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Abstract

This paper studies the problem of designing an optimal sequence of interventions in a causal
graphical model to minimize cumulative regret with respect to the best intervention in hindsight.
This is, naturally, posed as a causal bandit problem. The focus is on causal bandits for linear
structural equation models (SEMs) and soft interventions. It is assumed that the graph’s structure is
known and has N nodes. Two linear mechanisms, one soft intervention and one observational, are
assumed for each node, giving rise to 2N possible interventions. The majority of the existing causal
bandit algorithms assume that at least the interventional distributions of the reward node’s parents are
fully specified. However, there are 2N such distributions (one corresponding to each intervention),
acquiring which becomes prohibitive even in moderate-sized graphs. This paper dispenses with
the assumption of knowing these distributions or their marginals. Two algorithms are proposed for
the frequentist (UCB-based) and Bayesian (Thompson sampling-based) settings. The key idea of
these algorithms is to avoid directly estimating the 2N reward distributions and instead estimate
the parameters that fully specify the SEMs (linear in N ) and use them to compute the rewards. In
both algorithms, under boundedness assumptions on noise and the parameter space, the cumulative
regrets scale as Õ(dL+ 1

2

√
NT ), where d is the graph’s maximum degree, and L is the length of its

longest causal path. Additionally, a minimax lower of Ω(d
L
2 −2
√
T ) is presented, which suggests

that the achievable and lower bounds conform in their scaling behavior with respect to the horizon T
and graph parameters d and L.
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1. Introduction

Multi-armed bandit (MAB) settings provide a rich theoretical context for formalizing and analyzing
sequential experimental design procedures. Each arm represents one experiment in a canonical MAB
setting, the stochastic outcome of which is represented by a random reward. The objective of a learner
is to design a sequence of arm selections (i.e., experiments) that maximizes the cumulative reward
over a time horizon. Bandit problems have a growing list of applications in various domains such as
marketing campaigns (Sawant et al., 2018), clinical trials (Liu et al., 2020), portfolio management
(Shen et al., 2015), recommender systems (Zhou et al., 2017). Various assumptions on the statistical
dependencies among the arms have led to different classes of problems, such as linear bandits (Abbasi-
Yadkori et al., 2011; Dani et al., 2008; Rusmevichientong and Tsitsiklis, 2010), combinatorial bandits
(Cesa-Bianchi and Lugosi, 2012), and contextual bandits (Tewari and Murphy, 2017). In this paper,
we focus on causal bandits (Lattimore et al., 2016) as another instance of a bandit setting in which
reward models are assumed to be the results of causal relationships.

Causal Bayesian networks represent the cause-effect relationships through a directed acyclic
graph (DAG). Each node of the causal graph represents a random variable, the edges encode the
statistical dependencies among them, and the directed edges signify causal relationships. Recently,
the effectiveness of DAGs in encoding non-trivial dependencies among random variables has led to
an interest in the study of causal bandits. In a causal bandit framework, interventions on the nodes
of a DAG are modeled as arms, and the post-intervention stochastic observations are modeled as
the arm rewards. Instead of a cumulative reward, one node’s observation is generally regarded as
the reward value. This node is usually selected to be one without any descendants. The structure of
the underlying DAG induces statistical dependencies among the arms’ rewards and their sequential
selection. Furthermore, different interventions on different subsets of nodes result in distinct reward
distribution for the reward node. In such a causal bandit framework, the objective is to minimize the
cumulative regret with respect to the best intervention in hindsight.

Causal bandits are effective for modeling several complex real-world problems. For instance, in
drug discovery, dosages of multiple drugs can be adjusted adaptively to identify a desirable clinical
outcome (Liu et al., 2020). Likewise, in advertisements campaigns, an advertisement approach can
adaptively adjust its strategies that can be modeled as interventions on their advertisement system
to maximize their return on advertisement investment (Lu et al., 2020, 2021; Nair et al., 2021). In
each of these applications, several variables affect the observed reward. In parallel, these variables
also have cause-effect relationships among them. Hence, an optimal design of experiments in such
settings often necessitate simultaneously performing interventions on multiple variables.

Literature review. Designing a causal bandit problem hinges critically on the extent of assumptions
on the topology of the underlying DAG and the probability distribution of its random variables. The
existing literature can be categorized based on different combinations of these assumptions.

The majority of the existing literature assumes that both the topology and the distributions of
the reward node’s parents are fully specified under all possible intervention models (Lattimore et al.,
2016; Sen et al., 2017; Lu et al., 2020; Nair et al., 2021). Among these works, the initial studies
posed the causal bandit problem as best arm identification, where the learner does not incur a regret
for exploration (Bareinboim et al., 2015; Lattimore et al., 2016; Sen et al., 2017). The impact of
exploration was further accounted for by Lu et al. (2020). Specifically, Lu et al. (2020) proposed
algorithms that capitalize on the causal information to improve the cumulative regrets compared
to the algorithms that do not use this information. Nair et al. (2021) extended the previous work
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by providing an instance-dependent regret bound that, in the worst case, grows with the number
of interventions provided. The shared assumption of these works is the a priori knowledge of
interventional distributions of parents of the reward node. This is a rather strong assumption since the
number of such distributions can be prohibitive. In contrast, we assume that the interventional
distributions, or their marginals, are unknown.

The setting without the knowledge of the topology and the structure of the interventional
distributions has been studied more recently (de Kroon et al., 2022; Lu et al., 2021; Bilodeau et al.,
2022). However, the algorithm of de Kroon et al. (2022) relies on auxiliary separating set algorithms,
and its improvement upon non-causal algorithms is shown only empirically. Lu et al. (2021) provide
an improved regret result for a similar setting, though only for the atomic interventions. Bilodeau
et al. (2022) consider a different case and establish adaptive regret guarantees with respect to an
unknown causal structure. They assume access to an estimate of the interventional distributions,
which can be learned offline. Each possible arm is played a certain number of times to ensure that
these estimates are sufficiently accurate. Notably, no assumptions are made about the structure of
the distributions. Furthermore, their proposed adaptive algorithm is agnostic to the causal structure
and incurs sublinear regret even in the presence of unobserved confounders. The main distinction
of our work compared to Bilodeau et al. (2022) is that their focus is on the adaptivity of the regret
guarantees, and their algorithm’s regret upper bound grows with the cardinality of the intervention
space.

One setting between the previous two settings assumes that the topology is known while the
statistical models are unknown. This setting was first studied by Yabe et al. (2018), and they obtained
a simple regret guarantee that scales polynomially in the graph size. However, the scope of this
study is limited to binary random variables and the best arm identification objective. Maiti et al.
(2022) propose an algorithm that takes a semi-Markovian graph as input and achieves a simple
regret almost optimal for a certain class of graphs. They also propose an algorithm that achieves
an improved cumulative regret compared to the non-causal bandit algorithms when all variables
are observed. The setting, however, is focused on atomic interventions on binary random variables.
Unlike Maiti et al. (2022), in which the cardinality of the intervention space is at most N , in this
paper, the intervention space consists of all subsets of the graph’s nodes with cardinality 2N . Feng
and Chen (2023) posed the non-atomic interventions as a combinatorial bandit problem of finding
the best set of nodes to intervene with a pre-specified cardinality. They assume that the causal
mechanisms follow a generalized linear model with {0, 1} Boolean variables. In their paper, they
consider only hard interventions, unlike our case. Therefore, the Gram matrix associated with their
local least-squares estimation is always about estimating the observational causal mechanism. In our
case, due to the soft intervention model, eigenvalues of the Gram matrices for estimating the different
interventional mechanisms are not straightforward to control, given that one needs to account for
other simultaneous interventions. Xiong and Chen (2023) also consider combinatorial bandits and
propose algorithms with gap-dependent sample complexity results for pure exploration problems.
Notably, these papers (Yabe et al., 2018; Maiti et al., 2022; Xiong and Chen, 2023; Feng and Chen,
2023) consider only binary random variables. In this paper, we assume that only the DAG topology is
known, which is a setup similar to that of Yabe et al. (2018) and Feng and Chen (2023). Nevertheless,
we have significant differences in the intervention model, the space of interventions, and the causal
mechanisms assumed.

3



VARICI, SHANMUGAM, SATTIGERI, AND TAJER

Revenue

User	Intention Ad	inventoryHidden	variables

reward

User	Query

Bids	chosenPredicted	click	
through	rate

User	click

Change	Prediction	
Algorithm

Ad	
placement Pricing

Ads	chosen

Figure 1: A computational advertising example borrowed from (Bottou et al., 2013). The interven-
tions are changes in the prediction algorithm for the click rate. Since they do not remove any edges,
they are soft interventions.

Motivation for soft interventions. We note that most existing causal bandit algorithms assume
deterministic hard interventions, i.e., do() interventions, for minimizing cumulative regret. The
exceptions include the study by Sen et al. (2017), which considers soft interventions on a single
node for best arm identification. Yabe et al. (2018) remark that it can also be extended to Boolean
variables. For minimizing cumulative regret under unknown interventional distributions, which is the
goal of this paper, the only exception is the adaptive algorithm of Bilodeau et al. (2022).

Under hard interventions, the variables are forced to take fixed values, and parental effects are
completely absent. In contrast, soft interventions, which modify the conditional distributions of
the target variables, can be more realistic in certain applications and have found recent interest in
causal inference literature (Jaber et al., 2020; Varici et al., 2021). In this paper, we focus on soft
interventions.

A motivating example of soft interventions is the computational advertising studied by Bottou
et al. (2013). The elements of an advertising system (e.g., query, prices, and click rates) and their
interactions can be modeled by a causal graph with a known structure, and the reward variable
accounts for the resulting revenue. However, the strengths of the interactions between the nodes
are unknown. Interventions are a set of click-rate prediction algorithms. Figure 1 illustrates the
described model. The interventions are not hard in this causal system since they do not remove the
causal effects.

Contributions. Motivated by the limitations of the existing works, our objective is to answer the fol-
lowing question: Can we use only the graph structure without the knowledge of interventional
distributions, allow soft interventions on continuous variables, and obtain cumulative regret
guarantees that scale optimally with the horizon (

√
T ) while not growing with the cardinality

of the intervention space? We answer this question affirmatively when the causal system follows a
linear structural equation model (SEM) with unknown parameters, and the interventions inherit that
structure.
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We consider per-node interventional mechanisms, giving rise to 2N possible intervention models.
Standard linear bandit algorithms also are inapplicable since the feature vectors of arms are unknown
in our case. We propose the Linear SEM Upper Confidence Bound the (LinSEM-UCB) algorithm
that achieves the cumulative regret Õ(dL+ 1

2

√
NT ) in which d is the maximum degree, and L is the

length of the longest causal path in the graph. Importantly, the number of interventions 2N does
not appear in our regret result. Instead, we have dL+ 1

2 term that depends on the topology. We also
propose the Linear SEM Thompson Sampling (LinSEM-TS) algorithm for the Bayesian setting,
and its Bayesian regret scales similar to that of LinSEM-UCB, i.e., Õ(dL+ 1

2

√
NT ). Finally, we

establish a regret lower bound that is a constant factor of d
L
2
−2
√
T , which matches the behavior of

our achievable regret Õ(dL+ 1
2

√
NT ) in terms of the horizon T and graph parameters d and L.

Key technical challenges. The central piece of our analysis pertains to characterizing the hitherto
uninvestigated cumulative regret when we have continuous variables, an intervention space that is the
power set of the graphs’ nodes, and unknown interventional distributions. This analysis faces several
challenges while developing bandit algorithms with regret guarantees. First, the linear SEM, i.e.,
weight matrices and the noise model, are unknown. Since these pieces of information are needed for
specifying the interventional distributions, not knowing them renders these distributions unknown.
A direct (naive) approach to regret analysis involves estimating all the unknown distributions,
the complexity of which grows quickly. Motivated by the fact that estimating 2N interventional
distributions explicitly bears significant redundancy, to circumvent the computational challenge,
we start by expressing the reward as a function of the intervention’s weight matrix and the random
noise vector, which is independent of the action. We note that the measurements from the nodes are
observed only after an intervention is applied. Hence, these noise vectors need to be independent of
the actions to reduce the dependency on interventions to the weight matrices. This relationship is
subsequently leveraged to estimate the unknown weight matrices containing at most 2Nd parameters.
Finally, these estimates are leveraged to estimate the rewards.

A second challenge is due to the non-linearity of the relationship between the reward values
observed and the unknown weight matrices. Specifically, even though the causal model is linear,
interventions have a compounding effect on the mean values of the nodes inducing non-linearity. This
renders the problem fundamentally different from the linear bandit problems. The third challenge is
due to applying soft interventions. Under soft interventions, unlike hard interventions, the effects of
the intervention targets’ ancestors on the reward node are not nullified. In addition, having continuous
variables (instead of binary, e.g., Yabe et al. (2018); Feng and Chen (2023)) necessitates a careful
examination of the compounded effect of the estimation errors through the causal paths.

Our regret analysis naturally decomposes the total regret into two separate terms, one accounting
for the effect of the topology through the maximum degree and the longest causal path of the graph,
and the other term captures the effect of the intervention space and the underlying data distributions.
For establishing lower bounds, we construct two bandit instances that differ by just one edge but have
very different expected rewards due to the aggregation of the difference in one edge through L layers.

Organization. The rest of the paper is organized as follows. Section 2 introduces the graphical
model, intervention model, and the causal bandit model that is built on them. Performance measures
and the quantities that will affect the regret guarantees are also defined. Section 3 outlines our
approach to the problem, and establishes the estimation procedure. Section 4 develops an upper
confidence bound-based algorithm and regret guarantees. Section 5 develops a Thompson sampling-
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based algorithm and benefits from the results developed in Section 4 to present a similar regret result.
Also, a more practical algorithm is proposed in Section 5 that is used in the numerical studies in
Section 7. Section 6 presents a minimax lower bound on the regret which shows that the scaling
behavior of our regret guarantees is necessary. The central pieces of the proofs are provided in the
main body of the paper, and the rest of the proofs are relegated to the appendix.

2. Problem Setup

Notations. Vectors are denoted by upper-case letters, e.g., X , where Xi denotes the i-th element
of vector X . Matrices are denoted by bold upper-case letters, e.g., A, where [A]i denotes the
i-th column vector of A and [A]i,j denotes the entry at row i and column j of A. For a positive
integer N , we define [N ] , {1, . . . , N}. Sets and events are denoted by calligraphic letters. For
a subset S ⊆ [N ], we define XS , X � 1(S), where � denotes the Hadamard product and the
N -dimensional binary vector 1(S) ∈ {0, 1}N is specified such that its elements at the coordinates
included in S are set to 1, and the rest are 0. Norm ‖·‖ denotes the Euclidean norm when applied
on a vector and the spectral norm when applied to a matrix. For the latter, the spectral norm of a
matrix is equal to the largest eigenvalue of the matrix. The A-norm of a vector X associated with
the positive semidefinite matrix A is denoted by ‖X‖A =

√
X>AX . We denote the singular values

of a matrix A ∈ RM×N , where M ≥ N , by

σ1(A) ≥ σ2(A) ≥ · · · ≥ σN (A) . (1)

In this paper, we often work with zero-padded vectors. As a result, the matrices that contain
these vectors have non-trivial null space leading to zero singular values. In such cases, we use the
effective smallest singular value that is non-zero. We denote the largest and smallest eigenvalues that
correspond to effective dimensions of a positive semidefinite matrix A with rank k by

σmax (A) , σ1(A) , and σmin (A) , σk(A) . (2)

Similarly, for a square matrix of the form V = AA> ∈ RN×N , we denote the largest and smallest
eigenvalues by

λmax (V) , λmax

(
AA>

)
= σ2

max(A) , (3)

and λmin (V) , λmin

(
AA>

)
= σ2

min(A) . (4)

Finally, the notation Õ is used to ignore constant and poly-logarithmic factors. We also have a table
at Appendix A that summarizes commonly used notations throughout the paper.

Graphical model. We consider a directed acyclic graph with the known structure G , (V,B), where
V , [N ] is the set of nodes, and B is the set of edges. The vector of random variables associated
with the nodes is denoted by X , (X1, . . . , XN )>. We refer to the set of parents of node i ∈ V by
pa(i). We denote the maximum degree of the graph by d , {maxi |pa(i)|} and use L to denote the
length of the longest directed path in the graph. For the causal model, we consider a linear SEM,
according to which

X = H>X + ν + ε , (5)
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where H ∈ RN×N is the edge weights matrix, and it is strictly upper triangular, ν is the constant
vector of unknown affine terms, ε accounts for the zero-mean model noise, and it is independent
of X and ν. The term ν + ε can be alternatively viewed as a noise term with an unknown mean
value. In this model, [H]i captures the weights of the causal effects of pa(i) on node i. Consequently,
the edge weight [H]j,i is non-zero if and only if j ∈ pa(i). The elements of the noise vector
ε , (ε1, . . . , εN )> are statistically independent and are assumed to be 1-sub-Gaussian. The noise
vector is assumed to satisfy ‖ε‖ ≤ mε, where mε ∈ R+ is an unknown constant.

Next, we re-arrange the terms in (5) such that the unknown terms, i.e., H and ν, can be presented
more compactly. We create a dummy node X0 = 1 and an associated dummy noise term ε0 =
1. Accordingly, we augment X and ε and redefine them as X , (1, X1, . . . , XN )> and ε ,
(1, ε1, . . . , εN )>, respectively. Hence, for any node i ∈ [N ], the dummy node 0 acts as a parent with
edge weight νi. Subsequently, we create the matrix B ∈ R(N+1)×(N+1), in which we use 0 to refer
to the index of the dummy node, i.e.,

[B]i,j =


[H]i,j , ∀i ∈ [N ], ∀j ∈ [N ] ,

νj , i = 0, ∀j ∈ [N ] ,

0 , j = 0, ∀i ∈ [N ] ∪ {0} .
(6)

Hence, (5) becomes

X = B>X + ε . (7)

Next, note that the constant X0 = 1 acts as a parent for all nodes. Hence, we expand pa(i) with the
dummy node and define

pa(i) , pa(i) ∪ {0} , ∀i ∈ [N ] . (8)

Therefore, the effective maximum degree becomes d+ 1, the effective longest path length becomes
L+ 1, and the weight between the dummy node 0 and node i is [B]0,i = νi.

Soft intervention model. The conditional distribution of Xi given its parents is denoted by
P(Xi|Xpa(i)). A soft intervention on node i refers to an action that induces a change in the con-
ditional distribution P(Xi|Xpa(i)). An intervention can impact one or more nodes simultaneously,
and we distinguish the intervention actions based on the set of nodes they impact. We denote the
intervention space by A , 2V .

To formalize the impact of our soft interventions, we model the effect of a soft intervention
on node i as an alteration in [B]i such that [B]i changes to [B∗]i 6= [B]i. We define B∗ as a
weight matrix formed by columns {[B∗]i : i ∈ V}. We refer to B and B∗ as the observational and
interventional weight matrices, respectively. We note that soft interventional changes can occur on
either the weights [H]i or the affine term νi. While the distribution of the noise variable εi can also
change without affecting its mean, such a change would not affect the expected reward. Therefore,
we only consider soft interventional changes that affect the expected reward, i.e., changes in [H]i
or the affine term νi. Since any change in the mean of εi can be attributed to a change in νi, εi can
be assumed to remain zero-mean. Hence, our model covers all possible soft interventions on linear
models that affect expected rewards.

Since an intervention can impact multiple nodes simultaneously, each intervention action imposes
changes in multiple columns of B. This leads to a distinct linear SEM model for each possible
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intervention action a ∈ A. To capture the impact of a specific intervention action a ∈ A, we define
Ba as its corresponding post-intervention weight matrix. Ba is constructed according to:

[Ba]i = 1{i∈a}[B
∗]i + 1{i/∈a}[B]i . (9)

We use Pa to denote the distribution of the random variables under intervention a ∈ A induced by
linear SEMs in (7) with weight matrix Ba. For given matrices B and B∗ we define

mB , max
i∈V,a∈A

{‖[Ba]i‖} . (10)

Since the maximum degree of a node i is d and we have augmented the weight vectors with νi’s, we
have ‖[Ba]i‖0 ≤ d + 1. The boundedness of ‖[Ba]i‖ and ‖ε‖ in conjunction with the SEM in (7)
imply that there exists a constant m ∈ R+ such that ‖X‖ ≤ m. We formalize the boundedness
assumptions as follows.

Assumption 1 (Boundedness) For given matrices B and B∗, maxi∈V,a∈A{‖[Ba]i‖} ≤ mB . Fur-
thermore, X satisfies ‖X‖ ≤ m for some known m ∈ R+.

Causal bandit model. In the setting described, a learner performs a sequence of repeated inter-
ventions. Each intervention is represented by an arm, including the null intervention (i.e., a pure
observation). The set of interventions can be abstracted by a multi-arm bandit setting with 2N arms,
one arm corresponding to one specific intervention. Following the related literature, e.g., (Lattimore
et al., 2016; Sen et al., 2017; Lu et al., 2020; Nair et al., 2021; Yabe et al., 2018), we assume the
structure of the graph G is given, and without loss of generality, we designate node N as the reward
node and accordingly XN as the reward variable. Similar to linear bandits, the reward XN is a linear
function of some other variables, namely the parents of the reward node, Xpa(N). These parent
variables Xpa(N), in turn, depend on their causal ancestors according to the linear SEM in (7). Even
though each parent contributes linearly to its immediate descendants, their compounding effects
induce a non-linearity in the overall model such that XN varies non-linearly with respect to the
entries of B and B∗. We denote the expected reward based on intervention (action) a ∈ A by

µa , Ea[XN ] , (11)

where Ea denotes expectation under Pa. Accordingly, we define the optimal action a∗ as

a∗ , arg max
a∈A

µa . (12)

The sequence of interventions over time is denoted by {at ∈ A : t ∈ N}. Upon intervention at in
round t, the learner observes X(t) , (1, X1(t), . . . , XN (t))> ∼ Pat and collects the reward XN (t).
We denote the random noise vector in round t by ε(t) , (1, ε1(t), . . . , εN (t))>, which is independent
of the intervention at. The learner does not know the observational or interventional matrices B
and B∗. More importantly, the interventional distributions of the parents of the reward variable, i.e.,
{Pa(pa(N)) : a ∈ A}, are unknown. This is in contrast to the earlier studies in (Lattimore et al.,
2016; Sen et al., 2017; Lu et al., 2020; Nair et al., 2021), which assume that these distributions are
known. Our setting is in line with those of the more recent studies in (Bilodeau et al., 2022; Lu et al.,
2021; de Kroon et al., 2022), which dispense with knowing the distributions.
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Let us denote the second moment of the parents of a node i under intervention a ∈ A by

Σi,a , EX∼Pa

[
Xpa(i)X

>
pa(i)

]
. (13)

This second-moment matrix is a function of intervention a, and the unknown weight matrices B and
B∗. Accordingly, we denote the lower and upper bounds on the minimum and maximum singular
values of these moments by

κi,min , min
a∈A

σmin (Σi,a) , κmin , min
i∈[N ]

κi,min , (14)

κi,max , max
a∈A

σmin (Σi,a) , κmax , min
i∈[N ]

κi,max . (15)

We do not assume to know these moments. Note that having a zero singular value implies that there
is a deterministic relationship among the elements of Xpa(i). However, random variables of a causal
model, such as the model described in this section, cannot have such a deterministic relationship.
Furthermore, the addition of constant X0 = 1 does not violate this property since it is the only
non-random variable in vector X , and any random variable Xi still does not possess a deterministic
relationship with the other elements ofXpa(i). Hence, in our setting, we have κmin > 0. Furthermore,
since ‖X‖2 ≤ m2, we have

0 < κmin ≤ κi,min ≤ κi,max ≤ κmax ≤ m2 . (16)

The learner’s objective is to design a policy for sequentially selecting the interventions over time
so that a measure of cumulative regret is minimized. For this purpose, we define r(t) , µa∗ − µat
as the regret incurred at time t. In this paper, we consider the following two canonical expected
cumulative regret measures.

1. Frequentist regret: By denoting the cumulative regret up to time T by R(T ) ,
∑T

t=1 r(t),
the expected cumulative regret is given by

E[R(T )] , Tµa∗ − E

[
T∑
t=1

XN (t)

]
. (17)

2. Bayesian regret: We define W , [B B∗] ∈ RN×2N to capture the entire parameterization
of the observational and interventional distributions. We define the domain of W byW ,
{Θ ∈ RN×2N : ‖[Θ]i‖ ≤ 1, ∀i ∈ [2N ]}. By denoting the cumulative regret associated
with W up to time T by RW(T ), the Bayesian regret is given by

BR(T ) , EWEε[RW(T )] , (18)

where EW is the expectation with respect to the Bayesian prior overW .

3. Causal Bandits Methodology

Before presenting the algorithms and performance guarantees, we note that despite similarities to
the conventional bandit problems and the existing causal bandits’ literature, treating our problem
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necessitates a distinct approach to algorithm design and analysis. As discussed in Section 1, this is
primarily due to the lack of information about the joint distribution of reward node’s parents under
different interventions {Pa(pa(N)) : a ∈ A}. Naively, the moments of these distributions can be
estimated from the data. However, it becomes prohibitive even for moderate values of N , which
gives rise to 2N possible interventions.

We take a different approach and use the fact that reward variable XN under intervention a is
a function of the weight matrix Ba and the noise vector ε (which is independent of a). We show
that the reward XN is a linear function of the entries of ε, and the coefficients of the noise terms
are non-linear functions of the entries of Ba. Hence, causal relationships are captured by these
coefficients. We compute these coefficients by solving each linear problem Xi = X>[Ba]i + εi
separately, and combining the estimates for [Ba]i according to the graph structure. We show how
these steps work, propose algorithms, and provide their regret analysis in the rest of the paper.

Reward Modeling. In linear SEMs, each random variable Xi can be specified as a linear function
of the exogenous noise variables ε via recursive substitution of the structural equations. This can
easily be seen by rearranging (7) to obtain X = (IN+1 −B>)−1ε. The second observation is that,
(IN+1 −B>)−1 has a simple expansion since B is strictly upper triangular. Specifically,(

IN+1 −B>
)−1

= (IN+1 −B)−> (19)

=

(
IN+1 +

∞∑
i=1

Bi

)>
(20)

=

(
L+1∑
`=0

B`

)>
, (21)

where the last equality holds since B` becomes a zero matrix for ` ≥ L+ 2. Finally, note that the
entry [B`]i,j is the sum of the weighted products along `-length directed paths from node j to node i.
Hence, using (21), the multiplier of εi in the expansion of XN has a simple description: the sum
of the products of weights along a path that traces from an upstream node i and ends at the reward
node N . The following lemma characterizes this linear relationship between the reward node XN

and the noise variables ε. The relationship is further simplified for the expected reward.

Lemma 1 Consider the linear SEM associated with intervention a with weight matrix Ba. The
reward XN is related to the noise vector ε via

XN =
L+1∑
`=0

〈[
B`
a

]
N
, ε
〉
, (22)

in which, L is defined as the length of the longest path in G. Furthermore, since {εi : i ∈ [N ]} have
zero mean values and ε0 = 1, the expected reward under intervention a is

µa = f(Ba) ,
L+1∑
`=1

[
B`
a

]
0,N

. (23)

10
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Proof The first result immediately follows from (21) as follows:

X
(7)
= (IN+1 −B>a )−1ε

(21)
=

(
L+1∑
`=0

B`
a

)>
ε , (24)

XN =
L+1∑
`=0

〈
[B`

a]N , ε
〉
. (25)

Note that ε and Ba are independent, the expectation of each εi is 0 for i ∈ [N ], and dummy noise
constant ε0 = 1. Then, we obtain

µa = E[XN ] =
L+1∑
`=0

E
[〈

[B`
a]N , ε

〉]
(26)

=

L+1∑
`=0

N∑
i=0

(
[B`

a]i,NE[εi]
)

(27)

=
L+1∑
`=0

[B`
a]0,N . (28)

Note that B0
a = IN+1, and the summand for ` = 0 in (28) is zero. Hence, by defining f(Ba) =∑L+1

`=1 [B`
a]0,N , we obtain the desired result µa = f(Ba).

Lemma 1 indicates that, given Ba, the expected reward can be computed from the sum of L + 1
components. Next, we focus on estimating the weight vectors, which are used for constructing the
matrices {Ba : a ∈ A}.
Estimating parameter vectors under causal bandit model. We use the ordinary least-squares
method to estimate vectors {[B]i, [B

∗]i : i ∈ [N ]}. For estimating [B]i and [B∗]i, we should use the
data samples from the rounds in which i is non-intervened, and intervened, respectively. Hence, our
estimates at time t, which are denoted by {[B(t)]i, [B

∗(t)]i : i ∈ [N ]}, are computed according to:

[B(t)]i , [Vi(t)]
−1

∑
s∈[t]:i/∈as

Xpa(i)(s)Xi(s) , (29)

and [B∗(t)]i , [V∗i (t)]
−1

∑
s∈[t]:i∈as

Xpa(i)(s)Xi(s) , (30)

where we have defined

Vi(t) ,
∑

s∈[t]:i/∈as

Xpa(i)(s)X
>
pa(i)(s) + IN+1, (31)

and V∗i (t) ,
∑

s∈[t]:i∈as

Xpa(i)(s)X
>
pa(i)(s) + IN+1 . (32)

Note that, first entry of Xpa(i) = 1 since dummy node 0 is contained in pa(i) = pa(i) ∪ {0} for
every node i ∈ [N ]. Accordingly, we denote our estimate of Ba at time t by Ba(t). These estimates
are formed similarly to (9) and according to:

[Ba(t)]i , 1{i∈a}[B
∗(t)]i + 1{i/∈a}[B(t)]i . (33)

11
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Note that for estimating [Ba(t)]i, based on whether node i is contained in a, we use either the
observational data (when i /∈ a) or the interventional data (when i ∈ a). Furthermore, at time t,
we construct two distinct t × (N + 1) data matrices Di(t) and D∗i (t) from the observational and
interventional data, respectively, to store the data from these two cases separately. Specifically, if
node i is intervened at time s ∈ [t], then the s-th row of D∗i (t) stores X>pa(i)(s), and the s-th row of
Di(t) is a zero vector. This construction is reversed when i is not intervened at time s. Hence,[

D>i (t)
]
s
, 1{i/∈as}X

>
pa(i)(s) , (34)

and
[
D∗i
>(t)

]
s
, 1{i∈as}X

>
pa(i)(s) . (35)

Similarly to (9), we denote the relevant data and Gram matrices for node i under intervention a by

Di,a(t) , 1{i∈a}D
∗
i (t) + 1{i/∈a}Di(t) , (36)

and Vi,a(t) , 1{i∈a}V
∗
i (t) + 1{i/∈a}Vi(t) . (37)

The constructions in (34)-(37) yield

Vi,a(t) = D>i,a(t)Di,a(t) + IN+1 . (38)

Note that matrices Vi(t) and V∗i (t) are positive definite with their smallest eigenvalue being at least
1 due to the regularization constant IN+1. Hence, λmin (Vi,a(t)) ≥ 1.

Let N∗i (t) denote the number of times that node i is intervened up to time t, for each i ∈ [N ]
and t ∈ [T ]. Similarly, denote the number of times that i is not intervened by Ni(t) = t −N∗i (t).
Formally,

N∗i (t) ,
t∑

s=1

1{i∈as} , and Ni(t) ,
t∑

s=1

1{i/∈as} = t−N∗i (t) . (39)

Accordingly, for node i under intervention a we define

Ni,a(t) , 1{i∈a}N
∗
i (t) + 1{i/∈a}Ni(t) , (40)

and denote the estimation error at time t for matrix Ba and its columns by

∆a(t) , Ba(t)−Ba , and [∆a(t)]i , [Ba(t)]i − [Ba]i , ∀i ∈ [N ] . (41)

Our analysis will show that (Lemma 1), regret analysis involves the powers of Ba(t) matrices.
To get insight into the matrix powers, consider a node j ∈ V \ pa(i) that is not a parent of node i. By
construction, vectorXpa(i) has a zero at its j-th entry. Then, the j-th rows of [Vi(t)]

−1 and [V∗i (t)]
−1

will consist of only zeros, except for their j-th entries, which are 1, accounting for the addition of
IN+1. Since j /∈ pa(i), we have [Xpa(i)]j(s) = 0 and [Ba(t)]j,i = 0 based on (29). Similarly, [B∗]i
has non-zero entries at only entries k ∈ pa(i), and [∆a(t)]i will be at most (d + 1)-sparse. We
denote the estimation error of the `-th power of Ba for each ` ∈ [L] and i ∈ [N ] by

∆(`)
a (t) , B`

a(t)−B`
a , and

[
∆(`)
a (t)

]
i
,
[
B`
a(t)

]
i
−
[
B`
a

]
i
. (42)

Based on the approach described and the estimated quantities specified, in the next section, we
present the main algorithm.

12
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4. LinSEM-UCB Algorithm

Upper confidence bound (UCB)-based algorithms are effective in a wide range of bandit settings.
Their general principle is to, sequentially and adaptively to the data, compute upper confidence
bounds on the reward of each arm. A learner, subsequently, in each round selects the arm with the
largest upper confidence bound. Confidence intervals for the estimated parameters are leveraged to
compute these bounds. In our problem, we have 2N unknown weight vectors {[B]i, [B

∗]i : i ∈ [N ]}
that specify the weight matrices {Ba : a ∈ A}, which in turn, characterize the reward variables
uniquely. Hence, we design a UCB-based algorithm by maintaining confidence intervals for these
2N vectors. We describe the details of the algorithm next.

Algorithm details. Algorithm 1 presents our main bandit algorithm referred to as Linear SEM
Upper Confidence Bound (LinSEM-UCB). As its inputs, it takes the graph structure G (set of parents
for each node), action setA, horizon T , and parameter βT . We build the confidence intervals centered
on the empirical estimates for observational and interventional weight vectors as follows:

Ci(t) ,
{
θ ∈ RN : ‖θ‖ ≤ mB, ‖θ − [B(t− 1)]i‖Vi(t−1) ≤ βT

}
, (43)

and C∗i (t) ,
{
θ ∈ RN : ‖θ‖ ≤ mB, ‖θ − [B∗(t− 1)]i‖V∗i (t−1) ≤ βT

}
, (44)

where βT ∈ R+ controls the size of the confidence intervals. Accordingly, we define the relevant
confidence interval for node i under intervention a as

Ci,a(t) , 1{i∈a}C∗i (t) + 1{i/∈a}Ci(t) . (45)

Based on these, we define the upper confidence bound for intervention a in round t as follows:

UCBa(t) ,


maxΘ∈RN×N f(Θ)

s.t. [Θ]i ∈ Ci,a(t) ∀ i ∈ [N ]
. (46)

The LinSEM-UCB algorithm computes the upper confidence bounds in each round and plays the
action that has the largest upper confidence bound. The estimates {[Ba(t)]i : i ∈ [N ]} are updated
according to (29) and (30).

Regret analysis. The regret in round t depends on the closeness of the estimates {[B(t)]i, [B
∗(t)]i :

i ∈ [N ]} to the true parameters {[B]i, [B
∗]i : i ∈ [N ]}. The estimation errors will become smaller

as more data samples are observed. Since βT controls the size of the confidence sets, a proper choice
of βT would guarantee that the true parameters lie in the defined confidence intervals with high
probability. Consider an intervention a, and suppose that constant βT is chosen such that it ensures
the closeness of the estimates of each vector {[Ba(t)]i : i ∈ [N ]} to the true parameters. Lemma 1
indicates that the expected reward µa is composed of L+ 1 components, corresponding to the set of
paths of length ` ∈ [L+ 1]. Therefore, the mismatch in the computed rewards can be decomposed
into L+ 1 components, where each term accounts for the estimation error of a certain path length.
From (42) recall that the estimation error term corresponding to paths of length ` is denoted by
∆

(`)
a . We do not form direct estimates for the error terms ∆

(`)
a and, subsequently, cannot directly

find bounds on them. Hence, to find such bounds, we leverage the estimation error bounds of the
individual estimation guarantees on weight vectors and then aggregate them according to (42). The

13
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Algorithm 1 LinSEM-UCB
1: Input: Horizon T , causal graph G, action set A, parameter βT .
2: Initialization: Initialize parameters for 2N linear problems:
3: [B(0)]i = 0(N+1)×1, [B

∗(0)]i = 0(N+1)×1, ∀i ∈ [N ] . initiliaze estimates for parameter
vectors

4: Vi(0) = IN+1, V∗i (0) = IN+1, gi(0) = 0(N+1)×1, g
∗
i (0) = 0(N+1)×1 . initiliaze auxiliary

parameters
5: for t = 1, 2, . . . , T do
6: for a ∈ A do
7: Compute UCBa(t) according to (46) .
8: end for
9: at = arg maxa∈AUCBa(t) . select the action that maximizes UCB

10: Pull at, observe X(t) = (1, X1(t), . . . , XN (t))>.
11: for i ∈ {1, . . . , N} do
12: if i ∈ at then . update interventional parameters
13: V∗i (t) = V∗i (t− 1) +Xpa(i)(t)X

>
pa(i)(t) and Vi(t) = Vi(t− 1)

14: g∗i (t) = g∗i (t− 1) +Xpa(i)(t)Xi(t) and gi(t) = gi(t− 1)
15: [B∗(t)]i = [V∗i (t)]

−1g∗i (t) and [B(t)]i = [B(t− 1)]i
16: else . update observational parameters
17: Vi(t) = Vi(t− 1) +Xpa(i)(t)X

>
pa(i)(t) and V∗i (t) = V∗i (t− 1)

18: gi(t) = gi(t− 1) +Xpa(i)(t)Xi(t) and g∗i (t) = g∗i (t− 1)
19: [B(t)]i = [Vi(t)]

−1gi(t) and [B∗(t)]i = [B∗(t− 1)]i
20: end if
21: end for
22: end for

following lemma delineates a data-dependent bound on the estimation error ∆
(`)
a (t), and will be

pivotal in our regret analysis.

Lemma 2 If ‖[∆a(t)]i‖Vi,a(t) ≤ βT for all i ∈ [N ] and t ∈ [T ], then for all ` ∈ [L+ 1] we have

∥∥∥[∆(`)
a (t)

]
N

∥∥∥
VN,a(t)

< (d+ 1)
`−1
2 (βT +mB)`

[
λ1/2

max

(
VN,a(t)

)
max
i∈[N ]

λ
−1/2
min

(
Vi,a(t)

)]
. (47)

Proof See Appendix B.

Besides the true parameters Ba, and the estimated parameters Ba(t), there is one more set of
parameters relevant for analyzing the performance of LinSEM-UCB, namely the parameters that
attain the upper confidence bounds. The following corollary will be used in parallel to Lemma 2 for
treating parameter estimations in our analysis.

Corollary 3 For all A ∈ RN×N define

∆A(t) , A−Ba(t) , and ∆
(`)
A (t) , A` −B`

a(t) . (48)

If ∀i ∈ [N ] and ∀t ∈ [T ], A satisfies the following conditions:

14
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1. ‖[A]i‖ ≤ mB;

2. ‖[A]i‖0 ≤ d+ 1;

3. ‖∆A(t)‖0 ≤ d+ 1;

4. ‖[∆A(t)]i‖Vi,a(t) ≤ βT ;

then for all ` ∈ [L] we have∥∥∥[∆(`)
A (t)

]
N

∥∥∥
VN,a(t)

< (d+ 1)
`−1
2 (βT +mB)`

[
λ1/2

max

(
VN,a(t)

)
max
i∈[N ]

λ
−1/2
min

(
Vi,a(t)

)]
. (49)

Proof See Appendix B.

For Lemma 2 to be useful in the regret analysis of LinSEM-UCB, we need to ensure that the
conditions of its statement hold with high probability. We note that estimating [Ba]i by regressing
from Xpa(i) to Xi is a linear problem. Then, the condition ‖[∆a(t)]i‖Vi,a(t) ≤ βT follows the
form of a uniform confidence interval guarantee for the linear bandits, which has been studied
extensively (Dani et al., 2008; Abbasi-Yadkori et al., 2011). Specifically, the results of Lattimore and
Szepesvári (2020, Theorem 20.5) are relevant to our confidence intervals defined in (43) and (44).
We adopt these results and modify them to account for the effect of including IN+1 (in the definition
of Vi,a(t)) as a regularizer for the least-squares estimator of [Ba]i. This is formalized in the next
theorem.

Theorem 4 Lattimore and Szepesvári (2020, Theorem 20.5) Let δ ∈ (0, 1). If ‖[Ba]i‖ ≤ mB for a
node i, then P(∃t ∈ N : [Ba]i /∈ C′i,a(t)) ≤ δ, where we have defined

C′i,a(t) ,
{
θ ∈ RN : ‖θ − [Ba(t− 1)]i‖Vi,a(t−1) ≤ mB +

√
2 log(1/δ) + log (det Vi,a(t− 1))

}
.

(50)

Note that the confidence set C′i,a(t) resembles Ci,a(t) that we defined in (45). Since ‖[Ba]i‖ ≤ mB ,
the proper choice of βT would make the both confidence sets equal.

Sketch of the result: We are ready to present the first part of the regret result. The events that do
not satisfy the conditions of Lemma 2 will incur a constant term in the regret. Since ε is assumed
to be 1-sub-Gaussian, we can use Lattimore and Szepesvári (2020, Theorem 20.5) to control the
probability of such events. Subsequently, we will use Lemma 2 to analyze each of L+ 1 components
of the regret. The structure of the graph G will affect the regret through degree d and the longest
causal path length L as implied by Lemma 2. Note that these results are for a time instance t ∈ [T ],
but we aim to find bounds on the cumulative regret. Furthermore, the properties of the intervention
space have not been accounted for yet. The term λT , which will be defined shortly, captures these
effects and is analyzed in a separate result (Theorem 6).

Theorem 5 Under Assumption 1, the regret of LinSEM-UCB is bounded by

E[R(T )] ≤ 2m+ 2(βT +mB)L+1(d+ 1)
L
2 λT , (51)
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where we have set

βT = mB +
√

2 log(2NT ) + (d+ 1) log(1 +m2T/(d+ 1)) , (52)

and λT = E

[
T∑
t=1

√
λmax (VN,at(t))

λmin (VN,at(t)) mini∈[N ] λmin (Vi,at(t))

]
. (53)

Proof For the cumulative regret specified in (17) we have

E[R(T )] = Tµa∗ − E

[
T∑
t=1

XN (t)

]
= E

[
T∑
t=1

(µa∗ − µat)
]
. (54)

From Lemma 1 we have µat = f(Bat). Therefore, E[R(T )] can be equivalently stated as

E[R(T )] = E

[
T∑
t=1

(f(Ba∗)− f(Bat))

]
. (55)

Note that we were able to use Lemma 1 since ε(t) is independent of the data, which governs the
choice of at. Since βT = mB +

√
2 log(2NT ) + (d+ 1) log(1 +m2T/(d+ 1)) is independent of

t ∈ [T ], we use the shorthand β to replace it. Next, we define the events {Ei, E∗i : ∀i ∈ [N ]} as

Ei ,
{
∀t ∈ [T ] : ‖[B(t− 1)]i − [B]i‖Vi(t−1) ≤ β

}
, (56)

and E∗i ,

{
∀t ∈ [T ] : ‖[B∗(t− 1)]i − [B∗]i‖V∗i (t−1) ≤ β

}
. (57)

We will show that the specified choice of β ensures that the events {Ei, E∗i : ∀i ∈ [N ]} hold with a
high probability. In other words, the confidence intervals of UCB contain the true parameters with
high probability. To this end, we first bound Vi(t). Since Vi(t) is a positive definite matrix, we can
use the arithmetic-geometric mean inequality (AM-GM) to upper bound its determinant through
its trace. Furthermore, since ‖X‖ ≤ m, the trace of Vi(t) will be upper bounded by di + Tm2.
Therefore, we have

det Vi(t)
(AM−GM)

≤
(

1

di
tr (Vi(t))

)di
≤
(

1 +
Tm2

di

)di
≤
(

1 +
Tm2

d

)d
. (58)

By noting that the norms of vectors {[B]i, [B
∗]i : ∀i ∈ [N ]} are bounded by mB (Assumption 1),

and setting δ = 1
2NT , Lattimore and Szepesvári (2020, Theorem 20.5) yields

P(Ec
i ) ≤ 1

2NT
, P(E∗i c) ≤ 1

2NT
, ∀i ∈ [N ] . (59)

Let E∩ denote the event that all of the events {Ei, E∗i : i ∈ [N ]} occur simultaneously, i.e.,

E∩ ,

(
N⋂
i=1

Ei
)⋂(

N⋂
i=1

E∗i

)
. (60)
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By invoking the union bound we have

P (Ec
∩) ≤

N∑
i=1

P(Ec
i ) +

N∑
i=1

P(E∗i c)
(59)
≤

N∑
i=1

(
1

2NT
+

1

2NT

)
=

1

T
. (61)

Next, we analyze the regret under the complementary events E∩ and Ec
∩. Note that the regret at any

time t can be at most 2m since |XN | ≤ ‖X‖ ≤ m. Therefore, for the expected regret we have

E[R(T )] = E

[
T∑
t=1

(f(Ba∗)− f(Bat))

]
(62)

= E

1Ec∩ T∑
t=1

(f(Ba∗)− f(Bat)︸ ︷︷ ︸
≤2m

+ E

[
1E∩

T∑
t=1

(f(Ba∗)− f(Bat)

]
(63)

≤ 2mTP(Ec
∩) + E

[
1E∩

T∑
t=1

(f(Ba∗)− f(Bat)

]
(64)

(61)
≤ 2m+ E

[
1E∩

T∑
t=1

(f(Ba∗)− f(Bat))

]
. (65)

The algorithm selects at = arg maxa∈AUCBa(t) in round t. Let B̃a denote the parameters that
attain UCBa(t), i.e., f(B̃a) = UCBa(t). By definition, UCBa∗(t) ≤ UCBat(t). Under the event
E∩, we have

f(Ba∗) ≤ UCBa∗(t) ≤ UCBat(t) = f(B̃at) , (66)

and f(Ba∗)− f(Bat) ≤ f(B̃at)− f(Bat) . (67)

For the term f(B̃at)− f(Bat), based on the definition of f in Lemma 1, by applying the Cauchy-
Schwarz (CS) inequality we have

f(B̃at)− f(Bat) =

L+1∑
`=1

([
B̃`
at

]
0,N
−
[
B`
at

]
0,N

)
(68)

≤
L+1∑
`=1

∥∥∥[B̃`
at

]
N
−
[
B`
at

]
N

∥∥∥ , (69)

(CS)

≤
L+1∑
`=1

∥∥∥[B̃`
at

]
N
−
[
B`
at

]
N

∥∥∥
VN,at (t)

λ
−1/2
min

(
VN,at(t)

)
. (70)

Note that [Bat(t)]N is an estimate of [Bat ]N , and [B̃at ]N lies in the confidence interval that is
centered on [Bat(t)]N . We decompose

[
B̃`
at

]
N
−
[
B`
at

]
N

into two parts by adding and subtracting
the term

[
B`
at(t)

]
N

as follows[
B̃`
at

]
N
−
[
B`
at

]
N

=
([

B̃`
at

]
N
−
[
B`
at(t)

]
N

)
+
([

B`
at(t)

]
N
−
[
B`
at

]
N

)
, (71)
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and due to the triangle inequality, we have∥∥∥[B̃`
at

]
N
−
[
B`
at

]
N

∥∥∥
VN,at (t)

(72)

≤
∥∥∥[B̃`

at

]
N
−
[
B`
at(t)

]
N

∥∥∥
VN,at (t)

+
∥∥∥[B`

at(t)
]
N
−
[
B`
at

]
N

∥∥∥
VN,at (t)

. (73)

Using (73) in the right-hand side of (65) we obtain

E[R(T )]
(67)
≤ 2m+ E

[
1E∩

T∑
t=1

(f(B̃at)− f(Bat))

]
(74)

(73)
≤ 2m+ E

[
1E∩

T∑
t=1

L+1∑
`=1

∥∥∥[B̃`
at

]
N
−
[
B`
at(t)

]
N

∥∥∥
VN,at (t)

λ
−1/2
min

(
VN,at(t)

)]
(75)

+ E

[
1E∩

T∑
t=1

L+1∑
`=1

∥∥∥[B`
at(t)

]
N
−
[
B`
at

]
N

∥∥∥
VN,at (t)

λ
−1/2
min

(
VN,at(t)

)]
. (76)

Under the event E∩, the conditions of Lemma 2 are satisfied for matrices ∆
(`)
a (t) and Bat . Similarly,

the conditions of Corollary 3 are satisfied for matrices B̃`
at−B`

at(t), and B̃at . Therefore, by applying
Lemma 2 to each term in (76), and Corollary 3 to each term in (75), we obtain

E[R(T )] ≤ 2m+ E

[
1E∩

T∑
t=1

√
λmax (VN,at(t))

λmin (VN,at(t)) mini∈[N ] λmin (Vi,at(t))

]

× 2
L+1∑
`=1

(d+ 1)
`−1
2 (β +mB)` (77)

≤ 2m+ E

[
T∑
t=1

√
λmax (VN,at(t))

λmin (VN,at(t)) mini∈[N ] λmin (Vi,at(t))

]

× 2
L+1∑
`=1

(d+ 1)
`−1
2 (β +mB)` (78)

= 2m+ 2λT
1√
d+ 1

L+1∑
`=1

((β +mB)
√
d+ 1)` , (79)

in which, λT , E
[∑T

t=1

√
λmax(VN,at (t))

λmin(VN,at (t)) mini∈[N ] λmin(Vi,at (t))

]
. Note that, for c ≥ 1,

L+1∑
`=1

c` =
cL+2 − 1

c− 1
− 1 ≤ 2cL+1 . (80)

Since (β +mB)
√
d+ 1

(52)
>
√

2
√

2 log 2 > 1, by using (80) in (79) we obtain

E[R(T )] ≤ 2m+
2λT√
d+ 1

((β +mB)
√
d+ 1)L+1 (81)

= 2m+ 2λT (β +mB)L+1(d+ 1)
L
2 . (82)
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Next, we analyze the λT term in (53), which in conjunction with Theorem 5 characterizes our desired
regret bound.

Theorem 6 Under Assumption 1, λT specified as

λT , E

[
T∑
t=1

√
λmax (VN,at(t))

λmin (VN,at(t)) mini∈[N ] λmin (Vi,at(t))

]
, (83)

is bounded according to

λT <
4g(τ)√
κmin

√
NT + 2

√
2(N + 1)τg(τ) +

2
√

2N
√
τg(τ)√

κmin
log

(
T

2N

)
+
m

T
+

2m

3
+ 1 , (84)

where τ = α2m4

κ2min
, α =

√
16
3 log((d+ 1)NT T/2(T + 1)), and g(τ) =

√
2(
√
τκmax +

√
τκmin + 1).

Furthermore, since α = O(
√

log(T )), τ = O(log(T )), and g(τ) = O(
√

log(T )), we can write

λT = K1

√
NT +K2(log(T ))2 +K3 , (85)

where K1 = 4g(τ)√
κmin

, and K2 and K3 are constants independent of T .

Proof We start by simplifying the notation for the quantity to bound. Note that αT is a function of T
and independent of a given t ∈ [T ]. For simplicity, we use α as a shorthand for αT . We also define
CN (t) and S(t) to compactly express λT as follows

CN (t) ,

√
λmax (VN,at(t))

λmin (VN,at(t))

(38)
=

√
σ2

max

(
DN,at(t)

)
+ 1

σ2
min

(
DN,at(t)

)
+ 1

, (86)

S(t) ,
1√

mini∈[N ] λmin (Vi,at(t))

(38)
=

1√
mini∈[N ] σ

2
min

(
Di,at(t)

)
+ 1

, (87)

based on which we have,

λT = E

[
T∑
t=1

CN (t)S(t)

]
. (88)

For bounding E
[∑T

t=1CN (t)S(t)
]
, we will use upper and lower bounds for the maximum and

minimum singular values of Di,at(t). However, such bounds depend on the number of non-zero
rows of Di,at(t) matrices, which equals to values of the random variable Ni,at(t). To start, define
the constants

εn , max
{
αm2√n, α2m2

}
, ∀n ∈ [T ] . (89)
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Then, for each triplet of i ∈ [N ], t ∈ [T ], and n ∈ [t], we define the error events Ei,n(t), E∗i,n(t) as:

Ei,n(t) ,

{
Ni(t) = n and

{
σmin (Di(t)) ≤ max

{
0,
√
nκmin −

εn√
nκmin

}
or σmax (Di(t)) ≥

√
nκmax +

εn√
nκmin

}}
,

(90)

E∗i,n(t) ,

{
N∗i (t) = n and

{
σmin (D∗i (t)) ≤ max

{
0,
√
nκmin −

εn√
nκmin

}
or σmax (D∗i (t)) ≥

√
nκmax +

εn√
nκmin

}}
.

(91)

In other words, the event Ei,n(t) specifies the condition under which at least one of the terms
σmin (Di(t)) and σmax (Di(t)) does not conform the lower and upper bounds that we construct.
E∗i,n(t) has the counterpart implications for singular values of D∗i (t). The next result shows that
events Ei,n(t) and E∗i,n(t) occur with low probability.

Lemma 7 The probability of the events Ei,n(t) and E∗i,n(t) defined in (90) and (91) are upper
bounded as

P(Ei,n(t)) ≤ (d+ 1) exp

(
−3α2

16

)
, (92)

and P(E∗i,n(t)) ≤ (d+ 1) exp

(
−3α2

16

)
. (93)

Proof We will prove the analysis for bounding P(Ei,n(t)) and analysis for P(E∗i,n(t)) follows
similarly. The core of the proof is using Freedman’s concentration inequality for matrix martingales.
We define the martingale sequence Yi(k), with difference sequence Zi(k), and the predictable
quadratic variation of the process Wi(k) as follows

Zi(s) , 1{i/∈as}

(
Xpa(i)(s)X

>
pa(i)(s)− Σi,as

)
, ∀s ∈ [T ] , (94)

Yi(k) ,
k∑
s=1

Zi(s) , ∀k ∈ [T ] , (95)

and Wi(k) ,
k∑
s=1

E[Z2
i (s) | Fs−1] , ∀k ∈ [T ] , (96)

where Fs−1 , σ(a1, X(1), . . . , as−1, X(s − 1), as). Under the event Ei,n(t) we have Ni(t) = n.
We will show that, given Ni(t) = n, we have ‖Wi(t)‖ ≤ 2m4n. Subsequently, given the event
Ei,n(t), we will show that σmax (Yi(t)) ≥ εn. The probability of these two events occurring together
will be bounded by the matrix Freedman inequality. Finally, P(Ei,n(t)) will be upper bounded by the
same probability. Detailed analysis is provided in Appendix B.
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Now that we have bounds on the probability of error events Ei,n(t) and E∗i,n(t), we define the union
error event E∪ as

E∪ , {∃ (i, t, n) : i ∈ [N ], t ∈ [T ], n ∈ [t], Ei,n(t) or E∗i,n(t)} . (97)

By taking a union bound and using Lemma 7 we have

P(E∪) ≤
N∑
i=1

T∑
t=1

t∑
n=1

(P(Ei,n(t)) + P(E∗i,n(t))) (98)

≤ NT (T + 1)(d+ 1) exp

(
−3α2

16

)
(99)

Now we turn back to E
[∑T

t=1CN (t)S(t)
]

to analyze it under the complementary events E∪ and Ec
∪.

E

[
T∑
t=1

CN (t)S(t)

]
= E

[
1E∪

T∑
t=1

CN (t)S(t)

]
+ E

[
1Ec∪

T∑
t=1

CN (t)S(t)

]
. (100)

Analyzing the second term will be more involved. Let us start with the first one.

Bounding E
[
1E∪

∑T
t=1CN (t)S(t)

]
. Since λmin (Vi,at(t)) ≥ 1, we have the following uncondi-

tional upper bound

CN (t)S(t) =

√
λmax (VN,at(t))

λmin (VN,at(t))
· 1√

mini∈[N ] λmin (Vi,at(t))
≤
√
λmax (VN,at(t)) . (101)

For finding an unconditional upper bound on λmax (VN,at(t)), we leverage ‖X‖ ≤ m as follows

λmax (VN,at(t)) = λmax

(
IN+1 +

t∑
s=1

1{N∈as}Xpa(i)(s)X
>
pa(i)(s)

)
(102)

≤ 1 +

t∑
s=1

1{N∈as}λmax

(
Xpa(i)(s)X

>
pa(i)(s)

)
(103)

≤ 1 +

t∑
s=1

λmax

(
Xpa(i)(s)X

>
pa(i)(s)

)
(104)

= 1 +

t∑
s=1

∥∥Xpa(i)(s)
∥∥2 (105)

≤ m2t+ 1 . (106)
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Therefore, the desired quantity is bounded by

E

[
1E∪

T∑
t=1

CN (t)S(t)

]
(101)
≤ E

[
1E∪

T∑
t=1

√
λmax (VN,at(t))

]
(107)

(106)
≤ E

[
1E∪

T∑
t=1

√
m2t+ 1

]
(108)

= E[1E∪ ]

T∑
t=1

√
m2t+ 1 (109)

= P(E∪)

T∑
t=1

√
m2t+ 1 . (110)

We have derived a bound for P(E∪) at (99). The sum term is bounded as

T∑
t=1

√
m2t+ 1 ≤ (m

√
T + 1) +

T−1∑
t=1

(m
√
t+ 1) (111)

≤ m
√
T + T +

∫ T

t=1
m
√
tdt (112)

= m
√
T + T +

2m

3
(T 3/2 − 1) . (113)

By setting α =
√

16
3 log((d+ 1)NT 5/2(T + 1)), we obtain

E

[
1E∪

T∑
t=1

√
m2t+ 1

]
(110)
≤ P(E∪)

T∑
t=1

√
m2t+ 1 (114)

(99)
≤ NT (T + 1)(d+ 1)

exp(log((d+ 1)NT 5/2(T + 1)))︸ ︷︷ ︸
=T−3/2

T∑
t=1

√
m2t+ 1 (115)

(113)
≤ T−3/2

(
m
√
T + T +

2m

3
(T 3/2 − 1)

)
(116)

≤ m

T
+

2m

3
+ 1 . (117)

Bounding E
[
1Ec∪

∑T
t=1CN (t)S(t)

]
. Given the event Ec

∪, all the events {Ec
i,n(t), E∗i,nc(t) : i ∈

[N ], t ∈ [T ], n ∈ [t]} hold. Therefore, we can use the following bounds on the singular values

σmax (Di,at(t)) ≤
√
Ni,at(t)κmax +

αm2

√
κmin

max

{
1,

α√
Ni,at(t)

}
, (118)

σmin (Di,at(t)) ≥ max

{
0,
√
Ni,at(t)κmin −

αm2

√
κmin

max

{
1,

α√
Ni,at(t)

}}
. (119)
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Note that for values of Ni,at(t) that are smaller than a certain threshold, the right-hand side of (119)
becomes zero. The threshold above which this lower bound becomes non-zero will be critical in the
following steps. Hence, we define the constant

τ ,
α2m4

κ2
min

. (120)

When Ni,at(t) ≥ τ , we have
√
Ni,at(t) ≥ αm2

κmin
≥ α since κmin ≤ m2, in which case (119) reduces

to

σmin (Di,at(t)) ≥ max

{
0,
√
Ni,at(t)κmin −

√
τκmin

}
. (121)

To facilitate the analysis, we dispense with the square-root terms by using the following bounds

CN (t)
(86)
=

√
σ2

max

(
DN,at(t)

)
+ 1

σ2
min

(
DN,at(t)

)
+ 1
≤
√

2
σmax (DN,at(t)) + 1

σmin (DN,at(t)) + 1
, (122)

S(t)
(87)
=

1√
mini∈[N ] σ

2
min

(
Di,at(t)

)
+ 1
≤

√
2

mini∈[N ] σmin (Di,at(t)) + 1
. (123)

Note that (122) follows from x2+1
y2+1

≤ 2(x+1
y+1 )2 when x ≥ y ≥ 0, and (123) follows from 2(x2 +1) >

(x+ 1)2. Next, we define the following two functions of x ∈ R+:

g(x) ,
√

2

√
xκmax +

√
τκmin max

{
1, α√

x

}
+ 1

max
{

0,
√
xκmin −

√
τκmin

}
+ 1

, (124)

h(x) ,

√
2

max
{

0,
√
xκmin −

√
τκmin

}
+ 1

. (125)

Given the event Ec
∪, we bound CN (t) and S(t) in terms of the newly defined g and h functions as

1Ec∪CN (t)
(122)
≤
√

2
σmax (DN,at(t)) + 1

σmin (DN,at(t)) + 1
(126)

(118),(121)
≤

√
2

√
NN,at(t)κmax +

√
τκmin max

{
1, α√

NN,at (t)

}
+ 1

max
{

0,
√
NN,at(t)κmin −

√
τκmin

}
+ 1

(127)

= g(NN,at(t)) , (128)

1Ec∪S(t)
(123)
≤

√
2

mini∈[N ] σmin (Di,at(t)) + 1
(129)

(121)
≤

√
2

mini∈[N ] max
{

0,
√
Ni,at(t)κmin −

√
τκmin

}
+ 1

(130)

= max
i∈[N ]

h(Ni,at(t)) . (131)
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Plugging inequalities in (128) and (131) into 1Ec∪
∑T

t=1CN (t)S(t), we have

1Ec∪

T∑
t=1

CN (t)S(t) ≤
T∑
t=1

g(NN,at(t)) max
i∈[N ]

h(Ni,at(t)) . (132)

Note that h(x) is a non-increasing function of x: it is equal to
√

2 for x ≤ τ , and it is decreasing for
x ≥ τ . Furthermore, for n ≥ τ values, we have

√
n ≥ αm2

κmin
≥ α, and max

{
1, α√

n

}
= 1. Hence,

g(n) =
√

2

√
nκmax +

√
τκmin + 1√

nκmin −
√
τκmin + 1

, ∀n ≥ τ , (133)

which is also a decreasing function of n for n ≥ τ . To use this behavior of g(n), we split the (132)
into two parts as follows.

T∑
t=1

g(NN,at(t)) max
i∈[N ]

h(Ni,at(t)) =
T∑
t=1

1{NN,at (t)<τ}g(NN,at(t)) max
i∈[N ]

h(Ni,at(t))

+
T∑
t=1

1{NN,at (t)≥τ}g(NN,at(t)) max
i∈[N ]

h(Ni,at(t)) . (134)

We will bound each of the two summands next.

Bounding
∑T

t=1 1{NN,at (t)<τ}g(NN,at(t)) maxi∈[N ] h(Ni,at(t)). Note that if n < τ , g(n) be-
comes

g(n)
(124)
=
√

2

(√
nκmax +

√
τκmin max

{
1,

α√
n

}
+ 1

)
, n < τ . (135)

By noting that maxi∈[N ] h(Ni,at(t)) ≤
√

2, we obtain

T∑
t=1

1{NN,at (t)<τ}g(NN,at(t)) max
i∈[N ]

h(Ni,at(t)) ≤
√

2

T∑
t=1

1{NN,at (t)<τ}g(NN,at(t)) (136)

≤
√

2
τ−1∑
n=1

g(n) . (137)

Substituting the expression of g(n) in (135) into (137), and splitting it into two sums for n ≤
⌊
α2
⌋

and n ≥
⌊
α2
⌋

+ 1 cases, we obtain

√
2

τ−1∑
n−1

g(n)
(135)
= 2

τ−1∑
n=1

(√
nκmax +

√
τκmin max

{
1,

α√
n

}
+ 1

)
(138)

= 2

(
τ − 1 +

√
κmax

τ−1∑
n=1

√
n+
√
τκmin

( bα2c∑
n=1

α√
n

+

τ−1∑
n=bα2c+1

1

))
. (139)
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We bound the sum terms in (139) as follows:

τ−1∑
n=1

√
n ≤

∫ τ

n=1

√
ndn =

2

3
(τ3/2 − 1) ≤ 2

3
τ3/2 , (140)

and
bα2c∑
n=

α√
n

= 2α

bα2c∑
n=1

(
√
n−
√
n− 1) = 2α(

√
bα2c) ≤ 2α2 . (141)

Plugging these results back to (139), and using τ ≥ α2, we obtain

√
2

τ−1∑
n=1

g(n) ≤ 2

(
τ − 1 +

√
κmax

τ−1∑
n=1

√
n+
√
τκmin

(bα2c∑
n=1

α√
n︸ ︷︷ ︸

≤2α2

+

τ−1∑
n=bα2c+1

1

︸ ︷︷ ︸
≤τ−α2

))
(142)

(140)
≤ 2

(
τ +

2

3

√
κmaxτ

3/2 +
√
τκmin(τ + α2︸︷︷︸

≤τ

)

)
(143)

≤ 2

(
τ +

2

3

√
κmaxτ

3/2 + 2
√
κminτ

3/2

)
(144)

< 4τ(
√
κmaxτ +

√
κminτ + 1) (145)

= 2
√

2τg(τ) . (146)

Hence, we have the following bound for the first summand

T∑
t=1

1{NN,at (t)<τ}g(NN,at(t)) max
i∈[N ]

h(Ni,at(t)) ≤ 2
√

2τg(τ) , (147)

which is a constant term.

Bounding
∑T

t=1 1{NN,at (t)≥τ}g(NN,at(t)) maxi∈[N ] h(Ni,at(t)). Using the fact that g(n) is a de-
creasing function for n ≥ τ , we have

1{NN,at (t)≥τ}g(NN,at(t)) ≤ g(τ) , (148)

and
T∑
t=1

1{NN,at (t)≥τ}g(NN,at(t)) max
i∈[N ]

h(Ni,at(t))
(148)
≤ g(τ)

T∑
t=1

max
i∈[N ]

h(Ni,at(t)) . (149)

The sum
∑T

t=1 maxi∈[N ] h(Ni,at(t)) is the final critical piece in the proof. h(n) is a non-increasing
function, and a decreasing one for n ≥ τ . However, the argument of h in (149) is changing due to
taking a maximum over N possible values. We will prove in the following lemma that this can be
compensated by having a

√
2N factor on top of the optimal scaling behavior

√
T .

Lemma 8 The term
∑T

t=1 maxi∈[N ] h(Ni,at(t)) is bounded by

T∑
t=1

max
i∈[N ]

h(Ni,at(t)) < 2N

(
√

2τ +

√
2

κmin

(√
2T

N
+
√
τ log

(
T

2N

)))
. (150)
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Proof See Appendix B.

We are ready to combine the pieces to reach the final result. We apply Lemma 8 and (146) in (134),
and then on (132) to obtain

1Ec∪

T∑
t=1

CN (t)S(t) ≤
T∑
t=1

g(NN,at(t)) max
i∈[N ]

h(Ni,at(t)) (151)

<
4g(τ)√
κmin

√
NT + 2

√
2(N + 1)τg(τ) +

2
√

2N
√
τg(τ)√

κmin
log

(
T

2N

)
, (152)

where g(τ) =
√

2(
√
τκmax +

√
τκmin + 1) since τ makes the denominator in (133) equal to 1.

Note that the upper bound we have just found is not a random variable but a constant. Then,
E
[
1Ec∪

∑T
t=1CN (t)S(t)

]
is immediately upper bounded by this result. Also recall the result in

(117), based on which we have

E

[
1E∪

T∑
t=1

CN (t)S(t)

]
(117)
≤ m

T
+

2m

3
+ 1 . (153)

Therefore, the final result is

λT = E

[
1Ec∪

T∑
t=1

CN (t)S(t)

]
+ E

[
1E∪

T∑
t=1

CN (t)S(t)

]
(154)

<
4g(τ)√
κmin

√
NT + 2

√
2(N + 1)τg(τ) +

2
√

2N
√
τg(τ)√

κmin
log

(
T

2N

)
+
m

T
+

2m

3
+ 1 . (155)

Finally, note that α = O(
√

log(dNT )) and τ = O(log(dNT )). Also, κmax and κmin are indepen-
dent of T . Hence, ignoring the logarithmic terms and constants,

λT = Õ(
√
NT ) . (156)

Finally, we combine Theorem 5 and 6 to obtain the regret bound of our algorithm, formalized next.

Theorem 9 Under Assumption 1, the regret of LinSEM-UCB is

E[R(T )] = Õ(dL+ 1
2

√
NT ) . (157)

Proof Since βT = mB +
√

2 log(2NT ) + (d+ 1) log(1 +m2T/(d+ 1)) and mB is constant,
ignoring the poly-logarithmic factors, (βT +mB)L+1 contributes (d+ 1)

L+1
2 factor to the result of

Theorem 5. Factoring the result of Theorem 6 for λT , we obtain E[R(T )] = Õ(dL+ 1
2

√
NT ).
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Algorithm 2 LinSEM-TS
1: Input: Causal graph G, action set A, hyperparameter σ, prior distribution π0.
2: Initialization: Initialize parameters for 2N linear problems:
3: [B(0)]i = 0(N+1)×1, [B

∗(0)]i = 0(N+1)×1, ∀i ∈ [N ] . initiliaze estimates for parameter
vectors

4: Vi(0) = IN+1, V∗i (0) = IN+1, gi(0) = 0(N+1)×1, g
∗
i (0) = 0(N+1)×1 . initiliaze auxiliary

parameters
5: for t = 1, 2, . . . T do
6: W̆ ∼ πt−1(W | X(1), . . . , X(t− 1))
7: for a ∈ A do
8: Construct B̆a from rows of W̆ similarly to (9).
9: µ̂a ← f(B̆a) . expected reward under action a

10: end for
11: at = arg maxa µ̂a . select the action that maximizes expected reward
12: Pull at, observe X(t) = (1, X1(t), . . . , XN (t))>.
13: Update the posterior to πt under the linear model, similarly to Lines 11-21 of Algorithm 1.
14: end for

5. LinSEM-TS Algorithm

Thompson sampling (TS)-based algorithms gradually refine the posterior distributions of the reward
for each action and select actions by sampling from their posterior distributions. The actions are
selected sequentially in a way that they balance the exploitation and the exploration processes. To this
end, a TS algorithm needs to update the posterior distributions of all arms. Similar to LinSEM-UCB’s
improvement over UCB, the known causal structure can be leveraged to improve the performance of
TS in causal bandits.

Assumption 2 (Bounded prior) The domain of the prior distribution of parameters is bounded as
W , {W ∈ R2N×N : ‖[W]i‖ ≤ mB ∀i ∈ [2N ]}.

We denote the prior distribution of W by π0, and denote its posterior given the filtration generated
until time t by πt for t ∈ N. The LinSEM-TS algorithm at time t samples from the posterior
distribution πt−1. Subsequently, it constructs the weight matrix for each intervention action and
computes the corresponding expected reward. Next, the intervention with the highest expected
reward is selected, and the graph instance X(t) is observed. Finally, the posterior distributions of the
2N independent weight vectors that constitute W are updated according to the linear model.

We note that LinSEM-TS has two advantages over LinSEM-UCB. First, the constrained opti-
mization problem for computing UCBa(t) has no closed-form solution to our knowledge. Hence,
LinSEM-UCB is computationally expensive to implement in practical settings. LinSEM-TS does not
suffer from this problem. Secondly, LinSEM-UCB requires to know bound m on ‖X‖ and horizon
T since the radius of the confidence intervals βT depends on m and T . In contrast, LinSEM-TS does
not require to know m or T . Hence, LinSEM-TS is an anytime algorithm. Furthermore, we can
ensure a performance guarantee similar to that of Theorem 9 for the Bayesian setting. This guarantee
is formalized in the next theorem.
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Algorithm 3 LinSEM-TS-Gaussian
1: Input: Causal graph G, action set A, hyperparameter σ.
2: Initialization: Initialize parameters for 2N linear problems:
3: [B(0)]i = 0N×1, [B

∗(0)]i = 0N×1, ∀i ∈ [N ] . initiliaze estimates for parameter vectors
4: Vi(0) = IN+1, V∗i (0) = IN+1, gi(0) = 0N×1, g

∗
i (0) = 0N×1 . initiliaze auxiliary

parameters
5: for t = 1, 2, . . . T do
6: for i ∈ {1, . . . , N} do
7: [B̆(t)]i ∼ N ([B(t− 1)]i, σ

2[Vi(t− 1)]−1)
8: [B̆∗(t)]i ∼ N ([B∗(t− 1)]i, σ

2[V∗i (t− 1)]−1)
9: end for

10: for a ∈ A do
11: Construct B̆a from rows of W̆ , [B̆ B̆∗] similarly to (9).
12: µ̂a ← f(B̆a)
13: end for
14: at = arg maxa µ̂a . select the action that maximizes the expected reward
15: Pull at, observe X(t) = (X1(t), . . . , XN (t))>.
16: Update the Gaussian posteriors under the linear model.
17: end for

Theorem 10 Under Assumption 1 and Assumption 2, the Bayesian regret of LinSEM-TS is

BR(T ) = Õ(dL+ 1
2

√
NT ) . (158)

Proof The main tools of the proofs, e.g., Lemma 2, are similar to that proof of frequentist result.
However, the proof for Thompson sampling critically relies on the property that conditional distribu-
tions of different actions are almost surely the same given proper filtration. Importantly, this filtration
is different than the one used for concentration inequalities in the proof of Lemma 7. Finally, the
ranges of the parameters regarding the intervention space, e.g., κmin, are different from that of the
frequentist analysis and are examined carefully. For detailed proof, see Appendix B.

5.1 LinSEM-TS-Gaussian Algorithm

We have provided LinSEM-TS and its performance guarantees under the bounded noise and bounded
prior distributions. Sampling from the posteriors under bounded priors can be done via different
numerical techniques yet they can be time-consuming. For instance, commonly used Gibbs sampling
has a long convergence time, especially in the high-dimensional regime. To circumvent this, in
this section, we present a modified algorithm that leverages Gaussian priors, which we refer to as
LinSEM-TS-Gaussian. We note that the theoretical guarantees presented in Section 5 do not apply to
LinSEM-TS-Gaussian since boundedness assumptions are not satisfied.

Gaussian posterior computation. We use a Gaussian distribution for the prior distribution of
the parameters and a Gaussian likelihood model for the data. We follow the standard Bayesian
posterior inference (Agrawal and Goyal, 2013). To summarize, consider the posterior computation
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of parameters [B]i. The likelihood function of Xi(t) is given by N (〈[B]i, Xpa(i)(t)〉, σ2
i ) according

to the linear SEM. We start with the prior N (0N×1, IN+1) for [B]i. If the prior of [B]i at round
t is N ([B(t − 1)]i, σ

2[Vi(t − 1)]−1), then the posterior distribution at round t is computed as
N ([B(t)]i, σ

2[Vi(t)]
−1). A similar computation shows that the posterior distribution of [B∗]i at

round t is N ([B∗(t)], σ2[V∗i (t)]
−1).

Algorithm details. Algorithm 3 presents the LinSEM-TS-Gaussian algorithm. Since we have
exact forms of the posteriors of weight vectors, we explicitly write the sampling of parameters in
lines 7-8. Estimated weight matrices and intervention selection are all formed similarly to those of
Algorithm 2. Finally, interventional and observational posteriors are updated according to the linear
model specified earlier.

6. Lower Bounds

In this section, we provide minimax lower bounds on the regret. The main observation is that the
dependence of these lower bounds on the graph parameters (maximum degree d and longest causal
path length L) conforms to that of the achievable regret bounds. For this purpose, we consider a
general class of graphs and prove a minimax lower bound by showing that there exists a causal
bandit environment parameterized by a linear SEM, for which the regret of any algorithm is at least a
constant factor of d

L
2
−2
√
T .

A general class of graphs. Note that given values of d and L necessitate that the graph size N
is at least max{d + 1, L + 1}, and at most

∑L
`=0 d

` < 2dL. On the other hand, d and L can
vary independently without imposing restrictions on one another. Therefore, we aim to prove a
lower bound for fixed d and L whereas N can vary freely. In the proof of the following theorem,
we construct graph structures and bandit instances that are flexible enough to accommodate all
possible choices of d and L, and the graph size N that can have varying sizes in the range N ∈
{(dL− d+ 1), . . . , dL + (dL− d+ 1)}. Since N < 2dL, this class contains large enough graphs
that have the same order as the largest possible graphs for fixed d and L.

Theorem 11 Given the pair (d, L), for any N ∈ {d(L − 1) + 2, . . . , dL + d(L − 1) + 1}, there
exists a causal bandit instance with graph parameters (d, L,N) such that expected regret of any
algorithm is at least

E[R(T )] ≥ cdL
2
−2
√
T , (159)

where c > 0 is a constant.

Sketch of the proof. The central idea of the proof is as follows. Two linear SEM causal bandit
instances that differ by only one edge parameter are hard to distinguish. At the same time, we can
construct them to have different optimal actions, indicating that a selection policy cannot incur small
regret for both at the same time under the same data realization. Note that, the difference of the
rewards, or equivalently the regrets, observed by these two bandit instances under the same action
can be computed by tracing the effect of that differing edge parameter over all the paths that end at
the reward node. We use a hierarchical structure that consists of L layers and d nodes at each layer to
maximize the number of such paths. We also use d-ary trees to control the number of nodes in the
graph without affecting the lower bound analysis. See Appendix C for detailed proof.
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Remark 12 We remark that optimism in the face of uncertainty linear bandit algorithm (OFUL)
of (Abbasi-Yadkori et al., 2011) has O(d

√
T ) regret, whereas the lower bound for linear bandit

problem with finite arms isO(
√
dT ). Note that the linear bandit problem can be considered a special

case of our framework with L = 1. Since our confidence intervals rely on the same principles as
OFUL, the gap between lower and upper bounds established in the paper, i.e., d

L
2 factor, is due to

the aggregated effect of L layers. Tighter regret results would have been possible by using a more
sophisticated approach for building the confidence intervals along with elimination, such as the
SupLinUCB algorithm of (Chu et al., 2011). However, this investigation is out of the scope of this
paper.

7. Simulations

The main novelty of our work is to use causal graph knowledge without knowing the interventional
distributions. Furthermore, we use soft interventions on continuous variables. To the best of our
knowledge, there does not exist any causal bandit algorithm that suits this setting. The standard linear
bandit algorithms are also not applicable to causal bandits for linear SEMs due to the feature vectors
being unknown. Therefore, we compare the performance of our method to that of the non-causal UCB
algorithm. For practical implementation, we use Algorithm 3 for the simulations in this section. 1

Parameterization. We consider linear SEMs with soft interventions under the Bayesian setting.
For a given causal graph structure, the prior distributions of the non-zero entries of observational
parameters B are sampled independently at random according to the uniform distribution on
[−1,−0.25] ∪ [0.25, 1]. Priors for interventional weights are set as negatives of observational
weights, B∗ = −B, so that the effect of an intervention is strong. To approximate the Bayesian
setting, the true weights [B]i = −[B∗]i are sampled 10 times from a Gaussian prior with small
variances. The distribution of the individual noise terms εi is set to N (0, 1) for all nodes. We note
that all parameters are unknown to the learner. Simulations for each sampled parameter set are
repeated 10 times. We simulate causal graphs under two structural families.

Hierarchical Graphs: We consider hierarchical graph structures with L layers and degree d
constructed as follows. Each layer ` ∈ {1, . . . , L} contains d nodes, each node at layer ` < L is
a parent of the nodes in the next layer (` + 1), and the nodes in the final layer L are the parents
of the reward node. The total number of nodes is N = dL+ 1. Figure 2a depicts the hierarchical
structure for d = 3 and L = 2. Every node is set to be intervenable, leading to |A| = 2dL+1 number
of possible interventions. We construct this structure by observing that both our regret upper bound
and the minimax lower bound are a function of d and L.

Figure 2b compares the cumulative regret of LinSEM-TS-Gaussian and non-causal UCB al-
gorithms for d = 3 and L = 2. We observe that LinSEM-TS-Gaussian algorithm significantly
outperforms the standard bandit algorithm by exploiting the known causal structure. Next, we look
into the graph structure’s effect on the regret of LinSEM-TS-Gaussian. In Figure 2c, we plot the
cumulative regrets at T = 5000 for different values of d and L. We note that the curves in Figure 2c
become steeper as L increases. For instance, the green curve (L = 4) has a faster-growing regret
than the blue curve (L = 2). On the other hand, the growth of regret is much slower than the growth

1. The codebase for reproducing the simulations are available at https://github.com/bvarici/
causal-bandits-linear-sem.

30

https://github.com/bvarici/causal-bandits-linear-sem
https://github.com/bvarici/causal-bandits-linear-sem


CAUSAL BANDITS FOR LINEAR STRUCTURAL EQUATION MODELS

(a) Hierarchical structure with
L = 2 layers and degree d = 3.
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(b) Cumulative regret comparison
for d = 3, L = 2.
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(c) Cumulative regret at T = 5000.

Figure 2: Simulation results for hierarchical causal graphs.

(a) Sample structure with N = 5
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(b) Cumulative regret comparison
for N = 5.
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(c) Cumulative regret at T = 5000

Figure 3: Simulation results for enhanced parallel bandits.

of the cardinality |A| = 2dL+1. These observations imply that our theoretical upper bounds that
scale with dL instead of |A| are realized empirically.

Enhanced parallel bandits: We construct a structure similar to the parallel bandits model of
Lattimore et al. (2016) with additional edges. In this model, each node {1, . . . , N − 1} is a parent
of the reward node N . In addition, we assign one parent to each node i ∈ {2, . . . , N − 1}, which
is chosen uniformly at random from the nodes {1, . . . , i − 1}. Every node is intervenable, which
gives |A| = 2N number of possible interventions. One example of this structure with 5 nodes is
given in Figure 3a. We randomly generate 5 structures for each value of N ∈ {5, 6, 7, 8, 9} and run
LinSEM-TS-Gaussian and UCB for each graph.

Figure 3b compares the cumulative regret of LinSEM-TS-Gaussian and UCB algorithms for
N = 5. Similarly to the previous setting, LinSEM-TS-Gaussian outperforms UCB that does not
use the causal relationships among the arms. Secondly, we fix horizon T at 5000 and compare the
performance of LinSEM-TS-Gaussian as N grows. We note that the maximum degree d is equal
to (N − 1) for enhanced parallel bandits. The largest path length L is not strictly controlled by N
and can take values between 2 and (N − 1). Figure 3c shows that UCB algorithm’s regret grows
exponentially as N grows, as |A| does, whereas LinSEM-TS-Gaussian incurs a much smaller regret.

Graph misspecification. In the simulations above, the learner is given the perfect knowledge of the
causal structure following the theoretical analysis in previous sections. In the following simulations,
we investigate a possible scenario in which the structure given to the learner deviates from the true
structure by a few edges. This can be a practical scenario where the domain expert generously assigns
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Figure 4: Cumulative regret comparison (at T = 5000) of the main setting with perfect knowledge
of the graph and graph misspecification setting for varying d and L values. Our algorithm incurs
sublinear regret even when there are misspecified edges.

edges from possible causes to effects. In other words, the learner can be given a graph that is a
supergraph of the true graph with some additional edges. We simulate this graph misspecification
setting in hierarchical graphs by randomly adding incorrect edges to the graph structure provided
to the learner. The incorrect edges are chosen in a way that preserves acyclicity. The number of
incorrect edges is set to 2 for each graph instance, which is reasonable given that the graph structures
have moderate sizes.

Figure 4 shows that our method still works when the knowledge of graph structure is perturbed
by a small number of edges. We interpret this result by recalling our theoretical analysis. Since the
true parents of a node i is a subset of the assumed parents of it, the guarantees of estimating [B]i
and [B∗]i would still follow through, albeit for a greater degree than the true degree of node i. The
overall effect is a potential increase in the graph’s d and L values. The results in Figure 4 align with
our expectations as the regret under graph misspecification is only slightly worse than the case with
perfect graph knowledge.

Knowledge of interventional distributions Finally, we assess the effect of knowing or lacking
the interventional distributions through simulations. The interventional distributions of the reward’s
parents {Pa(pa(N)) : a ∈ A} in linear SEMs correspond to knowing all of the weights [Ba]i for
non-reward nodes i ∈ [N − 1]. In this case, the estimation problem reduces to estimating only the
two weight vectors [B]N and [B∗]N corresponding to the reward node. Hence, the causal bandit
problem becomes significantly easier when the interventional distributions are given a priori.

Figure 5 shows that the effect of L with a fixed value of d on the hierarchical graph’s cumulative
regret is more significant when the distributions {Pa(pa(N)) : a ∈ A} are unknown. This obser-
vation can be explained by the fact that there is no compounded estimation error through L-length
paths when the knowledge of the distributions is given, and the problem essentially reduces to a
linear bandit. These empirical results illustrate the relative difficulty of our problem setting, i.e.,
lacking the knowledge of interventional distributions.
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Figure 5: Cumulative regret at T = 5000 with knowledge and without the knowledge of the
interventional distributions for varying d and L values.

8. Discussion

Background. There have been considerable recent advances in understanding the fundamental
performance limits of causal bandit problems under various settings. The hallmark of the results
is establishing theoretical advantages over non-causal methods. The extent of such advantages
critically hinges on the extent of information known about the topology of the causal graph and
the interventional distributions. Recent studies have advanced in the direction of having minimal
assumptions on these two key factors. Some of these studies, nevertheless, rely on other tacit or
simplifying assumptions such as adopting single-node interventions and Boolean variables. Motivated
by the applications in which domain knowledge suffices to construct a causal graph (e.g., the
computational advertising model given in Figure 1), an important direction of studies, which is also
the focus of this paper, is assuming that the topology is known while the intervention distributions
are unknown.

Contributions. Our focus has been on designing an optimal sequence of interventions when the
intervention space can grow with the graph. Specifically, mainly for analytical clarity, we have
assumed one observational and one interventional model per node. That, however, can be readily
extended to multiple interventional models per node, albeit at the expense of a higher degree of
parameterization. We have addressed the open theoretical question of finding an optimal sequence of
interventions for optimizing a graph reward value. This is done for the class of linear systems in which
the causal relationships follow linear models. This renders that the nodes’ conditional distributions
have locally linear properties. For the linear models, we have focused on previously understudied soft
interventions, continuous variables, and exponentially large intervention space. Under these settings,
we have characterized upper and lower bounds on the hitherto unknown cumulative regret under
appropriate boundedness assumptions. We have shown that the achievable regret bounds depend on
the properties of the causal graph but do not grow exponentially with the graph size, whereas the
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cardinality of the intervention space does. Furthermore, we have established a lower bound to show
that this dependence on the graph properties is information-theoretic.

Future directions. There are several open theoretical questions in the setting we have investigated.
One pertains to relaxing the linear structural equation model. This can be done, for instance, by using
reproducing kernel Hilbert space with proper approximation methods. Investigating the graphs with
partially known structures, e.g., topological orders, is another important direction. Investigating the
sensitivity of the results to model mismatch, contamination, or fluctuation is necessary to understand
these algorithms’ robustness. Finally, there is a scope for improving the dependence of our regret
guarantees on the properties of intervention space. Given that regret scales with

√
T , a more

sophisticated analysis would indicate that actions with autocorrelation matrix (Σi,a) that are closer to
that of the optimal arm (Σi,a∗) are played overwhelmingly often. Then, 1√

κmin
factor, in which κmin

is a lower bound over the intervention space, might be too conservative.
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Appendix A. Notations

The following table summarizes the commonly used notations throughout the paper.

A, E : calligraphic letters for sets and events

Xi : random variables of the causal graph

Xi(t) : value of node i at time t

X : (X1, . . . , XN )>

X(t) : (1, X1(t), . . . , XN (t))> data vector at time t

XS(t) : X(t)� 1(S) ∀S ⊆ V
Xpa(i)(t) : follows the previous line

εi : noise variable for node i

ε : (1, ε1, . . . , εN )>

ε(t) : (1, ε1(t), . . . , εN (t))> noise vector at time t

A, [A]i, [A]i,j : a matrix A, its column i, and its entry at row i and column j, respectively

Ba, [Ba]i : weight matrix for intervention a, and its i-th column

Ba(t), [Ba(t)]i : estimate of Ba at time t, and its i-th column

B`
a,
[
B`
a

]
i

: `-th power of Ba, and its i-th column

B`
a(t),

[
B`
a(t)

]
i

: `-th power of Ba(t), and its i-th column.

∆a(t) : Ba(t)−Ba

[∆a(t)]i : [Ba(t)]i − [Ba]i

∆(`)
a (t) : B`

a(t)−B`
a

[∆(`)
a (t)]i :

[
B`
a(t)

]
i
−
[
B`
a

]
i

Vi(t),V
∗
i (t) : regularized gram matrices for node i, observational and interventional

Di(t),D
∗
i (t) : data matrices for parents of node i

Vi,a(t),Di,a(t) : relevant gram and data matrices for node i under intervention a

N∗i (t) : number of times node i is intervened up to time t

Ni(t) : number of times node i is non-intervened up to time t

Σi,a : autocorrelation matrix for parents of node i under intervention a

Appendix B. Proofs of Our Regret Results

Proof of Lemma 2. Note that βT is independent of t ∈ [T ]. For simplicity, we use β as a shorthand
for βT . We will prove the desired result in three steps. Note that matrix Vi,a(t) has (d+ 1)-sparse
vectors in its rows and columns, based on its definition in (37). This is a key property that will be
used in all the following steps.
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Step 1: First, we derive the bounds for vectors [Ba]i, [∆a(t)]i, and their norms. For any valid
vector [Ba]i and matrix VN,a(t), we use the CS inequality to obtain

‖[Ba]i‖VN,a(t) ≤ ‖[Ba]i‖︸ ︷︷ ︸
≤mB

λ1/2
max

(
VN,a(t)

)
≤ mBλ

1/2
max

(
VN,a(t)

)
. (160)

Also, noting that [∆a(t)]i = [∆a(t)]i � 1(pa(i)), we have

‖[∆a(t)]i‖Vi,a(t) ≥ ‖[∆a(t)]i � 1(pa(i))‖λ1/2
min

(
Vi,a(t)

)
= ‖[∆a(t)]i‖λ1/2

min

(
Vi,a(t)

)
. (161)

Using the conditions of the lemma and the inequalities above, we also have

‖[∆a(t)]i‖
(161)
≤ ‖[∆a(t)]i‖Vi,a(t)︸ ︷︷ ︸

≤β

λ
−1/2
min

(
Vi,a(t)

)
≤ βλ−1/2

min

(
Vi,a(t)

)
. (162)

Note that this lemma provides the result for the VN,a(t)-norm. Using (160), (161), and the lemma
conditions, we have

‖[∆a(t)]i‖VN,a(t)

(160)
≤ ‖[∆a(t)]i‖λ1/2

max

(
VN,a(t)

)
(163)

(161)
≤ ‖[∆a(t)]i‖Vi,a(t)︸ ︷︷ ︸

≤β

λ
−1/2
min

(
Vi,a(t)

)
λ1/2

max

(
VN,a(t)

)
(164)

≤ βλ−1/2
min

(
Vi,a(t)

)
λ1/2

max

(
VN,a(t)

)
. (165)

Next, we use the CS inequality, |pa(i)| ≤ d+ 1, and ‖[Ba]i‖ ≤ mB to obtain

∑
j∈pa(i)

[Ba]j,i
(CS)

≤
√
|pa(i)|

∑
j∈pa(i)

(
[Ba]j,i

)2 ≤ ‖[Ba]i‖
√
d+ 1 ≤ mB

√
d+ 1 . (166)

For the error vector ∆a(t), we use (161) and (162) to obtain

∑
j∈pa(i)

[∆a(t)]j,i
(CS)

≤
√

(d+ 1)
∑

j∈pa(i)

(
[∆a(t)]j,i

)2
=
√
d+ 1 ‖[∆a(t)]i‖ (167)

(161)
≤
√
d+ 1 ‖[∆a(t)]i‖Vi,a(t) λ

−1/2
min

(
Vi,a(t)

)
(168)

(162)
≤
√
d+ 1βλ

−1/2
min

(
Vi,a(t)

)
. (169)

Step 2: In (165), we have the term λ
−1/2
min

(
Vi,a(t)

)
. Let us define

Sa(t) , max
i∈[N ]

λ
−1/2
min

(
Vi,a(t)

)
=

1

mini∈[N ] λ
1/2
min

(
Vi,a(t)

) . (170)

By the definitions in (41) and (42), Ba(t) = ∆a(t) + Ba, and ∆
(`)
a (t) = [∆a(t) + Ba]

` − B`
a.

Therefore, each term in the binomial expansion of ∆
(`)
a (t) is a product that consists of ∆a(t) and Ba
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factors. For any ` ∈ [L+ 1] and k ∈ [`] ∪ {0}, there are
(
`
k

)
terms that contains the ∆a(t) factor k

times and the Ba factor (`− k) times. We denote the set of such product terms by

H`,k , {H : H has ∆a(t) factor k times and Ba factor `− k times} . (171)

For instance, setH3,1 consists of
(

3
1

)
= 3 terms:

H3,1 = {∆a(t)BaBa,Ba∆a(t)Ba,BaBa∆a(t)} . (172)

Note thatH`,0 = {B`
a}, which cancels out the B`

a term in the expansion of ∆
(`)
a (t). Therefore, sets

H`,1, . . . ,H`,` contain all valid products consisting of Ba and ∆a(t). Hence,

∆(`)
a (t) =

∑
k=1

∑
H∈H`,k

H . (173)

In this step, by induction, we show that for any ` ≥ 1, and k ∈ [`] ∪ {0},

‖[H]i‖VN,a(t) ≤ (d+ 1)
`−1
2 m`−k

B βkSka(t)λ1/2
max

(
VN,a(t)

)
, ∀H ∈ H`,k . (174)

Consider ` = 1. For k = 0, we have H1,0 = {Ba}, and from (160) we have ‖[Ba]i‖VN,a(t) ≤
mBλ

1/2
max

(
VN,a(t)

)
. For k = 1,H1,1 = {∆a(t)}, and

‖[∆a(t)]i‖VN,a(t)

(165)
≤ βλ

−1/2
min

(
Vi,a(t)

)
λ1/2

max

(
VN,a(t)

) (170)
≤ βSa(t)λ

1/2
max

(
VN,a(t)

)
. (175)

Therefore, (174) is correct for ` = 1. Suppose that it is correct for 1, . . . , ` − 1 values, for ` ≥ 2.
Consider a product term H ∈ H`,k, for some k ∈ [`] ∪ {0}. The first factor of H is either Ba or
∆a(t), and we analyze the induction step for each of these possibilities separately.

1. If H starts with Ba, represent it by H = BaH̄ , where H̄ ∈ H`−1,k and k ∈ [` − 1] ∪ {0}.
Using the induction assumption for the elements of setH`−1,k we obtain

‖[H]i‖2VN,a(t) =
∥∥(BaH̄)i

∥∥2

VN,a(t)
(176)

=
∑

u,v∈pa(i)

[Ba]u,i[Ba]v,iH̄
>
v VN,a(t)H̄u (177)

(CS)

≤ (d+ 1)
∑

u∈pa(i)

([Ba]u,i)
2
∥∥H̄u

∥∥2

VN,a(t)
(178)

(174)
≤ (d+ 1)`−1m

2(`−k−1)
B β2kS2k

a (t)λmax

(
VN,a(t)

) ∑
u∈pa(i)

([Ba]u,i)
2 (179)

= (d+ 1)`−1m
2(`−k−1)
B β2kS2k

a (t)λmax

(
VN,a(t)

)
‖[Ba]i‖2︸ ︷︷ ︸
≤m2

B

(180)

≤ (d+ 1)`−1m
2(`−k)
B β2kS2k

a (t)λmax

(
VN,a(t)

)
. (181)
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2. If H starts with ∆a(t) represent it by H = ∆a(t)H̄ , where H̄ ∈ H`−1,k−1 and k ∈ [`].
Similarly to the first case, we have

‖[H]i‖2VN,a(t) =
∥∥[∆a(t)H̄]i

∥∥2

VN,a(t)
(182)

=
∑

u,v∈pa(i)

[∆a(t)]u,i[∆a(t)]v,i[H̄]>v VN,a(t)[H̄]u (183)

(CS)

≤ (d+ 1)
∑

u∈pa(i)

(∆a(t)]u,i)
2
∥∥[H̄]u

∥∥2

VN,a(t)
(184)

(174)
≤ (d+ 1)`−1m

2(`−k)
B β2k−2S2k−2

a (t)λmax

(
VN,a(t)

) ∑
u∈pa(i)

([∆a(t)]u,i)
2

(185)

= (d+ 1)`−1m
2(`−k)
B β2k−2S2k−2

a (t)λmax

(
VN,a(t)

)
‖[∆a(t)]i‖2 (186)

(162)
≤ (d+ 1)`−1m

2(`−k)
B β2k−2S2k−2

a (t)λmax

(
VN,a(t)

)
β2λ−1

min

(
Vi,a(t)

)︸ ︷︷ ︸
≤S2

a(t)

(187)

≤ (d+ 1)`−1m
2(`−k)
B β2kS2k

a (t)λmax

(
VN,a(t)

)
. (188)

Taking the square-roots of both sides in (181) and (188) yields

‖[H]i‖VN,a(t) ≤ (d+ 1)
`−1
2 m`−k

B βkSka(t)λ1/2
max

(
VN,a(t)

)
, (189)

which is the desired inequality for all k ∈ [`] ∪ {0}. This completes the proof of induction.

Step 3: Recall the binomial expansion of ∆
(`)
a (t) and focus on its i-th column:

[
∆(`)
a (t)

]
i

(173)
=
∑̀
k=1

∑
H∈H`,k

[H]i , (190)

in which we aim to bound VN,a(t)-norm of each [H]i term in (189). The eigenvalues of Vi,a(t) are
always at least 1, which makes Sa(t) ≤ 1 by definition. Therefore, for all H ∈ ⋃1≤k≤`H`,k, we
can replace Ska(t) in (189) by Sa(t),

Ska(t) ≤ Sa(t) , ∀k ∈ [`] , (191)

and ‖[H]i‖VN,a(t)

(189)
≤ (d+ 1)

`−1
2 m`−k

B βkSa(t)λ
1/2
max

(
VN,a(t)

)
. (192)
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The final result follows by using (192) for each of the (2` − 1) terms in the sum (190) as follows

∥∥∥[∆(`)
a (t)

]
i

∥∥∥
VN,a(t)

=

∥∥∥∥∥∥
∑̀
k=1

∑
H∈H`,k

[H]i

∥∥∥∥∥∥
VN,a(t)

(193)

≤
∑̀
k=1

∑
H∈H`,k

‖[H]i‖VN,a(t) (194)

(192)
≤ (d+ 1)

`−1
2 Sa(t)λ

1/2
max

(
VN,a(t)

)∑̀
k=1

|H`,k|m`−k
B βk (195)

= (d+ 1)
`−1
2 Sa(t)λ

1/2
max

(
VN,a(t)

)∑̀
k=1

(
`

k

)
m`−k
B βk (196)

= (d+ 1)
`−1
2 Sa(t)λ

1/2
max

(
VN,a(t)

)
m`
B

((
β

mB
+ 1

)`
− 1

)
(197)

< (d+ 1)
`−1
2 Sa(t)λ

1/2
max

(
VN,a(t)

)
(β +mB)` (198)

= (d+ 1)
`−1
2 (β +mB)`

[
λ1/2

max

(
VN,a(t)

)
max
i∈[N ]

λ
−1/2
min

(
Vi,a(t)

)]
. (199)

Proof of Corollary 3. Note that while proving (189), we have only used the CS inequality, along
with the properties ‖[Ba]i‖ ≤ 1, ‖[∆a(t)]i‖Vi,a(t) ≤ β, ‖[Ba]i‖0 ≤ d+1, and ‖[∆a(t)]i‖0 ≤ d+1.
Therefore, for a matrix A that satisfies the same conditions that Ba does, and matrix ∆A(t) that
satisfies the same conditions that ∆a(t) does, the result in (49) holds for [∆A(t)]N following similar
steps.

The next result relates the singular values of a convex combination of positive semidefinite matrices.
The subsequent corollary will be useful when we consider the singular values of the sum of the
autocorrelation matrices later.

Lemma 13 Let A1,A2 . . .An ∈ Rd×d be positive semidefinite matrices, and denote the mini-
mum and maximum singular values of Ai by σmin (Ai) and σmax (Ai) respectively. Also, let
α1, α2 . . . αn ≥ 0 :

∑n
i=1 αi = 1. Then,

σmax

(
n∑
i=1

αiAi

)
≤ max

i∈[n]
σmax (Ai) , (200)

and σmin

(
n∑
i=1

αiAi

)
≥ min

i∈[n]
σmin (Ai) . (201)

Proof For the positive definite matrix A ∈ Rd×d, its maximum singular value is

σmax (A) = max
x∈Rd:‖x‖=1

x>Ax . (202)
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Therefore, we have

σmax

(
n∑
i=1

αiAi

)
= max

x∈Rd:‖x‖=1
x>

(
n∑
i=1

αiAi

)
x ≤

n∑
i=1

αiσmax (Ai) ≤ max
i∈[n]

σmax (Ai) .

(203)

Similar arguments with inequalities flipped and using the definition of minimum singular value yield
the second result of the lemma.

Corollary 14 Consider a sequence of interventions {as : s ∈ [t]}. Then,

σmax

(
t∑

s=1

1{i∈as}Σi,as

)
≤
(

t∑
s=1

1{i∈as}

)
κi,max , (204)

and σmin

(
t∑

s=1

1{i∈as}Σi,as

)
≥
(

t∑
s=1

1{i∈as}

)
κi,min . (205)

Proof Recall that Ni(t)
(39)
=
∑t

s=1 1{i∈as}. If Ni(t) = 0, each of the quantities in the corollary is

zero. If Ni(t) > 0, the coefficients
{
1{i∈a1}
Ni(t)

, . . . ,
1{i∈at}
Ni(t)

}
constitute a sequence that sums up to 1.

Then, we can apply Lemma 13 and the definitions of κi,max, κi,min to obtain

σmax

(
t∑

s=1

1{i∈as}

Ni(t)
Σi,as

)
≤ max

s∈[t]
σmax (Σi,as) ≤ κi,max , (206)

and σmin

(
t∑

s=1

1{i∈as}

Ni(t)
Σi,as

)
≥ min

s∈[t]
σmin (Σi,as) ≥ κi,min . (207)

By dividing both sides of these two inequalities by Ni(t), (206) and (207) imply (204) and (205).

Lemma 15 Consider matrices D and A that satisfy∥∥∥D>D−A
∥∥∥ ≤ ζ . (208)

Then we have,

σmax (D) ≤
√
σmax (A) +

ζ√
σmax (A)

, (209)

and σmin (D) ≥ max

{
0,
√
σmin (A)− ζ√

σmin (A)

}
. (210)

Equivalently, if

σmax (D) ≥
√
σmax (A) +

ζ√
σmax (A)

or σmin (D) ≤ max

{
0,
√
σmin (A)− ζ√

σmin (A)

}
,

(211)

then
∥∥D>D−A

∥∥ ≥ ζ.
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Proof We prove it via bounding ‖Dx‖2. For vector x that satisfies ‖x‖ = 1 we have

| ‖Dx‖2 − x>Ax| = |〈(D>D−A)x, x〉|
(CS)

≤ σmax

(
D>D−A

) (208)
≤ ζ . (212)

We have the following immediate conclusions for (208):

σmin (A)− ζ ≤ min
x
x>Ax− ζ ≤ ‖Dx‖2 ≤ max

x
x>Ax+ ζ ≤ σmax (A) + ζ , (213)

‖Dx‖ ≤
√
σmax (A) + ζ , ∀x, (214)

σmax (D) ≤
√
σmax (A) + ζ ≤

√
σmax (A) +

ζ√
σmax (A)

, (215)

‖Dx‖2 ≥ max {0, σmin (A)− ζ} , (216)

‖Dx‖ ≥
√

max {0, σmin (A)− ζ} , ∀x, (217)

σmin (D) ≥
√

max {0, σmin (A)− ζ} (218)

≥ max

{
0,
√
σmin (A)− ζ√

σmin (A)

}
. (219)

For the second statement of the lemma, denote the events in the lemma byZ1 , {
∥∥D>D−A

∥∥ ≤ ζ}
and

Z2 ,

{
σmax (D) ≤

√
σmax (A) +

ζ√
σmax (A)

and

σmin (D) ≥ max

{
0,
√
σmin (A)− ζ√

σmin (A)

}}
. (220)

In the first step we showed Z1 ⊆ Z2, which implies Zc
2 ⊆ Zc

1 .

Freedman’s inequality. Freedman (1975, Theorem 1.6) is a martingale extension of Bernstein-
type concentration inequalities. An earlier extension of Freedman’s inequality to matrix martingales
is given by Oliveira (2009, Theorem 1.2). The result of Oliveira (2009) requires a uniform bound
σmax (Z(k)) ≤ R while the final result similarly involves λmax (Y(k)). Tropp (2011, Theorem 1.2)
achieves a similar concentration result for λmax (Y(k)) while requiring λmax (Z(k)) ≤ R, which is
a weaker condition compared to σmax (Z(k)) ≤ R. However, when we define our matrix martingale
sequence Y(k) in our proofs, we seek bounds for σmax (Y(k)). Therefore, we derive a parallel
result to Tropp (2011, Theorem 1.2) with a uniform bound condition on σmax (Z(k)) and a final
result with σmax (Y(k)).

Lemma 16 (Matrix Freedman) Consider a matrix martingale {Y(k) : k = 0, 1, . . . } whose
values are self-adjoint matrices with dimension n, and let {Z(k) : k = 1, 2, . . . } be the difference
sequence. Assume that the difference sequence is uniformly bounded in the sense that

σmax (Z(k)) ≤ R , almost surely ∀k ∈ N+ . (221)
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Define the predictable quadratic variation process of the martingale as

W(k) ,
k∑
j=1

E[Z(j)2 | Fj−1] , ∀k ∈ N+ . (222)

Then, for all ε ≥ 0 and σ2 > 0,

P{∃k : σmax (Y(k)) ≥ ε and ‖W(k)‖ ≤ σ2} ≤ n exp

{ −ε2/2

σ2 +Rε/3

}
(223)

≤ n exp

{
−3

8
min

(
ε2

σ2
,
ε

R

)}
. (224)

Proof The proof for the most part follows from the steps of Tropp (2011, Theorem 1.2), and we
present only the necessary changes to obtain the desired result. For a c : (0,∞)→ [0,∞] function
and positive number θ, the real-valued function of two self-adjoint matrices is defined as

Gθ(Y,W) , tr exp(θY − c(θ)W) . (225)

Tropp (2011, Lemma 2.2) shows that if λmax (Y) ≥ t and λmax (W) ≤ w, then for all θ > 0,
Gθ(Y,W) ≥ exp(θt − c(θ)w). We change the conditions to σmax (Y) ≥ t and σmax (W) ≤ w,
and the proof of Tropp (2011, Lemma 2.2) follows through to show Gθ(Y,W) ≥ exp(θt− c(θ)w)
for all θ > 0. By changing all instances of λmax (Y(k)) and λmax (W(k)) to σmax (Y(k)) and
σmax (W(k)) in the proof of Tropp (2011, Theorem 1.2), the desired result in Lemma 16 follows
directly.

Finally, note that zero-padding a n× n matrix with additional (N − n) zero rows and (N − n)
zero columns leaves its maximum singular value and maximum eigenvalue unchanged. Therefore,
the final result will hold for a matrix martingale Y(k) with dimension N that has only a n × n
non-zero submatrix.

Proof of Lemma 7. We prove the result for P(Ei,n(t)) and the result for P(E∗i,n(t)) will follow
similarly. The core of the proof is using Freedman’s concentration inequality for matrix martingales.

Martingale construction. Let us consider node i. We define two interventional and observational
martingale sequences for node i. Let Fs−1 , σ(a1, X(1), . . . , as−1, X(s − 1), as) denote the
filtration for s ∈ [T ]. Define Σi,at as the autocorrelation matrix of Xpa(i), which is distributed
according to Pat . Furthermore, define

Zi(s) , 1{i/∈as}

(
Xpa(i)(s)X

>
pa(i)(s)− Σi,as

)
, ∀s ∈ [T ] , (226)

Yi(k) ,
k∑
s=1

Zi(s) , ∀k ∈ [T ] , (227)

and Wi(k) ,
k∑
s=1

E[Z2
i (s) | Fs−1] , ∀k ∈ [T ] . (228)
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Zi(k) is the difference sequence and Wi(k) is the predictable quadratic variation of the process. We
show that the Yi(k) sequence is a martingale, i.e., E[Yi(k) | Fk−1] = Yi(k − 1).

E[Yi(k) | Fk−1] = E[Yi(k − 1) + Zi(k) | Fk−1] (229)

= Yi(k − 1) + E
[
1{i/∈ak}

(
Xpa(i)(k)X>pa(i)(k)− Σi,ak

)
| Fk−1

]
. (230)

Action ak is Fk−1-measurable. Hence, the randomness in the expectation after conditioning on Fk−1

is induced by X(k) ∼ Pak . Therefore, the expected value in (230) is zero by definition of Σi,a in
(13), and the sequence Yi(k) defined in (227) is a martingale.

Defining the events. We will use n to denote realizations of Ni(t). For all n ∈ [T ], recall εn in
(89), and also define σ2

n as

σ2
n , 2m4n , ∀n ∈ [T ] . (231)

Then, we define the following events for each triplet {(i, t, n) : i ∈ [N ], t ∈ [T ], n ∈ [t]}:

Ui,n(t) , {Ni(t) = n} , (232)

Yi,n(t) , {σmax (Yi(t)) ≥ εn} , (233)

Qi,n(t) , {‖Wi(t)‖ ≤ σ2
n} , (234)

Di,n(t) ,

{
σmin (Di(t)) ≤ max

{
0,
√
nκmin −

εn√
nκmin

}
or

σmax (Di(t)) ≥
√
nκmax +

εn√
nκmin

}
. (235)

We will show the desired result, that is P(Di,n(t),Ui,n(t)) ≤ (d+ 1) exp
(
−3α2

16

)
in four steps.

Step 1: Show that P(Qi,n(t) | Ui,n(t)) = 1. The summands of Wi(t) are the conditional
expectations of the following Z2

i (s) terms

Z2
i (s) = 1{i/∈as}

(
[Xpa(i)(s)X

>
pa(i)(s)]

2 − 2Xpa(i)(s)X
>
pa(i)(s)Σi,as + Σ2

i,as

)
. (236)

Note that Σi,as is Fs−1-measurable. Hence,

E[Xpa(i)(s)X
>
pa(i)(s)Σi,as | Fs−1] = Σi,asE[Xpa(i)(s)X

>
pa(i)(s)] = Σ2

i,as . (237)

Using Assumption 1, we also have

∥∥∥[Xpa(i)(s)X
>
pa(i)(s)]

2
∥∥∥ ≤ ∥∥∥Xpa(i)(s)X

>
pa(i)(s)

∥∥∥2
≤ m4 . (238)
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Taking the norm of the expected values on both sides in (236), we obtain

∥∥E[Z2
i (s) | Fs−1]

∥∥ (237)
=
∥∥∥E[1{i/∈as}(Xpa(i)(s)X

>
pa(i)(s))

2 | Fs−1]− Σ2
i,asE[1{i/∈as} | Fs−1]

∥∥∥
(239)

≤
∥∥∥E[1{i/∈as}(Xpa(i)(s)X

>
pa(i)(s))

2 | Fs−1]
∥∥∥+ Σ2

i,as︸︷︷︸
≤m4

E[1{i/∈as} | Fs−1]

(240)
(238)
≤ 2m4E[1{i/∈as} | Fs−1] (241)

= 2m4
1{i/∈as} . (242)

Note that (242) is correct since 1{i/∈as} is Fs−1-measurable. Subsequently, ‖Wi(t)‖ is bounded by

‖Wi(t)‖ =

∥∥∥∥∥
t∑

s=1

E[Z2
i (s) | Fs−1]

∥∥∥∥∥ (243)

≤
t∑

s=1

∥∥E[Z2
i (s) | Fs−1]

∥∥ (244)

(242)
≤

t∑
s=1

2m4
1{i/∈as} (245)

= 2m4Ni(t) . (246)

Given that under the event Ui,n(t) we have Ni(t) = n, we obtain

‖Wi(t)‖
(246)
≤ 2m4Ni(t) = 2m4n = σ2

n , (247)

and P(Qi,n(t) | Ui,n(t)) = 1 , (248)

since event Ui,n(t) implies event Qi,n(t).

Step 2: Show that P(Yi,n(t) | Di,n(t),Ui,n(t)) = 1. Let us define A =
∑t

s=1 1{i/∈as}Σi,as . From
the definition of the martingale sequence Yi(k) in (227) we have

Yi(t)
(227)
=

t∑
s=1

1{i/∈as}

(
Xpa(i)(s)X

>
pa(i)(s)− Σi,as

)
(249)

(34)
= D>i (t)Di(t)−

t∑
s=1

1{i/∈as}Σi,as (250)

= D>i (t)Di(t)−A . (251)
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Given that under the event Ui,n(t) we have Ni(t) = n, Corollary 14 indicates that

σmax (A) = σmax

(
t∑

s=1

1{i/∈as}Σi,as

)
≤ Ni(t)κmax = nκmax , (252)

and σmin (A) = σmin

(
t∑

s=1

1{i/∈as}Σi,as

)
≥ Ni(t)κmin = nκmin . (253)

Therefore, the event Di,n(t) implies that at least one of the following two inequalities is correct:

σmin (Di(t)) ≤ max

{
0,
√
nκmin −

εn√
nκmin

}
(252)
≤ max

{
0,
√
σmin (A)− εn√

σmin (A)

}
,

(254)

and σmax (Di(t)) ≥
√
nκmax +

εn√
nκmin

(253)
≥
√
σmax (A) +

εn
σmin (A)

. (255)

Given the events Ui,n(t) and Di,n(t), we invoke the second statement of Lemma 15 to obtain∥∥∥D>i (t)Di(t)−A
∥∥∥ ≥ εn , (256)

which is the event Yi,n(t). Therefore, we have

P(Yi,n(t) | Di,n(t),Ui,n(t)) = 1 . (257)

Step 3: Show that P(Yi,n(t),Qi,n(t)) ≤ (d + 1) exp
(
−3α2

16

)
. The norm of the difference se-

quence Zi(s) for martingale Yi(k) is bounded as

‖Zi(s)‖ =
∥∥∥1{i/∈as} (Xpa(i)(s)X

>
pa(i)(s)− Σi,as

)∥∥∥ (258)

≤
∥∥∥Xpa(i)(s)X

>
pa(i)(s)− Σi,as

∥∥∥ (259)

≤
∥∥∥Xpa(i)(s)X

>
pa(i)(s)

∥∥∥+ ‖Σi,as‖ (260)

≤
∥∥Xpa(i)(s)

∥∥2
+ κi,max︸ ︷︷ ︸
≤m2

(261)

≤ 2m2 . (262)

Next, we apply Lemma 16 (matrix Freedman) with R = 2m2 to obtain

P(Yi,n(t),Qi,n(t)) = P{σmax (Yi(t)) ≥ εn and ‖Wi(t)‖ ≤ σ2
n} (263)

≤ P{∃k ∈ [T ] : σmax (Yi(k)) ≥ εn and ‖Wi(k)‖ ≤ σ2
n} (264)

≤ (d+ 1) exp

(
−3

8
min

{
ε2
n

σ2
n

,
εn

2m2

})
(265)

= (d+ 1) exp

(
−3

8
min

{
α2 max

{
n, α2

}
2n

,
αmax {√n, α}

2

})
(266)

= (d+ 1) exp

(
−3α2

16

)
. (267)
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Finally, note that it can be easily verified that in both cases of α ≥ √n and α <
√
n we have

α2

2
= min

{
α2 max

{
n, α2

}
2n

,
αmax {√n, α}

2

}
, (268)

which, in turn, implies (267).

Step 4: Show that P(Di,n(t),Ui,n(t)) ≤ (d + 1) exp
(
−3α2

16

)
. We are ready to combine the

last three steps and establish the desired result. Since P(Yi,n(t),Qi,n(t)) ≤ (d + 1) exp
(
−3α2

16

)
,

it suffices to show that P(Di,n(t),Ui,n(t)) ≤ P(Yi,n(t),Qi,n(t)). First, due to the Step 1 result
P(Qi,n(t) | Ui,n(t)) = 1, we have

P(Qi,n(t) | Yi,n(t),Ui,n(t)) = P(Qi,n(t) | Ui,n(t)) = 1 , (269)

and P(Yi,n(t),Ui,n(t),Qi,n(t)) = P(Yi,n(t),Ui,n(t))P(Qi,n(t) | Yi,n(t),Ui,n(t)) (270)
(269)
= P(Yi,n(t),Ui,n(t)) . (271)

Furthermore, using the Step 3 result P(Yi,n(t),Qi,n(t)) ≤ (d+ 1) exp
(
−3α2

16

)
, we have

P(Yi,n(t),Ui,n(t))
(271)
= P(Yi,n(t),Ui,n(t),Qi,n(t)) (272)

≤ P(Yi,n(t),Qi,n(t)) (273)

≤ (d+ 1) exp

(
−3α2

16

)
. (274)

Next, using the Step 2 result P(Yi,n(t) | Di,n(t),Ui,n(t)) = 1, we obtain

P(Yi,n(t),Di,n(t),Ui,n(t)) = P(Di,n(t),Ui,n(t))P(Yi,n(t) | Di,n(t),Ui,n(t)) (275)
(257)
= P(Di,n(t),Ui,n(t)) . (276)

Finally, using P(Yi,n(t),Ui,n(t)) ≤ (d+ 1) exp
(
−3α2

16

)
, we have

P(Di,n(t),Ui,n(t))
(276)
= P(Yi,n(t),Di,n(t),Ui,n(t)) (277)

≤ P(Yi,n(t),Ui,n(t)) (278)
(274)
≤ (d+ 1) exp

(
−3α2

16

)
, (279)

which is the desired result. The interventional counterpart result, i.e., P(E∗i,n(t)) ≤ (d+1) exp
(
−3α2

16

)
,

can be shown similarly.

Proof of Lemma 8. We will use the fact that h is a non-increasing function. First, note that there
may exist multiple nodes that achieve maxi∈[N ] h(Ni,at(t)). Without loss of generality, we select
the smallest solution as arg max (or arg min) when the max (or min) of a function over set [N ] has
more than one solution. Then, since h is a non-increasing function, we have

arg max
i∈[N ]

h(Ni,at(t)) = arg min
i∈[N ]

Ni,at(t) . (280)
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Also, by definition,

Ni,at(t)
(40)
= 1{i∈at}N

∗
i (t) + 1{i/∈at}(t−N∗i (t)) . (281)

Therefore, the argument of (280) is the node that has the smallest relevant counter variable N∗i (t) for
the nodes i ∈ at, and (t−N∗i (t)) for the nodes i /∈ at. We denote this node by it as follows

it , arg max
i∈[N ]

h(Ni,at(t))
(280)
= arg min

i∈[N ]
Ni,at(t) . (282)

Note that it does not capture whether i ∈ at or i /∈ at. In other words, it does not specify whether
Nit,at(t) = N∗it(t) or Nit,at(t) = Nit(t). Driven by addressing the challenge that it causes, define
the set of time indices where it = i for each of these two cases as follows

Si , {t ∈ [T ] : it = i, i /∈ at} , ∀i ∈ [N ] , (283)

and S∗i , {t ∈ [T ] : it = i, i ∈ at} , ∀i ∈ [N ] . (284)

Subsequently, h(Nit,at(t)) becomes

max
i∈[N ]

h(Ni,at(t)) = h(Nit,at(t)) =

{
h(N∗i (t)) , ∀t ∈ S∗i (t)

h(Ni(t)) , ∀t ∈ Si(t)
. (285)

Denote the elements of Si by Si,1, . . . , Si,|Si|. Note that until time Si,n, the event {it = i, i /∈ at}
occurs exactly n times. Similarly {it = i, i ∈ at} occurs n times until time S∗i,n. Then,

n =

Si,n∑
t=1

1{it=i,i/∈at} ≤
Si,n∑
t=1

1{i/∈at} = Ni(Si,n) , (286)

and n =

S∗i,n∑
t=1

1{it=i,i∈at} ≤
S∗i,n∑
t=1

1{i∈at} = N∗i (S∗i,n) . (287)

Using the results above and noting that h is a non-increasing function, we obtain

T∑
t=1

max
i∈[N ]

h(Nit,at(t)) =
T∑
t=1

h(Nit,at(t)) (288)

=
N∑
i=1

∑
t:t∈Si

h(Ni(t)) +
N∑
i=1

∑
t:t∈S∗i

h(N∗i (t)) (289)

=
N∑
i=1

|Si|∑
n=1

h(Ni(Si,n))︸ ︷︷ ︸
(286)
≤ h(n)

+
N∑
i=1

|S∗i |∑
n=1

h(N∗i (S∗i,n))︸ ︷︷ ︸
(287)
≤ h(n)

(290)

≤
N∑
i=1

|Si|∑
n=1

h(n) +

N∑
i=1

|S∗i |∑
n=1

h(n) . (291)
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To bound the discrete sums through integrals, we define

H(y) =

∫ y

x=0
h(x)dx , y ≥ 0 . (292)

Since h(x) is a positive, non-increasing function, for any k ∈ N+ we have

k∑
n=1

h(n) ≤
∫ k+1

x=1
h(x)dx ≤

∫ k

x=0
h(x)dx = H(k) , (293)

and subsequently,

T∑
t=1

max
i∈[N ]

h(Ni,at(t)) ≤
N∑
i=1

|Si|∑
n=1

h(n) +
N∑
i=1

|S∗i |∑
n=1

h(n) (294)

(293)
≤

N∑
i=1

H(|Si|) +

N∑
i=1

H(|S∗i |) . (295)

We verify that H is a concave function as follows

H ′(n) = h(n)− h(0) (296)

=
√

2

(
1

max
{

0,
√
nκmin −

√
τκmin

}
+ 1
− 1

)
(297)

=

{
0 , 0 ≤ n < τ√

2(
√
nκmin −

√
τκmin + 1)−1 , n ≥ τ

, (298)

and H ′′(n) =

{
0 , 0 ≤ n < τ

−
√

κmin
2n (
√
nκmin −

√
τκmin + 1)−2 , n ≥ τ

. (299)

Since H ′′(n) ≤ 0 for the domain of H , H is a concave function. Also,
∑N

i=1 |Si|+
∑N

i=1 |S∗i | = T .
Then, we use Jensen’s inequality for concave functions to obtain

N∑
i=1

H(|Si|) +

N∑
i=1

H(|S∗i |) ≤ 2N ×H
(

1

2N

N∑
i=1

|Si|+
1

2N

N∑
i=1

|S∗i |
)

(300)

= 2N ×H
(
T

2N

)
. (301)

Next, we note that h(x) =
√

2 for x ≤ τ and decompose H
(
T

2N

)
into two parts as

H

(
T

2N

)
=

∫ T
2N

x=0
h(x)dx (302)

=

∫ τ

x=0
h(x)dx+

∫ T
2N

x=τ
h(x)dx (303)

=
√

2τ +

∫ T
2N

x=τ
h(x)dx . (304)
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Next, we need to bound
∫ T

2N
x=τ h(x)dx. Let us define y ,

√
τ − 1√

κmin
. Hence,∫ T

2N

x=τ
h(x)dx =

√
2

∫ T
2N

x=τ

1√
xκmin −

√
τκmin + 1

dx (305)

=

√
2

κmin

∫ T
2N

x=τ

1√
x− ydx (306)

= 2

√
2

κmin

(√
T

2N
+ y log

(√
T

2N
− y
)
−√τ − y log(

√
τ − y)

)
(307)

<

√
2

κmin

(√
2T

N
+ y log

(
T

2N

))
(308)

<

√
2

κmin

(√
2T

N
+
√
τ log

(
T

2N

))
. (309)

Finally, plugging (309) into (304), we obtain the desired result
T∑
t=1

max
i∈[N ]

h(Ni,at(t)) ≤ 2N ×
(
τ +

∫ T
2N

x=τ
h(x)dx

)
(310)

< 2N

(
√

2τ +

√
2

κmin

(√
2T

N
+
√
τ log

(
T

2N

)))
. (311)

Proof of Theorem 10. Before starting the proof, we comment on the changes from the frequentist
setting.

Global lower and upper bounds for singular values. We have defined global bounds for singular
values in (14) and (15) for the frequentist analysis. However, the probability measure Pa changes
with respect to the sampled parameters W for the Bayesian setting. Therefore, we need to expand the
definition of lower and upper bounds for singular values to the domain of W, i.e.,W . We redefine
the probability measure for an intervention a by also accounting for the dependence on parameters
W, and denote it by PW

a . Accordingly, we define ΣW
i,a , EX∼PW

a
[Xpa(i)X

>
pa(i)] and denote the

lower and upper bounds of these moments’ singular values by

κWmax , max
i∈[N ]

max
a∈A

σmax

(
ΣW
i,a

)
, (312)

κWmax , max
W∈W

κWmax , (313)

κWmin , min
i∈[N ]

min
a∈A

σmin

(
ΣW
i,a

)
, (314)

and κWmin , min
W∈W

κWmin . (315)

Similar to the definition of τ in (120) for the frequentist setting, we define

τW ,
α2m4

(κWmin)2
, and τW ,

α2m4

(κWmin)2
. (316)
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We start by finding bounds on the expected regret for fixed W using the tools that we have developed
in Section 4. Then, we analyze the terms in the result that are affected by the choice of W, and
obtain the final Bayesian regret. Consider

Eε[RW(T )] = E

[
T∑
t=1

E[µa∗ − µat | F̃t−1]

]
, (317)

where F̃t = σ(a1, X(1), . . . , at, X(t)). Note that F̃t is different from Ft defined and used earlier.
The next few steps are similar to those of the proof of Theorem 5. We use the same β as before, i.e.,

β = mB +
√

2 log(2NT ) + (d+ 1) log(1 +m2T/(d+ 1)) , (318)

and the upper confidence bound UCB(t) in (46). Defining the event E∩ similarly to (60) in the proof
of Theorem 5, we have P(Ec

∩) ≤ 1
T . Next, we decompose the regret in (317) as

T∑
t=1

E[µa∗ − µat | F̃t−1] =
T∑
t=1

E[1Ec∩(µa∗ − µat)︸ ︷︷ ︸
≤2m

| F̃t−1] +
T∑
t=1

E[1E∩(µa∗ − µat) | F̃t−1]

(319)

≤ 2mTP(Ec
∩ | F̃t−1)︸ ︷︷ ︸
≤1/T

+
T∑
t=1

E[1E∩(µa∗ − µat) | F̃t−1] (320)

≤ 2m+

T∑
t=1

E[1E∩(µa∗ − µat) | F̃t−1] . (321)

Thompson sampling has the property that P(a∗ = a | F̃t−1) = P(at = a | F̃t−1). Therefore,

UCBa∗(t) = UCBat(t) , (322)

and consequently,

E[1E∩(µa∗ − µat) | F̃t−1] = E

1E∩(µa∗ −UCBa∗(t)︸ ︷︷ ︸
≤0

+ UCBat(t)− µat
)
| F̃t−1

 (323)

≤ E
[
1E∩
(
UCBat(t)− µat

)
| F̃t−1

]
. (324)
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Define UCBa(t) = f(B̃a). By combining (321) and (324), we obtain

Eε[RW(T )] = E

[
T∑
t=1

E[µa∗ − µat | F̃t−1]

]
(325)

≤ 2m+ E

[
T∑
t=1

E
[
1E∩
(
UCBat(t)− µat

)
| F̃t−1

]]
(326)

= 2m+ E

[
T∑
t=1

E
[
1E∩(f(B̃at)− f(Bat)) | F̃t−1

]]
(327)

= 2m+ E

[
T∑
t=1

1E∩(f(B̃at)− f(Bat))

]
. (328)

Following similar steps to the proof of Theorem 5, we can bound the expected value in (328), and
obtain

Eε[RW(T )] ≤ 2m+ 2(β +mB)L+1(d+ 1)
L
2 λW,T , (329)

where

λW,T <
4g(τW)
√
κW,min

√
NT + 3(N + 1)τWg(τW) +

2
√

2N
√
τWg(τW)

√
κW,min

log

(
T

2N

)
+
m

T
+

2m

3
+ 1 . (330)

Finally, we replace W-specific terms with globalW terms as follows

κW,min ≤ κW,min , (331)

τW
(316)
≤ τW , (332)

√
τWg(τW) ≤ √τWg(τW) , (333)

λW,T ≤ λW,T . (334)

Since λW,T is the only term in (329) that depends on W, we obtain

BR(T ) = EWEε[RW(T )] (335)

≤ 2m+ 2(β +mB)L+1(d+ 1)
L
2 λW,T . (336)

Similar to the proof of Theorem 9, using the same β as in Theorem 5, and ignoring poly-logarithmic
terms and constants, we obtain BR(T ) = Õ(dL+ 1

2

√
NT ).

Appendix C. Proof of Theorem 11

Sketch of the proof. To find a lower bound on the minimax regret, we provide a proof as follows.
Let Π be the set of all policies on a set of stochastic bandit environments I. The minimax regret is

51



VARICI, SHANMUGAM, SATTIGERI, AND TAJER

(a) Hierarchical block with d = 3. (b) d-ary tree with d = 2.

HIERARCHICAL
BLOCK

<latexit sha1_base64="9sh/oIyn4TCOG2WCTmFfh6Pzwzc="></latexit>

d-ary tree
<latexit sha1_base64="0O5SBKQeHuBCE9xAjFFwmoQKD5w="></latexit>

#1
<latexit sha1_base64="hbehsFPEbZq82tgHd+yIRCJ7v+g="></latexit>

#(d − 1)

<latexit sha1_base64="9sh/oIyn4TCOG2WCTmFfh6Pzwzc="></latexit>

d-ary tree

(c) Causal graph instance.

Figure 6: Sample diagrams for the graphs used in the proof of Theorem 11.

defined as

inf
π∈Π

sup
I∗∈I

Eπ,I∗ [R(T )] , (337)

in which Eπ,I∗ [R(T )] denotes the expected regret of policy π on the bandit instance I∗. We will
consider a set Ĩ that contains two bandit instances. By definition of minimax regret, a lower bound
for the regret of any policy on Ĩ also is a lower bound for the minimax regret since

inf
π∈Π

sup
I∗∈I

Eπ,I∗ [R(T )] ≥ inf
π∈Π

sup
I∗∈Ĩ

Eπ,I∗ [R(T )] . (338)

After this intuition, the central idea of the proof is as follows. Two linear SEM causal bandit instances
that differ by only one edge parameter are hard to distinguish. At the same time, we can construct
them to have different optimal actions, indicating that a selection policy cannot incur small regret
for both at the same time under the same data realization. Note that, the difference of the rewards,
or equivalently the regrets, observed by these two bandit instances under the same action can be
computed by tracing the effect of that differing edge parameter over all the paths that end at the
reward node. We carefully build graphs to maximize the number of such paths for given d and L. In
this section, we provide details of these steps.

We consider two linear SEM causal bandit instances that share the same graph G and are
parameterized by I1 , {H,H∗, ν, ν∗, ε}, and I2 , {H̄, H̄∗, ν̄, ν̄∗, ε}. For both instances, let the
weights of all observational edges be b, and all interventional edges be b− δ such that 0 < δ < b ≤ 1.
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In other words, if for i, j ∈ [N ]

(i→ j) ∈ G , (339)

then

[H]i,j = [H̄]i,j = b , and [H∗]i,j = [H̄∗]i,j = b− δ . (340)

We assume the noise terms have standard Gaussian distributions, i.e., εi ∼ N (0, 1) for all i ∈ [N ].
Furthermore, for all k ∈ {2, . . . , N} set

νk = ν∗k = ν̄k = ν̄∗k = 0 . (341)

The only difference between the two instances is the affine terms of node 1, for which ν1 = ν̄∗1 = 1,
and ν∗1 = ν̄1 = 1− δ. Note that this parameterization can be applied to any graph G. Next, consider
a fixed bandit policy π that generates the following filtration over time

Ft , {a1, X(1), . . . , at, X(t)} . (342)

The decision of π at time t is Ft−1-measurable. Accordingly, define Pt and P̄t as the probability
measures induced by Ft by t rounds of interaction between π and the two bandit instances. When it
is clear from context, we use the shorthand terms P and P̄ for PT and P̄T , respectively. We will show
that π cannot suffer small regret in both instances at the same time and under the same filtration FT .

Next, we construct our sample graph for fixed d and L values using the following two building
blocks.

1. One hierarchical block as depicted in Figure 6a, which consists of (L− 1) layers each with
d nodes. Adjacent layers are fully connected. There exists a final layer with one node fully
connected to layer L− 1.

2. One d-ary tree with L layers as depicted in Figure 6b.

We use one hierarchical block and (d − 1) number of d-ary trees and connect their sink nodes to
form a reward node. Hence, in this graph, the hierarchical block consists of d(L− 1) + 1 nodes, a
d-ary tree consists of

∑L−1
`=0 d

` nodes, and the total number of nodes is

N = d(L− 1) + 1 + (d− 1)
L−1∑
`=0

d` = dL + d(L− 1) . (343)

The nodes in the hierarchical blocks are labeled by {1, . . . , d(L− 1) + 1}, beginning from the top
layer. All weights are in the set {b, b − δ} and are positive in both bandit instances. Hence, by
Lemma 1, the optimal action is the one that maximizes the value of each entry of Ba and B̄a. As a
result, the optimal actions are a∗ = ∅ for the bandit instance I1 and ā∗ = {1} for bandit instance I2.
Define Elb as the event in which node 1 is intervened at least T2 times after T rounds, i.e.,

Elb ,

{
N∗1 (T ) ≥ T

2

}
. (344)
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We note that the event Elb is defined on the sigma-algebra defined by the filtration Ft, that induces
both Pt and P̄t. We compute the expected instantaneous regret when node 1 is intervened in the first
bandit. Note that since νk = ν∗k and εk have a zero mean for k ≥ 2, only the paths that start at node 1
and end at the reward node N contribute to the expected regret. Furthermore, since every weight is
positive, in I1, we have µ{1} ≥ µa for any a that contains 1. Therefore, for I1, the expected value of
instantaneous regret is at least µ∅ − µ{1} if 1 is intervened. Then, by definition of Elb, we have

EP[R(t)] = EP

[
T∑
t=1

r(t)

]
(345)

≥ EP

 ∑
t∈[T ]:1/∈at

(µ∅ − µ{1})

 (346)

≥ P(Elb)
T

2
(µ∅ − µ{1}) (347)

= P(Elb)
T

2
δbLdL−2 . (348)

The final equality holds because there exists dL−2 paths from node 1 to node N , and the difference
between ν1 − ν∗1 = δ is multiplied with a b factor for every edge along a path. Similarly, for I2, we
have µ̄∅ ≥ µ̄a for any a that does not contain 1, and expected value of instantaneous regret is at least
µ̄{1} − µ̄∅ if 1 is not intervened. Applying the same steps, we obtain

EP̄[R(t)] = EP̄

[
T∑
t=1

r(t)

]
(349)

≥ EP̄

 ∑
t∈[T ]:1∈at

(µ̄{1} − µ̄∅)

 (350)

≥ P̄(Ec
lb)
T

2
(µ̄{1} − µ̄∅) (351)

= P̄(Ec
lb)
T

2
δbLdL−2 . (352)

By combining (348) and (352) we have

EP[R(t)] + EP̄[R(t)] ≥ T

2
δbLdL−2[P(Elb) + P̄(Ec

lb)] . (353)

By setting b =
√

1/d, we ensure that mB = 1, and (353) becomes

EP[R(t)] + EP̄[R(t)] ≥ T

2
δd

L
2
−2[P(Elb) + P̄(Ec

lb)] . (354)

Next, we characterize a lower bound on (P(Elb) + P̄(Ec
lb)) that involves the Kullback-Leibler (KL)

divergence between P and P̄, denoted by DKL(P ‖ P̄). For this purpose, we leverage the following
theorem.
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Theorem 17 (Bretagnolle-Huber inequality) Let P and P̄ be probability measures on the same
measurable space (Ω,F) and let A ∈ F be an arbitrary event. Then,

P(A) + P̄(Ac) ≥ 1

2
exp(−DKL(P ‖ P̄)) . (355)

By invoking Theorem 17, from (354) we obtain

EP[R(t)] + EP̄[R(t)] ≥ T

4
δd

L
2
−2 exp(−DKL(P ‖ P̄)) . (356)

It remains to compute exp(−DKL(P ‖ P̄)) to conclude our proof, for which we leverage the following
result.

Proposition 18 The KL divergence between P and P̄ is equal to

DKL(P ‖ P̄) = Tδ2 . (357)

Proof Note that a Bayesian network factorizes as

P(X1, . . . , XN ) =

N∏
i=1

P(Xi | Xpa(i)) . (358)

Additionally, the two bandit instances differ only in the mechanism of node 1, which is a root node.
Then, DKL(P ‖ P̄) can be simplified as

DKL(P ‖ P̄) =

N∑
i=1

DKL(P(Xi | Xpa(i)) ‖ P̄(Xi | Xpa(i))) = DKL(P(X1) ‖ P̄(X1)) . (359)

Hence, we only need to consider DKL(P(X1) ‖ P̄(X1)) under two cases: when 1 is observed, and 1
is intervened. We have that

X1 ∼


N (ν1, 1) , under P when 1 /∈ a
N (ν1 − δ, 1) , under P when 1 ∈ a
N (ν1 − δ, 1) , under P̄ when 1 /∈ a
N (ν1, 1) , under P̄ when 1 /∈ a

. (360)

By noting that

DKL(N (ν1, 1) ‖ N (ν1 − δ, 1)) = DKL(N (ν1 − δ, 1) ‖ N (ν1, 1)) =
δ2

2
, (361)

from (360) we obtain

DKL(P(X1) ‖ P̄(X1))

=
∑

t∈[T ]:1/∈at

DKL(N (ν1, 1),N (ν1 − δ, 1)) +
∑

t∈[T ]:1∈at

DKL(N (ν1 − δ, 1),N (ν1, 1)) (362)

= N∗1 (T )
δ2

2
+ (T −N∗1 (T ))

δ2

2
(363)

=
Tδ2

2
. (364)

55



VARICI, SHANMUGAM, SATTIGERI, AND TAJER

By applying Proposition 18 on (356) and setting δ =
√

2/T , we obtain

max{EP[R(t)],EP̄[R(t)]} ≥ 1

2
(EP[R(t)] + EP̄[R(t)]) (365)

≥ T

8
δd

L
2
−2 exp(−Tδ2/2) (366)

=
exp(−1)

8
√

2
d

L
2
−2
√
T . (367)

Hence, for c = exp(−1)

8
√

2
, the policy π incurs a regret cd

L
2
−2
√
T in at least one of the two bandit

instances. Finally, note that removing the nodes from the tree blocks of the constructed graph does not
affect the analysis. Hence,N can take any value in the range {(d(L−1)+2), . . . , dL+d(L−1)+1}.

Appendix D. A Depiction of the Non-linearity

In Lemma 1, we have shown that the reward XN is a linear function of ε variables but not a linear
function of the edge weights. Specifically, the effect of a node on the reward is compounded via the
edge weights along the paths from that node to the reward node. This renders our problem completely
different from the linear bandit problem. Consider the example in Figure 7. Since the dummy noise
variable is ε0 = 1 and ν values are put into the dummy 0-th row of B, the reward node X5 can be
written as
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Figure 7: Sample graph with N = 5 nodes and its edge weights.
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(a) Example 1.
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(b) Example 2.

Figure 8: Sample results of estimating reward from X .

X5 = [B]1,5X1 + [B]3,5X3 + [B]4,5X4 + (ν5 + ε5) (368)

= [B]1,5(ν1 + ε1) + [B]3,5 ([B]1,3(ν1 + ε1) + [B]2,3(ν2 + ε2) + ν3 + ε3)

+ [B]4,5 ([B]2,4(ν2 + ε2) + ν4 + ε4) + (ν5 + ε5) (369)

= ε0︸︷︷︸
=1

(
[B]0,1[B]1,5 + [B]0,1[B]1,3[B]3,5 + [B]0,2[B]2,3[B]3,5 + [B]0,2[B]2,4[B]4,5

+ [B]0,3[B]3,5 + [B]0,4[B]4,5 + [B]0,5
)

+ ε1 ([B]1,5 + [B]1,3[B]3,5)

+ ε2 ([B]2,3[B]3,5 + [B]2,4[B]4,5)

+ ε3[B]3,5

+ ε4[B]4,5

+ ε5 . (370)

We also demonstrate this non-linearity aspect via a simple simulation. Note that, we observe only
vector X . Hence, if we are to estimate reward XN as a linear function, our only choice is to use X .
To do so, we create a hierarchical graph with N = 10 nodes, degree d = 3, and L = 3 layers. The
parameters are randomly chosen similarly to the simulations in Section 7. We generate 5000 training
and 5000 test samples. Then, we perform linear regression to estimate XN from {1, X1, . . . , XN−1}
using training data. We use the estimated parameters to predict XN on test data. Figure 8 shows the
distribution of actual reward versus predicted reward on two different trials. Unsurprisingly, even
for a simple model with N = 10 nodes and 5000 data samples, the reward is highly non-linear with
respect to XN , and equivalently to edge weight parameters.
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