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Abstract

Deep networks are well-known to be fragile to adversarial attacks, and adversarial training
is one of the most popular methods used to train a robust model. To take advantage
of unlabeled data, recent works have applied adversarial training to contrastive learning
(Adversarial Contrastive Learning; ACL for short) and obtain promising robust performance.
However, the theory of ACL is not well understood. To fill this gap, we leverage the
Rademacher complexity to analyze the generalization performance of ACL, with a particular
focus on linear models and multi-layer neural networks under `p attack (p ≥ 1). Our theory
shows that the average adversarial risk of the downstream tasks can be upper bounded by
the adversarial unsupervised risk of the upstream task. The experimental results validate
our theory.

Keywords: Robustness, Adversarial learning, Contrastive learning, Rademacher complex-
ity, Generalization bound.

1. Introduction

Deep neural networks (DNNs) have achieved state-of-the-art performance in many fields.
However, several prior works (Szegedy et al., 2014; Goodfellow et al., 2015) have shown that
DNNs may be vulnerable to imperceptibly changed adversarial examples, which causes a
lot of focus on the robustness of the models (Madry et al., 2018; Mao et al., 2020; Li et al.,
2022).

One of the most popular approaches to achieving adversarial robustness is adversarial
training, which involves training the model with samples perturbed to maximize the loss on
the target model (Goodfellow et al., 2015; Madry et al., 2018; Zhang et al., 2019). Schmidt
et al. (2018) show that adversarial robust generalization requires a larger amount of data,
while Yin et al. (2019); Awasthi et al. (2020) show that the Rademacher Complexity of
adversarial training is strictly larger in theory than that of natural training, which implies
that we need more data for adversarial training.
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Since the labeled data is limited and expensive to obtain, one option would be to use
large-scale unlabeled data and apply self-supervised learning (Gidaris et al., 2018; Noroozi
and Favaro, 2016), an approach that trains the model on unlabeled data in a supervised
manner by utilizing self-generated labels from the data itself. Contrastive Learning (CL)
(Chen et al., 2020; He et al., 2020), which aims to maximize the feature similarity of similar
pairs and minimize the feature similarity of dissimilar ones, is a popular self-supervised
learning technique.

Recently, Kim et al. (2020); Ho and Vasconcelos (2020); Jiang et al. (2020) apply
adversarial training in CL and achieve state-of-the-art model robustness. They find that if
adversarial training is conducted on the upstream contrastive task, the trained model will be
robust on the downstream supervised task. However, their results are all empirical and lack
theoretical analysis. To fill this gap, we here present a theoretical analysis of adversarial
contrastive learning through the lens of Rademacher complexity, with a particular focus
on linear models and multi-layer neural networks. Our theoretical results show that the
average adversarial risk of the downstream tasks can be upper bounded by the adversarial
unsupervised risk of the upstream task; this implies that if we train a robust feature extractor
on the upstream task, we can obtain a model that is robust on downstream tasks.

The remainder of this article is structured as follows: §2 introduces some related works
in this field. §3 provides some basic definitions and settings that will be used in the following
sections. §4 presents our first part’s main results, which show a connection between the
robust risk for the upstream task and the robust risk for the downstream tasks. §5 shows
our second part’s results, it outlines our bounds for linear models and multi-layer neural
networks by bounding the Rademacher complexity of each hypothesis class. §6 shows some
experimental results that verify our theory; finally, the conclusions are presented in the last
section.

2. Related Work

Adversarial Robustness. Szegedy et al. (2014) show that DNNs are fragile to impercep-
tible distortions in the input space. Subsequently, Goodfellow et al. (2015) propose the fast
gradient sign method (FGSM), which perturbs a target sample towards its gradient direction
to increase the loss and then uses the generated sample to train the model in order to
improve the robustness. Following this line of research, Madry et al. (2018); Moosavi-Dezfooli
et al. (2016); Kurakin et al. (2017); Carlini and Wagner (2017) propose iterative variants
of the gradient attack with improved adversarial learning frameworks. Besides, Ma et al.
(2022) analyze the trade-off between robustness and fairness, Li and Liu (2023) study the
worst-class adversarial robustness in adversarial training. For the theoretical perspective,
Montasser et al. (2019) study the PAC learnability of adversarial robust learning, Xu and Liu
(2022) extend the work of Montasser et al. (2019) to multiclass case and Yin et al. (2019);
Awasthi et al. (2020) give theoretical analysises to adversarial training by standard uniform
convergence argumentation and giving a bound of the Rademacher complexity. Our work is
quite different from Yin et al. (2019); Awasthi et al. (2020), firstly, they just analyze the
linear models and two-layer neural networks, but we consider linear models and multi-layer
deep neural networks; secondly, they consider the classification loss, which is much easier to
analyze than our contrastive loss.
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Contrastive Learning. Contrastive Learning is a popular self-supervised learning
paradigm that attempts to learn a good feature representation by minimizing the feature
distance of similar pairs and maximizing the feature distance of dissimilar pairs (Chen
et al., 2020; Wang and Liu, 2022). SimCLR (Chen et al., 2020) learns representations by
maximizing the agreement between differently augmented views of the same data, while
MoCo (He et al., 2020) builds large and consistent dictionaries for unsupervised learning
with a contrastive loss. From the theoretical perspective, Saunshi et al. (2019) first presents
a framework to analyze CL. We generalize their framework to the adversarial CL. The key
challenging issues in this work are how to define and rigorously analyze the adversarial
CL losses. Moreover, we further analyze the Rademacher complexity of linear models and
multi-layer deep neural networks composited with a complex adversarial contrastive loss.
Neyshabur et al. (2015) show an upper bound of the Rademacher complexity for neural
networks under group norm regularization. In fact, the Frobenius norm and the `1,∞-norm
in our theoretical analysis are also group norms, while the settings and proof techniques
between Neyshabur et al. (2015) and our work are quite different: (1) they consider the
standard setting while we consider a more difficult adversarial setting; (2) they consider
the Rademacher complexity of neural networks with size 1 output layer, while we consider
the case that the neural network is composited with a complex contrastive learning loss;
(3) they prove their results by reduction with respect to the number of the layers, while
motivated by the technique of Gao and Wang (2021), we use the covering number of the
neural network to upper bound the Rademacher complexity in the adversarial case.

Adversarial Contrastive Learning. Several recent works (Kim et al., 2020; Ho and
Vasconcelos, 2020; Jiang et al., 2020) apply adversarial training in the contrastive pre-
training stage to improve the robustness of the models on the downstream tasks, achieving
good robust performance in their experiments. Our work attempts to provide a theoretical
explanation as to why models robustly trained on the upstream task can be robust on
downstream tasks.

3. Problem Setup

We introduce the problem setups in this section.

3.1 Basic Contrastive Learning Settings

We first set up some notations and describe the contrastive learning framework.

Let X ∈ Rm be the domain of all possible data points, this paper assumes that X is
bounded. Contrastive learning assumes that we get the similar data in the form of pairs
(x, x+), which is drawn from a distribution Dsim on X 2, and k independent and identically
distributed (i.i.d.) negative samples x−1 , x

−
2 , . . . , x

−
k drawn from a distribution Dneg on X .

Given the training set S = {(xi, x+i , x
−
i1, . . . , x

−
ik)}Mi=1, we aim to learn a representation f from

F that maps similar pairs (x, x+) into similar points (f(x), f(x+)), while at the same time
keeping f(x−i ), · · · , f(x−k ) away from f(x), where F is a class of representation functions
f : X → Rn.

Latent Classes. Let C denote the set of all latent classes (Saunshi et al., 2019) that
are all possible classes for points in X ; for each class c ∈ C , moreover, the probability Dc
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over X captures the probability that a point belongs to class c. The distribution on C is
denoted by ρ.

To formalize the similarity among data in X , assume we obtain i.i.d. similar data
points x, x+ from the same distribution Dc, where c is randomly selected according to the
distribution ρ on latent classes C. We can then define Dsim and Dneg as follows:

Definition 1 (Dsim and Dneg, Saunshi et al., 2019) For unsupervised tasks, we define
the distribution of sampling similar samples Dsim(x, x+) and negative sample Dneg(x−) as
follows:

Dsim(x, x+) = E
c∼ρ
Dc(x)Dc(x+), Dneg(x−) = E

c∼ρ
Dc(x−).

Supervised Tasks. For supervised tasks, we focus on the tasks in which a representation
function f will be tested on a (k + 1)-way supervised task T consisting of distinct classes
{c1, c2, . . . , ck+1} ⊆ C, while the labeled data set of task T consists of M i.i.d. examples
drawn according to the following process: A label c ∈ {c1, . . . , ck+1} is selected according to
a distribution DT , and a sample x is drawn from Dc. The distribution of the labeled pair
(x, c) is defined as: DT (x, c) = DT (c)Dc(x).

3.2 Evaluation Metric for Representations

We evaluate the quality of a representation function f with reference to its performance on
a multi-class classification task T using a linear classifier.

Consider a task T = {c1, . . . , ck+1}. A multi-class classifier for T is a function g : X −→
Rk+1, the output coordinates of which are indexed by the classes c in task T .

Let {g(x)y − g(x)y′}y′ 6=y be a k-dimensional vector of differences in the coordinates
of the output of the classifier g. The loss function of g on a point (x, y) ∈ X × T is
defined as `({g(x)y − g(x)y′}y′ 6=y). For example, one often considers the standard hinge
loss `(v) = max{0, 1 + maxi{−vi}} and the logistic loss `(v) = log2(1 +

∑
i exp(−vi)) for

v ∈ Rk.
The supervised risk of classifier g is defined as follows:

Lsup(T , g) := E
(x,c)∼DT

[
`
(
{g(x)c − g(x)c′}c′ 6=c

)]
.

The risk Lsup(T , g) of classifier g on task T measures the quality of the outputs of
g, take the hinge loss as an example, our goal is to get a classifier that has much higher
confidence for the true class (i.e., the value g(x)c) than others (i.e., the values g(x)c′ for
c′ 6= c), so we want all the differences g(x)c − g(x)c′ for c 6= c′ to be as large as possible. If
g wrongly classifies x, i.e., arg max

c′
g(x)c′ 6= c, of course, ` on (x, c) is not smaller than 1;

however, even thought g correctly classifies x, the loss value can not decrease to zero unless
g(x)c − g(x)c′ ≥ 1 for all c′ 6= c.

Let {ci}k+1
i=1 = {c1, . . . , ck+1} be a set of classes from C. Given the matrix W ∈ R(k+1)×n,

we have g(x) = Wf(x) as a classifier that composite the feature extractor g and linear
classifier W . The supervised risk of f is defined as the risk of g when the best W is chosen:

Lsup(T , f) := inf
W∈R(k+1)×n

Lsup(T ,Wf).
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When training a feature extractor f on the upstream task, we do not make predictions
on the examples, so we can’t define the risk of the feature extractor f as we do for the
classifier g. Our goal on the upstream task is to train a feature extractor that can perform
well on the downstream tasks, so we consider the potential of the feature extractor here, i.e.,
the minimal possible classification risk of a linear classifier on the feature extracted by f . So
we define the risk of the feature extractor f as above by taking the infimum over all linear
classifiers.

Definition 2 (Mean Classifier, Saunshi et al., 2019) For a function f and task T =
{c1, . . . , ck+1}, the mean classifier is Wµ, whose cth row is the mean µc := E

x∼Dc
[f(x)] and

we define Lµsup(T , f) := Lsup(T ,Wµf).

Since Lsup(T , f) involves taking infimum over all possible linear classifiers, it is difficult to
analyze Lsup(T , f) and establish connections between the risk of the unsupervised upstream
task and Lsup(T , f). We introduce the mean classifier to bridge them by bounding average
Lµsup(T , f) over the tasks with the risk of the unsupervised upstream risk (for more details,
please refer to §4).

Definition 3 (Average Supervised Risk) The average supervised risk for a function f
on (k + 1)-way tasks is defined as:

Lsup(f) := E
{ci}k+1

i=1∼ρk+1
[Lsup({ci}k+1

i=1 , f)|ci 6= cj ]

Given the mean classifier, the average supervised risk for a function f is defined as follows:

Lµsup(f) := E
{ci}k+1

i=1∼ρk+1
[Lµsup({ci}k+1

i=1 , f)|ci 6= cj ].

In contrastive learning, the feature extractor is trained as a pretrained model to be
used on downstream tasks. There may be many different downstream tasks such as binary
classification tasks with classes {c1, c2} ⊆ C and many other multi-class classification tasks,
so here we consider the average error of Lµsup(T , f) over all possible tasks T sampled from
ρk+1 as the final performance measure of a feature extractor f .

3.3 Contrastive Learning Algorithm

We denote k as the number of negative samples used for training and (x, x+)∼Dsim,
(x−1 , . . . , x

−
k)∼Dkneg.

Definition 4 (Unsupervised Risk) The unsupervised risk is defined as follows:

Lun(f) := E[`({f(x)T (f(x+)− f(x−i ))}ki=1)].

Given M samples
{

(xj , x
+
j , x

−
j1, . . . , x

−
jk)
}M
j=1

from Dsim ×Dkneg, the empirical counterpart

of unsupervised risk is defined as follows:

L̂un(f) :=
1

M

M∑
j=1

`({f(xj)
T (f(x+j )− f(x−ji))}

k
i=1).
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In the contrastive learning upstream task, we want to learn a feature extractor f such that
f maps examples from the same class to similar features and makes the features of examples
from different classes far away from each other. So for the examples (x, x+, x−1 , . . . , x

−
k ), we

want f(x)T f(x+) to be as large as possible while f(x)T f(x−i ), i = 1, . . . , k to be as small as
possible. The loss ` we defined before elegantly captures the aim of contrastive learning, if
we set vi = f(x)T f(x+)− f(x)T f(x−i ), minimizing `({f(x)T (f(x+)− f(x−i ))}ki=1) will yield
large f(x)T f(x+) and small f(x)T f(x−i ), i = 1, . . . , k. So optimizing over Lun(f) can reach
our goal for contrastive learning.

Following Saunshi et al. (2019), the unsupervised risk can be described by the following
equation:

Lun(f) = E
c+,c−i ∼ρk+1

E
x,x+∼D2

c+
,x−i ∼Dc−

i

[`({f(x)T (f(x+)− f(x−i ))}ki=1)].

The Empirical Risk Minimization (ERM) algorithm is used to find a function f̂ERM ∈
arg min
f∈F

L̂un(f) that minimizes the empirical unsupervised risk. The function f̂ERM can be

subsequently used for supervised linear classification tasks.

3.4 Adversarial Setup

A key question in adversarial contrastive learning is that of how to define the adversary
sample in contrastive learning. From a representation perspective, one can find a point x̃
that is close to x and keeps the feature f(x̃) both as far from f(x+) as possible and as close
to the feature of some negative sample f(x−) as possible. Inspired by this intuition, we
define the Contrastive Adversary Sample as follows:

Definition 5 (U-Contrastive Adversary Sample) Given a neighborhood U(x) of x, x+ ∼
Dc+ , x−i ∼ Dc−i for i = 1, . . . , k, we define the U-Contrastive Adversary Sample of x as fol-

lows:
x̃ := arg sup

x′∈U(x)
E

x+∼Dc+ ,x
−
i ∼Dc−

i

[`({f(x′)T (f(x+)− f(x−i ))}ki=1)].

In this article, we suppose that the loss function ` is convex. By the subadditivity of
sup, we have, ∀f ∈ F :

sup
x′∈U(x)

E
x+∼Dc+
x−i ∼Dc−

i

[`({f(x′)T(f(x+)−f(x−i ))}ki=1)]≤ E
x+∼Dc+
x−i ∼Dc−

i

[ sup
x′∈U(x)

`({f(x′)T(f(x+)−f(x−i ))}ki=1)].

(1)
In the following sections, we analyze the theoretical properties of the right-hand side of

(1), which can be easily optimized in practice by Adversarial Empirical Risk Minimization
(AERM).

The U-Adversarial Unsupervised Risk and its surrogate risk can be defined as below.

Definition 6 (U-Adversarial Unsupervised Risk) Given a neighborhood U(x) of x, the
U-Adversarial Unsupervised Risk of a presentation function f is defined as follows:

L̃un(f) := E
c+,c−i
∼ρk+1

E
x∼Dc+

[ sup
x′∈U(x)

E
x+∼Dc+
x−i ∼Dc−

i

[`({f(x′)T (f(x+)− f(x−i ))}ki=1)]].
(2)
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Moreover, the surrogate risk of (2) is as follows:

L̃sun(f) = E
c+,c−i
∼ρk+1

E
x,x+∼D2

c+

x−i ∼Dc−
i

sup
x′∈U(x)

`({f(x′)T (f(x+)− f(x−i ))}ki=1).

By (1), we have L̃un(f) ≤ L̃sun(f) for any f ∈ F . The Adversarial Supervised Risk of a
classifier g for a task T is defined as follows:

L̃sup(T , g) := E
(x,c)∼DT

[ sup
x′∈U(x)

`({g(x)c − g(x)c′}c′ 6=c)].

The Adversarial Supervised Risk of a representation function f for a task T is defined as
follows:

L̃sup(T , f) := inf
W∈R(k+1)×n

L̃sup(T ,Wf). (3)

For the mean classifier, we define:

L̃µsup(T , f) := L̃sup(T ,Wµf)

The Average Adversarial Supervised Risk for a representation function is as defined
below.

Definition 7 (Average U-Adversarial Supervised Risk)

L̃sup(f) := E
{ci}k+1

i=1∼ρk+1
[L̃sup({ci}k+1

i=1 , f)|ci 6= cj ].

For the mean classifier, we have the following:

L̃µsup(f) := E
{ci}k+1

i=1∼ρk+1
[L̃µsup({ci}k+1

i=1 , f)|ci 6= cj ].

4. Theoretical Analysis for Adversarial Contrastive Learning

This section presents some theoretical results for adversarial contrastive learning.

4.1 One Negative Sample Case

Let τ = P
c,c′∼ρ2

[c = c′], σ be an M -dimensional Rademacher random vector with i.i.d. en-

tries, define (gf )|S = (gf (z1), . . . , gf (zM )) and RS(G) := E
σ∼{±1}M

[
sup
f∈F

〈
σ, (gf )|S

〉]
where

G := {gf (x, x+, x−1 , . . . , x
−
k ) = sup

x′∈U(x)
`
(
{f(x′)T (f(x+)− f(x−i ))}ki=1

)
|f ∈ F}, let f̂ ∈

arg min
f∈F

̂̃
Lsun(f) where

̂̃
Lsun(f) is the empirical counterpart of L̃sun(f), we have:
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Theorem 8 (The proof can be found in the Appendix A.1) Let ` : Rk −→ R be bounded
by B. Then, for any δ ∈ (0, 1),with a probability of at least 1 − δ over the choice of the
training set S = {(xj , x+j , x

−
j )}Mj=1, for any f ∈ F :

L̃sup(f̂) ≤ L̃µsup(f̂) ≤ 1

1− τ
(L̃sun(f)− τ`(0)) +

1

1− τ
AGM ,

where

AGM = O(
RS(G)

M
+B

√
log 1

δ

M
). (4)

Remark 9 Theorem 8 shows that when the hypothesis class F is rich enough to contain
some f with low surrogate adversarial unsupervised risk, the empirical minimizer of the
surrogate adversarial unsupervised risk will then obtain good robustness on the supervised
downstream task.

Note that we can take f = f̂ in the upper bound of Theorem 8 and get a bound L̃sup(f̂) ≤
1

1−τ (L̃sun(f̂) − τ`(0)) + 1
1−τAGM . Then we can see that if the output of AERM (i.e., f̂)

achieves small unsupervised adversarial risk, then f̂ is a robust feature extractor such that it
can achieve good robustness after fine-tuning on the downstream tasks.

Theorem 8 gives a relationship between the robustness of the contrastive (upstream)
task and the robustness of the downstream classification tasks and explains why adversarial
contrastive learning can help improve the robustness of the downstream task, as shown
empirically in Kim et al. (2020); Ho and Vasconcelos (2020); Jiang et al. (2020).

4.2 Blocks of Similar Points

Saunshi et al. (2019) show a refined method that operates by using blocks of similar data
and determine that the method achieves promising performance both theoretically and
empirically. We adapt this method to adversarial contrastive learning.

Specifically, we sample (b + 1) i.i.d. similar samples x, x+1 , . . . , x
+
b from c+ ∼ ρ and b

negative i.i.d. samples from c− ∼ ρ. The block adversarial contrastive learning risk is as
follows:

L̃blocksun (f) := E

[
sup

x′∈U(x)
`

(
f(x′)T

(∑b
i=1 f(x+i )

b
−
∑b

i=1 f(x−i )

b

))]
,

and its empirical counterpart is as follows:

̂̃
L
block

sun (f) :=
1

M

M∑
i=1

[
sup

x′∈U(xi)
`

(
f(x′)T

(∑b
j=1 f(x+ij)

b
−
∑b

j=1 f(x−ij)

b

))]
,

Theorem 10 (The proof can be found in the Appendix A.2) For any f ∈ F , we
have:

L̃sup(f) ≤ 1

1− τ

(
L̃blocksun (f)− τ`(0)

)
≤ 1

1− τ

(
L̃sun(f)− τ`(0)

)
.

Remark 11 Theorem 10 shows that using blocks of similar data yields a tighter upper
bound for the adversarial supervised risk than in the case for pairs of similar data. Theorem
10 implies that using the blocks in adversarial contrastive learning may improve the robust
performance of the downstream tasks; this will be verified by the empirical results in §6.
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4.3 Multiple Negative Sample Case

This subsection extends our results to k negative samples. To achieve this, more definitions
are required. Let [k] denote the set {1, 2, . . . , k}.

Definition 12 We define a distribution D over the supervised tasks as follows: First,
sample k + 1 classes (allow repetition) c+, c−1 , . . . , c

−
k ∼ ρ

k+1, conditioned on the event that
c−i 6= c+,∀i ∈ [k]. Then, set the task T as the set of distinct classes in {c+, c−1 , . . . , c

−
k }.

Definition 13 The Average U-Adversarial Supervised Risk of a representation function
f ∈ F over D is defined as follows:

L̃sup(f) := E
T ∼D

[
L̃sup(T , f)

]
.

Let Edistinct be the event such that {c+, c−1 , . . . , c
−
k } is distinct and p = P

(c+,c−1 ,...,c
−
k )∼D

[Edistinct].

For any f ∈ F , we have (The proof can be found in the Appendix A.3):

L̃sup(f) ≤ L̃sup(f)

p
. (5)

From (5), we can turn to analyze the relation between L̃sup(f) and L̃sun(f) in the

multiple negative sample case. Our Theorem 16 handles L̃sup(f) instead of L̃sup(f).

Assumption 14 Assume that ∀I1, I2 ⊆ [d] such that I1 ∪ I2 = [d], ` satisfies the following
inequations:

`({vi}i∈I1) ≤ `({vi}i∈[d]) ≤ `({vi}i∈I1) + `({vi}i∈I2), (6)

`({vi}i∈I2) ≤ `({vi}i∈[d]) ≤ `({vi}i∈I1) + `({vi}i∈I2). (7)

Proposition 15 (The proof can be found in the Appendix A.4) The hinge loss and
the logistic loss satisfy Assumption 14.

If C is finite, we obtain a simple (and informal) bound of L̃sup(f̂), for the more complex
case that allows infinite C and the formal form of Theorem 16 (Theorem 32), please refer to
the Appendix A.5.

Theorem 16 (The proof can be found in the Appendix A.6) Suppose C is finite, for
any c ∈ C, ρ(c) > 0, and ` satisfies Assumption 14. Then, with a probability of at least 1− δ
over the choice of the training set S, ∀f ∈ F :

L̃sup(f̂) ≤ α(ρ)
(
L̃sun(f) +AGM

)
− β.
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5. Generalization Bounds for Example Hypothesis Classes

This section presents a concrete analysis of the Rademacher complexity for linear hypothesis
class and multi-layer neural networks based on covering number (Wainwright, 2019, Definition
5.1). We first introduce some definitions and required lemmas.

Lemma 17 (Wainwright, 2019, Lemma 5.7, volume ratios and metric entropy)
Consider a pair of norms ‖ · ‖ and ‖ · ‖′ on Rd, and let B and B′ be their corresponding unit
balls (i.e. B = {θ ∈ Rd|‖θ‖ ≤ 1}, with B′ similarly defined). The δ-covering number of B in
the ‖ · ‖′-norm then obeys the following bounds (Wainwright, 2019, Lemma 5.7):(

1

δ

)d vol(B)

vol(B′)
≤ N (δ;B, ‖ · ‖′) ≤

vol(2δB + B′)
vol(B′)

,

where we define the Minkowski sum A+B := {a+ b : a ∈ A, b ∈ B}, vol(B) :=
∫
1{x ∈ B}dx

is the volume of B based on the Lebesgue measure, and N (δ;B, ‖ ·‖′) is the δ-covering number
of B with respect to the norm ‖ · ‖′.

Lemma 18 (The proof can be found in the Appendix A.7) Let Bp(r) be the p-norm
ball in Rd with radius r. The δ-covering number of Bp(r) with respect to ‖ · ‖p thus obeys the
following bound:

N (δ;Bp(r), ‖ · ‖p) ≤
(

1 +
2r

δ

)d
.

Definition 19 (Wainwright, 2019, Definition 5.16, sub-Gaussian process) A collec-
tion of zero-mean random variables {Xθ, θ ∈ T} is a sub-Gaussian process with respect to a
metric ρX on T if:

E[eλ(Xθ−Xθ̃)] ≤ e
λ2ρ2X (θ,θ̃)

2 , ∀θ, θ̃ ∈ T, λ ∈ R.

It is easy to prove that the Rademacher process (Wainwright, 2019, §5.2) satisfies the
condition in Definition 19 with respect to the `2-norm.

Lemma 20 (Wainwright, 2019, the Dudley’s entropy integral bound) Let {Xθ, θ ∈
T} be a zero-mean sub-Gaussian process with respect to the induced pseudometric ρX from
Definition 19. Then, for any δ ∈ [0, D], we have:

E

[
sup
θ,θ̃∈T

(Xθ −Xθ̃
)

]
≤ 2E

 sup
γ,γ′∈T

ρX (γ,γ′)≤δ

(Xγ −Xγ′)

+ 32J (δ/4;D). (8)

Here, D = sup
θ,θ̃∈T ρX(θ, θ̃) and J (a; b) =

∫ b
a

√
lnNX(u;T)du, where NX(u;T) is the

u-covering number of T in the ρX-metric.

Remark 21 Given θ0 ∈ T, since E [Xθ0 ] := E [〈θ0,σ〉] = 0, we have:

E
[
sup
θ∈T

Xθ

]
= E

[
sup
θ∈T

(Xθ −Xθ0)

]
≤ E

[
sup
θ,θ̃∈T

(Xθ −Xθ̃
)

]
. (9)

10
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Combining (8) with (9), we have:

E
[
sup
θ∈T

Xθ

]
≤ 2E

 sup
γ,γ′∈T

ρX (γ,γ′)≤δ

(Xγ −Xγ′)

+ 32J (δ/4;D),

which can be used to draw the upper bound of RS(G) by establishing a connection between the
Rademacher process and the Rademacher complexity of the hypothesis classes when proper
norm is chosen. For more details, please refer to the Appendix, details are in the proof of
Theorem 22, Theorem 24 and Theorem 26.

To make Theorem 8 and Theorem 16 concrete, we need to upper bound RS(G). Assume
that loss ` is a non-increasing function; for example, hinge loss and logistic loss satisfy this
assumption. Let G = {gf (x, x+, x−) = sup

x′∈U(x)
`
(
f(x′)T (f(x+)− f(x−))

)
|f ∈ F}. Since ` is

non-increasing, we have:

G =

{
`

(
min

x′∈U(x)

(
f(x′)T

(
f(x+)− f(x−)

)))
|f ∈ F

}
.

Let H =

{
min

x′∈U(x)

(
f(x′)T (f(x+)− f(x−))

)
|f ∈ F

}
. Suppose ` is η-Lipschitz. By the

Ledoux-Talagrand contraction inequality (Ledoux and Talagrand, 2013), we have:

RS(G) ≤ ηRS(H). (10)

Thus, we only need to upper bound RS(H). Let ‖A‖a,b be the `b-norm of the `a-norm
of the rows of A. Consider the training set S = {(xi, x+i , x

−
i )}Mi=1. Let X be a matrix

whose ith row is xi. We define X+ and X− in a similar way. It is easy to see that
∀p ≥ 1, ∀i = 1, . . . ,M, ‖xi‖p ≤ ‖X‖p,∞.

5.1 Linear Hypothesis Class

Let F={f : x −→Wx|W ∈ Rn×m, |||W |||p ≤ w}. To simplify notations, ∀p ≥ 1 and 1
p + 1

p∗ = 1,
let

P =max
{
‖X‖p,∞, ‖X+‖p,∞, ‖X−‖p,∞

}
, P ∗=max

{
‖X‖p∗,∞, ‖X+‖p∗,∞, ‖X−‖p∗,∞

}
. (11)

We then have ∀p ≥ 1,

∀i = 1, . . . ,M, ‖xi‖p, ‖x+i ‖p, ‖x
−
i ‖p ≤ P.

We now present the upper bound of RS(H) under ‖ · ‖r attack.

Theorem 22 (RS(H) under ‖ · ‖r attack for linear models) Consider the `r attack,
i.e. let U(x) = {x′|‖x′ − x‖r ≤ ε}. We then have:

RS(H) = O
(

[PP ∗ + εR∗s(r∗, p,m)]
[
ms(p∗, p,m)w2

√
M
])
,

where s(p, q, n) := n
max

{
1
p
− 1
q
, 1
q
− 1
p

}
, 1
p + 1

p∗ = 1, 1r + 1
r∗ = 1, and R∗ is defined similarly to

(11).

11
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The proof can be found in the Appendix A.8.

Remark 23 Combining Theorem 22 with (4), we have:

AGM = O

 [PP ∗ + εR∗s(r∗, p,m)]mηs(p∗, p,m)w2 +B
√
log 1

δ√
M

 . (12)

5.2 Multi-layer Neural Network

In this section, we analyze fully connected multi-layer neural networks.

Suppose that X ⊆ Rm. Let F = {Wdσ(Wd−1σ(· · ·σ(W1x))) | |||Wl||| ≤Ml, l = 1, . . . , d},
where |||·||| is the norm of the matrix and σ(·) is an elementwise L-Lipschitz function with
σ(0) = 0 and Wl ∈ Rhl×hl−1 , where hd = n, h0 = m. Assume ` is η-Lipschitz and non-
increasing. From (10), we need only to bound the Rademacher complexity of H.

We here consider two cases of the matrix norm |||·|||. Let U(x) = {x′|‖x′ − x‖p ≤ ε} for
some p ≥ 1.

5.2.1 Frobenius-norm Case.

We first consider using the Frobenius-Norm in the definition of the multi-layer neural
networks hypothesis class F .

Theorem 24 (RS(H) under ‖ · ‖p attack for NNs under |||·|||F constraint) Let U(x) =
{x′|‖x′ − x‖p ≤ ε} (i.e. consider the `p attack), σ(0) = 0 with Lipschitz constant L and let
F =

{
Wdσ(Wd−1σ(· · ·σ(W1x)))

∣∣|||Wl|||F ≤MF
l , l = 1, . . . , d

}
. We then have:

RS(H) = O


√√√√ d∑

l=1

hlhl−1K
√
d
√
M

 , (13)

where

K = 2BF
X,ε ·

(
BF
X+ +BF

X−
)
,

where

BF
X,ε=Ld−1

d∏
l=1

MF
l max

{
1,m

1
2
− 1
p

}
(‖X‖p,∞+ε) , BF

X =Ld−1
d∏
l=1

MF
l max

{
1,m

1
2
− 1
p

}
‖X‖p,∞.

The proof can be found in the Appendix A.9.

Remark 25 Combining Theorem 24 with (4), we have:

AGM =O

Kη
√
d
∑d

l=1 hlhl−1
M

+B

√
log 1

δ

M

 .

12
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5.2.2 `1,∞-norm Case

We consider the ‖ · ‖1,∞ norm constraint.

Theorem 26 (RS(H) under ‖ · ‖p attack for NNs under ‖ · ‖1,∞ constraint) Let U(x) =
{x′|‖x′ − x‖p ≤ ε} (i.e. consider the `p attack), σ(0) = 0 with Lipschitz constant L; moreover,

let F =
{
Wdσ(Wd−1σ(· · ·σ(W1x)))

∣∣‖Wl‖1,∞≤M1,∞
l , l=1, . . . ,d

}
. We then have:

RS(H) = O


√√√√ d∑

l=1

hlhl−1
√
dK0K1

√
M

 ,

where

K0 = 2B1,∞
X,ε ·

(
B′X+ +B′X−

)
, K1 =

K0

2
+B′X,ε ·

(
B1,∞
X+ +B1,∞

X−

)
,

where

B′X,ε = Ld−1
d∏
l=1

hlM
1,∞
l m

1− 1
p (‖X‖p,∞ + ε) , B′X = Ld−1

d∏
l=1

hlM
1,∞
l m

1− 1
p ‖X‖p,∞,

B1,∞
X,ε = Ld−1

d∏
l=1

M1,∞
l (‖X‖p,∞ + ε) , B1,∞

X = Ld−1
d∏
l=1

M1,∞
l ‖X‖p,∞.

The proof can be found in the Appendix A.10.

Remark 27 Combining Theorem 26 with (4), we have:

AGM = O

η
√
dK0K1

∑d
l=1 hlhl−1
M

+B

√
log 1

δ

M

 .

Remark 28 Our bound has important implications for the design of regularizers for adver-
sarial contrastive learning. To achieve superior robust performance on the downstream tasks,
the usual approach is to make ‖X‖p,∞ small. For example, Pytorch scales the images to
tensors with entries within the range [0, 1]. Moreover, Theorem 24 shows that we can take
the norms of the layers as the regularizers to reduce the adversarial supervised risk.

In our analysis for the Rademacher complexity, we consider models with norm-constrained
weights, which means that the hypothesis class is uniformly Lipschitz, although the Lipschitz
constant may be large (the product of maximal weight norms for the layers). One may
wonder what will happen if we remove the constrains on the norm of the weights. For
simplicity, let’s consider a hypothesis class H ⊆ {±1}X for binary classification, we have:

RS(H) = E
σσσ

[
sup
h∈H

1

n

n∑
i=1

σih(xi)

]
,

where σ1, . . . , σn ∈ {±1} are i.i.d. uniform random variables. We can regard σ1, . . . , σn as
random labels that we need to fit by hypothesis from H, so we can interpret RS(H) as the
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Attack ε Type
λ

0 0.002 0.05 0.2

PGD
0.01

Clean 75.73 74.8 74.5 75.67
Adv 67.67 69.25 68.59 67.65

0.02
Clean 53.11 55.72 55.73 55.72
Adv 46.71 48.17 48.17 48.16

FGSM
0.01

Clean 74.42 76.13 76.12 76.11
Adv 67.28 68.79 68.8 68.8

0.02
Clean 54.28 54.29 54.28 66.68
Adv 45.93 45.94 45.92 55.64

Table 1: Results of experiments on the regularizer. In this table, we list the clean accuracy
(Clean) and adversarial accuracy (Adv) of the mean classifier under the PGD
and FGSM attack with ε = 0.01 and ε = 0.02. λ is chosen from {0, 0.002, 0.05, 0.2},
and λ = 0 indicates no regularizer.

ability of H to fit random ±1 binary labels. Now let H be the neural network, if we do
not constrain the norm of the weights, theoretically, the universal approximation theorem
(Maiorov and Pinkus, 1999) tells us that neural networks can fit any continuous function
on a bounded input space, which means that in this case RS(H) ≈ 1, leading to vacuous
bounds in the binary classification case; experimentally, Zhang et al. (2017) show that deep
neural networks easily fit random labels.

From another perspective, to derivate an upper bound for RS(H) by covering number,
we need to find a δ-covering set for H under some metric ρ(·, ·). If the weights of the layers
are not bounded, we can not cover H by a finite subset of H, the δ-covering number of H
under ρ(·, ·) will be infinite, which means that Lemma 20 does not hold. So it is difficult to
go beyond the Lipschitz network.

6. Experiments

In this section, we conduct several experiments to support our theory. We emphasize
that we are not proposing a method to try to get better robustness on the downstream tasks,
we do the experiments to verify our two claims from our theoretical results: (1) As shown in
Remark 11, using the blocks may improve the robust performance; (2) As shown in Remark
28, using the norms of the layers of the neural networks as the regularizer may help improve
the robust performance.

Data sets. We use two data sets (Krizhevsky and Hinton, 2009) in our experiments: (1)
the CIFAR-10 data set and (2) the CIFAR-100 data set. CIFAR-10 contains 50000/10000
train/test images with size 32 × 32, which are categorized into 10 classes. CIFAR-100
contains 50000/10000 train/test images with size 32× 32, which are categorized into 100
classes.

Model. We use a neural network with two convolutional layers and one fully connected
layer. Following He et al. (2020), we use the Stochastic Gradient Descent (SGD) optimizer

14



Generalization Bounds for Adversarial Contrastive Learning

1 2 4 6 8 10
block size

55

60

65

70

75

80
cle

an
 a

cc
ur

ac
y(

%
)

pgd-0.01
pgd-0.02
fgsm-0.01
fgsm-0.02

(a) Influence on clean accuracy

1 2 4 6 8 10
block size

45

50

55

60

65

70

75

ad
v 

ac
cu

ra
cy

(%
)

pgd-0.01
pgd-0.02
fgsm-0.01
fgsm-0.02

(b) Influence on adversarial accuracy

Figure 1: The effect of block size on the accuracy. In the figure, we show the clean accuracy
and the adversarial accuracy of the mean classifier under PGD and FGSM attack
with ε = 0.01 and ε = 0.02. The block size is choosen from {1, 2, 4, 6, 8, 10}. (a)
The influence on the clean accuracy; (b) The influence on the adver-
sarial accuracy.

with momentum 0.9 but set the weight decay to be 5 × 10−4 and the learning rate to be
0.001.

Evaluation of robustness. For representation f , we first calculate ûc = 1
nc

∑nc
i=1 f(xi)

to estimate the c-th row of the mean classifier, where x1, . . . , xnc are the data points with

label c in our training set. Denote Ŵµ as the estimator of W , we use the robustness of the
classifier Ŵµf as an evaluation of the robustness of f on the downstream task.

We show the results for CIFAR-10 here; the results for CIFAR-100 can be found in the
Appendix B.

6.1 Improvement from the regularizer

Inspired by our bound (13) in Theorem 24 and Theorem 8, the adversarial supervised risk
can be upper bounded by the sum of the adversarial unsupervised loss and AGM , which is
related to the maximal Frobenius-norm of the network layers. We choose to simultaneously
optimize the contrastive upstream pre-train risk and the Frobenius norm of the parameters
of the model. We set the norm of the parameters for the layers as a regularizer and test the
performance of the mean classifier; here, Wµ is calculated by averaging all features of the
training data set as done in Nozawa et al. (2020). We use a hyper-parameter λ to balance
the trade-off of the the contrastive upstream pre-train risk and the Frobenius norm of the
parameters of the model. We choose to minimize the following regularized empirical risk:

L(f) =
̂̃
Lsun(f) + λN(f) (14)

where N(f) is a regularizer that constrains the Frobenius norm of the parameters of the
model f , here we choose N(f) =

∑d
l=1 |||Wl|||F where |||Wl|||F is the Frobenius norm of the
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parameters for the l-th layer of f and:

̂̃
Lsun(f)=

1

M

M∑
j=1

max
x′j∈U(xj)

`({f(x′j)
T(f(x+j )−f(x−ji))}

k
i=1).

More details about our algorithm are in Algorithm 1.

Algorithm 1: The AERM algorithm for adversarial contrastive learning

Input : The training data set S =
{

(xj , x
+
j , x

−
j1, . . . , x

−
jk)
}M
j=1

sampled from

Dsim ×Dkneg; the hyper-parameter λ in (14); the adversarial perturbation
U ; learning rate α; the total iteration number T ;

1 initialize θ0 to be randomized parameters;
2 t← 0;
3 while t < T do
4 randomly sample a batch of data with size N : B ⊆ S ;

5 B̃ ← ∅;
6 for (x, x+, x−1 , . . . , x

−
k ) in B do

7 calculate adversarial example

x̃ ∈ arg sup
x′∈U(x)

`
({
fθt(x

′)T
(
fθt(x

+)− fθt(x−i )
)}k

i=1

)
;

8 B̃ ← B̃ ∪ {(x̃, x+, x−1 , . . . , x
−
k )};

9 end

10 L(fθt) = 1
N

∑
(x̃,x+,x−1 ,...,x

−
k )∈B̃ `

({
fθt(x̃)T

(
fθt(x

+)− fθt(x−i )
)}k

i=1

)
+ λN(fθt);

11 θt+1 ← θt − α∇θtL(fθt);
12 t← t+ 1;

13 end
Output : The feature extractor fθT ∈ F that tries to minimize (14);

The results are shown in Table 1. From Table 1, we can see that the F -norm regularizer
can improve the adversarial accuracy (the prediction performance of a model on adversarial
examples generated by attacker) of the mean classifier, which is in line with our Theorem 24.

6.2 Effect of block size

To verify Theorem 10, we analyze the effect of block size on the adversarial accuracy of the
mean classifier. Figure 1 presents the results for clean accuracy and adversarial accuracy,
respectively. From Figure 1, we can see that a larger block size will yield better adversarial
accuracy. The results are consistent with Theorem 10: as the block size grows, Theorem 10
shows that we are optimizing a tighter bound, which leads to better performance as shown
in Figure 1.

16



Generalization Bounds for Adversarial Contrastive Learning

7. Conclusion

This paper studies the generalization performance of adversarial contrastive learning. We
first extend the contrastive learning framework to the adversarial case, then we upper bound
the average adversarial risk of the downstream tasks with the adversarial unsupervised risk
of the upstream task and an adversarial Rademacher complexity term. Furthermore, we
provide the upper bound of the adversarial Rademacher complexity for linear models and
multi-layer neural networks. Finally, we conduct several experiments and the experimental
results are consistent with our theory.
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Appendix A. Proofs

In this section, we display the proofs of our theorems, lemmas and corollaries. For reading
convenience, we will restate the theorem before proving.

A.1 Proof of Theorem 8

In the below, we present some useful lemmas that will be used in the proofs of our main
theorems.

Lemma 29 For any f ∈ F , we have:

L̃sup(f) ≤ L̃µsup(f) ≤ 1

1− τ
(L̃un(f)− τ`(0)) ≤ 1

1− τ
(L̃sun(f)− τ`(0)). (A.1)

Remark 30
̂̃
Lsun(f) denotes the empirical L̃sun(f) and f̂ ∈ arg min

f∈F

̂̃
Lsun(f). Applying

Lemma 29 to f̂ shows that, if we can train a robust feature extractor with low surrogate
adversarial unsupervised risk, we can obtain a robust classifier with low adversarial supervised
risk on the downstream task.

Lemma 31 Let ` : Rk −→ R be bounded by B. Then, for any δ ∈ (0, 1), with a probability of
at least 1− δ over the choice of the training set S = {(xj , x+j , x

−
j1, . . . , x

−
jk)}

M
j=1 = {zj}Mj=1,

for any f ∈ F :
L̃sun(f̂) ≤ L̃sun(f) +AGM ,

where AGM = O(RS(G)M + B

√
log 1

δ
M ), RS(G) := E

σ∼{±1}M

[
sup
f∈F

〈
σ, (gf )|S

〉]
, and G :=

{gf (x, x+, x−1 , . . . , x
−
k ) = sup

x′∈U(x)
`
(
{f(x′)T (f(x+)− f(x−i ))}ki=1

)
|f ∈ F}, where σ is an M-

dimensional Rademacher random vector with i.i.d. entries and (gf )|S = (gf (z1), . . . , gf (zM )).

Proof [Proof of Lemma 29] By the definition of L̃sup(T , f), i.e., (3), it’s obvious that

L̃sup(f) ≤ L̃µsup(f), so we only need to prove the second part of (A.1). From definition (2),
we have, ∀f ∈ F :

L̃un(f) = E
c+,c−∼ρ2

 E
x∼Dc+

 sup
x′∈U(x)

 E
x+∼Dc+
x−∼Dc−

(
`
(
f(x′)T

(
f(x+)− f(x−)

)))



(i)

≥ E
c+,c−∼ρ2

{
E

x∼Dc+

[
sup

x′∈U(x)
`
(
f(x′)T (µc+ − µc−)

)]}

(ii)
= (1− τ) E

c+,c−∼ρ2

{
E

x∼Dc+

[
sup

x′∈U(x)
`
(
f(x′)T (µc+ − µc−)

)] ∣∣∣∣∣c+ 6= c−

}
+ τ`(0),

(A.2)
where (i) comes from the convexity of ` and Jensen’s Inequality, and (ii) comes from the
property of conditional expectations. Then we have:
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E
c+,c−∼ρ2

{
E

x∼Dc+

[
sup

x′∈U(x)
`
(
f(x′)T (µc+ − µc−)

)] ∣∣∣∣∣c+ 6= c−

}

(i)
= E

c+,c−∼ρ2

{
DT (c+) E

x∼Dc+

[
sup

x′∈U(x)
`
(
f(x′)T (µc+ − µc−)

)]

+DT (c−) E
x∼Dc−

[
sup

x′∈U(x)
`
(
f(x′)T (µc− − µc+)

)] ∣∣∣∣∣c+ 6= c−

}

(ii)
= E

c+,c−∼ρ2

{
DT (c+) E

x∼Dc+

[
sup

x′∈U(x)
`
(
g(x′)c+ − g(x′)c−

)]

+DT (c−) E
x∼Dc−

[
sup

x′∈U(x)
`
(
g(x′)c− − g(x′)c+

)] ∣∣∣∣∣c+ 6= c−

}
,

(A.3)

where T = {c+, c−}, g(x) =

µTc+f(x)

µTc−f(x)

 = Wµf(x) and (i) comes from the symmetry of

c+, c−; (ii) is directly from some linear algebras. From (A.3) we know that:

E
c+,c−∼ρ2

{
E

x∼Dc+

[
sup

x′∈U(x)
`
(
f(x′)T (µc+ − µc−)

)] ∣∣∣∣∣c+ 6= c−

}

(i)
= E

c+,c−∼ρ2

{
E

c∼DT
E

x∼Dc

[
sup

x′∈U(x)
`
({
g(x′)c − g(x′)c′

}
c′ 6=c

)] ∣∣∣∣∣c+ 6= c−

}

(ii)
= E

c+,c−∼ρ2

[
L̃sup

({
c+, c−

}
,Wµf

) ∣∣∣∣∣c+ 6= c−

]

(iii)
= E

c+,c−∼ρ2

[
L̃µsup

({
c+, c−

}
, f
) ∣∣∣∣∣c+ 6= c−

]
(iv)
= L̃µsup(f),

(A.4)

where (i) is due to the tower property of expectation;(ii) is obvious by the definition of
L̃sup(T , g); (iii) comes from the definition of L̃µsup(T , f) and (iv) is from the definition of

L̃µsup(f). Combine (A.2) with (A.4), we conclude that:

L̃un(f) ≥ (1− τ)L̃µsup(f) + τ`(0),∀f ∈ F .

So we have:

(1− τ)L̃sup(f) + τ`(0) ≤ (1− τ)L̃µsup(f) + τ`(0) ≤ L̃un(f),∀f ∈ F . (A.5)

Rearranging (A.5) yields (A.1).
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Proof [Proof of Lemma 31] Denote (x, x+, x−1 , · · · , x
−
k ) by z, then by the Theorem 3.3 in

Mohri et al. (2012), we have: With probability at least 1− δ
2 over the choice of the training

set S,

E
z

[
1

B
gf (z)

]
≤ 1

M

M∑
i=1

1

B
gf (zi) +

2

M
RS(
G
B

) + 3

√
log 4

δ

M
,

which is equivalent to:

L̃sun(f) ≤ ̂̃Lsun(f) +
2

M
RS(G) + 3B

√
log 4

δ

M
,∀f ∈ F . (A.6)

Let f∗ = arg min
f∈F

L̃sun(f), since E
S

[̂̃
Lsun(f)

]
= L̃sun(f) and ` is bounded by B, Hoeffding’s

inequality tells us that: ∀f ∈ F , ∀t ∈ R:

P
[̂̃
Lsun(f)− L̃sun(f) ≥ t

]
≤ e−

2Mt2

B2 .

Set t = B

√
log 2

δ
2M , we have: ∀f ∈ F , with probability at least 1− δ

2 ,

̂̃
Lsun(f)− L̃sun(f) ≤ B

√
log 2

δ

2M
. (A.7)

Combine (A.6) with (A.7), the union bound tells us that: ∀f ∈ F , with probability at least
1− δ over the choice of the training set S,

L̃sun(f̂)
(i)

≤ ̂̃Lsun(f̂) +O

RS(G)

M
+B

√
log 1

δ

M

 (ii)

≤ ̂̃
Lsun(f∗) +O

RS(G)

M
+B

√
log 1

δ

M


(iii)

≤ L̃sun(f∗) +O

RS(G)

M
+B

√
log 1

δ

M

 (iv)

≤ L̃sun(f) +O

RS(G)

M
+B

√
log 1

δ

M

 ,

where (i) comes from (A.6);(ii) is directly from the fact that
̂̃
Lsun(f̂) ≤ ̂̃Lsun(f∗), which

is from the definition of f̂ ;(iii) is a result of (A.7) and (iv) is obvious by the definition of f∗.

Theorem 8 Let ` : Rk −→ R be bounded by B. Then, for any δ ∈ (0, 1),with a probability of
at least 1− δ over the choice of the training set S = {(xj , x+j , x

−
j )}Mj=1, for any f ∈ F :

L̃sup(f̂) ≤ L̃µsup(f̂) ≤ 1

1− τ
(L̃sun(f)− τ`(0)) +

1

1− τ
AGM .

Proof From Lemma 29 we know that:

L̃sup(f̂) ≤ L̃µsup(f̂) ≤ 1

1− τ
(L̃un(f̂)− τ`(0)) ≤ 1

1− τ
(L̃sun(f̂)− τ`(0)),

Then Lemma 31 directly yields the result we need.
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A.2 Proof of Theorem 10

Theorem 10 For any f ∈ F , we have:

L̃sup(f) ≤ 1

1− τ

(
L̃blocksun (f)− τ`(0)

)
≤ 1

1− τ

(
L̃sun(f)− τ`(0)

)
.

Proof By the convexity of ` and Jensen’s inequality, we have: ∀x′, x+i , x
−
i :

`

(
f(x′)T

(∑b
i=1 f(x+i )

b
−
∑b

i=1 f(x−i )

b

))
= `

(
1

b

b∑
i=1

f(x′)T
(
f(x+i )− f(x−i )

))

≤ 1

b

b∑
i=1

`
(
f(x′)T

(
f(x+i )− f(x−i )

))
.

Take maximization about x′ both sides, we have:

sup
x′∈U(x)

`

(
f(x′)T

(∑b
i=1 f(x+i )

b
−
∑b

i=1 f(x−i )

b

))
≤ 1

b
sup

x′∈U(x)

[
b∑
i=1

`
(
f(x′)T

(
f(x+i )−f(x−i )

))]

≤ 1

b

b∑
i=1

[
sup

x′∈U(x)
`
(
f(x′)T

(
f(x+i )−f(x−i )

))]
.

Taking expectations both sides yields:

L̃blocksun (f) = E
x,x+i ,x

−
i

[
sup

x′∈U(x)
`

(
f(x′)T

(∑b
i=1 f(x+i )

b
−
∑b

i=1 f(x−i )

b

))]

≤ E
x,x+i ,x

−
i

{
1

b

b∑
i=1

[
sup

x′∈U(x)
`
(
f(x′)T

(
f(x+i )− f(x−i )

))]}

= E
x,x+,x−

[
sup

x′∈U(x)
`
(
f(x′)T

(
f(x+)− f(x−)

))]
= L̃sun(f),

which proves the second inequality. For the first inequality, we have, ∀f ∈ F :
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L̃blocksun (f) = E
c+,c−∼ρ2

 E
x,x+i ∼D

b+1

c+

x−i ∼Dbc−

[
sup

x′∈U(x)
`

(
f(x′)T

(∑b
i=1 f(x+i )

b
−
∑b

i=1 f(x−i )

b

))]
(i)

≥ E
c+,c−∼ρ2

 E
x∼Dc+

 sup
x′∈U(x)

E
x+i ∼Dbc+
x−i ∼Dbc−

[
`

(
f(x′)T

(∑b
i=1 f(x+i )

b
−
∑b

i=1 f(x−i )

b

))]


(ii)

≥ E
c+,c−∼ρ2

 E
x∼Dc+

 sup
x′∈U(x)

`

 E
x+i ∼Dbc+
x−i ∼Dbc−

(
f(x′)T

(∑b
i=1 f(x+i )

b
−
∑b

i=1 f(x−i )

b

))



(iii)
= E

c+,c−∼ρ2

{
E

x∼Dc+

[
sup

x′∈U(x)
`
(
f(x′)T (µc+ − µc−)

)]} (iv)
= (1− τ)L̃µsup(f) + τ`(0),

where (i) and (ii) are directs result of Jensen’s Inequality and convexity of maximization
function and `; (iii) is from the linearity of expectation and the last equality follows the
same argumentation as in (A.4), which proves the Theorem.

A.3 Proof of (5)

Proof For any f ∈ F , we have:

L̃sup(f)= E
T ∼D

[
L̃sup(T , f)

]
(i)
=p E

T ∼D

[
L̃sup(T , f)

∣∣∣Edistinct]+(1−p) E
T ∼D

[
L̃sup(T , f)

∣∣∣Ēdistinct]
≥ p E

T ∼D

[
L̃sup(T , f)

∣∣∣Edistinct] (ii)
= p L̃sup(f),

where Edistinct is the event that {c+, c−1 , . . . , c
−
k } is distinct and p = P

(c+,c−1 ,...,c
−
k )∼D

[Edistinct]

and (i) is from the property of conditional expectation and (ii) comes from the definition of
L̃sup(f).

A.4 Proof of Proposition 15

Proposition 15 The hinge loss and the logistic loss satisfy Assumption 14.

Proof Since I1 and I2 are symmetric, We only need to prove (6). For the Hinge Loss:

` ({vi}i∈I1) = max

{
0, 1 + max

i∈I1
{−vi}

}
(i)

≤ max

{
0, 1 + max

i∈[d]
{−vi}

}
= `

(
{vi}i∈[d]

)
,
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where (i) is from the fact that I1 ⊆ [d], so the first inequality is proved, for the second one:

`
(
{vi}i∈[d]

)
= max

{
0, 1 + max

i∈[d]
{−vi}

}
= max

{
0, 1 + max

i∈I1∪I2
{−vi}

}
,

where the last equality is directly from the definition of I1 and I2.

1. if 1 + max
i∈I1∪I2

{−vi} ≤ 0, then ` ({vi}i∈I1∪I2) = 0, since Hinge Loss is non-negative, we

have:

` ({vi}i∈I1∪I2) = 0 + 0 ≤ ` ({vi}i∈I1) + ` ({vi}i∈I2) .

2. if 1 + max
i∈I1∪I2

{−vi} > 0

(a) if 1 + max
i∈I1
{−vi} ≤ 0, then ` ({vi}i∈I1) = max

{
0, 1 + max

i∈I1
{−vi}

}
= 0. So we

have:

` ({vi}i∈I1∪I2) = max

{
0, 1 + max

i∈I1∪I2
{−vi}

}
= max

{
0, 1 + max

i∈I2
{−vi}

}
= 0 + ` ({vi}i∈I2) = ` ({vi}i∈I1) + ` ({vi}i∈I2) .

(b) if 1 + max
i∈I2
{−vi} ≤ 0, by the same discussion of (a), we have:

` ({vi}i∈I1∪I2) ≤ ` ({vi}i∈I1) + ` ({vi}i∈I2) .

(c) if 1 + max
i∈I1
{−vi} > 0 and 1 + max

i∈I2
{−vi} > 0,

` ({vi}i∈I1∪I2)=max

{
0, 1+ max

i∈I1∪I2
{−vi}

}
≤max

{
0, 1+max

i∈I1
{−vi}+1+max

i∈I2
{−vi}

}
≤ max

{
0, 1 + max

i∈I1
{−vi}

}
+ max

{
0, 1 + max

i∈I2
{−vi}

}
= ` ({vi}i∈I1) + ` ({vi}i∈I2) .

So the second inequality is proved. For the Logistic Loss:

` ({vi}i∈I1) = log2

1 +
∑
i∈I1

e−vi

 ≤ log2
1 +

∑
i∈[d]

e−vi

 = `
(
{vi}i∈[d]

)
.
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So the first inequality is proved. For the second one:

` ({vi}i∈I1∪I2) = log2

1 +
∑

i∈I1∪I2

e−vi

 ≤ log2
1 +

∑
i∈I1

e−vi +
∑
i∈I2

e−vi


≤ log2

1 +
∑
i∈I1

e−vi +
∑
i∈I2

e−vi +

∑
i∈I1

e−vi

∑
i∈I2

e−vi


= log2

1 +
∑
i∈I1

e−vi

1 +
∑
i∈I2

e−vi


= log2

1 +
∑
i∈I1

e−vi

+ log2

1 +
∑
i∈I2

e−vi

 = ` ({vi}i∈I1) + ` ({vi}i∈I2) ,

which proves the second inequality.

A.5 Proof of Theorem 32

We here introduce some further notations, which will be used in our main results. For a
tuple (c+, c−1 , . . . , c

−
k ), we define I+ := {i ∈ [k]|c−i = c+} and Q as the set of distinct classes

in (c+, c−1 , . . . , c
−
k ). We define pmax(T ) := maxcDT (c), τk := P

c+,c−i ∼ρk+1
[I+ 6= ∅], while `N (~0)

is defined as the loss of the N -dimensional zero vector. Let T be a task sample from
distribution D and ρ+(T ) be a distribution of c+ when (c+, c−1 , . . . , c

−
k ) are sampled from

ρk+1 conditioned on Q = T and I+ = ∅ and ρ+min(T ) := min
c∈T

ρ+(T )(c).

Theorem 32 Assume that ` satisfies Assumption 14. With a probability of at least 1− δ
over the choice of the training set S, for any f ∈ F , we have:

E
T ∼D

[
ρ+min(T )

pmax(T )
L̃sup(T , f̂)

]
≤ E
T ∼D

[
ρ+min(T )

pmax(T )
L̃µsup(T , f̂)

]
≤ 1

1− τk

(
L̃sun(f) +AGM

)
− τk

1− τk
E

c+,c−i ∼ρk+1

[
`|I+|(~0)|I+ 6= ∅

]
,

(A.8)

where |I+| is the cardinality of set I+.

Before proceeding with the proof of Theorem 32, we introduce some useful lemmas.

Lemma 33 For any T sampled from D, we have: ρ+(T )(c) ≥ ρ+min(T )
pmax(T )DT (c), ∀c ∈ T .

Lemma 34 Assume that f satisfies Assumption 14. For any f ∈ F , we have:

(1− τk) E
T ∼D

[
ρ+min(T )

pmax(T )
L̃sup(T , f)

]
≤ (1− τk) E

T ∼D

[
ρ+min(T )

pmax(T )
L̃µsup(T , f)

]
≤ L̃sun(f)− τk E

c+,c−i ∼ρk+1

[
`|I+|(~0)|I+ 6= ∅

]
.
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Proof [Proof of Lemma 33] By the definition of ρ+(T ) and ρ+min(T ), we can find that:

∀c ∈ T , ρ+min(T ) ≤ ρ+(T )(c).

So we have:

∀c ∈ T , ρ
+(T )(c)

ρ+min(T )
≥ 1. (A.9)

By the definition of pmax(T ), we have:

∀c ∈ T , DT (c)

pmax(T )
≤ 1. (A.10)

Combine (A.9) and (A.10), we have:

∀c ∈ T , ρ+(T )(c) ≥
ρ+min(T )

pmax(T )
DT (c).

Proof [Proof of Lemma 34] By the definition of L̃sun(f), we have:

L̃sun(f) = E
c+,c−i ∼ρk+1

x,x+∼D2
c+

;x−i ∼Dc−
i

[
sup

x′∈U(x)
`
({
f(x′)T

(
f(x+)− f(x−i )

)}k
i=1

)]

= E
c+,c−i ∼ρk+1

x∼Dc+

 E
x+∼Dc+
x−i ∼Dc−

i

[
sup

x′∈U(x)
`
({
f(x′)T

(
f(x+)− f(x−i )

)}k
i=1

)]
(i)

≥ E
c+,c−i ∼ρk+1

x∼Dc+

 sup
x′∈U(x)

 E
x+∼Dc+
x−i ∼Dc−

i

`
({
f(x′)T

(
f(x+)− f(x−i )

)}k
i=1

)


(ii)

≥ E
c+,c−i ∼ρk+1

x∼Dc+

[
sup

x′∈U(x)
`

({
f(x′)T

(
µc+ − µc−i

)}k
i=1

)]
, R1,

(A.11)

where (i), (ii) is from the Jensen’s inequality and convexity of `. Then we analyze lower
bound of R1:
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R1
(i)
= (1− τk) E

c+,c−i ∼ρk+1

x∼Dc+

[
sup

x′∈U(x)
`

({
f(x′)T

(
µc+ − µc−i

)}k
i=1

) ∣∣∣∣I+ = ∅

]

+ τk E
c+,c−i ∼ρk+1

x∼Dc+

[
sup

x′∈U(x)
`

({
f(x′)T

(
µc+ − µc−i

)}k
i=1

) ∣∣∣∣I+ 6= ∅
]

(ii)

≥ (1− τk) E
c+,c−i ∼ρk+1

x∼Dc+

[
sup

x′∈U(x)
`
({
f(x′)T (µc+ − µc)

}
c∼Q,c6=c+

) ∣∣∣∣I+ = ∅

]

+ τk E
c+,c−i ∼ρk+1

x∼Dc+

[
sup

x′∈U(x)
`

({
f(x′)T

(
µc+ − µc−i

)}k
i=1

) ∣∣∣∣I+ 6= ∅
]

(iii)

≥ (1− τk) E
c+,c−i ∼ρk+1

x∼Dc+

[
sup

x′∈U(x)
`
({
f(x′)T (µc+ − µc)

}
c∼Q,c 6=c+

) ∣∣∣∣I+ = ∅

]

+ τk E
c+,c−i ∼ρk+1

[
`|I+|(~0)

∣∣∣∣I+ 6= ∅] ,

(A.12)

where (i) comes from the property of conditional expectation, (ii) is a result of the fact that
Q ⊆ [k] and ` satisfies Assumption 14 and (iii) is from the fact that [|I+|] ⊆ [k] and ` satisfies

Assumption 14. Let R2 = E
c+,c−i ∼ρk+1

x∼Dc+

[
sup

x′∈U(x)
`
({
f(x′)T (µc+ − µc)

}
c∼Q,c 6=c+

) ∣∣∣∣I+ = ∅

]
, we

have:

R2 = E
c+,c−i ∼ρk+1

x∼Dc+

[
sup

x′∈U(x)
`
({
f(x′)T (µc+ − µc)

}
c∼Q,c 6=c+

) ∣∣∣∣I+ = ∅

]

(i)
= E
T ∼D

 E
c+,c−i ∼ρk+1

x∼Dc+

[
sup

x′∈U(x)
`
({
f(x′)T (µc+ − µc)

}
c∼Q,c6=c+

) ∣∣∣∣Q = T , I+ = ∅

]
(ii)
= E
T ∼D

 E
c+∼ρ+(T )
x∼Dc+

[
sup

x′∈U(x)
`
({
f(x′)T (µc+ − µc)

}
c∼T ,c 6=c+

)] ,

(A.13)

where (i) is from the tower property of expectation and (ii) is directly obtained by the

definition of ρ+(T ). Let R3 = E
c+∼ρ+(T )
x∼Dc+

[
sup

x′∈U(x)
`
({
f(x′)T (µc+ − µc)

}
c∼T ,c 6=c+

)]
, we have:
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R3 = E
c+∼ρ+(T )
x∼Dc+

[
sup

x′∈U(x)
`
({
f(x′)T (µc+ − µc)

}
c∼T ,c 6=c+

)]

(i)

≥
ρ+min(T )

pmax(T )
E

c+∼DT
x∼Dc+

[
sup

x′∈U(x)
`
({
f(x′)T (µc+ − µc)

}
c∼T ,c 6=c+

)]

(ii)
=

ρ+min(T )

pmax(T )
L̃µsup(T , f)

(iii)

≥
ρ+min(T )

pmax(T )
L̃sup(T , f),

(A.14)

where (i) is directly from Lemma 33;(ii) and (iii) are from the definition of L̃µsup(T , f) and

L̃sup(T , f), respectively. Combing (A.11) (A.12) (A.13) and (A.14) yields:

(1− τk) E
T ∼D

[
ρ+min(T )

pmax(T )
L̃sup(T , f)

]
≤ (1− τk) E

T ∼D

[
ρ+min(T )

pmax(T )
L̃µsup(T , f)

]
≤ L̃sun(f)− τk E

c+,c−i ∼ρk+1

[
`|I+|(~0)|I+ 6= ∅

]
.

Equipped with the above lemmas, now we can turn to the proof of Theorem 32.
Proof [Proof of Theorem 32] From Lemma 31 we know that with probability at least 1− δ
over the choice of the training set S, ∀f ∈ F :

L̃sun(f̂) ≤ L̃sun(f) +AGM .

Combing this with Lemma 34 directly yields (A.8).

A.6 Proof of Theorem 16

Theorem 16 Suppose C is finite. For any c ∈ C, ρ(c) > 0, and ` satisfies Assumption 14.
Then, with a probability of at least 1− δ over the choice of the training set S, ∀f ∈ F :

L̃sup(f̂) ≤ α(ρ)
(
L̃sun(f) +AGM

)
− β,

where α(ρ) = 1
1−τk max

|T |≤k+1

Tdistinct

pmax(T )
ρ+min(T )

is a positive constant depending on ρ and

β = α(ρ)τk E
c+,c−i ∼ρk+1

[
`|I+|(~0)|I+ 6= ∅

]
.

Proof Since C is finite and ρ(c) > 0 for any c ∈ C, we can see that:

1

α(1− τk)
= min
|T |≤k+1,T distinct

{
ρ+min(T )

pmax(T )

}
> 0. (A.15)
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By Theorem 32 and the definition of L̃sup(f), we have: ∀f ∈ F , with probability at least
1− δ over the choice of the training set S,

1

α(1− τk)
L̃sup(f̂)

(i)
= E
T ∼D

[
1

α(1− τk)
L̃sup(T , f̂)

]
(ii)

≤ E
T ∼D

[
ρ+min(T )

pmax(T )
L̃sup(T , f̂)

]
(iii)

≤ 1

1− τk

(
L̃sun(f) +AGM

)
− τk

1− τk
E

c+,c−i ∼ρk+1

[
`|I+|(~0)|I+ 6= ∅

]
,

where (i) is from the definition of L̃sup(f̂);(ii) is from (A.15) and (iii) is from Theorem 32.
Rearranging yields the result.

A.7 Proof of Lemma 18

Lemma 18 Let Bp(r) be the p-norm ball in Rd with radius r. The δ-covering number of
Bp(r) with respect to ‖ · ‖p thus obeys the following bound:

N (δ;Bp(r), ‖ · ‖p) ≤
(

1 +
2r

δ

)d
,

where N (δ;B, ‖ · ‖) is the δ-covering number of B with respect to the norm ‖ · ‖.

Proof Set ‖ · ‖, ‖ · ‖′ in Lemma 17 to be ‖ · ‖p, we have:

N (δ;Bp(1), ‖ · ‖p) ≤
vol
(
2
δBp(1) + Bp(1)

)
vol (Bp(1))

=
vol
((

1 + 2
δ

)
Bp(1)

)
vol (Bp(1))

(i)

≤
(

1 +
2

δ

)d vol (Bp(1))

vol (Bp(1))
=

(
1 +

2

δ

)d
,

where (i) is true because Bp(1) ⊂ Rd. Now suppose that {x1, · · · , xN} is the minimal
δ-covering of Bp(1), then:

∀x ∈ Bp(1),∃xi ∈ {x1, · · · , xN} s.t.‖x− xi‖p ≤ δ.

So we have:

∀rx ∈ Bp(r), ∃rxi ∈ {rx1, · · · , rxN} s.t.‖rx− rxi‖p ≤ rδ.

So {rx1, · · · , rxN} is a rδ-covering of Bp(r), so we have:

N (rδ;Bp(r), ‖ · ‖p) ≤ N (δ;Bp(1), ‖ · ‖p) ≤
(

1 +
2

δ

)d
.

Letting δ
r take place of δ, we have N (δ;Bp(r), ‖ · ‖p) ≤

(
1 + 2r

δ

)d
.
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A.8 Proof of Theorem 22

Theorem 22 Let U(x) = {x′|‖x′ − x‖r ≤ ε} (i.e. consider the `r attack). We then have :

RS(H) = O
(

[PP ∗ + εR∗s(r∗, p,m)]
[
ms(p∗, p,m)w2

√
M
])
,

where s(p, q, n) := n
max

{
1
p
− 1
q
, 1
q
− 1
p

}
, 1
p + 1

p∗ = 1, 1r + 1
r∗ = 1, and R∗ is defined similarly to

(11).

Before giving the proof of the theorem, we introduce some lemmas will be used in our proof.

Lemma 35 For any x ∈ Rn,0 < p2 ≤ p1, we have: ‖x‖p1 ≤ ‖x‖p2 ≤ n
1
p2
− 1
p1 ‖x‖p1 .

Proof [Proof of Lemma 35] Firstly, we prove ‖x‖p1 ≤ ‖x‖p2 . For any x ∈ Rn, suppose

ai = |xi|, lep f(p) = (
∑n

i=1 a
p
i )

1
p . In order to prove ‖x‖p1 ≤ ‖x‖p2 , it suffices to prove that:

∀ai ≥ 0, i = 1, 2, . . . , n, f(p) is non-increasing on (0, 1].

1. if ai = 0, ∀i, f is a constant function, so f is non-increasing.

2. if ∃i, ai 6= 0, suppose {ai|ai 6= 0} has K elements, without loss of generality, suppose
{ai|ai 6= 0} = {a1, a2, · · · , aK} and a1 = max

1≤k≤K
{ak}, then we have:

0 <

(
ak
a1

)p
≤ 1,

K∑
k=1

(
ak
a1

)p
≥ 1, ln

(
K∑
k=1

(
ak
a1

)p)
≥ 0, k = 1, 2, . . . ,K. (A.16)

We can write f(p) = (
∑n

i=1 a
p
i )

1
p = a1

(∑K
k=1

(
ak
a1

)p) 1
p

= a1exp{1p ln
(∑K

k=1

(
ak
a1

)p)
},

let g(p) = 1
p ln

(∑K
k=1

(
ak
a1

)p)
, by the monotone property of composite functions, to

prove f(p) is non-increasing, it suffices to prove g(p) is non-increasing.Taking derivation
of g yields:

g′(p) =

∑K
k=1

[(
ak
a1

)p
ln
(
ak
a1

)]
p
∑K

k=1

(
ak
a1

)p −
ln
(∑K

k=1

(
ak
a1

)p)
p2

.

From (A.16) we know that

∑K
k=1

[(
ak
a1

)p
ln
(
ak
a1

)]
p
∑K
k=1

(
ak
a1

)p ≤ 0 and
ln
(∑K

k=1

(
ak
a1

)p)
p2

≥ 0, so we have

g′(p) ≤ 0, so g is non-increasing, which means that ‖x‖p1 ≤ ‖x‖p2 , ∀x ∈ Rn.

Nextly, we prove that ‖x‖p2 ≤ n
1
p2
− 1
p1 ‖x‖p1 . By the definition of ‖ · ‖p, we have: ‖x‖p1p2 =

(
∑n

i=1 |xi|p2)
p1
p2 =

(
1
n

∑n
i=1 |xi|p2

) p1
p2 · n

p1
p2 .Since p2 ≤ p1, i.e. p1

p2
≥ 1, we know the function

h(t) = t
p1
p2 is convex. By Jensen’s Inequality we know that:

∀λi s.t. λi ≥ 0 and

n∑
i=1

λi = 1,∀ti ∈ R : h

(
n∑
i=1

λiti

)
≤

n∑
i=1

λih(ti). (A.17)
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Set λ1 = λ2 = · · · = λn = 1
n , ti = |xi|p2 , i = 1, 2, . . . , n in (A.17), we have:(

1

n

n∑
i=1

|xi|p2
) p1

p2

≤ 1

n

n∑
i=1

(|xi|p2)
p1
p2 =

1

n

n∑
i=1

|xi|p1 .

Multiplying both sides by n
p1
p2 yields

(
1
n

∑n
i=1 |xi|p2

) p1
p2 · n

p1
p2 ≤ 1

n

∑n
i=1 |xi|p1 · n

p1
p2 , i.e.

‖x‖p1p2 ≤ n
p1
p2
−1 · ‖x‖p1p1 .

Taking both sides the p1th power yields ‖x‖p2 ≤ n
1
p2
− 1
p1 ‖x‖p1 .

Lemma 36 Suppose that ∃A,B ∈ R+ s.t. A‖x‖p ≤ ‖x‖q ≤ B‖x‖p (p, q ≥ 1) for any
x ∈ Rn, then ∀W ∈ Rm×n: |||W |||p ≤

B
A |||W |||q.

Proof [Proof of Lemma 36] If we have A‖x‖p ≤ ‖x‖q ≤ B‖x‖p, then:

|||W |||p = max
‖x‖p≤1

‖Wx‖p
(i)

≤ max
‖x‖p≤B

‖Wx‖p
(ii)

≤ max
‖x‖p≤B

1

A
‖Wx‖q = max

‖x‖p≤1

B

A
‖Wx‖q =

B

A
|||W |||q,

where (i) is from the fact that ‖x‖q ≤ B‖x‖p, which means that {x|‖x‖p ≤ 1} ⊆ {x|‖x‖q ≤ 1}
and (ii) is from the condition that A‖x‖p ≤ ‖x‖q.

Lemma 37 For any p, q ≥ 1, then ∀W ∈ Rm×n: |||W |||q ≤ n
max{ 1

p
− 1
q
, 1
q
− 1
p
}|||W |||p.

Remark 38 If we denote n
max{ 1

p
− 1
q
, 1
q
− 1
p
}

by s(p, q, n), then we have: ∀W ∈ Rm×n, |||W |||q ≤
s(p, q, n)|||W |||p.

Proof [Proof of Lemma 37] We discuss it in two cases.

1. If p ≤ q, by Lemma 35, we have: ∀x ∈ Rn, ‖x‖q ≤ ‖x‖p ≤ n
1
p
− 1
q ‖x‖q. By Lemma 36,

we know that ∀W ∈ Rm×n, |||W |||q ≤ n
1
p
− 1
q |||W |||p.

2. If p ≥ q, by Lemma 35, we have: ∀x ∈ Rn, ‖x‖p ≤ ‖x‖q ≤ n
1
q
− 1
p ‖x‖p, i.e.

n
1
p
− 1
q ‖x‖q ≤ ‖x‖p ≤ ‖x‖q.

By Lemma 36, we know that ∀W ∈ Rm×n, |||W |||q ≤ n
1
q
− 1
p |||W |||p.

So we conclude that ∀W ∈ Rm×n, |||W |||q ≤ n
max{ 1

p
− 1
q
, 1
q
− 1
p
}|||W |||p.

Now we turn to bound the Rademacher complexity of H, where

H =

{
h(x, x+, x−) = min

x′∈U(x)

(
f(x′)T

(
f(x+)− f(x−)

))
|f ∈ F

}
,

F = {f : x −→Wx|W ∈ Rn×m, |||W |||p ≤ w}.
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Let

H0 =
{
h(x, x+, x−) = f(x)T

(
f(x+)− f(x−)

)
|f ∈ F

}
=
{

(x, x+, x−) −→ xTW TW (x+ − x−)
∣∣W ∈ Rn×m, |||W |||p ≤ w

}
.

Proof [Proof of Theorem 22] Firstly, we drop the complicated and unwieldy min operate
by directly solving the minimization problem.

h(x, x+, x−) = min
‖x′−x‖r≤ε

f(x′)T
(
f(x+)− f(x−)

)
= min
‖δ‖r≤ε

(W (x+ δ))T
(
Wx+ −Wx−

)
= xTW TW (x+ − x−) + min

‖δ‖r≤ε
δTW TW (x+ − x−)

(i)
= xTW TW (x+ − x−)− ε‖W TW (x+ − x−)‖r∗ ,

where (i) is from Holder’s Inequality and taking the value of δ that can get equality. Define:

H1 =
{

(x, x+, x−) −→ ‖W TW (x+ − x−)‖r∗
∣∣W ∈ Rn×m, |||W |||p ≤ w

}
,

Hw0 =
{

(x, x+, x−) −→ xTA(x+ − x−)
∣∣A ∈ Rm×m, |||A|||p ≤ w

}
,

Hw1 =
{

(x, x+, x−) −→ ‖A(x+ − x−)‖r∗
∣∣A ∈ Rm×m, |||A|||p ≤ w

}
.

Since ∀W ∈ Rn×m s.t. |||W |||p ≤ w, we have:

∣∣∣∣∣∣W TW
∣∣∣∣∣∣
p

(i)

≤
∣∣∣∣∣∣W T

∣∣∣∣∣∣
p
· |||W |||p = |||W |||p∗ · |||W |||p

(ii)

≤ s(p∗, p,m)|||W |||2p ≤ s(p
∗, p,m)w2,

where 1
p + 1

p∗ = 1 and (i) comes from the Submultiplicativity of matrix norm and (ii) is from
Lemma 37. So we have:{

W
∣∣∣|||W |||p ≤ w} ⊆ {W ∣∣∣∣∣∣∣∣∣W TW

∣∣∣∣∣∣
p
≤ s(p∗, p,m)w2

}
.

And since W TW is positive semi-definite, it’s easy to see that:{
W TW

∣∣∣∣∣∣∣∣∣W TW
∣∣∣∣∣∣
p
≤ s(p∗, p,m)w2

}
⊆
{
A
∣∣∣|||A|||p ≤ s(p∗, p,m)w2

}
.

So we have:

H0 =
{

(x, x+, x−) −→ xTW TW (x+ − x−)
∣∣W ∈ Rn×m, |||W |||p ≤ w

}
⊆
{

(x, x+, x−) −→ xTW TW (x+ − x−)
∣∣W ∈ Rn×m,

∣∣∣∣∣∣W TW
∣∣∣∣∣∣
p
≤ s(p∗, p,m)w2

}
⊆
{

(x, x+, x−) −→ xTA(x+ − x−)
∣∣A ∈ Rm×m, |||A|||p ≤ s(p

∗, p,m)w2
}

= Hs(p
∗,p,m)w2

0 .
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Similarly, H1 ⊆ Hs(p
∗,p,m)w2

1 . Given the training set S = {(xi, x+i , x
−
i )}Mi=1, we have:

RS(H) = E
σ

{
sup

|||W |||p≤w

M∑
i=1

σi
[
xTi W

TW (x+i − x
−
i )− ε‖W TW (x+i − x

−
i )‖r∗

]}
(i)

≤ E
σ

{
sup

|||W |||p≤w

M∑
i=1

σi
[
xTi W

TW (x+i − x
−
i )
]}

+ ε E
σ

{
sup

|||W |||p≤w

M∑
i=1

[
−σi‖W TW (x+i − x

−
i )‖r∗

]}

(ii)
= E

σ

{
sup

|||W |||p≤w

M∑
i=1

σi
[
xTi W

TW (x+i − x
−
i )
]}

+ ε E
σ

{
sup

|||W |||p≤w

M∑
i=1

[
σi‖W TW (x+i − x

−
i )‖r∗

]}
(iii)
= RS(H0) + ε RS(H1)

(iv)

≤ RS(Hs(p
∗,p,m)w2

0 ) + ε RS(Hs(p
∗,p,m)w2

1 ),

(A.18)

where σ is a Random Vector whose elements are i.i.d. Rademacher Random Variables and
(i) comes from the subadditivity of sup function;(ii) is from the fact that −σi has the same
distribution as σi, ∀i = 1, 2, . . . ,M ; (iii) is by the definition ofRS(H0) andRS(H1) and (iv) is

from the monotone property of Rademacher Complexity and the fact that H0 ⊆ Hs(p
∗,p,m)w2

0

and H1 ⊆ Hs(p
∗,p,m)w2

1 . Secondly, we upper bound the Rademacher Complexity of Hw0 and
Hw1 . For RS(Hw

0 ): Given the training set S = {(xi, x+i , x
−
i )}Mi=1 = {(zi)}Mi=1, define the

`2-norm for a function in Hw0 as:

∀h ∈ Hw0 , ‖h‖2 :=

√√√√ M∑
i=1

[h(zi)]
2,

Define Hw0 (S) =
{

(h(z1), h(z2), . . . , h(zM ))
∣∣∣h ∈ Hw0 }, we have that for any h ∈ Hw0 and

vh = (h(z1), h(z2), . . . , h(zM )) be the corresponding vector in Hw0 (S), we have:

‖h‖2 = ‖vh‖2.

So we know that any δ-covering of Hw0 (
{
h1, h2, · · · , hN

}
) with respect to `2 norm in the

functional space, corresponds to a δ-covering of Hw0 (S) with respect to the `2 norm in the
Euclidean Space, i.e.


h1(z1)
h1(z2)

...
h1(zM )

 ,


h2(z1)
h2(z2)

...
h2(zM )

 , · · · ,


hN (z1)
hN (z2)

...
hN (zM )


 .
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So we have:

N (δ;Hw0 (S), ‖ · ‖2) = N (δ;Hw0 , ‖ · ‖2) . (A.19)

By the definition of Rademacher Complexity, we know that RS(Hw0 ) is just the expectation
of the Rademacher Process with respect to Hw0 (S), which is E[ sup

θ∈Hw0 (S)
Xθ]. To use Lemma

20, we must show that Rademacher Process is a sub-Gaussian Process with respect to
some metric ρX . Denote the Euclidean metric by ρ2, we have: for Rademacher Process
{Xθ, θ ∈ T}, ∀θ, θ̃ ∈ T and λ ∈ R:

E
[
eλ(Xθ−Xθ̃)

]
(i)
= E

[
eλ(〈σ,θ〉−〈σ,θ̃〉)

]
= E

[
eλ(〈σ,θ−θ̃〉)

] (ii)

≤
M∏
i=1

E
σi

[
eλσi(θi−θ̃i)

]
(iii)

≤
M∏
i=1

e
λ2(θi−θ̃i)

2

2 = e
λ2

2

∑M
i=1(θi−θ̃i)2 = e

λ2

2
ρ2X(θ,θ̃),

where σ is a Random Vector whose elements are i.i.d. Rademacher Random Variables and
(i) is from the definition of Rademacher Process; (ii) is from the expectation property of i.i.d.
random variables and (iii) is from Example 2.3 in Wainwright (2019). So we proved that
the Rademacher Process is a sub-Gaussian Process with respect to the Euclidean metric ρ2.
So by Lemma 20 and (9), we know that: ∀δ ∈ (0, D],

RS(Hw0 )=E[ sup
θ∈Hw0 (S)

Xθ]≤E

[
sup

θ,θ̃∈Hw0 (S)
(Xθ−Xθ̃

)

]
≤2E

 sup
γ,γ′∈Hw0 (S)
ρX (γ,γ′)≤δ

(Xγ−Xγ′)

+32J (δ/4;D),

where

D = sup
θ,θ′∈Hw0 (S)

‖θ − θ′‖2 ≤ 2 sup
θ∈Hw0 (S)

‖θ‖2 = 2 sup
h∈Hw0

‖h‖2 = 2 sup
h∈Hw0

√√√√ M∑
i=1

[h(zi)]
2

(i)

≤ 2
√
M sup
|||A|||p≤w
1≤i≤M

|xTi A(x+i − x
−
i )|

(ii)

≤ 2
√
M sup
|||A|||p≤w
1≤i≤M

‖xi‖p∗‖A(x+i − x
−
i )‖p

(iii)

≤ 2
√
M sup
|||A|||p≤w
1≤i≤M

‖xi‖p∗ |||A|||p‖x
+
i − x

−
i ‖p

(iv)

≤ 4
√
MP ∗Pw,

(A.20)

and J (a; b) =
∫ b
a

√
lnN (u;Hw0 (S), ‖ · ‖2)du =

∫ b
a

√
lnN (u;Hw0 , ‖ · ‖2)du. Where (i) is from

the definition of f ; (ii) is from the Holder’s Inequality; (iii) is a result of properties of matrix
norm and (iv) is from the definition of P ∗ and P . Similar to the discussion of upper bound
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for D, for all h1, h2 ∈ Hw0 , we have:

‖h1 − h2‖2 =

√√√√ M∑
i=1

[h1(zi)− h2(zi)]2 ≤
√
M sup

1≤i≤M
|h1(zi)− h2(zi)|

=
√
M sup

1≤i≤M
|xTi (A1 −A2)(x

+
i − x

−
i )|

(i)

≤
√
M sup

1≤i≤M
‖xi‖p∗ |||A1 −A2|||p‖x

+
i − x

−
i ‖p

(ii)

≤ 2
√
MP ∗P |||A1 −A2|||p,

(A.21)

where A1, A2 are the matrices corresponding to h1, h2, respectively and (i) is from the
same argument as (ii), (iii) in (A.20) and (ii) is from the definition of P ∗ and P . Suppose

NA =
{
A1, · · · , AN

}
is a δ

2PP ∗
√
M

-covering of SA =
{
A
∣∣∣|||A|||p ≤ w} with respect to |||·|||p ,

i.e.:

∀A ∈ SA ,∃Aj ∈ NA, s.t.
∣∣∣∣∣∣A−Aj∣∣∣∣∣∣

p
≤ δ

2PP ∗
√
M
.

Combine this with (A.21), let A be the matrix corresponding to h and Aj be the matrix
corresponding to hj and let Nh =

{
h1, h2, · · · , hN

}
, we have:

∀h ∈ Hw0 ,∃hj ∈ Nh, s.t. ‖h− hj‖2 ≤ 2
√
MP ∗P

δ

2PP ∗
√
M

= δ.

So Nh is a δ-covering of Hw0 with respect to ‖ · ‖2 , so we have:

N (δ;Hw0 , ‖ · ‖2) ≤ N (
δ

2PP ∗
√
M

;SA, |||·|||p).

By Lemma 18, we know that:

N (δ;Hw0 , ‖ · ‖2) ≤ N (
δ

2PP ∗
√
M

;SA, |||·|||p) ≤

(
1 +

4PP ∗w
√
M

δ

)m2

. (A.22)

So we have:

J (0;D) =

∫ D

0

√
ln N (u;Hw0 , ‖ · ‖2)du

(i)

≤
∫ D

0

√√√√m2ln

(
1 +

4PP ∗w
√
M

u

)
du

(ii)

≤ m

∫ D

0

√
4PP ∗w

√
M

u
du = 2m

√
PP ∗w

4
√
M

∫ D

0
u−

1
2du

= 4m
√
PP ∗wD

4
√
M

(iii)

≤ 8mPP ∗w
√
M,

where (i) is from (A.22); (ii) is because that for any x ≥ 0, ln(1 + x) ≤ x and (iii) is from
(A.20). So take δ −→ 0+, we have:

RS(Hw0 ) ≤ 32J (0;D) ≤ 256mPP ∗w
√
M.
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For RS(Hw
1 ): The same as RS(Hw

0 ), we consider `2 norm for a function h ∈ Hw1 and

define Hw1 (S) =
{

(h(z1), h(z2), . . . , h(zM ))
∣∣∣h ∈ Hw1 }, by similar argument in (A.19), we

have:
N (δ;Hw1 (S), ‖ · ‖2) = N (δ;Hw1 , ‖ · ‖2) .

By the definition of Rademacher Complexity, we know that RS(Hw1 ) is just the expectation
of the Rademacher Process with respect to Hw1 (S), which is E[ sup

θ∈Hw1 (S)
Xθ]. By Lemma 20

and (9), we know that: ∀δ ∈ (0, D],

RS(Hw1 )=E[ sup
θ∈Hw1 (S)

Xθ]≤E

[
sup

θ,θ̃∈Hw1 (S)
(Xθ −Xθ̃

)

]
≤2E

 sup
γ,γ′∈Hw1 (S)
ρX (γ,γ′)≤δ

(Xγ −Xγ′)

+32J (δ/4;D),

where

D = sup
θ,θ′∈Hw1 (S)

‖θ − θ′‖2 ≤ 2 sup
θ∈Hw1 (S)

‖θ‖2 = 2 sup
h∈Hw1

‖h‖2 = 2 sup
h∈Hw1

√√√√ M∑
i=1

[h(zi)]
2

(i)

≤ 2
√
M sup
|||A|||p≤w
1≤i≤M

‖A(x+i − x
−
i )‖r∗

(ii)

≤ 2
√
M sup
|||A|||p≤w
1≤i≤M

|||A|||r∗‖x
+
i − x

−
i ‖r∗

(iii)

≤ 4
√
MR∗ sup

|||A|||p≤w
|||A|||r∗

(iv)

≤ 4
√
MR∗ sup

|||A|||p≤w
s(r∗, p,m)|||A|||p ≤ 4wR∗s(r∗, p,m)

√
M,

(A.23)

and J (a; b) =
∫ b
a

√
lnN (u;Hw1 (S), ‖ · ‖2)du =

∫ b
a

√
lnN (u;Hw1 , ‖ · ‖2)du. Where (i) is from

the definition of f ; (ii) is a result of the properties of matrix norm; (iii) is from the definition
of R∗ and (iv) comes from Lemma 37. Similar to the discussion of upper bound for D, for
all h1, h2 ∈ Hw1 , we have:

‖h1 − h2‖2 =

√√√√ M∑
i=1

[h1(zi)− h2(zi)]2 ≤
√
M sup

1≤i≤M
|h1(zi)− h2(zi)|

=
√
M sup

1≤i≤M
‖(A1 −A2)(x

+
i − x

−
i )‖r∗

(i)

≤
√
M sup

1≤i≤M
|||A1 −A2|||r∗‖x

+
i − x

−
i ‖r∗

(ii)

≤ 2
√
MR∗|||A1 −A2|||r∗

(iii)

≤ 2R∗s(r∗, p,m)
√
M |||A1 −A2|||p,

(A.24)
where A1, A2 are the matrices corresponding to h1, h2, respectively and (i) from the properties
of matrix norm and (ii) is from the definition of R∗ and (iii) comes from Lemma 37. Suppose

NA =
{
A1, · · · , AN

}
is a δ

2R∗s(r∗,p,m)
√
M

-covering of SA =
{
A
∣∣∣|||A|||p ≤ w} with respect to

|||·|||p , i.e.:

∀A ∈ SA ,∃Aj ∈ NA, s.t.
∣∣∣∣∣∣A−Aj∣∣∣∣∣∣

p
≤ δ

2R∗s(r∗, p,m)
√
M
.
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Combine this with (A.24), let A be the matrix corresponding to h and Aj be the matrix
corresponding to hj and let Nh =

{
h1, h2, · · · , hN

}
, we have:

∀h ∈ Hw1 ,∃hj ∈ Nh, s.t. ‖h− hj‖2 ≤ 2R∗s(r∗, p,m)
√
M

δ

2R∗s(r∗, p,m)
√
M

= δ.

So Nh is a δ-covering of Hw1 with respect to ‖ · ‖2 , so we have:

N (δ;Hw1 , ‖ · ‖2) ≤ N (
δ

2R∗s(r∗, p,m)
√
M

;SA, |||·|||p).

By Lemma 18, we know that:

N (δ;Hw1 , ‖ · ‖2) ≤ N (
δ

2R∗s(r∗, p,m)
√
M

;SA, |||·|||p) ≤

(
1 +

4R∗s(r∗, p,m)w
√
M

δ

)m2

.

(A.25)
So we have:

J (0;D) =

∫ D

0

√
ln N (u;Hw1 , ‖ · ‖2)du

(i)

≤
∫ D

0

√√√√m2ln

(
1 +

4R∗s(r∗, p,m)w
√
M

u

)
du

(ii)

≤ m

∫ D

0

√
4R∗s(r∗, p,m)w

√
M

u
du = 2m

√
R∗s(r∗, p,m)w

4
√
M

∫ D

0
u−

1
2du

= 4m
√
R∗s(r∗, p,m)wD

4
√
M

(iii)

≤ 8mR∗s(r∗, p,m)w
√
M,

where (i) is from (A.25); (ii) is because that for any x ≥ 0, ln(1 + x) ≤ x and (iii) is from
(A.23). So take δ −→ 0+, we have:

RS(Hw1 ) ≤ 32J (0;D) ≤ 256mR∗s(r∗, p,m)w
√
M.

Combine upper bounds of RS(Hw0 ) and RS(Hw1 ) with (A.18), we have:

RS(H) ≤ RS(Hs(p
∗,p,m)w2

0 ) + ε RS(Hs(p
∗,p,m)w2

1 )

≤ 256mPP ∗s(p∗, p,m)w2
√
M + ε 256mR∗s(r∗, p,m)s(p∗, p,m)w2

√
M

= 256m s(p∗, p,m)w2
√
M (PP ∗ + εR∗s(r∗, p,m))

= O
(

(PP ∗ + εR∗s(r∗, p,m))
(
m s(p∗, p,m)w2

√
M
))

.
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A.9 Proof of Theorem 24

Theorem 24 Let U(x) = {x′|‖x′ − x‖p ≤ ε} (i.e. consider the `p attack), σ(0) = 0 with
Lipschitz constant L and let F =

{
Wdσ(Wd−1σ(· · ·σ(W1x)))

∣∣|||Wl|||F≤MF
l , l =1, . . . , d

}
. We

then have:

RS(H) = O


√√√√ d∑

l=1

hlhl−1K
√
d
√
M

 ,

where K = 2BF
X,ε ·

(
BF
X+ +BF

X−

)
, where

BF
X,ε=Ld−1

d∏
l=1

MF
l max

{
1,m

1
2
− 1
p

}
(‖X‖p,∞+ε) , BF

X =Ld−1
d∏
l=1

MF
l max

{
1,m

1
2
− 1
p

}
‖X‖p,∞.

Before giving the proof, we firstly introduce some useful lemmas.

Lemma 39 If x∗i ∈ U(xi) =
{
x′i
∣∣‖xi − x′i‖p ≤ ε}, then for 1

r∗ + 1
r = 1, we have:

‖x∗i ‖r∗ ≤ max
{

1,m
1− 1

r
− 1
p

}
(‖X‖p,∞ + ε) .

Proof [Proof of Lemma 39] We divide it into two cases.

1. If p ≥ r∗, then by Holder’s Inequality with 1
r∗ = 1

p + 1
s , we have:

‖x∗i ‖r∗ ≤ sup ‖1‖s · ‖x∗i ‖p = ‖1‖s · ‖x∗i ‖p = m
1
s ‖x∗i ‖p = m

1− 1
r
− 1
p ‖x∗i ‖p,

where the equality holds when all the entries are equal.

2. If p < r∗, by Lemma 35, we have ‖x∗i ‖r∗ ≤ ‖x∗i ‖p, where the equality holds when one
of the entries of x∗i equals to one and the others equal to zero.

Then we have:

‖x∗i ‖r∗ ≤ max
{

1,m
1− 1

r
− 1
p

}
‖x∗i ‖p ≤ max

{
1,m

1− 1
r
− 1
p

}
(‖xi‖p + ‖xi − x∗i ‖p)

≤ max
{

1,m
1− 1

r
− 1
p

}
(‖X‖p,∞ + ε) .

Lemma 40 Let A ∈ Rm×n, b ∈ Rn, then we have: ‖A · b‖2 ≤ |||A|||F · ‖b‖2.

Proof [Proof of Lemma 40] Let Ai be the rows of A, i = 1, 2, . . . ,m, we have:

‖A · b‖2 =

√√√√ m∑
i=1

(Aib)
2
(i)

≤

√√√√ m∑
i=1

‖Ai‖22 · ‖b‖22 =

√√√√ m∑
i=1

‖Ai‖22 ·
√
‖b‖22 = |||A|||F · ‖b‖2,

where (i) is from Holder’s Inequality.
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Lemma 41 Suppose σ is a L-Lipschitz function, then the elementwise vector map corre-
sponding to σ is also L-Lipschitz with respect to ‖ · ‖2.

Proof [Proof of Lemma 41]

‖σ(x)− σ(y)‖2 =

√√√√ n∑
i=1

(σ(x)i − σ(y)i)
2 =

√√√√ n∑
i=1

(σ(xi)− σ(yi))
2

(i)

≤

√√√√ n∑
i=1

L2(xi − yi)2 = L

√√√√ n∑
i=1

(xi − yi)2 = L · ‖x− y‖2,

where (i) is because σ is L-Lipschitz.

Now we can turn to the proof of Theorem 24.

Proof [Proof of Theorem 24] In this case, let U(x) =
{
x′
∣∣‖x′ − x‖p ≤ ε}, we have:

F =
{
x −→Wdσ(Wd−1σ(· · ·σ(W1x)))

∣∣ |||Wl|||F ≤M
F
l , l = 1, . . . , d

}
,

H =

{
h(x, x+, x−) = min

x′∈U(x)

(
f(x′)T

(
f(x+)− f(x−)

))
|f ∈ F

}
.

Let SFl =
{
Wl ∈ Rhl×hl−1

∣∣|||Wl|||F ≤MF
l

}
, l = 1, 2, . . . , d. Let CFl be the δl-covering of SFl

and define:

Fc =
{
f c : x −→W c

dσ
(
W c
d−1σ (· · ·σ(W c

1x))
) ∣∣∣W c

l ∈ CFl , l = 1, 2, . . . , d
}
⊆ F ,

Hc =

{
hc(x, x+, x−) = min

x′∈U(x)

(
f(x′)T

(
f(x+)− f(x−)

))
|f ∈ Fc

}
⊆ H.

Similar to the proof of Theorem 22, we know that the Rademacher Process is a sub-Gaussian
Process with respect to the Euclidean metric, which induces the `2 norm.

Given the training set S = {(xi, x+i , x
−
i )}Mi=1 , {zi}Mi=1, define the `2-norm for a function

in H as:

∀h ∈ H, ‖h‖2 :=

√√√√ M∑
i=1

[h(zi)]
2.

Define H(S) =
{

(h(z1), h(z2), . . . , h(zM ))
∣∣∣h ∈ H}, we have that for any h ∈ H and vh =

(h(z1), h(z2), . . . , h(zM )) be the corresponding vector in H(S), we have ‖h‖2 = ‖vh‖2. So we
know that any δ-covering of H (

{
h1, h2, · · · , hN

}
) with respect to `2 norm in the functional

space, corresponds to a δ-covering of H(S) with respect to the `2 norm in the Euclidean
Space, i.e. 


h1(z1)
h1(z2)

...
h1(zM )

 ,


h2(z1)
h2(z2)

...
h2(zM )

 , · · · ,


hN (z1)
hN (z2)

...
hN (zM )


 .
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So we have:

N (δ;H(S), ‖ · ‖2) = N (δ;H, ‖ · ‖2) .

By the definition of Rademacher Complexity, we know that RS(H) is just the expectation
of the Rademacher Process with respect to H(S), which is E[ sup

θ∈H(S)
Xθ].

So by Lemma 20 and (9), we know that: ∀δ ∈ (0, D]:

RS(H)=E[ sup
θ∈H(S)

Xθ] ≤ E

[
sup

θ,θ̃∈H(S)
(Xθ−Xθ̃

)

]
≤ 2E

 sup
γ,γ′∈H(S)
‖γ′−γ‖2≤δ

(Xγ−Xγ′)

+ 32J (δ/4;D),

where

D= sup
θ,θ′∈H(S)

‖θ − θ′‖2≤2 sup
θ∈H(S)

‖θ‖2=2sup
h∈H
‖h‖2=2sup

h∈H

√√√√ M∑
i=1

[h(zi)]
2 ≤ 2

√
M sup

h∈H
1≤i≤M

|h(zi)|,

(A.26)

and J (a; b) =
∫ b
a

√
lnN (u;H(S), ‖ · ‖2)du =

∫ b
a

√
lnN (u;H, ‖ · ‖2)du.

For any f ∈ F , x ∈ X , let xl be the output of x passing through the first l− 1 layers, we
have:

‖f(x)‖2=‖Wdσ(Wd−1x
d−1)‖2

(i)

≤|||Wd|||F ·‖σ(Wd−1x
d−1)‖2

(ii)
= |||Wd|||F ·‖σ(Wd−1x

d−1)−σ(0)‖2

(iii)

≤ LMF
d ‖Wd−1x

d−1‖2 ≤ · · · ≤ Ld−1
d∏
l=2

MF
l ‖W1x‖2 ≤ Ld−1

d∏
l=1

MF
l ‖x‖2

(iv)

≤ Ld−1
d∏
l=1

MF
l max

{
1,m

1
2
− 1
p

}
‖x‖p ≤ Ld−1

d∏
l=1

MF
l max

{
1,m

1
2
− 1
p

}
‖X‖p,∞,

where (i) is from Lemma 40; (ii) is from the fact that σ(0) = 0; (iii) comes from the assumption
that σ is L-Lipschitz and |||Wd|||F ≤ MF

d and (iv) is attained by setting r = r∗ = 2 in the
proof of Lemma 39.

To simplify the notations, we define:

BF
X,ε=Ld−1

d∏
l=1

MF
l max

{
1,m

1
2
− 1
p

}
(‖X‖p,∞+ε) , BF

X =Ld−1
d∏
l=1

MF
l max

{
1,m

1
2
− 1
p

}
‖X‖p,∞.

So we have:

∀x ∈ X , f ∈ F , ‖f(x)‖2 ≤ BF
X . (A.27)

Similarly, we have:

∀x ∈ X , f ∈ F , ∀ ‖x′ − x‖p ≤ ε, ‖f(x′)‖2 ≤ BF
X,ε. (A.28)
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For any h ∈ H, z ∈ X 3, let x∗ = arg min
‖x′−x‖p≤ε

f(x′)T (f(x+)− f(x−)) and let xl be the output

of x∗ passing through the first l − 1 layers, we have:

|h(z)| = | inf
‖x′−x‖p≤ε

f(x′)T
(
f(x+)− f(x−)

)
| = |f(x∗)T

(
f(x+)− f(x−)

)
|

≤ ‖f(x∗)‖2 · ‖f(x+)− f(x−)‖2
(i)

≤ BF
X,ε · (BF

X+ +BF
X−),

where (i) is from (A.27) and (A.28). So we have:

D
(i)

≤ 2
√
M sup

h∈H
1≤i≤M

|h(zi)| ≤ 2
√
MBF

X,ε · (BF
X+ +BF

X−) ,
√
MK, (A.29)

where (i) is from (A.26). Now, we need to find the smallest distance between H and Hc, i.e.

sup
h∈H

inf
hc∈Hc

‖h− hc‖2.

By the discussion in (A.26), we have ‖h − hc‖2 ≤
√
M max

1≤i≤M
|h(zi) − hc(zi)|. For any

zi = (xi, x
+
i , x

−
i ), i = 1, 2, . . . ,M , given h and hc such that |||Wl −W c

l |||F ≤ δl, l = 1, 2, . . . , d,
we have:

|h(zi)−hc(zi)| =
∣∣ inf
‖x′i−xi‖p≤ε

f(x′i)
T
(
f(x+i )− f(x−i )

)
− inf
‖x′i−xi‖p≤ε

f c(x′i)
T
(
f c(x+i )− f c(x−i )

) ∣∣.
Let x∗i = arg inf

‖x′i−xi‖p≤ε
f(x′i)

T
(
f(x+i )− f(x−i )

)
and xci = arg inf

‖x′i−xi‖p≤ε
f c(x′i)

T
(
f c(x+i )− f c(x−i )

)
,

and let

yi =

{
xci f(x∗i )

T
(
f(x+i )− f(x−i )

)
≥ f c(xci )T

(
f c(x+i )− f c(x−i )

)
x∗i otherwise

.

Then we have:

|h(zi)− hc(zi)| = |f(x∗i )
T
(
f(x+i )− f(x−i )

)
− f c(xci )T

(
f c(x+i )− f c(x−i )

)
|

(i)

≤ |f(yi)
T
(
f(x+i )− f(x−i )

)
− f c(yi)T

(
f c(x+i )− f c(x−i )

)
|

= |f(yi)
T
(
f(x+i )− f(x−i )

)
− f c(yi)T

(
f(x+i )− f(x−i )

)
+ f c(yi)

T
(
f(x+i )− f(x−i )

)
− f c(yi)T

(
f c(x+i )− f c(x−i )

)
|

(ii)

≤ | (f(yi)− f c(yi))T
(
f(x+i )− f(x−i )

)
|

+ |f c(yi)T
(
f(x+i )− f c(x+i )

)
|+ |f c(yi)T

(
f(x−i )− f c(x−i )

)
|

(iii)

≤ (BF
X+ +BF

X−)‖f(yi)− f c(yi)‖2 +BF
X,ε‖f(x+i )− f c(x+i )‖2

+BF
X,ε‖f(x−i )− f c(x−i )‖2,

(A.30)
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where (i) is easily verified by the definition of yi; (ii) is from the triangle inequality and (iii)
is from (A.27) and (A.28).

Define gab (·) as:

gab (y) = Wbσ (Wb−1σ (· · ·Wa+1σ (W c
a · · ·σ(W c

1y)))) .

Then we have:

‖f(yi)− f c(yi)‖2 = ‖g0d(yi)− gdd(yi)‖2

= ‖g0d(yi)− g1d(yi) + g1d(yi)− g2d(yi) + · · ·+ gd−1d (yi)− gdd(yi)‖2
(i)

≤ ‖g0d(yi)− g1d(yi)‖2 + · · ·+ ‖gd−1d (yi)− gdd(yi)‖2,

where (i) is from the triangle inequality.
Then we calculate ‖gl−1d (yi)− gld(yi)‖2, l = 1, 2, . . . , d:

‖gl−1d (yi)− gld(yi)‖2 = ‖Wdσ
(
gl−1d−1(yi)

)
−Wdσ

(
gld−1(yi)

)
‖2

(i)

≤ |||Wd|||F · ‖σ
(
gl−1d−1(yi)

)
− σ

(
gld−1(yi)

)
‖2

(ii)

≤ LMF
d ‖gl−1d−1(yi)− g

l
d−1(yi)‖2 ≤ · · ·

(iii)

≤ Ld−l ·
d∏

j=l+1

MF
j · ‖Wlσ

(
gl−1l−1(yi)

)
−W c

l σ
(
gl−1l−1(yi)

)
‖2

= Ld−l ·
d∏

j=l+1

MF
j · ‖ (Wl −W c

l )σ
(
gl−1l−1(yi)

)
‖2

(iv)

≤ Ld−l ·
d∏

j=l+1

MF
j · δl · ‖σ

(
gl−1l−1(yi)

)
‖2,

(A.31)

where (i) is from Lemma 40; (ii) comes from the assumption that σ is L-Lipschitz and
|||Wd|||F ≤MF

d ; (iii) is from the definition of gab (·) and (iv) is from Lemma 40 and the choice
of hc when h is fixed, which means that |||Wl −W c

l |||F ≤ δl.
Next, we upper bound ‖σ

(
gl−1l−1(yi)

)
‖2:

‖σ
(
gl−1l−1(yi)

)
‖2 = ‖σ

(
gl−1l−1(yi)

)
− σ(0)‖2

(i)

≤ L · ‖gl−1l−1(yi)‖2 = L · ‖W c
l−1σ

(
gl−2l−2(yi)

)
‖2

(ii)

≤ L ·
∣∣∣∣∣∣W c

l−1
∣∣∣∣∣∣
F
· ‖σ

(
gl−2l−2(yi)

)
‖2

(iii)

≤ L MF
l−1‖σ

(
gl−2l−2(yi)

)
‖2

≤ · · · ≤ Ll−1 ·
l−1∏
j=1

MF
j · ‖yi‖2,

(A.32)
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where (i) is because σ is L-Lipschitz; (ii) is from Lemma 40 and (iii) is because
∣∣∣∣∣∣W c

l−1
∣∣∣∣∣∣
F
≤

MF
l−1.

From (A.31) and (A.32) we have:

‖gl−1d (yi)− gld(yi)‖2 ≤ Ld−1
∏d
j=1M

F
j

MF
l

δl‖yi‖2

(i)

≤ Ld−1
∏d
j=1M

F
j

MF
l

δl max
{

1,m
1
2
− 1
p

}
(‖X‖p,∞ + ε) = BF

X,ε

δl
MF
l

,

where (i) is from Lemma 39.
Similarly:

‖gl−1d (x+i )− gld(x+i )‖2 ≤ Ld−1
∏d
j=1M

F
j

MF
l

δl‖x+i ‖2

≤ Ld−1
∏d
j=1M

F
j

MF
l

δl max
{

1,m
1
2
− 1
p

}
‖X+‖p,∞ = BF

X+

δl
MF
l

,

‖gl−1d (x−i )− gld(x−i )‖2 ≤ Ld−1
∏d
j=1M

F
j

MF
l

δl‖x−i ‖2

≤ Ld−1
∏d
j=1M

F
j

MF
l

δl max
{

1,m
1
2
− 1
p

}
‖X−‖p,∞ = BF

X−
δl
MF
l

.

Combining the above with (A.30) yields:

|h(zi)− hc(zi)| ≤
(
BF
X+ +BF

X−
) (
‖g0d(yi)− g1d(yi)‖2 + · · ·+ ‖gd−1d (yi)− gdd(yi)‖2

)
+BF

X,ε

(
‖g0d(x+i )− g1d(x+i )‖2 + · · ·+ ‖gd−1d (x+i )− gdd(x+i )‖2

)
+BF

X,ε

(
‖g0d(x−i )− g1d(x−i )‖2 + · · ·+ ‖gd−1d (x−i )− gdd(x−i )‖2

)
= (BF

X+ +BF
X−)BF

X,ε

d∑
l=1

δl
MF
l

+BF
X,εB

F
X+

d∑
l=1

δl
MF
l

+BF
X,εB

F
X−

d∑
l=1

δl
MF
l

= 2BF
X,ε(B

F
X+ +BF

X−)

d∑
l=1

δl
MF
l

= K
d∑
l=1

δl
MF
l

.

So ‖h− hc‖2 =
√
M max

1≤i≤M
|h(zi)− hc(zi)| ≤

√
M
∑d

l=1
Kδl
MF
l

. Let δl =
MF
l δ

dK
√
M

, we have:

‖h− hc‖2 ≤
√
M

d∑
l=1

K

MF
l

·
MF
l δ

dK
√
M
≤ δ.

Then: ∀h ∈ H, ∃hc ∈ Hc s.t. ‖h− hc‖2 ≤ δ, which means that sup
h∈H

inf
hc∈Hc

‖h− hc‖2 ≤ δ when

choosing δl =
MF
l δ

dK
√
M

.
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So Hc is a δ-covering of H, and N (δ;H, ‖ · ‖2) ≤ |Hc| =
∏d
l=1 |CFl |. By Lemma 18 we

know that |CFl | = N (
MF
l δ

dK
√
M

;SFl , |||·|||F ) ≤
(

1 + 2dK
√
M

δ

)hl×hl−1

. So we have:

N (δ;H, ‖ · ‖2) ≤ |Hc| =
d∏
l=1

|CFl | ≤

(
1 +

2dK
√
M

δ

)∑d
l=1 hl·hl−1

. (A.33)

So we can conclude that:

J (0;D) =

∫ D

0

√
ln N (u;H, ‖ · ‖2)du

(i)

≤
∫ D

0

√√√√( d∑
l=1

hl · hl−1

)
ln

(
1 +

2dK
√
M

u

)
du

(ii)

≤

√√√√ d∑
l=1

hl · hl−1
∫ D

0

√
2dK
√
M

u
du =

√√√√2dK
d∑
l=1

hl · hl−1
4
√
M

∫ D

0
u−

1
2du

= 2

√√√√2dKD
d∑
l=1

hl · hl−1
4
√
M

(iii)

≤ 2
√

2

√√√√ d∑
l=1

hl · hl−1
√
dK
√
M,

where (i) is from (A.33); (ii) comes from the fact that ln(1 + x) ≤ x,∀x ≥ 0 and (iii) comes
from (A.29).

Since we shows that RS(H) ≤ 2E

 sup
γ,γ′∈H(S)
‖γ′−γ‖2≤δ

(Xγ −Xγ′)

 + 32J (δ/4;D) before, take

δ −→ 0+, we have:

RS(H) ≤ 32J (0;D) ≤ 64
√

2

√√√√ d∑
l=1

hl · hl−1
√
dK
√
M = O


√√√√ d∑

l=1

hl · hl−1
√
dK
√
M

 .

A.10 Proof of Theorem 26

Theorem 26 Let U(x) = {x′|‖x′ − x‖p ≤ ε} (i.e. consider the `p attack), σ(0) = 0 with Lip-

schitz constant L; moreover, let F =
{
Wdσ(Wd−1σ(· · ·σ(W1x)))

∣∣‖Wl‖1,∞≤M1,∞
l , l=1, . . . ,d

}
.

We then have:

RS(H) = O


√√√√ d∑

l=1

hlhl−1
√
dK0K1

√
M

 ,

where

K0 = 2B1,∞
X,ε ·

(
B′X+ +B′X−

)
, K1 =

K0

2
+B′X,ε ·

(
B1,∞
X+ +B1,∞

X−

)
,
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where

B′X,ε = Ld−1
d∏
l=1

hlM
1,∞
l m

1− 1
p (‖X‖p,∞ + ε) , B′X = Ld−1

d∏
l=1

hlM
1,∞
l m

1− 1
p ‖X‖p,∞,

B1,∞
X,ε = Ld−1

d∏
l=1

M1,∞
l (‖X‖p,∞ + ε) , B1,∞

X = Ld−1
d∏
l=1

M1,∞
l ‖X‖p,∞.

Before giving the proof, we firstly introduce some useful lemmas.

Lemma 42 Let A ∈ Rm×n, b ∈ Rn, then we have: ‖A · b‖∞ ≤ ‖A‖1,∞ · ‖b‖∞.

Proof [Proof of Lemma 42] Let Ai be the rows of A, i = 1, 2, . . . ,m, we have:

‖A · b‖∞ = max
1≤i≤m

|Aib|
(i)

≤ max
1≤i≤m

(‖Ai‖1 · ‖b‖∞) = ‖A‖1,∞ · ‖b‖∞,

where (i) is from the Holder’s Inequality.

Lemma 43 Let A ∈ Rm×n, b ∈ Rn, then we have:

‖A · b‖1 ≤ ‖A‖∞,1 · ‖b‖1 ≤ m‖A‖1,∞ · ‖b‖1.

Proof [Proof of Lemma 43] Let Ai be the rows of A, i = 1, 2, . . . ,m, we have:

‖A · b‖1 =
m∑
i=1

|Aib|
(i)

≤
m∑
i=1

(‖Ai‖∞ · ‖b‖1) = ‖A‖∞,1 · ‖b‖1,

where (i) is from the Holder’s Inequality. And we have:

‖A‖∞,1 = ‖ (‖A1‖∞, · · · , ‖Am‖∞) ‖1
(i)

≤ ‖ (‖A1‖1, · · · , ‖Am‖1) ‖1
(ii)

≤ m‖ (‖A1‖1, · · · , ‖Am‖1) ‖∞ = m‖A‖1,∞,

where (i) is from the fact that ‖x‖∞ ≤ ‖x‖1 and (ii) is the from the fact that for all
x ∈ Rm, ‖x‖1 ≤ m‖x‖∞. So we have: ‖A · b‖1 ≤ ‖A‖∞,1 · ‖b‖1 ≤ m‖A‖1,∞ · ‖b‖1.

Lemma 44 Suppose σ is a L-Lipschitz function, then the elementwise vector map corre-
sponding to σ is also L-Lipschitz with respect to ‖ · ‖∞.

Proof [Proof of Lemma 44]

‖σ(x)− σ(y)‖∞ = max
1≤i≤n

|σ(x)i − σ(y)i| = max
1≤i≤n

|σ(xi)− σ(yi)|

(i)

≤ max
1≤i≤n

L|xi − yi| = L · ‖x− y‖∞,
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where (i) is because σ is L-Lipschitz.

Now we can turn to the proof of Theorem 26.
Proof [Proof of Theorem 26] In this case, let U(x) =

{
x′
∣∣‖x′ − x‖p ≤ ε}, we have:

F =
{
x −→Wdσ(Wd−1σ(· · ·σ(W1x)))

∣∣ ‖Wl‖1,∞ ≤M1,∞
l , l = 1, . . . , d

}
,

H =

{
h(x, x+, x−) = min

x′∈U(x)

(
f(x′)T

(
f(x+)− f(x−)

))
|f ∈ F

}
.

Let S1,∞
l =

{
Wl ∈ Rhl×hl−1

∣∣‖Wl‖1,∞ ≤M1,∞
l

}
, l = 1, 2, . . . , d. Let C1,∞l be the δl-covering

of S1,∞
l and define:

Fc =
{
f c : x −→W c

dσ
(
W c
d−1σ (· · ·σ(W c

1x))
) ∣∣∣W c

l ∈ C
1,∞
l , l = 1, 2, . . . , d

}
⊆ F ,

Hc =

{
hc(x, x+, x−) = min

x′∈U(x)

(
f(x′)T

(
f(x+)− f(x−)

))
|f ∈ Fc

}
⊆ H.

Similar to the proof of Theorem 22, we know that the Rademacher Process is a sub-Gaussian
Process with respect to the Euclidean metric, which induces the `2 norm.

Similar to the proof of Theorem 24, given the training set S = {(xi, x+i , x
−
i )}Mi=1 , {zi}Mi=1,

define the `2-norm for a function in H as:

∀h ∈ H, ‖h‖2 :=

√√√√ M∑
i=1

[h(zi)]
2.

Define H(S) =
{

(h(z1), h(z2), . . . , h(zM ))
∣∣∣h ∈ H}, with the same argument as in proof of

Theorem 24, we have:
N (δ;H(S), ‖ · ‖2) = N (δ;H, ‖ · ‖2) ,

and
RS(H) = E[ sup

θ∈H(S)
Xθ].

So by Lemma 20 and (9), we know that: ∀δ ∈ (0, D]:

RS(H)=E[ sup
θ∈H(S)

Xθ]≤E

[
sup

θ,θ̃∈H(S)
(Xθ−Xθ̃

)

]
≤ 2E

 sup
γ,γ′∈H(S)
‖γ′−γ‖2≤δ

(Xγ−Xγ′)

+32J (δ/4;D),

where

D= sup
θ,θ′∈H(S)

‖θ − θ′‖2≤2 sup
θ∈H(S)

‖θ‖2=2sup
h∈H
‖h‖2=2sup

h∈H

√√√√ M∑
i=1

[h(zi)]
2 ≤ 2

√
M sup

h∈H
1≤i≤M

|h(zi)|,

(A.34)

and J (a; b) =
∫ b
a

√
lnN (u;H(S), ‖ · ‖2)du =

∫ b
a

√
lnN (u;H, ‖ · ‖2)du
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Then for any f ∈ F , x ∈ X , let xl be the output of x passing through the first l − 1
layers, we have:

‖f(x)‖∞ = ‖Wdσ(Wd−1x
d−1)‖∞

(i)

≤ ‖Wd‖1,∞ · ‖σ(Wd−1x
d−1)‖∞

(ii)
= ‖Wd‖1,∞ · ‖σ(Wd−1x

d−1)− σ(0)‖∞
(iii)

≤ LM1,∞
d ‖Wd−1x

d−1‖∞ ≤ · · ·

≤Ld−1
d∏
l=2

M1,∞
l ‖W1x‖∞≤Ld−1

d∏
l=1

M1,∞
l ‖x‖∞

(iv)

≤ Ld−1
d∏
l=1

M1,∞
l max

{
1,m−p

}
‖x‖p

= Ld−1
d∏
l=1

M1,∞
l ‖x‖p ≤ Ld−1

d∏
l=1

M1,∞
l ‖X‖p,∞,

where (i) is from Lemma 42; (ii) is from the fact that σ(0) = 0; (iii) comes from the
assumption that σ is L-Lipschitz and |||Wd|||1,∞ ≤ M1,∞

d and (iv) is attained by setting
r = 1, r∗ =∞ in the proof of Lemma 39.

To simplify the notations, we define:

B1,∞
X = Ld−1 ·

d∏
l=1

M1,∞
l · ‖X‖p,∞, B′X = Ld−1 ·

(
d∏
l=1

hl ·M1,∞
l

)
m

1− 1
p · ‖X‖p,∞

B1,∞
X,ε = Ld−1 ·

d∏
l=1

M1,∞
l · (‖X‖p,∞ + ε) , B′X,ε = Ld−1 ·

(
d∏
l=1

hl ·M1,∞
l

)
m

1− 1
p · (‖X‖p,∞ + ε) .

So:

∀x ∈ X , f ∈ F , ‖f(x)‖∞ ≤ B1,∞
X .

Similarly, we have:

∀x ∈ X , f ∈ F , ∀ ‖x′ − x‖p ≤ ε, ‖f(x′)‖∞ ≤ B1,∞
X,ε . (A.35)

Similarly,

‖f(x)‖1 = ‖Wdσ(Wd−1x
d−1)‖1

(i)

≤ hd · ‖Wd‖1,∞ · ‖σ(Wd−1x
d−1)‖1

(ii)
= hd · ‖Wd‖1,∞ · ‖σ(Wd−1x

d−1)− σ(0)‖1
(iii)

≤ hd · L ·M1,∞
d ‖Wd−1x

d−1‖1 ≤ · · ·

≤ Ld−1
d∏
l=2

hlM
1,∞
l ‖W1x‖1 ≤ Ld−1

d∏
l=1

hlM
1,∞
l ‖x‖1

(iv)

≤ Ld−1

(
d∏
l=1

hlM
1,∞
l

)
max

{
1,m

1− 1
p

}
‖x‖p

= Ld−1

(
d∏
l=1

hlM
1,∞
l

)
m

1− 1
p ‖x‖p ≤ Ld−1

(
d∏
l=1

hlM
1,∞
l

)
m

1− 1
p ‖X‖p,∞,
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where (i) is from Lemma 43; (ii) is from the fact that σ(0) = 0; (iii) comes from the
assumption that σ is L-Lipschitz and |||Wd|||1,∞ ≤ M1,∞

d and (iv) is attained by setting
r =∞, r∗ = 1 in the proof of Lemma 39.

So we know that:

∀x ∈ X , f ∈ F , ‖f(x)‖1 ≤ B′X . (A.36)

Similarly, we have:

∀x ∈ X , f ∈ F , ∀ ‖x′ − x‖p ≤ ε, ‖f(x′)‖1 ≤ B′X,ε. (A.37)

For any h ∈ H, z ∈ X 3, let x∗ = arg min
‖x′−x‖p≤ε

f(x′)T (f(x+)− f(x−)) and let xl be the output

of x∗ passing through the first l − 1 layers, we have:

|h(z)| = | inf
‖x′−x‖p≤ε

f(x′)T
(
f(x+)− f(x−)

)
| = |f(x∗)T

(
f(x+)− f(x−)

)
|

≤ ‖f(x∗)‖∞ · ‖f(x+)− f(x−)‖1
(i)

≤ B1,∞
X,ε · (B

′
X+ +B′X−),

where (i) is from (A.35) and (A.36). So we get:

D
(i)

≤ 2
√
M sup

h∈H
1≤i≤M

|h(zi)| ≤ 2
√
MB1,∞

X,ε · (B
′
X+ +B′X−) ,

√
MK0, (A.38)

where (i) is from (A.34). Now, we need to find the smallest distance between H and Hc, i.e.

sup
h∈H

inf
hc∈Hc

‖h− hc‖2.

By the discussion in (A.34), we have ‖h − hc‖2 ≤
√
M max

1≤i≤M
|h(zi) − hc(zi)|. For any

zi = (xi, x
+
i , x

−
i ), i = 1, 2, . . . ,M , given h and hc such that ‖Wl−W c

l ‖1,∞ ≤ δl, l = 1, 2, . . . , d,
we have:

|h(zi)−hc(zi)| =
∣∣ inf
‖x′i−xi‖p≤ε

f(x′i)
T
(
f(x+i )− f(x−i )

)
− inf
‖x′i−xi‖p≤ε

f c(x′i)
T
(
f c(x+i )− f c(x−i )

) ∣∣.
Let x∗i = arg inf

‖x′i−xi‖p≤ε
f(x′i)

T
(
f(x+i )− f(x−i )

)
and xci = arg inf

‖x′i−xi‖p≤ε
f c(x′i)

T
(
f c(x+i )− f c(x−i )

)
,

and let

yi =

{
xci f(x∗i )

T
(
f(x+i )− f(x−i )

)
≥ f c(xci )T

(
f c(x+i )− f c(x−i )

)
x∗i otherwise

.
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Then we have:

|h(zi)− hc(zi)| = |f(x∗i )
T
(
f(x+i )− f(x−i )

)
− f c(xci )T

(
f c(x+i )− f c(x−i )

)
|

(i)

≤ |f(yi)
T
(
f(x+i )− f(x−i )

)
− f c(yi)T

(
f c(x+i )− f c(x−i )

)
|

= |f(yi)
T
(
f(x+i )− f(x−i )

)
− f c(yi)T

(
f(x+i )− f(x−i )

)
+ f c(yi)

T
(
f(x+i )− f(x−i )

)
− f c(yi)T

(
f c(x+i )− f c(x−i )

)
|

(ii)

≤ | (f(yi)− f c(yi))T
(
f(x+i )− f(x−i )

)
|

+ |f c(yi)T
(
f(x+i )− f c(x+i )

)
|+ |f c(yi)T

(
f(x−i )− f c(x−i )

)
|

(iii)

≤ (B′X+ +B′X−)‖f(yi)− f c(yi)‖∞ +B′X,ε‖f(x+i )− f c(x+i )‖∞

+B′X,ε‖f(x−i )− f c(x−i )‖∞,
(A.39)

where (i) is easily verified by the definition of yi; (ii) is from the triangle inequality and (iii)
is from (A.36) and (A.37). Again we define gab (·) as:

gab (y) = Wbσ (Wb−1σ (· · ·Wa+1σ (W c
a · · ·σ(W c

1y)))) .

Then:

‖f(yi)− f c(yi)‖∞ = ‖g0d(yi)− gdd(yi)‖∞

= ‖g0d(yi)− g1d(yi) + g1d(yi)− g2d(yi) + · · ·+ gd−1d (yi)− gdd(yi)‖∞
(i)

≤ ‖g0d(yi)− g1d(yi)‖∞ + · · ·+ ‖gd−1d (yi)− gdd(yi)‖∞,

where (i) is from the triangle inequality.
Then we calculate ‖gl−1d (yi)− gld(yi)‖∞, l = 1, 2, . . . , d:

‖gl−1d (yi)− gld(yi)‖∞ = ‖Wdσ
(
gl−1d−1(yi)

)
−Wdσ

(
gld−1(yi)

)
‖∞

(i)

≤ ‖Wd‖1,∞ · ‖σ
(
gl−1d−1(yi)

)
− σ

(
gld−1(yi)

)
‖∞

(ii)

≤ LM1,∞
d ‖gl−1d−1(yi)− g

l
d−1(yi)‖∞ ≤ · · ·

(iii)

≤ Ld−l ·
d∏

j=l+1

M1,∞
j · ‖Wlσ

(
gl−1l−1(yi)

)
−W c

l σ
(
gl−1l−1(yi)

)
‖∞

= Ld−l ·
d∏

j=l+1

M1,∞
j · ‖ (Wl −W c

l )σ
(
gl−1l−1(yi)

)
‖∞

(iv)

≤ Ld−l ·
d∏

j=l+1

M1,∞
j · δl · ‖σ

(
gl−1l−1(yi)

)
‖∞,

(A.40)
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where (i) is from Lemma 42; (ii) comes from the assumption that σ is L-Lipschitz and
‖Wd‖1,∞ ≤ M1,∞

d ; (iii) is from the definition of gab (·) and (iv) is from Lemma 42 and the
choice of hc when h is fixed, which means that ‖Wl −W c

l ‖1,∞ ≤ δl.

Next, we upper bound ‖σ
(
gl−1l−1(yi)

)
‖∞:

‖σ
(
gl−1l−1(yi)

)
‖∞ = ‖σ

(
gl−1l−1(yi)

)
− σ(0)‖∞

(i)

≤ L · ‖gl−1l−1(yi)‖∞

= L · ‖W c
l−1σ

(
gl−2l−2(yi)

)
‖∞

(ii)

≤ L · ‖W c
l−1‖1,∞ · ‖σ

(
gl−2l−2(yi)

)
‖∞

(iii)

≤ L M1,∞
l−1 ‖σ

(
gl−2l−2(yi)

)
‖∞ ≤ · · · ≤ Ll−1 ·

l−1∏
j=1

M1,∞
j · ‖yi‖∞,

(A.41)

where (i) is because σ is L-Lipschitz; (ii) is from Lemma 42 and (iii) is because ‖W c
l−1‖1,∞ ≤

M1,∞
l−1 .

(A.40) and (A.41) show that:

‖gl−1d (yi)− gld(yi)‖∞ ≤ Ld−1
∏d
j=1M

1,∞
j

M1,∞
l

δl‖yi‖∞

(i)

≤ Ld−1
∏d
j=1M

1,∞
j

M1,∞
l

δl (‖X‖p,∞ + ε) = B1,∞
X,ε

δl

M1,∞
l

,

where (i) is from Lemma 39.

Similarly, we have:

‖gl−1d (x+i )− gld(x+i )‖∞ ≤ Ld−1
∏d
j=1M

1,∞
j

M1,∞
l

δl‖x+i ‖∞

≤ Ld−1
∏d
j=1M

1,∞
j

M1,∞
l

δl ‖X+‖p,∞ = B1,∞
X+

δl

M1,∞
l

,

‖gl−1d (x−i )− gld(x−i )‖∞ ≤ Ld−1
∏d
j=1M

1,∞
j

M1,∞
l

δl‖x−i ‖∞

≤ Ld−1
∏d
j=1M

1,∞
j

M1,∞
l

δl ‖X−‖p,∞ = B1,∞
X−

δl

M1,∞
l

.

49



Zou and Liu

Combine the above with (A.39):

|h(zi)− hc(zi)| ≤
(
B′X+ +B′X−

) (
‖g0d(yi)− g1d(yi)‖∞ + · · ·+ ‖gd−1d (yi)− gdd(yi)‖∞

)
+B′X,ε

(
‖g0d(x+i )− g1d(x+i )‖∞ + · · ·+ ‖gd−1d (x+i )− gdd(x+i )‖∞

)
+B′X,ε

(
‖g0d(x−i )− g1d(x−i )‖∞ + · · ·+ ‖gd−1d (x−i )− gdd(x−i )‖∞

)
= (B′X+ +B′X−)B1,∞

X,ε

d∑
l=1

δl

M1,∞
l

+B′X,εB
1,∞
X+

d∑
l=1

δl

M1,∞
l

+B′X,εB
1,∞
X−

d∑
l=1

δl

M1,∞
l

=
[
B1,∞
X,ε (B′X+ +B′X−) +B′X,ε(B

1,∞
X+ +B1,∞

X− )
] d∑
l=1

δl

M1,∞
l

, K1

d∑
l=1

δl

M1,∞
l

.

So ‖h− hc‖2 =
√
M max

1≤i≤M
|h(zi)− hc(zi)| ≤

√
M
∑d

l=1
K1δl
M1,∞
l

. Let δl =
M1,∞
l δ

dK1

√
M

, then:

‖h− hc‖2 ≤
√
M

d∑
l=1

K1

M1,∞
l

·
M1,∞
l δ

dK1

√
M
≤ δ,

which means that: ∀h ∈ H, ∃hc ∈ Hc s.t. ‖h− hc‖2 ≤ δ, so we have sup
h∈H

inf
hc∈Hc

‖h− hc‖2 ≤ δ

when choosing δl =
M1,∞
l δ

dK1

√
M

.

So Hc is a δ-covering of H, and N (δ;H, ‖ · ‖2) ≤ |Hc| =
∏d
l=1 |C

1,∞
l |. By Lemma 18 we

know that: |C1,∞l | = N (
M1,∞
l δ

dK1

√
M

;S1,∞
l , ‖ · ‖1,∞) ≤

(
1 + 2dK1

√
M

δ

)hl×hl−1

.

This means:

N (δ;H, ‖ · ‖2) ≤ |Hc| =
d∏
l=1

|C1,∞l | ≤

(
1 +

2dK1

√
M

δ

)∑d
l=1 hl·hl−1

. (A.42)

So we can conclude that:

J (0;D) =

∫ D

0

√
ln N (u;H, ‖ · ‖2)du

(i)

≤
∫ D

0

√√√√( d∑
l=1

hl · hl−1

)
ln

(
1 +

2dK1

√
M

u

)
du

(ii)

≤

√√√√ d∑
l=1

hl · hl−1
∫ D

0

√
2dK1

√
M

u
du =

√√√√2dK1

d∑
l=1

hl · hl−1
4
√
M

∫ D

0
u−

1
2du

= 2

√√√√2dK1D

d∑
l=1

hl · hl−1
4
√
M

(iii)

≤ 2
√

2

√√√√ d∑
l=1

hl · hl−1
√
dK0K1

√
M,

where (i) is from (A.42); (ii) comes from the fact that ln(1 + x) ≤ x,∀x ≥ 0 and (iii) comes
from (A.38).
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Figure B.1: The effect of block size on the accuracy. In the figure, we show the clean accuracy
and the adversarial accuracy of the mean classifier under PGD and FGSM attack
with ε = 0.01 and ε = 0.02. The block size is choosen from {1, 2, 4, 6, 8, 10}.
(a) The influence on the clean accuracy; (b) The influence on the
adversarial accuracy.

Since we shows that RS(H) ≤ 2E

 sup
γ,γ′∈H(S)
‖γ′−γ‖2≤δ

(Xγ −Xγ′)

 + 32J (δ/4;D) before, take

δ −→ 0+, we have:

RS(H)≤32J (0;D)≤64
√

2

√√√√ d∑
l=1

hl · hl−1
√
dK0K1

√
M=O


√√√√ d∑

l=1

hl · hl−1
√
dK0K1

√
M

.

Appendix B. Extra Experimental Results

In this section, we present our experimental results for CIFAR-100. The basic settings are
the same as §6.

B.1 Improvement from Regularizer

Table B.1 shows that the F -norm regularizer helps to improve the adversarial robustness of
the model, which agrees with our Theorem 24.
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Attack ε Type
λ

0 0.002 0.005 0.01 0.02

PGD
0.01

Clean 84.07 85.65 85.48 85.52 58.53
Adv 78.49 79.55 79.39 79.41 79.44

0.02
Clean 81.87 81.91 81.93 82.08 81.97
Adv 73.01 73.05 73.07 73.16 73.07

FGSM
0.01

Clean 84.61 84.53 84.95 84.58 84.55
Adv 78.70 78.64 79.18 78.70 78.63

0.02
Clean 80.47 80.48 80.39 80.44 82.09
Adv 72.45 72.45 72.36 72.41 73.87

Table B.1: Results of experiments on the regularizer on data set CIFAR-100. In this table,
we list the clean accuracy (Clean) and adversarial accuracy (Adv) of the mean
classifier under the PGD and FGSM attack with ε = 0.01 and ε = 0.02. λ is
chosen from {0, 0.002, 0.005, 0.01, 0.02}, and λ = 0 indicates no regularizer.

B.2 Effect of Block Size

Figure B.1 records the influence of block size on the clean accuracy and the adversarial
accuracy of the model, from which we can see that a larger block size will yield better
adversarial accuracy.
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