
Journal of Machine Learning Research 24 (2023) 1-27 Submitted 8/22; Revised 5/23; Published 6/23

Sample Complexity for Distributionally Robust Learning
under χ2-divergence

Zhengyu Zhou zzysince1999@gmail.com
School of Computer Science
National Engineering Research Center for Multimedia Software
Institute of Artificial Intelligence
Hubei Key Laboratory of Multimedia and Network Communication Engineering
Wuhan University
Wuhan, China

Weiwei Liu∗ liuweiwei863@gmail.com
School of Computer Science
National Engineering Research Center for Multimedia Software
Institute of Artificial Intelligence
Hubei Key Laboratory of Multimedia and Network Communication Engineering
Wuhan University
Wuhan, China

Editor: Mehryar Mohri

Abstract
This paper investigates the sample complexity of learning a distributionally robust predictor
under a particular distributional shift based on χ2-divergence, which is well known for its
computational feasibility and statistical properties. We demonstrate that any hypothesis
class H with finite VC dimension is distributionally robustly learnable. Moreover, we show
that when the perturbation size is smaller than a constant, finite VC dimension is also
necessary for distributionally robust learning by deriving a lower bound of sample complexity
in terms of VC dimension.
Keywords: distributionally robustness, PAC learning, sample complexity, χ2-divergence

1. Introduction

Due to the prevalence of heterogeneous but often latent subpopulations in modern datasets
(Meinshausen and Bühlmann, 2015; Rothenhäusler et al., 2016), many applications in statistics
and machine learning are prone to distributional shifts, leading to significant performance
disparities across different demographic groupings, such as race, gender, or age. Examples of
such applications include speech recognition systems for people with minority accents, facial
recognition, automatic video captioning, language identification, and academic recommender
systems (Grother et al., 2011; Hovy and Søgaard, 2015; Blodgett et al., 2016; Sapiezynski
et al., 2017; Tatman, 2017).
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Learning models that can perform well against the distributional shift, such as latent
heterogeneous subpopulations, unknown covariate shift (Ben-David et al., 2006; Shimodaira,
2000), or unobserved confounding variables (Hand, 2006), remains a challenging task in
contemporary machine learning. Based on the samples drawn independently and identically
distributed (i.i.d.) from the data-generating distribution P , this paper considers the problem
of learning a predictor that is robust to distributional shift at test time.

Concretely, let X be the instance space, while Y = {+1,−1} denotes the label space. We
formalize the distributional shift that we would like to protect against as an uncertainty set
U(P ) containing distributions with certain constraints, such as moment condition (Delage
and Ye, 2010), Wasserstein distance (Gao, 2020) and f -divergence (Duchi and Namkoong,
2021). For a distribution P over X ×Y = {(x, y) : x ∈ X , y ∈ Y}, we observe m i.i.d. samples
S ∼ Pm, and distributionally robust learning attempts to learn a predictor h : X → Y having
small distributionally robust risk,

RU (h;P ) := sup
Q∈U(P )

E
(x,y)∼Q

[1[h(x) 6= y]]. (1)

The common approach to distributionally robust learning involves selecting a hypothesis
class H ⊆ YX and learning a predictor ĥ : X → Y from H through Distributionally Robust
Empirical Risk Minimization:

ĥ ∈ DRERMH(S) := argmin
h∈H

R̂U (h;S),

where R̂U (h;S) := supQ∈U(Pm) E(x,y)∼Q[1[h(x) 6= y]] and Pm denotes the empirical distribu-
tion over samples S.

One line of research has focused on bounding the excess risk RU (ĥ;P )− infh∈HRU (h;P ).
For example, Duchi and Namkoong (2021) study the excess risk based on χ2-divergence
through the lens of the covering number argument. Lee and Raginsky (2018) derive a
bound of the excess risk by means of the Rademacher complexity under the Wasserstein
distance regime. However, these approaches do not consider VC dimension, which is a
fundamental tool in learning theory. Moreover, the lower bound of the sample complexity
for distributionally robust learning remains unknown. This paper attempts to address these
issues.

It has been shown that finite VC dimension (Vapnik, 1998) is a necessary and sufficient
condition for the learnability of classical statistical learning (Shalev-Shwartz and Ben-David,
2014, Theorem 6.7, Theorem 6.8), which prompts us to ask the following question:

Is finite VC dimension a necessary and sufficient condition for the distributionally
robust learnability?

This paper answers the above question in the affirmative. More specifically, for a given
hypothesis H ⊆ YX and distributional shift U , we study how many i.i.d. samples are
necessary and sufficient for learning a predictor h with distributionally robust risk which
is as good as any predictor in H (see Definition 1 in §2). We focus on the χ2-divergence,
which is a special case in the Cressie-Read family of f -divergence (Cressie and Read, 1984).
Namely, we consider the distributional shift as follows:

U(P ) = {Q� P : D2(Q‖P ) ≤ ρ},
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where D2(Q‖P ) := 1
2

∫ (dQ
dP − 1

)2
dP and Q� P indicates that distribution Q is absolutely

continuous with respect to P . The χ2-divergence is a commonly explored concept in
the distributionally robust optimization (DRO) literature (Duchi and Namkoong, 2019).
Moreover, it is also a crucial concept in a variety of fields such as information theory, statistics,
learning, signal processing, and various branches of mathematics (Park et al., 2011; Saraswat,
2014; Nishiyama and Sason, 2020). The χ2-divergence plays a fundamental role in problems
related to source and channel coding, combinatorics, large deviation theory, goodness-of-fit,
and independence tests in statistics, as demonstrated by Csiszár et al. (2004). Additionally,
it is widely recognized for its computational feasibility and statistical properties, as noted in
Tsybakov (2009).

Our main contributions are as below:

• We show that under χ2-divergence regime, a hypothesis classH with finite VC dimension
can be distributionally robustly PAC-learnable with DRERM.

• Under χ2-divergence, we prove that, when the perturbation size ρ is smaller than a
constant, finite VC dimension is necessary for distributionally robust learning. We
further show that without a sufficient amount of samples (depending on the VC
dimension of H), any hypothesis class H is not distributionally robustly PAC-learnable.

The remainder of the paper is organized as follows. In §2, we begin by providing definitions
of distributionally robust learnability. In §3 and §4, we present our main results of agnostic
and realizable case, respectively. We provide proof overviews of upper bound in realizable
case and lower bound in agnostic case in §5. We proof the lower bound in agnostic case in
§6, with certain more technical aspects deferred to the appendices. Finally, we compare our
results to previous work and conclude our theoretical results in §7.

2. Problem Setup

Given a hypothesis class H ⊆ YX , our goal is to design a learning rule A : (X × Y)∗ 7→ YX
such that for any distribution P over X ×Y , the rule A will find a predictor that can compete
with the best predictor h∗ ∈ H in terms of the distributionally robust risk using a number of
samples that is independent of the distribution P . In this paper, we use (X × Y)∗ to denote
the set of all sequences in the space X × Y . The following definitions formalize the notion of
distributionally robust PAC learning under the realizable case and agnostic settings.

Definition 1 (Agnostic Distributionally Robust PAC Learnability) For any ε, δ ∈
(0, 1), the sample complexity of agnostic distributionally robust (ε, δ)-PAC learning of H with
respect to the distributional shift U , denoted byMAG(ε, δ;H,U), is defined as the smallest
m ∈ N ∪ {0} for which there exists a learning rule A : (X × Y)∗ 7→ YX such that, for every
data distribution P over X × Y, with probability of at least 1− δ over S ∼ Pm,

RU (A(S);P ) ≤ inf
h∈H

RU (h;P ) + ε.

If no such m exists, defineMAG(ε, δ;H,U) =∞. We say that H is distributionally robustly
PAC-learnable in the agnostic setting with respect to the distributional shift U if ∀ε, δ ∈ (0, 1),
MAG(ε, δ;H,U) scales polynomially with 1/ε and 1/δ.
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Definition 2 (Realizable Distributionally Robust PAC Learnability) For any ε, δ ∈
(0, 1), the sample complexity of realizable distributionally robust (ε, δ)-PAC learning of H with
respect to the distributional shift U , denoted byMRE(ε, δ;H,U), is defined as the smallest
m ∈ N ∪ {0} for which there exists a learning rule A : (X × Y)∗ 7→ YX such that, for every
data distribution P over X ×Y where there exists a predictor h∗ ∈ H with zero distributionally
robust risk, RU (h∗;P ) = 0, with probability of at least 1− δ over S ∼ Pm,

RU (A(S);P ) ≤ ε.

If no such m exists, defineMRE(ε, δ;H,U) =∞. We say that H is distributionally robustly
PAC-learnable in the realizable setting with respect to the distributional shift U if ∀ε, δ ∈ (0, 1),
MRE(ε, δ;H,U) scales polynomially with 1/ε and 1/δ.

We also denote er(h;P ) = P (h(x) 6= y), the (non-robust) error rate under 0−1 loss, and
êr(h;S) = 1

|S|
∑

(x,y)∈S 1[h(x) 6= y], the empirical error rate; here, |S| denotes the cardinality
of set S, while 1[·] is the indicator function that takes 1 when the statement in the square
brackets is true and 0 otherwise. The definition of Vapnik-Chervonenkis dimension (VC
dimension) is provided below.

Definition 3 (VC dimension) We say that a sequence {x1, . . . , xk} ⊆ X is shattered by H
if ∀y1, . . . , yk ∈ Y, ∃h ∈ H such that ∀i ∈ [k], h(xi) = yi. The VC dimension of H (denoted
as vc(H)) is then defined as the largest integer k for which there exists {x1, . . . , xk} ⊆ X that
is shattered by H. If no such k exists, then vc(H) is said to be infinite.

In the standard PAC learning framework, we know that a hypothesis class H is PAC-
learnable if and only if the VC dimension of H is finite (Vapnik and Chervonenkis, 2015).
The question then naturally arises as to whether the finite VC dimension of H is a necessary
and sufficient condition for distributionally robust PAC learnability. In the following sections,
we arrive at an affirmative answer to this question.

Denote the loss class of H by LH, where

LH =
{

(x, y) 7→ 1[h(x) 6= y] : h ∈ H
}
.

3. Agnostic Case

We use R2(h;P ) to denote the distributionally robust risk under distributional shift

U(P ) = {Q� P : D2(Q‖P ) ≤ ρ} .

We recall the following duality formulation (Shapiro, 2017, Section 3.2) for distributionally
robust risk, which is essential in our derivation.

Proposition 4 (Duality Formulation) For any probability P on X × Y, any ρ > 0, and
c2(ρ) :=

√
1 + 2ρ, for all h ∈ H, we have

R2(h;P ) = inf
η∈R

{
c2(ρ)EP

[
(1[h(x) 6= y]− η)2

+

]1/2
+ η
}
, (2)

where a+ := max (a, 0).
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To bring the above proposition into effect, we need the following lemma. In the interests
of simplicity, for any fixed h ∈ H, let

g2(η, P ) := c2(ρ)EP
[
(1[h(x) 6= y]− η)2

+

]1/2
+ η.

Lemma 5 For any distribution P ,

inf
η∈R

g2(η, P ) = inf
η

{
g2(η, P ) : η ∈

[
− 1

c2(ρ)− 1
, 1

]}
.

Remark 6 The above lemma restricts the domain of η to a compact set, which is crucial to
our uniform convergence result.

Theorem 7 For any H with vc(H) = d and U(P ) = {Q� P : D2(Q‖P ) ≤ ρ}, ∀ε, δ ∈ (0, 1),

MAG(ε, δ;H,U)=O

(
d

ε4
log
( d
ε4

)
+

1

ε4

( 1

c2(ρ)− 1
∨ 1
)

+
d

ε4
log
(e
d

)
+

log(2/δ)

ε4

)
. (3)

The proof of Lemma 5 and Theorem 7 can be found in §A.1.

Remark 8 The dependence on 1
c2(ρ)−1 is due to the lower bound for η in Lemma 5. While

more advanced techniques could potentially yield a better dependence on ρ, it is worth noting
that the upper bound shows that the finite VC dimension is sufficient for distributionally
robust PAC learnability for finite non-zero values of ρ.

Theorem 9 For any H with vc(H) = d and U(P ) = {Q�P : D2(Q‖P )≤ρ} with ρ ∈(
0, 3−2

√
2

2

)
, ∀ε, δ ∈ (0, 1),

MAG(ε, δ;H,U) = Ω

((1
2 −

√
2

16 ρ
1/2
)2
d+ log(1/δ)

ε2

)
. (4)

The proof of Theorem 9 can be found in §6.

Remark 10 We derive the result under the assumption that the perturbation size ρ ∈(
0, 3−2

√
2

2

)
. Intuitively, if the perturbation size is prohibitively large, the learning problem

can become “easier”, since the benchmark infh∈HR2(h;P ) may increase too much. When ρ
approaches 0, the lower bound recovers that of the classical statistical learning (Mohri et al.,
2012; Shalev-Shwartz and Ben-David, 2014).

4. Realizable Case

To study the upper bound of the sample complexity under the realizable case, it is necessary
to introduce the definition of Distributionally Robust ε-net, which is similar to the definition
in (Shalev-Shwartz and Ben-David, 2014, Definition 28.2). In the realizable case, we have
a target hypothesis h∗ that generates the label. We will frequently refer Ch to the set
{x ∈ X : h(x) 6= h∗(x)}, where h is a predictor in hypothesis class H. The distributionally
robust risk has the following form:

R2(h;P ) = sup
Q�P

{Ex∼Q[1[h(x) 6= h∗(x)]] : D2(Q‖P ) ≤ ρ} .
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Definition 11 (Distributionally Robust ε-net) Let X be a domain. S ⊆ X is a Distri-
butionally Robust ε-net for H ⊆ YX with respect to a distribution P over X if:

∀h ∈ H : R2(h;P ) ≥ ε =⇒ Ch ∩ S 6= ∅. (5)

Theorem 12 Let H ⊆ YX with vc(H) = d and U(P ) = {Q� P : D2(Q‖P ) ≤ ρ}. ∀ε ∈
(0, 1), ∀δ ∈ (0, 1/4), we have

MRE(ε, δ;H,U) = O

(
16(1 + 2ρ)d

ε2
log

(
8(1 + 2ρ)d

ε2

)

+
8(1 + 2ρ)

ε2

(
d log

(
2e

d

)
+ log

(
2

δ

)))
.

(6)

The proof of Theorem 12 can be found in §A.2.

Remark 13 In contrast to the upper bound derived in the agnostic case, the upper bound in
the realizable case is proportional to 1 + 2ρ. The relationship between distributionally robust
risk and standard risk, which is highlighted in Lemma 28, accounts for this dependence on
1 + 2ρ. As ρ approaches 0, the upper bound remains valid. However, it is important to note
that the upper bound scales quadratically with 1/ε, which is distinct from the scaling observed
in classical statistical learning.

Theorem 14 Let H ⊆ YX with vc(H) = d and U(P ) = {Q� P : D2(Q‖P ) ≤ ρ}, ∀ε ∈
(0, 1/8) , ∀δ ∈ (0, 1/100), we have

MRE(ε, δ;H,U) = Ω

(
d− 1

ε

)
. (7)

Furthermore, if H contains at least three functions, ∀ε ∈ (0, 3/4),∀δ ∈ (0, 1), we have

MRE(ε, δ;H,U) ≥ log(1/δ)

2ε
. (8)

The proof of Theorem 14 can be found in §B.1.

Remark 15 In the proof of the lower bound in the realizable case, we leverage the fact that
distributionally robust risk exceeds the standard risk. The absence of the parameter ρ in the
lower bound is due to the specific inequality we use in the proof. This inequality allows us to
derive the lower bound in terms of the VC dimension.

5. Proof overviews

We highlight the proof overviews of upper bound in realizable case and lower bound in
agnostic case, which, we believe, may bring us some new insights.

Upper bound in realizable case. We first show that, for a hypothesis class H with
finite VC dimension, given sufficient samples, the samples form a distributionally robust
ε-net for H with high probability over the random draw of samples, namely Proposition 18;
subsequently, we prove that such samples are sufficient for distributionally robust learning.
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We decompose the first step into two subroutines. Firstly, we denote the set of sample
sequence which is not ε-net by B. We draw another m sample points. We bound the
probability P[S ∈ B] by 2P[(S, T ) ∈ B′], where (S, T ) ∈ B′ denotes the event where there
exists a hypothesis h which has 0 empirical error on sample S, but has true error larger
than ε and errs on at least mε2

2(1+2ρ) -fraction of the points in T . The constant mε2

2(1+2ρ) is
carefully chosen, where we use our Lemma 28 in our main context. The key idea here is that
conditioning on the event S ∈ B, given an hypothesis hS which has 0 empirical error on
sample S, but has true error larger than ε, a sufficient condition for event B′ is that hS errs
on at least 2mε2

2(1+2ρ) -fraction of the points in T ; its probability can provide a lower bound of

the probability of B′ conditioned on S ∈ B. The event
{
|T ∩ ChS | > mε2

2(1+2ρ)

}
can be viewed

as m repeated Bernoulli test with a success rate larger than the given constant. Next, we
bound the probability P[(S, T ) ∈ B′] with a symmetrization argument. The key idea here is
that the probability can be bounded by the probability of the randomness over the draw of
2m samples which satisfy: there exists a hypothesis h ∈ H such that it only errs on the last
m sample points with an error rate mε2

2(1+2ρ) . The existence of the hypothesis can be turned
into a maximization over the hypothesis class. However, the hypothesis class is often infinite,
so we need to focus on the effective number of hypotheses on A. Now, we can bound it with
Sauer’s lemma in terms of VC dimension.

In the second step, we show that, any DRERM hypothesis has a true error of at most ε,
with high probability over a choice of m i.i.d. instances. The key idea of the proof is that for
any distributionally robust ε-net, by its definition, for any hypothesis h with R2,ρ(h;P ) ≥ ε,
the hypothesis h will err on the sample S; thus, h cannot be a DRERM hypothesis.

Lower bound in agnostic case. The main argument that lies in the heart of the
proof is a probability method argument. With every labeling b ∈ {−1, 1}m, we associate a
distribution Db over X ×{−1,+1}. We then show with some positive probability if we sample
b ∈ {−1,+1}m, Db satisfies the requiment that without sufficient samples, no hypothesis in
the class can have excess risk smaller than ε. Constructing a Family of Distributions.
We start by first describing the construction of Db for b ∈ {−1,+1}m. Our construction
follows previous studied distribution construction patterns in a subtle manner. Anthony
and Bartlett (2002, Chapter 5) observed that for a distribution D that assigns each point
in X a random label, if S does not sample a point x enough times, any classifier f , that is
constructed using only information supplied by S, cannot determine with good probability
the Bayes label of x, that is the label of x that minimizes the error probability. To follow the
above construction, we need to show that which classifier in H has the best distributionally
robust error. It seems not obvious whether the same labeling rule as above will have the
lowest distributionlly robust error. We show that the Bayes labeling also has the lowest
distributionally robust risk making us think more about the relation between ERM and
DRERM. Next, to carefully study the difference between the risk of the output hypothesis
and the lower risk, we derive a explicit form of the distributionally robsut risk under the
χ2-divergence setting (see Lemma 23 in the appendix). Then, we turn the existence argument
to an maximization argument, and use the fact that average is smaller than the maximum
to lower bound the expected (with respect to the random choice of samples and random
labeling b) excess risk of a given algorithm A. Subsequently, we minimizes the lower bound
by chosing the Maximum-Likelihood learning rule. Finally, using some probabilistic method,
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we can give an explicit form of the minimized lower bound, thus showing that the expected
excess risk is lager than ε with a positive probability.

6. Lower Bound in Agnostic Case

Proof [Proof of Theorem 9] We will prove the lower bound in two parts. First, we will show
thatMAG(ε, δ;H,U) ≥ log( 1

4δ )/(2ε2); second, we will show that for every δ ≤ 1/8, we have

thatMAG(ε, 1/8;H,U) ≥
(

1
2
−
√
2

16
ρ1/2

)2
d

128ε2
. These two bounds will conclude the proof.

We first demonstrate thatMAG(ε, δ;H,U) ≥ log( 1
4δ )/(2ε2).

To do so, we show that for a sample with size m ≤ log( 1
4δ )/(2ε2), H is not learnable for

any ε ∈
(

0, 1√
2

)
and δ ∈ (0, 1).

Let us choose one example that is shattered by H. That is, let c be an example such
that there are h+, h− ∈ H for which h+(c) = 1 and h−(c) = −1. Define two distributions,
P+ and P−, such that for b ∈ {+1,−1}, we have

Pb(x, y) =


1 + ybε

2
, if x = c,

0 , otherwise.

Any training set sampled from Pb has the form S = ((c, y1), . . . , (c, ym)). Let A be an
arbitrary algorithm. Therefore, the hypothesis that A outputs receiving sample S is fully
characterized by the vector y = (y1, . . . , ym) ∈ {+1,−1}m. Upon receiving a training set S,
the algorithm A returns a hypothesis hS : X → {+1,−1}. Since the error of hS w.r.t. Pb
depends only on h(c), we can think of A as a mapping from {+1,−1}m into {+1,−1}.

Therefore, we denote by A(y) the value in {+1,−1} corresponding to the prediction
hS(c); here, hS is the hypothesis that A outputs upon receiving the training set S =
((c, y1), . . . , (c, ym)). Claim 1. The hypothesis hb(c) = b has optimal distributionally robust
risk on Pb.

Note that for any hypothesis h, we have

R2(h;Pb) = sup
{
EP
[
1[h(x) 6= y]

]
: P � Pb, D2(P‖Pb) ≤ ρ

}
= inf

η∈R

{
c2(ρ)EPb

[
(1[h(x) 6= y]− η)2

+

]1/2
+ η
}

= inf
η∈R

{
c2(ρ)

(
1 + ε

2
(1[h(c) 6= b]− η)2

+ +
1− ε

2
(1[h(c) 6= −b]− η)2

)1/2

+η
}
.

Substituting hb into the above formulation, we obtain:

R2(hb;Pb) = inf
η∈R

{
c2(ρ)

(
1 + ε

2
(−η)2

+ +
1− ε

2
(1− η)2

+

)1/2

+η
}
.

Noting that (−η)2
+ ≤ (1− η)2

+, we get R2(hb;Pb) ≤ R2(h;Pb) for any h ∈ H.
Invoking Lemma 23, we have

R2(A(y);Pb)− inf
h∈H

R2(h;Pb) =

{
ε, if A(y)(c) 6= b,

0, otherwise.
Fix A. For b ∈ {+1,−1}, let Y b = {y ∈ {+1,−1}m : A(y) 6= b}. The distribution Pb

induces a probability Db over {+1,−1}m. Hence,
P [R2(A(y);Pb)−R2(hb;Pb) = ε] = Pb(Y

b) =
∑
y

Db[y]1[A(y) 6= b].

8



Distributionally Robust Learnability

Denote N+ ={y : |{i : yi = +1}| ≥ m/2} and N−={+1,−1}m \N+. Note that for any
y ∈ N+, we have D+[y]≥D−[y], while for any y ∈ N−, we have D−[y]≥D+[y]. Therefore,

max
b∈{+1,−1}

P [R2(A(y);Pb)−R2(hb;Pb) = ε]

= max
b∈{+1,−1}

∑
y

Db[y]1[A(y) 6= b]

≥ 1

2

∑
y

D+[y]1[A(y) 6= +1] +
1

2

∑
y

D−[y]1[A(y) 6= −1]

=
1

2

∑
y∈N+

(D+[y]1[A(y) 6= +1] +D−[y]1[A(y) 6= −1])

+
1

2

∑
y∈N−

(D+[y]1[A(y) 6= +1] +D−[y]1[A(y) 6= −1])

≥ 1

2

∑
y∈N+

(D−[y]1[A(y) 6= +1] +D−[y]1[A(y) 6= −1])

+
1

2

∑
y∈N−

(D+[y]1[A(y) 6= +1] +D+[y]1[A(y) 6= −1])

=
1

2

∑
y∈N+

D−[y] +
1

2

∑
y∈N−

D+[y].

Next, note that
∑

y∈N+ D−[y] =
∑

y∈N− D+[y], and both values are the probability that
a Binomial (m, (1− ε)/2) random variable will have a value greater than m/2. Using Lemma
24, this probability is lower bounded by

1

2

(
1−

√
1− exp(−mε2/(1− ε2)

)
≥ 1

2

(
1−

√
1− exp(−2mε2)

)
,

where we derive under the assumption that ε2 ≤ 1/2. It follows that ifm ≤ 0.5 log(1/(4δ))/ε2,
then there exists b such that

P[R2(A(y);Pb)−R2(hb;Pb) = ε] ≥ 1

2

(
1−

√
1−
√

4δ

)
≥ δ,

where the last inequality can be obtained through standard algebraic manipulations. This
concludes our proof.

Next, we demonstrate thatMAG(ε, 1/8;H,U) ≥
(

1
2
−
√
2

16
ρ1/2

)2
d

128ε2
.

We shall now prove that for every ε < 1
8
√

2
we have thatMAG(ε, δ;H,U) ≥

(
1
2
−
√
2

16
ρ1/2

)2
d

128ε2
.

Let r = 8ε, and note that r ∈ (0, 1/
√

2). We will construct a family of distributions as
follows. First, let C = {c1, . . . , cd} be a set of d instances that are shattered by H. Second,
for each vector b = (b1, . . . , bd) ∈ {+1,−1}d, define a distribution Pb such that

Pb(x, y) =


1

d
· 1 + ybir

2
, if ∃i : x = ci

0 , otherwise.

9
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That is, to sample an example according to Pb, we first sample an element ci ∈ C
uniformly at random, then set the label to be bi with probability (1 + r)/2 or −bi with
probability (1− r)/2.

Claim 2. The hypothesis hb satisfying h(ci) = bi,∀i ∈ [d], has the optimal distribution-
ally robust risk on Pb.

Recalling the dual formulation (2), R2(h;Pb) can be rewritten as follows:

R2(h;Pb)= inf
η∈R

c2

[
1

d

d∑
i=1

(
1+r

2
(1[h(ci) 6=bi]−η)2

++
1−r

2
(1[h(ci) 6=−bi]−η)2

+

)]1/2

+η

 .

For each i ∈ [d], hb(ci) = bi, the summand above can be written as 1+r
2 (−η)2

++1−r
2 (1−η)2

+;
for h(ci) 6= bi, the summand is 1+r

2 (1−η)2
++1−r

2 (−η)2
+. Combining r > 0 and (−η)2

+ ≤ (1−η)2
+,

we have 1+r
2 (−η)2

++ 1−r
2 (1− η)2

+ ≤ 1+r
2 (1− η)2

++ 1−r
2 (−η)2

+, which concludes our claim.
We denote d+ = |{i ∈ [d] : A(S)(ci) = bi}| and d− = |{i ∈ [d] : A(S)(ci) 6= bi}|, therefore

d+ + d− = d. Next, we will simplify the distributionally robust risk as follows:

R2(A(S);Pb) = inf
η∈R

{
c2

[
d+

d

(
1 + r

2
(−η)2

+ +
1− r

2
(1− η)2

+

)
+

d−
d

(
1 + r

2
(1− η)2

+ +
1− r

2
(−η)2

+

)]1/2

+ η

}

= inf
η∈R

{
c2

[(
1

2
+
r

2
· d+−d−

d

)
(−η)2

++

(
1

2
− r

2
· d+−d−

d

)
(1−η)2

+

]1/2

+η

}
.

Therefore, R2(A(S);Pb) can be viewed as the distributionally robust risk of the classifier
h′(x) ≡ 1 on distribution Q, with

Q(x, y) =


1 + yr(d+ − d−)/d

2
, if x = c

0 , otherwise.

Invoking Lemma 23, we obtain

R2(A(S);Pb) =
1

2

(
1− r · d+ − d−

d
+

√
2ρ

(
1− r2 · (d+ − d−)2

d2

))
.

Following the same logic, we have R2(hb;Pb) = 1
2

(
1− r +

√
2ρ (1− r2)

)
.

Then, after some algebraic manipulations, we have:

R2(A(S);Pb)− inf
h∈H

R2(h;Pb) = R2(A(S);Pb)−R2(hb;Pb)

= r · d−
d

+
1

2

(√
2ρ (1− r2(d+ − d−)2/d2)−

√
2ρ(1− r2)

)
≥ r · d−

d
,

(9)
where the last line follows from (d+ − d−)2/d2 ≤ 1.

10
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Next, fix some learning algorithm A, we have that:

max
Pb:b∈{+1,−1}d

E
S∼Pm

b

[
R2(A(S);Pb)− inf

h∈H
R2(h;Pb)

]
(10)

≥ E
Pb:b∼U({+1,−1}d)

E
S∼Pm

b

[
R2(A(S);Pb)− inf

h∈H
R2(h;Pb)

]
(11)

≥ E
Pb:b∼U({+1,−1}d)

E
S∼Pm

b

[
r · |{i ∈ [d] : A(S)(ci) 6= bi}|

d

]
(12)

=
r

d

d∑
i=1

E
Pb:b∼U({+1,−1}d)

E
S∼Pm

b

1[A(S)(ci) 6= bi], (13)

where the second inequality follows from (9). In addition, using the definition of Pb, in
order to sample S ∼ Pb, we can first sample (j1, . . . , jm) ∼ U([d])m, set xi = cji , and finally
sample yi such that P[yi = bji ] = (1 + r)/2. Let us simplify the notation and use y ∼ b to
denote sampling according to P[y = b] = (1 + r)/2. Therefore, the right-hand side of (13)
equals

r

d

d∑
i=1

E
j∼U([d])m

E
b∼U({+1,−1}d)

E
∀k,yk∼bjk

1[A(S)(ci) 6= bi]. (14)

We now proceed in two steps. First, in Lemma 25, we show that among all learning
algorithms, A, the one that minimizes (14) is the Maximum-Likelihood learning rule, denoted
as AML. Formally, for each i, AML(S)(ci) is the majority vote among the set {yk : k ∈
[m], xk = ci}. Second, we lower bound (14) for AML.

Fix i. For every j ∈ [d]m, let ni(j) = |{k : jk = i}| be the number of instances in which
the instance is ci. For the Maximum-Likelihood rule, we have that the quantity

E
b∼U({+1,−1}d)

E
∀k,yk∼bjk

1[A(S)(ci) 6= bi]

is exactly equal to the probability that a binomial (ni(j), (1− r)/2) random variable will be
larger than ni(j)/2. Using Lemma 24, and the assumption r2 ≤ 1/2, we have that

P[B ≥ ni(j)/2] ≥ 1

2

(
1−

√
1− exp

(
− 2ni(j)r2

))
.

We have thus demonstrated that

r

d

d∑
i=1

E
j∼U([d])m

E
b∼U({+1,−1}d)

E
∀k,yk∼bjk

1[A(S)(ci) 6= bi]

≥ r

2d

d∑
i=1

E
j∼U([d])m

(
1−

√
1− exp

(
− 2ni(j)r2

))

≥ r

2d

d∑
i=1

E
j∼U([d])m

(
1−

√
2ni(j)r2

)
,

where the last inequality follows from the fact that 1− e−a ≤ a.

11
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Since the square root function is concave, we can apply Jensen’s inequality to obtain that
the above is lower bounded by

r

2d

d∑
i=1

(
1−

√
2r2 E

j∼U([d])m
ni(j)

)

=
r

2d

d∑
i=1

(
1−

√
2r2m/d

)
=
r

2

(
1−

√
2r2m/d

)
.

As long as m <

(
1
2
−
√
2

16
ρ1/2

)2
d

2r2
, this term will be larger than r

4 +
√

2rρ1/2

32 .

In summary, we have shown that if m <

(
1
2
−
√
2

16
ρ1/2

)2
d

2r2
then for any algorithm, there

exists a distribution Pb such that

E
S∼Pm

[
R2(A(S);Pb)− inf

h∈H
R2(h;Pb)

]
≥ r

4
+

√
2rρ1/2

32
.

Finally, let ∆ = 1
r

(
R2(A(S);Pb)−infh∈HR2(h;Pb)

)
; we proof that ∆ ∈ [0, 1+

√
2ρ1/2/4]

in Lemma 26. Therefore, using Lemma 27, we obtain that

P
[
R2(A(S);Pb)− inf

h∈H
R2(h;Pb) ≥ ε

]
= P

[
∆ >

ε

r

]
≥
(

1 +
√

2ρ1/2/4
)−1 (

E[∆]− ε

r

)
≥
(

1 +
√

2ρ1/2/4
)−1

(
1

4
+

√
2ρ1/2

32
− ε

r

)
.

Choosing r = 8ε, we conclude that if m <

(
1
2
−
√
2

16
ρ1/2

)2
d

2r2
, then with probability of at least

1/8, we will have that R2(A(S);Pb)− infh∈HR2(h;Pb) ≥ ε.

7. Discussion

In this paper, 1) we provide lower bounds on the sample complexity of distributionally robust
learning based on VC dimension both in agnostic and realizable case, which has not been
studied before to our knowledge; 2) we also provide upper bounds both in agnostic and
realizable cases; moreover, we provide a new analysis of the excess risk, which is different
from the covering argument with respect to L∞-norm used in Duchi and Namkoong (2021).

Comparison with Duchi and Namkoong (2021) We study the 0− 1 loss of the VC
classes. There is a situation, where the VC dimension is finite, while the covering number
of the 0− 1 loss class with respect to L∞-norm is infinite. Specifically, for any hypothesis
class with finite VC dimension and infinite elements, given two different hypotheses h1 and
h2, there exists x such that h1(x) 6= h2(x), thus supx,y |1[h1(x) 6= y] − 1[h2(x) 6= y]| = 1.
Then, for any δ < 1/2, the δ-packing number of the 0 − 1 loss class is infinite. Using the

12
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relation between the covering number and packing number (Wainwright, 2019, Lemma 5.5),
we deduce that the δ/2-covering number of the 0− 1 loss class is infinite, for any δ < 1/2. It
is well known that the covering number with Lr-norm can be controlled by the VC dimension
(Wellner et al., 2013, Theorem 2.6.4). Since this is valid only for finite r, our work significantly
extends the results of Duchi and Namkoong (2021) in the χ2-divergence setting. Duchi and
Namkoong (2021) provide a minimax lower bound showing that the rate they obtain is
optimal. However, what role does VC dimension play in distributionally robust learning is
still unknown. Our paper takes a step forward and studies distributionally robust learnability
through the lens of VC dimension. We show that the finite VC dimension is necessary and
sufficient for distributionally robust learnability under certain assumptions.

Appendix A. Proofs of Upper Bound

A.1 Upper Bound in Agnostic Case

To prove (3), it suffices to show that applying the DRERM with a sample size m of the same
order as in (3) yields an ε, δ-learner for H.

We use ϕη,h(x, y) to denote 1[h(x) 6= y]− η and c2 as the shorthand of c2(ρ) when there
is no ambiguity. First, we present the proof of Lemma 5.

Moreover, we introduce the definition of Rademacher Complexity and Growth Function
in order to bound the excess risk in terms of VC dimension.

Definition 16 (Rademacher Complexity) We define the empirical Rademacher Com-
plexity of a hypothesis class F for a given sample zi = (xi, yi), i = 1, . . . ,m as follows
:

R̂m(F) := Eσ

[
sup
f∈F

1

m

m∑
i=1

σif(zi)

]
,

where σ = (σ1, . . . , σm) is a vector of i.i.d. Rademacher variables. The Rademacher
Complexity is defined as the expectation of this quantity:

Rm(F) := E(z1,...,zm)∼Pm

[
R̂m(F)

]
.

Definition 17 (Growth Function) Let H be a hypothesis class. The growth function of
H, denoted as τH : N→ N, is defined as follows:

τH(m) := max
C⊂X :|C|=m

|HC | ,

where HC :=
{

(h(x1),· · ·, h(x|C|)) : h ∈ H
}
for C = {xi : 1 ≤ i ≤ |C|}.

Proof [Proof of Lemma 5] By definition, g2(η, P ) = η for η ≥ 1, and

g2

(
− 1

c2 − 1
, P

)
≥ c2

c2 − 1
− 1

c2 − 1

= 1 = g2(1, P ).

Since η 7→ g2(η, P ) is convex, this implies the result.

13
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Proof [Proof of Theorem 7] The proof is a modification of the techniques utilized by
Koltchinskii and Panchenko (2002). Let (x1, y1), . . . , (xm, ym) be a classification training set,
Pm denote the corresponding empirical distribution and h∗ ∈ argmin

h∈H
R2(h;P ). We begin by

decomposing the excess risk:

R2(ĥ;P )−R2(h∗;P ) ≤ R2(ĥ;P )−R2(ĥ;Pm) +R2(h∗;Pm)−R2(h∗;P ),

where the last step follows from the definition of ĥ. Define

η̂ := argmin
η∈R

{
c2EPm

[(
ϕη,ĥ(x, y)

)2

+

]1/2

+ η

}
,

η∗ := argmin
η∈R

{
c2EP

[
(ϕη,h∗(x, y))2

+

]1/2
+ η

}
.

We can then write

R2(ĥ;P )−R2(ĥ;Pm) = min
η∈R

{
c2EP

[(
ϕη,ĥ(x, y)

)2

+

] 1
2

+ η

}
−

(
c2EPm

[(
ϕη̂,ĥ(x, y)

)2

+

] 1
2

+ η̂

)

≤ c2

(
EP
[(
ϕη̂,ĥ(x, y)

)2

+

] 1
2

− EPm

[(
ϕη̂,ĥ(x, y)

)2

+

] 1
2

)

≤ c2

∣∣∣∣∫ (ϕη̂,ĥ(x, y)
)2

+
(Pm − P ) (dxdy)

∣∣∣∣ 12 .
Following the same logic,

R2(h∗;Pm)−R2(h∗;P ) ≤ c2

∣∣∣∣∫ (ϕη∗,h∗(x, y))2
+ (Pm − P ) (dxdy)

∣∣∣∣ 12 . (15)

By Lemma 5, η̂ ∈
[
− 1
c2−1 , 1

]
. We now define Φ =

{
ϕη,h : h ∈ H, η ∈

[
− 1
c2−1 , 1

]}
, ψ(t) = t2+,

and ψ ◦ Φ = {ψ ◦ ϕ : ϕ ∈ Φ} , where ◦ denotes the composition of functions. Thus, we can
write

R2(ĥ;P )−R2(ĥ;Pm) ≤ c2

(
sup
ϕ∈ψ◦Φ

[∫
ϕ(x, y) (P − Pm) (dxdy)

]) 1
2

.

Since 1[h(x) 6= y] ∈ [0, 1] for any h ∈ H and η ∈
[
− 1
ck−1 , 1

]
, then for any ϕ ∈ ψ ◦ Φ, we

have ‖ϕ‖∞ ≤
(

c2
c2−1

)2
.

By a standard symmetrization argument, with probability of at least 1− δ/2,

R2(ĥ;P )−R2(ĥ;Pm) ≤ c2

(
2Rm(ψ ◦ Φ) +

(
c2

c2 − 1

)2
√

2 log(2/δ)

m

) 1
2

Moreover, from (15) and Hoeffding’s inequality, it follows that

R2(h∗;Pm)−R2(h∗;P ) ≤ c2

c2 − 1

(
log(2/δ)

2m

) 1
4

, (16)

14
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with probability of at least 1− δ/2.
Combining these results, with probability of at least 1− δ,

R2(ĥ;P )−R2(h∗;P )≤c2

(2Rm(ψ◦Φ)+

(
c2

c2 − 1

)2
√

2 log(2/δ)

m

) 1
2

+
c2

c2 − 1

(
log(2/δ)

2m

) 1
4


≤ c2

[
2 (Rm(ψ ◦ Φ))

1
2 +

3c2

c2 − 1

(
log(2/δ)

2m

) 1
4

]
.

(17)
Therefore, it suffices to bound Rm(ψ ◦ Φ). It can be readily observed that t 7→ t2+ is

2c2
c2−1 -Lipschitz on

[
−1, c2

c2−1

]
; thus, by invoking Lemma 21, we get:

Rm(ψ ◦ Φ) ≤ 2c2

c2 − 1
Rm(Φ). (18)

More specifically,

Rm(Φ) = E

 1

m
sup

h∈H,η∈
[
− 1

c2−1
,1
]
m∑
i=1

σi(1[h(x) 6= y]− η)


≤ E

[
sup
h∈H

1

m

m∑
i=1

σi1[h(x) 6= y]

]
+ E

 sup
η∈
[
− 1

c2−1
,1
] 1

m

∣∣∣∣∣
m∑
i=1

ησi

∣∣∣∣∣


≤ Rm(LH) +
1

m

(
1

c2 − 1
∨ 1

)
E

[∣∣∣∣∣
m∑
i=1

σi

∣∣∣∣∣
]

≤ Rm(LH) +
1

m

(
1

c2 − 1
∨ 1

)
E

( m∑
i=1

σi

)2
1/2

≤ Rm(LH) +
1√
m

(
1

c2 − 1
∨ 1

)
.

(19)

To bound Rm(LH), we define R(A) = Eσ
[

suph∈H
∑m

i=1 σi1[h(xi) 6= yi]
]
;

Recall that the Sauer-Shelah lemma (Shalev-Shwartz and Ben-David, 2014, Lemma 6.10)
tells us that if vc(H) = d, then

|{(h(x1), . . . , h(xm)) : h ∈ H}| ≤
(em
d

)d
.

By the Massart Lemma (Shalev-Shwartz and Ben-David, 2014, Lemma 26.8), we have:

Rm(LH) ≤
√

2d log(em/d)

m
(20)

15



Zhou and Liu

Combining (17), (18), (19) and (20), the following holds:

R2(ĥ;P )−R2(h∗;P ) ≤ C

2d log(em/d) +
(

1
c2−1 ∨ 1

)2
+ log(2/δ)

m


1/4

(21)

for some constant C. To ensure that the right-hand side of (21) is smaller than ε, we need:

m ≥ C

ε4

(
d log(m) + d log(e/d) +

(
1

c2 − 1
∨ 1

)2

+ log(2/δ)

)
.

Using Lemma 22, a sufficient condition for the inequality to hold is that

m ≥ 4Cd

ε4
log(

2Cd

ε4
) +

2C

ε4

((
1

c2 − 1
∨ 1

)2

+ d log(e/d) + log(2/δ)

)
,

which concludes our proof.

A.2 Proof of Theorem 12

Our proof is organized as follows: we first show that, for a hypothesis class H with finite VC
dimension, given sufficient samples (the magnitude is provided in Theorem 12), the samples
form a Distributionally Robust ε-net for H; subsequently, we prove that such samples is
sufficient for distributionally robust learning.

Proposition 18 Let H ⊆ YX with vc(H) = d. Fix ε ∈ (0, 1), δ ∈ (0, 1/4) and let

m ≥ 16(1 + 2ρ)d

ε2
log

(
8(1 + 2ρ)d

ε2

)
+

8(1 + 2ρ)

ε2

(
d log

(
2e

d

)
+ log

(
2

δ

))
. (22)

Then, with probability of at least 1− δ over a choice of S ∼ Pm, we can conclude that S is a
Distributionally Robust ε-net for H.

Proof Let B := {S ⊆ X : |S| = m,∃h ∈ H, R2(h;P ) ≥ ε, Ch ∩ S = ∅} be the set of sets that
are not a Distributionally Robust ε-net. We need to bound P[S ∈ B].

Define

B′ :=

{
(S, T ) ⊆ X : |S| = |T | = m,∃h ∈ H, R2(h;P ) ≥ ε, Ch ∩ S = ∅, |T ∩ Ch| >

mε2

2(1 + 2ρ)

}
.

Claim 1. P[S ∈ B] ≤ 2 · P[(S, T ) ∈ B′].
Since S and T are chosen independently, we can write

P[(S, T ) ∈ B′] = E
(S,T )∼P 2m

1[(S, T ) ∈ B′]

= E
S∼Pm

E
T∼Pm

1[(S, T ) ∈ B′].

16
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Note that (S, T ) ∈ B′ implies S ∈ B, and therefore 1[(S, T ) ∈ B′] = 1[(S, T ) ∈ B′] ·1[S ∈
B], which yields

P[(S, T ) ∈ B′] = E
(S,T )∼P 2m

1[(S, T ) ∈ B′] · 1[S ∈ B]

E
S∼Pm

1[S ∈ B] E
T∼Pm

1[(S, T ) ∈ B′].
(23)

Fix some S. Then, either 1[S ∈ B] = 0, or S ∈ B and then ∃hS such that R2(hS ;P ) ≥ ε
and |ChS ∩ S| = 0. It follows that a sufficient condition for (S, T ) ∈ B′ is that |T ∩ ChS | >
mε2

2(1+2ρ) . Therefore, whenever S ∈ B, we have

E
T∼Pm

1[(S, T ) ∈ B′] ≥ P
T∼Pm

[
|T ∩ ChS | >

mε2

2(1 + 2ρ)

]
. (24)

However, since we now assume S ∈ B, we know that R2(hS ;P ) ≥ ε; accordingly, by
Lemma 28, we have er(hS ;P ) = p ≥ ε2

1+2ρ .
Therefore, |T ∩ ChS | is a binomial random variable with parameters p (probability of

success for a single try) and m (number of tries). Chernoff’s inequality implies

P
[
|T ∩ ChS | ≤

pm

2

]
= P [|T ∩ ChS | − pm ≤ −pm/2]

≤ exp(−mp/2) ≤ exp

(
− mε2

2(1 + 2ρ)

)
≤ exp (−d log(1/δ)/2) = δd/2 ≤ 1/2,

where the first inequality is obtained via Chernoff’s inequality and the penultimate inequality
follows from our choice of m.

Thus,

P
[
|T ∩ ChS | >

mε2

2(1 + 2ρ)

]
= 1− P

[
|T ∩ ChS | ≤

mε2

2(1 + 2ρ)

]
≥ 1− P

[
|T ∩ ChS | ≤

mp

2

]
≥ 1/2.

(25)

Combining (23), (24) and (25), we conclude our proof of Claim 1.
Claim 2.(Symmetrization) P [(S, T ) ∈ B′] ≤ exp

(
− mε2

4(1+2ρ)

)
· τH(2m).

For ease of notation, let α = mε2

2(1+2ρ) , and for a sequence A = (x1, . . . , x2m), let A0 =

(x1, . . . , xm). Using the definition of B′, we get

P
[
A ∈ B′

]
= E

A∼P 2m
max
h∈H
{1 [R2(h;P ) ≥ ε] · 1 [|Ch ∩A0| = 0] · 1 [|Ch ∩A| ≥ α]}

≤ E
A∼P 2m

max
h∈H
{1 [|Ch ∩A0| = 0] · 1 [|Ch ∩A| ≥ α]} .

Now let us denote by HA the effective number of different hypotheses on A, namely,
HA := {Ch ∩A : h ∈ H}. It follows that

P[A ∈ B′] ≤ E
A∼P 2m

max
Ch∈HA

{1[|Ch ∩A0| = 0] · 1[|Ch ∩A| ≥ α]} .
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Let J = {j ⊆ [2m] : |j| = m}. For any j ∈ J and A = (x1, . . . , x2m), define Aj =
(xj1 , . . . , xjm). Since the elements of A are chosen i.i.d., for any j ∈ J and any function
f(A,A0), it holds that E

A∼P 2m
[f(A,A0)] = E

A∼P 2m
[f(A,Aj)]. Since this holds for any j, it

also holds for the expectation of j chosen at random from J . In particular, it holds for the
function f(A,A0) =

∑
Ch∈HA

1[|Ch ∩A0| = 0] · 1[|Ch ∩A| ≥ α]. We therefore obtain that

P[A ∈ B′] ≤ E
A∼P 2m

E
j∼U(J)

∑
Ch∈HA

1[|Ch ∩Aj| = 0] · 1[|Ch ∩A| ≥ α]

= E
A∼P 2m

∑
Ch∈HA

1[|Ch ∩A| ≥ α] E
j∼U(J)

1[|Ch ∩Aj| = 0].

Now fix some A, such that |Ch ∩A| ≥ α. Thus, E
j∼U(J)

1[|Ch ∩Aj| = 0] represents the

probability that when choosing m balls from a bag containing at least α red balls, we will
never choose a red ball. This probability is at most(

1− α

2m

)2
=

(
1− ε2

4(1 + 2ρ)

)m
≤ exp

(
− mε2

4(1 + 2ρ)

)
.

We therefore have

P
[
A ∈ B′

]
≤ E

A∼P 2m

∑
Ch∈HA

exp

(
− mε2

4(1 + 2ρ)

)

≤ exp

(
− mε2

4(1 + 2ρ)

)
E

A∼P 2m
|HA|

≤ exp

(
− mε2

4(1 + 2ρ)

)
· τH(2m).

By Sauer’s lemma, we know that τH ≤ (2em/d)d; combining this with the above two
claims, we obtain that

P[S ∈ B] ≤ 2(2em/d)d exp

(
− mε2

4(1 + 2ρ)

)
.

We would like the right-hand side of the inequality to be at most δ; that is,

2(2em/d)d exp

(
− mε2

4(1 + 2ρ)

)
≤ δ.

Through rearrangement, we arrive at

m ≥ 4(1 + 2ρ)d

ε2
log(m) +

4(1 + 2ρ)d

ε2
log

(
2e

d

)
+

4(1 + 2ρ)

ε2
log

(
2

δ

)
.

Using Lemma 22, a sufficient condition for the preceding to hold is that

m ≥ 16(1 + 2ρ)d

ε2
log

(
8(1 + 2ρ)d

ε2

)
+

8(1 + 2ρ)

ε2

(
d log

(
2e

d

)
+ log

(
2

δ

))
.
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Next, we derive distributionally robust PAC learnability from the definition of distribu-
tionally robust ε-net.

Proposition 19 Let H be a hypothesis class over X with vc(H). Let P be a distribution over
X and let h∗ be a target hypothesis. Fix ε, δ ∈ (0, 1) and let m be as defined in Proposition
18; then, with probability of at least 1− δ over a choice of m i.i.d. instances from X with
labels according to h∗, we have that any DRERM hypothesis has a true error of at most ε.

Proof Define the class Hh∗ = {Ch∗ M Ch : h ∈ H}, where Ch∗ M Ch = (Ch\Ch∗) ∪ (Ch∗\Ch).
It can be readily verified that if some A ⊆ X is shattered by H then it is also shattered by
Hh∗ , and vice versa. Hence, vc(H) = vc

(
Hh∗

)
. Therefore, using Proposition 18, we can

determine that with probability of at least 1− δ, the sample S is a distributionally robust
ε-net for Hh∗ , note that

R2(h;P ) = sup {EQ[1[h(x) 6= y]] : Q� P,D2(Q‖P )} .

Since h∗ is the target hypothesis, we have that

EP [1[h∗(x) 6= y]] = 0.

Thus, R2(h∗;P ) = infη∈R

{
c2EP [

(
1[h(x) 6= y]− η

)2
+

]1/2 + η
}
≤ c2EP [(1[h∗(x) 6= y])2

+]1/2 =

0, which means that for any Q� P with D2(Q‖P ) ≤ ρ, we have Q[y = h∗(x)] = 1.
Therefore,

R2(h;P ) = sup {EQ[1[h(x) 6= y] : Q� P,D2(Q‖P ) ≤ ρ}
= sup {EQ[1[h(x) 6= h∗(x)] : Q� P,D2(Q‖P ) ≤ ρ}
= R2(h M h∗;P ),

where h M h∗ is the hypothesis that satisfies ChMh∗ = Ch∗ M Ch. Therefore, for any h ∈ H
with R2(h;P ) ≥ ε, we have that |Ch∗Mh ∩ S| > 0; this which implies that h cannot be a
DRERM hypothesis, which concludes our proof.

Appendix B. Proof of Lower Bound

B.1 Lower Bound in Realizable Case

Proof [Proof of Theorem 14] Suppose that S = {x0, x1, . . . , xd−1} is shattered by H. Let
P be the probability distribution on the domain X of H such that P (x) = 0 if x /∈ S,
P (x0) = 1− 8ε, and for i = 1, . . . , d− 1, P (xi) = 8ε/(d− 1). With probability 1, for any m,
a Pm-random sample lies in Sm; henceforth, to simplify our analysis, we assume without loss
of generality that X = S and that H consists precisely of all 2d functions from S to {0, 1}.
For convenience, and to be explicit, if a training sample z = (z1, . . . , zm) ∈ (S × {0, 1})m
corresponds to a sample x ∈ Xm and a labeling function t ∈ H, we shall denote A(z) by
A(x, t).
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Let S′ = {x1, . . . , xd−1} and let H′ be the set of all 2d−1 functions h ∈ H such that
h(x0) = 0. We shall employ the probabilistic method, with target function t drawn at random
according to the uniform distribution U on H′. Let A be any algorithm for H. We obtain a
lower bound on the sample complexity of A under the assumption that A always returns
a hypothesis in H′; that is, we assume that whatever sample z is given, A will classify x0

correctly. (This assumption causes no loss of generality: if the output hypothesis of A does
not always belong to H′, we can consider the “better” learning algorithm derived from A
whose output hypotheses are forced to classify x0 correctly. Clearly, a lower bound on the
sample complexity of this latter algorithm is also a lower bound on the sample complexity
of A.) Let m be any fixed positive integer and, for x ∈ Sm, denote by l(x) the number of
distinct elements of S′ occurring in the sample x. It is evident that for any x ∈ S′, exactly
half of the functions h′ ∈ H′ satisfy h′(x) = 1. It follows that for any fixed x ∈ Sm,

E
t∼U(H′)

er(A(x, t);P ) =
∑
t′∈H

Pt∼U(H′)(t = t′)er(A(x, t);P )

=
∑
t′∈H

Pt∼U(H′)(t = t′)
∑
y∈S′

Py′∼P (y′ = y)1[A(x, t) 6= t(y)]

≥
∑
t′∈H

Pt∼U(H′)(t = t′)
∑

y∈S′\x

Py′∼P (y′ = y)1[A(x, t) 6= t(y)]

=
∑

y∈S′\x

1

2
· Py′∼P (y′ = y) =

1

2
· 8ε

d− 1
· (d− 1− l(x)).

(26)

The penultimate equality can be obtained from the following: for a fixed y, we can
divide H′ into two groups, namely H′i = {t ∈ H′ : t(y) = i}, i ∈ {0, 1}, and for any
h1 ∈ H′1, we can always find a hypothesis h2 ∈ H′2, such that for any x 6= y and x ∈ S,
h1(x) = h2(x). Since y ∈ S′\x, we have A(x, h1) = A(x, h2). Therefore, it can be seen that
1[A(x, h1) 6= h1(x)] + 1[A(x, h2) 6= h2(x)] = 1.

We now focus on a special subset S of Sm, consisting of all x for which l(x) < d−1
2 . If

x ∈ S, then by (26),
E

t∼U(H′)
er(A(x, t);P ) > 2ε. (27)

Now let Q denote the restriction of Pm to S, so that for any A ⊆ Sm, Q(A) =
Pm(A ∩ S)/Pm(S). Accordingly,

E
x∼Q

E
t∼U(H′)

er(A(x, t);P ) > 2ε,

since (27) holds for every x ∈ S. By Fubini’s theorem, the two expectation operations may
be interchanged. In other words,

E
t∼U(H′)

E
x∼Q

er(A(x, t);P ) = E
x∼Q

E
t∼U(H′)

er(A(x, t);P ) > 2ε.

This implies that for some t′ ∈ H′,

E
x∼Q

er(A(x, t);P ) > 2ε.
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Let pε be the probability with respect to Q that er(A(x; t′);P ) ≥ ε.
Given our assumption that A returns a function in H′, the error of A(x, t′) with respect

to P is never more than 8ε (the probability of S′). Hence, we must have

2ε < E
x∼Q

er(A(x, t′);P ) ≤ 8ε · pε + (1− pε)ε

from which we obtain pε > 1/7. It now follows that

Px∼Pm

(
er(A(x, t′);P ) ≥ ε

)
=

Px∼Pm (er(A(x, t′);P ) ≥ ε)
Px∼Pm(x ∈ S)

· Px∼Pm(x ∈ S)

≥ Px∼Pm (x ∈ {er(A(x, t′);P ) ≥ ε} ∩ S)

Px∼Pm(x ∈ S)
· Px∼Pm(x ∈ S)

= Px∼Q
(
er(A(x, t′);P

)
≥ ε) · Px∼Pm(x ∈ S)

>
1

7
· Px∼Pm(x ∈ S).

(28)
Since R2(A(x, t′);P ) ≥ er(A(x, t′);P ), we have

Px∼Pm

(
R2(A(x, t′);P ) ≥ ε

)
≥ Px∼Pm

(
er(A(x, t′);P ) ≥ ε

)
>

1

7
· Px∼Pm(x ∈ S).

Now, Pm(S) is the probability that a Pm-random sample z has no more than d−1
2 distinct

entries from S′, and this is at least 1−GE
(
8ε,m, d−1

2

)
, where

GE (p,m, (1 + ε)mp) :=

m∑
i=d(1+ε)mpe

(
m
i

)
pi(1− p)m−i.

Using Lemma 29, generally, it follows that GE(p,m, k) ≤ exp
(
−(k − pm)2/(3pm)

)
.

If m ≤ d−1
32m , then it is evident that this probability is at least 7/100. Therefore, if

m ≤ d−1
32ε and δ < 1/100,

Px∼Pm

(
R2(A(x, t′);P ) ≥ ε

)
≥ Px∼Pm

(
er(A(x, t′);P ) ≥ ε

)
>

1

7
· 7

100
=

1

100
≥ δ

and the first part of the result follows.
To prove the second part of the theorem, note that if H contains at least three functions,

there exist examples a, b and functions h1, h2 ∈ H such that h1(a) = h2(a) and h1(b) =
1, h2(b) = 0. Without loss of generality, we shall assume that h1(a) = h2(a) = 1. Let P be
the probability distribution for which P (a) = 1− ε and P (b) = ε. The probability that a
sample x ∈ Xm has all its entries equal to a is (1− ε)m. Now, (1− ε)m ≥ δ if and only if

m ≤ log(1/δ)

− log(1− ε)
.

Furthermore, − log(1 − ε) ≤ 2ε for 0 < ε ≤ 3/4. It follows that if m is no lager than
log(1/δ)

2ε , then with probability greater than δ, a sample x ∈ Xm has all its entries equal to a.
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Let a1 denote the training sample a1 = ((a, 1), . . . , (a, 1)) with length m. Note that a1 is a
training sample corresponding to h1 and h2. Suppose that A is a learning algorithm for H,
and let Aa denote the output A(a1) of A on the sample a1.

If Aa(b) = 1 then Aa has an error of at least ε (the probability of b) with respect to h2,
which implies R2(A(a1, h2);P ) ≥ ε; while if Aa(b) = 0, then it has error of at least with
respect to h1, which implies that R2(A(a1, h1);P ) ≥ ε.

It follows that if m ≤ log(1/δ)
2ε , then either

Pz∼Pm (R2(A(z, h1);P ) ≥ ε) ≥ Pz∼Pm

(
z = a1

)
> δ

or
Pz∼Pm (R2(A(z, h2);P ) ≥ ε) ≥ Pz∼Pm

(
z = a1

)
> δ

We therefore deduce that the learning algorithm fails for some t ∈ H if m is this small.

Appendix C. Auxiliary Lemma

The following Hoeffding’s lemma can be found in (Shalev-Shwartz and Ben-David, 2014,
Lemma 4.5).

Lemma 20 (Hoeffding’s Inequality) Let θ1, . . . , θm be a sequence of i.i.d. random vari-
ables, and assume that for all i, E[θi] = µ and P[a ≤ θi ≤ b] = 1. Then, for any ε > 0,

P

[∣∣∣∣∣ 1

m

m∑
i=1

θi − µ

∣∣∣∣∣ > ε

]
≤ 2 exp (−2mε2/(b− a)2).

We next recall an important lemma that is useful for bounding the Rademacher complexity
and can be found in (Mohri et al., 2012, Lemma 4.2).

Lemma 21 (Talagrand’s Lemma) Let ψ be a ρ-Lipschitz function. For any function
class H, we have:

Rm(ψ ◦ H) ≤ ρRm(H).

The following lemma is fundamental and can be found in (Shalev-Shwartz and Ben-David,
2014, Lemma A.1).

Lemma 22 Let a > 1 and b > 0. Then: x ≥ 4a log(2a) + 2b =⇒ x ≥ a log(x) + b.

Lemma 23 For Pb(x, y) =


1 + ybε

2
, if x = c,

0 , otherwise.
and ρ ∈

(
0, 3−2

√
2

2

)
, we have R2(h;Pb) =[

1− h(c)bε+
√

2ρ(1− ε2)
]
/2.

Proof Recall the definition of R2(h;Pb) = sup
{
EP
[
1[h(x) 6= y]

]
: P � Pb, D2(P‖Pb) ≤ ρ

}
.
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We write P as

P (x, y) =


1 + ξ

2
, if x = c and y = b,

1− ξ
2

, if x = c and y = −b,

0 , otherwise.

Thus, R2(h;Pb) can be rewritten as

R2(h;Pb)=sup
ξ

{
1 + ξ

2
1[h(c) 6=b]+

1− ξ
2

1[h(c) 6=−b] :ξ2−2εξ+ε2−2ρ(1− ε2)≤0,

−1≤ξ≤1
}
.

Solving the quadratic inequality in the above formulation, we get ε−
√

2ρ(1−ε2)≤ξ≤
ε+
√

2ρ(1−ε2). Since we assume ρ∈
(

0, 3−2
√

2
2

)
and ρ∈

(
0, 1√

2

)
, the left-hand and right-hand

sides can both be achieved.
When h(c) = b, we have er(h;P ) = 1−ξ

2 , and thus R2(h;Pb) =
1−ε+
√

2ρ(1−ε2)

2 ; following

the same logic, when h(c) = −b, we have R2(h;Pb) =
1+ε+
√

2ρ(1−ε2)

2 .
Thus, we obtain the desired result.

We frequently employ the following estimate on the binomial random variable probability
(Slud, 1977):

Lemma 24 (Slud’s Inequality) Let X be a (m, p) binomial random variable and assume
that p = (1− ε)/2. Then,

P[X ≥ m/2] ≥ 1

2

(
1−

√
1− exp(−mε2/(1− ε2))

)
.

Lemma 25 Among all algorithms, (14) is minimized for A being the Maximum-Likelihood
algorithm, AML, defined as

∀i, AML(S)(ci) = sign

 ∑
k:xk=ci

yk

 .

Proof Fix some j ∈ [d]m. Note that, given j and y ∈ {+1,−1}m, the training set S is fully
determined; we can therefore write A(j,y) instead of A(S). Let us also fix i ∈ [d]. Denote
by b¬i the sequence (b1, . . . , bi−1, bi+1, . . . , bm). Also, for any b ∈ {+1,−1}m, let yI denote
the elements of y corresponding to indices for which jk = i, and let y¬I be the rest of the
elements of y. We therefore have

E
b∼U({+1,−1}d)

E
∀k,yk∼bjk

1[A(S)(ci) 6= bi]

=
1

2

∑
bi∈{+1,−1}

E
b¬i∼U({+1,−1}d−1)

∑
y

P [y|b¬i, bi]1[A(j,y)(ci) 6= bi]

= E
b¬i∼U({+1,−1}d−1)

∑
y¬I

P [y¬I |b¬i]1
2

∑
yI

 ∑
bi∈{+1,−1}

P [yI |bi]1[A(j,y)(ci) 6= bi]

 .
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The sum within the parentheses is minimized when A(j,y)(ci) is the maximizer of P [yI |bi]
over bi ∈ {+1,−1}, which is exactly the Maximum-Likelihood rule. Repeating the same
argument for all i we conclude our proof.

Lemma 26 Let ∆ = 1
r (R2(A(S);P )− infh∈HR2(h;P )), where r is defined in the proof of

Theorem 9. We have ∆ ∈ [0, 1 +
√

2ρ1/2/4].

Proof Recalling (9), we have

R2(A(S);Pb)− inf
h∈H

R2(h;Pb) = R2(A(S);Pb)−R2(hb;Pb)

= r · d−
d

+
1

2

(√
2ρ (1− r2(d+ − d−)2/d2)−

√
2ρ(1− r2)

)
.

(29)
Next, we upper bound the second term in (29),

1

2

(√
2ρ (1− r2(d+ − d−)2/d2)−

√
2ρ(1− r2)

)
≤ 1

2
ρ
(
2ρ(1− r2)

)−1/2
r2

(
1− (d+ − d−)2

d2

)
≤ 1

2
ρ1/2r2,

where the first inequality follows from
√
x ≤ 1

2(
√
x+
√
y), ∀x ≤ y, while the second follows

from the fact that r2 ≤ 1/2. Thus, ∆ ≤ ρ1/2r/2 ≤
√

2ρ1/2/4.

Lemma 27 Let Z be a random variable that takes values in [0, c], c > 1. Assume that
E[Z] = µ. Then, for any a ∈ (0, c),

P[Z > a] ≥ µ− a
c− a

.

Proof
E[Z] = E [Z · 1[0 ≤ Z ≤ a]] + E [Z · 1[a < Z ≤ c]]

≤ a (1− P[Z > a]) + cP[Z > a].

Following rearrangement, we obtain the desired result.

Lemma 28 For any probability distribution P and predictor h ∈ H, we have

R2(h;P ) ≤ c2(ρ)er(h;P )1/2.

Proof Recalling the dual formulation of R2(h;P ) (Proposition 4), we have

R2(h;P ) = inf
η∈R

{
c2(ρ)EP

[
(1[h(x) 6= y]− η)2

+

]1/2
+ η
}

≤ c2(ρ)EP [(1[h(x) 6= y])2
+]1/2

= c2(ρ)er(h;P )1/2,
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where the first inequality follows by setting η = 0 and the last line follows from the fact that
the indicator 1[h(x) 6= y] is a 0−1-valued function.

Lemma 29 For ε ∈ (0, 1), GE (p,m, (1 + ε)mp) :=
∑m

i=d(1+ε)mpe
(
m
i

)
pi(1−p)m−i ≤ exp

(
−ε2pm/3

)
.

Proof Let Z1, . . . , Zm be independent Bernoulli variables, where for every i, P[Zi = 1] = p
and P[Zi = 0] = 1− p. Thus, GE(p,m, (1 + ε)mp) can be written as follows:

GE(p,m, (1 + ε)mp) =
m∑

i=d(1+ε)mpe

(
m
i

)
pi(1− p)m−i

= P

[
m∑
i=1

Xi ≥ (1 + ε)mp

]

Using (Shalev-Shwartz and Ben-David, 2014, Lemma B.4), we obtain

GE(p,m, (1 + ε)mp) =
m∑

i=d(1+ε)mpe

(
m
i

)
pi(1− p)m−i ≤ exp

(
−p ε2

2 + 2ε/3

)
≤ exp

(
−ε2pm/3

)
,

where the last inequality holds, since we assume ε ∈ (0, 1).
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