1 for each d ≥ 1.

5.3 Other Random Simplicial Complex Models

As described in Section 3.1, a random simplicial complex sampled from a complexon fol-
lowing K(n,W ) essentially picks nodes [n] with “latent positions” x1, . . . , xn uniformly
distributed in the unit interval. That is to say, the random complex structure is dependent
on each node’s position in the space [0, 1]. In the ensuing construction, no topological prop-
erties of [0, 1] were leveraged, suggesting that the definition of a complexon can be extended
to nodes sampled from any Borel probability space. Let (Ω,F , µ) be a Borel probability
space, which we denote by Ω for short. A complexon on Ω is a measurable function

W :
⊔
d≥1

Ωd+1 → [0, 1].

All of the basic constructions so far generalize immediately to complexons on Ω: sampling,
homomorphism densities, cut-metrics, and so on. In particular, if (Ω,F , µ) is a Borel
probability space, then a complexon W on Ω can be transformed into a complexon W on
[0, 1] in a way that preserves all homomorphism densities. That is to say, complexons on
[0, 1] are sufficient for describing complexons on Borel probability spaces in general, which
arise, for instance, when Ω is a metric space endowed with the Borel σ-field. For example,
it is well-known that every probability measure on the Borel σ-field of Rd yields a Borel
probability space. We outline the details of this in Section D, with reference to (Lovász,
2012, Section 13.1).

Defining complexons over alternative probability spaces is useful for describing random
simplicial complexes tied to a natural underlying space. We consider here dense random
geometric Čech complexes (Bobrowski and Krioukov, 2022). Let µ be a probability measure
on Rd for some integer d ≥ 1, and let X denote the support of µ. For some ε > 0, define a
complexon Wε on X so that, for any points x1, . . . , xd+1 ∈ X ,

Wε(x1, . . . , xd+1) = 1(

d+1⋂
j=1

Bε/2(xj) 6= ∅),
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(a) (b) (c)

Figure 2: (a) Čech complex formed from points uniformly sampled from a bouquet of two
circles in R2. (b) The complexon Wε as defined on [0, 1]2 (dark regions indicate
a value of 1). (c) The complexon Wε as defined on [0, 1]3 (dark regions indicate
a value of 1).

where Bε/2(xj) indicates the open ball in Rd of radius ε/2 centered about xj . That is to
say, Wε(x1, . . . , xd+1) = 1 if and only if the collection of points {x1, . . . , xd+1} has diameter
less than ε.

Going back to our definition of the random simplicial complex K(n,Wε), let Xn =
{x1, . . . , xn} be such that x1, . . . , xn are i.i.d. samples from the probability distribution µ.
Form a simplicial complex K such that V(K) = [n]. Inductively for d ≥ 1 until termination,
for each d + 1-subset σ ⊆ [n] such that every strict subset of σ is contained in K, include
σ in K with probability Wε(xσ). The random simplicial complex K formed in this way is,
much like before, said to be sampled from the distribution K(n,Wε). Moreover, under our
particular definition of Wε, it is clear that the resulting simplicial complex K is the Čech
complex Čε(Xn,Rd). In this way, K(n,Wε) is the distribution of Čech complexes with fixed
radius ε formed by sampling n i.i.d. points in X from the probability distribution µ.

Revisiting our example of the Čech complex formed from the bouquet of two circles in
Section 1 (see Figure 1), we can now couch our understanding of convergent subsampled
Čech complexes in the language of complexons. As before, let X be the bouquet of two unit
circles in R2. For any n ≥ 1, let Xn be a collection of n i.i.d. samples from the uniform
distribution on X . An instance of the random Čech complex Čε(Xn,R2) is pictured in
Figure 2 (a).

We can equivalently describe the random Čech complex as a complexon. For the purpose
of illustration, parameterize the space X as a curve c : [0, 1]→ R2, defined as

c(t) =

{
(cos(4πt)− 1, sin(4πt)) t < 1/2

(1− cos(4πt), sin(4πt)) t ≥ 1/2.

The uniform measure µ on X is merely the pushforward measure of the uniform measure
on [0, 1] via the map c. Moreover, c is injective almost everywhere, so we can represent the
complexon modeling Čε(X ,R2) as a standard complexon on [0, 1], up to a set of measure
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zero. The complexon Wε as defined on [0, 1]2 and [0, 1]3 is pictured in Figure 2 (b,c). Indeed,
Wε can be thought of as the indicator function for simplices in the Čech complex Čε(X ,R2).

5.4 Convergence of Nonuniform Hypergraphs

An open problem in the theory of graph homomorphisms and graph limits is the char-
acterization of nonuniform hypergraphs with unbounded edges (Lovász, 2008). As noted
in Section 3.1, the distribution K(n,W ) can be thought of in terms of “lower sampling”
following (Farber et al., 2022), where a random hypergraph H is drawn according to W ,
and then taking the largest simplicial complex contained in that hypergraph. On the other
hand, the “upper sampling” approach (Farber et al., 2022) can be reproduced by drawing
a random hypergraph H according to W ◦, and then taking the smallest simplicial com-
plex that contains that hypergraph. Both of these approaches yield the same distribution
K(n,W ).

The viewpoint of simplicial complexes formed from the upper or lower bounds of hyper-
graphs sheds some light on limits of dense, nonuniform hypergraphs. For a hypergraph H,
let bHc be the largest simplicial complex contained in H, and dHe the smallest simplicial
complex containing H. We say that a sequence of hypergraphs (Hn)n≥1 is upper-lower-
convergent (or, for brevity, UL-convergent) if the following conditions hold simultaneously
for some complexon W :

(i) (dHne)n≥1 is convergent with limiting complexon W

(ii) (bHnc)n≥1 is convergent with limiting complexon W ◦.

If this is the case, we say that Hn → W as n → ∞. Since for all n, dHne ∈ W◦, by Lem-
mas 33 and 34, it holds that W ∈ W◦.

Based on Lemma 7, we know that large simplicial complexes sampled from a complexon
are close to the faceted complexon in the cut-metric, with high probability. Based on the
relationship between faceted complexons and upper/lower sampling, we establish a similar
approach to show that sequences of hypergraphs sampled from faceted complexons are UL-
convergent. Let W be a complexon, and n ≥ 1 an integer. Similar to the definition of
K ∼ K(n,W ), we define a random hypergraph H as follows. First, take n i.i.d. samples
x1, . . . , xn uniformly at random in the unit interval [0, 1]. Let H be a hypergraph with
V(H) = [n]. Then, for each σ ∈ 2[n], include σ ∈ H with probability W (xσ). We call the
distribution from which H is drawn H(n,W ).

Lemma 18. For a complexon W and integer n ≥ 1, it holds that

K(n,W )
D
= bH(n,W )c D= dH(n,W ◦)e,

where
D
= denotes equality in distribution.

We now consider the relationship between UL-convergence, simplicial homomorphisms,
and hypergraph homomorphisms. For a hypergraph H, define a complexon WH in the same
way as one does for simplicial complexes, that is, by taking indicator functions of tuples
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defined on a partition of [0, 1]. From this, we inherit all the usual notions of homomorphisms
and cut-metrics for hypergraphs. For a hypergraph H and a complexon W , define

t(H,W ) =

∫
[0,1]V(H)

∏
σ∈H

W (xσ)
∏

j∈V(H)

dxj .

With the notion of a homomorphism for hypergraphs, it is natural to ask whether the
convergence of a sequence of hypergraphs in all hypergraph homomorphisms implies UL-
convergence. Indeed, convergence of all hypergraph homomorphism densities is enough to
establish convergence of the sequence (bHnc), but not to establish convergence of (dHne).

Counterexample 1. For some p ∈ [0, 1] define Wp ∈ W so that W (x) = p for x ∈ [0, 1]3,
and W (x) = 0 otherwise. Define a sequence of hypergraphs (Hn,p)n≥1 where each Hn,p is a
random hypergraph distributed according to H(n,Wp). One can check that with probability
1, for any hypergraph G, t(G,Hn,p) is convergent, so that (Hn,p) is a convergent sequence
in the sense of homomorphisms.

Setting p = 1, it is obvious that (Hn,1) is not UL-convergent, since bHn,1c is the empty
simplicial complex on n nodes, and dHn,1e is the complete 2-dimensional simplicial complex
on n nodes. Then, one can see that dHn,1e → W , where W (x) = 1 for x ∈ [0, 1]d+1 when
d ∈ {1, 2}, and W (x) = 0 otherwise. On the other hand, bHn,1c → 0. It is not true that
W ◦ = 0 in this case, so UL-convergence does not hold.

In the above counterexample, the hypergraphs (Hn,1) were drawn from a complexon
W1 ∈ W \W◦, that is, “non-faceted” complexons. In light of the UL-limit of a convergent
hypergraph sequence necessarily being an element of W◦, this may imply some utility of
the extra structure imposed by W◦. This is noted in the following proposition.

Proposition 19. Let W ∈ W◦ be given, and take a sequence (Hn)n≥1 of random hyper-
graphs Hn ∼ H(n,W ). Then, (Hn) is UL-convergent with limit W with probability 1.

Proof For the sequence (Hn), note that for each n, bHnc is distributed according to
K(n,W ) by Lemma 18. By Corollary 8, this implies that (bHnc)→W ◦ with probability 1.

Similarly, since W ∈ W◦, there is some U ∈ W such that W = U◦. Then, for each n,
dHne is distributed according to K(n,U), again by Lemma 18. Thus, (dHne) → W with
probability 1.

Proposition 19 and Counterexample 1 together indicate that considering the upper and
lower simplicial complexes of a sequence of hypergraphs may help establish a theory of
nonuniform hypergraphs, but fails in cases where the limiting object is not a faceted com-
plexon.
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Appendix A. Proof of Lemma 7

A.1 Equipartitioning

Let P be a partition of [0, 1] into finitely many measurable sets. For a complexon W , define
the projection WP as follows. For {pj ∈ Pj : j ∈ [d+ 1]}, where each Pj is an element of P,
put

WP(p1, . . . , pd+1) =

∫
∏d+1
j=1 Pj

W (x1, . . . , xd+1)dx.

The complexon WP is an instance of a stepfunction on P, that is, WP(x1, . . . , xd+1) is only
dependent on which sets in P the points x1, . . . , xd+1 are contained in. We establish a result
stating that any complexon can be approximated in the cut-distance by a piecewise constant
complexon with respect to an equipartition of the unit interval. The following is a weak
regularity lemma, stating that any complexon can be approximated by a stepfunction over
an appropriate partition. It is a trivial extension of (Frieze and Kannan, 1999, Theorem 12).

Theorem 20. Let W be a complexon. For given integers n > 1, d ≥ 1, there is a partition
P of [0, 1] into n measurable sets such that there exists a stepfunction U on P such that for
all 1 ≤ j ≤ d,

d�,j(W,U) ≤

√
d+ 1

log2 n
.

Following (Lovász, 2012), we strengthen Theorem 20 to hold for equipartitions, where
an equipartition of a measure space is a partition such that each set has equal measure.

Lemma 21 (Equipartitioning). Let W be a totally symmetric, measurable function. For
given integers n > 1, d ≥ 1, there exists an n-equipartition P of [0, 1] such that for all finite,
nonnegative sequences of real numbers α1, . . . , αd,

d�(W,WP ; (αj)) ≤
∑d

j=1 αj
(
4
√
d+ 1 + 2j

)√
log2 n

.

Proof Put m = dn1/4e. Let Q = {Qj}mj=1 be an m-partition as guaranteed by Theorem 20,
with corresponding stepfunction U . Partition each class Qj into sets of measure 1/n, with
at most one exceptional set of measure less than 1/n for each class. Notice that the measure
of the union of the exceptional sets is bounded by m/n. Take the union of the exceptional
sets, and partition it into sets of measure 1/n, yielding an equipartition P.

Take the common refinement R = P ∧ Q. Note that P and R only differ over those
classes in P formed from exceptional sets. Thus, for all j ≥ 1, the restrictions of WP and
WR to [0, 1]j+1 only differ on a set of measure at most 2j(m/n). This implies that

d�,j(WR,WP) ≤ 2j
m

n
.

Via an easily shown variation of (Lovász, 2012, Lemma 9.12), we see that

d�,j(W,WR) ≤ 2d�,j(W,U),
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which implies via the triangle inequality that

d�,j(W,WP) ≤ 2d�,j(W,U) + 2j
m

n
.

One can then show via straightforward calculation that

d�,j(W,WP) ≤ 4
√
d+ 1 + 2j√

log2 n
.

This yields the bound

d(W,WP ; (αj)) =
d∑
j=1

αjd�,j(W,WP) ≤
∑d

j=1 αj
(
4
√
d+ 1 + 2j

)√
log2 n

,

as desired.

A.2 Sample Concentration

We show that “nice” parameters of simplicial complexes sampled from a complexon con-
centrate around their expectation.

Definition 22 (Reasonably Smooth Parameter). Let f be a function mapping simplicial
complexes to the real numbers. Suppose that for any simplicial complexes F,G such that
V(F ) = V(G) and whose structure varies only on faces incident to a single node, that is,
there exists some v ∈ V(F ) such that for all σ ∈ F ,

σ ∈ F4G⇒ v ∈ σ,

we have
|f(F )− f(G)| ≤ 1.

Under these conditions, we say that f is a reasonably smooth parameter.6

We will need the following result (Lovász, 2012, Corollary A.15), which is a corollary of
Azuma’s inequality.

Proposition 23. Let (Ω,A, π) be a probability space. Let f : Ωn → R be a measurable
function such that

|f(x)− f(y)| ≤ 1

whenever x and y differ in one coordinate only. Let X be a random point in Ωn distributed
according to the product measure. Then, for any ε > 0,

P {f(X) ≥ E[f(X)] + εn} ≤ exp
(
−ε2n/2

)
.

6. F4G denotes the symmetric difference between sets.

25



Roddenberry and Segarra

Proposition 23 gives us a generic, one-sided tail bound for well-behaved functions on
sequences of i.i.d. random variables. We now construct the random simplicial complex
K(n,W ) in a way that fits this schema.

Let W be a complexon, and let n ≥ 1 be given. Let Ω =
∏n−1
d=0 [0, 1]([n]d) with the

uniform probability measure. Take i.i.d. samples xj = (αj,0, . . . , αj,n−1) from Ω for j ∈ [n].
We construct a simplicial complex F from the points {xj}nj=1 in the following way.

For all σ ⊆ [n], put σ ∈ F if and only if the following condition holds. For any σ′ ⊆ σ,
denote the ordered elements of σ′ by 1 ≤ i1 ≤ . . . ≤ id+1 ≤ n. Then, we require for all such
σ′

αi1,d(i2, . . . , id+1) ≤W (αi1,0, . . . , αid+1,0).

Under this model, a random simplicial complex F distributed according to K(n,W ) is
taken as a function of the i.i.d. sequence xj and the complexon W . Moreover, changing
any coordinate xj in the sequence only affects simplices that contain j. We can now state
the main result of this section.

Theorem 24 (Sample Concentration). Let f be a reasonably smooth parameter. Then, for
a complexon W , an integer n ≥ 1, and real number t ≥ 0, we have

P
{
f(K(n,W )) ≥ E[f(K(n,W ))] +

√
2tn
}
≤ exp (−t) .

Proof Follows from Proposition 23, treating f(K(n,W )) as the composition of functions
of the sequence of i.i.d. random variables {xj ∈ Ω}nj=1.

A.3 Concentration of Norm

The following lemma will be the most challenging part of proving Lemma 7.

Lemma 25 (Norm Concentration). Let U : [0, 1]d+1 → [−1, 1], and let X be a random

ordered n-subset of [0, 1]. Let U [X] be the matrix in [−1, 1]n
d+1

determined by evaluating U
on Xd+1. Then with probability at least 1− 4 exp(−n1/(d+1)/2),

−3r(n, d+ 1) ≤ ‖U [X]‖�,d − ‖U‖�,d ≤
5(d+ 1)2

√
n1/(d+1)

,

where

r(n, d+ 1) = 1− P (n, d+ 1)

nd+1
.

We begin with the following result, which is a special case of (Alon et al., 2003, Lemma 3).

Lemma 26. Let B : [n]d+1 → [−1, 1]. Let S1, . . . , Sd+1 ⊆ [n], and for each j ∈ [d+ 1], let
Qj be a random subset of [n][d+1]\{j} with cardinality q. Then,

B(S1, . . . , Sd+1) ≤ EQj

B
S1, . . . , Sj−1, (Qj ∩

∏
i 6=j

Si)
+, Sj+1, . . . , Sd+1

+
nd+1

√
q
,
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where
B(S1, . . . , Sd+1) =

∑
v1∈S1

· · ·
∑

vd+1∈Sd+1

B(v1, . . . , vd+1),

and (Qj ∩
∏
i 6=j Si)

+ is the collection of elements v ∈ [n] such that,∑
q∈Qj∩

∏
i6=j Si

B(q1, . . . , qj−1, v, qj+1, . . . , qd+1) > 0.

Lemma 26 can be iterated over all dimensions of the matrix B in order to yield an
expectational bound on a variation of the cut-norm for a matrix. We find it useful to
consider the one-sided cut-norm, defined as follows.

Definition 27. Let B : [n]d+1 → R and U : [0, 1]d+1 → R. Define

‖B‖+�,d =
maxS1,...,Sd+1⊆[n]B(S1, . . . , Sd+1)

nd+1

‖U‖+�,d = sup
S1,...,Sd+1∈B[0,1]

∫
∏
j Sj

U(x)dx.

Observing that ‖B‖�,d = max{‖B‖+�,d; ‖ − B‖+�,d}, our goal is to find bounds for

‖U [X]‖+�,d − ‖U‖
+
�,d and apply them twice, yielding the desired result.

Lemma 28. Let B : [n]d+1 → [−1, 1]. Let {Qj}d+1
j=1 each be random subsets of [n][d+1]\{j}

with cardinality q. Then,

‖B‖+�,d ≤
1

nd+1
EQ1,...,Qd+1

[
max
Rj⊆Qj

B(R+
1 , . . . , R

+
d+1)

]
+
d+ 1
√
q
.

Proof Fix S1, . . . , Sd+1 ∈ [n]. Applying Lemma 26 repeatedly over each coordinate j ∈
[d+ 1] yields

B(S1, . . . , Sd+1) ≤ EQ1,...,Qd+1

[
max
Rj⊆Qj

B(R+
1 , . . . , R

+
d+1)

]
+

(d+ 1)nd+1

√
q

.

Taking the supremum of the left-hand side over all possible sets S1, . . . , Sd+1 and normal-
izing by nd+1 yields the desired bound.

The following lemma immediately precedes our desired result.

Lemma 29. Let U : [0, 1]d+1 → [−1, 1], and let X be a random ordered n-subset of [0, 1].
Then with probability at least 1− 2 exp(−n1/(d+1)/2),

−3r(n, d+ 1) ≤ ‖U [X]‖+�,d − ‖U‖
+
�,d ≤

5(d+ 1)2

√
n1/(d+1)

.
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Proof For a random n-subset X ⊆ [0, 1], let B = U [X].

(Lower bound) For any measurable subsets S1, . . . , Sd+1 ⊆ [0, 1] we have

‖B‖+�,d ≥
1

nd+1
U(S1 ∩X, . . . , Sd+1 ∩X),

where U(S1 ∩X, . . . , Sd+1 ∩X) is used as shorthand for

U(S1 ∩X, . . . , Sd+1 ∩X) =
∑

x1∈S1∩X
· · ·

∑
xd+1∈Sd+1∩X

U(x1, . . . , xd+1).

On average, we see that

EX
[
‖B‖+�,d

]
≥ 1

nd+1
EX [U(S1 ∩X, . . . , Sd+1 ∩X)]

=
P (n, d+ 1)

nd+1

∫
∏
j Sj

U(x)dx+ r(n, d+ 1) · g(U ;S1, . . . , Sd+1),

where g is some function taking values with magnitude at most 1. Thus, since the sets
S1, . . . , Sd+1 were given arbitrarily, we can choose them to yield the following inequality.

EX
[
‖B‖+�,d

]
≥
∫
∏
j Sj

U(x)dx− 2r(n, d+ 1)

≥ ‖U‖+�,d − 2r(n, d+ 1).

Applying Proposition 23 yields

‖B‖+�,d − ‖U‖
+
�,d ≥ −3r(n, d+ 1)

with probability at least 1− exp(−r2(n, d+ 1)/2).

(Upper bound) Let Q1, . . . , Qd+1 be, for each j, random q-subsets of [n][d+1]\{j}. We will
bound the expectation of ‖B‖+�,d by first fixing some parameters. Fix the sets Rj ⊆ Qj ⊆
[n]d, and define Q =

⋃
j{Qj,1, . . . , Qj,d}, so that Q ⊆ [n]. Fix those values of Xi for which

i ∈ Q. Define for each j ∈ [d+ 1] the set

Yj =

y ∈ [0, 1] :
∑

(i1,...,id)∈Rj

U(Xi1 , . . . , Xij−1 , y,Xij , . . . , Xid) > 0

 .

Let X ′ = {Xi : i ∈ [n]\Q}. For every collection of indices {ij ∈ [n]\Q}d+1
j=1 , the contribution

of U(Xi1 , . . . , Xid+1
) to EX′ [B(R+

1 , . . . , R
+
d+1)] is at most∫

∏
j Yj

U(y1, . . . , yd+1)dy ≤ ‖U‖+�,d.

There are fewer than nd+1 such choices of indices. The remaining terms where ij ∈ Q for at
least one j ∈ [d+ 1] contribute at most (2n|Q|)d ≤ (2(d+ 1)nq)d in absolute value, yielding
the bound

EX′
[
B(R+

1 , . . . , R
+
d+1)

]
≤ nd+1‖U‖+�,d + 2d ((d+ 1)nq)d .
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Note thatB(R+
1 , . . . , R

+
d+1) is a function of the random variablesX ′. Moreover, B(R+

1 , . . . , R
+
d+1)

varies by at most 4nd when a single coordinate of X ′ is changed. Thus, by Proposition 23,
we have for a given ε > 0, with probability at least 1− exp(−ε2n/2),

B(R+
1 , . . . , R

+
d+1) ≤ EX′

[
B(R+

1 , . . . , R
+
d+1)

]
+ 4εnd+1.

The number of possible choices of sets R1, . . . , Rd+1 is at most 2q(d+1), so that the above
bound holds for all {Rj ⊂ Qj}d+1

j=1 with probability at least 1 − 2q(d+1) exp(−ε2n/2). This
property is preserved when taking the expectation over Q1, . . . , Qd+1, so that, by Lemma 28,

‖B‖+�,d ≤
1

nd+1
EQ1,...,Qd+1

[
max
Rj⊆Qj

B(R+
1 , . . . , R

+
d+1)

]
+
d+ 1
√
q

≤ ‖U‖+�,d +
(2(d+ 1)q)d

n
+ 4ε+

d+ 1
√
q

with probability at least 1− 2q(d+1) exp
(
−ε2n/2

)
.

Put q = bn1/(d+1)c/(2(d+1)) and ε =
√

2(d+ 1)/q, noting that q ≥ 1 for n large enough
to make the desired bound nontrivial. This yields the bound

‖B‖+�,d − ‖U‖
+
�,d ≤

5(d+ 1)2

√
n1/(d+1)

with probability at least 1− exp(−n1/(d+1)/2).

(Conclusion of Proof) Combining the lower and upper bounds, we see that

−3r(n, d+ 1) ≤ ‖B‖+�,d − ‖U‖
+
�,d ≤

5(d+ 1)2

√
n1/(d+1)

with probability at least 1− 2 exp(−n1/(d+1)/2), as desired.

Proof [Proof of Lemma 25] Apply Lemma 29 to both U and −U . Since ‖U‖�,d =
max{‖U‖+�,d, ‖ − U‖

+
�,d}, this yields the desired tail bound.

A.4 Sampling Lemma

With these results established, we now prove Lemma 7. We will first need the following
result.

Lemma 30. Let (H,ω) be a weighted simplicial complex on n nodes. Let K(H) be the
random simplicial complex drawn from H. For every p ∈ [0, 1], we have

E [d�,d (K(H), H◦)] ≤ 3(d+ 1)p + 1

np
.

Proof Let ε > 0 be given. For {ij ∈ [n]}d+1
j=1 , define the random variable Xi = 1(i ∈ K(H)).

Let S1, . . . , Sd+1 be pairwise disjoint subsets of [n], and let AK,d and AH◦,d be the (weighted)

29



Roddenberry and Segarra

d-dimensional adjacency matrices associated to K(H) and H◦, respectively. We call such a
collection of sets bad if

|(AK,d −AH◦,d)(S1, . . . , Sd+1)| > ε

(
n

d+ 1

)d+1

,

Note that this is only possible if
∣∣∣∏j Sj

∣∣∣ > ε(n/(d+1))d+1. Then, by the Chernoff-Hoeffding

inequality,

PK(H)


∣∣∣∣∣∣
∑

i∈
∏
j Sj

(Xi − E[Xi])

∣∣∣∣∣∣ > ε

(
n

d+ 1

)d+1
 ≤ 2 exp

(
−2ε

(
n

d+ 1

)d+1
)
.

There are (d+ 2)n such collections of disjoint subsets, so the probability of a bad collection
existing is bounded by

2 · (d+ 2)n exp

(
−2ε

(
n

d+ 1

)d+1
)
.

By Lemmas 4 and 5, the nonexistence of bad subsets implies d�,d(K(H), H◦) ≤ ε. Therefore,
we have

E [d�,d(K(H), H◦)] ≤ ε+ 2 · (d+ 2)n exp

(
−2ε

(
n

d+ 1

)d+1
)
.

It is sufficient to consider the case when np > 3(d+ 1)p + 1, otherwise the bound is trivial.
In particular, taking ε = 3

(
d+1
n

)p
yields the desired bound.

Proof [Proof of Lemma 7] Let integers d ≥ 1, n > 1 be given. We bound the expected
cut-distance for any finite, nonnegative sequence α1, . . . , αd as follows. For some partition
P of [0, 1] and a random n-subset S ⊆ [0, 1]:

E [δ�(W ◦,K(W [S]); (αj))] ≤ d�(W ◦,W ◦P ; (αj)) (6a)

+ E [δ�(W ◦P ,W
◦
P [S]; (αj))] (6b)

+ E [d�(W ◦P [S],W ◦[S]; (αj))] (6c)

+ E [d�(W ◦[S],K(W [S]); (αj))] , (6d)

by the triangle inequality. We now bound each of the above summands individually.

Bound (6a): Let m = dn1/4e. By Lemma 21, there is an m-equipartition P = {Pj}mj=1 of
[0, 1] such that

d�(W ◦,W ◦P ; (αj)) ≤
2
∑d

j=1 αj
(
4
√
d+ 1 + 2j

)√
log2 n

for all finite, nonnegative sequences α1, . . . , αd, where W ◦P denotes the projection of W ◦ to
a stepfunction on P (as opposed to the faceted complexon corresponding to WP).

Bound (6b): Let H = W ◦P [S], and denote the corresponding complexon by W ◦H . Following
the proof of (Lovász, 2012, Lemma 10.16), observe that both W ◦H and W ◦P are stepfunctions
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on m-partitions of [0, 1], with the same function values on corresponding steps. Each step
of W ◦P has measure 1/m, while each step of W ◦H has measure |Pi ∩ S|/n = 1/m + ri for
i ∈ [m], where ri denotes some residual. It is easy to see that

δ�(W ◦P ,W
◦
H ; (αj)) ≤

m∑
i=1

|ri|
d∑
j=1

αj(j + 1).

By the estimate in the proof of (Lovász, 2012, Lemma 10.16), we have

E [δ�(W ◦P ,W
◦
H ; (αj))] ≤ E

[
m∑
i=1

|ri|

]
d∑
j=1

αj(j + 1) <

∑d
j=1 αj(j + 1)

n3/8
.

Bound (6c): By Lemma 25, we have

|d�,d(W ◦[S],W ◦P [S])− d�,d(W
◦,W ◦P)| ≤ 5(d+ 1)2

√
n1/(d+1)

with probability at least 1− 8 exp(−n1/(d+1)/2). This implies that

E [|d�,d(W ◦[S],W ◦P [S])− d�,d(W
◦,W ◦P)|] ≤ 5(d+ 1)2 + 5√

n1/(d+1)
.

Applying the triangle inequality yields

E [d�,d(W
◦[S],W ◦P [S])] ≤ E [|d�,d(W ◦[S],W ◦P [S])− d�,d(W

◦,W ◦P)|]
+ d�,d(W

◦,W ◦P)

≤ 5(d+ 1)2 + 5√
n1/(d+1)

+
2d + 4

√
d+ 1√

log2 n

≤ 2d+2√
log2 n

,

where the final inequality holds by assuming that n is large enough so that the bound in
Lemma 7 is nontrivial. By linearity of expectation, this yields

E [d�(W ◦[S],W ◦P [S]; (αj))] ≤
∑d

j=1 αj
(
2j+2

)√
log2 n

.

Bound (6d): By Lemma 30, we have

E [d�,d(W
◦[S],K(W [S]))] ≤ 3(d+ 1)3/8 + 1

n3/8
,

which implies by linearity of expectation

E [d�(W ◦[S],K(W [S]); (αj))] ≤
∑d

j=1 αj
(
3(j + 1)3/8 + 1

)
n3/8

.
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Bounding expected cut-distance: Combining the respective bounds of (6a) to (6d) yields the
following:

E [δ�(W ◦,K(W [S]); (αj))] ≤
d∑
j=1

αj

(
8
√
d+ 1 + 6 · 2j√

log2 n
+
j + 2 + 3(j + 1)3/8

n3/8

)
.

Since
∑d

j=1 αj is always a bound for δ(W ◦,K(W [S]); (αj)), it is sufficient to consider n
sufficiently large so that the bound in Lemma 7 is nontrivial. In this regime, we have

E [δ�(W ◦,K(W [S]); (αj))] ≤
12 · 2d√

log2 n

d∑
j=1

αj .

Observing that f(F ) = v(F ) ·δ(F,W ◦; (αj))/
∑d

j=1 αj is a reasonably smooth parameter
for any (nonzero) finite, nonnegative sequences α1, . . . , αd, Theorem 24 implies

δ�(W ◦,K(W [S]); (αj)) ≤
12 · 2d + 1√

log2 n

d∑
j=1

αj

with probability at least 1 − exp(−n/(2 log2 n)). Since K(W [S]) is identically distributed
to K(n,W ), this yields the desired bound.

Appendix B. Proof of Lemma 9

Given our interest in cut-distances that only consider the first d dimensions, we denote by
Kd(n,W ) the d-skeleton of the random simplicial complex K(n,W ). Equivalently, if we
define Wd as the complexon that is equal to W in all dimensions less than or equal to d,
and 0 otherwise, Kd(n,W ) is equal to K(n,Wd) in distribution.

We state a weaker version of Lemma 31 in terms of total variation distances first, which
we then strengthen to be in terms of homomorphism densities.

Lemma 31. Let U,W be two complexons, and suppose that for some d ≥ 1, n ≥ 2, we have

dvar(Kd(n,U),Kd(n,W )) < 1− 2 exp

(
− n

2 log2 n

)
,

where dvar denotes the total variation distance between probability distributions. Then, for
all finite nonnegative sequences α1, . . . , αd,

δ�(U◦,W ◦; (αj)) ≤
24 · 2d + 2√

log2 n

d∑
j=1

αj .

Proof We prove this bound via the probabilistic method. By assumption, we can couple
Kd(n,U) and Kd(n,W ) so that with probability at least 2 exp(−n/(2 log2 n)),

Kd(n,U) = Kd(n,W ). (7)
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By Lemma 7, we have with probability at least 1− exp(−n/(2 log2 n)),

δ�(U◦,Kd(n,U); (αj)) ≤
12 · 2d + 1√

log2 n

d∑
j=1

αj . (8)

Similarly, with probability at least 1− exp(−n/(2 log2 n)),

δ�(W ◦,Kd(n,W ); (αj)) ≤
12 · 2d + 1√

log2 n

d∑
j=1

αj . (9)

With positive probability, then, (7) to (9) hold simultaneously, which implies that

δ�(U◦,W ◦; (αj)) ≤ δ�(U◦,Kd(n,U); (αj))

+ δ�(Kd(n,U),Kd(n,W ); (αj))

+ δ�(Kd(n,W ),W ◦; (αj))

≤ 24 · 2d + 2√
log2 n

d∑
j=1

αj ,

as desired.

The inverse counting lemma follows, by showing that closeness in homomorphism den-
sities implies the condition of Lemma 31.
Proof [Proof of Lemma 9] For convenience, put f(n, d) = 0.999 · 2−((1+n)d+2). Let F be a
finite, simplicial complex on n nodes of dimension d. By the inclusion-exclusion principle,
the induced homomorphism density can be written as

tind(F,Wd) =
∑

G⊆F◦:dimG≤d
(−1)|G| t(F ∪G,W ),

with a similar expression holding for the complexon U . Since each F ∪G yields a simplicial
complex of dimension d, we have |t(F ∪ G,U) − t(F ∪ G,W )| ≤ f(n, d) for all such F,G,
by assumption. Observe that for any simplicial complex F on n nodes of dimension d, the
number of antifacets of F of dimension at most d is bounded by

(
n
d+1

)
. This implies that

|tind(F,Ud)− tind(F,Wd)| ≤ 2( n
d+1) · f(n, d).

Then, by Lemma 2, for any such F ,

|P {Kd(n,U) = F} − P {Kd(n,W ) = F}| ≤ 2( n
d+1) · f(n, d),

keeping in mind that there exists at least one F such that strict inequality holds. Therefore,
assuming n is sufficiently large so that the bound on δ�(U◦,W ◦; (αj)) is nontrivial (that is,
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less than
∑

j αj), summing over all simplicial complexes F on [n] of dimension d yields the
bound

dvar(Kd(n,U),Kd(n,W )) =
∑
F

|P {K(n,U) = F} − P {K(n,W ) = F}|

< 2
∑d+1
j=1 (nj)2( n

d+1) · f(n, d)

≤ 1− 2 exp

(
− n

2 log2 n

)
.

The lemma follows from Lemma 31.

Appendix C. Proofs from Section 4.4

Proof [Proof of Lemma 11] Let ε > 0 and U ∈ W be given. Let Bε(U ; (αj)) be the open
ball centered at U of radius ε with respect to the pseudometric δ�(·, ·; (αj)). Similarly, let
Bε(U ; (βj)) be defined in the same way using the sequence (βj) to define the pseudometric.

By assumption, there exists an M such that∑
j>M

αj < ε/2

∑
j>M

βj < ε/2.

Put

ε′ =
ε ·minj≤M βj

2M ·maxj≤M αj
,

noting that ε′ > 0, since both sequences are strictly positive.
Let W ∈ Bε′(U ; (βj)) be given. Then, there exists a measure-preserving bijection φ :

[0, 1]→ [0, 1] such that
d�(U,W φ; (βj)j≥1) < ε′.

This implies that for all j ≤M ,

d�,j(U,W
φ) ≤ ε

2Mαj
.

One can then check that this implies d�(U,W φ; (αj)j≥1) < ε, so that Bε′(U ; (βj)) ⊆
Bε(U ; (αj)). Applying the same argument symmetrically and for arbitrary values of ε yields
the fact that the topologies on W induced by both metrics are equal, as desired.

We use a similar technique to prove Proposition 12.
Proof [Proof of Proposition 12] We show that every complexon W ∈ W arises as the
limit of a sequence in W0 in the canonical topology. By Lemma 11, we can choose an
arbitrary strictly positive, summable sequence (αj)j≥1 with which to define the pseudo-
metric δ�(·, ·; (αj)). Let ε > 0 be given, and consider the sequence of random simplicial
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complexes (K(n,W ))n≥1. Let d be such that
∑

j>d αj < ε/2. By Corollary 8, the se-
quence K(n,W ) converges to W ◦ with respect to the metric δ�(·, ·; (αj)j≤d) with proba-
bility 1. Therefore, there is some m0 such that for all m > m0, it holds (with proba-
bility 1) that δ�(K(n,W ),W ◦; (αj)j≤d) < ε/2. Thus, we also have for all m > m0 that
δ�(K(n,W ),W ◦; (αj)j≥1) < ε. Observe that WK(n,W ) = W ◦K(n,W ). Since ε was given ar-

bitrarily, this establishes the convergence of K(n,W ) to W in the canonical topology. Of
course, by Lemma 5, each K(n,W ) can be equivalently represented by an element of W0,
establishing the desired result.

Before proceeding with the proof of Theorem 13, we state the following useful result,
which is a corollary of Theorem 20.

Corollary 32. Let W be a complexon, and let 1 ≤ m < n, d ≥ 1. For every m-partition Q
of [0, 1], there is an n-partition P refining Q such that, for all 0 ≤ j ≤ d,

d�,j(W,WP) ≤

√
d+ 1

log2 n/m
.

Lemma 33. The space W with the δ-topology is compact.

Proof By Lemma 11, the δ-topology on W is the same for all strictly positive, summable
sequences (αj)j≥1. Thus, we can assume without loss of generality that αj = 2−j for all
j ≥ 1, so that

∑
j≥1 αj = 1.

To prove compactness, we show that every sequence W1,W2, . . . ∈ W has a convergent
subsequence. Following the proof of (Lovász and Szegedy, 2007, Theorem 5.1), for every
n ≥ 1, we can construct via Theorem 20 partitions Pn,k of [0, 1] for k ≥ 1, with corresponding
stepfunctions Wn,k = (Wn)Pn,k that satisfy

(i) d�(Wn −Wn,k; (αj)) ≤ 1/k

(ii) Pn,k is refined by Pn,k+1 for all n, k

(iii) |Pn,k| = mk depends only on k.

To do so, assume that for some k ≥ 0, Pn,k is an mk-partition of [0, 1] satisfying conditions
(i) and (iii). Put

ε =
1

2(k + 1)

Mε = d− log2 ε+ 1e

mk+1 = mk · 24(k+1)2(Mε+1).

Applying Corollary 32 with d = Mε, there exists an mk+1-partition Pn,k+1 satisfying (i) and
(ii). Moreover, mk+1 does not depend on the complexon Wn, so that Pn,k+1 also satisfies
(iii).

For the base case, let Pn,1 be the trivial (indiscrete) partition, which satisfies conditions
(i) and (iii) with mk = 1. By induction, then, there exists a sequence of partitions {Pn,k}k≥1

satisfying conditions (i)–(iii).
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Following the approach of (Lovász and Szegedy, 2007, Theorem 5.1), we can rearrange
the points of [0, 1] for each n by a measure-preserving bijection so that every partition in
every Pn,k is an interval, while preserving the properties (i)–(iii). Having done this, we
replace the sequence (Wn)n≥1 by a subsequence so that for every k, the sequence Wn,k

converges almost everywhere to a stepfunction Uk with mk steps as n→∞.
To do so, select a subsequence of Wn such that the length of the ith interval in Pn,1

converges for all i ∈ [m1]. Then, take a further subsequence such that the value of Wn,1

converges on the product of the ith1 and ith2 interval, for i1, i2 ∈ [m1]. Repeat this for the
products of the intervals indexed by i1, . . . , id+1 ∈ [m1] for all d ≥ 1. It follows that Wn,1

converges almost everywhere to a limit stepfunction U1 with m1 steps.
Repeat this procedure for all k > 1, taking further and further subsequences so that for

all k, Wn,k → Uk almost everywhere, where each Uk is a stepfunction on mk steps. This
yields the desired subsequence.

The proof proceeds identically to that of (Lovász and Szegedy, 2007, Theorem 5.1). Let
Pk denote the partition of [0, 1] into the steps of Uk. By the condition (ii) of the array Wn,k,
one can show that for every k < l, the partition Pn,l refines Pn,k, and furthermore that Pl
refines Pk. Moreover, it holds that

Uk = (Ul)Pk . (10)

We now seek to establish the almost everywhere convergence of the sequence Uk. Define
a function g :

⊔
d≥1[0, 1]d+1 → [0, 1] so that g([0, 1]d+1) = αd, for all d ≥ 1. Define a

probability measure µ on
⊔
d≥1[0, 1]d+1 such that, for any Borel set A ⊆

⊔
d≥1[0, 1]d+1,

µ(A) =

∫
A
gdλ,

where λ is the Lebesgue measure. Let X be a random point in
⊔
d≥1[0, 1]d+1 chosen accord-

ing to the measure µ. Then, the equation (10) implies that the sequence U1(X), U2(X), . . .
is a martingale with bounded terms. By the martingale convergence theorem (see, for in-
stance, Williams, 1991), this sequence is convergent with probability 1. That is to say, the
sequence of functions U1, U2, . . . converges almost everywhere, with respect to the measure
µ. Since µ is absolutely continuous with respect to λ, this implies convergence almost ev-
erywhere with respect to the Lebesgue measure. Denote the pointwise limit of this sequence
by U . By the dominated convergence theorem, we have

lim
k→∞

∞∑
j=1

αj

∫
[0,1]j+1

|U(x)− Uk(x)|dx = lim
k→∞

∫
|U − Uk|dµ = 0,

that is, Uk
L1

→ U with respect to the probability measure µ.
We now show that the subsequence Wn converges to U in the cut-distance. Let ε > 0

be given arbitrarily. Then, there is some k > 3/ε such that

∞∑
j=1

αj

∫
[0,1]j+1

|U(x)− Uk(x)|dx =

∫
|U − Uk|dµ < ε/3.
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For this k, there is an n0 such that for all n > n0,

∞∑
j=1

αj

∫
[0,1]j+1

|Uk(x)−Wn,k(x)|dx =

∫
|Uk −Wn,k|dµ < ε/3,

again by dominated convergence. Then, for all n > n0,

δ�(U,Wn; (αj)j≥1) ≤ δ�(U,Uk; (αj))

+ δ�(Uk,Wn,k; (αj))

+ δ�(Wn,k,Wn; (αj))

≤
∫
|U − Uk|dµ

+

∫
|Uk −Wn,k|dµ

+ δ�(Wn,k,Wn; (αj))

≤ ε,

thus proving convergence of the subsequence, as desired.

We define the map (·)◦ : W → W that sends any W ∈ W to W ◦, that is, the faceting
map.

Lemma 34. The faceting map (·)◦ : W → W is continuous with respect to the δ-topology
on W.

Proof By Lemma 11, we can consider an arbitrary strictly positive summable sequence
(αj)j≥1, so that the cut-distance δ�(·, ·; (αj)j≥1) induces the δ-topology onW. LetW1,W2, . . .
be a convergent sequenceW with respect to the cut-metric, with limiting complexon W . By
Lemma 6, this implies that for all n ≥ 1, the sequence of distributions K(n,Wm) converges
to K(n,W ) in the total variation distance as m→∞.

We now show that W ◦1 ,W
◦
2 , . . .→W ◦ in the cut-metric. Let ε > 0 be given arbitrarily.

Let Mε be an integer such that
∑

j>Mε
αj < ε/2, and put

n =
⌈
2(8·5Mε+1/ε)

2⌉
.

By Lemma 7, we have that for any complexon W ,

δ�(W ◦,K(n,W ); (αj)j≥1) <
ε

2

with probability at least 1− exp(−n/(2 log2 n)). Since the sequence K(n,Wm)→ K(n,W )
converges in the total variation distance as m → ∞, this implies that for some sufficiently
large m0, for each m > m0, there is some simplicial complex F such that simultaneously

δ�(W ◦m, F ; (αj)j≥1) <
ε

2

δ�(W ◦, F ; (αj)j≥1) <
ε

2
.
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By the triangle inequality, this implies δ�(W ◦m,W
◦; (αj)j≥1) < ε for all m > m0. Thus,

W ◦1 ,W
◦
2 , . . .→W ◦ in the cut-distance, so that the map (·)◦ is continuous, as desired.

Defining W◦ as the image of W under (·)◦, Lemmas 33 and 34 imply that W◦ is a
compact subspace of W with respect to the δ-topology. The compactness of the space W
with the canonical topology follows.
Proof [Proof of Theorem 13] From the pseudometric space (W, δ�), where δ� is defined in
terms of an arbitrary strictly positive, summable sequence, take the metric identification
(W, δ�), and define the δ-topology on W be the topology induced by the metric δ�. Since
the metric identification preserves compactnessW is a compact space under the δ-topology,
by Lemma 33. Moreover, taking W◦ to be the image of W under the map (·)◦, we have
that (W◦, δ�) is a compact metric space by Lemma 34. In other words, (·)◦ : W → W◦ is
a quotient map.

It is clear that the canonical topology onW is equal to the quotient topology by the map
(·)◦ : W → W◦. Since the space W with the quotient topology is compact, the canonical
topology is compact, as desired.

Appendix D. Complexons on Borel Probability Spaces

We consider here how to transform complexons on Borel probability spaces to complexons
on [0, 1] in a way that preserves reasonable notions of sampling and homomorphism density.
One can extend the following discussion to more general spaces as discussed in (Lovász,
2012, Section 13.1,Appendix A.3), but we restrict our attention to Borel probability spaces
for convenience.

A probability space (Ω,F , µ) is said to be a Borel probability space if for some sequence
of constants {mn}n≥0, it is isomorphic (up to sets of measure zero) to a probability space
(Ω̃, F̃ , µ̃) such that

1. Ω̃ = [0,m0] ∪
⋃
n≥1{pn}, where each {pn} is considered as an atom

2. µ̃ is the Lebesgue measure on the Borel sets of the closed interval [0,m0], and for each
n ≥ 1 we have µ̃(pn) = mn

3. F̃ is the Borel σ-field on Ω̃.

For instance, any probability measure on the Borel σ-field of a separable complete metric
space yields a Borel probability space.

With this definition, we now outline a procedure, as described by (Lovász, 2012, Sec-
tion 13.1), for describing a complexon on a Borel probability space by a complexon on [0, 1].
Let a Borel probability space (Ω,F , µ) be given with corresponding constants {mn}n≥0. Let
φ : Ω̃→ Ω be the bijective isomorphism guaranteed by the definition of a Borel probability
space. For a complexon WΩ on Ω, define a complexon W on [0, 1] in the following way. For
each n ≥ 0, define the interval

In = [
∑
`<n

m`,
∑
`≤n

m`),
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so that I0 = [0,m0),
⋃
n≥0 In = [0, 1), and each In has Lebesgue measure mn.

For any x ∈ [0, 1), define the corresponding x̃ ∈ Ω̃ so that

x̃ =

{
x x ∈ I0

pn x ∈ In.

Then, define the complexon W so that for any points x1, . . . , xd+1 ∈ [0, 1)

W (x1, . . . , xd+1) = WΩ (φ(x̃1), . . . , φ(x̃d+1)) .

Since we characterize complexons in a way that does not depend on sets of measure zero,
W can be trivially extended to points in [0, 1].

To justify this definition, we will show that this preserves a reasonable notion of homo-
morphism density. Let F be a simplicial complex. The (induced) homomorphism density
of F in WΩ is defined as (see (1))

t(F,WΩ) =

∫
ΩV(F )

∏
σ∈F

WΩ(xσ)dµV(F )(x)

tind(F,WΩ) =

∫
ΩV(F )

∏
σ∈F

WΩ(xσ)
∏
τ∈F◦

(1−WΩ(xτ )) dµV(F )(x),

where µV(F ) indicates the usual product measure on ΩV(F ). By simple unrolling of defini-
tions, one can check that

t(F,WΩ) = t(F,W )

tind(F,WΩ) = tind(F,W ),

for all simplicial complexes F . Thus, it is justifiable to use W as a representative of the
complexon WΩ, particularly for the purposes of modeling sampling random simplicial com-
plexes from WΩ. We refer to (Lovász, 2012, Section 13.1) for a further discussion on how this
can be extended to a broader class of probability spaces, as well as some typical conditions
under which a probability space is guaranteed to be Borel.
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