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Abstract

Consider the problem of simultaneous estimation of location and variance matrix under
Huber’s contaminated Gaussian model. First, we study minimum f-divergence estimation
at the population level, corresponding to a generative adversarial method with a non-
parametric discriminator and establish conditions on f-divergences which lead to robust
estimation, similarly to robustness of minimum distance estimation. More importantly,
we develop tractable adversarial algorithms with simple spline discriminators, which can
be defined by nested optimization such that the discriminator parameters are determined
by maximizing a concave objective function given the current generator. The proposed
methods are shown to achieve minimax optimal rates or near-optimal rates depending on
the f-divergence and the penalty used. This is the first time such near-optimal error rates
are established for adversarial algorithms with linear discriminators under Huber’s contam-
ination model. We present simulation studies to demonstrate advantages of the proposed
methods over classic robust estimators, pairwise methods, and a generative adversarial
method with neural network discriminators.

Keywords: f-divergence, generative adversarial algorithm, Huber’s contamination model,
minimum divergence estimation, penalized estimation, robust location and scatter estima-
tion

1. Introduction

Consider Huber’s contaminated Gaussian model (Huber, 1964): independent observations
X1,...,X, are obtained from P, = (1—¢)N(u*, ¥*)+€Q, where N(p*, ¥*) is a p-dimensional
Gaussian distribution with mean vector u* and variance matrix ¥*, @) is a probability dis-
tribution for contaminated data, and € is a contamination fraction. Our goal is to estimate
the Gaussian parameters (u*,¥*), without any restriction on ) for a small e. This allows
both outliers located in areas with vanishing probabilities under N(u*, ¥*) and other con-
taminated observations in areas with non-vanishing probabilities under N(u*, £*). We focus
on the setting where the dimension p is small relatively to the sample size n, and no sparsity
assumption is placed on ¥* or its inverse matrix. The latter, £*!, is called the precision
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matrix and is of particular interest in Gaussian graphical modeling. In the low-dimensional
setting, estimation of ¥* and ¥*~! can be treated as being equivalent.

There is a vast literature on robust statistics (e.g., Huber and Ronchetti, 2009; Maronna
et al., 2019) In particular, the problem of robust estimation from contaminated Gaussian
data has been extensively studied, and various interesting methods and results have been
obtained recently. Under Huber’s contamination model above, while the bulk of the data
are still Gaussian distributed, a challenge is that the contamination status of each obser-
vation is hidden, and the contaminated data may be arbitrarily distributed. In this sense,
this problem should be distinguished from various related problems, including multivariate
scatter estimation for elliptical distributions as in Tyler (1987) and estimation in Gaussian
copula graphical models as in Liu et al. (2012) and Xue and Zou (2012), among others. For
motivation and comparison, we discuss below several existing approaches directly related
to our work.

Existing work. As suggested by the definition of variance matrix 3*, a numerically
simple method, proposed in Ollerer and Croux (2015) and Tarr et al. (2016), is to apply a
robust covariance estimator for each pair of variables, for example, based on robust scale
and correlation estimators, and then assemble those estimators into an estimated variance
matrix 3. These pairwise methods are naturally suitable for both Huber’s contamination
model and the cellwise contamination model where the components of a data vector can
be contaminated independently, each with a small probability €. For various choices of the
correlation estimator, such as the transformed Kendall’s 7 and Spearman’s p estimator, this
method is shown in Loh and Tan (2018) to achieve, in the maximum norm || — £*||max, the
minimax error rate e+ +/log(p)/n under cellwise contamination and Huber’s contamination
model. However, because a transformed correlation estimator is used, the variance matrix
estimator in Loh and Tan (2018) may not be positive semidefinite (Ollerer and Croux, 2015).
Moreover, this approach seems to rely on the availability of individual elements of ¥* as
pairwise covariances and generalization to other multivariate models can be difficult. In
our numerical experiments, such pairwise methods have relatively poor performance when
contaminated data are not easily separable from the uncontaminated marginally, especially
with nonnegligible e.

For location and scatter estimation under Huber’s contamination model, Chen et al.
(2018) showed that the minimax error rates in the Lo and operator norm, ||i — p*||2 and
(= Y*|lop, are € + \/p/n and attained by maximizing Tukey’s half-space depth (Tukey,
1975) and a matrix depth function, which is also studied in Zhang (2002) and Paindaveine
and Van Bever (2018). Both depth functions, defined through minimization of certain
discontinuous objective functions, are in general difficult to compute, and maximization of
these depth functions is also numerically intractable. Subsequently, Gao et al. (2019) and
Gao et al. (2020) exploited a connection between depth-based estimators and generative
adversarial nets (GANs) (Goodfellow et al., 2014), and proposed robust location and scatter
estimators in the form of GANs. These estimators are also proved to achieve the minimax
error rates in the Lo and operator norms under Huber’s contamination model. More recent
work in this direction includes Zhu et al. (2020), Wu et al. (2020), and Liu and Loh (2022).

GANSs are a popular approach for learning generative models, with numerous impressive
applications (Goodfellow et al., 2014). In the GAN approach, a generator is defined to
transform white noises into fake data, and a discriminator is then employed to distinguish
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between the fake and real data. The generator and discriminator are trained through
minimax optimization with a certain objective function. For GANs used in Gao et al. (2019)
and Gao et al. (2020), the generator is defined by the Gaussian model and the discriminator
is a multi-layer neural network with sigmoid activations in the top and bottom layers.
Hence the discriminator can be seen as logistic regression with the “predictors” defined by
the remaining layers of the neural network. The GAN objective function, usually taken
to the log-likelihood function in the classification of fake and real data, is more tractable
than discontinuous depth functions, but remains nonconvex in the discriminator parameters
and nonconcave in the generator parameters. Training such GANSs is challenging through
nonconvex-nonconcave minimax optimization (see, for example, Farnia and Ozdaglar, 2020
and Jin et al., 2020.)

There is also an interesting connection between GANs and minimum divergence (or dis-
tance) (MD) estimation, which has been traditionally studied for robust estimation (Donoho
and Liu, 1988; Lindsay, 1994; Basu and Lindsay, 1994). A prominent example is minimum
Hellinger distance estimation (Beran, 1977; Tamura and Boos, 1986). In fact, as shown
in f-GANs (Nowozin et al., 2016), various choices of the objective function in GANs can
be derived from variational lower bounds of f-divergences between the generator and real
data distributions. Familiar examples of f-divergences include the Kullback—Leibler (KL),
squared Hellinger divergences, and the total variation (TV) distance (Ali and Silvey, 1966;
Csiszar, 1967). In particular, using the log-likelihood function in optimizing the discrim-
inator leads to a lower bound of the Jensen—Shannon (JS) divergence for the generator.
Furthermore, the lower bound becomes tight if the discriminator class is sufficiently rich (to
include the nonparametrically optimal discriminator given any generator). In this sense,
f-GANs can be said to nearly implement minimum f-divergence estimation, where the
parameters are estimated by minimizing an f-divergence between the model and data dis-
tributions. However, this relationship is only approximate and suggestive, because even a
class of neural network discriminators may not be nonparametrically rich with population
data. A similar issue can also be found in the previous studies, where minimum Hellinger
estimation and related methods require a smoothed density function of sample data. This
approach is impractical for multivariate continuous data.

In addition to MD estimation mentioned above, two other methods of MD estimation
have also been studied for robust estimation both in general parametric models and in mul-
tivariate Gaussian models. The two methods are defined by minimization of power density
divergences (also called -divergences) (Basu et al., 1998; Miyamura and Kano, 2006) and
that of y-divergences (Windham, 1995; Fujisawa and Eguchi, 2008; Hirose et al., 2017). See
Jones et al. (2001) for a comparison of these two methods. In contrast with f-divergences,
these two divergences can be evaluated without requiring smooth density estimation from
sample data, and hence the corresponding MD estimators can be computed by standard
optimization algorithms. To our knowledge, error bounds have not been formally derived
for these methods under Huber’s contaminated Gaussian model.

Various methods based on iterative pruning or convex programming have been studied
with provable error bounds for robust estimation in Huber’s contaminated Gaussian model
(Lai et al., 2016; Balmand and Dalalyan, 2015; Diakonikolas et al., 2019). These methods
either handle scatter estimation after location estimation sequentially in two stages, or
resort to using normalized differences of pairs with mean zero for scatter estimation.
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Our work. We propose and study adversarial algorithms with linear spline discrimi-
nators, and establish various error bounds for simultaneous location and scatter estimation
under Huber’s contaminated Gaussian model. Two distinct types of GANs are exploited.
The first one is logit f-GANs (Tan et al., 2019), which corresponds to a specific choice
of f-GANs with the objective function formulated as a negative loss function for logistic
regression (or equivalently a density ratio model between fake and real data) when training
the discriminator. The second is hinge GAN (Lim and Ye, 2017; Zhao et al., 2017), where
the objective function is taken to be the negative hinge loss function when training the dis-
criminator. The hinge objective can be derived from a variational lower bound of the total
variation distance (Nguyen et al., 2010; Tan et al., 2019), but cannot be deduced as a special
case of the f-GAN objective even though the total variation is also an f-divergence. See
Remark 4. In addition, we allow two-objective GANSs, including the logD trick in Goodfel-
low et al. (2014), where two objective functions are used, one for updating the discriminator
and the other for updating the generator.

As a major departure from previous studies of GANSs, our methods use a simple linear
class of spline discriminators, where the basis functions consist of univariate truncated linear
functions (or ReLUs shifted) at 5 fixed knots and the pairwise products of such univariate
functions. For hinge GAN and certain logit f-GANs including those based on the reverse
KL (rKL) and JS divergences, the objective function is concave in the discriminator. By the
linearity of the spline class, the objective function is then concave in the spline coefficients.
Hence our hinge GAN and logit f-GAN methods involve maximization of a concave function
when training the spline discriminator for any fixed generator. In contrast with nonconvex-
nonconcave minimax optimization for GANs with neural network discriminators (Gao et al.,
2019, 2020), the concavity of the inner optimization for the discriminator contributes to both
the numerical tractability and theoretical analysis for our GAN methods. See Remarks 1,
2, 14 and 17. While the optimization for the generator remains nonconvex in our methods,
such a single nonconvex optimization is usually more tractable than nonconvex-nonconcave
minimax optimization.

In spite of the limited capacity of the spline discriminators, we establish various error
bounds for our location and scatter estimators, depending on whether the hinge-GAN or
logit f-GAN is used and whether an L or Lo penalty is incorporated when training the dis-
criminator. See Table 1 for a summary of existing and our error rates in scatter estimation.
Our L; penalized hinge GAN method achieves the minimax error rate €+ /log(p)/n in the
maximum norm. Our Ly penalized hinge GAN method achieves the error rate e,/p++/p/n,
whereas the minimax error rate is e++/p/n, in the p~Y2_Frobenius norm. While this might
indicate the price paid for maintaining the convexity in training the discriminator, our error
rate reduces to the same order /p/n as the minimax error rate provided that e is sufficiently
small, e = O(4/1/n), such that the contamination error term €,/p is dominated by the sam-
pling variation term \/p/n up to a constant factor. To our knowledge, such near-optimal
error rates were previously inconceivable for adversarial algorithms with linear discrimina-
tors in robust estimation. Moreover, the error rates for our logit f-GAN methods exhibit
a square-root dependency on the contamination fraction ¢, instead of a linear dependency
for our hinge GAN methods. This shows, for the first time, some theoretical advantage of
hinge GAN over logit f-GANs, although comparative performances of these methods may
vary in practice, depending on specific settings.
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Error Error rate Computation
0C15, TMW15, LT18 ||% = Z*|lmax €+ /log(p)/n Non-iterative computation
CGR18 12— Z*lop €+ +/p/n Minimax optimization with
zero-one discriminators
DKKLMS19 15 = Z*lop €, provided € > p/\/n convex optimization
up to log factors
GYZ20 15 = Z*lop e++/p/n Minimax optimization with
neural network discriminators
Ly logit f-GAN 12— S lmax e+ +/log(p)/n
(Theorem 11)
L1 hinge GAN [5 = S lmax €+ +/log(p)/n Nested or Minimax optimization
(Theorem 15) with an objective function concave
Ly logit f-GAN p 2 |Z —2*|lp /€ + \/p/n, provided € < 1/p in linear spline discriminators
(Theorem 12) up to a constant factor
L, hinge GAN p3 I~ S*lr  eyB+/p/n

(Theorem 16)

Table 1: Comparison of existing and proposed methods. OC15, TMW15, LT18 refer to methods and theory in
Ollerer and Croux (2015), Tarr et al. (2016), Loh and Tan (2018); CGR18, DKKLMS19, and GYZ20
refer to, respectively, Chen et al. (2018), Diakonikolas et al. (2019), and Gao et al. (2020).

To facilitate and complement our sample analysis, we provide error bounds for the pop-
ulation version of hinge GAN or logit f-GANs with nonparametric discriminators, that is,
minimization of the exact total variation or f-divergence at the population level. From
Theorem 6, population minimum TV or f-divergence estimation under a simple set of con-
ditions on f (Assumption 1) leads to errors of order O(e) or O(+/€) respectively under
Huber’s contamination model. Assumption 1 allows the reverse KL, JS, reverse x2, and
squared Hellinger divergences, but excludes the mixed KL divergence, x? divergence, and,
as reassurance, the KL divergence which corresponds to maximum likelihood estimation
and is known to be non-robust. Hence certain (but not all) minimum f-divergence esti-
mation achieves robustness under Huber’s contamination model or an ¢ TV-contaminated
neighborhood. Such robustness is identified for the first time for minimum f-divergence
estimation, and is related to, but distinct from, robustness of minimum distance estimation
under e contaminated neighborhood with respect to the same distance (Donoho and Liu,
1988). See Remark 9 for further discussion. The population error bounds in the Ly and
p~Y/2_Frobenius norms are independent of p and hence tighter than the corresponding e
terms in our sample error bounds for both hinge GAN and logit f-GAN. These gaps can
be attributed to the use of nonparametric versus spline discriminators.

Remarkably, our population analysis also sheds light on the comparison of our sample
results and those in Gao et al. (2020). On one hand, another set of conditions (Assump-
tion 2), in addition to Assumption 1, are required in our sample analysis of logit f-GANs
with spline discriminators. On the other hand, GANs used in Gao et al. (2020) can be recast
as logit f-GANs with neural network discriminators (see Section 5.2). But minimax error
rates are shown to be achieved in Gao et al. (2020) for an f-divergence (for example, the
mixed KL divergence) which, let alone Assumption 2, does not even satisfy Assumption 1
used in our analysis to show robustness of minimum f-divergence estimation. The main
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reason for this discrepancy is that the neural network discriminator in Gao et al. (2020) is
directly constrained to be of order € + \/]% in the log odds, which considerably simplifies
the proofs of rate-optimal robust estimation. In contrast, our methods use linear spline
discriminators (with penalties independent of €), and our proofs of robust estimation need
to carefully tackle various technical difficulties due to the simple design of our methods.
See Figure 2(b) for an illustration of non-robustness by minimization of the mixed KL
divergence, and Section 5.2 for further discussion on this subtle issue in Gao et al. (2020).

Notation. For a vector a = (a1,...,a,)7 € RP, we denote by [lali = Y5, |ail,
|a]loo = maxi<i<p|ai|, and |jall2 = (32F_, a?)Y/? the L; norm, Lo, norm, and Ly norm of
a, respectively. For a matrix A = (a;;) € R™", we define the element-wise maximum
norm || Allmax = maxi<j<m,1<j<n |aij|, the Frobenius norm [|Afr = (3212, D77, a?j)l/Q, the
vectorized Ly norm |[Al|1,1 = > 71", 377 [ai;], the operator norm [|Allop = supg,<1 [[47(2,
and the Loo-induced operator norm [|Al[oc = supjjy| <1 |[A%|lcc. For a square matrix A, we
write A = 0 to indicate that A is positive semidefinite. The tensor product of vectors a
and b is denoted by a ® b, and the vectorization of matrix A is denoted by vec(A4). The
cumulative distribution function of the standard normal distribution is denoted by ®(x),
and the Gaussian error function is denoted by erf(x).

2. Numerical illustration

We illustrate the performance of our JS logit f-GAN and existing methods, with two samples
of size 20000 from a 100-dimensional Huber’s contaminated Gaussian distribution with
€ = 5% and 20%, based on a Toeplitz variance matrix and the first Cauchy contamination
Q in Section 6.2. Figure 1 shows the 95% Gaussian ellipses for two selected coordinates,
using the estimated location vectors and variance matrices except for Tyler’'s M-estimator
(Tyler, 1987), Kendalls’s 7 with MAD (Loh and Tan, 2018), and Spearman’s p with Q-
estimator (Ollerer and Croux, 2015) where the locations are set to the true means. The
performances of our rKL logit f-GAN and hinge GAN are close to that of JS logit f-GAN.
See Figure 5 for illustration based on the second contamination in Section 6.2.

Among the methods shown in Figure 1, the JS logit f-GAN gives an estimated ellipse
that is closest to the truth, followed with small but noticeable differences by the JS-GAN
(Gao et al., 2020). The MCD (Rousseeuw, 1985) performs among the best when € = 5% but
deteriorates considerably when € increases to 20%. The remaining three methods, Kendall’s
7 with MAD, Spearman’s p with @Q,-estimator, and Tyler’s M-estimator show much less
satisfactory performance. The estimated distributions from these methods are dragged
towards the corner contamination cluster.

The relatively poor performance of the pairwise methods, Kendall’s 7 with MAD and
Spearman’s p with @Q,-estimator, may be explained by the fact that as shown by the
marginal histograms in Figure 1, the data in each coordinate are one-sided heavy-tailed,
but no obvious outliers can be seen marginally. The correlation estimates from Kendall’s
7 and Spearman’s p tend to be inaccurate even after sine transformations, especially with
nonnegligible € = 20%. In contrast, our GAN methods and JS-GAN, as well as MCD in the
case of € = 5%, are capable of capturing higher dimensional information so that the impact
of contamination is limited to various extents.
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o

— Truth ~— JS logit f-GAN — GYZ JS-GAN — Kendall_MAD

Spearman_Qn — MCD Tyler_M

Figure 1: The estimated 95% Gaussian ellipses and marginal histograms for two selected
coordinates, from contaminated data based on the first Cauchy contamination in
Section 6.2 with € = 5% (left) or 20% (right). For visibility, the data points are
truncated to (—4,4) on each axis; see Appendix A for untruncated plots.

3. Background: Adversarial algorithms

We review various adversarial algorithms (or GANSs), which are exploited by our methods
for robust location and scatter estimation. To focus on main ideas, the algorithms are stated
in their population versions, where the underlying data distribution P, is involved instead
of the empirical distribution P,. Let {Fp : § € O} be a statistical model and {h, : v € I'}
be a function class, where Fy is called a generator and h, a discriminator. In our study, Py
is a multivariate Gaussian distribution N(u, X), and h. is a pairwise spline function which
is specified later in Section 4.2.

For a convex function f : (0,00) — R, the f-divergence between the distributions P,
and Py with density functions p, and py is

p+(2)
DP*P9:/< )dPQ.
sedm = [ (B0
For example, taking f(¢) = tlogt yields the Kullback—Liebler (KL) divergence Dk, (Px|| Pp).

The logit f-GAN (Tan et al., 2019) is defined by solving the minimax program

i K(Py, Py; hy), 1
minmax Ky (Px, Fp; hy) (1)

where
Kf(P*, Py; h) = Ep*fl(eh(ﬂc)) _ Epef#(eh(z))
= Ep f(0) — By, {0 ) - p()
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Throughout, f#(t) = tf'(t) — f(t) and f’ denotes the derivative of f. A motivation for
this method is that the objective Ky is a nonparametrically tight, lower bound of the f-
divergence (Tan et al., 2019, Proposition S1): for each 6, it holds that for any function
h,

K (P., Py;h) < Dy(P.|IPy), @

where the equality is attained at h.g(z) = log{ps(z)/pe(x)}, the log density ratio between
P, and Py or equivalently the log odds for classifying whether a data point x is from P, or
Py. There are two choices of f of particular interest. Taking f(t) = tlogt — (¢t + 1) log(t +
1)+log 4 leads the Jensen—Shannon (JS) divergence, D;s(Pi||Py) = Dxr(Pi|| (P +Pp)/2) +
Dx1.(Pyl|(Px + Py)/2), and the objective function

Kis(Py, Py; h) = —Ep, log(1 4+ e M@y — Ep, log(1 + ")) 4+ log 4,

which is, up to a constant, the expected log-likelihood for logistic regression with log odds
function h(x). For Ky = Kjs, program (1) corresponds to the original GAN (Goodfellow
et al., 2014) with discrimination probability sigmoid(h(x)). Taking f(t) = —logt leads to
the reverse KL divergence D,x1,(Px|Py) = Dxr(Pyl||Px) and the objective function

Kk (Ps, Pp;h) =1 —Ep e M@ _Ep h(z),

which is the negative calibration loss for logistic regression in Tan (2020).

The objective K; with fixed 6 can be seen as a proper scoring rule reparameterized
in terms of the log odds function h(z) for binary classification (Tan and Zhang, 2022).
Replacing K¢ in (1) by the negative hinge loss (which is not a proper scoring rule) leads to

i Kuc(Py, Py: b)), 3
10in 1ax uG (Px, Py; hy) (3)

where
Kug(Py, Pg; h) = Ep, min(1, h(z)) + Ep, min(1, —h(x)).

This method is related to the geometric GAN described later in (7) and will be called hinge
GAN. By Nguyen et al. (2009) or Proposition 5 in Tan et al. (2019), the objective Kng is
a nonparametrically tight, lower bound of the total variation distance scaled by 2: for each
6, it holds that for any function h(x),

Kuc(Py, Py h) < 2Dpy(Py|| Pp), (4)

where the equality is attained at h.g(z) = sign(p«(z) —po(x)), and Dy (Ps||Py) = [ |p«(z)—
po(x)|/2dx. The objectives Ky and Kpng, with fixed 6, represent two types of loss func-
tions for binary classification. See Buja et al. (2005) and Nguyen et al. (2009) for further
discussions about loss functions and scoring rules.

The preceding programs, (1) and (3), are defined as minimax optimization, each with
a single objective function. There are also adversarial algorithms, which are formulated as
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alternating optimization with two objective functions (see Remark 1). For example, GAN
with the log D trick in Goodfellow et al. (2014) is defined by solving

max Kjs(Px, Py;7) with 6 fixed,
el 5)
I@niél Ep, log(1 + e @) with v fixed.

€
The second objective is introduced mainly to overcome vanishing gradients in # when the
discriminator is confident. The calibrated rKL-GAN (Huszar, 2016; Tan et al., 2019) is
defined by solving

max Kjs(Px, Pp;y) with 6 fixed,

~yel (6)
gliél —Ep,h(z) with v fixed.
€

The two objectives are chosen to stabilize gradients in both 6 and ~ during training. The
geometric GAN in Lim and Ye (2017) or, equivalently, the energy-based GAN in Zhao et al.
(2017) as shown in Tan et al. (2019), is defined by solving

max Kuc(Ps, Pp;y)  with 6 fixed,

i . (7)
min —Ep,hy(z) with v fixed.

Interestingly, the second line in (6) or (7) involves the same objective —Ep,h(x), which
can be equivalently replaced by K, k1, (P, Py; h~) because v and hence h, are fixed.

Remark 1 We discuss precise definitions for a solution to a minimax problem such as
(1) or (3), and a solution to an alternating optimization problem such as (5)—(7). For an

~

objective function K(0,7), we say that (8,7%) is a solution to

nbin max K(60,7), (8)
8!

if K(6,%) = max- K(0,7) < max K(0,v) for any 0. In other words, we treat (8) as
nested optimization: 0 is a minimizer of K(0,%) as a function of 0 and i = 7, where g
is a mazimizer of K(0,v) for fized 8. This choice is directly exploited in both numerical
implementation and theoretical analysis of our methods later. For two objective functions

K1(0,v) and K2(0,7), we say that (0,7%) is a solution to the alternating optimization problem

max K1(0,v) with 0 fized,
Bt
mgin Ko(0,v) with ~y fized, )

if K1(0,3) = max. Ki(6,7) and Ky(8,4) = ming K5(0,%). In the special case where
Ki(0,7) = Ky(8,7), denoted as K(0,7), a solution (6,%) to (9) is also called a Nash
equilibrium of K(0,7), satisfying K (0,%) = max- K(0,~) = ming K(0,%). It can be shown
that a Nash equilibrium of K(0,~) is equivalently a solution to both minimaz problem (8)
and the mazimin problem max, ming K (0,7), similarly treated as nested optimization. For

general K(0,7), the minimax and mazimin solutions may differ from each other, although
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Algorithm 1: Gradient descent ascent
Require A GAN objective function K(6,v) as in (1) or (3) with P, replaced by
the empirical distribution P, on real data, initial values (6o, 7o), learning rates
(ag, ag) for the generator and discriminator, and number of epochs T'.

fort=1...T do
Sampling: Generate a sample of fake data to approximate Py, ,.

Updating: Compute v = -1 + gV, K(6,7)]~,_,,
and 0y = 0,1 — agVoK (0, 7)o,_,-

end

Algorithm 2: Gradient descent with concave inner optimization

Require A GAN objective function K (6,~), which is concave in « for each fixed 6,
initial value 0y, learning rate oy for the generator, and number of epochs 7.

fort=1...7T do
Sampling: Generate a sample of fake data to approximate Py, .

Updating: Compute v = argmax, K (0¢—1,7) by a concave optimizer,
and 9t = 9t71 - angK(H, ’Yt)’t%fr
end

they coincide and yield a Nash equilibrium by Sion’s minimazx theorem in the special setting
where K (0,7v) is convex in 6 for each v and concave in v for each 6. Our definition of
single-objective GANs as nested optimization agrees with Jin et al. (2020), where a solu-
tion to (8) is called a (global) minimax point of K(0,7), and hence should be distinguished
from the interpretation of GANs as finding Nash equilibria or modifications (Farnia and
Ozdaglar, 2020). On the other hand, our definition of two-objective GANs takes the form
of alternating optimization, which is currently needed for our theoretical analysis (Section
4.4). It remains open whether theoretical guarantees can also be developed for two-objective
GANs based on nested optimization (even with neural network discriminators).

Remark 2 Numerically, GANs are often trained using gradient-based algorithms, notably
the gradient descent ascent algorithm (GDA) (Algorithm 1), which can only be expected
to find local solutions. Howewver, there are subtle issues even in the consideration of local
solutions. Formally as in Jin et al. (2020), a point (é, 4) is said to be a local minimazx point
of K(0,) if there exist 5o > 0 and a function h(-) satisfying h(0) — 0 as 6 — 0, such that

for any 8 € (0,8], the pair (0,%) satisfies

K é, V) = max K é, S max K 07 )
(9,%) Y|l =4 <h(8) 7) Y llv=FII<h(d) (6:7)

for any 6 satisfying |0 — é[\ < 4. As shown in Jin et al. (2020), a local minimax point
can be characterized via necessary and sufficient conditions based on the gradients and
Hessians. But for nonconvex-nonconcave minimaz optimization, a global minimaz point
may be neither a local minimaz point nor a stationary point (i.e., with the gradients of
K being 0 with respect to 0 and ). This differs markedly from nonconvex optimization

10
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where a global minimum is always a local minimum and, if in the interior of the domain,
a stationary point. Nevertheless, our GAN methods in Section 4 are designed such that
K (0,~) is concave in 7y for each fixed 0. In this setting, as noted in Jin et al. (2020), a global
minimazx point is always a local minimaz point, and hence finding a local minimaz point
through GDA is provably a feasible strategy for finding a global minimax point. Moreover,
for our methods with concave K(0,-), nested optimization can be directly implemented, as
shown in Algorithm 2, using a concave optimizer over v and gradient descent over 6 to
find a local minimizer of L(0) = K(0,%s), with 49 = argmax, K(0,v). This is a feasible
example of gradient descent with maz-oracle, for which a performance guarantee is derived
in Jin et al. (2020). Based on these observations, our GAN methods with concave K(0,-)
are numerically more tractable than nonconver-nonconcave GANSs.

Remark 3 The population f-GAN (Nowozin et al., 2016) is defined by solving

minmax {Ep.Ty(x) = Ep, f*(T5(2))} (10)
where f* is the Fenchel conjugate of f, i.e., f*(s) = supye(g,00)(st—f(t)) and T is a function
taking values in the domain of f*. Typically, T, is represented as T, (x) = 7¢(hy(x)),
where Ty : R — dom(f*) is an activation function and h~(z) take values unrestricted in
R. The logit f-GAN corresponds to f-GAN with the specific choice Tf(u) = f'(e*) by the
relationship f*(f'(t)) = f#(t) (Tan et al., 2019). Nevertheless, a benefit of logit f-GAN is
that the objective Ky in (1) takes the explicit form of a negative discrimination loss such
that h(x) can be seen to approzimate the log density ratio between P, and Py.

Remark 4 There is an important difference between hinge GAN and logit f-GAN, although
the total variation is also an f-divergence with f(t) = |t — 1|/2. In fact, taking this choice
of f in logit f-GAN (1) yields

min ma {Ep,sign(hy(z)) — Ep,sign(hy(z))} . (11)
This is called TV learning and is related to depth-based estimation in Gao et al. (2019).
Compared with hinge GAN in (8), program (11) is computationally more difficult to solve.
Such a difference also exists in the application of general f-GAN to the total variation.
For the total variation distance scaled by 2 with f(t) = |t — 1|, the conjugate is f*(s) =
max(—1,s) if s < 1 or oo if s > 1. If T, is specified as T, = min(1, h,(x)), then the
objective in f-GAN (10) can be shown to be

Ep, min(1, hy(x)) + Ep, min(1, max(—1, —h(x))),

which in general differs from the negative hinge loss in ~('3) unless h~, is upper bounded by

1. If h. is specified as 2sigmoid(hy) — 1 for a function h., taking values unrestricted in R,
the resulting f-GAN is equivalent to TV-GAN in Gao et al. (2019) defined by solving

min max {Ep* sigmoid(h,(z)) — Ep, sigmoid(iu,(m))} . (12)

0cO ~el

Howewver, solving program (12) is numerically intractable as discussed in Gao et al. (2019).

11
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4. Theory and methods

We propose and study various adversarial algorithms with simple spline discriminators
for robust estimation in a multivariate Gaussian model. Assume that Xi,..., X, are in-
dependent observations obtained from Huber’s e-contamination model, that is, the data
distribution P, is of the form

P.o=(1—¢)Pp + €Q, (13)

where Pp- is N(p*,¥*) with unknown 6* = (u*,¥*), @ is a probability distribution for
contaminated data, and € is a contamination fraction. Both @ and e are unknown and @
can be an arbitrary probability distribution. The dependency of P. on (6%, Q) is suppressed

in the notation. Equivalently, the data (Xi,...,X,) can be represented in a latent model:
(U1,X1),...,(Uy, Xy) are independent, and U; is Bernoulli with P(U; = 1) = € and X is
drawn from Py« or @ given U; =0 or 1 fori=1,...,n.

For theoretical analysis, we consider two choices of the parameter space. The first choice
is O ={(1t,2) : p € RP,3 > 0,||X||max < M} for a constant M; > 0. Equivalently, the
diagonal elements of ¥ is upper bounded by M; for (u,¥) € ©;. The second choice is
Oy = {(1,X) : p € RP.E > 0, X|lop < My} for a constant My > 0. For simplicity,
the dependency of ©1 on M; or ©s on My is suppressed in the notation. For the second
parameter space O, the minimax rates in the Le and operator norms have been shown to
be achieved using matrix depth (Chen et al., 2018) and GANs with certain neural network
discriminators (Gao et al., 2020).

Our work aims to investigate adversarial algorithms with a simple linear class of spline
discriminators for computational tractability, and establish various error bounds for the
proposed estimators, including those matching the minimax rates in the maximum norms
for the location and scatter estimation over ©1, and, provided that e/n is bounded by a
constant (independent of p), the minimax rates in the Lo and Frobenius norms over 0.

It is worth emphasizing that adversarial algorithms is used in our work to learn the
multivariate Gaussian distribution Py« with the real data assumed to be from Huber’s
contaminated Gaussian distribution P, for some unknown (Q, €), in addition to the unknown
parameter 6*. Hence this differs from the usual theoretical setting where the real data are
assumed to be generated purely from the model distribution Py«.

4.1 Population analysis with nonparametric discriminators

A distinctive feature of GANs is that they can be motivated as approximations to minimum
divergence estimation. For example, if the discriminator class {h.} in (1) is rich enough
to include the nonparametrically optimal discriminator such that max,er K¢(Px, Pp; hy) =
D¢(P;||Py) for each 6, then the (population) logit f-GAN amounts to minimizing the f-
divergence D¢ (Py||Pp). Similarly, if the discriminator class {h~} in (3) is sufficiently rich,
then the (population) hinge GAN amounts to minimizing the total variation Dpvy (Py||Pp).

As a prelude to our sample analysis, Theorem 6 shows that at the population level, min-
imization of the total variation and certain f-divergences satisfying Assumption 1 achieves
robustness under Huber’s contamination model, in the sense that the estimation errors are
respectively O(e) and O(y/€), uniformly over all possible ). Hence with sufficiently rich
(or nonparametric) discriminators, the population versions of the hinge GAN and certain
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Non-incr. Concave Concave Lipschitz

Name Convex f(t) £t f(t) f'(e") f#(e")

Total variation (I=t)y, [t —1]/2

v

Reverse KL —logt v v v v
Jensen-Shannon  tlogt — (¢4 1)log(t + 1) +logd v v v v
Squared Hellinger (vt —1)2 v v v

Reverse y? =1 -1 v v v

KL tlogt 7 7

Mixed KL {(t—1)logt}/2 v v

X (t—1)? v

Table 2: Common f-divergences and validity of Assumptions 1 (ii)—(iii) and 2 (i)—(ii). The mixed
KL divergence is defined as Dyk1,(P||Q) = DkiL(P||@)/2 + DkL(Q||P)/2.

f-GANSs can be said to be robust under Huber’s contamination. From Table 2, Assump-
tion 1 is satisfied by the reverse KL, JS, and squared Hellinger divergences, but violated by
the KL divergence. Minimization of the KL divergence corresponds to maximum likelihood
estimation, which is known to be non-robust under Huber’s contamination model.

Assumption 1 Suppose that f : (0,00) — R is convex with f(1) = 0 and satisfies the
following conditions.

(1) f is twice differentiable with f”(1) > 0.

(ii) f is non-increasing.

(ii1) f' is concave (i.e., f" is non-increasing)
See Table 2 for validity of conditions (ii) and (iii) in various f-divergences.
Remark 5 Given a conver function f with f(1) = 0, the same f-divergence Dy can be
defined using the convex function f(t) + c(t — 1) for any constant ¢ € R. Hence condition
(ii) in Assumption 1 can be relaxed such that f' is upper bounded by a constant. The

non-increasingness of f is stated above for ease of interpretation. The other conditions in
Assumption 1 and Assumption 2 are not affected by non-unique choices of f.

Theorem 6 Let ©g = {(u,X) : p € RP, X is a p X p variance matriz}.
(i) Assume that f satisfies Assumption 1. Let 0 = argmingcg Ds(FPe||Pp). If
V=2("(1)71f1(1/2)e + € < 1/2, then for any contamination distribution Q,

i —w*llz < CIE Ve =1l < CIE* I iamV/e (14)

and
12 = 2 lop < CIE lopVe, 12 = ¥ lmax < CIIE max Ve, (15)

where C' > 0 is a constant depending only on f. The same inequality as in (15) also holds
with |Z — %*||op replaced by p~ /2| — 2*||p.

(i1) Let § = argmingeo, Drv(Pe||Pp). If € < 1/4 then (14) and (15) hold for an absolute
constant C > 0 with /€ replaced by € throughout.
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Fig (a): Q=Cauchy(5, 0.5) and eps in [0, 0.015] Fig (b): Q=Cauchy(mu, 0.5) and eps=0.1
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Figure 2: Ilustration of robustness of minimum f-divergence location estimation. Figure
(a): Location error |1 — p*| against contamination fraction € from 0 to 0.015, with
Py« being N(0,1) and contamination () being Cauchy(5,1/2) fixed; Figure (b):
Location error |fi — p*| against contamination location pg from 0 to 10, with Py-
being N(0, 1), contamination fraction € = 0.1 fixed, and contamination @ being
Cauchy(pg, 1/2). The squared Hellinger, reverse x?, and mixed KL are denoted
by H2, rChi2, and mKL respectively.

Figure 2 provides a simple numerical illustration. From Figure 2(a), the location errors
|2 — p*| of minimum divergence estimators corresponding to the four robust f-divergences
(reverse KL, JS, squared Hellinger, and reverse x?) satisfying Assumption 1 are of shapes in
agreement with the order /€ in Theorem 6, whereas those corresponding to TV appear to be
linear in ¢, for € close to 0. For the KL, mixed KL, and x? divergences, which do not satisfy
Assumption 1(ii), their corresponding errors quickly increase out of the plotting range,
indicating non-robustness of the associated minimum divergence estimation. The differences
between robust and non-robust f-divergences are further demonstrated in Figure 2(b).
As the contamination location moves farther away, the errors of the robust f-divergences
increase initially but then decrease to near 0, whereas those of the non-robust f-divergences
appear to increase unboundedly.

Remark 7 From the proof in Section 7.1, Theorem 6(i) remains valid if f”(1) is replaced
by Cy = infyec(o 1) f'(t) in Assumption 1(i) and the definition of Erryo(e), and Assumption
1(iii), the concavity of f’, is removed. On the other hand, a stronger condition than As-
sumption 1(ii1) is used in our sample analysis: for convex f, the concavity of f' is implied
by Assumption 2(i), as discussed in Remark 15.
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Remark 8 The population bounds in Theorem 6 are more refined than those in our sample
analysis later. The population minimizer 0 = (fi,%) is defined by minimization over the
unrestricted space Oy instead of ©1 or Oy with the restriction ||X||max < M7 or ||X]op < Ma.
The population bounds are also adaptive in that the scaling constants depend directly on the
mazimum or operator norm of the true variance matriz 3*, instead of pre-specified constants
M, or Ms. Note that the parameter space is also restricted such that ||X||op < My and the
error bounds depend on My in sample analysis of Gao et al. (2020). Nevertheless, the
population bounds share a similar feature as in our sample bounds later: the error bounds
in the mazimum norms are governed by ||X*||max, which can be much smaller than ||X*|/op

tnwvolved in the error bounds in the operator norm.

Remark 9 [t is interesting to connect and compare our results with Donoho and Liu
(1988), where minimum distance (MD) estimation is studied, that is, minimization of a
proper distance D(P, Py) satisfying the triangle inequality. For minimum TV estimation,
let Op = (fip, X p) = argming Dy (P|| Py). For location estimation, define

b(e) = sup 1P — 172, bo(€) = sup [ = 12,
P:Dry (P||Ppx)<e 0:Drv (Po|| Pox ) <e
which are called the bias distortion curve and the gauge function. Scatter estimation can
be discussed in a similar manner. For a general family {Pyp}, the first half in our proof of
Theorem 6(ii) shows that for any P satisfying Dry(P||Ps<) < €, we have Dy (Fy, || Py«) <
2e. This implies a bound similar to Proposition 5.1 in Donoho and Liu (1988):

b(e) < bo(2e). (16)

For the multivariate Gaussian family {Py}, the second half in our proof of Theorem 6(ii)
derives an explicit upper bound on by(€) provided that 2¢ < a for a constant a € [0,1/2):

bo(2€) < S1.allZ7laf7 (26),

where Sy, = {®'(®71(1/2 + a))} L. Combining the preceding inequalities yields b(e) <
CHE*||(1)I/)26 in Theorem 6(ii), with C = 2851 ,. In addition, Proposition 5.1 in Donoho
and Liu (1988) gives the same bound as (16) for MD estimation using certain other dis-
tances D(P, Py), including the Hellinger distance, where the MD functional Op = (fip,Xp)
is defined as argmingD(P, Py), and b(e) and by(€) are defined with Dv (P||Py+) replaced by
D(P, Py). The distances used in defining the MD functional and the contamination neigh-
borhood are tied to each other. Hence, except for minimum TV estimation, our setting
differs from Donoho and Liu (1988) in studying different choices of minimum f-divergence
estimation over the same Huber’s contamination neighborhood.

Remark 10 We briefly comment on how our result is related to breakdown points in robust
statistics (Huber and Ronchetti, 2009, Section 1.4). For estimating p*, the population
breakdown point of a functional T = T(P) can be defined as sup{e : br(e) < oo}, where
br(€) = SuPp.py (PP )<e T (P) — p*l|2. Scatter estimation can be discussed in a similar
manner. For T defined from minimum TV estimation, Theorem 6(ii) shows that if € < 1/4,

then br(e) < CHE*H}){)ZG, as noted in Remark 9. This not only provides an explicit bound
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on br(e€), but also implies that the population breakdown point is at least 1/4 for minimum
TV estimation. Similar implications can be obtained from Theorem 6(i) for minimum f-
divergence estimation. For T defined from minimum rKL divergence estimation, Theorem
6(i) shows that if 2\/e + € < 1/2, then bp(e) < C’||E*||(1){,2ﬁ, and hence the population
breakdown point is at least 0.051. While these estimates of breakdown points can potentially
be improved, our population analysis as well as sample analysis in the subsequent sections
focus on deriving quantitative error bounds in terms of sufficiently small € and some scaling
constants free of €.

4.2 Logit f-GAN with spline discriminators

For the population analysis in Section 4.1, a discriminator class is assumed to be rich
enough to include the nonparametrically optimal discriminator which depends on unknown
(6,Q). Because @ can be arbitrary, this nonparametric assumption is inappropriate for
sample analysis. Recently, GANs with certain neural network discriminators are shown
to achieve sample error bounds matching minimax rates (Gao et al., 2019, 2020). It is
interesting to study whether similar results can be obtained when using GANs with simpler
and computationally more tractable discriminators.

We propose and study adversarial algorithms, including logit f-GAN in this section and
hinge GAN in Section 4.3, each with simple spline discriminators. Define a linear class of
pairwise spline functions, denoted as Hgp:

hspy(x) =70 + 71 p(2) + 75 vee(p(z) @ ¢(x)),

where v = (70,77,73)" € T with I' = RI*P+0P” and o(z) = (o7(2),. .. ;o8 (x))". The
basis vector ¢;(z) € RP is obtained by applying t — (¢t — §)4+ componentwise to x =
(x1,...,2p)", with the fixed knot § = —2,—-1,0,1, or 2 for [ = 1,...,5 respectively. For
concreteness, assume that every two components of 7o are identical if associated with the
same product of two components of ¢(x), that is, 72 can be arranged to a symmetric
matrix. The preceding specification is sufficient for our theoretical analysis. Nevertheless,
similar results can also be obtained, while allowing various changes to the basis functions,
for example, adding = as a subvector to ¢(z). With this change, a function in Hg, has a
main effect term in each x;, which is a linear spline with fixed knots in {—2,—1,0,1, 2},
and a square or interaction term in each pair (z;,,x;,), which is a product of two spline
functions in z;, and x;, for 1 < j1,72 < p. See Figure 3 for an illustration of the structure
of our spline discriminator.

We consider two logit f-GAN methods with an Ly or Lo penalty on the discriminator,
which lead to meaningful error bounds over the parameter space ©; or ©4 respectively under
the following conditions on f, in addition to Assumption 1. Among the f-divergences in
Table 2, the reverse KL and JS divergences satisfy both Assumptions 1 and 2, and hence the
corresponding logit f-GANs achieve sample robust estimation using spline discriminators.
The squared Hellinger and reverse x? divergences satisfy Assumption 1, but not the Lipschitz
condition in Assumption 2(ii). For such f-divergences, it remains a theoretical question
whether sample robust estimation can be achieved using spline discriminators.
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Truncated linear basis
Input & pairwise interactions Output

o) o o)

Figure 3: Illustration of our spline discriminator. Dashed lines are fixed transformations
with no trainable parameter used and solid lines are linear transformations with
parameter v. For 7 = 1,...,p, Lp(TJL) is a vector of truncated linear (TL) basis
functions of x; (the jth element of ) at the fixed knots.

Assumption 2 Suppose that f : (0,00) — R is strictly convex and three-times continuously
differentiable with f(1) = 0 and satisfies the following conditions.

(i) f'(e") is concave in u € R.
(i) f#(e*) is Ri-Lipschitz in u € R for a constant Ry > 0.

See Table 2 for validity of conditions (i) and (ii) in various f-divergences, and Remarks 13
and 14 for further discussions.

The first method, L, penalized logit f-GAN, is defined by solving

wnin max {Ky(Fn, Pi Iy u) = M peny (7)} (17)
where K¢ (P, Pg; h) is K¢(Px, Pp; h) in (1) with P, replaced by the empirical distribution P,
of {X1,..., X0}, hyu(x) = hep ~(x—p), peny () = [|71]1+||72l1, the L1 norm of v excluding
the intercept vy, and Ay > 0 is a tuning parameter. In addition to the replacement of Py by
P, there are two notable modifications in (17) compared with the population version (1).
First, a penalty term is introduced on -, to achieve suitable control of sampling variation.
Second, the discriminator h. , is a spline function with knots depending on p, the location
parameter for the generator. By a change of variables, the non-penalized objective in (17)
can be equivalently written as

K (P, Po; hoyyy) = Ep,— f'(ehsen@)) — EPO,Ef#(ehSp’”(I))a (18)
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where P, — u denotes the empirical distribution on {X; — p,..., X, — u}. Hence
K¢(Py, Pp;hyy) is a negative loss for discriminating between the shifted empirical dis-
tribution P, — p and the mean-zero generator Fyx. The adaptive choice of knots for the
spline discriminator A, not only is numerically desirable but also facilitates the control of
sampling variation in our theoretical analysis. See Propositions 33, 44, 52, and 54. All our
sample results such as Theorems 11 and 12 below are non-asymptotic, being valid for any
(n,p,€,0) and @ under the stated conditions.

Theorem 11 Assume that |S*|max < My and f satisfies Assumptions 1-2. Let 0 =
(i,2) be a solution to (17). For § < 1/7, if Ay > C} <\/10gp/n+\/log(1/5)/n> and
Ve+ +/1/(nd) + A1 < Cy, then with probability at least 1 — 7§ the following bounds hold

uniformly over contamination distribution @),

7= 170 < € (Ve V1) + 2a)
19 = £ lmax < € (Ve + VI (0) + A1)

where Cp,Cy,C > 0 are constants, depending on My and f but independent of (n,p,€,0).

For L; penalized logit f-GAN, Theorem 11 shows that the estimator (ji,3) achieves
error bounds in the maximum norms in the order /e + y/log(p)/n. These error bounds
match sampling errors of order y/log(p)/n in the maximum norms for the standard esti-
mators (i.e., the sample mean and variance) in a multivariate Gaussian model in the case
of € = 0. Moreover, up to sampling variation, the error bounds also match the population
error bounds of order /e in the maximum norms with nonparametric discriminators in
Theorem 6(i), even though a simple, linear class of spline discriminators is used.

The second method, Ly penalized logit f-GAN, is defined by solving

min max {Kr(Pp, Py; hy,) — A2 Peny (1) — Az peny(y2)}, (19)
0€©y el

where K¢ (P, Pp; h) and h. ,(x) are defined as in (17), peny(y1) = |12 and peny(y2) =
l72||2, the Lo norms of 41 and 72, and Ay > 0 and A3 > 0 are tuning parameters. Compared
with L; penalized logit f-GAN (17), the Lo norms of v; and 7, are separately associated
with tuning parameters Ao and A3 in (19), in addition to the change from L; to L penalties.
As seen from our proofs in Appendices B.2 and B.3, the use of separate tuning parameters
Ao and Ajg is crucial for achieving meaningful error bounds in the Lo and Frobenius norms
for simultaneous estimation of (u*,¥*). Our method does not rely on the use of normal-
ized differences of pairs of the observations to reduce the unknown mean to 0 for scatter
estimation as in Diakonikolas et al. (2019).

Theorem 12 Assume that | X*||op < Mo, f satisfies Assumptions 1-2, and pe is upper
bounded by a constant B. Let § = (fi,%) be a solution to (19). For § < 1/8, if g >

C1 <\/p/n+\/log(1/5)/n>, A3 > Cl\/ﬁ(\/]%+ log(l/(S)/n), and /e + /1/(nd) +

Ay < Oy, then with probability at least 1 — 8§ the following bounds hold uniformly over
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contamination distribution Q,

7= 1*ll2 < € (Ve + VIn8) + o)
P28 = 2 p < O (Ve VI/(8) + da + A/ VB)

where C1,Cy,C > 0 are constants, depending on Ms and f but independent of (n,p,€,0)
except through the bound B on pe.

For Ly penalized logit f-GAN, Theorem 12 provides error bounds of order \/e++/p/n, in
the L and p~/2-Frobenius norms for location and scatter estimation. A technical difference
from Theorem 11 is that these bounds are derived under an extraneous condition that pe
is upper bounded. Nevertheless, the error rate, v/e + /p/n, matches the population error
bounds of order /€ in Theorem 6(i), up to sampling variation of order y/p/n in the Ly and
p~Y/2_Frobenius norms. We defer to Section 4.3 further discussion about the error bounds
in Theorems 11-12 compared with minimax error rates.

Remark 13 There are important implications of Assumption 2(i) together with Assump-
tion 1(ii), based on the fact (“composition rule”) that the composition of a non-decreasing
concave function and a concave function is concave. First, for convex f, concavity of f’(e)
inu € R implies Assumption 1(iii), that is, concavity of f'(t) int € (0,00). This follows by
writing f'(t) = g(logt) and applying the composition rule, where g(u) = f'(e*), in addition
to being concave, is non-decreasing by convexity of f, and logt is concave in t. Note that
concavity of f'(t) in t may not imply concavity of f'(e") in u, as shown by the Pearson
x2 in Table 2. Second, for convexr and non-increasing f, concavity of f'(e*) in u € R also
implies concavity of —f#(e*) in u € R. In fact, as mentioned in Remark 3, f#(t) can be
equivalently obtained as f7#(t) = f*(f'(t)), where f* is the Fenchel conjugate of f (Tan
et al., 2019). By the composition rule, —f7 (%) = g(f'(e%)) is concave, where g = —f* is
concave and non-decreasing by non-increasingness of f.

Remark 14 The concavity of f'(e*) and —f#(e*) in u from Assumptions 1(ii) and 2(i),
as discussed in Remark 13, is instrumental from both theoretical and computational per-
spectives. These concavity properties are crucial to our proofs of Theorems 11-12 and later
Corollary 18(i) in Section 4.4. See Lemmas 31 and 57 in Appendiz C. Moreover, the concav-
ity of f'(e%) and —f7(e) in u, in conjunction with the linearity of the spline discriminator
heyy in 7y, indicates that the objective function K(Pp, Pp; hy,,,) is concave in vy for any fizved
0. Hence our penalized logit f-GAN (17) or (19) under Assumptions 1-2 can be imple-
mented through nested optimization as in Algorithm 2 with a concave optimizer used to
fully update the spline discriminators, as well as through the gradient descent ascent as in
Algorithm 1. See Remark 2 for further discussion.

4.3 Hinge GAN with spline discriminators

We consider two hinge GAN methods with an L; or Ly penalty on the spline discriminator,
which leads to theoretically improved error bounds in terms of dependency on (€,p) over
the parameter space ©1 or G4 respectively, compared with the corresponding logit f-GAN
methods in Section 4.2.
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The first method, Ly penalized hinge GAN, is defined by solving

Kug(Pn, Py h A , 20

win max {Kuc (P, Fys hou) = A1 peny (7)} (20)

where Kyg (P, Pp; h) is the hinge objective Kyg(Px, Pp; h) in (3) with Py replaced by P,

and, similarly as in L; penalized logit f-GAN (17), h, () = hsp(x — p), peni(y) =
I71ll1 + |[72ll1, and A1 > 0 is a tuning parameter.

Theorem 15 Assume that |S*||max < Mi. Let 0 = (i,3) be a solution to (20). For
<17, if M > Ch (\/logp/n+ \/log(l/d)/n> and € + \/€/(nd) + A1 < Ca, then with

probability at least 1—79 the following bounds hold uniformly over contamination distribution

Q,

i — 1 |lee<C (e +1/€/(nd) + )\1) ,
I8 = = max<C (€ + v/e/(n8) + M) .

where C,C1,Cy > 0 are constants, depending on M; but independent of (n,p,€,d).

For L; penalized hinge GAN, Theorem 15 shows that the estimator (ji, i]) achieves
error bounds in the maximum norms in the order € 4+ y/log(p)/n, which improve upon the
error rate y/e + 1/log(p)/n in terms of dependency on € for Ly penalized logit f-GAN. This
difference can be traced to that in the population error bounds in Theorem 6. Moreover,
Theorem 5.1 in Chen et al. (2018) indicates that a minimax lower bound on estimator errors
17t = 1 || oo OF || = X*||max is also of order €+ +/log(p)/n in Huber’s contaminated Gaussian
model, where \/log(p)/n is a minimax lower bound in the maximum norms in the case of
€ = 0. Therefore, our L; penalized hinge GAN achieves the minimax rates in the maximum
norms for Gaussian location and scatter estimation over 9.

The second method, Ly penalized hinge GAN, is defined by solving

min max {Kug(Pn, Pp; hy,u) — A2 peny(11) — Az peny(v2)}, (21)
0€Oy ~el’

where, similarly as in Lo penalized logit f-GAN (19), hy ,(z) = hep(x — 1), peny(y1) =
l71]l2 and peny(v2) = |[72]|2, and Ay > 0 and A3 > 0 are tuning parameters.

Theorem 16 Assume that | X*|op < Mo. Leté = (A,ZAD) be a solution to (21). For
§ < 1/8, if Ay > 01( p/n + /Tog 1/5)/n) ( o/n + /Tog(1/9) /n) nd

/D (e + \/€/(nd) ) + Ay < (O, then with probability at least 1 — 89 the following bounds hold
uniformly over contamination distribution @,

=l < € (VB (e + Ve/md)) +2a).
p 28 =3 e < C (VB (e + Ve/(d)) + o+ Xs/v/p) |

where Cp,Ca,C > 0 are constants, depending on My but independent of (n,p,¢€,d).
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~

For Lo penalized hinge GAN, Theorem 16 shows that the estimator (fi, >) achieves error
bounds in the Ly and p~'/2-Frobenius norms in the order €y/pP++/p/n. On one hand, these
error bounds reduce to the same order, /e + 1/p/n, as those for Ly penalized logit f-GAN,
under the condition that pe is upper bounded by a constant. On the other hand, when
compared with the minimax rates, there remain nontrivial differences between Lo penalized
hinge GAN and logit f-GAN. In fact, the minimax rates in the Ly and operator norms for
location and scatter estimation over O9 is known to be € + y/p/n in Huber’s contaminated
Gaussian model (Chen et al., 2018). The same minimax rate can also be shown in the p /2
Frobenius norm for scatter estimation. Then the error rate for Ly penalized hinge GAN in
Theorem 16 matches the minimax rate, and both reduce to the contamination-free error rate
\/p/n, provided that ey/n is bounded by a constant, i.e., ¢ = O(1/1/n), independently of p.
For Ls penalized logit f-GAN associated with the reverse KL or JS divergence (satisfying
Assumptions 1-2), the error bounds from Theorem 12 match the minimax rate provided
both € = O(p/n) and € = O(1/p). The latter condition can be restrictive when p is large.

Remark 17 The two functionals, min(1, h) and min(—1, k), are concave in h in the hinge
objective Ky (Py, Po; h). This is reminiscent of the concavity of f'(e?) and —f#(e?) in h
in the logit f-GAN objective K y(P,, Py;h) under Assumptions 1(ii) and 2(i) as discussed
in Remark 14. These concavity properties are crucial to our proofs of Theorems 15-16
and Corollary 18(ii) . See Lemmas 51 and 58 in Appendiz C. Moreover, the concavity of
Kna(Pp, Ppy h) in h, together with the linearity of the spline discriminator h. , in vy, implies
that the objective function Kwug (P, Pp; hvy,u) is concave in vy for any fized §. Hence similarly
to penalized logit f-GAN, our penalized hinge GAN (20) or (21) can also be implemented
through mested optimization as in Algorithm 2 with concave inner optimization to update
the spline discriminators, as well as the gradient descent ascent as in Algorithm 1.

4.4 Two-objective GAN with spline discriminators

We study two-objective GANs, where the spline discriminator is trained using the objec-
tive function in logit f-GAN or hinge GAN, but the generator is trained using a different
objective function.

Consider the following two-objective GAN related to logit f-GANs (17) and (19):

max K¢(Py, Py; hy,p) — pen(y; A) with 6 fixed,

e B f(ch . (22)
min Ep, f'(ef @) — Ep,G(h () with v fixed.
€

Similarly, consider the two-objective GAN related to the hinge GAN (20) and (21):

max Kua(Pn, Po; hy,) — pen(y; A) with 0 fixed,

et . . (23)
min Ep, min(hy ,(z),1) — Ep,G(hy (7)) with v fixed.

€

Here pen(7; A) is an Ly penalty, Ai([[y1]l1+(72[[1) and © is ©1 = {(1, Z) : pp € RP, [|Z]|max <
M} asin (17), or pen(y; A) is an Lo penalty Aa|[v1||2 + As][y2]2 and © is ©2 = {(i, X) : p €
RP,||E|lop < M} as in (19), and G is a function satisfying Assumption 3. Note that the
discriminator h. , is a spline function with knots depending on p, so that Ep, f/ (ern(@)y
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cannot be dropped in the optimization over 6 in (22) or (23). We show that the two-
objective logit f-GAN and hinge GAN achieve similar error bounds as the corresponding
one-objective versions in Theorems 11-16.

Assumption 3 Function G in (22) or (23) is convex and strictly increasing. Hence the
inverse function G~ exists and is concave and strictly increasing.

Corollary 18 (i) If 0 is replaced by a solution to the alternating optimization problem (22)
with the Ly or Ly penalty on v as in (17) or (19) and the corresponding choice of ©, then
the results in Theorem 11 or 12 remains valid respectively.

(ii) If 0 is replaced by a solution to the alternating optimization problem (23) with the
Ly or Ly penalty on ~y as in (20) or (21) and the corresponding choice of ©, then the results
in Theorem 15 or 16 remains valid respectively.

The two-objective GANs studied in Corollary 18 differ slightly from existing ones as
described in (5)—(7), due to the use of the discriminator A, , depending on p to facilitate
theoretical analysis as mentioned in Section 4.2. If h, , were replaced by a discriminator A
defined independently of 6, then taking K; = Kjs and G(h) = —log(1+e~") or G(h) = —h
in (22) reduces to GAN with logD trick (5) or calibrated rKL-GAN (6) respectively, and
taking Ky = Kpg and G(h) = —h in (23) reduces to geometric GAN (7).

5. Discussion
5.1 GANs with data transformation

Compared with the usual formulations (1) and (3), our logit f-GAN and hinge GAN meth-
ods in Sections 4.2-4.3 involve a notable modification that both the real and fake data
are discriminated against each other after being shifted by the current location parameter.
Without the modification, a direct approach based on logit f-GAN would use the objective
function

Kj(Pa, Py hspy) = Ep, f' (7)) — Ep, o f# (el @), (24)

where the real data and the Gaussian fake data generated from standard noises are discrim-
inated again each other given the parameters (p, ). The idea behind our modification can
be extended by allowing both location and scatter transformation. For example, consider
logit f-GAN with full transformation:

wmin I}Yléilgc {K¢(Pn, Pg; hy uz) — pen(vy; A) }, (25)

where K/ is the logit f-GAN objective as in (17) and (19), hy .5 (z) = hsp o (572 (z — 1))
and pen(y;A) is an Ly or Lo penalty term. The discriminator h, , x(x) is obtained by
applying hsp~(-) with fixed knots to the transformed data ¥~'/2(z — u). Similarly to (18),
the non-penalized objective in (25) can be equivalently written as

K(Pa, Py hous) = Byovpo(p, /("7 @)) — Ep  f7 (el (@), (26)
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where ¥71/2(P, — ) denotes the empirical distribution on {X~1/2(X; —pu),..., 2" 2(X,, —
w)}. Compared with (18) and (24), there are two advantages of using (26) with full transfor-
mation. First, due to both location and scatter transformation, logit f-GAN (25), but not
(17) or (19), can be shown to be affine equivariant. Second, the transformed real data and
the standard Gaussian noises in (26) are discriminated against each other given the current
parameters (u, ), while employing the spline discriminators hg, 4(2) with knots fixed at
{-2,-1,0,1,2}. Because standard Gaussian data are well covered by the grid formed from
these marginal knots, the discrimination involved in (26) can be informative even when the
parameters (u, ) are updated. The discrimination involved in (24) may be problematic
when employing the fixed-knot spline discriminators, because both the real and fake data
may not be adequately covered by the grid formed from the knots.

From the preceding discussion, it can be more desirable to incorporate both location
and scatter transformation as in (26) than just location transformation as in (18), which
only aligns the centers, but not the scales and correlations, of the Gaussian fake data with
the knots in the spline discriminators. As mentioned in Section 4.2, our sample analysis
exploits the location transformation in establishing certain concentration properties in the
proofs. On the other hand, our current proofs are not directly applicable while allowing both
location and scatter transformation. It is desired in future work to extend our theoretical
analysis in this direction.

5.2 Comparison with Gao et al. (2020)

We first point out a connection between logit f-GANs and the GANs based on proper
scoring rules in Gao et al. (2020). For a convex function ¢ : (0,1) — R, a proper scoring
rule can be defined as (Savage, 1971; Buja et al., 2005; Gneiting and Raftery, 2007)

Sg(n,1) = g(n) + (L —=n)g'(n), Sy(n,0) = g(n) —ng'(n).
The population verion of the GAN studied in Gao et al. (2020) is defined as

inmax Lgy(Px, Pp;qy), 27

minmax Lg(P, Py ¢7) (27)

where ¢, (z) € [0, 1], also called a discriminator, represents the probability that an observa-
tion x comes from P, rather than Py, and

Ly(Px, Fy; q) = (1/2){Ep. Sy(q(2), 1) + Ep, Sy(q(),0)} — g(1/2).

The objective Ly( Pk, Py; q) is shown to be a lower bound, being tight if ¢ = 2d P, /d(Ps+Fp),
for the divergence Dy, (Py||(Px + FPp)/2), where go(t) = g(t/2) — g(1/2) for t € (0,2). For
example, taking g(n) = nlogn+ (1 —n)log(1—n) leads to the log score, Sy(n,1) = logn and
Sg(n,0) = log(1 —n). The corresponding objective function Lgy(Px, Pp;g,) reduces to the
expected log-likelihood with discrimination probability ¢,(z) as used in Goodfellow et al.
(2014). We show that if ¢, (z) is specified as a sigmoid probability, then L,(Px, Fp;qy) can
be equivalently obtained as a logit f-GAN objective for a suitable choice of f.

Proposition 19 Suppose that the discriminator is specified as g,(x) = sigmoid(h~(x)).
Then Ly(Py, Py; qy) = K¢(Px, Pp; hy) for Ky defined in (1) and f(t) = %go(%) satisfying
that Dy (P.|[(P. + Fy)/2) = Dy(P.|| ).
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In contrast with h.,(x) parameterized as a pairwise spline function, Gao et al. (2020)
studied robust estimation in Huber’s contaminated Gaussian model, where ¢, (z) is param-
eterized as a neural network with two or more layers and sigmoid activations in the top and
bottom layers. In the case of two layers, the neural network in Gao et al. (2020), Section 4,
is defined as

J
gy(2) = sigmoid(ho(2)),  ha(z) =Y _ 7V sigmoid(y* "z + ), (28)
j=1

where (7](2), ](-3)), j=1,...,J, are the weights and intercepts in the bottom layer, and 7](1)7

j =1,...,J, are the weights in the top layer constrained such that Z‘jjzl |7](‘1)| < k for a
tuning parameter k. Assume that g(n) is three-times continuously differentiable at n = 1/2,
g"(1/2) > 0, and for a universal constant ¢y > 0,

29"(1/2) > ¢""(1/2) + co, (29)

Then Gao et al. (2020) showed that the location and scatter estimators from the sample
version of (27) with discriminator (28) achieve the minimax error rates, O(e++/p/n), in the
Ly and operator norms, provided that k = O(e+ 1/p/n) among other conditions. However,
with sigmoid activations used inside h(z), the sample objective Ly (P, Fp; ¢) may exhibit
a complex, non-concave landscape in -, which makes minimax optimization difficult.

There is also a subtle issue in how the above result from Gao et al. (2020) can be
compared with even our population analysis for minimum f-divergence estimation, i.e.,
population versions of GANs with nonparametric discriminators. In fact, condition (29)
can be directly shown to be equivalent to saying that % f(€")|u=o > co for f associated
with ¢ in Proposition 19. This condition can be satisfied, while Assumption 1 is violated,
for example, by the choice g(n) = (n — 1)log(n/(2 — n)) and f(t) = {(t — 1)logt}/2,
corresponding to the mixed KL divergence Dk, (P||Q)/2 + Dkr(Q||P)/2. As shown in
Figure 2, minimization of the mixed KL does not in general lead to robust estimation.
Hence it seems paradoxical that minimax error rates can be achieved by the GAN in Gao
et al. (2020) with its objective function derived from the mixed KL. On the other hand, a
possible explanation can be seen as follows. By the sigmoid activation and the constraint
ijl |'y§1)| < K, the log-odds discriminator h.(z) in (28) is forced to be bounded, |h(z)| <
k, where £ is further assumed to small, of the same order as the minimax rate O(e++/p/n).
As a result, maximization of the population objective Ly(Px, Py;q,) over such constrained
discriminators may produce a divergence with a substantial gap to the actual divergence
D¢ (Py||Pp) for any fixed 0. Instead, the implied divergence measure may behave more
similarly as the total variation Dy (Py||FPp) than as Df(Ps||Fp), due to the boundedness of
h(x) by a sufficiently small «, so that minimax error rates can still be achieved.

6. Simulation studies

We conducted simulation studies to compare the performance of our logit f-GAN and hinge
GAN methods with several existing methods in various settings depending on @, €, n, and
p. Results about error dependency on € are provided in Section 6.3 and those about de-
pendency on n and p are presented in Appendix A. Two contamination distributions () are
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considered to allow different types of contaminations. In the arXiv preprint of the paper
(Wang and Tan, 2021), only low-dimensional settings are studied, with p between 5—20 and
n between 500-4000. In the current paper, relatively high-dimensional settings are studied,
with p between 25-100 and n between 5000-50000. In such settings, the previous implemen-
tation of our methods based on nested optimization (Algorithm 2) becomes computationally
costly, and hence the current implementation of our methods follows the style of alternating
gradient updates in Algorithm 1, but with Adam used (Kingma and Ba, 2015) instead of
vanilla gradient updates. As discussed in Remark 2, the concavity of our GAN objectives
in the discriminators makes it possible to treat local minimax points as a generally valid
surrogate for global solutions. In addition, training of our methods also benefits from the
fact that the discriminators can be updated without ever being trapped in local maxima
and hence the generators can be consistently pushed into the right direction.

6.1 Implementation of methods

Our methods can be implemented in the style of either nested optimization (Algorithm 2)
or alternating gradient updates (Algorithm 1). Source code for our methods is available at
https://github.com/LMC4S/robust-spline-GAN for nested optimization and https:
//github.com/LMC4S/robust-spline-GAN-pytorch for alternating gradient updates.

We refer to our arXiv preprint (Wang and Tan, 2021) for the former implementation
which is suitable in low-dimensional settings and present only the latter implementation
which is more cost-effective in relatively high-dimensional settings. Our detailed pseudo
code is shown as Algorithm 3 in Appendix A, including the initial values (ug, o) and the
learning rates. The penalized GAN objective function K (6,~; \) is defined as in (25) for logit
f-GAN or with K replaced by Kng for hinge GAN. As discussed in Section 5.1, this scheme
allows adequate discrimination between the back-transformed real data, ¥~1/2(z — ), and
the standard Gaussian noises using spline discriminators with fized knots. Below we briefly
discuss the alternating gradient updates and penalty choices.

With spline discriminators, the training objective K (6,7;\) is concave in the discrim-
inator parameter v and hence the discriminator can be consistently updated to provide a
proper updating direction for the generator. Instead of vanilla gradient updates, we use
Adam (Kingma and Ba, 2015) with a momentum and an adaptive learning rate to alter-
nately update both the discriminator and the generator in the style of Algorithm 1. The
introduction of the momentum helps to overcome possible local minima for the generator
and also accelerates the training for the discriminator.

As dictated by our theory, we employ L; or Lo penalties on the spline discriminators
to control sampling variation, especially when the sample size n is relatively smaller com-
pared to the dimension of the discriminator parameter . Numerically, these penalties help
stabilize the training process by restricting the discriminator power in the early stage. We
tested our methods under different penalty levels and identified default choices of A for our
rKL and JS logit f-GANs and hinge GAN. These penalty choices are then fixed in all our
subsequent simulations. See Appendix A.2 for results from our tuning experiments.

For comparison, we also implement 5 existing methods for robust estimation.

e JS-GAN (Gao et al., 2020). We use the code from Gao et al. (2020) with minimal
modification. The batch size is set to 1/10 of the data size because the default choice
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500 is too large in our experiment settings. We use the network structure p-2p-|p/2]-1
with LeakyReLU and Sigmoid activations as recommended in Gao et al. (2020).

o Kendall’s 7 with MAD (Loh and Tan, 2018). Kendall’'s 7 (Kendall, 1938) is used to
estimate the correlations after sine transformation and the median absolute deviation
(MAD) (Hampel, 1974) is used to estimate the scales. We use stats.kendalltau
and stats.median abs_deviation from Python module SciPy to compute Kendall’s
7 correlations and MAD scale (https://docs.scipy.org/doc/scipy/reference/g
enerated/scipy.stats.kendalltau.html).

o Spearman’s p with Qn-estimator (Ollerer and Croux, 2015). The Q,-estimator
(Rousseeuw and Croux, 1993) is used for scale estimation and Spearman’s p (Spear-
man, 1987) is used with sine transformation for correlation estimation. We use the R
function corollary to compute Spearman’s p correlations and the Qn function in R
package robustbase (https://cran.r-project.org/web/packages/robustbase).

e MCD (Rousseeuw, 1985). The minimum covariance determinant (MCD) estimator
is a high-breakdown robust method and is shown to be superior to the Minimum
volume ellipsoid (MVE) estimator in statistical efficiency (Butler et al., 1993). We
use covariance.MinCovDet in Python module scikit-learn for implementation.
(https://scikit-learn.org/stable/modules/generated/sklearn.covariance
.MinCovDet.html)

o Tyler’s M-estimator (Tyler, 1987). This method is included for completeness, being
designed for multivariate scatter estimation from elliptical distributions, not Huber’s
contaminated Gaussian distribution. The estimated scatter matrix is uniquely defined
subject to the constraint that the determinant is 1. To facilitate comparison in terms
of variance matrix estimation, we rescale the scatter matrix such that its determinant
matches that of the true variance matrix >*, even though this may lead to some unfair
advantage. We use R package fastM for implementation (https://cran.r-project
.org/web/packages/fastM).

In our experiments, we focus on comparing the performance of existing and proposed meth-
ods in terms of scatter estimation (i.e., variance matrix estimation). Tyler’s M-estimator,
Kendall’s 7 with MAD, and Spearman’s p with Q,, deal with scatter estimation only and
hence the locations are set to the true means as mentioned in Section 2. The other methods
handle both location and scatter estimation.

There are also robust S- and M-estimators, for example, based on translated or Tukey’s
biweight functions, which are shown to achieve a high-breakdown property (Rousseeuw,
1985; Rocke, 1996). Several such estimators were included in our previous low-dimensional
experiments (Wang and Tan, 2021). However, the existing R packages for those methods
fail to run successfully in our relatively high-dimensional settings and hence those methods
are not considered in the current experiments.

6.2 Simulation settings

The uncontaminated distribution is N(0, ¥*) where ¥* is a Toeplitz matrix with (i, j) com-
ponent equal to (1/2)/"=Jl. The location parameter is unknown and estimated together with
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the variance matrix, except for Tyler’s M-estimator, Kendall’s 7, and Spearman’s p. Con-
sider two contamination distributions () of different types. Denote a p x p identity matrix
as I, and a p-dimensional vector of ones as 1,,.

e () = Cauchy (2.250, %Ip) where ¢ = (1,—1,1,—1,1,...) is a p-dimensional vector of
alternating +1. In this setting, the majority of contaminated points may not be seen as
outliers marginally in each coordinate. On the other hand, these contaminated points
can be easily separated as outliers from the uncontaminated Gaussian distribution in
higher dimensions.

e () = Cauchy(51,,5I,). Contaminated points may lie in both low-density and high-
density regions of the uncontaminated Gaussian distribution. The majority of con-
taminated points are outliers that are far from the uncontaminated data, and there
are also contaminated points that are enclosed by the uncontaminated points.

The Cauchy contamination, although being extreme, is chosen to assess our theoretical
results, which are uniform over all possible contaminations. Compared with Gaussian con-
tamination distributions, the setting also makes training of GANs more difficult because
Cauchy does not have any finite moments and some data points can be excessive outliers.
The success of our methods in the presence of Cauchy contamination, as shown below, pro-
vides a strong support for our methods in handling all possible contaminations. See Wang
and Tan (2021) for numerical studies with Gaussian contaminations in low-dimensional
settings, where similar patterns are observed as reported here.

6.3 Experiment results

Table 3 summarizes scatter estimation errors in the maximum norm from L penalized hinge
GAN and logit f-GANs and existing methods, where p = 100, n = 20000, and € increases
from 0% to 20%. See Appendix A.3 for additional results about error dependency on n
and p. The errors are obtained by averaging 20 repeated runs and the numbers in brackets
are standard deviations. The JS logit f-GAN has the best performance, followed closely by
rKL logit f-GAN and hinge GAN and then with more noticeable differences by JS-GAN
in Gao et al. (2020). The MCD performs among the best when there is no contamination
(e = 0), but its performance deteriorates considerably as € increases to 20%, especially with
the first contamination. The pairwise methods, Kendall’s 7 with MAD and Spearman’s p
with @),-estimator, have poor performances as expected from Figure 1. Estimation errors in
the Frobenius norm from our Ly penalized GAN methods and existing methods are shown
in Table 4. We observe a similar pattern of comparison as in Table 3, except that the hinge
GAN achieves a slight lead.

From Tables 3-4, we see that the estimation errors of our GAN methods, as well as other
methods, increase as € increases. However, the dependency on € is not precisely linear for
the hinge GAN, and not in the order /e for the two logit f-GANs. This does not violate our
theoretical bounds, which are derived to hold over all possible contamination distributions,
i.e., for the worst scenario of contamination. For specific contamination settings, it is
possible for logit f-GAN to outperform hinge GAN, and for each method to achieve a
better error dependency on € than in the worst scenario. For further understanding, we
present in Figure 8 (Appendix A.5) a comparison between two types of contamination
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€(%) | hinge GAN JS logit f-GAN KL logit f-GAN GYZ JS-GAN  Kendall MAD  Spearman_Qn  MCD Tyler M
0 0.0299 (0.0027)  0.0304 (0.0027)  0.0321 (0.0042) 0.0360 (0.006) 0.0445 (0.0057)  0.0385 (0.0032) 0.0296 (0.0022) 0.0299 (0.0025)
Q ~ Cauchy (2,25& %Ip)
5 0.0333 (0.0031) 0.0302 (0.0027)  0.0303 (0.0028) 0.0472 (0.0116)  0.1651 (0.0058) 0.1989 (0.0051) 0.0470 (0.0264) 0.3138 (0.0142)
10 0.0356 (0.0032) 0.0309 (0.0036) 0.0311 (0.0025)  0.0482 (0.0123) 0.3165 (0.0063) 0.3906 (0.0070) 0.3115 (0.0089) 0.7810 (0.0190)
20 0.0394 (0.0047) 0.0341 (0.0033) 0.0343 (0.0034)  0.0527 (0.0096) 0.7514 (0.0122) 0.8297 (0.0055) 0.6510 (0.0065) 1.8045 (0.0368)
Q ~ Cauchy(51,,51,)

5 0.0354 (0.0038) 0.0305 (0.0025)  0.0340 (0.0034) 0.0416 (0.0054) 0.1703 (0.0068) 0.2451 (0.0058) 0.0410 (0.0048) 0.1228 (0.0047)
10 0.0374 (0.0036) 0.0319 (0.0035) 0.0361 (0.0041)  0.0450 (0.0085) 0.3287 (0.0081) 0.5167 (0.0072) 0.0540 (0.0044) 0.2645 (0.0062)
20 0.0433 (0.0045) 0.0349 (0.0033)  0.0385 (0.0043) 0.0483 (0.0113) 0.8071 (0.0127) 1.3132 (0.0104) 0.0821 (0.0040) 0.5850 (0.0118)

Table 3: Comparison of existing methods and proposed L; penalized GAN methods (p =
100, n = 20000, and varying € from 0% to 20%). Estimation error of the variance

matrix is reported in the maximum norm || - ||max.
e (%) ‘ hinge GAN JS logit f-GAN rKL logit f-GAN GYZ JS-GAN  Kendall MAD Spearman_Qn MCD Tyler M
0 0.7385 (0.0136) 0.7395 (0.0117) 0.7413 (0.0127) _ 0.8309 (0.0217) 0.766 (0.0130)  0.7793 (0.0189) _ 0.7333 (0.0124)  0.7357 (0.0121)
Q ~ Cauchy (2.250, %Ip)
5 0.7581 (0.0117) 0.7600 (0.0116)  0.7612 (0.0122) 0.9858 (0.0533) 11.3637 (0.1097) 11.4136 (0.1443) 1.3872 (2.7002) 25.4480 (1.2743)

10 0.7781 (0.0123) 0.7822 (0.01)  0.7831 (0.0107)  1.0183 (0.0783) 24.2221 (0.2151) 24.9319 (0.2416) 26.8421 (0.6546) 68.9657 (1.7968)
20 0.8230 (0.0127) 0.8257 (0.0108) 0.8324 (0.0139)  1.0726 (0.0509) 56.9405 (0.4234) 57.8273 (0.3415) 57.2124 (0.7063) 165.0762 (3.6783)
Q ~ Cauchy(51,,51,)

5 0.7599 (0.0115)  0.7605 (0.0104)  0.7706 (0.0105) 0.9423 (0.0274)  10.2662 (0.1475) 10.6577 (0.1949) 0.7827 (0.0153)  9.6110 (0.4390)
10 0.7804 (0.0103) 0.7814 (0.0112) 0.7897 (0.0096)  0.9926 (0.0304) 21.9943 (0.2092) 24.4219 (0.3122) 0.8598 (0.0165)  23.4787 (0.5847)
20 0.8252 (0.0114) 0.8261 (0.0129)  0.8376 (0.0125) 1.0623 (0.0627) 52.9465 (0.5247) 65.1641 (0.5581) 1.0715 (0.0214)  54.9783 (1.2116)

Table 4: Comparison of existing methods and proposed Ly penalized GAN methods (p =
100, n = 20000, and varying € from 0% to 20%). Estimation error of the variance
matrix is reported in the Frobenius norm | - ||r.

settings for GANs at the population level, similarly to Figure 2. One type may represent
the worst-case contamination in terms of dependency on €, and the other type is based on
the second contamination studied.

7. Main proofs

We present main proofs of Theorems 6 and 15 in this section. The main proofs of the other
results and details of all main proofs are provided in Appendices B and C.

At the center of our proofs is a unified strategy designed to establish error bounds for
GANSs. See, for example, the two-sided bounds of the penalized GAN objective with opti-
mized discriminator in (31) and (37). To derive the upper bounds, we apply the robustness
property of TV or f-divergence under Assumptions 1-2 to remove the impact of contamina-
tion, and then develop suitable concentration properties based on Gaussian or sub-Gaussian
while leveraging the concavity in updating the spline discriminators for hinge GAN or logit
f-GAN (as discussed in Remarks 14 and 17). These can be seen from the proofs of Propo-
sitions 33, 44, 52, and 54 in Appendix C. To derive the lower bounds, we exploit the fact
that it is sufficient to consider a subclass of bounded ramp functions constructed from
unbounded spline functions, and then develop desirable concentration properties over the
ramp or product ramp functions under a general contaminated distribution. These can be
seen from the proofs of Propositions 37, 47, 53, and 55 in Appendix C. Finally, we deduce
estimation error bounds by showing that the expectations of ramp or product ramp func-
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tions are locally linear in the location, scale, and correlation of the underlying Gaussian
distribution; see Lemmas 38 and 40 in Appendix C, with a novel application of Stein’s
lemma.

7.1 Proof of Theorem 6

We state and prove the following result which implies Theorem 6.

Proposition 20 Let ©¢g = {(1, X) : p € RP, 3 is a p X p variance matrizc }.
(i) Assume that f satisfies Assumption 1, and € € [0, o] for a constant ey € [0,1/2).
Let 0 = argmingc g, Dy (Pe||Py). If Errgo(e) < a for a constant a € [0,1/2), then we have
i = *ll2 < S1all=* [6p Err po(e),
17 = 1 lloo < S1.allE* I Errso(e),

where St = {®'(®71(1/2+a))} ! and Errgole) = /=2(f"(1)) 1 f(1 — eo)e +e. If further
Errso(e) < a/(14 Si,a), then

12 = =*[lop < 293,0[IZ* lopErr so(€) + 53 o= [lop (Err o (€))?, (30)
12 = 2%l max < 4593,0l|Z* [lmaxErr 0 (€) + 255 4 | 5*lmax (Err o (€))?,

where S3.4 = S2,4(1+51.4), S2.0 = {\/20/2erf'(\/2/20ert "1 (1/24a))} !, and the constant
2o is defined such that erf(\/z0/2) = 1/2. The same inequality as (30) also holds with
1= — S*lop replaced by p~/?||% — X*||p.

(it) Let § = argmingecg Drv(P:||Py). Then the statements in (i) hold with Erro(e)
replaced by Errpg(e) = 2e throughout.

Proof [Proof of Proposition 20| (i) Our main strategy is to show the following inequalities

hold:
d(6,07) = A1(e) < 1/ Dy(Pel|[Py) < Aale, f), (31)

where A1(e) and As(e, f) are bias terms, depending on € and (¢, f) respectively and d(6, 6*)
is the total variation Dy (P Ps«) or simply TV (P;, Py«). Under certain conditions, d(f, 6*)
delivers upper bounds, up to scaling constants, on the estimation bias to be controlled,
1 = 1¥lloos 12— 152 1S = 5 e, and. [ — 5 op.

(Step 1) The upper bound in (31) follows from Lemma 31 (iv): for any f satisfying
Assumption 1 and any € € [0, €], we have

Dy (P.||Pj) < Dy(P.||Pp) < —f'(1 — €0)e = A3 (e, f),

where Ag(e, f) = /—f"(1 —ep)e. The constant — f/(1 — ¢y) is nonnegative because f is
non-increasing by Assumption 1 (ii).
(Step 2) We show the lower bound in (31) as follows:

d(0,0*) < TV(Py, P.) + TV(P., Pyp) < TV(Py, P.) + Aq(e) (32)

< \207"(1) 71Dy (Pl |Pp) + Aie), (33)
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where Aj(e) = e. Line (32) follows by the triangle inequality and the fact that TV (P, Py«) <
€TV(Pg, Py-) < e. Line (33) follows from Lemma 27: for any f-divergence satisfying
Assumption 1 (iii), we have

)

(PP =

TV(P., P;)*.

The scaling constant, infc( 1) f”(t)/2, in Lemma 27 reduces to f”(1)/2, because f” is
non-increasing by Assumption 1 (iii).
(Step 3) Combining the lower and upper bounds in (31), we have

d(0,07) < /2(f"(1)) 7 Da(e, f) + Ai(€) = Errpo(e),

where Errso(€) = /=2(f"(1))"1f'(1 —€p)e + e. The location result then follows from
Proposition 29 provided that Errsg(e) < a for a constant a € [0,1/2). The variance matrix
result follows if Errso(€) < a/(1 + S1,4).

(ii) For the TV minimizer ¢, Steps 1 and 2 in (i) can be combined to directly obtain an
upper bound on d(6, §*) as follows:

d(8,6") < TV(F;, P.) + TV(P., Py.) (34)
< 2TV(P,, Py+) (35)
< 2e. (36)

Line (34) is due to the triangle inequality. Line (35) follows because TV (P;, P) <
TV (Py«, P.) = TV(P,, Py+) by the definition of # and the symmetry of TV. Line (36)
follows because TV (P, Pp«) < €TV (Pg, Py-) < € as in (32).

Given the upper bound on d(#, #*), the location result then follows from Proposition 29
provided that Errpg(e) < a for a constant a € [0,1/2). The variance matrix result follows
if Errpo(e) < a/(1+ S1,4)- [ |

7.2 Proof of Theorem 15

We state and prove the following result which implies Theorem 15. See Appendix C.4 for
details about how Proposition 21 implies Theorem 15. For ¢ € (0,1/7), define

I

2log(5p) + log(6=1)  2log(5p) + log(d~1)
A1 = - + -

1
Ny 20r3d4\/10g(2p(p+ ), \/210g(5 ),

n n

where Craqs = Csg6Crads, depending on universal constants Csge and Ciaq3 in Lemmas 70
and Corollary 82 in Appendix E. Denote

Errpi(n, p,d,€) = 3e +2y/€/(nd) + A2 + A1,

where A is allowed to depend on A;; in the following result.
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Proposition 21 Assume that | X.||max < M1 and € < 1/5. Let 6 = (f1, f]) be a solution to
(20) with )\1 2 Csp13M11)\11 where M11 = ]\411/2(]\411/2 + 2\/%) and Csplg = (5/3)(Csp11 V
Csp12), depending on universal constants Csp11 and Cspr2 in Lemma 30 in Appendiz C. If

€(1 —¢)/(nd) <1/5 and Errpy(n,p,0,€) < a for a constant a € (0,1/2), then the following
holds with probability at least 1 — 76 uniformly over contamination distribution Q,

H/‘Aj’ - /J,* HOOSSZLG,Errhl (n7p7 57 6)7
12 = 2% | max <Ss o Brrpi (1, p, 6, €),

where Sy, = (1 + y/2M log ﬁ)/a and Sg, = 2M11/256,a + S7(1 + Saq + S6,0) with
Sea = S5(1 + S10/2), S5 = 2v2r(1 — e M)~ and 87 = 4{( e VEM) v (1 -
2e~1/(8M1))1~2,

Remark 22 In Proposition 21 as well as Proposition 23 for Theorem 11, the dependency
of Su,q and Sz, on My can be made explicit as follows. For fized a € (0,1/2), we have
by direct calculation that limpy, 0S4, = 1/a and limpy, 0 Sgq = 4 + 821 + (4@ +
4)/a. Moreover, limps, o0 Su.a/Mi"/? = /210g(2/(1 — 2a))/a and limys, e S&a/]Wf/2 =
8m/log(2/(1 — 2a))/a, that is, Sy, = O(Mll/Q) and Sz, = O(Mf/Q) as My — oo. In
addition, \1 in Errpi(n,p,d,€) can be set to linearly depend on M. The overall dependency
of our error rates on My may potentially be improved. As mentioned in Section 5.1, our
current analysis does not incorporate the scale transformation of real data, which may cause
the sub-optimal dependency of Siq and Sgq on M;.

Proof [Proof of Proposition 21| The main strategy of our proof is to show that the following
inequalities hold with high probabilities,

d(é, 9*) —App < r,?eag( {KH(;(Pn, P@; h%ﬂ) -\ penl(y)} < Aqq, (37)

where Aq; and Ajy are error terms, and d(6*, é) is a moment matching term, which under
certain conditions delivers upper bounds, up to scaling constants, on the estimation errors
to be controlled, |1 — 1¢*||so and |5 — Z*|/max-

(Step 1) For upper bound in (37), we show that with probability at least 1 — 50,

max { Kua(Pn, Py; hyp) — A1 peny (v) }

yerl’
< marx (K6 (Pos Povi o) = M pem (7)) (39)
< max {AH + peny (V) A1 — A penl('y)} . (39)
~yel

Inequality (38) follows from the definition of 6. Inequality (39) follows from Proposition 52:
it holds with probability at least 1 — 74 that for any v € T,

Kna(Pp, Poei hoy e ) < Ar1 + peny (V)Alla
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where A1y = 2(e + /€/(nd)), A = CspiaMiiA11. From (38)—(39), the upper bound in
(37) holds with probability at least 1 — 59, provided that the tuning parameter \; is chosen
such that A\; > AH.

(Step 2) For the lower bound in (37), we show that with probability at least 1 — 24,

max { Kug (P, Py; hy) — A1 peny (7) }

vyel
> Ivrggé {KHg(Pn, Py; h~ i) — A1 peny (’y)} (40)
2 max {EPQ* hy () = EPéhw(fU)} — A=A (41)

Inequality (40) holds provided that T'g is a subset of T'.

Take I'g = {v € I'tp : 70 = 0,pen;(y) = 1}, where I'y, is the subset of I' associated
with pairwise ramp functions as in the proof of Theorem 11. Inequality (41) follows from
Proposition 53 because h, ;(x) € [-1,1] for v € 'y, and hence the hinge loss reduces to a
moment matching term: it holds with probability at least 1 — 2§ that for any v € ['g,

Kuc/(Po, Py heyp) = {EPe*h%ﬂ(x) - EPgh%/l(x)} — A

where Ay = € 4+ Apo. From (40)-(41), the lower bound in (37) holds with probability at
least 1 — 24, where A1 = Az + Ay and d(0,6") = maxyer {Ep,. hyu(z) — Ep,hy ()}

(Step 3) We complete the proof by relating the moment matching term d(é, 0*) to the
estimation error between 6 and 6*. First, combining the lower and upper bounds in (37)
shows that with probability at least 1 — 99,

max {Epe* hy p() — Epéh%ﬂ(x)} < Errp(n, p, 0, €). (42)
V€L p,pen; (v)=1

where

Errpi(n,p, d,€) = 3e + 21/¢/(nd) + A2 + A1.

The desired result then follows from Proposition 42: provided Errp;(n, p, d,€) < a, inequality
(42) implies that

||IEL - M*|’OO S S47aErrh1(nap) 57 6)7 ”2 - Z*Hmax < 887(1Errh1(n>p) 57 6)‘
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Appendix A. Additional information for simulation studies
A.1 Implementation of proposed methods

The detailed algorithm to implement our logit f-GANs and hinge GAN is shown as Algo-
rithm 3. In our experiments, the default learning rates (ay, oy) are set to be (0.002,0.01)
and increase fivefold when p = 25 or n = 5000, in the lower end of the range of p from 25
to 100 and n from 5000 to 50000 studied. The training steps (sq, s4) for the discriminator
and the generator are (20,4), the mini-batch size is fixed to be 1000, and the total number

Algorithm 3: Penalized logit f-GAN or hinge GAN (in detail)

Require

1. A penalized GAN objective function K (6,v;A) as in (25) for logit f-GAN or
with Ky replaced by Kyg for hinge GAN.

2. Learning rates (ag, ay) for the discriminator and the generator;

3. Learning rate decay parameters (d,r) for the generator;

4. Numbers of training steps (sq, s¢) for the discriminator and generator;

5. Base penalty level A\ so that A\ = \gv/log(p)/n, Aa = No \/]9/7, and
)\3 = AO\/pQ/n.

6. Mini-batch size m and number of epochs T'.

Initialization

1. Initialize pg by the median of X. Initialize discriminator intercept ~g by 0.01.

2. Initialize Z(l]/ % and the discriminator parameters (71, 72) randomly by Xavier
uniform (Glorot and Bengio, 2010).

fort=1...T do

foru=1...T/m do

Draw mini-batch (z1,...,2,,) from real data without replacement;

for s=1...s54do

Generate (21, ..., 2my) from N(0, ) and the fake data py—1 + 2%2122-,
1=1,...,m;

Gy < VK (01,7 A); 9y < 94/1197]l2;

Update ~; with gradient g, using the Adam algorithm (Kingma and Ba,
2015) with learning rate ag.

end

fors=1...5,do

Generate (21, ...,2my) from N(0, ) and the fake data py—1 + E%ﬁzi,
1=1,...,m;

9o < VoK (0,7 A); g0 < ga/llgell2;

Update 6; with gradient gy using the Adam algorithm with learning rate

ay.
end
Decaying the generator learning rate: oy < ray after every d epochs.
end
end
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of training epochs is set to be T'= 150 x (50000/n) depending on n. We also decrease the
learning rate of the generator as ay < ray with r = 0.5 after each 10 x (50000/n) epochs.
This choice leads to stable convergence while keeping the running time relatively short.

For initialization of the variance matrix, we use a novel approach by treating the en-
tries of Eé/ ? as network weights and assigning uniform random numbers according to the
Xavier uniform initialization in the neural network literature (Glorot and Bengio, 2010).
This initialization scheme along with the Adam optimizer helps the generator accumulate
momentum and overcome local minima issues. If initialized with Kendall’s 7 and MAD,
it is possible that the generator may start near a generator local minimum and eventually
become stuck there.

For implementation of rKL logit f-GAN, we modify the un-penalized objective

Kexi (P, Pp;h) = 1 —Ep.e @ —Ep h(z),

to
1 —Ep,e ™ 4 max(—Ep,h(x),9).

This modification caps the un-penalized rKL logit f-GAN objective by 10 and helps stabi-
lize the initial steps of training where the fake data and real data, especially in the case of
Cauchy contamination, can be separable. Despite the presence of an exponential term in
the objective, the rKL logit f-GAN remains numerically stable because the trained discrim-
inator h usually produces positive values on real data and the expectation of exp(—h(x))
over real data is then upper bounded by 1. During the early training steps when the dis-
criminator is relatively weak, any real data point x in the mini-batch that causes a much
negative value h(z) and an overflow of exp(—h(x)) is dropped.

A.2 Tuning penalty levels

We conducted tuning experiments to identify base penalty levels Ag which are expected
to work reasonably well in various settings for our logit f-GANs and hinge GAN, where
the dependency on (p,n) is already absorbed in the penalty parameters A1, A2, A3. In the
tuning experiments, we tried two contamination proportions € and two choices of contam-
ination distributions @) as described in Section 6.2. Results are collected from 20 repeated
experiments on a grid of penalty levels for each method.

As shown in Figure 4, although the average estimation error varies as the contamination
setting changes, there is a consistent and stable range of the penalty level \g which leads
to approximately the best performance for each method with L; penalty used. For Lo
penalized methods, although the pattern does not directly suggest a best choice of Ag in
the range studied, the relative levels of estimation errors are less sensitive to the choice of
Ao. Hence we decide to use the same Ag for both L; and Lo penalties. We manually pick
Ao = 0.1 for the hinge GAN, )y = 0.025 for the JS logit f-GAN, and A9 = 0.3 for the rKL
logit f-GAN, which are then fixed in all subsequent simulations.
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Figure 4: Average estimation errors against penalty levels.
10000, ¢ € {0.1,0.2}, and contamination distribution @ is either
(A) Cauchy(2.25¢,(1/3)I,) or (B) Cauchy(51,,5I,).
hinge GAN are {0,0.1,0.2,0.3,0.4}, penalty levels for the JS logit f-GAN
are {0,0.025,0.05,0.075,0.1}, and penalty levels for the rKL logit f-GAN are

n

{0.1,0.3,0.5,0.7,0.9}.
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n ‘ hinge GAN JS logit f-GAN rKL logit f-GAN GYZ JS-GAN  Kendall MAD  Spearman Qn ~ MCD Tyler M
Q ~ Cauchy (2.25¢, 31,))

5000  0.0762 (0.0066) 0.0661 (0.0057) 0.0713 (0.0054) 0.1123 (0.0229) 0.8251 (0.0225) 0.8801 (0.0145) 0.7016 (0.0207) 1.8392 (0.0616)
10000 0.0603 (0.0080) 0.0491 (0.0059)  0.0535 (0.0065) 0.3602 (0.5281) 0.7915 (0.0182) 0.8441 (0.0111) 0.6807 (0.0165) 1.8287 (0.0588)
20000 0.0394 (0.0047) 0.0341 (0.0033)  0.0343 (0.0034)  0.0527 (0.0096) 0.7514 (0.0122) 0.8297 (0.0055) 0.6510 (0.0065) 1.8045 (0.0368)
50000 0.0249 (0.0024) 0.0217 (0.0031) 0.0220 (0.0020)  0.0257 (0.0038) 0.7283 (0.0078) 0.8128 (0.0050) 0.6412 (0.0063) 1.7916 (0.0303)
Q ~ Cauchy(51,,51,)
5000  0.0845 (0.0061) 0.0683 (0.0062) 0.0857 (0.0068) 0.1053 (0.0172) 0.8826 (0.0264) 1.3862 (0.0241) 0.1114 (0.0094) 0.6212 (0.0214)
10000 0.0617 (0.0079) 0.0507 (0.0058)  0.0616 (0.0092) 0.0642 (0.0059) 0.8482 (0.0221) 1.3416 (0.0168) 0.0926 (0.0086) 0.6049 (0.0190)
20000 0.0433 (0.0045) 0.0349 (0.0033)  0.0385 (0.0043)  0.0483 (0.0113) 0.8071 (0.0127) 1.3132 (0.0104) 0.0821 (0.0040) 0.5850 (0.0118)
50000 0.0270 (0.0023) 0.0216 (0.0024)  0.0228 (0.0028)  0.0280 (0.0038) 0.7774 (0.0067) 1.2895 (0.0070) 0.0697 (0.0027) 0.5746 (0.0106)

Table 5: Comparison of existing methods and proposed L; penalized GAN methods (p =
100, e = 0.2, and varying n from 5000 to 50000). Estimation error of the variance
matrix is reported in the maximum norm || - || max.

n ‘ hinge GAN JS logit f-GAN KL logit f-GAN GYZ JS-GAN Kendall_ MAD Spearman_Qn MCD Tyler-M
Q@ ~ Cauchy (2 25¢, ]5[)

5000  1.6767 (0.0369) 1.7287 (0.0363) 1.7815 (0.0412) 2.2490 (0.1139) 57.3156 (0.8202) 57.9363 (0.6875) 59.4896 (1.8053) 166.1099 (6.1982)
10000 1.1616 (0.0194) 1.1656 (0.0210)  1.1618 (0.0212) 27.4313 (50.7247)  57.0247 (0.6821) 58.1719 (0.5326) 58.8850 (1.2543) 166.5466 (5.6400)
20000 0.8230 (0.0127) 0.8257 (0.0108)  0.8324 (0.0139) 1.0726 (0.0509) 56.9405 (0.4234) 57.8273 (0.3415) 57.2124 (0.7063) 165.0762 (3.6783)
50000 0.5164 (0.0092) 0.5165 (0.0085) 0.5304 (0.0086)  0.6117 (0.0172)  56.8829 (0.2575) 57.9339 (0.1991) 57.2158 (0.5557) 165.1025 (3.0179)
Q ~ Cauchy(51,,51I,)
5000  1.6531 (0.0329) 1.6603 (0.034)  1.6644 (0.0317) 2.2775 (0.1051) 53.3447 (1.0113)  65.3052 (1.2984) 1.8307 (0.0332)  55.3160 (2.1087)
10000 1.1624 (0.0201) 1.1686 (0.0203) 1.1767 (0.0213) 1.5363 (0.0371) 53.0505 (0.8515) 65.7633 (0.9984) 1.3728 (0.0393)  55.4997 (1.8886)
20000 0.8252 (0.0114) 0.8261 (0.0129)  0.8376 (0.0125) 1.0623 (0.0627) 52.9465 (0.5247)  65.1641 (0.5581) 1.0715 (0.0214)  54.9783 (1.2116)
50000 0.5162 (0.0087) 0.5171 (0.0089) 0.5330 (0.0088) 0.6380 (0.0651) 52.8773 (0.2932) 65.4056 (0.3857) 0.8515 (0.0126)  54.9977 (1.0236)

Table 6: Comparison of existing methods and proposed Lo penalized GAN methods (p =
100, € = 0.2, and varying n from 5000 to 50000). Estimation error of the variance
matrix is reported in the Frobenius norm || - ||p.

A.3 Error dependency on n and p

Tables 5-6 show the performance of various methods depending on sample size n for the
two choices of contamination in Section 6.2. We fix the dimension p = 100 and € = 0.2 and
increase n from 5000 to 50000. Tables 7-8 show how the performance of methods depending
on sample size p for the two choices of contamination. We fix ¢ = 0.2 and n = 20000 and
increase p from 25 to 100. Estimation errors are measured in the maximum norm and the
Frobenius norm.

For all methods considered, the estimation errors decrease as n increases except for JS-
GAN in the first contamination setting (location 2.25¢). As can be seen in Tables 5-6, when
n = 10000, we observe that 5 out of 20 runs appear to fail. In this setting, most outliers sit
close to the uncontaminated data while a small number of outliers stretch to an extreme
range. This makes it difficult for the discriminator to recognize both patterns and JS-GAN
to perform satisfactorily, given that the discriminator objective surface is non-concave. The
JS-GAN may require further tuning in this setting, but that is out of our scope.

It is also worth noting that with e = 20%, the estimation errors of the coordinate-wise
robust estimators (Kendall’s 7 and Spearman’s p) show minimal decrease as n increases.
This is because the error caused by the outliers tends to dominate the sampling variation,
so that a 10-fold increase in n would not much reduce the overall error.
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P ‘ hinge GAN JS logit f-GAN rKL logit f-GAN GYZ JS-GAN  Kendall MAD  Spearman_-Qn  MCD Tyler M
Q ~ Cauchy (2.25¢,11,)
2 0.0452 (0.0052)  0.0270 (0.0035)  0.0271 (0.0034) 0.0406 (0.0092) 0.7429 (0.0126) 0.8184 (0.0127) 0.1632 (0.1263) 1.2278 (0.0210)
50 0.0355 (0.0055) 0.0309 (0.0046)  0.0304 (0.0039) 0.0410 (0.0092) 0.7505 (0.0097) 0.8216 (0.0076) 0.6566 (0.0113) 1.5793 (0.0327)
100 0.0394 (0.0047) 0.0341 (0.0033)  0.0343 (0.0034) 0.0527 (0.0096) 0.7514 (0.0122) 0.8297 (0.0055) 0.6510 (0.0065) 1.8045 (0.0368)
Q ~ Cauchy(51,,51,)
25 0.0531 (0.0057) 0.0290 (0.0034) 0.0364 (0.0044) 0.0413 (0.0125)  0.7968 (0.0130) 1.2938 (0.0136) 0.1348 (0.0076) 0.4320 (0.0080)
50  0.0423 (0.0066) 0.0308 (0.0034) 0.0350 (0.0043) 0.0399 (0.0051) 0.8040 (0.0092) 1.3053 (0.0177) 0.1021 (0.0068) 0.5190 (0.0120)
100 0.0433 (0.0045) 0.0349 (0.0033)  0.0385 (0.0043) 0.0483 (0.0113) 0.8071 (0.0127) 1.3132 (0.0104) 0.0821 (0.0040) 0.5850 (0.0118)

Table 7: Comparison of existing methods and proposed L; penalized GAN methods (n =
20000, € = 0.2, and varying p from 25 to 100). Estimation error of the variance
matrix is reported in the maximum norm || - || max.

P ‘ hinge GAN JS logit f-GAN KL logit f-GAN GYZ JS-GAN  Kendall MAD Spearman_Qn MCD Tyler_ M

Q ~ Cauchy (2.25¢, 11,))
25 0.2257 (0.0123) 0.2015 (0.0143) 0.2078 (0.0132)  0.2708 (0.0340) 14.2615 (0.1157) 14.6782 (0.0907) 1.4760 (3.2881)  26.4004 (0.4716)
50  0.4049 (0.0102) 0.4069 (0.0106) 0.4189 (0.0116)  0.4969 (0.0314) 28.4992 (0.2994) 29.1559 (0.1745) 29.1963 (0.4268) 70.8530 (1.5583)
100 0.8230 (0.0127) 0.8257 (0.0108) 0.8324 (0.0139)  1.0726 (0.0509) 56.9405 (0.4234) 57.8273 (0.3415) 57.2124 (0.7063) 165.0762 (3.6783)
Q ~ Cauchy(51,,51,)
25 0.2629 (0.0269) 0.2337 (0.0236) 0.2379 (0.0187)  0.2668 (0.0283) 13.4870 (0.1570) 17.2077 (0.1721) 0.7394 (0.0259)  9.7713 (0.1783)
50  0.4195 (0.0123) 0.4135 (0.0108) 0.4335 (0.0146)  0.4954 (0.0224) 26.6736 (0.3348) 33.3405 (0.3435) 0.8040 (0.0282)  24.1314 (0.5441)
100 0.8252 (0.0114) 0.8261 (0.0129)  0.8376 (0.0125)  1.0623 (0.0627) 52.9465 (0.5247) 65.1641 (0.5581) 1.0715 (0.0214)  54.9783 (1.2116)

Table 8: Comparison of existing methods and proposed Lo penalized GAN methods (n =
20000, € = 0.2, and varying p from 25 to 100). Estimation error of the variance
matrix is reported in the Frobenius norm | - ||r.

As p increases, the estimation errors seem to be affected to a lesser extent when measured
in the maximum norm. This is expected because an error rate y/log(p)/n (e term aside) has
been established for our three L; penalized methods as well as Kendall’s 7 and Spearman’s
p (Loh and Tan, 2018). When measured in the Frobenius norm, the estimation errors go
up as p increases, which is also expected.

In summary, our methods demonstrate remarkable consistency in handling various com-
binations of (p,n) for different types of contaminations. In contrast, the MCD and the two
coordinate-wise robust estimators produce significantly different results when the contami-
nation pattern changes. Although JS-GAN (Gao et al., 2020) achieves outstanding results
in some cases, there are other cases where its performance is noticeably worse and less stable
than our GAN methods with easy-to-train spline discriminators.

A.4 Tllustration with the second contamination

Figure 5 shows the 95% Gaussian ellipses estimated for two selected coordinates, similarly as
in Figure 1 but with two samples of size 20000 from a 100-dimensional Huber’s contaminated
Gaussian distributions based on the second contamination () in Section 6.2. Comparison
of the methods studied is qualitatively similar to that found in Figure 1. For completeness,
the untruncated version of Figure 1 or 5 is presented in Figure 6 or 7 respectively. In each
figure, only a random subsample of size 400 is included; otherwise the axes need to be of
an even wider range to show the entire sample.
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X2

X2

X1
= Truth — JS logit -GAN GYZ JS-GAN — Kendall_MAD
Spearman_Qn — MCD Tyler_M

Figure 5: The estimated 95% Gaussian ellipses and observed marginal histograms for two
selected coordinates, from contaminated data based on the second Cauchy con-
tamination in Section 6.2 with e = 5% (top) or 20% (bottom). The data points
are shown within the axis ranges (—4, 8); see Figure 7 for untruncated plots.
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Uncontaminated data ® Contamination — True ellipsoid

Figure 6: The untruncated version of Figure 1. Only the true 95% Gaussian ellipses are
shown for two selected coordinates, from contaminated data based on the first
Cauchy contamination in Section 6.2 with € = 5% (top) or 20% (bottom).
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Figure 7: The untruncated version of Figure 5. Only the true 95% Gaussian ellipses are
shown for two selected coordinates, from contaminated data based on the second
Cauchy contamination in Section 6.2 with € = 5% (top) or 20% (bottom).
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Fig (a): Q=Cauchy(5, 1/64) and eps in [0, 1e-3] Fig (b): Q=Cauchy(5, 5) and eps in [0, 1e-3]
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Figure 8: Comparison between two types of contamination in the error dependency on
e. Location error | — p*| against contamination fraction e from 0 to 0.001,
with Py~ being N(0,1). Figure (a): Non-overlapping contamination, @} being
Cauchy(5,1/64); Figure (b): Overlapping contamination, @ being Cauchy(5,5).
The squared Hellinger and reverse x? are denoted by H2 and rChi2 respectively.

A.5 Comparison of contamination settings

To provide further understanding of the worst-case contamination, we present in Figure 8
a comparison between two types of contamination for GANs at the population level, simi-
larly to Figure 2. One type (non-overlapping contamination) may represent the worst-case
contamination in terms of dependency on €, where outliers do not overlap with the uncon-
taminated data. The errors from the robust f-divergence minimization exhibit square-root
dependency on €, whereas those from the TV minimization exhibit linear dependency on e.
The other type (overlapping contamination) is based on the second contamination used in
our simulation studies. The errors from robust f-divergence and TV minimization appear
to be linear in e. Nevertheless, we also find that despite the worst-case dependency on
€, training of GANs with non-overlapping contaminations is numerically much easier than
dealing with the two settings of overlapping contaminations in our simulation studies.

Appendix B. Main proofs of results
B.1 Proof of Theorem 11

We state and prove the following result which implies Theorem 11. For b > (),2 define two
factors Ry p = supj, < d%f’(e“) and R3p = R31p+ Ragyp with Rayp, = sup|u‘§bdd?{—f’(e“)}
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and Rgp p = supj, < dd—igf#(e“). For ¢ € (0,1), define

)

\/210g(5p) +log(0-1) = 2log(5p) + log(6~1)
A1l = +

n n

4log(2p(p + 1 2 log(6-1
A12:01%(14\/ og(2p(p + ))+\/ 0g(3 ")

n n

where Craqs = Csg6Cradz, depending on universal constants Csge and Ciaq3 in Lemmas 70
and Corollary 82 in Appendix E. Denote

Errgi(n,p,0,e) = (£'(1) 7 = £/(3/5) (Ve + V1] (D)
— fle™™)Ve+ %RB,bl(\E‘i‘ V1/n) + Rap Mo + )\1}7

where by = /e + /1/n. Note that Ryp, Rs; are bounded provided that b is bounded,
because f is three-times continuously differentiable as required in Assumption 2.

Proposition 23 Assume that | X*||max < M1, and f satisfies Assumptions 1-2. Let 6 =
(ﬂ,f]) be a solution to (17) with Ay > Csp13R1Mi1A11, where My = ]\411/2(]\411/2 + 2v/2m)
and Csp1z = (5/3)(Csp11 V Csp12), depending on universal constants Csp11 and Cspra in

Lemma 30 in Appendiz C. If e <1/5, \/e(1 —¢€)/(nd) < 1/5, and Exrryi(n,p,0,€) < a for a
constant a € (0,1/2), then we have that with probability at least 1 — 74,

||ﬂ - M*HOO < S4,aErrf1(n>p7 5a 6)>
HZA) - z:*Hmax < S&aEI'I'fl(n,p, 57 6)7

where Sy = (1 + /2M log ﬁ)/a and Sg, = 2M11/256,a + S7(1 + Saq + S6,0) with
S6.a = S5(1+ S14/2), S5 = 2¢/271(1 — e 2/M)~1 and S; = 4{(%51/(81‘@) V(1 -
26—1/(8M1))}—2.

Proof [Proof of Proposition 23]
The main strategy of our proof is to show that the following inequalities hold with high
probabilities,

d(é,e*) — A < %lealz{ {Kf(Pn, Py hy ) — A1 peny (7)} < A1, (43)
where Aj; and Ajg are error terms, and d(6*, é) is a moment matching term, which under
certain conditions delivers upper bounds, up to scaling constants, on the estimation errors

to be controlled, ||t — 11*||oc and [|X — S*||max.
(Step 1) For the upper bound in (43), we show that with probability at least 1 — 59,

%16&12{ {Kf(Pn, Pyihyp) — M Penl(’Y)}

< max {Ky(Pn, Poei by e ) = Ar peny (7)} (44)
< max {An + pen; ('y)AH -\ penl('y)} . (45)
vyel
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Inequality (44) follows from the definition of 0. Inequality (45) follows from Proposition 33:
it holds with probability at least 1 — 53 that for any ~v € T,

K (Pp, Py hoy ) < Apy + peny (1) A1y,

where All = —f’(3/5)(6 + 6/(n5)), All = Csp13R1M11>\11a and

2log(5p) + log(6-1)  2log(5p) + log(d~1)
A1 = - + - )

Note that A1; is the same as in the proof of Theorem 15, and the above All differs from
A11 in the proof of Theorem 15 only in the factor R;. From (44)—(45), the upper bound in
(43) holds with probability at least 1 — 53, provided that the tuning parameter \; is chosen
such that A\; > AH.

(Step 2) For the lower bound in (43), we show that with probability at least 1 — 24,

1’1}11312( {Kf(Pn, Py hy i) — A1 peny (7)}

> ,Iyré%?g {Kf(Pm Pé; h’y,ﬂ) — A1 peny ('7)} (46)
> max f"(1) {Er. by (@) = Epyhoa(@) } = iz = Abr. (47)
~v€lo

Inequality (46) holds provided that I'y is a subset of I'. As a subset of the pairwise spline
class Hgp, define a class of pairwise ramp functions, H,p, such that each function in H,,
can be expressed as, for = (z1,...,zp)" € R?,

p
hup ge(@) = Bo + Y Brjramp(aj —¢;) + Y Baijramp(a;)ramp(z;),
i=1 1<iZj<p

where ramp(t) = S(t+ 1)1 —2(t— 1)y for t € R, ¢ = (c1,...,¢)" with ¢; € {0,1}, and
B = (Bo, BT, B3)" with B = (B1; : j = Ly...,p)" and By = (Bo; : 1 < i #j < p)T. For
symmetry as in 72, assume that the coefficients in 8> are symmetric, 32;; = B2 j; for any
i # j. By the definition of ramp(-), each function h,, g () can be represented as h.(z) in
the spline class Hgp, where 8 and « satisfy So = 7o, [|B1lli = ||nll1, and ||B2]1 = ||72]1-
Incidentally, this relationship also holds when symmetry is not imposed in the coefficients
in 2 or in B2. Denote as I'y, the subset of I' such that H,p, = {hy(x) : v € ['p}.

Take I'o = {y € I'tp : 70 = 0,pen;(y) = b1} for some fixed by > 0. Inequality (47)
follows from Proposition 37: it holds with probability at least 1 — 24 that for any v € Iy,

Ky (Po, By by ) = f7(1) {EPQ* hy () = EPéhw,ﬂ@)} — Ay,

where 512 = —f’(e’bl)e + %b%R&bl + b1R27b1 A12, and

1log(2p(p + 1 2 log(6-1
AHZCWM\/ og(2p(p + ))+\/ og(6~").

n n
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Note that Ajg is the same as in the proof of Theorem 15. From (46)—(47), the lower bound
in (43) holds with probability at least 1 — 2§, where Ao = A1y + \b; and d(é,&*) =
fll(l) maX’YGFO{Epg* h%ﬂ(l‘) - EP@ h%ﬂ ($)}

(Step 3) We complete the proof by choosing appropriate b; and relating the moment
matching term d(, 6*) to the estimation error between 6 and 0*. First, due to the linearity
of h, 5 in v, combining the lower and upper bounds in (43) shows that with probability at
least 1 — 74,

F'br max  {Bp.ho(e) — Bpho ) |

YELrp,pen; (v)=1
1
< —f/(3/5)(6 + 6/(71(5)) — f/(eibl)é + *b%R&bl + b1R27b1 A2 + Aby.
Taking b; = /e + 1/4/n in the preceding display and rearranging yields

max {Epg* hy () — Epéh%ﬂ(l')} < Erri(n,p,d,¢), (48)
v€lp,pen; (v)=1

where
Brra(n,p,6,€) = (f"(1){ = £/(3/5) (Ve + v/1/(nd))
e ™)Ve+ %Rwl (Ve+1/v/n) + Rop, M2 + )\1}-

The desired result then follows from Proposition 42: provided Errq(n, p,d, €) < a, inequality
(48) implies that

”/l - IU*HOO < S4}aErrf1(n,p, 57 6)1 ||XA] - Z*Hmax < ‘S’S,CLErrfl(napa 57 6)'

B.2 Proof of Theorem 12

We state and prove the following result which implies Theorem 12. For b > 0, define
Ryp = infjy, < %f#(e“), in addition to Ryp and Rsp as in Proposition 23. For ¢ € (0,1),

define
5p + log(6—1) 16p 2plog(0—1) log
Aot =/ ——————, A2 = Craas
n
5p + log (61 1 p—1)log(6~
)\312)\21—#}9:;(), >\32—Crad5\/(n )+\/( )ng( )-

where Craqs = Csg,12Craa3, depending on universal constants Cgg 12 and Ciaq3 in Lemmas 67
and Corollary 82 in Appendix E. Denote

Brrpa(n, p,6,6) = (V2R )" = F/(3/5)(ve + V/1/(n6)) — /(e ) Ve
+4C5 15 MaRy i (Ve + V1/(np)) + R, bT/\22 + /\2}
Errpa(n, p,6,€) = (2R, )™ { F1(3/5) (Ve + /1) d)) — f'(e2h) /e
+ (80C%, 19M2) Ry 1 (Ve + /1] (np)) +R2bTA32+)\3/\f}
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where by = /e + /1/(np), b; = bo/2p, by = \J/e/p+ /1/(np?), and bg = bo/p(p —1).
Note that by the strict convexity and monotonicity of f as required in Assumption 1-2, we
have that

d d 1
Rap= inf 2 /7(") = inf oo A=f"(/"()}

is bounded away from zero provided that b is bounded.

Proposition 24 Assume that |*||op < Ma, and f satisfies Assumptions 1-2. Let 6 =
(i1, %) be a solution to (19) with

Ag > (5/3)Csp21M21/2R1/\217 A3/v/D > (25V/5/3)Cspaa Moy Ry Aai,

where Mo = M21/2(M21/2 +2v2m), Copo1 = \/iCSg7CSg5, and Cspaa = /2/mCqp21 + Cgs,
depending on universal constants Csgs, Csgr, and Csgg in Lemmas 69, 71, and 72 in Appendiz

E. Ife <1/5, \Je(1 —€)/(nd) < 1/5, and Errga(n,p,d,¢) < a for a constant a € (0,1/2),
then we have that with probability at least 1 — 86,

||IEL - /’L*”Q S S4,aErrf2(n7p7 57 6)7
p 2|8 — 2 ||p < S o Errpo(n, p, 8, €) + S7Errps(n, p, 8, €),

where Sy 4 = 2M21/2567a + ﬁS7(S4,a + S6,a) and (Sa,q,S6,q,57) are defined as in Proposi-
tion 23 except with My replaced by Ma throughout.

Remark 25 In Proposition 24 as well as Proposition 26 for Theorem 16, the dependency
of Sua, S7, and Sy on My can be made explicit as follows. For fized a € (0,1/2), we
have by direct calculation that limpg,—0 Sa,q = 1/a, limp,—0 S7 = 4, and limpg, 0 S q =
167 + (8T + 4V2)/a.  Moreover, limys, o0 Sia/Mz'? = V21og(2/(1 - 2a))/a,
lim s, o0 S7/Ma = 87 and limpy,ee So.o/M'* = 87\/log(2/(1 — 2a))/a, that is, Sy, =
O(M21/2), S7 = O(Ma), and Sy, = O(M25/2) as Moy — oo. In addition, Ay in Errse(n,p, 0, €)
can be set to linearly depend on M21/2, and A3 in Errgz(n,p, 6, €) can be set to linearly depend

on Ms. The overall dependency of our error rates on Ms may potentially be improved, for
a similar reason as discussed in Remark 22.

Proof [Proof of Proposition 24| The main strategy of our proof is to show that the following
inequalities hold with high probabilities,

d(6,6%) — Agy < max {K}(Ppn, Py hy ) — A2 peny(71) — A peny(y2) } < Ao, (49)

where Aoy and Asgy are error terms, and d(é, 0*) is a moment matching term, similarly as
in the proof of Theorem 11. However, additional considerations are involved.

We split the proof into several steps. In Step 1, we derive the upper bound in (49)
by exploiting two tuning parameters Ao and Az associated with v; and 9 respectively. In
Steps 2 and 3, we derive the first version of the lower bound in (49) and then deduce upper
bounds on || — p*||2 and || — o*||2, where & or o* is the vector of standard deviations from
> or X* respectively. In Steps 4 and 5, we derive the second version of the lower bound in
(49) and then deduce an upper bound on || — ¥*||p.
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(Step 1) For the upper bound in (49), we show that with probability at least 1 — 49,

max {Kf(Pn, Pyihy i) — Ao peny(71) — Az pen2(72)}

yel
< ma {Ky(Po, Poe; hoy ) = Ao peng(71) = Ag peny(72)} (50)
< max {Azl + peny(71)A21 + peny(12)Az1 — A2 peny(y1) — Az pen2(72)} : (51)

Inequality (50) follows from the definition of 6. Inequality (51) follows from Proposition 44:
it holds with probability at least 1 — 49 that for any v € I'y,

K (P, Pye; by e ) < Aot + peny(v1)Ast + peny(72)/pAs1,

where

Aoy = —/(3/5)(c + V/e/(nd)),  An = (5/3)Cupmr My/*Ridan,
Az1 = (25V/5/3)Capo Mo Ry A1,

and
5p + log(6—1)

)\21 = — >\31 = )\21 +
n

From (50)—(51), the upper bound in (49) holds with probability at least 1 — 49, provided
that the tuning parameters Ay and A3 are chosen such that Ay > Agl and \g > \/foAgl.

(Step 2) For the first version of the lower bound in (49), we show that with probability
at least 1 — 26,

5p + log(671)

I}/leéllz( {Kf(Pn, Py; hyp) — A2 peng(v1) — Az penQ(’yg)}

> max {K§(Pn, Py by ) — Ao peng (1) } (52)

> max {Kf(Pn, Pyihy ) — A2 penQ(’Yl)} (53)
v€l'10

> »?el%ﬁ R4,b; {Epe* h%ﬂ(m) — EPéh%ﬂ(af)} — A9y — A2ba, (54)

where I't = {(70,771,73)" : 72 = 0}. Inequality (52) follows because I'; is a subset of I" such
that v9 = 0 and hence peny(v2) = 0 for v € T'y. Inequality (53) holds provided that T'yq is
a subset of I';. As a subset of the main-effect spline class Hgp1, define a main-effect ramp
class, Hyp1, such that each function in H,p1 can be expressed as, for x = (x1,...,2,)" € RP,

p
hep1,g.e(®) = Bo+ Y _ Buramp(z; — ¢;),
j=1

where ramp(t) = 1(t+ 1)1 — 5(t—1); for t € R, ¢ = (c1,...,¢)" with ¢; € {0,1}, and 8 =
(Bo, BT)" with 81 = (Bi1, ..., P1p)". Only the main-effect ramp functions are included, while
the interaction ramp functions are excluded, in A1 g.c(z). By the definition of ramp(-),
each function hyp1 g.(z) can be represented as hy(x) € Hepr with v = (70,77)" € Tip1,
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such that 3 and v satisfy Sy = 7o and [|f1]]2 = v'2||71]l2. For example, for ramp(x1), the
associated norms are |82 = 1 and |y1]j2 = /1/2. Denote as Typ; the subset of T'; such
that Hypr = {hy(z) : v € Tip1 }.

Take T'1o = {7y € I'ip1 @ peny(y) = b2, Ep. by pu(z) = 0,Ep;hy p(x) < 0} for some fixed
ba > 0. Inequality (54) follows from Proposition 47: it holds with probability at least 1 — 26
that for any v € 'y,

Kf(Pn, Pé; h%ﬂ) > R4,b; {EPO* h%ﬂ(.%) — Epéh%ﬂ(x‘)} — AQQ,

where bl = byy/2p, Agy = —f/(e=%)e +4C2, 1, Myb2R

sg,1 + 52327@)\22, and

3,b5

16 2plog(d—1
>\22 = Crad5 \/np + \/pi()

From (53)-(54), the lower bound in (49) holds with probability at least 1 — 24, where
Aog = Agg + Agbo and d(@, 9*) = R4,b£{EP9* h%ﬂ(l‘) — Epéhq/ﬁ(l')}.

(Step 3) We deduce upper bounds on ||fi—p*||2 and ||6 —o*||2, by choosing appropriate by
and relating the moment matching term d(é, 0*) to the estimation errors. First, combining
the upper bound in (49) from Step 1 and the lower bound from Step 2 shows that with
probability at least 1 — 64,

R, b {E*hA—EﬂhA}
45 QWEFrplIggr}li(v)zl Py, () By 7,1 (2)

;
< —f'(3/5)(e + ¢/ (nd)) — f'(eb2)e + 403&121\425333,@ +02R, i Aoz + Aoba.
Taking by = /e + y/1/(np) in the preceding display and rearranging yields

max Ep,.hyp(x) = Ep hyp(x) p < Errpa(n, p, d,€), (55)
V€T p1,peny(y)=1/1/2 { ’ ’ }

where

Errpa(n,p,8,¢) = (V2R )7 { = F/3/5)(Ve + V/1/(nd)
— P VE+ACE 1Mo Ry s (Ve + 1/ (n)) + By dao + AQ}.

The error bounds for (fi,5) then follows from Proposition 48: provided Errsa(n,p,d,¢€) < a,
inequality (55) implies that

| — p*[l2 < Sy aBrrya(n, p,d,e), (56)
|6 —c*|l2 < S uErrea(n,p,o,e€). (57)
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(Step 4) For the second version of the lower bound in (49), we show that with probability
at least 1 — 26,

I}/lglgc {Kf(Pn, Py; hy.p) — A2 peng(y1) — Az penQ(fyg)}

> max {K;(Po, Fyihou) = As pena(72)} (58)

> max {K (P, Py hy ) — A3 pena(q2) } (59)
v€l20

> ,?elgx f”(l) {EPQ* h%g(a:) — Epéh%ﬂ(x)} — Agg — Agbs, (60)
20

where I's = {(70,77,73)" : 71 = 0}. Inequality (58) follows because I's is a subset of I such

that v1 = 0 and hence peny (1) = 0 for v € T's. Inequality (59) holds provided that T'gg is

a subset of I';. As a subset of the interaction spline class Hgp2, define an interaction ramp

class, Hyp2, such that each function in H,p2 can be expressed as, for x = (z1,...,2,)" € RP,
hupa,p(x) = Bo+ Y Baijramp(x;)ramp(z;),
1<i#j<p

where ramp(t) = 2(t + 1) — 3(t — 1)y for t € R, and 3 = (8o, 83)" with B2 = (Ba;j : 1 <
i # j < p)". In contrast with the function hp1 gc(x) in Hep1, only the interaction ramp
functions are included, while the main-effect ramp functions are excluded, in hp2 (). For
symmetry as in 72, assume that the coefficients in 8> are symmetric, 32;; = B2 j; for any
i # j. By the definition of ramp(-), each function h.,2 5(x) can be represented as h(z) €
Hsp2 With v = (70,73 )" € T'ip2, such that 5 and v satisfy Sy = o and ||52]]2 = 2|22
For example, for ramp(x;)ramp(xs), the associated norms are ||S2]|2 = 1 and ||v2|l2 = 1/2.
Denote as I'ypa the subset of I'y such that Hypa = {hy(x) : v € T'ipa}.

Take I'og = {7y € I'ip2 : peny(y) = b3, Epyhypu(z) = 0,Ep,hy p(x) < 0} for some fixed
bs > 0. Inequality (60) follows from Proposition 49: it holds with probability at least 1 — 24
that for any v € Iy,

Kf(PmPé; h%ﬂ) Z R4,2b§ {Epe*h(l') — Epéh(ilf)} — Agz,

X i
where b; =b3/p(p — 1), Azg = —f'(e72b3)e + (8OCS2g712M2)pb§R372b; + \/p?bgRZb;)\gg, and

)\32 = Crad4\/6(pn_ 1) + \/(p — 1) log((s_l) .

n

From (59)-(60), the lower bound in (49) holds with probability at least 1 — 24, where
Ago = A3y + A3bz and d(0,0%) = R4,2bg maxyeryo {Epy. by 1 (2) — Ep,hy p(2)}.

(Step 5) We deduce an upper bound on |3 —X*||r, by choosing appropriate bs and relat-
ing the moment matching term d(6, %) to the estimation error. First, combining the upper

bound in (49) from Step 1 and the lower bound from Step 4 shows that with probability
1— 60,
LIPALE max {EPG* hya(z) — Ep, hmﬂ(ﬁ)}

7€Frp2 ,Peng (7):1

_opt
< —f'(3/5)(e + \/¢/(nd)) — f'(e"2%)e + (8003g712M2)pb§R3’2b; +V/Pb3 Ry sz + Asbs.
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Taking bg = \/e/ip + +/1/(np?) in the preceding display and rearranging yields

Ep,. h —EAh~}< E p,d,6), 61
'YGFrszIgleg;{('Y):l/Q{ Pyl (@) = Byl (@) p < /P Brrps(n, p, 0, €) (61)

where
Brrgs(n,p,6,€) = (2R, 5,0) " = £/(3/5)(v/e + /1/(nd))
= JUeTMNE + (802 1o M) Ry yy (Ve + /T (n0)) + By Xz + X/ /b |-
The error bound for 3 then follows from Proposition 50: inequality (61) together with the
error bounds (56)—(57) implies that
1

ﬁy;i =2 lp < 2M3" 6 = o |la + 87 {V2As 5 + Brrps(n,p,6,6) |

S Sg,aErer (na D, 57 6) + S7EI'I‘f3 (na D, 57 6)7

where Ay 5 = (||t — ,u*”% +|l6 — <7*||%)1/2 and Sg, = 2M21/2567a + \/557(5'4,(1 + S6,0)- [ |

B.3 Proof of Theorem 16

We state and prove the following result which implies Theorem 16. For 6 € (0,1), define
(Aa1, As1, A2, A\32) the same as in Sections B.1 and B.2. Denote

Errpa(n,p, d,€) = 36(2]9)1/2 + 24/2pe/(nd) + Ao + Aoz,
Errps(n, p, 6, €) = 3ey/p — 1+ 2v/e(p — 1)/(nd) + A32/2 + (25v/5/6) Copra Ma1 A3
Proposition 26 Assume that |S*|lop < M. Let § = (i,%) be a solution to (21) with

A3/\/b > (25v/5/3)CaproMai g1 and Ao > (5/3)Csp21M21/2)\21; where Ma1, Cspa1, and Cypao

are defined as in Proposition 24. If e < 1/5, \/e(1 —¢€)/(nd) < 1/5 and Errpa(n,p,d,€) < a
for a constant a € (0,1/2), then we have that with probability at least 1 — 86,

||:[j’ - //J*HZ S S4,G,Errh2(n7pa 57 6)3
p_l/QHi - E*”F < SQ,aErth(nvpv 6) 6) + S7Errh3(nap7 57 6)>

where (S4,4, 56,4, 57, 59.4) are defined as in Proposition 24.

Proof [Proof of Proposition 26|
The main strategy of our proof is to show that the following inequalities hold with high
probabilities,

d(é79*) — AQQ < r’?EaiZ( {KHg(Pn,Pé; h%ﬂ) - )\2 penQ(’yl) - )\3 penz(’yg)} < Agl, (62)

where Ag1 and Assy are error terms, and d(é, 0*) is a moment matching term, similarly as
in the proof of Theorem 15. However, additional considerations are involved.
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(Step 1) For the upper bound in (62), we show that with probability at least 1 — 49,

max {KH(;(Pn, Py hey i) — A2 peng (1) — A3 pen2(’yz)}

yel’
< ma {Kna(Pn, Por; hy i+ ) — A2 peng (1) — Az peng(y2) } (63)
< max {Azl + peny(v1) Ao + peny(12)Asi — A2 peny(y1) — A Penz(w)} : (64)

Inequality (63) follows from the definition of §. Inequality (64) follows from Proposition 54:
it holds with probability at least 1 — 49 that for any v € T'y,

Kuc(Pa, Por; By ) < Aap 4 peny(v1)Agg + peny(72)/pAsi,

where
Aoy = 2(e +/e/(nd)), Ao = (5/3)Csp21M21/2)‘217 Azi = (25V/5/3)CepaaMa1 As1,

and Xo; and A3; are the same as in the proof of Theorem 12. Note that Aoy and A31
differ from those in the proof of Theorem 12 only in that R; is removed. From (63)—(64),
the upper bound in (62) holds with probability at least 1 — 4d, provided that the tuning
parameters Ao and A3 are chosen such that Ao > Agl and Az > \/ﬁAg,l.

(Step 2) For the first version of the lower bound in (62), we show that with probability
at least 1 — 26,

max {Kuc(Pn, Pj; by i) — A2 peng(71) — Az peny(y2) }

> max {Kua(Pn, Py by ) — A2 peng(m1) } (65)
1

> max {KH(}(Pn, Pé; h%ﬂ)} — X9 (2]))71/2 (66)
~v€l'10

> max {Epe* hy p(x) — Epéh%p,(x)} — Aoy — Xo(2p) 712, (67)
v€l'10

where I't = {(70,77,73)" : 72 = 0}. Inequality (65) follows because I'; is defined as a subset

of T" such that v2 = 0 and hence peny(v2) = 0 for v € I'y.

Take I'ig = {y € I'1p1 : Y0 = 0,peny(y) = (2p)_1/2}, where I'yp1 is the subset of I'y
associated with main-effect ramp functions as in the proof of Theorem 12. Inequality (66)
holds because I'1g C I'; by definition. Inequality (67) follows from Proposition 55: it holds
with probability at least 1 — 24 that for any v € I'yp,

KuG(Po, Py hyp) > Epp by a(2) — Epyho () — gy,

where Agy = € + )\22(2p)*1/2, and

16 2plog(6—1
)\22 = CradB\/ P + \/p g( )
n n

Note that Ago is the same as in the proof of Theorem 12. From (65)-(67), the lower
bound in (62) holds with probability at least 1 — 25, where Aoy = Agy + )\2(2]9)*1/ 2 and
d(@, 9*) = EPQ* h%ﬂ(a:) — Epéh%ﬂ(x).
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(Step 3) We deduce upper bounds on ||fi—p*||2 and |6 —o*||2, by choosing appropriate by
and relating the moment matching term d(é, 0*) to the estimation errors. First, combining
the upper bound in (62) from Step 1 and the lower bound from Step 2 shows that with
probability at least 1 — 64,

2p) '/ Ep,.h~i(z) —Ep.hy 4
(20) 'Yerrpllylll)%r)li(’y):l{ Py Tt,(2) Py %”(1:)}
< 3 +2V/¢/(nd) + (A2 + Az2) (2p) 712,

which gives

max Ep,.hyp(x) = Ep hyp(x) p < Errpe(n, p, 6, €), (68)
verrpl,penm):\/l/?{ ' 9 }

where

Errpa(n, p,d,€) = 3e\/p + 2+/pe/(nd) + (A2 + )\22)/\/5.

The desired result then follows from Proposition 48: provided Errps(n, p, d,€) < a, inequality
(68) implies that

||ﬂ - iu*”? < S4,aErrh2(nvpv 67 6)7
||6- - O-*HQ < SG,aErth(nap7 57 6)'

(Step 4) For the second version of the lower bound in (49), we show that with probability
at least 1 — 26,

ma {Kuc(Pn, Py hy i) — A2 peng(v1) — Ag peny(2) }

> max {Knc(Po, Py ho) — A pena(72)} (69)

> max {Kuc(Pu, Pjihyp)} — A3 (4g) 72 (70)
v€T'20

> max {EPG* h%ﬂ(:c) — Epéh%ﬂ(flf)} - Agg - )\3(4(])71/2, (71)
v€l20

where I's = {(70,71,73)" : 71 = 0}. Inequality (69) follows because I's is a subset of I" such
that v3 = 0 and hence peny(y1) = 0 for v € T's.

Take Tog = {y € Tup2 : To = 0,peny(y) = (4¢)"'/?} for ¢ = p(1 — p), where T'ypo is
the subset of I'y associated with interaction ramp functions as in the proof of Theorem
12. Inequality (70) holds because I'sg C I'y by definition. Inequality (71) follows from
Proposition 56: it holds with probability at least 1 — 29 that for any v € I'yg,

KH(;(Pn, Pé; h%ﬂ) Z Epe*h(l‘) — Epéh(l‘) — A32,

where Asy = e + VPAs2(49)Y? and

32 = Crad4\/6(pn_ D + \/(p i) log(é—l)'

n
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Note that Mgz is the same as in the proof of Theorem 12. From (69)—(71), the lower
bound in (62) holds with probability at least 1 — 20, where Agy = Agy + A3(4¢)~"/? and
d(@, 9*) = maxwepm{Epe* h%ﬂ(x) — Epéh%ﬂ(l')}.

(Step 5) We deduce an upper bound on || — X*||r, by relating the moment matching
term d(é, 0*) to the estimation error. First, combining the upper bound in (62) from Step
1 and the lower bound from Step 4 shows that with probability 1 — 64,

-1/2 () — N

< 3¢ +2v/¢/(nd) - \f/\32 4q) 1% = (25/3)7/5pCoprnMar As1 (4g) ™2,

which gives

Ep.h; —Ep.h ; < E ,D,0,€), 72
amax {Bp (@) - Brho @)} < VP Brmsnpde, (1)
where

Errhg(n D, 5 6 = 36\/]) -1+ 2\/6 /(TL(;) + )\32/2 + (25\/>/6) SpggMgl)\gl

The desired result then follows from Proposition 50: inequality (72) implies that

1 S * ~ *
%nz — Y ||r < 2My 26 — 0*|l2 + S7(V2A, 5 + Errps(n, p, 6, €))

< Sy qErrpa(n, p,0,€) + SrErrps(n, p, 0, €),

where Ay s = (|t — |3 + |6 — o*|13)"/? and Sg, = 2M21/2S6,a +V257(St,a + S6.0)-

|
B.4 Proof of Corollary 18
(i) In the proofs of Theorems 11 and 12, we used the main frame,
d(6,6%) — Ay < max{K(Py, Py hyp) — pen(;A)} < Aa, (73)
vE

where pen(y; A) is Ai([[y1llr + [[v2[[1) or A2fvill2 + Azllrzll2. For Theorems 11 and 12, we
showed the upper bound in (73) using the fact that € is the minimizer of

glgx{Kf(Pnu P97 h’Y ,u) )‘pen(’)/)})

which is a function of 6 by the definition of (17) and (19) as nested optimization (see
Remark 1). Now 0 is not defined as a minimizer of the above function, but a solution to
an alternating optimization problem (22) with two objectives. We need to develop new
arguments. On the other hand, we showed the lower bound in (73) for Theorems 11 and 12,
through choosing different subsets of I'. The previous arguments are still applicable here.

52



ADVERSARIAL ALGORITHMS FOR ROBUST ESTIMATION

(Step 1) For the upper bound in (73), we show that the following holds with probability
at least 1 — 4,

max{K¢(Py,, Ps; hy ) — pen(y; M)}

~yel'
< max(—f'(L = )¢ + B [Br,. hoae) ~ Bryho (o) —pen(r )} (74)
< Aq + max{R, ‘Epe*,nh»y,,z(iv) —Ep,. hﬂ/,ﬂ@)‘ —pen(y; M)}, (75)
where € is the (unobserved) fraction of contamination in (Xi,...,X,). Inequality (74)

follows from Lemma 57, and is the most important step for connecting two-objective GAN
with logit f-GAN. Inequality (75) follows from an upper bound on € as proved in Proposition
33, where Ay = —f/(3/5)(e++/€/(nd)), the same as A1; and Ag in the proofs of Theorems
11 and 12.

Similarly as in Proposition 33 or 44, the term |Ep,. h,;(z) — Ep,.h,;(x)| can be
controlled in terms of the L; or Lo norms of (y1,72), using Lemma 30 or 43. Then for
pen(v; A) defined as an Ly or Lo penalty, it can be shown that the following holds with
probability at least 1 — 49 or 1 — 66,

Ry |\Ep,. by i(z) — Epy by p(2)| — pen(y; A) < 0. (76)

provided that the tuning parameters \; or (A2, A\3) are chosen as in Theorem 11 or 12
respectively. From (74)—(76), the upper bound holds in (73) with probability 1 — 5§ or
1—76.

(Steps 2,3) The lower bound step and the estimation error step for L or Lo penalized
two-objective GAN are the same as in the proofs of Theorems 11 and 12 respectively.

(ii) For the two-objective hinge GAN hinge (23), the result follows similarly using
Lemma 58 with A = 2(e + /€¢/(nd)) and Ry = 1.

Appendix C. Technical details
C.1 Details in main proof of Theorem 6

Lemma 27 Suppose that f : (0,00) — R is convex with f(1) = 0 and satisfies Assumption
1(i). Denote Cy = infyc(g 1) f"(t). Then

D(PYQ) > L 1v(P, Q).

If further Assumption 1(iii) holds, then Dy(P||Q) > ! 2(1)TV(P, Q)%

2

Proof Because x* is convex in x, by Jensen’s inequality, we have

TV(P,Q)* < / 2y (p/0)dQ,

where fry(t) = (1 —t)+ and p/q is the density ratio dP/dQ. Note that D(P|Q) can be
equivalently obtained as D #(P[|Q), where f(t) = f(t) — f/(1)(t — 1). Therefore, it suffices

to show that f(¢) > %f%v(t) for t € (0, 00).
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By a Taylor expansion of f, we have

Fy = £+ £ -1+ L1y

> P -1+ -1 (77)

where £ lies between ¢ and 1. If t € (0, 1], then (77) gives

fy > G- =Za-n2 =L o

2
If t € (1,00), then because Cy > 0 by convexity of f, (77) gives
~ C C C
fo = FHe -1z 0= -0} = i o).
Combining the two cases completes the proof. [ ]

Denote as ®(-) the cumulative distribution function of N(0, 1), and erf(x) the probability
of [~v/2x,+/22] under N(0,1) for > 0.

Lemma 28 Let a € [0,1/2) be arbitrarily fized.
(i) If ®(x) < 1/2+a forx >0, then

T < Sl,a {Cb(x) - 1/2}7

where S1 4, = {®(®71(1/2 +a))} L.
(i) If lerf(z+/20/2) — 1/2| < a for x > 0, then

erf (z1/20/2) — 1/2‘,

where Saq = {\/20/2ert’(\/2/20erf 1 (1/2 4+ a))} ™! and 2y is an universal constant such
that erf(\/z0/2) = 1/2.

Proof (i) By the mean value theorem, we have ®(z) > %—1—51_7;1:, because ®'(-) is decreasing
on [0, +00).

(ii) By the mean value theorem, we have |erf(zy/20/2) — 1/2| > S{;]m — 1], because
erf’(+) is decreasing on [0, +00). [ |

|z —1] < S2,4

Proposition 29 For two multivariate Gaussian distributions, Py and Pp+, with 0= (%)
and 0* = (u*,X*), denote d(0,0*) = TV(Pg, Pp+).
(i) If d(9,0%) < a for a constant a € [0,1/2), then
172 = 1 [l2 < S1all=7]|552d (0, 6%),
172 = 1 oo < Stall =¥ [I2d(6, 6%),

max

where Sy, = {®(®71(1/2 4+ a))} ! as in Lemma 25.
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(ii) If further d(0,0%) < a/(1+ S1.4), then

15 = 2op < 255l [opd(8, 67) + 53,41 lop (d(6,6%))2,
12 = 2 < 485,05 rnad(8, 67) + 253 .| S max(d(F, %)),

where S3.4 = S2,4(1+51.4), S2.0 = {\/20/2erf'(\/2/20ert "1 (1/24a))} 1, and the constant
2o is defined such that erf(y/z0/2) = 1/2, as in Lemma 28.

Proof The TV distance, Dy (P;||P), can be equivalently defined as

TV(Pl,PQ) = sup |P1(A) — PQ(A)|,
AcA

for P; and P, defined in a probability space (X, .A). This definition is applicable to multi-
variate Gaussian distributions with singular variance matrices. To derive the desired results,
we choose specific events A and show that the differences in the means and variance matrices
can be upper bounded by |P;(A) — Py~(A)].

We first show results (i) and (ii), when ¥* and ¥ are nonsingular. Then we show that
the results remain valid when ¥* or ¥ is singular.

(i) Assume that both ¥* and ¥ are nonsingular. For any u € RP, we have by the
definition of TV,

P s (u'X < i) = Pps(u'X < u'ji) < d(6,67).

For nonzero u € RP, because u™Su # 0 and v"X*u # 0, we have

Combining the preceding three displays shows that for nonzero u € RP,

@(f%%#?)g;+ﬂamy

By Lemma 28 (i), if d(#,6*) < a for a constant a € [0,1/2), then for any u € R? satisfying
UT(IE - M*) >0,

0 <u”(ii — p*) < VuTS*uSi od(0,0%). (78)

Let Uy = {u € RP : ||u|l2 = 1}. By (78) with wu restricted such that v € Us and u™ (1 — p*) >
0, we have

| —p*ll2 = sup u™( — p)
uEUs
< StallS*||LL2d(0,07).
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Similarly, let Uso = {£ej : j =1,...,p}, where ¢; is a vector with jth coordinate being one
and others being zero. By (78) with u restricted such that u € Uy, and u™( — p*) > 0, we
have

| — p*||oo = sup u" (i — p*)
uEMoo
< S1allZF|1H2.d(8, 6%).

max

The last line uses the fact that sup,, u"X*u = ||diag(X*)||oc = |[|2*||max by the nature of
variance matrices.

(i) Assume that X* and X are nonsingular. We first separate the bias caused by the
location difference between P; and Fy-. By the triangle inequality, we have

TV(Pﬁ’g*,Pﬁ’g) < TV(Ppx+, Py x+) + TV(P;L*,E*vPﬁ,S)- (79)

By Lemma 27, we know that TV (P, Q) < 1/2Dkr(P||Q). Then we have

TV(P[L’E*’P#*’E*) S \/QDKL(P;],E*HP;L*,E*)
< 81,4d(0,6%). (80)

provided that d(f,6*) < a. Inequality (80) follows because by standard calculation
— * * * 1 — * *x—1/— *
Dxr (N (7, SN, 2%) = 5 (7= w) 'S — 1),
and taking u = X*1(f — p*) in (78) gives

V(=) (i — pF) < S1ad(6,6%).

Combining (79) and (80) yields

TV(P[L,E*’P/],E) < d(9_7 ‘9*) + Sl,ad(éa 0*) (81)

For any u € RP such that v (X — X*)u > 0, (81) implies
0< Py {(u"X —u"p)* < zou"Su} — P {(u"X — uR)? < zouTSu}
=Py {(u"X)? < zpu"Su} — Py s {(u"X)? < zou"Su}
<d(0,0*) + S1.d(0,6%),
where z is an universal constant such that erf(y/z9/2) = 1/2. Similarly, for any u € R?
such that v™(X — X*)u <0, (81) implies
0< Py {(u"X —u")* > 20u"Su} — Ps{(u"X - uTR)? > zouTSu}
=Py {("X)? > 20u"Su} — Py s {(u"X)* > 2pu"Su}
< d(8,0%) + S1.4d(8,0%).
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Notice that the choice of zy ensures that for Z € N(0, 1),

- 1
Pos {(u"X)* < z0u"Su} = P(Z* < 20) = 5

=P(Z% > ») = Py s {(u"X)* > zu"Su} .

Moreover, for any nonzero u € RP, we have by the definition of erf,

_ T
Pos+ {(u"X)? < zu"Su} = erf ( ;ZZZ*Z) :

Combining the preceding four displays shows that for any nonzero u € RP,
¢ ZouTSu 1

er - =

2uTY*u 2

By Lemma 28 (ii), if d(f,0*) < min(a,a/(1 4+ S14)) = a/(1 + S1.4), then for any nonzero

u € RP,
| NEET
uTd*u
or equivalently for any v € RP,
VurSu - vVt

Notice that for any a,b, >0, if |v/a — Vb| < ¢ then |a — b| < 2v/bc + ¢®. Thus, inequality
(82) implies

< (1+ S1,4)d(0,6%).

S S2,a<1 + Sl,a)d(éa 0*)7

< S9a(1+ S10)VuTS*ud(0,6). (82)

15— 5*lop = sup [u"(Z — E*)u|
uEU

< 283,l|5"lopd(8, 0%) + S5 4115 |op (d(, 6%))?, (83)

where S3, = S27(1(1 + Sl,a)-

To handle [|X — X¥||max, let Usoo = {Fes; @ 4,5 = 1,...,p,% # j}, where ¢ is a
vector in Us with only ith and jth coordinates possibly being nonzero. For u € Uz, we
have u™X*u = uZ-TjE;*juij and u_TEu = ugjzijuij, where w;; € R? is formed by ith and jth
coordinates of u, and Y, and ¥;; are 2 X 2 matrices, formed by selecting ith and jth rows
and columns from ¥* and ¥ respectively. Similarly as in the deviation of (83), applying
inequality (82) with u € Up o, we have

155 — Eillop = sup [u" (2 — Tyl
uEUz,oo

< 253,015 lopd (8, 0%) + S5 4155 llop (d(8, 67)).

Because for a matrix A € R"1*™2 || Al max < || Allop < v/mim2]|A|lmax, the above inequality
implies that for any i # j € {1,...,p},

1265 — 25 llmax
< 483 0155 [ maxd (8, 0) + 253 41|55 llmax (d(6, 6%))?. (84)
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Taking the maximum on both sides of (84) over i # j gives the desired result:
i_z*mxz i”_2>‘k'111)(
| | ma. #jg?f.’p} 125 z]” a
< 493,0)| S maxd (0, 07) + 255 4[| 5" max(d(8, 6)).

(iii) Consider the case where X* or ¥ is singular. As the following argument is symmetric
in ¥* and ¥, we assume without loss of generality that ¥* is singular. Fix any nonzero u
such that u">*u = 0.

First, we show that for § = (ji, %) such that TV(P;, Py+) < 1, we also have u"Su = 0.
In fact, TV(Fp, Py~) < 1 implies

| B e (W' X = 0" p*) — P (u" X = u"p*)| < d(6,0%) < 1. (85)

Note that P« s+ (u™X = u"p*) = 1 because u™S*u = 0. If u"Su > 0, then Ps(utX =
u"p*) = 0, and hence (85) gives

I1—0]<d(0,0%) <1,

which is a contradiction. Thus u™u = 0.

Next we show that for § = (1, ) such that TV(f,6*) < 1, we also have u™(u* — ji) = 0.
In fact, with u"Su = 0 as shown above, we have that P, ¢(u™X = u"p*) = 1if u"p* = u"fa
and P, s (u" X = u"p*) = 0 otherwise. If u'p* # u'[i, then inequality (85) gives

I1-0] <d8,0%) <1,

which is a contradiction. Thus u™u* = u™ .

From the two preceding results, we see that the upper bounds (78) and (82) derived in
(i) and (ii) remain valid for any u € RP satisfying u">*u = 0. Hence the desired results
hold by the remaining proofs in (i) and (ii). [ |

C.2 Details in main proof of Theorem 11

Lemma 30 Suppose that Xi,..., X, are independent and identically distributed as X ~
Ny(0,%) with [|E]lmax < Mi. For k fized knots &,....& in R, denote ¢(x) =
(Pl (@), ..., @p(@)", where pi(x) € RP is obtained by applying t — (t — &)+ componen-
twise to x € RP forl=1,...,k. Then the following results hold.

(i) Each component of the random vector o(X) — Ep(X) is a sub-gaussian random

variable with tail parameter M11/2.
(ii) For any 6 > 0, we have that with probability at least 1 — 24,
sup

e wT{:LZSD(Xi)—ESO(X)}‘
wil= i=1

2log(kp) + log(6—1
SCsp11M11/2\/ g( p)n g(0—1)

Y
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where Csp11 = \szg5, depending on the universal constant Csgs in Lemma 69.
(iii) Let Ay = {A € RkP*kP o ||A||l; 1 = 1}. For any 6 > 0, we have that with probability
at least 1 — 49, both the inequality in (ii) and

sup Zso X;) — B™(X) Ap(X)
Aed =1
2log(k log(6—1)  2log(k log (51
< CSplZMll {\/ Og( p);— Og( ) + Og( p):b‘ Og( )} :

where My, = M11/2(M11/2 + V27T||£||oo)7 Hg”oo = maxj=1 ...k ’€l|z and Csp12 = 2/7"-0sp11 +
Csx7Csx6Csx5. Constants (Csxs, Csxs, Csx7) are the universal constants in Lemmas 74, 75,
and 76.

Proof (i) This can be obtained as the univariate case of Lemma 43 (i). It is only required
that the marginal variance of each component of X is upper bounded by M;.

(ii) Notice that
w” {:‘l > w(Xi) - E@(X)}‘ = %Z@(Xi) — Ep(X)
i=1 i=1

By (i) and sub-gaussian concentration (Lemma 69), each component of n™! >0 | ¢(X;) —
Ep(X) is sub-gaussian with tail parameter Csgs(Mi/n)'/2. Then for any ¢ > 0, by the
union bound, we have that with probability at 1 — 2k%p2e™t,

% > (X)) — Bp(X)
=1

Taking ¢t = 2log(kp) + log(d~1) gives the desired result.
(iii) The difference of interest can be expressed in terms of the centered variables as

sup
llwll1=1

[e.9]

< V2Cy5 (My /)2,

o

1 n
~Y el Api—EpTAp
i=1

- Z — Ep)"Alpi — Ep) — E{(p — Ep)"A(p — Ep)} (86)

+— Z 2(E)" A(p; — Ep). (87)
1=1

We handle the concentration of the two terms separately. Denote ¢; = ¢(X;), ¢ = ¢(X),
¢i = pi — Bp, and ¢ = ¢ — Ep.
First, for A € Aj, the term in (87) can be bounded as follows:
1 n
~> ¢
n -
=1 00

1 e _
Q(EW)TAE Z Pi = 2||E¢|w

=1

1/2
<2 M,
- V2r

< 2[[E|oo