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Abstract

We consider the linear discriminant analysis problem in the high-dimensional settings. In
this work, we propose PANDA(PivotAl liNear Discriminant Analysis), a tuning-insensitive
method in the sense that it requires very little effort to tune the parameters. Moreover,
we prove that PANDA achieves the optimal convergence rate in terms of both the estima-
tion error and misclassification rate. Our theoretical results are backed up by thorough
numerical studies using both simulated and real datasets. In comparison with the existing
methods, we observe that our proposed PANDA yields equal or better performance, and
requires substantially less effort in parameter tuning.

Keywords: Linear classification; Sparsity; Tuning-insensitive; Convex optimization.

1. Introduction

We consider the linear discriminant analysis problem with n0 samples (X
(0)
i )n0

i=1 from class

0 and n1 samples (X
(1)
i )n1

i=1 from class 1. In particular, consider the Gaussian case where

X
(`)
i ∼ N(µ(`),Σ), ` = 0, 1. Under the ideal setting where all parameters µ(0), µ(1),Σ are

pre-specified, the Bayes rule classifies a new sample Z by

f∗(Z) = 1
{

(Z − µm)>Σ−1µd > 0
}
,

where µm = (µ(0) + µ(1))/2 and µd = (µ(1) − µ(0)), and is proved to be optimal in terms of
misclassification rate, see Anderson (2003). However, the Bayes rule is often not practical,
as in reality the parameters are always unknown and need to be estimated.

Under the classical low-dimensional setting p < n, we estimate µ(0), µ(1) and Σ−1 by their
sample versions, and use the plug-in Bayes rule to classify the new sample. In particular,
let µ̂(`)’s and Σ̂ be the the sample means and the pooled sample covariance matrix, and let
µ̂m = (µ̂(0) + µ̂(1))/2, µ̂d = (µ̂(1) − µ̂(0)). Given a new sample Z, the following rule

f̂(Z) = 1
{
µ̂>d Σ̂−1 (Z − µ̂m) > 0

}
,
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asymptotically achieves the optimal Bayesian risk. Unfortunately, this method is inappli-
cable to high-dimensional settings where p � n because it is difficult to estimate Σ−1 due
to the singularity of Σ̂. Such high dimensionality issues exist unavoidably in many critical
modern scenarios such as genomics, and it is important to develop efficient methods for
LDA in high dimensions.

Several methods have been developed in the literature for high-dimensional LDA with
sparsity assumptions imposed, which are common in many real-world applications such as
the fMRI decoding and biomarker identification (Yamashita et al., 2008; Shi et al., 2009).
The existing methods can be further divided into two tracks based on the different sparsity
assumptions. The first track is to assume that Σ is sparse and estimate µd = µ(1) − µ(0)

and Σ separately. A simple approach is the naive Bayes rule or independence rule discussed
in Bickel et al. (2004). Tibshirani et al. (2002), and Fan and Fan (2008) proposed the
nearest shrunken centroid method and the Features Annealed Independence Rules (FAIR)
respectively for selecting significant features. Also see the sparse linear discriminant analysis
(SLDA) proposed in Shao et al. (2011).

Another track of work assumes the sparsity of the discriminant direction β∗ = Σ−1µd and
directly estimates β∗ from the samples. Witten and Tibshirani (2011) and Clemmensen et al.
(2011) proposed the sparse discriminant analysis method with multiple classes by imposing
fused LASSO penalty and elastic net penalty respectively. Mai et al. (2012) proposed to
estimate β∗ by minimizing an `1-penalized least square loss, and Fan et al. (2012) proposed
the regularized optimal affine discriminant (ROAD) method.

Existing theoretical results in the literature of high-dimensional LDA often require the
knowledge of unknown population. For the better understanding, here we present the linear
programming discriminant (LPD) rule in Cai and Liu (2011) with more details. The LPD
rule provides an estimator β̂ for β∗ by solving the following linear optimization problem

β̂ ∈ arg min
β∈Rp

‖β‖1, subject to ‖Σ̂β − µ̂d‖∞ ≤ λσ̂max,

with σ̂max =
√

maxj Σ̂jj and tuning parameter λ. The authors show that to ensure the fast

convergence rate of β̂, a reasonable choice of λ would be

λ = O

(
∆

√
log p

n

)
,

where ∆ =
√
β∗>Σβ∗. In practice, this choice of λ heavily relies on the unknown population

quantity ∆, which takes substantial effort to tune. To reduce the tuning effort, Cai and
Zhang (2019) propose the adaptive linear discriminant analysis (AdaLDA) rule, which is
a two-stage method that achieves the minimax optimal convergence rate in both the esti-
mation error and misclassification rate. Specifically, the AdaLDA rule solves a two-stage
problem: in the first stage it constructs an estimator ∆̂ for ∆ and in the second stage the
estimator is plugging into the LPD framework to obtain the estimator for β∗.

In this paper, we propose a novel one-stage method for high-dimensional linear discrim-
inant analysis named PANDA (PivotAl liNear Discriminant Analysis). Our method is
tuning-insensitive, in the sense that it automatically adapts to the population pattern and
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requires less effort to tune. Motivated by Gautier et al. (2011) for high-dimensional linear
regression, the proposed PANDA method simultaneously estimates β∗ and ∆ by solving
a single convex optimization problem, and is shown to attain the same minimax optimal
convergence rate as the AdaLDA method. Moreover, our detailed numerical results show
that the PANDA method achieves similar or more competitive performance than the LPD
and AdaLDA methods in terms of β∗ estimation error and misclassification rate, with less
cost of computational time.

It is worth mentioning that the topic of variable selection has also been investigated in
high-dimensional LDA. For example, Kolar and Liu (2015) established the optimal results
of variable selection for sparse discriminant analysis in Mai et al. (2012) and the ROAD
estimator in Fan et al. (2012), and Gaynanova and Kolar (2015) further extended the result
to the multi-group sparse discriminant analysis. We also include some numerical studies
investigating the variable selection properties of PANDA in Section 5.

Paper Organization. The rest of this paper is organized as follows. In Section 2, we
briefly review the LDA problem and the AdaLDA rule. In Section 3, we propose the
PANDA method. In Section 4, we provide theoretical justifications of PANDA. In Section
5, we present the numerical studies. In Section 6, we discuss the extension of our PANDA
method to the multiple-class LDA problem. In Section 7, we provide proofs of our main
results. We conclude the paper in Section 8.

Notations. Let v = (v1, · · · , vp)> ∈ Rp be a p−dimensional real vector. We define the
following vector norms: ‖v‖1 =

∑p
j=1 |vj |, ‖v‖22 =

∑p
j=1 v

2
j , and ‖v‖∞ = max1≤j≤p |vj |. For

p ∈ N, we denote by [p] the set {1, 2, · · · , p}. For j ∈ [p], let ej be the j−th canonical basis
in Rp. For S ⊆ [p], let vS denote the the subvector of v confined to S, and Sc denotes
the complement of S. For a matrix Σ ∈ Rp×p, Σ � 0 denotes that Σ is symmetric and
positive definite, and λmin(Σ) and λmax(Σ) denote the smallest and the largest eigenvalue
of Σ, respectively. We let 0 and 1 denote vectors with all the entries equal to 0 and 1,
respectively. We use 1{·} to denote the indicator function.

2. Background

In this section, we provide necessary mathematical background. For better presentation,
we split this section into two subsections. We review the problem setup of LDA in Section
2.1, and the AdaLDA method in Section 2.2.

2.1 Problem Setup

We consider the linear discriminant analysis problem with n0 samples (X
(0)
i )n0

i=1 from class

0 and n1 samples (X
(1)
i )n1

i=1 from class 1. In particular, consider the Gaussian case where

X
(`)
i ∼ N(µ(`),Σ), ` = 0, 1. Our goal is to find a linear discriminant rule fα,β(·) such that

given a new sample Z, we predict the class label of Z by

fα,β(Z) = 1
{
β>(Z − α) > 0

}
,

with some α, β ∈ Rp. For simplicity, we assume the two classes have equal prior weights,
i.e., P(Z is from Class 0) = P(Z is from Class 1) = 1/2. Then the misclassification rate of
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fα,β(·) can be written as

R(fα,β) =
1

2
PZ∼N(µ(0),Σ)(fα,β(Z) = 1) +

1

2
PZ∼N(µ(1),Σ)(fα,β(Z) = 0)

=
1

2
Φ

(
−
β>
(
α− µ(0)

)√
β>Σβ

)
+

1

2
Φ

(
−
β>
(
µ(1) − α

)√
β>Σβ

)
,

where Φ is the CDF of the standard Gaussian distribution.

The optimal misclassification rate (also known as the Bayes error) is achieved by the
Fisher’s discriminant rule fα∗,β∗(·) with α∗ = (µ(0) + µ(1))/2 and β∗ = Σ−1

(
µ(1) − µ(0)

)
.

Accordingly, the optimal misclassification rate is R∗ = Φ(−∆/2), where ∆ =
√
β∗>Σβ∗ =√

µ>d Σ−1µd is the signal-noise ratio of the classification problem.

2.2 The AdaLDA method

In this subsection, we review the AdaLDA method proposed in Cai and Zhang (2019), which
is tuning-insensitive and serves as a good comparison to our method. Let the sample means
and the pooled covariance matrix be

µ̂(`) =
1

n`

n∑̀
i=1

X
(`)
i and Σ̂ =

1

n0 + n1

∑
`=0,1

n∑̀
i=1

(X
(`)
i − µ̂

(`))(X
(`)
i − µ̂

(`))>.

The AdaLDA method estimates β∗ through two stages. In the first stage, AdaLDA solves
the following linear optimization problem to obtain an initial estimator β̃,

β̃ ∈ arg min
β

‖β‖1,

subject to ‖Σ̂β − µ̂d‖∞ ≤ 4σ̂max ·
√

log p

n
·
(
λβ>µ̂d + 1

)
,

(1)

where n = min(n0, n1), λ is a tuning parameter, µ̂d = µ̂(1) − µ̂(0) is the difference of

the sample means, and σ̂max =
√

maxj Σ̂jj . The initial esstimator β̃ is used to construct

an estimator ∆̂ =

√
|β̃>µ̂d| for ∆. In the second stage, AdaLDA solves another linear

optimization problem to obtain the final estimator β̂

β̂ ∈ arg min
β

‖β‖1,

subject to |e>j (Σ̂β − µ̂d)| ≤ 4σ̂max ·
√

log p

n
·
√
λ∆̂2 + 1, for all j ∈ [p].

With β̂ and µ̂m =
(
µ̂(0) + µ̂(1)

)
/2, AdaLDA constructs the linear discriminant rule f

µ̂m,β̂
.

With a slight abuse of the notation, we let R(β̂) = R(f
µ̂m,β̂

). Since the tuning param-
eters in the two steps do not depend on any unknown population quantities, the AdaLDA
method is tuning-insensitive. Assuming β∗ contains at most s nonzero entries, Cai and
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Zhang (2019) prove that under some mild assumptions, by choosing λ as a proper constant,
both β̂ and R(β̂) achieve the minimax optimal rates of convergence that

‖β̂ − β∗‖2 = OP

(
∆

√
s log p

n

)
and R(β̂)−R∗ = OP

(
exp

(
−∆2

8

)
∆
s log p

n

)
.

3. The PANDA Method

In this section, we propose PANDA, a one-stage and tuning-insensitive method for linear
discriminant analysis in high dimensions. To begin with, we would like to first recall the
LPD method Cai and Liu (2011), which motivates our formulation. Specifically, the LPD
method estimates β∗ by solving the following linear optimization problem that

LPD : β̂ ∈ arg min
β∈Rp

‖β‖1, subject to ‖Σ̂β − µ̂d‖∞ ≤ λσ̂max. (2)

As discussed earlier, the tuning parameter λ in (2) depends on the unknown population
quantity ∆ =

√
β∗>Σβ∗, which is difficult to tune in practice.

To address this issue, we introduce τ as an estimator of ∆, and plug it into (2), as inspired
by the pivotal method for high-dimensional linear regression in Gautier et al. (2011). This
leads to the following optimization problem

(β̂, τ̂) ∈ arg min
β∈Rp,τ∈R

‖β‖1, subject to ‖Σ̂β − µ̂d‖∞ ≤ λσ̂max(τ + 1),

√
β>Σ̂β = τ. (3)

The optimization problem in (3) is nonconvex due to the quadratic equality constraint√
β>Σ̂β = τ . Thus, we propose to relax the equality constraint into an inequality constraint,

and obtain

(β̂, τ̂) ∈ arg min
β∈Rp,τ∈R

‖β‖1, subject to ‖Σ̂β − µ̂d‖∞ ≤ λσ̂max(τ + 1),

√
β>Σ̂β ≤ τ. (4)

However, as the objective function in (4) is free of τ , τ can be arbitrarily large. In fact,
(4) admits a trivial solution β̂ = 0 when τ̂ is larger than λ−1‖µ̂d‖∞ − 1, which makes (4)
inapplicable.

To solve this problem, we introduce an additional penalty term cτ2 to the objective in
(4), which leads to the following PANDA’s formulation:

PANDA : (β̂, τ̂) ∈ arg min
β∈Rp,τ∈R

‖β‖1 + cτ2,

subject to ‖Σ̂β − µ̂d‖∞ ≤ λσ̂max(τ + 1),

√
β>Σ̂β ≤ τ, (5)

where c > 0 and λ > 0 are two tuning parameters. Note that different from the linear
penalty term used in Gautier’s pivotal method, our penalty term is quadratic in τ. In fact,
we can show that to guarantee the tuning-insensitivity of our PANDA method, the penalty
term on τ must be quadratic. We provide more detailed discussion in Section F of the
supplementary material.
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Note that both our proposed PANDA method and the AdaLDA method adopt the
similar idea of plugging in an estimator of the unknown quantity ∆ to the tuning parameter
λ in the LPD method to achieve tuning-insensitivity. The main difference is that AdaLDA
constructs the estimator for ∆ in a separate linear program (1), while PANDA estimates
β∗ and ∆ in a single convex program.

We point out that the problem in (5) is a second order conic optimization problem. By
introducing auxiliary variables w ∈ Rp and u ∈ R, the problem in (5) is equivalent to the
following optimization problem

min
β,τ,w,u

p∑
j=1

wj + cu, (6)

subject to − wj ≤ βj ≤ wj , −λσ̂max(τ + 1)1 ≤ Σ̂β − µ̂d ≤ λσ̂max(τ + 1)1,

‖Σ̂1/2β‖2 ≤ τ,
√
τ2 +

1

4
(1− u)2 ≤ 1

2
(1 + u).

Such a second order conic optimization problem is convex, and can be solved in a polynomial
time using the interior point method (Nesterov and Nemirovskii, 1994). Computationally,
we also provide an efficient scheme in Algorithm 1 using the alternating direction method
of multipliers (ADMM) following Boyd et al. (2011) to solve (6). We provide more details
on the derivation of the algorithm in Section A of the supplementary material.

Algorithm 1: ADMM with proximal method for solving problem (6)

Input: Sample mean difference µ̂ = µ̂(1) − µ̂(0); Pooled sample covariance matrix Σ̂;
Tuning parameter c, λ; Initialization β0, τ0 u0, v0, w0, s0; Penalty parameter ρ > 0;
Primal step size η > 0; Number of iterations T .
for t = 1, 2, · · · , T do
βt ← βt−1 − η∇βLρ(βt−1, ut−1, vt−1, wt−1, τ t−1, st−1)
ut ← ΠC1 [ut−1 − η∇uLρ(βt, ut−1, vt−1, wt−1, τ t−1, st−1)]
vt ← ΠC2 [vt−1 − η∇vLρ(βt, ut, vt−1, wt−1, τ t−1, st−1)]
τ̃ t ← τ t−1 − η∇τLρ(βt, ut, vt, wt−1, τ t−1, st−1)
w̃t ← wt−1 − η∇wLρ(βt, ut, vt, wt−1, τ t−1, st−1)
(wt, τ t)← ΠC2(w̃t, τ̃ t)
st ← st−1 +Aββ

t +Auu
t +Avv

t +Aww
t +Aττ

t − bt
end for
Output (βT , τT , wT , uT )

4. Statistical Properties

In this section, we establish theoretical guarantees for our proposed PANDA method. For
notational simplicity, we denote

µm = (µ(0) + µ(1))/2, µ̂m = (µ̂(0) + µ̂(1))/2, µd = µ(1) − µ(0),

µ̂d = µ̂(1) − µ̂(0), σmax = max
j

(Σjj)
1/2, σ̂max = max

j
(Σ̂jj)

1/2.
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Without loss of generality, here we only consider the case where n0 = n1 = n, and our
results can be easily extended to the general case where n0 6= n1. We require the following
weak sparsity condition on β∗ :

β∗ ∈ Bq(R) :=

β ∈ Rp :
∑
j

|βj |q ≤ R

 ,

where q ∈ [0, 1) and R can scale with n and p. Note that when q = 0, Bq(R) is reduced to

the class of R-sparse vectors, i.e., B0(R) :=
{
β ∈ Rp :

∑
j 1{βj 6= 0} ≤ R

}
. We also need

to impose the following two mild assumptions.

Assumption 1 There exists a constant a such that ‖µd‖∞ ≥ a > 0.

Assumption 2 There exists some M such that M−1 ≤ λmin(Σ) ≤ λmax(Σ) ≤M .

Essentially, Assumption 1 requires the two classes to be distinguishable, and Assumption 2
requires the covariance matrix Σ to be sufficiently well-conditioned, as its condition number
is upper bounded by M2.

We are now ready to present the theoretical guarantees of the PANDA method in (5).
Let us begin with the convergence rates of β̂ and τ̂ .

Theorem 1 (Parameter Estimation) Suppose that Assumption 2 hold, and β∗ ∈ Bq(R)

for some q ∈ [0, 1) and some R > 0. Let
(
β̂, τ̂

)
be an optimal solution of (5). Given

c =
1

8

(
‖µ̂d‖∞ + 4σ̂max

√
log p
n

) , λ = 20

√
log p

n
, (7)

for sufficiently large n such that

n ≥ C(1) · a−2∆2σ2
maxM

2+ 1
1−qR

2
1−q log p (8)

where C(1) is an absolute constant, we have, with probability goes to 1,

‖β̂ − β∗‖1 ≤ C1 · (∆ + 1) (σmaxM)1−q R

(
log p

n

)(1−q)/2
, (9a)

‖β̂ − β∗‖2 ≤ C2 · (∆ + 1) (σmaxM)1−q/2√R
(

log p

n

)1/2−q/4
, (9b)

|τ̂2 −∆2|
∆2

≤ C3 · (1 + ∆−1)σ1−q/2
max M3/2−qR

( log p

n

)(1−q)/2
, (9c)

where C1, C2 and C3 are positive constants.

Note that our proposed PANDA method is tuning-insensitive, as the chosen tuning
parameters c and λ in (7) do not depend on any unknown population quantity. In the next
theorem, we show that the sample complexity requirement (8) can be relaxed under some
more restrictive conditions.
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Theorem 2 Suppose that Assumption 2 holds, and β∗ ∈ Bq(R) for some q ∈ [0, 1) and

some R > 0. Let
(
β̂, τ̂

)
be an optimal solution to problem (5). When τ̂ =

√
β̂>Σ̂β̂, given

c =
1

8

(
‖µ̂d‖∞ + 4σ̂max

√
log p
n

) , λ = 20

√
log p

n
,

for sufficiently large n such that

n ≥ C(2) · a−2∆2σ2
maxM

2+ 1
1−qR

2
2−q log p, (10)

where C(2) is an absolute constant, we have, with probability goes to 1,

‖β̂ − β∗‖2 ≤ C1 · (∆ + 1)(σmaxM)1−q/2√R
(

log p

n

)1/2−q/4
, (11a)

|τ̂2 −∆2|
∆2

≤ C2 · (1 + ∆−1)σ1−q/2
max M3/2−q√R

( log p

n

)(1−q)/2
, (11b)

where C1 and C2 are positive constants.

Note that in the above theorem, we impose the additional assumption that τ̂ =

√
β̂>Σ̂β̂,

i.e. the second inequality constraint of PANDA is active at the optimal solution. We point
out that in practice, we can numerically verify if this assumption indeed holds. Also, in
our later simulations, we find that this assumption holds when the tuning parameters are
properly chosen.

We next compare our results with Cai and Zhang (2019) for q = 0. Note that Cai and
Zhang (2019) consider the following parameter space of β∗ and Σ,

Θs =
{

(β∗,Σ) : β∗ ∈ Rp, Σ ∈ Rp×p, |supp(β∗)| ≤ s,
M−1 ≤ λmin(Σ) ≤ λmax(Σ) ≤M,∆ ≥ cL > 0

}
, (12)

where M and cL are absolute constants that do not scale with n, p and s. They then
establish the following minimax lower bound,

inf
β̂

sup
(β∗,Σ)∈Θs

E
[
‖β̂ − β∗‖2

]
≥ CM ·∆

√
s log p

n
,

where the infimum is taken over any estimator β̂ based on the samples, and CM is some
constant depending on M . Under such a setting, both AdaLDA and PANDA are minimax
optimal in terms of β∗ estimation. When M is allowed to scale with n, p and s, the PANDA
method still attains the same rates of convergence for parameter estimation as the AdaLDA
method. Specifically, we follow the same analysis in Cai and Zhang (2019) and rewrite their
results with explicit dependence on M as follows,

‖β̂ − β∗‖2 = OP

(
σmaxM∆

√
s log p

n

)
,

|∆̂2 −∆2|
∆2

= OP

(
σmaxM

3/2

√
s log p

n

)
.
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In addition, to ensure the above rates of convergence with high probability, the sample size
n needs to satisfy that

n = OP
(
σ2

maxM
3∆2s log p

)
.

As can be seen, in Theorem 2, our convergence rates (11a) and (11b) matches the conver-
gence rates in Cai and Zhang (2019) with the same order of sample complexity.

Next, let us establish an upper bound for the misclassification rate of the obtained
estimator β̂ in the PANDA method.

Theorem 3 (Misclassification Rate) Under the identical conditions as in Theorem 1 or
2, we have, with probability goes to 1,

R(β̂)−R∗ ≤ C · exp

(
−∆2

8

)
σ−qmaxM

3−q∆R

(
log p

n

)1−q/2

where C is an absolute positive constants.

When q = 0 and R = s, Cai and Zhang (2019) consider the parameter space of β∗ and Σ
defined in (12), where M is a constant, and establish the following minimax lower bound

inf
f̂

sup
(β∗,Σ)∈Θs

R(f̂)−R∗ ≥ C · exp

(
−∆2

8

)
∆−1 s log p

n
,

where the infimum is taken over any linear discriminant rule f̂ based on the samples. Under
such a setting, both AdaLDA and PANDA attain the minimax optimal rates of convergence
for the misclassification rate that

R(β̂)−R∗ = OP
(

exp

(
−∆2

8

)
M3∆

s log p

n

)
.

Remark 4 The probability of the convergence rates in Theorems 1, 2 and 3 is due to the
uncertainty of data, which is addressed in Lemma 8 and Lemma 10 in later analysis. As a
summary, the probability of our convergence rates to hold is at least 1−4p−1−2p exp(−n−1

16 )−
c1 exp(−c2n). With our sample size condition in (8), the above probability has an order of
1−O(p−1).

Remark 5 Note that while the choice of the tuning parameters c and λ in (7) guarantees
the optimal rates of convergence in both the estimation error and misclassification rate, in
practice we recommend to fine-tune these parameters to achieve more appealing performance.
In our numerical studies below, we use an independent validation set to tune the parameters
in our PANDA method as well as the LPD and AdaLDA method for comparison. We
also include the results of our PANDA method with the fine-tuned parameters and with
parameters set as in (7) for comparison.

5. Numerical Results

In this section, we thoroughly compare our proposed PANDA method with the LPD method
and AdaLDA method through numerical experiments using both simulated and real data.
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5.1 Simulation

To make a fair comparison of the three methods’ performances, we fine-tune the parameters
for each method on a validation dataset independent from the training data, and we provide
both the estimation error of β∗ (in `2 norm) and the population risk (2.1) of each method.
Settings: We follow the settings in Cai and Zhang (2019) to generate Σ and β∗.

(a) AR(1). We let Ωj,k = 0.9|j−k|, Σ = Ω−1 and β∗ = (2/
√
s, · · · , 2/

√
s, 0, · · · , 0)>, where

the first s entries are non-zero and ‖β∗‖2 = 2.

(b) Varying diagonal. We let the diagonal entries of Σ as Σj,j = 11 for j = 1, 2, · · · , 5,
and Σj,j = 1 + Uj for j = 6, 7, · · · , p, where Ui’s are independently drawn from the
uniform distribution U(0, 1), and we let the off-diagonal entries be Σj,k = 0.9|j−k|. We
let β∗ = (1/

√
s, · · · , 1/

√
s, 0, · · · , 0)>, where only the first s entries are non-zero and

‖β∗‖2 = 1.

(c) Erdös-Rényi random graph. We let Ω̃j,k = uj,kvj,k, where vj,k’s are i.i.d. Bernoulli
random variables with success rate 0.2, and uj,k’s are i.i.d. uniform random variables

over [0.5, 1]
⋃

[−1,−0.5], and vj,k’s and uj,k’s are independent. Then we let Ω̃s = (Ω̃ +

Ω̃>)/2 and Ω0 = Ω̃s +
[
max(−λmin(Ω̃s), 0) + 0.05

]
Ip. Let D0 be a diagonal matrix

with diagonal elements same as Ω0’s. We let Ω = D
−1/2
0 Ω0D

−1/2
0 and Σ = Ω−1, and

let β∗ = (1/
√
s, · · · , 1/

√
s, 0, · · · , 0)> where only the first s entries are non-zero and

‖β∗‖2 = 1.

(d) Block sparse model. We first construct a matrix B of size p×p as follows. For 1 ≤ j ≤
p/2 and j < k ≤ p, we let Bj,k = Bk,j = 10bi,j , where bj,k’s are i.i.d. Bernoulli variables
with success rate 0.5. For p/2 < j < k ≤ p, we let Bj,k = Bk,j = 10. For the diagonal
elements, we let Bj,j = 1 for 1 ≤ j ≤ p. Then we let w = max(−λmin(B), 0) + 0.05 and
let Ω = (B +wIp)/(1 +w) and Σ = Ω−1. We let β∗ = ( 1

2
√
s
, · · · , 1

2
√
s
, 0, · · · , 0)>, where

only the first s entries are non-zero and ‖β∗‖2 = 1/2.

(e) Approximately sparse setting. We let Σj,k = 0.9|j−k| and β∗j = 0.75j , which are
approximately sparse. Note that ‖β∗‖2 ≈ 3 when p is large.

Parameter Tuning: While both the AdaLDA method and PANDA method achieve guar-
anteed theoretical properties with specific tuning parameters, we observe in our experiments
that tuning these parameters via a validation set yields better empirical results. In our ex-
periments, under each setting, we randomly sample a validation dataset with n = 200 data
points from each class. Motivated by the choice of λ in (7), we let λ = λ̃ ·

√
log p/n, and

we tune the parameter λ̃, as equivalent to tuning λ. For a fair comparison, for all the three
methods (LPD, AdaLDA, and PANDA) we tune λ̃ by a grid search over a range from 0.1
to 8.0, with a grid size 0.1. Figures 1 and 2 show the results of the misclassification risks
and the estimation errors ‖β̂− β∗‖2 versus the λ̃ value in the three methods, averaged over
100 replicates under each setting of different p and s. For the parameter c in the PANDA
method, we observe that the results are insensitive to the value of c as long as c is not too
small, see Table 1 for the result of the misclassification rate with different choices of c under
the AR(1) model as an example. Therefore, we set c = 20 for all settings.
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Figure 1: The misclassification rate v.s. the values of the parameter λ̃ in LPD (left),
AdaLDA (middle) and PANDA (right). Results are averaged over 100 replicates.

Table 1: Misclassification rate of the PANDA method under the AR(1) model with n = 200,
p = 400, s = 5 and different c, averaged over 100 replicates. The standard deviations are
provided in brackets.

c 1e-3 1e-2 0.1

Misclassification rate 0.3729 (0.1489) 0.2155 (0.0035) 0.2106 (0.0050)

c 1 10 100

Misclassification rate 0.2044 (0.0049) 0.2036 (0.0053) 0.2035 (0.0054)

Tuning Sensitivity: We thoroughly investigate the sensitivity of the tuning parameters
under different settings. Since the choice of λ in the LPD method relies on the unknown
population quantity ∆, so does the optimal value of λ (or λ̃, equivalently) in practice. We
consider following settings to see how the population distribution, especially the scale of
∆, changes the empirically optimal tuning parameters of the LPD, AdaLDA and PANDA
methods. For the varying diagonal model, we set p = 400, 800, s = 5, and β∗ = η ·
(1/
√
s, · · · , 1/

√
s, 0, · · · , 0)> for η = 1, 2, 4, where the first s entries are non-zero. For the

approximately sparse β model, we set p = 400, 800, and β∗j = η · 0.75j for η = 1, 2, 4.

During the tuning process, we observe that the empirically optimal tuning parameter
λ̃ for the PANDA method is less sensitive to the change of unknown population quantities
among different settings, in comparison with the LPD method and AdaLDA method. In
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Figure 2: `2 estimation error v.s. values of tuning parameter λ̃ in LPD (left), AdaLDA
(middle) and PANDA (right). Results are averaged over 100 replicates.

particular, Figure 3 shows the distribution of the empirically optimal tuning parameter over
100 replicates under each setting as specified above. The results show that for the PANDA
method, the optimal tuning parameter is always close to 1, and does not change much across
the different settings.
Parameter Estimation: Table 2 summarizes the estimation error of β∗, ‖β̂ − β∗‖2, aver-
aged over 100 random replicates under each setting. It is seen that our proposed PANDA
method achieves equal or better performance compared with the LPD and AdaLDA meth-
ods in most settings.
Risk Evaluation: Table 3 summarizes the misclassification rate under each setting aver-
aged over 100 random replicates. It is seen that our proposed PANDA method achieves
similar or better performances than the LPD method and AdaLDA method in most settings.
Running Time: Table 4 summarizes the running time of our PANDA method and the
AdaLDA method under the Varying Diagonal model on a regular computer (Intel Core i5,
2.3GHz). For both methods we use Gurobi, a commercial software that provides state-
of-the-art solver for linear programming and second order cone programming, to solve the
optimization problems. As can be seen, our PANDA method requires less running time
than the AdaLDA method.
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Table 2: The `2 estimation errors under each setting, averaged over 100 replicates. The
standard deviations are given in brackets. The lower value at the significance level 0.05
between the AdaLDA and the PANDA method are marked in bold.

Model Specification

AR(1)
‖β∗‖ = 2

(s, p) (5, 400) (10, 400) (20, 400) (5, 800) (10, 800) (20, 800)

LPD
1.8875 1.9607 1.9846 1.8960 1.9669 1.9868

(0.0494) (0.0313) (0.0101) (0.0416) (0.0199) (0.0094)

AdaLDA
1.8854 1.9545 1.9821 1.8952 1.9593 1.9850

(0.0495) (0.0200) (0.0098) (0.0412) (0.0184) (0.0084)

PANDA
1.8673 1.9521 1.9814 1.8856 1.9571 1.9830
(0.0542) (0.0229) (0.0112) (0.0460) (0.0190) (0.0104)

Varying
Diagonal
‖β∗‖ = 1

(s, p) (5, 400) (10, 400) (20, 400) (5, 800) (10, 800) (20, 800)

LPD
0.3135 0.7273 0.8841 0.3158 0.7346 0.8949

(0.1088) (0.0488) (0.0178) (0.1128) (0.0393) (0.0190)

AdaLDA
0.2753 0.7198 0.8837 0.2942 0.7371 0.8935
(0.0712) (0.0387) (0.0172) (0.0764) (0.0374) (0.0146)

PANDA
0.3113 0.7177 0.8797 0.3197 0.7305 0.8901

(0.1110) (0.0478) (0.0171) (0.1166) (0.0381) (0.0176)

Erdös-Rényi
Random Graph
‖β∗‖ = 1

(s, p) (5, 400) (10, 400) (20, 400) (5, 800) (10, 800) (20, 800)

LPD
0.5715 0.7071 1.0416 0.5933 0.7677 0.9344

(0.1108) (0.0965) (0.1608) (0.1168) (0.0855) (0.0867)

AdaLDA
0.5688 0.6895 1.0055 0.5949 0.7642 0.9308

(0.1136) (0.0761) (0.0637) (0.0980) (0.0914) (0.1126)

PANDA
0.5366 0.7078 0.9477 0.5753 0.7326 0.9114
(0.1162) (0.2120) (0.0895) (0.0966) (0.1054) (0.2358)

Block Sparse
‖β∗‖ = 1

(s, p) (5, 400) (10, 400) (20, 400) (5, 800) (10, 800) (20, 800)

LPD
0.5066 0.5636 0.6571 0.4653 0.5490 0.5475

(0.1184) (0.1400) (0.2355) (0.0908) (0.0653) (0.0987)

AdaLDA
0.5145 0.5480 0.5790 0.4798 0.5391 0.5036

(0.0321) (0.0082) (0.0110) (0.0235) (0.0143) (0.0044)

PANDA
0.4332 0.4986 0.5409 0.4789 0.5229 0.5425
(0.0511) (0.0272) (0.0278) (0.1241) (0.0665) (0.1058)

Approximately
Sparse
‖β∗‖ ≈ 3

p 400 800 1200

LPD
1.0152 0.9900 0.9750

(0.2968) (0.2897) (0.3112)

AdaLDA
1.0117 1.0273 1.0013

(0.2877) (0.2998) (0.3192)

PANDA
0.8205 0.8547 0.8514
(0.2328) (0.2701) (0.2380)
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Figure 3: The distribution of the empirically optimal tuning parameter λ̃ for LPD (left),
AdaLDA (middle) and PANDA (right) over 100 replicates, approximated with kernel
smoothing. The optimal choice of the parameter λ̃ in our PANDA method relies less on
the population.

Variable Selection: We expect our PANDA method is capable for variable selection,
as similar to the LPD and AdaLDA method. Here we report the performance of the three
methods in the accuracy of finding the sparse signal, under the AR(1) and Varying Diagonal
model as described above. To be more specific, we compute the average of True Positive and
True Negative, together with the Precision and Recall for identifying the non-zero entries
in β∗, after applying a threshold at 0.01 for entries in β̂. The results under the two models
are summarized in Tables 5 and 6, respectively. We see that PANDA achieves comparable
performance with LPD and AdaLDA in the sense of accuracy of variable selection.
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Table 3: The misclassification rate under each setting averaged over 100 replicates. The
standard deviations are given in brackets. The lower value at the significance level 0.05
between the AdaLDA and the PANDA method are marked in bold.

Model Specification

AR(1)

(s, p) (5, 400) (10, 400) (20, 400) (5, 800) (10, 800) (20, 800)

LPD
0.2086 0.2900 0.3535 0.2112 0.2908 0.3532

(0.0074) (0.0109) (0.0099) (0.0074) (0.0066) (0.0080)

AdaLDA
0.2082 0.2890 0.3522 0.2120 0.2913 0.3525

(0.0068) (0.0080) (0.0075) (0.0088) (0.0072) (0.0082)

PANDA
0.2068 0.2886 0.3542 0.2114 0.2910 0.3571
(0.0069) (0.0087) (0.0104) (0.0084) ( 0.0079) (0.01206)

Varying
Diagonal

(s, p) (5, 400) (10, 400) (20, 400) (5, 800) (10, 800) (20, 800)

LPD
0.0515 0.1382 0.2269 0.0520 0.1390 0.2289

(0.0028) (0.0054) (0.0065) (0.0038) (0.0056) (0.0087)

AdaLDA
0.0508 0.1376 0.2266 0.0513 0.1386 0.2284

(0.0018) (0.0046) (0.0063) (0.0032) (0.0054) (0.0081)

PANDA
0.0512 0.1374 0.2266 0.0514 0.1384 0.2292

(0.0026) (0.0040) (0.0064) (0.0025) (0.0048) (0.0088)

Erdös-Rényi
Random Graph

(s, p) (5, 400) (10, 400) (20, 400) (5, 800) (10, 800) (20, 800)

LPD
0.2857 0.2424 0.1150 0.2757 0.3256 0.3289

(0.0138) (0.0099) (0.0054) (0.0148) (0.0182) (0.0145)

AdaLDA
0.2849 0.2414 0.1162 0.2758 0.3246 0.3281

(0.0129) (0.090) (0.0058) (0.0138) (0.0185) (0.0152)

PANDA
0.2823 0.2403 0.1114 0.2721 0.3183 0.3209
(0.0117) (0.0106) (0.0044) (0.0129) (0.0166) (0.0161)

Block Sparse

(s, p) (5, 400) (10, 400) (20, 400) (5, 800) (10, 800) (20, 800)

LPD
0.1643 0.0954 0.0451 0.4184 0.1724 0.3776

(0.0056) (0.0038) (0.0028) (0.0170) (0.0029) (0.0077)

AdaLDA
0.1745 0.1002 0.0451 0.4378 0.1739 0.3811

(0.0061) (0.0009) (0.0003) (0.0156) (0.0007) (0.0020)

PANDA
0.1614 0.0938 0.0437 0.4168 0.1706 0.3753
(0.0047) (0.0018) (0.0007) (0.0159) (0.0026) (0.0072)

Approximately
Sparse

p 400 800 1200

LPD
0.1054 0.1047 0.1053

(0.0046) (0.0030) (0.0040)

AdaLDA
0.1042 0.1043 0.1042

(0.0029) (0.0035) (0.0038)

PANDA
0.1034 0.1039 0.1040

(0.0033) (0.0038) (0.0045)
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Table 4: Running time (in seconds) of the PANDA and AdaLDA methods under the Varying
Diagonal model using Gurobi, over 100 replicates. The standard deviations are given in
brackets.

(s, p) (5, 400) (10, 400) (20, 400)

AdaLDA 106.739 (2.653) 107.743 (2.588) 107.017 (2.782)
PANDA 70.202 (4.751) 71.312 (4.389) 72.112 (4.965)

(s, p) (5, 800) (10, 800) (20, 800)

AdaLDA 413.262 (13.209) 413.876 (12.708) 416.793 (12.383)
PANDA 325.486 (16.372) 326.125 (16.504) 333.427 (13.554)

Table 5: The results on variable selection over 100 replicates under the AR(1) model. The
standard deviations are given in brackets.

Criteria Specification

True Positive

(s, p) (5, 400) (10, 400) (20, 400) (5, 800) (10, 800) (20, 800)

LPD
1.95 1.51 1.27 1.76 1.17 1.02

(0.59) (0.76) (0.65) (0.62) (0.49) (0.45)

AdaLDA
1.97 1.60 1.34 1.77 1.38 1.03

(0.56) (0.70) (0.65) (0.55) (0.56) (0.33)

PANDA
2.20 1.75 1.58 1.96 1.51 1.29

(0.68) (0.84) (0.96) (0.65) (0.69) (0.57)

True Negative

(s, p) (5, 400) (10, 400) (20, 400) (5, 800) (10, 800) (20, 800)

LPD
386.87 385.1 375.95 787.72 786.57 778.23
(10.20) (11.46) (7.91) (8.01) (6.60) (4.04)

AdaLDA
387.55 385.31 376.67 786.91 784.42 777.92
(6.92) (7.48) (4.80) (9.79) (7.72) (4.04)

PANDA
386.69 384.04 375.45 785.80 783.44 775.16
(8.39) (10.17) (7.10) (11.24) (11.04) (7.32)

Precision

(s, p) (5, 400) (10, 400) (20, 400) (5, 800) (10, 800) (20, 800)

LPD
0.3741 0.5668 0.5955 0.4039 0.6202 0.7003

(0.2992) (0.3666) (0.3778) ( 0.3207) (0.3726) (0.3520)

AdaLDA
0.3624 0.5126 0.5465 0.3880 0.4406 0.6379

( 0.2834) (0.3432) (0.3514) (0.3166) (0.3388) (0.3537)

PANDA
0.3713 .4824 0.4797 0.4055 0.4511 0.4411

(0.2858) (0.3373) (0.3164) (0.3266) (0.3427) (0.3132)

Recall

(s, p) (5, 400) (10, 400) (20, 400) (5, 800) (10, 800) (20, 800)

LPD
0.3900 0.1510 0.0635 0.3520 0.1170 0.0510

(0.1185) (0.07588) (0.0324) (0.1243) (0.0493) (0.0224)

AdaLDA
0.3940 0.1600 0.0670 0.3540 0.1380 0.0515

(0.1118) (0.0696) (0.0327) (0.1096) (0.0565) (0.0166)

PANDA
0.4400 0.1750 0.0790 0.3920 0.1510 0.0645

(0.1363) (0.0845) (0.0478) (0.1300) (0.0689) (0.0287)

5.2 Leukemia data

We investigate the performance of the PANDA, LPD, and AdaLDA methods on a Leukemia
dataset from high-density oligonucleotide microarrays. This dataset was first analyzed by
Golub et al. (1999), and it contains 72 samples of two categories: 47 of acute lymphoblas-
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Table 6: The results on variable selection over 100 replicates under the Varying Diagonal
model. The standard deviations are given in brackets.

Criteria Specification

True Positive

(s, p) (5, 400) (10, 400) (20, 400) (5, 800) (10, 800) (20, 800)

LPD
5.00 5.14 4.33 5.00 5.10 3.81
(0) (0.85) (1.14) (0) (0.77) (1.35)

AdaLDA
5.00 5.25 4.34 5.00 5.08 3.89
(0) (0.54) (1.12) (0) (0.60) (1.27)

PANDA
5.00 5.30 4.44 5.00 5.20 4.02
(0) (0.69) (1.00) (0) (0.64) (1.31)

True Negative

(s, p) (5, 400) (10, 400) (20, 400) (5, 800) (10, 800) (20, 800)

LPD
394.94 389.97 380.00 794.90 790.0 780.0
(0.31) (0.30) (0) (0.48) (0) (0)

AdaLDA
394.95 389.99 380.0 794.94 789.99 780.0
(0.26) (0.10) (0) (0.31) (0.10) (0)

PANDA
394.86 390.0 379.98 794.95 790.0 779.99
(0.75) (0) (0.20) (0.26) (0) (0.10)

Precision

(s, p) (5, 400) (10, 400) (20, 400) (5, 800) (10, 800) (20, 800)

LPD
0.9910 0.9970 1 0.9863 0.9939 1

(0.0461) (0.0302) (0) (0.0635) (0.0010) (0)

AdaLDA
0.9921 0.9986 0.9608 0.9910 0.9983 1

(0.0400) (0.0143) (0.0028) (0.0461) (0.0167) (0)

PANDA
0.9830 1 0.9975 0.9921 1 0.9985

(0.0733) (0) (0.0251) ( 0.0400) (0) (0.0145)

Recall

(s, p) (5, 400) (10, 400) (20, 400) (5, 800) (10, 800) (20, 800)

LPD
1 0.514 0.2165 1 0.51 0.1905

(0) (0.0853) (0.0569) (0) (0.0772) (0.0673)

AdaLDA
1 0.525 0.217 1 0.508 0.1945

(0) (0.0539) (0.0560) (0) (0.0598) (0.0635)

PANDA
1 0.53 0.222 1 0.52 0.2010

(0) (0.0689) (0.0499) (0) (0.0636) (0.0655)

tic leukemia (ALL), and 25 of acute myeloid leukemia (AML). Each sample contains the
quantitative expression levels of 7129 genes.

Preprocessing: We follow the preprocessing steps in Cai and Zhang (2019). First, we
combine the data from both categories and compute the sample variance of each gene.
Then, we drop the genes with sample variance beyond the lower and upper 6-quantiles of
the total 7129 genes.

Result: To provide a fair comparison among the LPD, AdaLDA, and PANDA methods, we
tune the parameters using a validation set. After preprocessing the raw data, we randomly
split the data into training, validation, and testing sets. Specifically, the training set contains
29 ALL and 15 AML samples, the validation set contains 9 ALL and 5 AML samples, and
the testing set contains 9 ALL and 5 AML samples. For the computational efficiency, we
only use 2000 genes with the largest absolute values of the two-sample t-test in the training
set, as suggested by Cai and Zhang (2019). We repeat the process 100 times, and provide
the three methods’ average misclassification rates on the testing set (testing error) and
their standard deviations in Table 7. As can be seen, the PANDA method achieves a lower
misclassification rate than both the LPD and AdaLDA methods.
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Table 7: The performance of PANDA, AdaLDA and LPD on the Leukemia dataset. The
testing errors are averaged over 100 replicates. The standard deviation of the testing er-
rors are given in brackets. The difference between PANDA and the other two methods is
significant by pair-wise t-test with a p-value less than 0.001.

LPD AdaLDA PANDA

Testing Error
9.28% 10.64% 6.93%

(6.87%) (7.92%) (6.74%)

6. Extension to multiple-class LDA

In this section, we discuss the extension of PANDA method to K-class LDA in high dimen-
sions. To be more specific, we consider the following data setting. Suppose we have sam-

ples
{
X

(k)
i : k = 1, 2, · · · ,K, i = 1, 2, · · · , nk

}
from K classes denoted by k = 1, 2, · · · ,K,

such that X
(k)
i ’s are i.i.d. from N(µ(k),Σ). Also, we suppose that the prior probabilities

π1, π2, · · · , πK for the K classes are known. Then the oracle classification rule for future data

Z is given by f(Z) = argmaxkDk, where D1 = 0, Dk =
(
Z − µ(1)+µ(k)

2

)>
β(k) + log

(
πk
π1

)
,

with β(k) = Σ−1(µ(k) − µ(1)). In addition, we define ∆k =
√
β(k)>Σβ(k). Let µ̂(k) be the

sample mean of data in class k, and let Σ̂ be the pooled sample covariance matrix over the
K classes. Then, one can construct the classifier by using the K-class PANDA method,
which simultaneously estimate β(k)’s and ∆k’s via the following optimization problems.

(β̂(k), τ̂k) ∈ arg min
β,τ

‖β‖1 + ckτ
2, (13)

subject to ‖Σ̂β − (µ̂(k) − µ̂(1))‖∞ ≤ λσ̂max(τ + 1),

√
β>Σ̂β ≤ τ.

Based on β̂(k)’s, one can construct the classifier by f̂(Z) = arg maxk D̂k with D̂1 = 0 and

D̂k = (Z − µ̂(1)+µ̂(k)

2 )>β̂(k).

Following the similar technical argument as for Theorems 1, 2 and 3, we can establish
the following theoretical properties for K-class PANDA method.

Theorem 6 Suppose that Assumption 2 hold, and β(k)∗ ∈ Bq(R) for some q ∈ [0, 1) and

some R > 0 for all k = 2, 3, · · · ,K. Let
(
β̂(k), τ̂k

)
be an optimal solution of (13). Given

ck =
1

8

(
‖µ̂(k) − µ̂(1)‖∞ + 4σ̂max

√
log p
n

) , λ = 20

√
log p

n
,

for sufficiently large n such that

n ≥ C · a−2∆2
kσ

2
maxM

2+ 1
1−qR

2
1−q log p
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where C is an absolute constant, we have, with probability goes to 1,

‖β̂(k) − β(k)∗‖1 ≤ C1 · (∆k + 1) (σmaxM)1−q R

(
log p

n

)(1−q)/2
,

‖β̂(k) − β(k)∗‖2 ≤ C2 · (∆k + 1) (σmaxM)1−q/2√R
(

log p

n

)1/2−q/4
,

|τ̂2
k −∆2

k|
∆2
k

≤ C3 · (1 + ∆−1
k )σ1−q/2

max M3/2−qR
( log p

n

)(1−q)/2
,

where C1, C2 and C3 are positive constants.

Theorem 7 Let ∆min = min{(µ(j) − µ(i))>Σ−1(µ(j) − µ(i)) : 1 ≤ i < j ≤ K}. Under the
identical conditions as in Theorem 6, we have, with probability goes to 1,

R(f̂)−R∗ ≤ C · exp

(
−∆2

min

8

)
σ−qmaxM

3−q∆minR

(
log p

n

)1−q/2
,

where C is an absolute positive constants.

7. Proofs of the Main Results

In this section, we provide the proof for Theorem 1 in Section 7.1 and Theorem 3 in Section
7.3. The proofs of lemmas can be found in the supplementary material.

7.1 Proof of Theorem 1

Proof We denote by δ = β̂ − β∗ and τ∗ =

√
β∗>Σ̂β∗. We first derive the upper bound for

‖δ‖1. Based on this upper bound, we then derive the upper bounds for ‖δ‖2 and τ̂ .

For ease of presentation, we first define the following events,

Eτ =

{
|β∗>(Σ̂− Σ)β∗| ≤ 1

2
β∗>Σβ∗

}
=

{
1

2
∆2 ≤ τ∗2 ≤ 3

2
∆2

}
,

Eσmax =

{
|σ̂2

max − σ2
max| ≤

1

2
σ2

max

}
,

Eµd =

{
‖µd‖∞ − 2

√
2σmax

√
log p

n
≤ ‖µ̂d‖∞ ≤ ‖µd‖∞ + 2

√
2σmax

√
log p

n

}
,

E1 =

{
‖(Σ̂− Σ)β∗‖∞ ≤ 10σmax∆

√
log p

n

}
,

E2 =

{
‖Σ̂β∗ − µ̂‖∞ ≤ 20σ̂max

√
log p

n
(τ∗ + 1)

}
.

Before we proceed, we introduce the following lemma.
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Lemma 8 For any β∗ ∈ Rp, we have

P (Eτ ) ≥ 1− 2 exp

(
−n− 1

16

)
, P (Eσmax) ≥ 1− 2p exp

(
−n− 1

16

)
,

P (Eµd) ≥ 1− 2p−1, P(E1) ≥ 1− 2p−1.

Moreover, we have

E2 ⊇
(
Eτ
⋂
Eσmax

⋂
E1

)
.

Upper bound for ‖δ‖1. We first provide an upper bound for δ>Σ̂δ in terms of ‖δ‖1, which
is essential for deriving an upper bound of ‖δ‖1.

Lemma 9 Suppose that the events Eτ , Eσmax, E1 and E2 hold. Then we have

δ>Σ̂δ ≤ 2λσmax‖δ‖1

(
3∆ + 2 +

√
‖δ‖1
c

)
. (15)

Our next step is to derive a lower bound for δ>Σ̂δ in terms of ‖δ‖1, based on the
restricted eigenvalue condition of Σ̂ on certain restricted subset of Rp. We first introduce
the eigenvalue condition of Σ̂ that holds with high probability.

Lemma 10 Suppose that Assumption 2 holds, and n ≥ 2. There exist absolute positive
constants c1 and c2 such that

δ>Σ̂δ ≥ 1

32M
‖δ‖22 − 81σ2

max

log p

n
‖δ‖21 for all δ ∈ Rp, (16)

with probability at least 1− c1 exp(−c2n).

Based on the above result, we derive the restricted eigenvalue condition of Σ̂ over a
restricted subset. In particular, for S ⊆ [p] and β∗ ∈ Rp, we let

CS,β∗ := {δ ∈ Rp : ‖δSc‖1 ≤ 3‖δS‖1 + 4‖β∗Sc‖1} .

The next lemma shows that δ ∈ CS,β∗ for any S ⊆ [p].

Lemma 11 Suppose that Assumption 1 and events Eµd, Eσmax, E1 and E2, hold. Let S ⊆ [p].
Given c and λ in (7), we have δ ∈ CS,β∗ when n satisfies

n ≥ 100a−2σ2
max∆2 log p.

Now, we choose a subset Sη that

Sη =
{
j ∈ [p] : |β∗j | ≥ η

}
,

where η = σmaxM

√
log p

n
. (17)

We further show the upper bounds for |Sη| and ‖β∗Scη‖1 in the next lemma.
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Lemma 12 When β∗ ∈ Bq(R), we have that

|Sη| ≤ η−qR, (18)

‖β∗Scη‖ ≤ η
1−qR. (19)

Note that if Sη is empty, we immediately have that

‖δ‖1 ≤ 4‖β∗Scη‖ ≤ 4η1−qR = 4(σmaxM)1−qR

(
log p

n

) 1−q
2

,

which matches the upper bound in (9a).
When Sη is non-empty and δ ∈ CSη ,β∗ , we have that

‖δ‖1 ≤ 4‖δSη‖1 + 4‖β∗Scη‖1 ≤ 4
√
|Sη|‖δ‖2 + 4‖β∗Scη‖1. (20)

Plugging the above inequality into (16) yields that

δ>Σ̂δ ≥ 1

512M |Sη|

(
‖δ‖1 − 4‖β∗Scη‖

)2
− 81σ2

max

log p

n
‖δ‖21

≥
(

1

512M |Sη|
− 81σ2

max

log p

n

)
‖δ‖21 −

‖β∗Scη‖1
64M |Sη|

‖δ‖1.

When n satisfies that

n ≥ C · σ2
maxM |Sη| log p

for some constant C, we have that

δ>Σ̂δ ≥ 1

1024M |Sη|
‖δ‖21 −

‖β∗Scη‖1
64M |Sη|

‖δ‖1. (21)

Combining (15) with (21), we have that

1

1024M |Sη|
‖δ‖21 −

‖β∗Scη‖1
64M |Sη|

‖δ‖1 ≤ 2λσmax‖δ‖1

(
3∆ + 2 +

√
‖δ‖1
c

)
.

Solving the above inequality with our chosen c, λ and η as in (7) and (17), and using the
upper bounds (18) and (19), we have the upper bound for ‖δ‖1 that

‖δ‖1 ≤ C · (σmaxM)1−q(∆ + 1)R

(
log p

n

) 1−q
2

(22)

for some constant C, given n satisfies that

n ≥ C · a−2∆2σ2
maxM

2+ 1
1−qR

2
1−q log p

for some constant C.
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Upper bound for ‖δ‖2. We prove (9b) based on the previous upper bound for ‖δ‖1.
Following Lemma 10, there exist some absolute positive constants c1 and c2 such that, with
probability at least 1− c1 exp(−c2n), we have

δ>Σ̂δ ≥ 1

32M
‖δ‖22 − 81σ2

max

log p

n
‖δ‖21.

The above inequality gives an upper bound of ‖δ‖22 in terms of δ>Σ̂δ and ‖δ‖1, whereas the
latter two terms can be further upper bounded using Lemma 9 and (22), respectively.

To bound δ>Σ̂δ, following Lemma 9, we have that

δ>Σ̂δ ≤ λσ̂max‖δ‖1

(√
‖δ‖1
c

+ 3∆ + 2

)
.

Note that ∆ =
√
µ>d Σ−1µd ≥ M−1/2‖µd‖∞, and thus ‖µd‖∞/∆ ≤ M1/2. Hence (7.1) and

(7.1) together imply that

‖δ‖22 ≤ C ·
[
Mδ>Σ̂δ + σ2

maxM
log p

n
‖δ‖21

]
≤ C ·

[
λσ̂maxM(∆ + 1)‖δ‖1 +

λσ̂max√
c
M‖δ‖3/21 + σ2

maxM
log p

n
‖δ‖21

]
for some constant C. By our choice of c and λ in (7) and the upper bound of ‖δ‖1 in (9a),
when n satisfies that

n ≥ C · σ2
maxM

2+ 1
1−qR

2
1−q log p

for some absolute constant C, (7.1) reduces to

‖δ‖22 ≤ C · λσ̂maxM(∆ + 1)‖δ‖1 ≤ C · (σmaxM)2−q (∆ + 1)2R

(
log p

n

)1−q/2
,

which shows (9b) holds.
Upper bound of |τ̂2−∆2|/∆2. Note that |τ̂2−∆2| ≤ |τ̂2− τ∗2|+ |τ∗2−∆2|. We upper
bound the two terms on the right-hand side respectively in the next lemma.

Lemma 13 Suppose that Assumption 2, events Eτ , Eσmax , Eµd , E1 and (9a) hold. When n
satisfies (8) for some absolute constant C, we have that

|τ̂2 − τ∗2| ≤ C ·∆(∆ + 1)σ1−q/2
max M (3−q)/2R

(
log p

n

)(1−q)/2
(23a)

|τ∗2 −∆2| ≤ C ·∆2σ1−q/2
max M (1−q)/2√R

(
log p

n

)(2−q)/4
(23b)

for some absolute constant C.

Combining (23a) and (23b), we obtain that

|τ̂2 −∆2|
∆2

≤ C · (1 + ∆−1)σ1−q/2
max M

3−q
2 R

(
log p

n

) 1−q
2

for some absolute constant C, and our claim (9c) follows as desired.
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7.2 Proof of Theorem 2

Proof We first introduce the following lemma that gives a different upper bound of δ>Σ̂δ

as in Lemma 9, with the additional condition that τ̂ =

√
β̂>Σ̂β̂.

Lemma 14 Suppose that the events Eτ , E1 and E2 hold, and τ̂ =

√
β̂>Σ̂β̂. Then we have

δ>Σ̂δ ≤C · λσmax‖δ‖1
{
λσmax‖δ‖1 + τ∗ + 1 +

(
20σmax∆

√
log p

n
‖δ‖1

)1/2

+ (2‖µd‖2‖δ‖2)1/2
}
, (24)

for some constant C.

Upper bound of ‖δ‖2. Based on Lemma 10 in the previous part, with probability goes
to 1 we have that

δ>Σ̂δ ≥ 1

32M
‖δ‖22 − 81σ2

max

log p

n
‖δ‖21 for all δ ∈ Rp.

When δ ∈ CSη ,β∗ , combining the above equation with (24), and using (20), we have that

1

M
‖δ‖22 ≤ C ·

[
σ2

max

log p

n
‖β∗Scη‖

2
1 + λσmax

(√
|Sη|‖δ‖2 + ‖β∗Scη‖1

)(
∆ + 1 +

√
‖µd‖2‖δ‖2

)]
for some constant C, when n satisfies that

n ≥ C · σ2
maxM

2−2q
2−q R

2
2−q log p

for some constant C. By setting η as in (17), and using (18) and (19), we finally obtain

‖δ‖2 ≤ C · (σmaxM)1−q/2(∆ + 1)
√
R

(
log p

n

)1/2−q/4
(25)

for some constant C.
Upper bound of |τ̂2 −∆2|/∆2. Note that |τ̂2 −∆2| ≤ |τ̂2 − τ∗2|+ |τ∗2 −∆2|. In Lemma
13, we have already shown the upper bound for the term |τ∗2−∆2| as (23b), which we also

adopt here. With the additional condition that

√
β̂>Σ̂β̂ = τ̂ , the upper bound of the term

|τ̂2 − τ∗2| can be tighter than (23a), as shown in the following lemma.

Lemma 15 Suppose that Assumption 2, events Eτ , Eσmax , Eµd , E1 and (9a) hold. Also, sup-

pose that

√
β̂>Σ̂β̂> = τ̂ . When n satisfies (10), we have that

|τ̂2 − τ∗2| ≤ C ·∆(∆ + 1)σ1−q/2
max M (3−q)/2√R

(
log p

n

)1/2−q/4
. (26)

for some absolute constant C.
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Combining (23b) and (26), we have that

|τ̂2 −∆2|
∆2

≤ C · (1 + ∆−1)σ1−q/2
max M (3−q)/2√R

(
log p

n

)1/2−q/4
.

for some constant C.

7.3 Proof of Theorem 3

Proof Let ∆̂ =

√
β̂>Σβ̂. The misclassification rate of β̂ is

R(β̂) =
1

2
Φ

(
−(µ̂m − µ(0))>β̂

∆̂

)
+

1

2
Φ

(
(µ̂m − µ(1))>β̂

∆̂

)
,

where Φ(·) is the CDF of the standard Gaussian distribution. Recall that the optimal risk
achieved by Fisher’s rule is R∗ = Φ(−∆

2 ). For the first term on the right-hand side of (7.3),
its second order Taylor’s expansion is

Φ

(
−(µ̂m − µ(0))>β̂

∆̂

)
= Φ

(
−∆

2

)
+ Φ′

(
−∆

2

)(
∆

2
− (µ̂m − µ(0))>β̂

∆̂

)

+
Φ′′(t1)

2

(
∆

2
− (µ̂m − µ(0))>β̂

∆̂

)2

,

where t1 ∈
(
−∆

2 ,− (µ̂m−µ(0))>β̂
∆̂

)
. Similarly, for the second term in (7.3), we have

Φ

(
(µ̂m − µ(1))>β̂

∆̂

)
= Φ

(
−∆

2

)
+ Φ′

(
−∆

2

)(
∆

2
+

(µ̂m − µ(1))>β̂

∆̂

)

+
Φ′′(t2)

2

(
∆

2
+

(µ̂m − µ(1))>β̂

∆̂

)2

,

where t2 ∈ (−∆
2 , (µ̂m−µ(1))>β̂

∆̂
). Combining (7.3) and (7.3), we have

R(β̂)−R∗ =Φ′
(
−∆

2

)(
∆

2
−
µ>d β̂

2∆̂

)
+

Φ′′(t1)

2

(
∆

2
− (µ̂m − µ(0))>β̂

∆̂

)2

+
Φ′′(t2)

2

(
∆

2
+

(µ̂m − µ(1))>β̂

∆̂

)2

. (27)

We now introduce a lemma that upper bounds the first term on the right-hand side of (27).

Lemma 16 Suppose (9b) holds, and n satisfies that

n ≥ C · σ2
maxM

2+2/(2−q)R2/(2−q) log p
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for some constant C. Then we have

∆

2
−
µ>d β̂

2∆̂
≤ M

2∆
‖δ‖22,

Note that Φ′(−∆/2) = (2π)−1/2 exp(−∆2/8). Following Lemma 16, we have

Φ′
(
−∆

2

)(
∆

2
−
µ>d β̂

2∆̂

)
≤ M

2
√

2π∆
exp

(
−∆2

8

)
‖δ‖22. (28)

Now we consider the second-order term in (27). First, using Lemma 16, we have

∆

2
− (µ̂m − µ(0))>β̂

∆̂
=

∆

2
−
µ>d β̂

2∆̂
+
β̂>(µm − µ̂m)

∆̂

≤ M

2∆
‖δ‖22 +

β̂>(µ(0) − µ̂(0)) + β̂>(µ(1) − µ̂(1))

2∆̂
.

After taking square, the first term on the right-hand side gives M
4∆2 ‖δ‖42, which is negligible

compared to the first-order term. Hence it suffices to bound the second term on the right-
hand side of (7.3). For this aim we introduce the next lemma.

Lemma 17 Under the identical conditions as in Theorem 1 or 2, with probability at least
1− 4p−1 we have(

β̂>(µ(0) − µ̂(0)) + β̂>(µ(1) − µ̂(1))

2∆̂

)2

≤ C · σ−qmaxM
1−qR

(
log p

n

)1−q/2
(29)

for some constant C.

Since t1 > −∆/2, we have |Φ′′(t1)| ≤ C ·∆ exp
(
−∆2/8

)
. Combining this with (29), we

bound the second term in (27) by

|Φ′′(t1)|
2

(
∆

2
− (µ̂m − µ(0))>β̂

∆̂

)2

≤ C ·∆ exp

(
−∆2

8

)
σ−qmaxM

1−qR

(
log p

n

)1−q/2

for some constant C. Likewise, the third term in (27) is also subject to this bound.

Finally, plugging (28) and (7.3) into (27), and using (9b), we achieve that

R(β̂)−R(β∗) ≤ C · exp

(
−∆2

8

)
σ−qmaxM

3−q∆R

(
log p

n

)1−q/2

for some constant C, which completes the proof.
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8. Conclusion and Discussion

In this work, we propose PANDA, a novel one-stage and tuning-insensitive method for
high-dimensional linear discriminant analysis. We prove that PANDA achieves the optimal
convergence rate in both the estimation error and misclassification rate. Our numerical
studies show that PANDA achieves equal or better performance compared with existing
methods, and requires less effort in parameter tuning.

Below, we discuss some related work in the existing literature. Besides Gautier et al.
(2011), there are other pivotal methods for regression and inverse covariance estimation
problems. For examples, Belloni et al. (2011) and Sun and Zhang (2012) propose the scaled
Lasso method (also known as square-root Lasso) for sparse linear regression, which enjoys
a similar tuning-insensitive property to Gautier et al. (2011); Belloni et al. (2014) extend
the scaled Lasso to nonparametric regression; Liu et al. (2015) extend the scaled Lasso
to sparse multivariate regression with inhomogeneous noise; Bunea et al. (2013) extend
the scaled Lasso to sparse linear regression with group structures; Sun and Zhang (2013)
and Liu and Wang (2017) extend the scaled Lasso to inverse covariance matrix estimation;
Zhao and Liu (2013) extend Gautier et al. (2011) to inverse covariance matrix estimation
for heavy tail elliptical distributions; Belloni and Chernozhukov (2011) and Wang (2013)
show that the sparse quantile regression and LAD Lasso are also pivotal methods, which
enjoy similar tuning-insensitive properties, respectively.
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Appendix A. An ADMM Algorithm for Solving (5)

This section discusses the implementation of the ADMM algorithm for solving (5). For that
purpose, we first re-write the problem (5) as

(β̂, τ̂) ∈ arg min
β,u,v,w,∈Rp,τ∈R

‖β‖1 + cτ2

subject to Σ̂β − λσ̂maxτ1 + u = µ̂d + λσ̂max1,

Σ̂β + λσ̂maxτ1− v = µ̂d − λσ̂max1,

w − Σ̂1/2β = 0,

u ≥ 0, v ≥ 0,

‖w‖2 ≤ τ.

Note that the first three constraints in (A) are linear and the last three constraints are
conic.

To simplify the notation, we write the first three linear constraints as

Aββ +Auu+Avv +Aww +Aττ = b

for some real matrices Aβ, Au, Av, Aw, Aτ and real vector b. We can further write the
problem as

(β̂, τ̂) ∈ arg min
β,u,v,w∈Rp,τ∈R

‖β‖1 + cτ2

subject to Aββ +Auu+Avv +Aww +Aττ = b,

u, v ∈ C1,

(w, τ) ∈ C2,

where

C1 = {x ∈ Rp : xj ≥ 0, j ∈ [p]} ,

C2 =

(x, y) ∈ Rp × R : y ≥

√√√√ p∑
j=1

x2
j


are two convex cones.

The augmented Lagrangian function with scaled dual variables is

Lρ(β, u, v, w, τ, s) = ‖β‖1 + cτ2 +
ρ

2
‖Aββ +Auu+Avv +Aww +Aττ − b+ s‖22 −

ρ

2
‖s‖22,

where s is the scaled dual variable and ρ > 0 is the penalty parameter.
Based on the augmented Lagrangian function above, we can derive the ADMM algorithm

described in Algorithm 1 in Section 3.
In this appendix we prove the following theorem from Section 6.2:

Theorem Let u, v, w be discrete variables such that v, w do not co-occur with u (i.e., u 6=
0 ⇒ v = w = 0 in a given dataset D). Let Nv0, Nw0 be the number of data points for which
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v = 0, w = 0 respectively, and let Iuv, Iuw be the respective empirical mutual information
values based on the sample D. Then

Nv0 > Nw0 ⇒ Iuv ≤ Iuw

with equality only if u is identically 0.

Appendix B. Additional Numerical Results

In this section, we present additional simulation results as supplement to Section 5. In
subsection B.1, we include results of PANDA performance with different choices of tuning
parameter c. In subsection B.2, we report the performance of LPD, AdaLDA and PANDA
when we vary the sample size n. In subsection B.3, we present the Area Under the Curve
(AUC) of the three methods as another performance metric for LDA.

B.1 PANDA performance with c and λ in Theorem 1

In this subsection, we consider the choice of c and λ as in (7) for our PANDA method in
our simulations. Tables 8 and 9 summarizes the performance of our PANDA method with
c and λ set as in (7), versus c = 20 and λ fine-tuned under the AR(1) model, together with
the performance of LPD and AdaLDA for reference. From these tables, we can see that
with parameter c set as in (7), the PANDA method may not achieve the most desirable
empirical performance, and we thus recommend cross-validation in practice.

Table 8: The `2 estimation errors of β∗ under the AR(1) model, with n = 200 and different
(s, p), averaged over 100 replicates. The standard deviations are given in brackets. The
lower value at the significance level 0.05 between the AdaLDA and the PANDA method are
marked in bold.

Method
(s, p)

(5, 400) (10, 400) (20, 400) (5, 800) (10, 800) (20, 800)

LPD
1.8875 1.9607 1.9846 1.8960 1.9669 1.9868

(0.0494) (0.0313) (0.0101) (0.0416) (0.0199) (0.0094)

AdaLDA
1.8854 1.9545 1.9821 1.8952 1.9593 1.9850

(0.0495) (0.0200) (0.0098) (0.0412) (0.0184) (0.0084)

PANDA
(with c = 20)

1.8673 1.9521 1.9814 1.8856 1.9571 1.9830
(0.0542) (0.0229) (0.0112) (0.0460) (0.0190) (0.0104)

PANDA
(with c, λ in Thm 1)

1.9997 2.0000 2.0000 2.0000 2.0000 2.0000
( 0.0019) (0) (0) (0) (0) ()

B.2 Performance of LPD, AdaLDA and PANDA with different n

Here we present results on the performance of LPD, AdaLDA and our PANDA method
with varying sample size. Tables 10 and 11 summarize the `2 error of β∗ estimation and
the misclassification rate under the AR(1) model, with n = 100, 200 and 400. As can be
seen, for every setting of n, the three methods achieve comparable performance.
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Table 9: The misclassification rate under the AR(1) model with different s and p, averaged
over 100 replicates. The standard deviations are given in brackets.

Method
(s, p)

(5, 400) (10, 400) (20, 400) (5, 800) (10, 800) (20, 800)

LPD
0.2086 0.2900 0.3535 0.2112 0.2908 0.3532

(0.0074) (0.0109) (0.0099) (0.0074) (0.0066) (0.0080)

AdaLDA
0.2082 0.2890 0.3522 0.2120 0.2913 0.3525

(0.0068) (0.0080) (0.0075) (0.0088) (0.0072) (0.0082)

PANDA
(with c = 20)

0.2068 0.2886 0.3542 0.2114 0.2910 0.3571
(0.0069) (0.0087) (0.0104) (0.0084) ( 0.0079) (0.01206)

PANDA
(with c, λ in Thm 1)

0.2444 0.3112 0.3671 0.2413 0.3156 0.3749
(0.0162) ( 0.0167) (0.0115) (0.0165) (0.0187) (0.0192)

Table 10: The `2 estimation errors of β∗ under the AR(1) model, with different n, s and
p, averaged over 100 replicates. The standard deviations are given in brackets. The lower
value at the significance level 0.05 between the AdaLDA and the PANDA method are marked
in bold.

n Specification

n = 100

(s, p) (5, 400) (10, 400) (20, 400) (5, 800) (10, 800) (20, 800)

LPD
1.9258 1.9640 1.9814 1.9236 1.9695 1.9834

(0.0408) (0.0105) (0.0109) (0.0396) (0.0230) (0.0077)

AdaLDA
1.9324 1.9709 1.9896 1.9298 1.9641 1.9946

(0.0292) (0.0113) (0.0135) (0.0326) (0.0200) (0.0118)

PANDA
1.9161 1.9571 1.9920 1.9112 1.9734 1.9944

(0.0344) (0.0292) (0.0199) (0.0388) (0.0303) (0.0140)

n = 200

(s, p) (5, 400) (10, 400) (20, 400) (5, 800) (10, 800) (20, 800)

LPD
1.8875 1.9607 1.9846 1.8960 1.9669 1.9868

(0.0494) (0.0313) (0.0101) (0.0416) (0.0199) (0.0094)

AdaLDA
1.8854 1.9545 1.9821 1.8952 1.9593 1.9850

(0.0495) (0.0200) (0.0098) (0.0412) (0.0184) (0.0084)

PANDA
1.8673 1.9521 1.9814 1.8856 1.9571 1.9830
(0.0542) (0.0229) (0.0112) (0.0460) (0.0190) (0.0104)

n = 400

(s, p) (5, 400) (10, 400) (20, 400) (5, 800) (10, 800) (20, 800)

LPD
1.8265 1.9456 1.9801 1.8695 1.9824 3.9300

(0.1903) (0.0247) (0.0116) ( 0.0601) (0.0182) (0.0086)

AdaLDA
1.8498 1.9399 1.9749 1.8711 1.9452 1.9775

(0.0764) (0.0203) (0.0106) (0.0370) (0.0176) (0.0087)

PANDA
1.3936 1.9319 1.9706 1.7353 1.9416 1.9748
(0.3866) (0.0851) (0.0221) (0.3031) (0.0204) (0.0109)
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Table 11: The misclassification rate under the AR(1) model, with different n, s and p,
averaged over 100 replicates. The standard deviations are given in brackets. The lower
value at the significance level 0.05 between the AdaLDA and the PANDA method are marked
in bold.

n Specification

n = 100

(s, p) (5, 400) (10, 400) (20, 400) (5, 800) (10, 800) (20, 800)

LPD
0.2241 0.3019 0.3611 0.2339 0.3152 0.3801

(0.0092) (0.0086) (0.0126) (0.0097) (0.0110) (0.0256)

AdaLDA
0.2166 0.2969 0.3714 0.2181 0.3021 0.3738

(0.0053) (0.0068) (0.0173) (0.0064) (0.0093) (0.0106)

PANDA
0.2170 0.3136 0.3875 0.2212 0.3214 0.4049

(0.0082) (0.0224) (0.0152) (0.0077) ( 0.0093) (0.0206)

n = 200

(s, p) (5, 400) (10, 400) (20, 400) (5, 800) (10, 800) (20, 800)

LPD
0.2086 0.2900 0.3535 0.2112 0.2908 0.3532

(0.0074) (0.0109) (0.0099) (0.0074) (0.0066) (0.0080)

AdaLDA
0.2082 0.2890 0.3522 0.2120 0.2913 0.3525

(0.0068) (0.0080) (0.0075) (0.0088) (0.0072) (0.0082)

PANDA
0.2068 0.2886 0.3542 0.2114 0.2910 0.3571
(0.0069) (0.0087) (0.0104) (0.0084) ( 0.0079) (0.0121)

n = 400

(s, p) (5, 400) (10, 400) (20, 400) (5, 800) (10, 800) (20, 800)

LPD
0.2000 0.2815 0.3466 0.2017 0.2824 0.3468

(0.0056) (0.0058) (0.0043) (0.0058) (0.0055) (0.0044)

AdaLDA
0.1989 0.2808 0.3452 0.2003 0.2818 0.3466

(0.0042) (0.0050) (0.0043) (0.0042) (0.0050) (0.0051)

PANDA
0.1913 0.2803 0.3454 0.2000 0.2814 0.3472
(0.0067) (0.0053) (0.0072) (0.0055) (0.0059) (0.0074)

B.3 AUC of LPD, AdaLDA and PANDA

Area Under the Curve (AUC) is another performance metric for binary classification, which
looks at the trade-off between the precision and recall rate. In Table 12 we report the AUC
over the testing data with different s and p, averaged over 100 replicates. As can be seen,
the three methods also achieve comparable performance in AUC.

Appendix C. Proofs

This section provides the detailed proofs to the lemmas in the main body of the paper, and
is split into eight subsections, one subsection for the proof of each lemma.

C.1 Proof of Lemma 8

Proof There are four main statements in Lemma 8, and let us prove them one by one.
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Table 12: The AUC over testing data, averaged over 100 replicates. The standard deviations
are given in brackets.

Model Specification

AR(1)

(s, p) (5, 400) (10, 400) (20, 400) (5, 800) (10, 800) (20, 800)

LPD
0.8770 0.7858 0.7034 0.8699 0.7828 0.7051

(0.0189) (0.0251) (0.0297) (0.0191) (0.0234) (0.0295)

AdaLDA
0.8773 0.7872 0.7048 0.8698 0.7815 0.7059

(0.0188) (0.0238) (0.0270) (0.0205) (0.0228) (0.0298)

PANDA
0.8784 0.7878 0.7028 0.8700 0.7816 0.7001

(0.0190) ( 0.0245) (0.0306) (0.0201) ( 0.0252) (0.0321)

Varying
Diagonal

(s, p) (5, 400) (10, 400) (20, 400) (5, 800) (10, 800) (20, 800)

LPD
0.9898 0.9392 0.8565 0.9899 0.9386 0.8563

(0.0038) (0.0125) (0.0197) (0.0034) (0.0109) (0.0192)

AdaLDA
0.9899 0.9398 0.8566 0.9900 0.9390 0.8566

(0.0037) (0.0119) (0.0193) (0.0034) (0.0106) (0.0192)

PANDA
0.9898 0.9401 0.8567 0.9899 0.9390 0.8558
(.0038) (0.0117) (0.0195) (0.0033) (0.0108) (0.0188)

Erdös-Rényi
Random Graph

(s, p) (5, 400) (10, 400) (20, 400) (5, 800) (10, 800) (20, 800)

LPD
0.7826 0.8401 0.9563 0.7992 0.7372 0.7337

(0.0284) (0.0236) (0.0101) (0.0253) (0.0332) (0.0257)

AdaLDA
0.7845 0.8415 0.9558 0.7995 0.7390 0.7353

(0.0295) (0.0241) (0.0100) (0.0256) (0.0325) (0.0270)

PANDA
0.7867 0.8412 0.9589 0.8039 0.7464 0.7439
(0.0272) (0.0236) (0.0098) (0.0238) (0.0316) (0.0278)

Block Sparse

(s, p) (5, 400) (10, 400) (20, 400) (5, 800) (10, 800) (20, 800)

LPD
0.9183 0.9685 0.9920 0.6130 0.9096 0.6688

(0.0142) (0.0077) (0.0034) (0.0369) (0.0127) (0.0280)

AdaLDA
0.9093 0.9660 0.9921 0.5869 0.9082 0.6653

(0.0156) (0.0083) (0.0031) (0.0331) (0.0134) (0.0248)

PANDA
0.9207 0.9696 0.9925 0.6152 0.9113 0.6717
(0.0129) (0.0075) (0.0031) (0.0361) (0.0127) (0.0291)

Approximately
Sparse

p 400 800 1200

LPD
0.9626 0.9621 0.9624

(0.0091) (0.0086) (0.0075)

AdaLDA
0.9625 0.9626 0.9627

(0.0098) (0.0081) (0.0080)

PANDA
0.9628 0.9621 0.9634

(0.0098) (0.0088) (0.0082)
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(i) It suffices to show that

P (Eτ ) = P
(
|β∗>(Σ̂− Σ)β∗| ≤ 1

2
β∗>Σβ∗

)
≥ 1− 2e−(n−1)/16.

Let {Yi}2n−2
i=1 be i.i.d. random vectors following the multivariate normal distribution

N(0,Σ). Then

Σ̂
d
=

1

2n− 2

2n−2∑
i=1

YiY
>
i , and β∗>Σ̂β∗

d
=

1

2n− 2

2n−2∑
i=1

(β∗>Yi)
2,

where
d
= denotes equal in distribution. Note that {β∗>Yi} are i.i.d Gaussian ran-

dom variables following distribution N(0, β∗>Σβ∗), thus {(β∗>Yi)2} are i.i.d. sub-
exponential random variables, so for any t ∈ (0, β∗>Σβ∗), we have

P

(∣∣∣ 1

2n− 2

∑
i

(β∗>Yi)
2 − β∗>Σβ∗

∣∣∣ ≥ t) ≤ 2 exp

{
− (2n− 2)t2

8(β∗>Σβ∗)2

}
.

Relation (i) follows directly by taking t = 1
2β
∗>Σ̂β∗, and thus part (i) of Lemma 8

holds.

(ii) Now we need to show that

P (Eσmax) = P
(
|σ̂2

max − σ2
max| ≤

1

2
σ2

max

)
≥ 1− 2pe−(n−1)/16.

To prove this, we set β∗ = ej for j ∈ [p] and use (i) with a union bound argument to
obtain that

P
(
|Σ̂j,j − Σj,j | ≤

1

2
Σj,j , ∀j ∈ [p]

)
≥ 1− 2pe−(n−1)/16,

where the event on the left-hand side implies that |σ̂2
max − σ2

max| ≤ 1
2σ

2
max.

(iii) Here it suffices to show that

P

(
‖µd‖∞ − 2

√
2σmax

√
log p

n
≤ ‖µ̂d‖∞ ≤ ‖µd‖∞ + 2

√
2σmax

√
log p

n

)
≥ 1− 2p−1.

Notice that µ̂d ∼ N(µd,
2
nΣ). Let µd,j and µ̂d,j denote the j-th coordinate of µd and

µ̂d, respectively. We have µ̂d,j ∼ N(µd,j ,
2
nΣj,j). Therefore, for any j ∈ [p] we have

that

P (|µ̂d,j − µd,j | > t) ≤ 2 exp

{
−nt2

4(Σj,j)2

}
≤ 2 exp

{
− nt2

4σ2
max

}
.

Taking t = σmax

√
8 log p
n and applying the union bound for all j ∈ [p], we have with

probability at least 1− 2p−1 that

|µ̂d,j − µd,j | ≤ σmax

√
8 log p

n
, ∀j ∈ [p],

which implies that |‖µ̂d‖∞ − ‖µd‖∞| ≤ 2
√

2σmax

√
log p/n.
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(iv) The lower bound of P(E1) follows an argument in Cai and Zhang (2019). Since β∗ =
Σ−1µd, we have that Σ̂β∗ − µ̂d = (Σ̂−Σ)β∗ − (µ̂d − µd). By A.5.1 in the supplement
of Cai and Zhang (2019), we have that

P

(
|e>j (Σ̂− Σ)β∗| ≤ 10σmax∆

√
log p

n
, ∀j ∈ [p]

)
≥ 1− 2p−1,

where the event on the left-hand side is equivalent to event E1. Furthermore, recall
that ∆2 = β∗>Σβ∗. Therefore, under events Eτ and Eσmax , we have ∆ ≤

√
2τ∗ and

σmax ≤
√

2σ̂max. These two conditions and event E1 together imply E2.

C.2 Proof of Lemma 9

Proof When (β∗, τ∗) is feasible to (5), from the first constraint of (5) we have

‖Σ̂δ‖∞ = ‖Σ̂(β̂ − β∗)‖∞ ≤ ‖Σ̂β̂ − µ̂d‖∞ + ‖Σ̂β∗ − µ̂d‖∞ ≤ λσ̂max(τ̂ + τ∗) + 2λσ̂max.

In addition, due to the optimality of (β̂, τ̂), we have

‖β̂‖1 + cτ̂2 ≤ ‖β∗‖1 + cτ∗2,

which implies that

τ̂ ≤ τ∗ +

√
‖δ‖1
c
.

Plugging the above inequality into (C.2), we obtain that

‖Σ̂δ‖∞ ≤ 2λσ̂max(τ∗ + 1) + λσ̂max

√
‖δ‖1
c
.

Under the events Eτ and Eσmax , we have τ∗ ≤
√

3
2∆ and σ̂max ≤ 2σmax, so we further have

that

‖Σ̂δ‖∞ ≤ 2λσmax

(
3∆ + 2 +

√
‖δ‖1
c

)
.

Finally, applying Hölder’s inequality, we obtain that

δ>Σ̂δ ≤ ‖δ‖1‖Σ̂δ‖∞ ≤ 2λσmax‖δ‖1

(
3∆ + 2 +

√
‖δ‖1
c

)
.

Thus Lemma 9 holds.
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C.3 Proof of Lemma 10

Proof Lemma 10 is an application of a theorem in Raskutti et al. (2010), which is given
by the following lemma.

Lemma 18 (Theorem 1 of Raskutti et al. (2010)) For any Gaussian random design
Z ∈ Rn×p with i.i.d. N(0,Σ) raws, there exist absolute positive constants c1, c2 such that

‖Zδ‖2√
n
≥ 1

4
‖Σ1/2δ‖2 − 9σmax

√
log p

n
‖δ‖1, ∀δ ∈ Rp,

with probability at least 1− c1 exp(−c2n).

Now we are ready to prove Lemma 10. Suppose n ≥ 2. Then the pooled covariance
matrix Σ̂ is obtained by

Σ̂ =
1

2n− 2

[
n∑
i=1

(
X

(0)
i − µ̂

(0)
)(

X
(0)
i − µ̂

(0)
)>

+
n∑
i=1

(
X

(1)
i − µ̂

(1)
)(

X
(1)
i − µ̂

(1)
)>]

,

and Σ̂ has the same distribution as

Σ̃ =
1

2n− 2

2n−2∑
i=1

ZiZ
>
i ,

where Zj ’s are i.i.d. samples from N(0,Σ). Hence Σ̂ can be viewed as the sample covariance
matrix of a Gaussian random design with 0 mean.

By Lemma 18 (i.e., Theorem 1 of Raskutti et al. (2010)), there exist absolute positive
constants c1 and c2 such that with probability at least 1− c1 exp(−c2n),

‖Σ̂1/2δ‖2 ≥
1

4
‖Σ1/2δ‖2 − 9σmax

√
log p

2n− 2
‖δ‖1.

When n ≥ 2 and λmin ≥M−1, we have

‖Σ̂1/2δ‖2 ≥
1

4
√
M
‖δ‖2 − 9σmax

√
log p

n
‖δ‖1,

and thus

δ>Σ̂δ ≥

(
1

4
√
M
‖δ‖2 − 9σmax

√
log p

n
‖δ‖1

)2

≥ 1

32M
‖δ‖22 − 81σ2

max

log p

n
‖δ‖21.

Here the last inequality follows from the fact that

(a− b)2 =

(
1

2
a2 − 2ab+ 2b2

)
+

1

2
a2 − b2 ≥ 1

2
a2 − b2

for any number a, b ≥ 0. Thus Lemma 10 holds.
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C.4 Proof of Lemma 11

Proof For any S ⊆ [p], we have

‖β̂‖1 = ‖β∗ + δ‖1 ≥ ‖β∗S‖1 + ‖δSc‖1 − ‖β∗Sc‖1 − ‖δS‖1.

Combining the above inequality with ‖β∗‖1 ≤ ‖β∗S‖1 + ‖β∗Sc‖1, we have

‖β̂‖1 − ‖β∗‖1 ≥ ‖δSc‖1 − ‖δS‖1 − 2‖β∗Sc‖1. (30)

When (β∗, τ∗) is feasible to (5), by optimality we have

‖β̂‖1 + cτ̂2 ≤ ‖β∗‖1 + cτ∗2. (31)

Combining (30) and (31) yields

‖δSc‖1 − ‖δS‖1 − 2‖β∗Sc‖1 ≤ ‖β̂‖1 − ‖β∗‖1 ≤ c(τ∗2 − τ̂2).

Since τ∗2 = β∗>Σ̂β∗ and τ̂2 ≥ β̂>Σ̂β̂, it follows that

c(τ∗2 − τ̂2) ≤ −2cδ>(Σ̂β∗)

= −2cδ>(Σ̂− Σ)β∗ − 2cδ>µd

≤ 2c‖(Σ̂− Σ)β∗‖∞‖δ‖1 + 2c‖µd‖∞‖δ‖1.

Under event E1, we have

‖(Σ̂− Σ)β∗‖∞ ≤ 10σmax∆

√
log p

n
.

When n satisfies that

n ≥ 100a−2σ2
max∆2 log p,

we have

c(τ∗2 − τ̂2) ≤ 4c‖µd‖∞‖δ‖1.

By setting c as in (7), we have that

1

2
‖δSc‖1 ≤

3

2
‖δS‖1 + 2‖β∗Sc‖1.

Thus ‖δSc‖1 ≤ 3‖δS‖1 + 4‖β∗‖1, which completes the proof of Lemma 11.

C.5 Proof of Lemma 12

Proof From the definitions of Bq(R) and Sη, we have that

R ≥
∑
j

|β∗j |q ≥ ηq|Sη|,

and
R ≥

∑
j

|β∗j |q =
∑
j

|β∗j | · |β∗j |q−1 ≥ ηq−1‖β∗Scη‖1.

Lemma 12 follows immediately from these two inequalities, and thus holds.
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C.6 Proof of Lemma 13

Proof Let us first prove relation (23a). Under the optimality condition, we have ‖β̂‖1 +
cτ̂2 ≤ ‖β∗‖1 + cτ∗2, and thus

τ̂2 − τ∗2 ≤ 1

c
‖δ‖1 ≤ C ·∆(∆ + 1)σ1−q

maxM
3/2−qR

(
log p

n

) 1−q
2

for some positive constant C. Here the last inequality uses (9a) and ‖µd‖∞ ≤M1/2∆.
Note that the second constraint in (5) implies that

τ̂2 ≥ β̂>Σ̂β̂ = (β∗ + δ)>Σ̂(β∗ + δ) ≥ τ∗2 + 2δ>Σ̂β∗,

hence

τ̂2 − τ∗2 ≥ −2|δ>Σ̂β∗|

≥ −2
∣∣∣δ> [(Σ̂− Σ)β∗ + µd

]∣∣∣
≥ −2‖δ‖2‖µd‖2 − 2‖δ‖1‖(Σ̂− Σ)β∗‖∞. (32)

Note that under the event E1, we have

‖(Σ̂− Σ)β∗‖∞ ≤ 10σmax∆

√
log p

n
. (33)

Plugging (9a), (9b), (33) and ‖µd‖2 ≤M1/2∆ into (32), we obtain that

τ̂2 − τ∗2 ≥ −C ·∆(∆ + 1)σ1−q/2
max M (3−q)/2√R

(
log p

n

)1/2−q/4
.

Combining the above equation and (C.6) yields (23a).
Next, let us prove the result (23b) in Lemma 13. Note that the gap between τ∗2 and ∆2

can be written as |τ∗2 −∆2| = |β∗>(Σ̂−Σ)β∗|. To bound this gap, we first apply Hölder’s
inequality that

|β∗>(Σ̂− Σ)β∗| ≤ ‖β∗‖1‖(Σ̂− Σ)β∗‖∞.

Under event E1, the term ‖(Σ̂−Σ)β∗‖∞ can be again bounded by (33). To bound the term
‖β∗‖1, we note that

‖β∗‖1 = ‖β∗Sη‖1 + ‖β∗Scη‖1 ≤
√
|Sη| ‖β∗‖2 + ‖β∗Scη‖1 ≤ η

−q/2√RM1/2∆ + η1−qR.

The last inequality above uses equations (18) and (19). By our choice of η in (17), when n
satisfies that

n ≥ C ·∆2σ2
maxMR log p

for some absolute constant C, we have that

‖β∗‖1 ≤ C · η−q/2
√
RM1/2∆ ≤ C ·∆2σ−q/2max M

(1−q)/2∆
√
R

(
log p

n

)−q/4
.
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Hence we have

|τ∗2 −∆2| = |β∗>(Σ̂− Σ)β∗| ≤ ‖β∗‖1‖(Σ̂− Σ)β∗‖∞ ≤ C · σ1−q/2
max M (1−q)/2√R

(
log p

n

) 2−q
4

,

and thus (23b) holds.

C.7 Proof of Lemma 14

Proof When (β∗, τ∗) is feasible to (5), from the first constraint of (5) we have

‖Σ̂δ‖∞ = ‖Σ̂(β̂ − β∗)‖∞ ≤ ‖Σ̂β̂ − µ̂d‖∞ + ‖Σ̂β∗ − µ̂d‖∞ ≤ λσ̂max(τ̂ + τ∗) + 2λσ̂max. (34)

When τ̂ =

√
β̂>Σ̂β̂, we have

τ̂2 = β̂>Σ̂β̂ = (β∗ + δ)>Σ̂(β∗ + δ) = τ∗2 + 2δ>Σ̂β∗ + δ>Σ̂δ

= τ∗2 + δ>Σ̂δ + 2δ>(Σ̂− Σ)β∗ + 2δ>µd

≤ τ∗2 + δ>Σ̂δ + 20σmax∆

√
log p

n
‖δ‖1 + 2‖µd‖2‖δ‖2.

Plugging the above inequality into (34), we have

‖Σ̂δ‖∞ ≤ λσ̂max

2τ∗ + 2 +
√
δ>Σ̂δ +

(
20σmax∆

√
log p

n
‖δ‖1

)1/2

+ (2‖µd‖2‖δ‖2)1/2

 .
Applying Hölder’s inequality, we obtain that

δ>Σ̂δ ≤ λσ̂max‖δ‖1

2τ∗ + 2 +
√
δ>Σ̂δ +

(
20σmax∆

√
log p

n
‖δ‖1

)1/2

+ (2‖µd‖2‖δ‖2)1/2

 .
From the above inequality, we may derive that

δ>Σ̂δ ≤C · λσmax‖δ‖1
{
λσmax‖δ‖1 + τ∗ + 1 +

(
20σmax∆

√
log p

n
‖δ‖1

)1/2

+ (2‖µd‖2‖δ‖2)1/2
}
,

where C is a constant.

C.8 Proof of Lemma 15

Proof When τ̂ =

√
β̂>Σ̂β̂, we have

τ̂2 = β̂>Σ̂β̂ = (β∗ + δ)>Σ̂(β∗ + δ) = τ∗2 + 2δ>Σ̂β∗ + δ>Σ̂δ

= τ∗2 + δ>Σ̂δ + 2δ>(Σ̂− Σ)β∗ + 2δ>µd.
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With event E1, we have that

|τ̂2 − τ∗2| = |δ>Σ̂δ + 2δ>(Σ̂− Σ)β∗ + 2δ>µd|

≤ δ>Σ̂δ + 20σmax∆

√
log p

n
‖δ‖1 + 2‖µd‖2‖δ‖2.

Then, using the previous results (20), (24) and (25), we obtain that

|τ̂2 − τ∗2| ≤ C ·∆(∆ + 1)σ1−q/2
max M (3−q)/2√R

(
log p

n

)1/2−q/4

for some constant C.

C.9 Proof of Lemma 16

Proof Note that

∆̂ =

√
β̂>Σβ̂ =

√
β>Σβ + 2β>Σδ + δ>Σδ

≤
√
β>Σβ

(
1 +

2β>Σδ + δ>Σδ

2β>Σβ

)
= ∆ +

2µ>d δ + δ>Σδ

2∆
.

Therefore, we have

∆

2
−
µ>d β̂

2∆̂
=

1

2∆̂
(∆∆̂− µ>d β̂)

≤ 1

2∆̂

(
∆2 + µ>d (δ − β̂) +

1

2
δ>Σδ

)
=

1

4∆̂
δ>Σδ ≤ δ>Σδ

4(∆ +
µ>d δ
∆ )

. (35)

Note that |µ>d δ| ≤ ‖µd‖2‖δ‖2 ≤ M1/2∆‖δ‖2. Using the convergence rate of ‖δ‖2 in (9b)
from Theorem 1, when n satisfies that

n ≥ C · σ2
maxM

2+2/(2−q)R2/(2−q) log p

for some constant C, we have that |µ>d δ| ≤ ∆2/2, and thus it follows from (35) that

∆

2
−
µ>d β̂

2∆̂
≤ δ>Σδ

2∆
≤ M

2∆
‖δ‖22.
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C.10 Proof of Lemma 17

Proof We first show that

P

(
‖µ̂(`) − µ(`)‖∞ ≤ σmax

√
2 log p

n
, ` = 0, 1

)
≥ 1− 4p−1.

Note that µ̂(`) ∼ N(µ(`),Σ/n) for ` = 0, 1, and thus µ̂
(`)
j ∼ N(µ

(`)
j ,Σj,j/n), for j ∈ [p].

Hence,

P
(
|µ̂(`)
j − µ

(`)
j | ≥ t

)
≤ 2 exp

(
− nt

2

Σj,j

)
≤ 2 exp

(
− nt2

σ2
max

)
for all ` ∈ {0, 1}, j ∈ [p].

Taking t = σmax

√
2 log p/n and applying the union bound for all j ∈ [p], we have

P

(
‖µ̂(`) − µ(`)‖∞ ≤ σmax

√
2 log p

n
, ` = 0, 1

)
≥ 1− 4p exp(−2 log p) = 1− 4p−1.

We next bound the term β̂>(µ(`) − µ̂(`)) for ` = 0, 1. Note that

β̂>(µ(`) − µ̂(`)) = (β∗ + δ)>(µ(`) − µ̂(`))

≤ (‖β∗Sη‖1 + ‖β∗Scη‖1 + ‖δ‖1)‖µ(`) − µ̂(`)‖∞

≤
(√
|Sη|‖β∗‖2 + 5‖β∗Scη‖1 + 4

√
|Sη|‖δ‖2

)
‖µ(`) − µ̂(`)‖∞.

Here the last inequality uses (20). Also, note that ‖β∗‖ ≤M1/2∆. With our choice of η in
(17) and the upper bound for ‖δ‖2, when n satisfies that

n ≥ C · σ2
maxM∆

− 4
2−qR

2
2−q log p

for some constant C, we have that

β̂>(µ(`) − µ̂(`)) ≤ σ−q/2max M
1−q
2 ∆
√
R

(
log p

n

) 2−q
4

. (36)

We then consider the term ∆̂ =

√
β̂>Σβ̂. Note that

∆̂2 = β̂>Σβ̂ = ∆2 + 2µ>d δ + δ>Σδ,

Hence we have

|∆̂2 −∆2| ≤ 2‖µd‖‖δ‖2 +M‖δ‖22.

When n is sufficiently large, we have that |∆̂2 −∆2| ≤ 1
2∆2. Combining this with (36), we

have that (
β̂>(µ(0) − µ̂(0)) + β̂>(µ(1) − µ̂(1))

2∆̂

)2

≤ C · σ−qmaxM
1−qR

(
log p

n

)1−q/2

for some constant C. Therefore, Lemma 17 holds true.
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Appendix D. Review of Gautier’s method

In this section, we provide a brief review of Gautier’s pivotal method for high-dimensional
linear regression in Gautier et al. (2011) that inspires our work. Note that they consider
a more complicated high-dimensional instrumental variables model. Here we discuss the
particular case where the regressors and instruments are identical for ease of presentation.
Specifically, let X ∈ Rn×p be a design matrix with n observations and p variables, and let
y ∈ Rn be the response vector. We consider the following linear model that

y = Xβ∗ + ε with ε ∼ N(0, σ2In),

where β∗ ∈ Rp is the unknown regression coefficient with ‖β∗‖0 = s < n� p, and ε is the
noise. The Gautier’s estimator can be viewed as a variant of the Dantzig selector (Candes
and Tao, 2007), and is the optimal solution to the following convex optimization problem
that

(β̂, γ̂) = argmin
β,γ

‖β‖1 + cγ,

subject to
1

n
‖X>(Y −Xβ)‖∞ ≤ λγ,

1

n
‖Y −Xβ‖22 ≤ γ2,

where c and λ are two tuning parameters, and γ̂ is an estimator of σ. The theoretical
analysis in Gautier et al. (2011) suggests that the tuning parameter c can be set as a
constant between 0 and 1, and the tuning parameter λ can be chosen as

λ = A ·
√

2 log p

n
,

where A is a constant independent of σ. Therefore, the Gautier’s estimator is less sensitive
to the parameter tuning than the Dantzig selector, where the tuning parameter depends on
σ.

Appendix E. Numerical study on performance of Lasso, Dantzig Seector
and Gautier’s method

In this section, we provide additional numerical results to compare the performance of Lasso,
Dantzig Selector and Gautier’s method for linear regression in high dimensions.

We generate the data by a process considered in Candes and Tao (2007). To be more
specific, we set n = 100, p = 200, s = 5, 10, 20. We generate the rows of X from the
standard Gaussian distribution and then normalize each row of X. For β∗, we set

β∗i = ui(1 + |ai|) for i = 1, · · · , s,

where ui = ±1 with probability 1/2, and ai ∼ N(0, 1) and is independent of ui. Meanwhile,
we set σ =

√
s
n . To fine-tune the parameter, we generate an independent validation set

with same sample size n = 100 as the training set. We let λ = λ̃
√

log p
n for all the three

methods, and we tune the factor λ̃ over a range from 0 to 1 for each method. Figure 4
shows the results of the estimation error ‖β̂−β∗‖2 versus the λ̃ value in the three methods,
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averaged over 100 replicates under each setting of different p and s. For Gautier’s method,
the result is not sensitive to the parameter c as long as c is not too small, and we set c = 20.
Table 13 summarizes the estimation error ‖β̂ − β∗‖2 under different p and s. As can be
seen, the three methods have comparable performance in β∗ estimation after fine-tuning.
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||
|| 2
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Figure 4: `2 estimation error v.s. value of tuning parameter λ̃ in Lasso (left), Dantzig
selector (middle) and Gautier’s method (right). The results are averaged over 100 replicates.

Table 13: The `2 error of β∗ estimation for the regression example. The testing errors
are averaged over 100 replicates. The standard deviation of the testing errors are given in
brackets.

Method
(s, p)

(5, 200) (10, 200) (20, 200) (5, 400) (10, 400) (20, 400)

Lasso
1.801 3.425 6.546 2.738 4.609 7.748

(0.325) (0.517) (0.969) (0.440) (0.492) (0.460)

Dantzig Selector
1.802 3.466 6.389 2.757 4.600 7.744

(0.343) (0.495) (0.634) (0.449) (0.500) (0.471)

Gautier’s Method
1.771 3.412 6.375 2.749 4.653 7.741

(0.341) (0.406) (0.620) (0.441) (0.548) (0.483)

Appendix F. Technical derivation on the penalty term in PANDA

In this section, we provide a deep insight on how to non-trivially modify Gautier’s pivotal
method to our context. To be more specific, we compare the penalty term imposed in
Gautier’s pivotal method and our proposed PANDA, and explain our choice of a quadratic
penalty for τ in (5). For simplicity, we consider the case where q = 0 and |supp(β∗)| ≤ s.

Let S = supp(β∗). For both Gautier’s method and PANDA, a key step to derive the
upper bound of ‖δ‖1 = ‖β̂ − β∗‖1 is to show that δ belongs to some restricted subset CS,β∗
with high probability, where CS,β∗ is defined in (7.1). Note that when q = 0, ‖β∗Sc‖1 = 0,
such that CS,β∗ reduces to

CS = {δ ∈ Rp : ‖δSc‖1 ≤ 3‖δS‖1} .
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In Gautier’s method, it is shown that with high probability, (β∗, σ∗) is feasible to the
program (D), where β∗ is the true regression parameter and

σ∗ :=
1√
n
‖Y −Xβ∗‖2.

Then, by the optimality condition of the solution β̂, i.e. ‖β̂‖1 + cσ̂ ≤ ‖β∗‖1 + cσ∗, ‖δSc‖1
can be upper bounded by

‖δSc‖1 ≤ ‖δS‖1 +
c√
n

(
‖Y −Xβ∗‖2 − ‖Y −Xβ̂‖2

)
≤ ‖δS‖1 +

c√
n
δ>
X>(Y −Xβ∗)
‖Y −Xβ∗‖2

≤ ‖δS‖1 + c‖δ‖1
‖ 1
nX
>(Y −Xβ∗)‖∞

σ∗

≤ ‖δS‖1 + cλ‖δ‖1,

where the second inequality uses the convexity of ‖Y − Xβ‖2 in β, the third inequality
uses Hölder’s inequality and the definition of σ∗, and the last inequality is due to the first
constraint in (D). With properly chosen c and λ, it can be shown that δ ∈ CS with high
probability.

For PANDA, if we follow the above framework and impose the same penalty cτ , a similar
argument leads to

‖δSc‖1 ≤ ‖δS‖1 + c‖δ‖1
‖Σ̂β∗‖∞√
β∗Σ̂β∗

≤ ‖δS‖1 + c‖δ‖1
‖Σ̂β∗ − µ̂d‖∞ + ‖µ̂d‖∞√

β∗Σ̂β∗

≤ ‖δS‖1 + c‖δ‖1

λ+
λ+ ‖µ̂d‖∞√
β∗>Σ̂β∗

 .

Note that

√
β∗>Σ̂β∗ converges to ∆, and thus the term ‖µ̂d‖∞

∆ dominates the last term, and
the choice of c must rely on the unknown ∆ to ensure that δ ∈ CS with high probability.

In other words, we cannot directly follow Gautier’s framework to impose the penalty
cτ . Nevertheless, Gautier’s method inspires us to impose a quadratic penalty term on τ ,
by which it turns out that the tuning parameters will no longer rely on the unknown ∆.

Here we remark that in order to guarantee the tuning-insensitive property of our PANDA
method, the penalty on τ must be quadratic. Suppose we consider an increasing and convex
penalty function f(τ) instead. Technically, in order to guarantee that δ = β̂ − β∗ belongs
to the restricted set

CS,β∗ := {δ ∈ Rp : ‖δSc‖1 ≤ 3‖δS‖1 + 4‖β∗Sc‖1}
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with high probability, we require f to satisfy that f(τ∗)− f(τ̂) ≤ 1
2‖δ‖1, where τ∗ is close

to ∆. Following the argument in the proof of Lemma 7, we can derive an upper bound for
f(τ∗)− f(τ̂) as follows:

f(τ∗)− f(τ̂) ≤ f
(√

β∗>Σ̂β∗
)
− f

(√
β̂>Σ̂β̂

)
≤
∣∣∣∣f ′(τ∗)τ∗

∣∣∣∣ ‖Σ̂β∗‖∞‖δ‖1
≤
∣∣∣∣f ′(τ∗)τ∗

∣∣∣∣ (‖µd‖∞ + ‖(Σ̂− Σ)β∗‖∞
)
‖δ‖1.

In order to control that f(τ∗)−f(τ̂) ≤ 1
2‖δ‖1, we need

∣∣∣f ′(τ∗)τ∗

∣∣∣ (‖µd‖∞ + ‖(Σ̂− Σ)β∗‖∞
)
≤

1
2 . When n is sufficiently large, the term ‖(Σ̂ − Σ)β∗‖∞ here is small, and ‖µd‖∞ can be

closely estimated from the sample. Therefore, we require the term f ′(τ∗)
τ∗ to be controlled

by some constant that is independent of τ∗ or ∆. To satisfy this, the Taylor expansion of
f can only have non-zero coefficient for the first-order term, while the coefficients for other
orders must be zero, implying that f is a quadratic function.
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