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Abstract

We introduce a novel mathematical formulation for the training of feed-forward neural
networks with (potentially non-smooth) proximal maps as activation functions. This for-
mulation is based on Bregman distances and a key advantage is that its partial derivatives
with respect to the network’s parameters do not require the computation of derivatives of
the network’s activation functions. Instead of estimating the parameters with a combina-
tion of first-order optimisation method and back-propagation (as is the state-of-the-art),
we propose the use of non-smooth first-order optimisation methods that exploit the specific
structure of the novel formulation. We present several numerical results that demonstrate
that these training approaches can be equally well or even better suited for the training of
neural network-based classifiers and (denoising) autoencoders with sparse coding compared
to more conventional training frameworks.

Keywords: Lifted network training, distributed optimisation, Bregman distances, sparse
autoencoder, denoising autoencoder, classification, compressed sensing

1. Introduction

Deep neural networks (DNNs) are extremely popular choices of model functions for a great
variety of machine learning problems (cf. Goodfellow et al. (2016)). The predominant strat-
egy for training DNNs is to use a combination of gradient-based minimisation algorithm and
the back-propagation algorithm (Rumelhart et al., 1986). Thanks to modern automatic dif-
ferentiation frameworks, this approach is easy to implement and yields satisfactory results
for a great variety of machine learning applications. However, this approach does come with
numerous drawbacks. First of all, many common activation functions in neural network ar-
chitectures are not differentiable, which means that subgradient- instead of gradient-based
algorithms are required. And even though there are mathematical justifications for such an
approach (cf. Bolte and Pauwels (2020)), subgradient-based methods have the disadvan-
tage of inferior convergence rates over other non-smooth optimisation methods like proximal
gradient descent (cf. Teboulle (2018)). Another drawback is that back-propagation suffers
from vanishing gradient problems (Erhan et al., 2009), where gradients of loss functions with
respect to the parameters of early network layers become vanishingly small, which renders
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the use of gradient-based minimisation methods ineffective. While the use of non-saturating
activation functions and the introduction of skip-connections to network architectures have
been proposed to mitigate vanishing gradient problems, achieving state-of-the-art perfor-
mance still requires meticulous hyper-parameter tuning and good initialisation strategies.
Another issue of the back-propagation algorithm is that it is sequential in nature, which
makes it difficult to distribute the computation of the network parameters across multiple
workers efficiently. As a consequence of the aforementioned issues, numerous distributed
optimisation approaches have been proposed as alternatives to gradient-based training in
combination with back-propagation in recent years (Carreira-Perpinan and Wang, 2014;
Taylor et al., 2016; Zhang and Brand, 2017; Askari et al., 2018; Li et al., 2019; Zach and
Estellers, 2019; Gu et al., 2020; Hgier and Zach, 2020). However, many of these approaches
still suffer from limitations such as differentiating non-differentiable activation functions
(Carreira-Perpinan and Wang, 2014), recovering affine-linear networks (Askari et al., 2018),
or overly restrictive assumptions (Li et al., 2019; Gu et al., 2020).

In this work, we propose a distributed optimisation framework for the training of param-
eters of feed-forward neural networks that does not require the differentiation of activation
functions, that does train truly non-linear DNNs, that can be optimised with a variety of
deterministic and stochastic first-order optimisation methods and that does come with ex-
tensive mathematical foundations. The proposed approach is a generalisation of the Method
of Auxiliary Coordinates with Quadratic Penalty (Carreira-Perpinan and Wang, 2014); in-
stead of quadratic penalty functions, we propose to use a novel penalty function based on
a special type of Bregman distance, respectively Bregman divergence (Bregman, 1967).

The main contributions of this paper are: 1) the proposal of a new loss function that,
when differentiated with respect to its second argument, does not require the differentiation
of an activation function, 2) its use as a penalty function within the method of auxiliary
coordinates, 3) a detailed mathematical analysis of the new loss function, 4) the proposal
of a variety of different deterministic and stochastic iterative minimisation algorithms for
the empirical risk minimisation of DNNs, 5) the comparison of these iterative minimisation
algorithms to more conventional approaches such as stochastic gradient descent and back-
propagation, 6) the show-casing of the proposed approach for the training of (denoising)
autoencoders with sparse codes, and 7) a demonstration that contrary to wide-spread belief,
expressive feed-forward networks can overfit to training data without generalising well when
non-standard optimisation methods are being used.

The paper is organised as follows. We describe the state-of-the-art approach of training
neural networks with gradient-based algorithms and back-propagation, before we provide
an overview over recent developments in distributed optimisation methods for the training
of DNNs in Section 2. In Section 3, we introduce our proposed lifted Bregman framework.
We first establish mathematical foundations, before we define the Bregman loss function
that replaces the quadratic penalty function in the method of auxiliary coordinates, and
verify a whole range of mathematical properties of this loss function that guarantee the
advantages over other approaches. In Section 4, we provide an overview over a range of
deterministic and stochastic optimisation approaches that are able to computationally solve
the lifted Bregman training problem thanks to results provided in Section 3. We also discuss
suitable regularisation strategies for the regularisation of network parameters and outputs
of hidden network layers. In Section 5, we discuss the example problems of classification,
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data compression and denoising. For the latter two, we introduce a regularised empirical
risk minimisation approach that will produce autoencoders with sparse codes. In Section 6,
we provide numerical results for the example problems described in Section 5 and extensive
comparisons to other minimisation approaches. In Section 7, we conclude with a summary
of the findings and an outlook of future developments.

2. Training neural networks

Traditionally, the predominant strategy for training neural networks is the use of a gradient-
based minimisation algorithm in combination with the back-propagation algorithm. Alter-
natively, distributed optimisation techniques for training neural networks have received
growing attention in recent years (cf. Carreira-Perpinan and Wang (2014)). In the fol-
lowing sections, we revisit the notion of feed-forward neural networks before we summarise
the classical approach of gradient-based training and back-propagation. We then discuss
distributed optimisation and lifted training strategies.

2.1 Feed-forward neural networks

A feed-forward neural network N : R® x P — R™ with L layers can be defined as the
composition of parametrised functions of the form

N(z,0) = or(f(or-1(f(-..o1(f(2,01))...)),OL)), (1)

for given input data z € R" and parameters ® € P. Here {Jl}lel denotes the collection of
nonlinear activation functions and f denotes a generic function parametrised by parameters
{©}E,. To ease the notation, we use © to denote {©;}% . As an example, a rectified
linear unit (ReLU) (Nair and Hinton, 2010) can be constructed via the composition of
o1(-) := max(0,-) and f(x,0;) = W, z+b; for ©, = (W}, b;), where the matrix W is usually
referred to as the weights and the vector b; as the bias term of layer .

2.2 Training feed-forward networks with first-order methods and
back-propagation

Estimating parameters © of a feed-forward network in the supervised learning setting is
usually framed as the minimisation of an empirical risk of the form

mgnéz:f(yi,./\/(xi,@)), (2)
i=1

where ¢ is a chosen data error term pertaining to the learning task (usually referred to as
loss), while {(2%, 3% 7_; denotes the s pairs of input and output samples that have to be
provided a-priori. A standard computational approach to solve (2) are (sub-)gradient-based
algorithms such as (sub-)gradient descent and stochastic variants of it. Gradient descent
for solving (2) reads

k+1 kE 1 - 7 i k
® =0 TGVG) (Sgg(yw/\[(x?@ ))) ) (3)
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for k € N, a step-size parameter 7g > 0 and initial parameters ®°. The evaluation of the
gradient Ve (137, £(y*, N'(2%, ©%))) is computed with the back-propagation (cf. Rumel-
hart et al. (1986)), which is summarised in Algorithm 2 in Appendix A. As pointed out in
LeCun et al. (1988), the back-propagation algorithm can also be deduced from a Lagrangian
formulation of (2), where solving the corresponding optimality system leads to the individ-
ual steps in the back-propagation algorithm. For each pair of data samples (2, %%) we can
define

z=o(f(z_1,0))) for l=1,...,L, (4)

as the so-called activation variables with initial value :vf) = 2%, To ease notation, we intro-
duce X = {m}}?js to denote the group of auxiliary variables. Having introduced X, we
can write the minimisation problem (2) in the following equivalent constrained form:

S

1 o
min - 30y, a})

0XZ s (5)
st. zf = o(f(z}_1,6;)) forl=1,...,L.

A derivation of Algorithm 2 from the Lagrangian formulation of (5) is included in Appendix
A.

Despite its popularity for training neural networks, the approach of using (sub-)gradient
based methods such as (3) in combination with Algorithm 2 nevertheless suffers from some
some drawbacks. Two of the major problems are the vanishing and exploding gradient
issues, where the gradients either decrease to vanishingly small values or increase to very
large values, which causes major problems for the computation of (3) (cf. Glorot and Bengio
(2010); Bengio et al. (1994)).

A third issue is that the back-propagation algorithm is sequential in nature and compu-
tation of individual partial derivatives cannot easily be distributed. A fourth drawback is
that while it is easy to generalise gradient-based algorithms to proximal gradient methods
that can handle non-smooth functions acting on the network parameters, it is less straight-
forward to generalise these techniques so that they can handle non-smooth functions acting
on the activation variables or the transformed input variables without using subgradients.

These drawbacks and limitations of the combination of (sub-)gradient based-methods
and back-propagation have motivated research to seek for alternative training methods for
DNNs. In the next section, we will summarise some of these alternatives.

2.3 Distributed optimisation approaches

Learning network parameters via distributed optimisation has been given much attention
in recent years (Carreira-Perpinan and Wang, 2014; Taylor et al., 2016; Zhang and Brand,
2017; Askari et al., 2018; Li et al., 2019; Zach and Estellers, 2019; Gu et al., 2020). In these
works, the overall Learning Problem (2) is reformulated to Problem (5).

This constrained optimisation Problem (5) can further be relaxed by replacing the con-
straints for the activation variables with penalty terms in the objective function. Solving
each layer-wise sub-problem can then be performed independently, which allows for dis-
tributed optimisation methods to be utilised. This attempt has mainly been approached
from two directions: by using quadratic penalties (Carreira-Perpinan and Wang, 2014; Tay-
lor et al., 2016) or by framing activation functions as orthogonal projections on convex
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sets of constraints (Zhang and Brand, 2017; Askari et al., 2018; Li et al., 2019; Zach and
Estellers, 2019; Gu et al., 2020).

2.3.1 METHOD OF AUXILIARY COORDINATES WITH QUADRATIC PENALTY (MAC-QP)

The work of Carreira-Perpinan and Wang (2014) is among the earliest to look into the
quadratic penalty approach, where the authors propose the Method of Auxiliary Coor-
dinates (MAC) that relaxes (5) by replacing the constraints z! = oy(f(z{_,,0;)) with a
Quadratic Penalty (QP) objective where the corresponding minimisation problem reads

L—1
1< . . , )

in — £y . 1,0 - R 6

iy 2 (0 onl/(ah0s @) + X lef —an( et €I (6)

If we consider the special case of affine-linear functions f(z;_1,0;) = T/Vlel,l + by, then

for s = 1 and a single training pair of samples x and y the optimality condition w.r.t the

bias parameter b; reads
0= (21 — (W, 21 + b)) o] (W, 1y +by) .
Whenever o) (W, z;_1 + b)) # 0, this automatically implies
w = oy (W) m1 + by)

ensuring that a critical point satisfies (4). Following the MAC-QP approach, minimisation of
network parameters can easily be distributed with the right choice of optimisation method.
However, minimising the MAC-QP objective with gradient-based first-order optimisation
methods still requires the differentiation of the activation functions. This is different for
lifted training approaches that we briefly discuss in the next section.

2.3.2 LIFTED TRAINING APPROACH

The second line of work to approach Problem (5) is motivated by the observation that
the ReLU activation function o(z,0) = max(z,0) itself can be viewed as the solution to a
constrained minimisation problem. More specifically, in the work of Zhang and Brand
(2017), the authors characterise the activated output of the ReLU activation function
o (W, 11 + by) as

z = oy (W, 21 + by)
= argmin ||z — (W, z_1 +b)||3 .

x>0

This implies that z; is the vector closest to VVlTa:l_l +b; that lies in the non-negative orthant.
In the classical lifted approach (Askari et al., 2018), Problem (5) is consequently ap-
proximated with

1< ~ - L1 . A
min =Yy, Wl +bn) + Y Nlla - Wi — bl 7
O {aiern}E5! S; LTL1 ; |27 1 T 2 (7)
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where {x% € Ri}f:_ll denotes that the activation variables across layers [ = 1,..., L — 1 for
each sample i lie in the non-negative orthant, i.e. R} := {v € R"|v; >0, Vj € {1...n}}.
The parameters \; for [ = 1,...,L — 1 are positive hyperparameters. This approach is

often referred to as the “lifted” approach because the search space for network parameters
is lifted to become a higher dimensional space that now also includes auxiliary variables.
However, this “lifting” is obviously also present in MAC-QP.

Even though the overall learning problem (7) is not convex, each sub-problem is convex
in each individual variable when keeping all other variables fixed. Individual updates are
also relatively easy to compute using orthogonal projections onto the non-negative orthant.
In terms of distributing the computation of parameters, this approach also enjoys the same
benefits that the MAC-QP scheme enjoys. However, one major limitation that this approach
suffers from is that it does not solve the original Problem (2), but essentially trains an
affine-linear transformation (cf. Zach and Estellers (2019)). This restriction can be shown
by examining the optimality system. Consider the case with s = 1 and one single training
sample pair (x,y), then the optimality condition of (7) with respect to parameters b; reads

)\l(VVlTiL'l_l + b — xl) =0 — x] = VVlT:El_l + b . (8)

Despite this major limitation this approach has been considered for computing initialisations
of network parameters for other optimisation algorithms (Li et al., 2019; Zach and Estellers,
2019).

3. Lifted Bregman training framework

Building upon the previous approaches, we introduce a lifted Bregman framework for the
training of feed-forward networks. This framework will fix the aforementioned issues and
1) be capable of recovering a network with nonlinear activation functions, while 2) taking
partial derivatives with respect to network parameters will not require computing derivatives
of the activation functions.

Our approach differs from Problem (6) and Problem (7) in the sense that instead of
penalising the quadratic Euclidean norm of the nonlinear constraint xf =0y ( f (xf_l, 91)) we
propose an alternative penalisation. From now on we assume that the activation functions
o7 that we consider come from the large class of proximal maps.

Definition 1 (Proximal map) The proximal map o : R” — dom(¥) C R™ of a proper,
lower semi-continuous and convex function ¥ : R™ — RU {oo} is defined as

o(z) = proxy(z) := arg min {;Hu — 2|2+ \I/(u)} . (9)

uER™

Example 1 (Proximal maps) There are numerous examples of commonly used activa-
tion functions in deep learning that are also proximal maps (cf. Zhang and Brand (2017);
Li et al. (2019); Combettes and Pesquet (2020); Hasannasab et al. (2020)). We give the
following four examples. The first one is the rectifier or ramp function that is also known
as Rectified Linear Unit (ReLU) (c¢f. Nair and Hinton (2010)). The ramp function is a
special case of Definition 1 for the characteristic function over the non-negative orthant,
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i.e.

0 €0 n
U(u) = uel ’OO) = o(z); = max(0,z;), Vj e {1,...,n}.
oo otherwise

The well-known soft-thresholding function is a prozimal map for a positive multiple of the
one-norm, t.e.

Zj—o zZj > o
U(u) :== aflully == o(z); =40 lzj| <a , Vje{l,...,n},
zita z; < -«
for a > 0. Common smooth activation functions like the hyperbolic tangent can also be

framed as prorimal maps. The hyperbolic tangent can be recovered by choosing the charac-
teristic function

() = {utanh_l(u) + 3 (log(1 —u?) —u?) |u| <1 . o(2) = tanh(z) .

00 otherwise

All previous examples were separable activation functions. Our final example is the non-
separable softmax activation function, which we can obtain as a proximal map for the char-
acteristic function

1
() = 2?21 [uj log(u;) — §uﬂ uj > 0,. Z;‘:l u; =1
00 otherwise

- exp(z))
= i )

In Figure 1, we show visualisations of the above mentioned proximal activation functions.

, Vi e{l,...,n}.

For convex functions W, the following remark gives an alternative characterisation of the
proximal map.

Remark 2 Note that an equivalent characterisation of the proximal map o is
z—o(z) € 0¥(o(2)),
as a consequence of Fermat’s theorem. Here OV denotes the subdifferential of V.

With the help of Remark 2, we discover that z; = o(f(x;—1,0;)) = proxy(f(zi-1,0;)) can
also be written as

. 1
flxi—1,01) — 2 € 0¥(ay), respectively, f(xi-1,07) €0 (2H P+ ‘I’> (x7), (10)

where the second inclusion follows from (Ekeland and Temam, 1999, Chapter 1, Section 5,
Proposition 5.6). We want to briefly recall the concept of Fenchel duality before we proceed.
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RelU activation function Soft-shrinkage activation function Hyperbolic tangent activation function
2.0f 1.0
1
15 0.5
o(2); 4 o(z) 924,
0.5 -0.5
-1
0.0{ -1.0
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
z z z

-2 —2

Figure 1: This figure shows example activation functions that are also proximal maps. From
left to right on the top row are the ReLLU activation function, the soft-thresholding
activation function (threshold value o = 0.5) and the hyperbolic tangent activa-
tion function respectively. The bottom two figures visualise components of the
softmax activation function for the case of n = 2.

Definition 3 (Fenchel conjugate) For a proper, convex and semi-continuous function
F its convex- or Fenchel-conjugate F™* is defined as

F*(y) = sup {(z,y) — F(2)} .
€T
The following neat equivalence for inclusion (10) forms the basis for our new penalisation
term.

Lemma 4 (Subdifferential characterisation) Suppose the function ¥ : R" — R U
{oc} is a proper, lower semi-continuous and convex function. Then the inclusion z €
O (5l II>+¥) (x) is equivalent to

Sl + %) + (51 1P+ %) ()= (o). 1)

Here, (|| -||>+ @) denotes the Fenchel conjugate of &| - ||* + .

A proof for this lemma can be found in (Rockafellar, 1970, Theorem 23.5), where a more
general result is proven. Now, instead of enforcing (11) as a hard constraint, we define the
penalisation function

Bulo,2) = glloll + 90 + (52 + ) () = fo.2), (12)
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and replace the squared Euclidean norm in (7) with it, which results in the unconstrained
optimisation problem

s L—1
Icf)ll)r(lz / (yi’ ;L'ZL) + Z A\ By (:L‘;, f(l‘%_l, @l)) . (13)
=1 =1

for positive scalars { A}/

We name this penalisation function By (z, z) Bregman loss, as we are going to show that
it belongs to the family of generalised Bregman distances (Bregman, 1967; Kiwiel, 1997).
In contrast to (6) and (7), these penalisations incorporate prior information encoded in the
choice of the function ¥. In the following sections, we provide a more detailed analysis of
the Bregman loss and show how it can improve the classical lifted training approach and
overcome its limitations.

3.1 The Bregman loss function

We want to verify that the proposed Bregman loss function (12) is a non-negative generalised
Bregman distance (Bregman, 1967; Kiwiel, 1997) and satisfies some advantageous properties
compared to the mean-squared error loss used in (7).

The generalised Bregman distance induced by a proper, convex and lower semi-continuous
function @ is defined as follows.

Definition 5 (Generalised Bregman distance) The generalised Bregman distance of a
proper, lower semi-continuous and convez function ® is defined as

DY (1. v) 1= B(u) — B(v) — (glv).u — ).
Here, q(v) € 0®(v) is a subgradient of ® at argument v € R™.

For examples of (generalised) Bregman distances we refer the reader to Bregman (1967);
Censor and Lent (1981); Kiwiel (1997); Burger (2016); Benning and Riis (2021).

Please note that the Bregman distance can also be expressed by means of the convex
conjugate of &, i.e.

DI (u,v) = B(u) + *(q(v)) — (u, q(v))

which again follows directly from (Rockafellar, 1970, Theorem 23.5) and the substitution
®(v) = (g(v),v) — ®*(g(v)). Hence, if we choose ® = 3| - ||> + ¥ and z € 9®(0(z)), we

immediately observe
B\I/(I', Z) = Dé(xa U(Z)) :

Here z € 9®(0(z)) is a valid subgradient, since z € d(3| - |* + ¥)(o(2)) is equivalent to
z—o0(z) € 0¥(0(z)), respectively o(z) = proxg(z), as pointed out in Remark 2. Since this
is true by definition of o, we have established that By(x, z) is a Bregman distance. Since
Bregman distances are non-negative, this automatically implies non-negativity of By (z, z)
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for all arguments x and z, but we easily get a better lower bound if we split the Bregman
distance, i.e.

By(z,2) = Di(z,0(2)) = D;ﬁl)'Q(x, o(2)) + D= (@, 0(2)),
1

z—0o(z 1
= Slle—o@)I? + Dy " (@, 0(2) = Slle — o (),
which we capture with the following corollary.

Corollary 6 The loss function By as defined in (12) is a Bregman distance and bounded
from below by 3|z — o(2)|2.

Proof This follows from the fact that D\Z{U(Z) (x,0(2)) is a valid generalised Bregman dis-
tance, because of z — o(z) € O¥(o(z)) by definition of o. Hence, Dfl,_g(z)(:z:,a(z)) >0,
which concludes the proof. |

As a consequence, we can characterise the exact discrepancy between By(z,z) and 3|z —

(Z)(

o(2)||? in terms of Dy 7**(x,0(2)), which means we establish

Bu(r,2) = gz — o(2)|P + W(x) ~ W(o(2) (= — o(2), 2 ~ (=)

= %HSB = o(@)|? + U(z) + V(2 — 0(2)) = (v, 2 = 0(2)), (14)

We can further simplify this term with the help of the Moreau identity.

Theorem 7 (Moreau identity (Moreau, 1962)) Suppose ¥ : R” — R U {oo} is a
proper, convex and lower semi-continuous function with Fenchel conjugate ¥*, and we have
o(x) := proxy(z) and o*(x) := proxg«(x). Then

x=o(x)+ o*(x)
holds true for all x € R™.

Hence, with Theorem 7, we can rewrite (14) to
1 * * *
By(w,2) = |z = a(2)|* + ¥(x) + ¥*(07(2)) = (2,07 (2)).

If we define E.(z) := 3|lz—z|>+ ¥(z) as the function for which we have o(z) = proxy(z) =
argmin, E,(x) and consequently 0 € 0F,(c(z)), we can further conclude

Bu(r,2) = 5lle — o> + ¥w) ~ ¥(o(2) — (= — 0(2), 2~ 0(2)),
= 2l + ¥(@) ~ (@, 2) + Lo ~ V(o (2) + (=~ o(2), 0(2))
= 2l — 2P+ 9(@) — Iz ~ Sl ()~ W(o(2)) + (z,0(2))
Sl — 2P+ 9(@) — Sllo(2) — 2| ~ (o (2)),
= B.(r) - B(0(2)) = D (2,0(2)),

10
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which is an alternative characterisation that is a valid Bregman distance because 0 €
OF.(0(%)) is a valid subgradient of E, at o(z). This characterisation nicely links to recent
work in parametric majorisation for data-driven energy minimisation methods (Geiping and
Moeller, 2019).

What makes the loss function (12) truly special, however, is its gradient with respect to
its second argument.

Lemma 8 (Gradient of (12) with respect to second argument) Suppose ¥ : R" —
R U {00} is a proper, convex and lower semi-continuous function with proximal map o :=
proxy. Then By as defined in (12) is differentiable with respect to its second argument for
all z € dom(¥) and the gradient with respect to its second argument, i.e. VoBy(x, z), is

VaoBy(z,2) =0(z) — x.

Proof Note that the term ®(z) = %||z[|> + U(z) in (12) is constant with respect to the
argument z and bounded because of x € dom(¥), which implies

VoBy(z,2) =V, [®*(2) — (x, 2)]

for fixed x. The gradient of (x, z) with respect to the second argument z is simply x; hence,
what remains to be shown is that

Vo*(z) =o0(z2). (15)

Note that differentiability of ®* follows directly from (Bauschke et al., 2011, Corollary 18.12)
or (Beck, 2017, Theorem 5.26), and that the result (15) is well-known. However, for the
sake of completeness we include the derivation of the gradient. Since W is proper, convex
and lower semi-continuous, the Fenchel conjugate ®*(z) = (3| - |> + ¥)*(z) = sup,(z, z) —
Sllzl> = U(z) of @1 |2+ V¥ is well-defined and the supremum over (z,z) — i|z||* — ¥(z)
1s attained. More importantly, we have

®(2) = sup(a 2) — 3 ol]> — W),

1 1
= Sll2l® +sup — [l — 2||* — (),
2 L2

1 1
= el — int {Glle =l + ¥}

We know that o(z) = proxy(z) = argming {3(|Z — z||* 4+ (&)}, which implies x = o(2)
and

. 1 1

®*(2) = gll2ll* = Sllo(2) = 2[* = ¥(a(2)).
The quantity M(z) = 3|lo(2) — 2||> + U(o(z)) is the Moreau-Yosida regularisation of
U, see (Moreau, 1965; Yosida, 1964), for which we know that its gradient is VM (z) =

z — proxy(z) = z — 0(2), ¢f. (Bauschke et al., 2011, Proposition 12.30). The gradient of
311z||? with respect to z is simply z, which is why we have verified (15). [ |

11
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Remark 9 Note that By(x, z) may be unbounded from below, which implies that Vo By (x, 2)
may never be equal to zero for some choices of x. More precisely, VoBy(z,z) = 0 is
equivalent to z — x € OV(x), which requires OW(x) # (). Hence, if x is chosen such that
0¥ (x) = 0, we can never guarantee VoBy(x,z) = 0. A simple example is ¥(z) = x>o(z)
with negative argument x. In that case, there obviously cannot exist an element z such that
0(z) = max(z,0) = x holds true because max(z,0) > 0 while x < 0.

We summarise all previous findings in the following theorem.

Theorem 10 (Bregman loss function) The Bregman loss function as defined in (12)
satisfies the following properties.

1. By(z,2) = E (x) — E,(0(2)).

2. By(z,2) = Dj(z,0(2)) = DZ%H.HQJHII(.%',O'(Z)).

3. By(z,2) = Y|z — o(2)|2 + Dy " (2, 0(2)) = L]z — o(2)].
b By(a,2) = Lo —o(2)|> + ¥(2) — U(o(2) — (z — 0(2), 2 — 0(2)).

5. For fized first argument x, the function By is continuously differentiable w.r.t the
second argument if the first arqgument satisfies x € dom(¥).

6. Vo By(x,z) =0(z) — .

7. The global minimum of By is zero, which is attained for all arguments x and z that
satisfy x = o(z) and OV (z) # 0.

8. By is a bi-convex function, i.e. it is convex w.r.t. = for fired z and convex w.r.t. z
for fized x.

9. The operator G,(z) := Vg By(z,2) = o(z) — x is monotone.
10. The operator G, is Lipschitz-continuous with Lipschitz constant one, i.e.

|Gz (21) = Ga(22)]| < [l21 — 22| -

11. The operator G is firmly non-expansive, i.e.

(Ga(z1) — Galz2), 21 — 22) = [|Ga(21) — Gu(22)[*.

Proof The only properties left to prove are Items §-11. Item § follows directly from the def-
inition of By (z, z) in (12), since both 3| |2+ ¥ — (-, 2) and (|| - ||> + )" —(z,-) are convex
functions for fixed x and z, respectively. Item 10 follows directly from the 1-Lipschitz conti-
nuity of the prozimal map o (cf. (Beck, 2017, Theorem 6.42 (b))) via ||G(z1) — Gz(22)] =
lo(z1) — x — (o(22) —x) || = |lo(z1) — o(z2)|| < [|z1 — 22||. In similar fashion, Item 11
follows directly from the firm non-expansiveness of the proximal map o (cf. (Beck, 2017,
Theorem 6.42 (a))) via (Gz(z1) — Gu(22),21 — 22) = (0(21) —x — (0(22) — ), 21 — 22) =
(o(21) =0 (22), 21— 22) > |lo(z1) —o(2)|I” = lo(21) —2—(0(22) —2)||* = [|Gal21) — Gal22) I*

12
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The firm non-expansiveness than automatically implies Item 9, since |G (21)—Gz(22)]|* > 0
for all z1, zo. |

Example 2 Using the same examples as in Example 1, we obtain the following Bregman
loss associated with ReL U activation function:

By(z,z) = {

3llz — max(z,0)||> 4 (z, max(—z,0)) =z € [0,00)"
00 otherwise

Similarly, the Bregman loss associated with the soft-thresholding activation function for
the scalar case x,z € R can be derived as:

fz—z+a)?+a(z]—2) 2>a
By(z,z) = { 322 + a|z| — 2z Iz < a .
fe—z—a)+o(lz)+2) 2< -0

for a > 0. For the hyperbolic tangent activation function, its induced Bregman loss function
18 computed as

1—tanh? z

3 log (i) +z(tanh H(z) —2) |z| <1
s otherwise

By(z,z) = {

Finally, when considering the non-separable softmax activation function, its associated
Bregman loss function is
> i1 zi(log(zy) — zj) +log(327_q exp(z;)) z; > 0,377 x5 =1

By(z,z) = { ,

00 otherwise

which is a shifted version of the multinomial logistic regression loss function. In Figure 2,
we visualise how each example Bregman loss compares to the squared Euclidean loss.

3.2 Lifted Bregman training

By replacing the squared Euclidean penalisations in (6) with the Bregman loss function as
defined in (12), we have modified (6) to (13). To demonstrate the advantage of (13), let us
consider the case with s = 1 and one single training sample pair (z,y) again. Using Lemma
8, the gradient of (13) with respect to ©; reads

Ve, Bu(wi, f(z1-1,01)) = (o(f(21-1, 1)) — 1) JF (21-1,01) ,
where JJ? denotes the Jacobian of f with respect to argument ©, and for the specific choice
flx—1,0)) = VVlTa:l_l + b; we observe
O-(M/l—rx;‘—l + bl) - CL'; = 07
as the optimality condition of (13) w.r.t. the bias term ;.
This shows that we guarantee network consistency, i.e. z} = U(VVZT.I";_I + by), for all
layers [. In other words, the network is truly nonlinear in contrast to the lifted networks

described in Section 2.3.2, and computing the optimality condition with respect to network
parameters does not require differentiation of the activation function as in MAC-QP.

13
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Figure 2: This figure plots the comparison between the Bregman loss function By(x, z)
and the squared Euclidean loss ||z — o(z)|? for —2 < z < 2. We show four
cases where each o is: a) the ReLU activation function, b) the soft-thresholding
activation function, ¢) the hyperbolic tangent activation function and (d) the
softmax activation function for n = 2 respectively. The target value z is set to
0.5 when n =1 and x = (0.5,0.5) when n = 2.

3.3 Related works

To tackle the major limitations of the classical lifted training approach, several other recent
works also formulate training of lifted networks differently. Fenchel lifted neural network
(Gu et al., 2020) and Lifted Proximal Operator Machine (LPOM) (Li et al., 2019) both
extend the observation in Zhang and Brand (2017) to a broader class of activation functions
and demonstrate improved learning performance. In this section, we briefly present the
approaches proposed in these works and point out the their connections and differences to
the proposed lifted Bregman framework.

Fenchel lifted neural networks (Gu et al., 2020) extend the classical lifted network ap-
proach (Askari et al., 2018) as discussed in Section 2.3.2 by reformulating the learning
problem (2) of a neural network with affine-linear function f(z;_1,0;) = WlTxl_l + by as

S
min Oy, Wizt | +bp)
X AW bi}E ;

s.t. By(a, W, al | +b) <0, forl=0...L—1.

where the equality constraints in Problem (5) are converted into constraints on a collec-
tion of pre-defined biconvex functions B;. For one fixed data pair (x,y), the constraint

14
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By(xy, VVlTxl,l) < 0 provides the characterisation of an activation function via
vi=oW'zi_1+b) &  Biap, Wlai +b) <0,

The Lagrange formulation of the constrained minimisation problem yields

s L
min YUy W2t 1) + Y MBir, W) |
Xv{lebl}l:1 i=1 =1

where \; are the Lagrange multipliers. The bi-convex functions B essentially take on the
same role as the Bregman loss function (12), but without making the connection to Bregman
distances and without many of the theoretical results provided in this paper. In the case of
the ReLU activation function o(z) = max(z,0), the functions B; are defined as

1,2 1,2 ;

svo+sul —uwv ifv>0

BZ(U,U) =<2 20 . :

00 otherwise
Using Item 4 in Theorem 10, it is not difficult to see that this is the scalar-valued equivalent
of the Bregman loss function

L2+ 1 2 :

2 2 ’O - ) f > 0
By(z,2) = z||? + 5[ max(z,0)[|* — (z,z) if x> -
x otherwise

However, without using generalised Bregman distances and proximal activation functions,
the derivation of B; in Gu et al. (2020) requires deducing the energy from the optimality
system. Further, derivations for activation functions other than ReLU seem possible but
not as straightforward. Moreover, the analysis in Gu et al. (2020) requires the activation
function ¢ to be strictly monotone, while such strong restrictions are not required in this
work.

LPOM on the other hand takes a similar approach to Gu et al. (2020) through the use
of proximal operators. The authors define

fz) = /0 o) —ydy and gle) = /0 “(o(y) — y)dy

such that the proximal map of f as defined in Definition 1 is o, and the proximal map of g
is 0!, The authors of Li et al. (2019) propose to approximate (5) with

s L—1
min 7y Wl b+ Y m(F () oW )+ Gl = (Wl b))
X,{lebl}zzl 1 =1

such that the optimality condition of the objective with respect to x% reads
0= (o (x}) = (WiT g + b)) + purs(Wiga) (0 (Wi + i) — o) -

Similar to the proposed approach, this approach ensures that the network constraints :c} =
a(VVlTxf_l + b;) are satisfied. However, like the Fenchel lifted neural network approach,
the LPOM work requires more restrictive assumptions such as invertibility of the activation
function o, and provides fewer mathematical insights into the newly defined penalisation
functions.
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4. Numerical realisation

In this section we discuss different computational strategies to solve Problem (13) numeri-
cally. We divide the discussion into deterministic and stochastic strategies.

4.1 Deterministic approaches

For simplicity of notation, we consider only one pair of samples (x,y) in Problem (13) and
we assume that the loss function ¢ is also a Bregman loss function, and set A\; = 1 for
all [. Even though our loss function being a Bregman loss function means we should use
different ¥; for each layer, we will ignore this to keep our notation simple (without loss of
generality). In order to efficiently solve (13) we split the objective in (13) into differentiable
and non-differentiable parts as follows:

L
E(©,X) = Z By (x, f(21-1,61))

L *
_ Z a2 + () +Z[( H2+\P) (F (2, 00)) — (@ f (@11, 60)
=1

::G(X) ::H(va)
— G(X)+ H(©,X).

Here H is a smooth-function in both arguments, while G is potentially non-smooth but
with closed-form proximal map.

Remark 11 We want to emphasise that (13) can also be split such that the squared Eu-
clidean norm %HleQ of each wvariable x; is part of H, and not of G. Both splittings are
perfectly reasonable, and we arbitrarily chose the one that includes 1||z||* in G because
computing the proximal map of G with added squared Euclidean norm requires only a trivial
modification of the proximal map (cf. (Beck, 2017, Theorem 6.13)).

4.1.1 PROXIMAL GRADIENT DESCENT

A straight-forward approach for the computational minimisation of E is proximal gradient
descent (cf. Teboulle (2018)), also known as forward-backward splitting (Lions and Mercier,
1979). This method is a special instance of the following Bregman proximal algorithm
(Censor and Zenios, 1992; Teboulle, 1992; Chen and Teboulle, 1993; Eckstein, 1993) that
aims at finding minimisers of E via the iteration

O A ()| S

Here, D; denotes the Bregman distance with respect to a function J, Wthh in case of
forward backward splitting for £(@,X) = G(X)+H (0, X) reads J(©,X) = 2T® S e+

Z Yz||? — H(®,X). Here, 7@ and 7x are positive step-size parameters that are
27’)(

usually chosen to guarantee local or global convexity of J in order to guarantee that (16)
converges locally or globally. Please note that local or global Lipschitz-continuity of the

16



LIFTED BREGMAN LEARNING

gradient of H automatically implies existence of 7@ and 7x that guarantee local or global
convexity of J (cf. (Bauschke et al., 2017; Benning et al., 2021; Benning and Riis, 2021)).
Please note that properties 8, 9, 10 and 11 of Theorem 10 are particularly useful in this
regard. With these choices of E' and J the optimisation problem (16) simplifies to

O+ = @F — Ve H (O, X"),
2
X*1 Z arg min {2 HX B (Xk B TXVXH(@k,Xk)) H + TXG(X)} ;
X

= prox,, ¢ (X’f — rxVx H(O", Xk)>

for initial values ®° and X°. More precisely, the updates with the previous definition of G
and H read

@f“ = @f —Te (proxq, (f(a:f_l, @f)) — xf) J](?(xf_l, @f) ; (17a)
1
k k k x/ k k
7y = prox oy (1 +7x (5 = mx ((proxe (025 0510)) = o) I a5, ©]1)
(17b)

1))

forte{l,...,L} and j € {1,...,L — 1}, where J](? and J§ denote the Jacobians of f with
respect to © and z, respectively.

Example 3 Suppose we design a feed-forward network architecture with ¥ = x>o, which
implies prozy(z) = max(z,0), and f(z,0;) = W,z + b, for ©, = (W, b;). Then (17) reads
W = W =y (max ((@h)TWE + (65)7,0) = 2F)T))

bt = of — 7 (max (W) el +0f) —af,0)

(
5 k k E\T .k k
25t = max T ( Al max( ‘7+1) + b +1’O) B xj+1) = (Wy) iy = b; 0
’ ].—{—Tx )

forle{l,....L}, je{l,...,L — 1} (with input oy = x and output x;, = y), k € N and
the step-size parameters T@ = (Tw, ) and TX = Ty.

Note that many modifications of proximal gradient descent can be applied, such as proximal
gradient descent with Nesterov or Heavy-ball acceleration (Nesterov, 1983; Huang et al.,
2013; Teboulle, 2018; Mukkamala et al., 2020). In Appendix B, we also describe how E can
be minimised with alternating minimisation approaches such as coordinate descent and the
alternating direction method of multipliers that better exploit the structure of the objective
for distributed optimisation.
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4.1.2 REGULARISATION OF NETWORK PARAMETERS

In empirical risk minimisation, it is common to design regularisation methods that sub-
stitute the empirical risk minimisation process, in order to combat ill-conditioning of the
empirical risk minimisation and to improve the validation error. In the context of risk min-
imisation, regularisations are approximate inverses of the model function w.r.t. the model
parameters. For more information about regularisation, we refer the interested reader to
Engl et al. (1996); Benning and Burger (2018) for an overview of deterministic regularisa-
tion, to Stuart (2010) for a Bayesian perspective on regularisation and De Vito et al. (2005,
2021) for regularisation in the context of machine learning. We discuss the two common
approaches of variational and iterative regularisation and how to incorporate them into the
lifted Bregman framework.

Variational regularisation. In variational regularisation, a positive multiple of a regu-
larisation function is added to the empirical risk formulation. Denoting this regularisation
function by R, we can simply modify E to

L

Er(©,X) = By (a1, f(x1-1,01)) + R(©).
=1

However, there is a catch with this modification that is probably not obvious at first glance.
Suppose R is differentiable for now. If we compute the optimality condition w.r.t. a
particular ©;, we observe

0= Ve, (Bu(z}, f(z]_1,0})) + R(©},....0},...,0})) ,
= (o(f(z7_1,07)) — 2) JP (71, 0]) + Vo, R(©%) .

Without Ve, R(©*), the condition 0 = (o(f(z}_,,0})) — z}) J?(xz‘_l, ©]) guarantees net-
work consistency o(f(z;_y,0])) = z; up to an element in the nullspace of J?(x}il, O7).
Unless Vg, R(®*) = 0, this network consistency will be violated when adding a regularisa-
tion term R that acts on the network parameters. Because of this shortcoming, we consider
iterative regularisation strategies as an alternative in the next subsection.

Iterative regularisation. When we iteratively update the parameters ® and X via ap-
proaches like (16) or (38), we can convert them into iterative regularisations known as (lin-
earised) Bregman iterations (Osher et al., 2005; Cai et al., 2009; Benning and Burger, 2018).
We achieve this simply by including a regularisation function in the Bregman function. For

example, in (16) we can choose J(©,X) = - (R(G)) +3 SE H@l”2> + ﬁ S ] -

T®
H(©,X) instead of J(©,X) = 51571 |64 + 52 /5" |au|? — H(®,X). Note that
in contrast to including R in a modified objective Er, incorporating R in J does not alter
E, but it allows to control the regularity of the model parameters ®. If the objective F
has multiple or even infinitely many minimisers, a different choice of R enables convergence
towards network parameters with desired properties such as sparsity of the parameters.

In the context of neural networks, such a strategy has first been applied in Benning et al.
(2021) to train neural networks and also control the rank of the network parameters. We
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can achieve the same by choosing R to be a positive multiple of the nuclear norm. Recently,
in Bungert et al. (2021), the idea of (linearised) Bregman iterations has been extended to
stochastic first-order optimisation in order to effectively train neural networks with sparse
parameters. Networks with sparse network parameters can be obtained by setting R to a
positive multiple of the one-norm.

4.1.3 REGULARISATION OF AUXILIARY VARIABLES

One of the great advantages of a lifted network approach is that it is straight-forward to
also impose regularisation on the auxiliary variables {ml}f:_ll. This can be extremely useful
in different contexts. Suppose, for example, that we want to train an autoencoder neural
network with sparse encoding. This would require us to impose regularity on the output of
the encoder network, which is equal to one of the auxiliary variables in the lifted network
formulation. We will discuss such a sparse autoencoder approach in greater detail in Sec-
tion 5.2. In the following, we want to discuss how to adapt the two regularisation strategies
discussed in the previous section.

Variational regularisation. In contrast to variational regularisation of network parame-
ters, adding a regularisation function R that acts on X to the objective E does not impact
the optimality system of E w.r.t. the network parameters ®. Hence, network consistency
will not be violated and regularity can be imposed this way.

Iterative regularisation. In identical fashion to the previous section, we can incor-
porate regularity by modifying Bregman functions, for example in (16) via J(©,X) =

o Sl 024 (ROX) + 3 0 aill?) ~H(©, X) instead of J(©,X) = 51 Y21 €4+

2T7e
L—1
ﬁ 2 lm|? = H(©,X).

4.2 Stochastic approaches

Having discussed suitable deterministic approaches for the minimisation of £, we want to
describe how to adopt such approaches in stochastic settings. In particular, we consider the
objective E from the previous section, but for s pairs of samples {(x;,y;)}5_;:

1 s L

E(©,X) = gZZBwP (z}, f(zi_1,0)) - (18)

i=1 [=1

Here, ©® = {©;}, is again the short-hand notation for all parameters (for all layers), but
X = {x%}ii’”i is the collection of auxiliary variables that now also depend on the input
and output samples {(z;,y;)}7_;. We want to investigate which stochastic minimisation
methods we can formulate that only use a (random) subset of the indices at every iteration.

The most straight-forward approach is to use out-of-the-box, state-of-the-art first order
methods like stochastic gradient descent (Robbins and Monro, 1951; Kiefer and Wolfowitz,
1952) or variants of it. Since the function F is additively composed of a smooth (H) and
a non-smooth (G) function, the overall function E is non-smooth. Hence, gradient-based
first-order methods applied directly to E become subgradient-based first-order methods,
with potentially slower convergence and artificial critical points, even though these usually
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do not pose serious issues with high probability (cf. Bolte and Pauwels (2020)). However,
fully explicit optimisation methods whose convergence speed depends on Lipschitz constants
of gradients can easily suffer from an explosion of these constants when applied directly to
non-smooth functions.

Another disadvantage of applying methods such as stochastic gradient descent and eval-
uating the gradient or subgradient via backpropagation is that it is not straight-forward to
easily distribute the computation of parameters as it is the case for distributed optimisation
approaches such as the ones described in Section 2.3, respectively (Carreira-Perpinan and
Wang, 2014; Askari et al., 2018; Gu et al., 2020).

And not to forget, we lose the advantage that the differential of the Bregman loss
function By does not require the differentiation of the activation function if we try to
differentiate the non-smooth part G. We therefore discuss three alternative optimisation
strategies; we begin with a discussion of stochastic proximal gradient descent, then we
continue to focus on data-parallel (implicit) optimisation, before we conclude with implicit
stochastic gradient descent.

4.2.1 STOCHASTIC PROXIMAL GRADIENT DESCENT

Given the structure of F, it seems natural to consider stochastic proximal gradient descent
(Duchi and Singer, 2009; Rosasco et al., 2019). However, most approaches, such as the ones
discussed in Rosasco et al. (2019), assume a structure of the form

B(©) = G(©)+ 1Y H(®).
=1

where every H; is differentiable and G is proximable. In comparison, our setting is of the
form

S

1

E(©,X) = ;Z(G(Xi)"i'H(@,Xi)) , (19)

i=1
where X; is the collection {z%,...,2% |} for each index i € {1,...,s}. Here, the function
G only depends on the samples X and optimising with respect to X remains deterministic,
while we can optimise @ by only using (random) subsets of {1,...,s} at each iteration. A

possible approach is to compute
el = @F — 7EVeH(OF, X,
XK1 = prox (XQ.c - TXZ.VXZ.H(@’C,X;C)> ,

;G

or alternating variants. It should be straight-forward to show convergence for such an
algorithm with standard arguments in the simpler but unrealistic setting in which both H
and G are jointly-convex in both X and ®. However, proving such a result is beyond the
scope of this work.

4.2.2 DATA-PARALLEL OPTIMISATION

Instead of minimising (19) for all samples at once, one can split the indices into m ran-
domised batches B, with Uy, B, = {1,...,s} and ()L, B, = 0. We can then solve
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the optimisation problems for each batch individually and subsequently average all results,
which is also widely known as model averaging (Zinkevich et al., 2010; McDonald et al.,
2010). The optimisation problem for each batch can be solved in parallel with any of the
methods described in Section 4.1. In the next section, we focus on an alternative implicit
optimisation technique that can be performed sequentially for all batches or in parallel,
which in its sequential form is known as implicit stochastic gradient descent.

4.2.3 IMPLICIT STOCHASTIC GRADIENT DESCENT

Implicit stochastic gradient descent (Toulis and Airoldi, 2017) is a straight-forward modifi-
cation of stochastic gradient descent where each update is implicit. Note that mini-batch
stochastic gradient descent for an objective E(®) = 13> | f;(®), which in its usual form
reads

ekt — Z ACKHE (20)
ZEB
can be formulated as
@"+! = arg min B Z fi(®)+ Dy (©,8%) % (21)
(C]
1€EBy

see for instance Benning and Riis (2021), which shows that it is also a special-case of stochas-
tic mirror descent (Nemirovski et al., 2009), and where J = 2%/@”@||2 - ﬁ ZieBp fi(©),
with D, being the corresponding Bregman distance. Here, the choice of function Jj, en-
sures the explicitness of mini-batch stochastic gradient descent (cf. (Benning and Riis, 2021,
Equation (6))). We can obviously replace Ji simply with 2%,9“(-)”2, so that (21) changes to

er! — @ -2} . (22)

1
= arg min Z fi(© ﬁ‘

1€B

This method, proposed and studied in Toulis and Airoldi (2017) is similar to classical
stochastic gradient descent, but the update can no longer be computed explicitly and re-
quires the implicit solution of a deterministic optimisation problem at each iteration. If we
want to connect this to Section 4.2.2; we can modify (22) to not use the previous argument
© as the second argument in the Bregman distance, but to use the average of the previous
epoch, i.e.

2
m

= arg min Z fi(®) + — - % Z @]; ) (23)

zGB q=1

@k—i—l

for p € {1,...,m}. The advantage of (23) over (22) is that each batch can be processed in
parallel, at the cost of potentially inferior convergence speed. Applying (22) to objective
(18) yields the iteration

1
(®k+1,Xk“)—argmln ZZB‘P zi, f(zi_1,01))) + TkH@—@kIIQ - (24)
zEB =1
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Algorithm 1 Implicit Stochastic Lifted Bregman Learning

Initialise @? for each [ € {1,2,...,L}

for k€ {1,2,...,K} do
Choose By C {1,2,...s} either at random or deterministically.
Initialise $; = aj(f( T 1,@k)) for each i € B, and j € {1,2,...,L —1}.
forl e {L,...1} and j € {L—l,...l} do

for ne {0,1,...,N —1} do
Compute step size parameters g and 7.

Ot + OF — 7o Z (proxy ( Ty 17@n)>_l~ ‘]f( = 1’91))

I CHECHaY

for i € B, do
imn+1 |B | in < k
Ti o PO (VR <\B |+ 72 <$J | | CHSNCH)
- (prOX\I/ <f(xj7n7 j+1 ) Zj,-l Zn’ ;L+1))>>
end for
end for
oF + o
end for
end for

It is important to point out that in (24) not all z-variables are updated at once, but only
the variables for the current batch B,. Hence, an entire epoch is required to update all x-
variables once. For simplicity, we 1ntroduce a short-hand notation X! = {z}}¢5 to denote
the collection of x;-variables associated with the current batch B,,.

As an example, consider the problem of training a feed-forward network by minimising
(13) with additional variational regularisation acting on the auxiliary variable as described
in Section 4.1.3, for f(z;-1,0;) = I/VlTxl_l + b;. Using (24) and (17) for each individual
minimisation problem per mini-batch, the overall algorithm is summarised in Algorithm 1.
Here, K refers to the number of epochs, and N refers to the number of iterations of the
inner algorithm.

Note that similar to the examples described in Section 4.1, one can replace the squared-
two-norm term in (24) with a Bregman distance term to design explicit-implicit variants
of (24). For example, if we replace ﬁ”@ — ©|? with the Bregman distance D, (©, ©%)
for the choice Ji(®) = T%HQHQ — ﬁ > icB, Elel By(z}, f(x}_,,0)))), we can make (24)
explicit with respect to the parameters ®, with the potential drawback of more complicated
implicit optimisation problems for X.
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Remark 12 We want to emphasise that all approaches for computationally solving the
lifted Bregman approach require more memory because the lifted Bregman framework intro-
duces auxiliary variables that need to be stored at all times. However, even for the standard
backpropagation algorithm (as outlined in Appendiz A), the intermediate variables also have
to be stored in memory for the purpose of computing gradients in the backward pass. Nev-
ertheless, this memory requirement is a potential limitation of lifting approaches.

5. Example problems

In this section, we present some example problems and demonstrate how the lifted Bregman
approach can be utilised to train neural networks. We discuss both supervised and unsuper-
vised learning examples. We consider the supervised learning task of image classification,
and the unsupervised learning task of training a sparse autoencoder and a sparse denosing
autoencoder.

5.1 Classification

The first example problem that we consider is image classification. In the fully supervised
learning setting, pairwise data samples {x;, y;}5_, are provided, with each z; being an input
image while y; represents the corresponding class label. The task is to train a classifier that
correctly categorises images by assigning the correct labels. Training an L-layer network
via the lifted Bregman approach can be formulated as the following minimisation problem:

1 R -
glg(lg = By, (yz>$ZL) + ; By, (l';v ACTEY @l)) . (25)

Note that we allow for different functions ¥; in order to allow for different activation func-
tions for different layers. The loss function ¢ in the Learning Problem (2) can also be chosen
to be a Bregman loss function By, (yi, xZL), which here measures the discrepancy between
the predicted output and the target labels. Note that the special case for L = 1 has already
been covered in Wang and Benning (2020).

5.2 Sparse autoencoder

For the next two application examples we consider sparse autoencoders. Sparse autoen-
coders aim at transforming signals into sparse latent representations, effectively compress-
ing the original signals. In this section, we formulate an unsupervised, regularised empirical
risk minimisation for sparse autoencoders in the spirit of Section 4.1.3.

An autoencoder is a composition of two mathematical operators: an encoder and a
decoder. The encoder maps input data onto latent variables in the latent space. The latent
variables are usually referred to as code. The decoder aims to recover the input data from
the code. Unlike regular autoencoders that reduce the dimension of the latent space, the
latent space of a sparse autoencoder can have the same or an even larger dimension than the
input space. The compression of the input data is achieved by ensuring that only relatively
few coefficients of the code are non-zero. The advantage over conventional autoencoders is
that the position of the non-zero coefficients can vary for individual signals.
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Sparsity on latent nodes can be achieved by explicitly regularising the latent represen-
tations. One approach is to penalise the Kullback Leibler divergence between the hidden
node sparsity rate and the target sparsity level during training (Ng et al., 2011; Xie et al.,
2012). In this work, we explore an alternative approach using ¢, regularisation to promote
sparsity of the codes in the spirit of compressed sensing (cf. Candes et al. (2006); Donoho
(2006)), and proceed as discussed in Section 4.1.3. We formulate the sparse autoencoder
training problem as the minimisation of the energy

18 o - .
N 2 By, (g, 27,) + ; N By, (21, f(z1-1,01)) + allzp jpll | (26)

with {z{}{_; denoting the provided, unlabelled data. Here {z /2};?:1 are the activation
variables that correspond to the code, i.e. the output of the encoder, which we arbitrarily
chose at the middle layer % The regularisation parameter o > 0 is the hyper-parameter
controlling the sparsity of the codes.

As discussed in Section 4.1.3, one of the advantages of the lifted Bregman framework is
that additional regularisation terms acting on the activation variables can easily be incor-

porated into various algorithmic frameworks.

5.3 Sparse denoising autoencoder

We present the third example that aims at learning sparse autoencoders for denoising. Dur-
ing training, a denoising autoencoder receives corrupted versions  of the input x and aims
to reconstruct the clean signal x. By changing the reconstruction objective, the denoising
autoencoder is compelled to learn a robust mapping against small random perturbations
and must go beyond finding an approximation of the identity function (Bengio et al., 2013;
Alain and Bengio, 2014). In analogy to (5.2), the proposed learning problem reads

1S R, o p
By, By, (xB,xE)Jrlz;)\qu,l (&, F(&_1,00) + allZ ol | (27)
1= =

where :Ef] and xé are the corrupted and clear input data respectively. Similar to training
sparse autoencoders, we regularise the ¢1-norm of the hidden code, i.e. the middle layer
activation variable x5 to enforce activation sparsity.

6. Numerical results

In this section, we present numerical results for the example applications described in Sec-
tion 5. We implement the lifted Bregman framework with Algorithm 1 and compare this
method to three first-order methods: 1) the classical (sub-)gradient descent method de-
scribed in (3), 2) the stochastic (sub-)gradient descent method which follows (20), and 3)
the implicit stochastic (sub-)gradient descent that follows (22).

All results have been computed using PyTorch 3.7 on an Intel Xeon CPU E5-2630 v4.
Code related to this publication is made available through the University of
Cambridge data repository at https://doi.org/10.17863/CAM.86729.
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We use the MNIST dataset (LeCun et al., 1998) and the Fashion-MNIST dataset (Xiao
et al., 2017) for all numerical experiments. For both datasets, we pre-process the data by
centring the images and by converting the labels to one-hot vector encodings.

For all subsequent experiments, the choice of 75 is made via grid search for values in
{0.1,0.25,0.33,0.5,0.55,0.8, 1}, where 7y, is selected such that the training error is smallest.
The number of inner iterations N is also chosen via grid search for values in {2, 5, 10, 15,
30, 50, 100, 200, 300}. For N larger than 30 we do not observe a notable improvement in
reduction of training error.

6.1 Classification

For the classification task, we follow the work of Zach and Estellers (2019) and consider a
fully connected network with L = 4 layers with ReLLU activation functions. More specifically,
we use f(x;-1,0;) = I/VZT:cl_l + b with W, € R"™-1%" and b € R™*! where m; = 784,
mo = mag = 64 and my = 10. In solving the classification problem described in Section
5.1, we do not include any additional regularisation term and set R = 0 in the learning
objective (5.1). We use the Mean Squared Error (MSE) between the prediction and the
one-hot encoded target values as our classification loss, which also is a Bregman loss function
(12) for ¥, = 0.

We apply Algorithm 1 to train the classification network with the lifted Bregman frame-
work. In solving each mini-batch sub-problem (24), we run a maximum of N = 15
iterations with 7% = 0.25 for all k. The other step-size parameters are set to W, =
1.99/ (IXP1I3 + 7/2) and 7, = 1.99/||W;||3 to ensure convexity of J in (16). For com-
parison, the same network architecture is trained via the stochastic (sub-)gradient method
(20) in combination with the back-propagation Algorithm 2, which we will refer to as the
SGD-BP approach. Out of the learning rates {1 x 10755 x 107°,1 x 10745 x 10741 x
1073,5 x 1073,1 x 1072,5 x 1072,1 x 1071,5 x 107!}, we found that 1 x 10~ works best
empirically in terms of receiving lowest training objective values.

For both the MNIST and Fashion-MNIST datasets, we use 60,000 images for training
and 10,000 images for validation. Network parameters in all experiments are identically
initialised following Glorot and Bengio (2010). We choose batch size |By| = 100 and train
the network for 100 epochs.

Table 1 summarises the achieved training and validation classification accuracy after
training. For the classical lifted training approach, we quote results from Zach and Estellers
(2019). The lifted Bregman scheme achieves comparable classification accuracy to the SGD-
BP approach and shows substantial improvements over the classical lifted approach that
produces affine-linear networks.

In Table 2 we present the evaluated percentage of linear activations of the network under
different training strategies. This rate computes the percentage of number of nodes in each
hidden layer that perform linearly, i.e. (2 = max(2%,0)). As described in Section 2.3.2,
classical lifted network training produces affine-linear networks. We empirically verify that
the lifted Bregman framework overcomes this limitation.

In terms of computational cost, we record the runtimes of the LBN and SGD-BP ap-
proaches and report them in Table 3. It should be emphasised that LBN schemes are
computationally more expensive compared to SGD-BP approaches, due to the additional
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MNIST Fashion-MNIST

Model Train | Test | Train Test
Standard Lifted Network | 85.6% | 86.3% | 81.4% | 80.0%
Lifted Bregman Network | 99.3% | 96.8% | 93.5% | 85.7%
SGD-BP 99.6% | 96.9% | 95.8% | 87.9%

Table 1: This table summarises training and test classification accuracies for the MNIST
and Fashion-MNIST datasets, where the network is trained with the lifted Breg-
man approach, the classical lifted training approach and the stochastic (sub-
)gradient method with back-propagation.

MNIST Fashion-MNIST
Model Layer 1 | Layer 2 | Layer 3 | Layer 1 | Layer 2 | Layer 3
Standard Lifted Network | 99.9% 99.9% | 99.9% | 99.9% | 99.9% | 99.9%
Lifted Bregman Network | 47.4% | 82.2% | 70.1% | 59.2% | 85.7% | 64.7%
SGD-BP 40.1% 29.7% 73.6% | 32.2% 28.1% 78.4%

Table 2: In this table, we show the percentage of nodes in the network’s hidden layers
that act linearly. The network is trained with the lifted Bregman approach, the
classical lifted approach and the the stochastic (sub-)gradient method with back-

propagation respectively, on both the MNIST and Fashion-MNIST datasets.

MNIST

Per iteration | Per epoch | Total runtime
LBN 0.003 29.45 3011.72
LBN* 0.001 15.02 1583.89
SGD-BP 0.001 5.73 600.62

Fashion-MNIST

Per iteration | Per epoch | Total runtime
LBN 0.003 29.65 3088.94
LBN* 0.001 16.02 1612.48
SGD-BP 0.001 6.12 603.51

Table 3: This table records runtimes for the LBN approach and SGD-BP approaches on
training classifiers on MNIST and Fashion-MNIST datasets respectively. Entries in
LBN* show the runtimes of the LBN approach where the time spent on computing

the step size parameters 7, and 7, is deducted.

iterations for solving the inner problem. Entries in LBN™* show the runtimes of the LBN
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approach where the time spent on computing the step size parameters 7, and 7, is de-
ducted.

6.2 Sparse Autoencoder

As discussed in Section 5.2, we train a fully-connected autoencoder with L = 4 layers with
f(z—1,0;) = VVlTxl,l + ;. The hidden dimension is set to m; = 784 for | = 1,....,4,
i.e. there is no explicit reduction in dimension. We use the MSE reconstruction loss and
the regularisation parameter « is chosen at @ = 0.09 and does not ensure optimal valida-
tion errors, but a sparsity rate of the code of approximately 90% to guarantee an implicit
reduction in dimension instead.

Note that the additional regularity on the code can easily be implemented in the lifted
Bregman framework provided we choose a suitable activation function for the activation
variable that corresponds to the code. Specifically, when the activation variable zo is acti-
vated by the soft-thresholding function, the additional non-smooth ¢;-norm regularisation
term in (5.2) can easily be incorporated by modifying the W5 function in the update step of
the zo variable in Algorithm 1. In this example, we apply the soft-thresholding activation
function after the second affine-linear transformation and adopt ReLU activation functions
for all other layers.

MNIST-1K For this application example, we consider a slightly more challenging learn-
ing scenario (referred to as MNIST-1K). We limit the amount of training data, and compare
how well the trained network generalises on a larger validation set. We choose s = 1,000
images from the MNIST dataset at random and use it as our training dataset and use all
10,000 images from the validation dataset for validation.

We experiment with both deterministic and stochastic implementations of the lifted
Bregman framework. For the stochastic implementation (referred to as LBN-S), network
parameters are trained via Algorithm 1. We choose batch size | Bx| = 20 and step-size 7, = 1.
In each batch sub-problem, the minimisation problems are iterated for N = 15 iterations,
with step-sizes computed via 7, = 1.99s/(||X7(|3 4+ 7¢/2) and 7, = 1.99. The deterministic
implementation (LBN-D) follows the same update steps described in Algorithm 1 with
7% = 0 and |By| = s, i.e. we use all data at every epoch. The step size 7, is computed as
1.99s /(1213

For comparison, we train the autoencoder also with two first-order methods: (sub-
)gradient descent (GD-BP), which follows (3), and the stochastic (sub-)gradient descent
approach (SGD-BP) described in (20), both in combination with the back-propagation
Algorithm (2) for the computation of (sub-)gradients.

As learning objective we choose the MSE loss plus a times the ¢1-norm regularisation.
Various learning rates in the range [107%,107!] have been tested. In terms of minimising
the training objective values, we find that 4 x 1072 and 3 x 10~2 work optimal for GD-BP
and SGD-BP approaches, respectively.

We train the autoencoder network for 100 epochs and plot the decay of the objective
values over all epochs in Figure 3 (Left). While the training objective value tracks the
sum of reconstruction loss and « times ¢1-norm regularisation, the validation objective only
records the MSE loss. The sparsity rate per epoch is computed as the percentage of zero-
valued entries of the code X2, which we visualise in Figure 3 (Right). Overall, the lifted
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Figure 3: Sparse Autoencoder trained on MNIST-1K dataset. Left: Objective values per
epoch for each learning scheme as explained in Section 6.2. The training objec-
tives (solid lines) record MSE loss plus ¢;-norm regularisation and the validation
objectives (dashed lines) report the MSE loss values. Right: Sparsity level of
the code per training epoch for each learning scheme.

Bregman implementations outperform the (sub-)gradient-based first-order methods. The
reason for this discrepancy in performance is that using first-order subgradient methods
to minimise highly non-smooth functions is less efficient compared to using proximal first-
order methods. Since we enforce high-levels of sparsity in this example, it is expected that
the proposed lifted Bregman approach performs better. If one were to decrease the level of
sparsity of the code, the discrepancy in performance will become smaller. We also observe
that the stochastic variants of both learning schemes can speed up training and provide
faster convergence compared to their deterministic counterparts. The effect on LBN-D is
more noticeable than on GD-BP as we observe significant drops in objective value in early
training epochs.

The validation loss curves recovered with GD-BP and SGD-BP follow their training
curves quite closely. LBN-S on the other hand shows a drop of the validation loss before
it increases again after around 7 epochs. A similar increase could be observed for LBN-D
if we were to train the parameters for more epochs. This demonstrates that we can overfit
this autoencoder with 3136 parameters to the 1000 training data samples of dimension 784
with the LBN algorithms, but we do not observe the same phenomenon with the GD-BP
and SGD-BP algorithms. A comparison of the LBN-D, GD-BP and SGD-BP approaches
when trained for more epochs can be found in Appendix B. In light of Zhang et al. (2021),
this raises the question whether good generalisation properties of neural networks are more
down to the choice of optimisation technique than architectural design choices.

When looking at a sparsity rate comparison per epoch, we notice the oscillatory be-
haviours of both (sub-)gradient based methods. As their sparsity levels climb higher, their
corresponding objective value curves remain stagnant. The decreases in objective values
for both GD-BP and SGD-BP roughly coincide with when their sparsity rate drops. In
contrast, we can see that the lifted Bregman implementations handle the same level of reg-
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ularisation more smoothly. They achieve similar sparsity levels in the end but in a more
stable and controlled manner.

In Figure 4, we visualise ground truth images and reconstructions of two randomly
selected images from the training dataset for all four training approaches. In Figure 5 we
visualise the same quantities but based on two randomly selected images from the validation
dataset. All four approaches are capable of providing good quality reconstructions in light
of the high sparsity levels, for both the training and testing datasets. However, the proposed
LBN-D and LBN-S approaches provide sharper edges and finer details than the GD-BP and
SGD-BP approaches. LBN-S slightly outperforms LBN-D and is capable of defining even
clearer and sharper edges. More reconstructed images can be found in Appendix C.1.

Per iteration | Per epoch | Total runtime
LBN-D 0.33 90.35
LBN-D* 0.24 61.98
GD 0.17 53.71
LBN-S 0.14 98.09 11204.28
LBN-S* 0.014 2.045 257.98
SGD-BP 0.011 0.237 60.81

Table 4: This table records runtimes for each approach of training sparse autoencoders on
the MNIST-1K dataset. Entries in LBN — D* and LBN — 5* record the runtimes
where the time spent on computing step size parameters 7, and 7, is deducted.

For all experiments, we record runtimes for each approach for comparison and visualise
them in Table 4. For deterministic approaches, we record only per epoch runtime as it is the
same as the per iteration runtime. Entries in LBN-D* and LBN-S* show runtimes where
the time spent on computing the step size parameters 7,, and 7., has been deducted. We
note that the difference in runtime between the LBN and SGD-BP approach per iteration is
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mainly a result of the computation of the step size parameters 7, and 7,,. We will present
a fairer comparison with in the upcoming sparse denoising autoencoder section.

6.3 Sparse Denoising Autoencoder

The sparse denoising autoencoder adopts the same network architecture as the sparse au-
toencoder described in Section 6.2, which sets the hidden dimension to 784 across all layers.
To produce noisy images, instances of Gaussian random variables with mean zero and stan-
dard deviation 1073 are added to each pixel. We use the MSE as the last layer loss function
to measure the difference of reconstruction and noisy images. We consider two training
scenarios to evaluate model performances: 1) In the first scenario, we train the network
with limited data from the Fashion-MNIST dataset, similar to Section 6.2, where we take
1,000 training images (referred to as Fashion-MNIST-1K) and validate on 10,000 images.
2) For the second scenario, the training dataset consists of 10,000 images (referred to as
Fashion-MNIST-10K) and the validation dataset consists of 10,000 images.
Fashion-MNIST-1K In the first group of experiments, we train a sparse autoencoder with
imposed sparsity regularisation during training on the Fashion-MNIST-1K dataset. For the
lifted Bregman training approach (LBN) we apply Algorithm 1 to minimise the learning
objective (5.3) with a = 0.09. We set the batch size to |By| = 20, the step-size parameter
T, to 7 = 0.5, for all k£, and the inner iterations N to N = 15 for solving each mini-batch
sub-problem (24) via (17). For comparison, we consider a vanilla stochastic (sub-)gradient
method (SGD-BP) as described in (20) and the stochastic (sub-)gradient descent approach
with implicit parameter update (ISGD-BP) that follows (22) to train the network param-
eters. Both approaches use the learning rate 1 x 1073 and apply the back-propagation
Algorithm 2 for computing the (sub-)gradients. The ISGD-BP does so by solving the inner
problem with GD-BP for N iterations.

All approaches train for 50 epochs. A log-scale plot of the objective value decay for all
three training approaches is visualised in Figure 6 (Left) and the tracked changes of the
hidden node sparsity level are plotted in Figure 6 (Right).

When trained on the Fashion-MNIST-1K dataset, we observe that LBN achieves faster
convergence and outperforms ISGD-BP and SGD-BP especially at early training epochs.
Towards later epochs, ISGD-BP starts to align and eventually achieves comparable training
and validation errors.

The ISGD-BP approach and LBN approach are capable of achieving and maintaining
higher sparsity levels from earlier epochs onwards, while the SGD-BP approach on the other
hand seems to increase the sparsity level much more slowly compared to the other two ap-
proaches. It should, however, be emphasised that the SGD-BP algorithm is computationally
less expensive per epoch.

Fashion-MNIST-10K We conduct the second set of experiments on the Fashion-
MNIST-10K dataset. We choose a bigger batch size of |Bg| = 200 and penalise the ¢1-norm
regularisation with o = 0.055 during training. For both the LBN and the ISGD-BP ap-
proach, we set 7, = 1 and perform N = 30 iterations in each mini-batch sub-problem. We
choose a learning rate of 4 x 10~ for the ISGD-BP approach as well as for the SGD-BP
approach.
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Figure 6: Sparse denoising autoencoder

trained on Fashion-MNIST-1K
images. Left: Objective values
per epoch for each learning ap-
proach. The training loss record
MSE reconstruction error plus «
times £1-norm regularisation while
the wvalidation loss record the
MSE reconstruction error. Right:
Sparsity level of the code per
training epoch for each learning
scheme.

Figure 7: Sparse  denoising autoencoder

trained on the Fashion-MNIST-
10K images. Left: Objective
values per epoch for each learning
approach. The training loss record
MSE reconstruction error plus «
times ¢1-norm regularisation while
validation loss curves record the
MSE reconstruction error. Right:
Sparsity level of the code over
the 50 training epochs for each
learning scheme.

In Figure 7 we visualise the training and validation loss curves (Left) and the sparsity
rate (Right) over the 50 training epochs when training the proposed algorithms on the
Fashion-MNIST-10K dataset. As expected, the gap between training and validation loss
curves in this experiment are closer due to larger amount of training samples while network
complexity is unchanged. Note that the proposed LBN approach exhibits stronger perfor-
mance and outperforms the other two (sub-)gradient based methods when a larger amount
of training data is available. Not only is the LBN approach capable of achieving lower
reconstruction loss values after 50 epochs but also achieves and maintains higher sparsity
rates more quickly.

In terms of computational cost, we record the runtimes for each approach and visualise
them in Table 5. If we deduce the time spent on computing the step size parameters,
as shown in the entries LBN* in Table 5, the total runtime largely decreases. Hence, as
both the LBN and ISGD-BP approaches require 30 inner iterations per batch sub-problem,
we also compare both approaches to the SGD-BP approach for 1500 epochs to ensure
the comparison between the total number of iterations for all three approaches is fairer. As
visualised in Figure 8, we verify that the SGD-BP approach matches training and validation
errors of ISGD-BP, but falls short of achieving training and validation values as low as those
obtained with LBN.

Although LBN approaches require more runtime per iteration than standard SGD-BP
approaches due to the additional computation of the auxiliary variables X;, we want to stress
that parallelisation can benefit LBN approaches better than the standard SGD-BP based
approaches. The standard back-propagation algorithm is sequential in nature, whereas
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Per iteration | Per epoch | Total runtime
LBN 0.153 236.76 12768
LBN* 0.021 33.11 1720.96
ISGD-BP 0.027 50.79 2439.76
SGD-BP 0.018 2.17 144.32
SGD-BP* 0.018 2.09 4205.41

Table 5: This table records runtimes for each approach of training sparse denoising autoen-
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Objective value

coders on the Fashion-MNIST-10K dataset. Entries in LBN™* record the runtimes
where the time spent on computing step size parameters 7, and 7, is deducted.
Entries in SGD-BP* record the runtimes when the SGD-BP approach trains for
1500 epochs.
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Figure 8: Comparison of sparse denoising autoencoders trained on the Fashion-MNIST-

10K dataset with LBN, ISGD-BP and SGD-BP for 1500 epochs, and of sparse
denoising autoencoders with undercomplete autoencoders. Left:  Objective
values per epoch for all learning approaches. Horizontal lines mark end-of-training
and end-of-validation objective values of LBN and ISGD-BP. Middle: Sparsity
level of the code over the 1500 training epochs. Horizontal lines show end-of-
training sparsity rates of LBN and ISGD-BP. Right:  Objective values per
epoch for each learning approach. The training and validation loss curves report
MSE reconstruction errors over 50 epochs.

the LBN approaches allow parallel computation of the weight and auxiliary variables as
discussed in Appendix B.1.

Comparison with undercomplete autoencoders. So far, we haven’t properly mo-

tivated the use of sparse autoencoders in comparison to traditional autoencoders that ex-
plicitly reduce the dimension of the code. A sparse code with m non-zero entries requires
basically the same amount of memory than a m-dimensional code but offers greater flex-
ibility because the location of the non-zero entries can vary for different network inputs.
This advantage should lead to better validation errors of sparse autoencoders compared
to traditional, undercomplete autoencoders. In order to verify the advantages of train-
ing sparse autoencoders over training undercomplete autoencoders (UAE), we conduct two
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Figure 9: Denoised images from the Fashion- Figure 10: Denoised images from the

MNIST-1K training dataset, com- Fashion-MNIST-1K  validation
puted with the LBN, the SGD-BP dataset computed with the LBN,
and the ISGD-BP training strate- the SGD-BP and the ISGD-BP
gies for 50 epochs, along with the training strategies for 50 epochs,
noise-free and noisy images. along with the noise-free and

noisy images.

additional experiments where we train undercomplete autoencoders on the Fashion-MNIST-
10K dataset without imposing any additional regularisation.

We observe that the sparse denoising autoencoder trained with a = 0.055 eventually
reaches 91% sparsity rate after 50 epochs, which suggests that on average 70 nodes in the
code of the final model are activated. Hence, we train a 4-layer fully connected under-
complete autoencoder with ReLU activation function for every layer but set the number
of nodes in the middle layer to 70, which implies Wy € R™**70 and W3 € R70X™4 The
undercomplete autoencoder is trained with both LBN and SGD-BP and we compare if a
reconstruction quality comparable to the sparse autoencoder can be achieved.

In Figure 8, we validate that the lifted Bregman approach helps to improve both under-
complete and sparse autoencoder to achieve faster convergence and lower objective values
compared to the (sub-)gradient based methods. We also confirm that after 50 epochs the
sparse denoising autoencoder achieves lower training and validation errors compared to the
UAE approach.

More specifically, the UAE model trained with the lifted Bregman approach sees bigger
reconstruction loss decreases in the early epochs, but is outperformed by the sparse au-
toencoder at later epochs. This experiment seems to suggest that by leveraging the power
of sparsity, sparse autoencoders trained via lifted Bregman approaches are capable of find-
ing more flexible data representations compared to autoencoders with explicit dimension
reduction.

We visualise a selection of denoised sample images from the Fashion-MNIST-1K train-
ing dataset in Figure 9 and from the Fashion-MNIST-10K training dataset in Figure 11.
Although the loss values of LBN and ISGD-BP were comparable after 50 epochs, the visual
comparison between the network outputs suggests that the network trained with LBN is
able to restore finer details (for instance the stripes on the t-shirt).

The same network also exhibits better denoising performance for the validation images
as seen in Figure 10.
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LBN

Fashion-MNIST-10K training Fashion-MNIST-10K validation
dataset computed with the LBN, dataset computed with the LBN,
the SGD-BP (trained for 1500 the SGD-BP (trained for 1500
epochs) and the ISGD-BP train- epochs) and the ISGD-BP train-
ing strategies respectively, along ing strategies respectively, along
with the noise-free and noisy with the noise-free and noisy
images. images.

Similar observations can be made when we examine denoised sample images from the
models trained on the Fashion-MNIST-10K dataset (Figure 11). The LBN trained network
is capable of recovering fine structures such as the dotted backpack object. Both SGD-BP
and ISGD-BP struggle with fine details and are prone to producing coarse approximations.
The observations still hold true for the validation dataset as can be seen from Figure 12. For
example, the LBN approach is able to recover the curvature of the trousers, but SGD-BP
and ISGD-BP only recover straight-legged trousers.

7. Conclusions & outlook

In this work, we proposed a novel framework for learning parameters of feed-forward neural
networks. To achieve that, we introduced a new loss function based on Bregman distances
and we provided a detailed mathematical analysis of this new loss function. By replacing the
quadratic penalties in the MAC-QP approach, we generalised MAC-QP and lifted network
frameworks as introduced in (Carreira-Perpinan and Wang, 2014; Askari et al., 2018; Li
et al., 2019; Gu et al., 2020) and established rigorous mathematical properties.

The advantage of the proposed framework is that it formulates the training of a feed-
forward network as a minimisation problem in which computing partial derivatives of the
network parameters does not require differentiation of the activation functions. We have
demonstrated that this framework can be realised computationally with a variety of different
deterministic and stochastic minimisation algorithms.

With numerical experiments in classification and compression, we compared the imple-
mentation of the proposed framework with proximal gradient descent and implicit stochastic
gradient method to explicit and implicit stochastic gradient methods with back-propagation.

For classification, we have shown that the trained network is fully non-linear in contrast
to the lifted network approach proposed in Askari et al. (2018), while also achieving similar
classification accuracy as networks trained with first- order methods with back-propagation.
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For compression, we showed with our sparse autoencoder example that training param-
eters with proximal gradient descent or implicit stochastic gradient descent can be more
efficient than first-order methods with back-propagation. We have also shown that it is
straightforward to integrate regularisation acting on the activation variables. This enabled
us to design an autoencoder with sparse codes that is shown to produce more adaptive
compressions compared to conventional autoencoders.

There are many possible directions for future work. In this work, the proposed concept
is limited to feed-forward neural network architectures, but it can easily be extended to
other types of architectures such as residual neural networks (He et al., 2016). Residual
networks of the form z;41 = x; + o(f(21,0;)) can for instance be trained with a slight
modification of (13) in the form of

s L—1
IGI)H)ICIZ ¢ (yi7xil/) + Z N By (x; - ngl’ f(x%;l? 61)) )
=1 =1

and many modifications with different linear transformations of the auxiliary variables.

Other notable research directions include feasibility studies on how to incorporate other
popular layers, such as pooling layers, batch normalisation layers (Ioffe and Szegedy, 2015;
Ba et al., 2016), or transformer layers (Vaswani et al., 2017), the application of other op-
timisation methods such as stochastic coordinate descent, stochastic ADMM, or stochastic
primal-dual hybrid gradient methods as well as tailored non-convex optimisation methods
and other regularisation techniques like dropout Hinton et al. (2012).

Similar to suggestions made in Zach and Estellers (2019), we could use the network
energy for anomaly detection. As our proposed framework has opened more pathways to
use other possible combinations of optimisation strategies, it would also be of particular
interest to investigate more thoroughly if good generalisation properties of a deep neural
network are the result of the chosen optimisation strategy or the chosen network architecture
itself.
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Algorithm 2 Back-Propagation Algorithm
Input ©
fori=1,...,sdo
fori=1,...,L do
Perform forward pass to compute z; and z;:

Zli‘ = f(x;fla @l)

xp = oy(2))
end for
end for
fori=1,...,sdo

for!=1L1,...,1do
Perform backward pass to compute 5}:
5i — {cr{(zi) ©) gxﬁ(yi,mz) forl=1L1
ol(#) © gLoiy forle{l,...,.L—1}
end for
end for

Partial derivatives: =2 forje{l,...,m}and ke {l,...,n_}

a@ﬂk L 9ok

Appendix A. Back-propagation

If we define the transformed input variables zli as

2= flzl_,,0)) for l=1,...,L,

where Z = {zf};jz denotes the group of auxiliary variables, we can write down the
corresponding Lagrangian function for (5) as

s L L
E(@7X>Zau>6) = Z E(yvle) +Z<M%7m% - +Z 6[721 '%‘lfla@l» ) (28)
i=1 =1 =1
where p = {ul L and 0 = {(5’ """ L are Lagrangian multipliers.

In the following deduction of the back-propagation algorithm, we fix for one training data
sample and drop the dependency on ¢ for the ease of notation. The optimality conditions
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of (28) can be split into the following sub-conditions:

oL

— =0 = V,, ly,xr) +pur,=0 (29)

oxy,

oL of

Eiad = YT fori=1,...L -1

90, 0 = ¢ 8@1/” orl =1, (30)

oL of

%_Oéul_aixlél_‘—l fOrl—l,L—l (31)

oL ,

%:0:51201(21)/% forl=1...L (32)

oL

azo — I :Ul(f(l‘l_l,@l)) fOl"lZl,...L (33)
l

oL

8—5:0 = z1= f(21-1,0;) forl=1,...L (34)
l

Notice that sub-conditions (33) and (34) carry out exactly the forward-pass of the Algorithm
2. Merging sub-conditions (31) and (32) gives

(51 :Uf(zl)§£51+1 forl=1...L—-1 s

which is the backward-pass in Algorithm 2 for computing the partial derivatives. Sub-
conditions (29) and (30) on the other hand are computational steps for taking the (sub-
)gradient update step (cf. Higham and Higham (2019)).

Appendix B. Numerical realisation

In this section we present two other suitable deterministic strategies for the computational
minimisation of (13).

B.1 Coordinate descent

The function F in Section 4 is convex in each individual variable if all other variables are
kept fixed. It therefore makes sense to consider alternating minimisation approaches, also
known as coordinate descent, for the minimisation of F, i.e.

k41 _ . k+1 k+1 k k k
O, —arg9m1HE<@1 ,...,@l_l,@l,@l+1,...,@L,xl,...,xL,1> , (35a)
l
respectively
k+1 __ : k+1 k+1 _k+1 k+1 k k
; —argmlnE<®1 NN A ,...,xj_l,mj,xj+1,...,xL_1> , (35b)
zj

for i € {1,...,L} and j € {1,...,L — 1}. Obviously, the order of updating the individual
parameters is completely arbitrary and can be replaced with permutations. However, we
want to point out that it does make sense to alternate with respect to the ® and X block,
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and to further alternate between the block of even and odd indices within the X block.
Suppose L is even, then this alternating optimisation between blocks can be written as

CLan :argminE<®1,...,@L,m'f,...,wlz_1) , (36a)
01,...,.0,
L
k+143 . k+1 k+1 k k
{5, }2, = argmin E(@1 oo, 07 ,x1,$2,x3,...,$L_2,a:L_1> , (36b)

T1,23;.,LL—1

L
{a:gfl}lil = argmin F (@’f“, el G)]zﬂ,xlfﬂ,a:g,xg“, ee L9, xlztll) . (36¢)
T2,L4,..., L[ 9
This alternating scheme has the advantage that the individual optimisation problems are
still convex, but whilst the three blocks have to be updated sequentially, every variable in
each of the three blocks can be updated in parallel. This becomes evident if we write down
the individual optimisation problems, i.e.

@f“ = argmin { <;\ 17+ \I/>* (f(xf_l,@l)) — <xf,f($f_1,@l)>} ; (37a)

S]]
41 = angmin{ (1117 +9) @) — (o (0%, 0F™) (370)
1 *
+ <2H P+ \If) (f(i ) - <f<xi,@§rf>,xf+l>} ,
o =g { (31 0) 0 = o 311 047) 79

# (514 ) (7 08h) - (st efhatii) ]

forl € {l,...,L}, i€ {1,3,...,L —1} and j € {2,4,...,L — 2}.

Note that the individual updates in (35) and in (36), respectively (37), are still implicit.
If we, for instance, want to make the updates with respect to © explicit, we can modify
(35a) to

k+1 _ : k+1 k+1 k k k
©; 7" = argmin {E (@1 RN S i ,@l,@l+1,...,@L,:Ul,...,:vL_1>

Y (38)
+D; ((9]f+1, . -,@fjf’@la @erla > -7912> ) <@lf+lv cee @fj11>@k7@f+1v S @’Z)>} )

where D; denotes the Bregman distance w.r.t. the function J(©) = Zlel 27’10 16417 —
1l

E(©,X%). Similar modifications can be deployed for the block-coordinate descent scheme
(36), respectively (37), and the auxiliary parameters X. In Appendix B.2, we briefly address
how to computationally solve the individual sub-problems (37a), (37b) and (37c), with a
special case of alternating minimisation approach: the alternating direction method of
multipliers (ADMM), see Gabay (1983).

B.2 Alternating direction method of multipliers

In the previous section we have explored how to break the optimisation problem into dif-
ferent blocks via coordinate descent. Each of these blocks could be solved with proximal
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gradient descent as described in Section 4.1.1. However, we can alternatively solve these
blocks with ADMM instead. Beginning with sub-problem (37a), we can introduce auxiliary
variables 2, = f(zF_,,0)) to replace (37a) with the constrained formulation

(@f"'l,zl) = arg min { (;H [ \I/> (2) — <$§€72>} subject to  z = f(zf 1,0),

0,z

for alll € {1,...,L}. By introducing Lagrange multipliers {,ul}lel, we can transform these
problems into saddle-point problems of the form

. L '
O™ 2, ) = ar%gllnmﬁx { <2|| |12+ \I/> (2) — <xf,z> + <M;Z - f(mf—17@)>} '

ADMM computationally solves this saddle-point problem by alternatingly minimising and
maximising the associated augmented Lagrangian

1 * 0 2
k ooy (L2 /K _ k o, k
4(@&40-(g|u +@) (2) = (af2) + (2 = (@0, 0)) + 5 |2 = flafr 0)|
for a positive parameter d;, i.e.

@{H = argminﬁf(@,zlj;u{) ,
S)

zle = arg minﬁf(@{ﬂ, z;,u{) ,
z
. : , 1 ,
1 1 _j+l
pi " = argmax LF(©7 2 ) = gl — w7
o

In the context of (37a), these updates read

. . 1) 2 i
o1 = argmin {4 | et1.0) [t et 00 )

leﬂ = Proxi(%u.”%\p)* <;z (xf - M{ + 0y f(qua @{H))) )
= o (- peb6f)
Please note that the proximal map prox 5711 (1|2 +w)~ can easily be expressed via the extended
Moreau decomposition (Beck, 2017, Theorem 6.45), i.e. J prox(%l(%”,Hngq,)*(x/cSl) =g —
ProXs, (1124 ) (z). We further know prox(;l(%u_”u\p)(x) = prox%w(:n/(l + ¢7)); hence, we

observe
: 1 . .
1 K k +1
47 = PIOX L (3 - <51 (af =1l + 01 St 0] ))> !
Lok g ko gitl 1 ko k j+1
:5[<95z — i + 0 f(a]1,0] )—PFOX%\I, m(fcz — pf + 6 fa]y, 0] )) :

which is why we can compute the update solely based on a scaled version of the proximal
map of ¥, which is the activation function of the neural network.
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Example 4 In analogy to Fxample 3 we design a feed-forward network architecture with
U = x>0, implying prozrg(z) = max(z,0), and f(x,0;) = I/VlTx + by, for © = (Wi, by).
Computing a solution to (37a) via ADMM vyields the algorithm

j+1 k N A R Y !

Wit = (%-1(951—1) ) g |2+ 5H b | (39)

- A 1 . o

= (- 07T )

B = o 6 (T + )

j+1
P L Pt ProzT 5 Tl]
l 5[ l ﬁ\p 1 +5l ’

M{H _ M{ 5 (leﬂ B ((leH)Tﬁ_l n b{“)) 7

forl e {1,...,L}, j € N and suitable initial values bY, zlo and u?. It is important to point
out that (39) is not well defined for only one sample because xffl(:Uffl)T 18 not invertible.
However, we can overcome this issue by extending E to include more samples, so that in-
stead of requiring invertibility ofxffl(a:ffl)T, we require invertibility of > 7, xflfl(:nflfl)T,
which can be achieved if one has sufficiently distinctive samples. Or we can add the term
5w, —VV;H%TO to the augmented Lagrangian, with a positive multiple T, which doesn’t affect
the minimiser but guarantees that (39) is well-defined by adding a positive multiple of the

identity matriz to xf | (xF )T, respectively S°7_, x¥,  (x%, )T.

In similar fashion to solving (37a), we can also solve (37b) and (37c) via ADMM. Because
(37b) and (37c) have identical structure but only different variables, we focus on (37b)
without loss of generality. If we follow the same line-of-reasoning as before, the associated
augmented Lagrangian reads

chtezan) = (51012 + ) @) = (o S0 D)+ (G104 ) ()= (s
= 1 O + L= - s 0|

However, the challenge lies in the optimality condition for z, which even for fixed variables
z and p doesn’t lead to a closed-form solution for = (unless ¥ is constant). Alternatively,
we can introduce another variable v with constraint v = x and formulate

chvzi) = (G 1P+ 9) @) = (ot 1 080 + (31124 0) ) - Gt

()-8 o)
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Alternatingly minimising and maximising this augmented Lagrangian yields the updates

. A k;
G+l (517}3 + (M{)2 + f(l'f_l, ®l+1)>
x]" =prox_i_y )

143, 1+
2 j
‘ - <(Nl

. . 1 .
+1 +1 gk
q = pfOXéil(%”.Hu\y)* (f(”‘z7 791111) + 5 (5‘7;11 - (M?)l)) )

j+1 J+1 Ak+1
,uj—‘,-l _ le - f (v K (I)l+1 )
l Ulj—i— :Eg+ )

foralll e {1,3,...,L —1}.

. ) j

1 . [
/Ul]—‘r = argmin {2 Hf(v7 @éf-:_ll) - Z.lj
v

B.3 Constrained optimisation

Note that it is not necessarily known a-priori how to choose the scalar parameters {\;}%
in (13). Alternatively, we can also re-formulate the constrained problem formulation (5) to

min Y £(y°, x}
B2 ) (40)
subject to By(zi, f(zi_1,0))) <0 forall l€{1,...,L—1},

similar to Gu et al. (2020). Note that we can write (40) as

s L—1
i D0 ) + 3 xso (Bulel, . 00)

for the characteristic function x<o over the non-positive orthant, which is equivalent to the
Lagrange formulation

s L1
min sup > Ay ah) + > [NBulal, f@,00) — xz0(\)] . 41
G’X{Al}le; (v 2%) ;[ 1By (zi, f(xi_1,01)) — xz0(\)] (41)

if we express x<o in terms of its conjugate x>o. Albeit being concave in {/\l}lL:_ll, the
objective function is not convex in ®,X in general, which is why swapping min and sup
will not necessarily lead to the same optimisation problem. Nevertheless, we could employ
coordinate descent or alternating direction method of minimisation techniques. We could for
example solve (41) with an alternating minimisation and proximal maximisation algorithm
of the form

S L—1
(@M1, X1 € argmin {Zayi, vr) + > A Bu(af, f(z}_y, @0)} ,

e.x iz =1
N = max (0,0 + TBe (@)1, £((l_) 1 0F) |

where the minimisation with respect to ©,X could be solved with any of the algorithms
described in Section 4 or in this section.
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Figure 13: Visualisation of the sparse coding of the sandal image object from Figure 11
computed with the SGD-BP, ISGD-BP, and LBN, respectively. Note that the
scaling of the sparse coefficients is slightly different for LBN in comparison to
SGD-BP and ISGD-BP.

Appendix C. Numerical Results

In the section we provide numerical results in addition to the ones provided in Section 4.

C.1 Visualisations

This section includes additional visualisations of the sparse autoencoder and sparse denois-
ing autoencoder outputs. The compression of the input data is achieved by ensuring that
only relatively few coeflicients of the code are non-zero. As mentioned earlier, the advantage
over conventional autoencoders is that the position of the non-zero coefficients can vary for
every input. We also provide visualisations of codes from a sample input image computed
with the SGD-BP, ISGD-BP and LBN approach in Figure 13.

In the MNIST-1K sparse autoencoder example, we observe a fast drop in validation loss
before it increases again in the LBN-S approach. As visualised in Figure 14, when we run
the LBN-D, GD-BP, SGD-BP training approaches for 750 epochs, a similar phenomenon is
only observed for the LBN-D approach, where the increase of the validation loss appears
around 250 epochs.
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Figure 14: Objective values for the sparse autoencoder trained on MNIST-1K dataset for
750 epochs for the LBN-D, GD-BP and SGD-BP scheme as explained in Sec-
tion 6.2. The training objectives (solid lines) record MSE loss plus ¢;-norm
regularisation and the validation objectives (dashed lines) report the MSE loss

values.
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