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Abstract

This paper investigates two accelerated primal-dual mirror dynamical approaches for smooth
and nonsmooth convex optimization problems with affine and closed, convex set constraints.
In the smooth case, an accelerated primal-dual mirror dynamical approach (APDMD)
based on accelerated mirror descent and primal-dual framework is proposed and accel-
erated convergence properties of primal-dual gap, feasibility measure and the objective
function value along with trajectories of APDMD are derived by the Lyapunov analysis
method. Then, we extend APDMD into two distributed dynamical approaches to deal
with two types of distributed smooth optimization problems, i.e., distributed constrained
consensus problem (DCCP) and distributed extended monotropic optimization (DEMO)
with accelerated convergence guarantees. Moreover, in the nonsmooth case, we propose a
smoothing accelerated primal-dual mirror dynamical approach (SAPDMD) with the help
of smoothing approximation technique and the above APDMD. We further also prove that
primal-dual gap, objective function value and feasibility measure along with trajectories
of SAPDMD have the same accelerated convergence properties as APDMD by choosing
the appropriate smooth approximation parameters. Later, we propose two smoothing ac-
celerated distributed dynamical approaches to deal with nonsmooth DEMO and DCCP to
obtain accelerated and efficient solutions. Finally, numerical and comparative experiments
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are given to demonstrate the effectiveness and superiority of the proposed accelerated mir-
ror dynamical approaches.

Keywords: machine learning, accelerated mirror dynamical approaches, constrained
smooth and nonsmooth convex optimization, smoothing approximation, distributed ap-
proaches

1. Introduction

1.1 Problem statement

In this paper, we consider the following convex constrained optimization problem:

min
x∈Rn

f (x) , s.t. Ax = b, x ∈ X , (1)

where 
X is a closed and convex set,

f : X → R may be a smooth or nonsmooth convex function,

A : X → Rm is a continuous linear operator and b ∈ Rm,
The optimal solution set of problem (1) is nonempty.

(2)

This problem covers many optimization problems in various applied fields such as machine
learning, sparse signal reconstruction, image deblurring, resource allocation, saddle-point
problems, Markov decision processes, regularized empirical risk minimization, and super-
vised machine learning. (see, e.g. Boyd et al. (2011), Lin et al. (2020),Darbon and Lan-
glois (2021), O’Connor and Vandenberghe (2014), Nandwani et al. (2019), Zhang and Xiao
(2017), Tiapkin and Gasnikov (2022), Li and Lin (2020)).

1.2 Historical presentation

The inertial (second-order or accelerated) dynamical approaches are increasingly popular
for solving the unconstrained optimization problem

min
x∈Rn

f (x) . (3)

To deal with problem (3), Polyak (1964) first proposed the heavy ball with friction
(HBF) dynamical approach

(HBF) ẍ (t) + ηẋ (t) +∇f (x) = 0, (4)

where η > 0 is a damping parameter. Later, Alvarez (2000) studied the asymptotic be-
havior of (4) with a time independent parameter η when f (x) is convex. Bégout et al.
(2015) studied some convergence properties of the HBF (4) with a constant η when f (x)
is a nonconvex function. Aujol et al. (2022, 2023) investigated the convergence rate of
HBF dynamical system and its corresponding discrete algorithm with a fixed parameter η
under the condition that f (x) satisfies quasi-strongly convex and Lojasiewicz properties,
respectively. When we replace the constant η with the function α

t with α ≥ 3 in HBF (4),
Su et al. (2016) first revealed that it can be regarded as the continuous-time limit of the
Nesterov’s accelerated gradient algorithm and it has an accelerated convergence rate, i.e,
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f (x (t)) − min f (x) = O
(

1
t2

)
. When α > 3, the weak convergence of trajectories x(t) to

minimizers of f , and improved convergence rate f (x (t)) − min f (x) = o
(

1
t2

)
have been

proved in May (2017) and Attouch et al. (2018a). By introducing a Tikhonov regulariza-
tion, improved convergence rate f (x (t)) − min f (x) = o

(
1
t2

)
and the strong convergence

of the trajectories to the element of minimum norm of the set of minimizers of f have been
shown by Elloumi et al. (2017) and Attouch et al. (2018b) under suitable conditions. When

η = α
t , 0 < α ≤ 3, the convergence rate f (x (t)) −min f (x) = O

(
t−

2α
3

)
was estimated by

Attouch et al. (2019) and Vassilis et al. (2018) for smooth and nonsmooth convex functions
f (x). Cabot and Frankel (2012) studied the asymptotic behavior of the HBF (4) when
replacing η by α

tγ , 0 < γ < 1. In addition. May et al. (2021) further investigated long time
behavior of the trajectories x(t) of a second order evolution equation with damping and
regularizing terms, which contains HBF (4) when replacing η by α

tγ , 0 < γ < 1 and regu-
larizing terms. Moreover, Wibisono et al. (2016) studied a series of accelerated (inertial)
dynamical approaches to the problem (3) by the Bregman Lagrangian based on the calculus
of variations. Kovachki and Stuart (2021) studied the behavior of momentum methods for
solving the problem (3) from a continuous-time perspective. Wilson et al. (2021) proposed
several Lyapunov functions for analyzing the accelerated (momentum) algorithms to solve
the problem (3). By the manifold with curvature bounded from below, Alimisis et al. (2020)
proposed a Riemannian variant of accelerated gradient dynamical approach.

Recently, to solve the problem (3) with a closed and convex set constraint X , i.e.,

min
x∈Rn

f (x) , s.t. x ∈ X ⊂ Rn, (5)

many inertial dynamical approaches have been studied. Based on the projection operators,
He et al. (2016) proposed an inertial dynamical approach to solve the problem (5) with
non-convex objective functions. Later, based on the work in (He et al. (2016)) and smooth-
ing approximation technique, a smoothing inertial projection neurodynamic approach was
proposed to solve constrained non-convex Lp−q minimization problem to reconstruct the
sparse signal in (Zhao et al. (2018)). Combining the dynamical approach of mirror descent
with the continuous version of Nesterov’s acceleration algorithm, Krichene et al. (2015)
proposed an accelerated mirror dynamical approach for solving the problem (5) as follows:

Ẋ = γ
t (∇ψ∗ (Z)−X) ,

Ż = − t
γ∇f (X) ,

X (0) = x0 = ∇ψ∗ (z0) , Z (0) = z0,

(6)

where γ ≥ 2 and ∇ψ∗ is the gradient of conjugate of ψ (see Section 2.3).
In addition, in order to solve the problem (3) with an affine constraint, i.e,

min
x∈Rn

f (x) , s.t. Ax = b, (7)

many inertial dynamical approaches under primal-dual framework were extensively investi-
gated. Zeng et al. (2022) first proposed a second-order dynamical primal-dual approach for
solving the problem (7) and proved that the convergence rate of the gap of the Lagrangian
function is O

(
1
t2

)
. The corresponding inertial dynamical approach is then extended to solve
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two distributed optimization problems. Later, Boţ and Nguyen (2021) improved the con-
vergence rates of the works in (Zeng et al. (2022)) and provided the weakly convergence
analysis to a primal-dual optimal solution of the problem (7). He et al. (2021) studied an
inertial primal-dual dynamical approach without/with perturbations for separable convex
optimization problems with an affine constraint. Attouch et al. (2022) proposed a tem-
porally rescaled inertial augmented Lagrangian system (TRIALS) with three time-varying
parameters (i.e., viscous damping, extrapolation and temporal scaling) to address separa-
ble smooth/nonsmooth convex optimization problems with an affine constraint, and pre-
sented the fast convergence properties of TRIALS. In addition, Luo (2021) further proposed
a “second-order”+“first-order” primal-dual dynamical approaches for solving problem (7)
with accelerated convergence properties. Recently, when the f is strongly convex in the
problem (7), many accelerated or optimal primal-dual discrete-time (numerical) algorithms
have been proposed. Salim et al. (2022) proposed an accelerated primal-dual discrete-time
algorithm and provided lower bounds for gradient computation and matrix multiplication,
and proved that the proposed algorithm is the first optimal algorithm for this class of
problems. An accelerated primal-dual algorithm for solving smooth convex-concave saddle-
point problems with a structure has been proposed in (Alkousa et al. (2020)). Kovalev et al.
(2022) proposed an accelerated primal-dual gradient method (APDG) for solving smoothing
convex-concave saddle-point problems with bilinear coupling, and obtained the accelerated
or optimal linear convergence rates when the objective functions satisfy certain conditions.
Sadiev et al. (2022) proposed an accelerated primal-dual algorithm with inexact prox for
communication acceleration, and provided a new convergence rate for strongly convex-
concave saddle-point problems with bilinear coupling characterized without smoothness in
the dual function. Kovalev et al. (2020) investigated two new decentralized discrete-time
algorithms for decentralized optimization problem with smooth strongly convex objective
functions based on primal-dual algorithms, where the first algorithm is optimal both in
terms of the number of communication rounds and in terms of the number of gradient com-
putations, and the second algorithm is optimal terms in terms of communication rounds.

This paper aims to investigate accelerated primal-dual dynamical approaches based on
mirror descent and smoothing approximation methods for solving problem (1) with an
accelerated non-ergodic convergence rate O

(
1
t2

)
. Our contributions are summarized as

follows:

• For the problem (1) in the smooth case, an accelerated primal-dual mirror dynamical
approach (APDMD) is proposed for the first time, it is used to solve problem (1) with
accelerated convergence rates of primal-dual, objective functions gaps and feasibility
measure. We provide the interpretation of the APDMD from different perspectives
(i.e., neurodynamic approach, Hamilton’s system, game theory and control theory).
Moreover, based on the properties of conjugate function and Cauchy-Lipschitz-Picard
theorem, the feasibility (i.e, ensuring that the trajectories of solutions always satisfy
the set constraints), existence and uniqueness of the global solution of APDMD are
obtained. Last, applying the APDMD to address the DCCP and EDMO leads to
two distributed APDMDs (i.e., ADPDMD and ADMD) with accelerated convergence
properties.
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• For the problem (1) in the nonsmooth case, a smoothing accelerated primal-dual mir-
ror dynamical approach (SAPDMD) for the problem (1) is also proposed based on
the smoothing approximation technique and APDMD, and it has accelerated conver-
gence rates of Lagrangian and objective function gaps. We provide a comparative
explanation between SAPDMD and state-of-the-art dynamical approaches based on
differential inclusion, Moreau-Yosida regularization and directional derivative meth-
ods. Moreover, we further analyze the convergence properties of SAPSMD and pro-
vide smooth parameter selection conditions. Last, applying the SAPDMD to DCCP
and EDMO leads to two distributed SAPDMDs (i.e., SADPDMD and SADMD) with
accelerated convergence gurantee.

• Last but not least, the asymptotic analysis and the obtained results in this paper can
be straightly forwardly transferred to inertial dynamical approaches for the problems
(3), (5) and (7).

The paper is organized as follows. Section 2 introduces some preliminaries of convex anal-
ysis, saddle point theorem, dual distance, Bregman divergence, projection operators, graph
theory and smoothing approximation. Then, we propose the APDMD to solve problem (1)
in the smooth case, and discuss some convergence properties of APDMD in Section 3. In
Section 4, we propose a SAPDMD (smoothing version of APDMD) for solving the problem
(1) in the nonsmooth case, and provide a detailed discussion of the convergence properties
of SAPDMD and then extend the SAPDMD to address the DCCP and EDMO in the non-
smooth case. Section 5 provides several experiments to demonstrate the theoretical results.
Finally, we conclude this paper in Section 6.

2. Preliminaries

This section gives some essential mathematical preliminaries.

2.1 Convex analysis

A function f : X → R is convex, if it satisfies θf (x)+(1− θ) f (z) ≥ f (θx+ (1− θ) z) ,∀x, z ∈
X , x 6= z, and θ ∈ (0, 1). The subdifferential gf (x) of f (x) with respect to x ∈ X is de-
fined by gf (x) =

{
p ∈ Rn|f (z)− f (x) ≥ pT (z − x) ,∀x, z ∈ X}, and the element ∂f (x)

of gf (x) is called subgradient of f (x). In addition, if f is smooth, the subgradient ∂f (x)
reduces to gradient ∇f (x).

2.2 Saddle point Theorem

The (augmented) Lagrangian Lβ : X ×Rm → R with respect to the problem (1) with β ≥ 0
is defined by

Lβ (x, λ) = f (x) + λT (Ax− b) +
β

2
‖Ax− b‖2 , (8)

Then, (x∗, λ∗) is an optimal solution of the problem (1) if and only if it is a saddle point of
Lβ, i.e.,

Lβ (x∗, λ) ≤ Lβ (x∗, λ∗) ≤ Lβ (x, λ∗) , ∀ (x, λ) ∈ X × Rm. (9)
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2.3 Dual distance and Bregman divergence

Define ψ : X → R and let X be a closed and convex set , then, by the Legendre-Fenchel
transform, the conjugate function of ψ is

ψ∗ (u) = sup
x∈X

{
uTx− ψ (x)

}
.

If ψ (x) is a proper, lower semi-continuous and convex function, then for all u ∈ X ∗, we
have

ψ** (u) = sup
u∈X ∗

{
xTu− ψ∗ (u)

}
= ψ (x) ,

from the Fenchel’s duality theorem.
Assume that ψ and ψ∗ are proper and convex functions, then they’re subdifferentiable,

i.e., ∂ψ (x), ∂ψ∗ (u) exist in the relative interior of their domains X , X ∗, respectively (see
Rockafellar (1997)). In addition, since ψ∗∗ (u) = ψ (x), one has

∂ψ∗ (u) + ∂ψ (x) = uTx⇔ u ∈ ∂ψ (x)⇔ x ∈ ∂ψ∗ (u) ,

which implies ∂ψ∗ (u) = argmax
x∈X

{
uTx− ψ (x)

}
. Since domψ = X , then ∂ψ∗ (u) ⊂ X , i.e.,

the set-valued map ∂ψ∗ can map X ∗ into X . In order to make ∂ψ∗ (u) ⊂ X be unique,
i.e., the ψ∗ (u) is differentiable for any u ∈ X ∗, the following definitions are needed (see
Krichene et al. (2016)).

Definition 1. A convex function ψ is cofinite if its epigraph does not consist of any non-
vertical half-line.

Definition 2. A convex function ψ is essentially strictly convex if it is strictly convex and
subdifferentiable on all convex subsets.

Lemma 3. If ψ and ψ∗ are proper, convex, and closed, so they are inverses of each other,
then ψ∗ is finite and differentiable on X ∗ if and only if ψ is essentially strictly convex and
cofinite.

Lemma 4. Bregman divergence: The distance between h at y ∈ X and its first-order
Taylor series approximation at z ∈ X is given by :

Dh (y, z) = h (y)− h (z)−∇h (z)T (y − z) , ∀y, z ∈ X ,

which is nonnegative if h is convex and is an approximation to the Hessian metric when z

closes y, i.e., Dh (y, z) = 1
2 (y − z)T ∇2h (z) (y − z)+o

(
‖y − z‖2

)
:= 1

2 ‖y − z‖∇2h(z) , ∀y, z ∈
X (see Wibisono et al. (2016)).

2.4 Projection operators

Define the projection operator of a closed and convex set X at x be PX (u) = arg min
z∈X
‖u− z‖.

A basic property of the projection operator PX is

(PX (x)− z)T (PX (x)− x) ≤ 0, ∀x ∈ Rn, z ∈ X .
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Lemma 5. 1): If X is a box set, i.e. X = {u ∈ Rn | ui ≤ ui ≤ ūi, i = 1, ..., n}, then, for
the i-th component of PX (u), we have

[PX (u)]i =


ui, if ui < ui,

ui, if ui ≤ ui ≤ ūi,
ūi, if ui > ūi.

2): If X is a ball set, i.e., X = {u ∈ Rn | ‖u− z‖ ≤ r, z ∈ Rn, r > 0}, then, the pro-

jection operator is PX (u) =

{
u, if ‖u− z‖ ≤ r,
z + r(u−z)

‖u−z‖ , if ‖u− z‖ > r,
where ‖·‖ denotes the 2-norm,

i.e., ‖u‖ =
√∑n

i=1 u
2
i in the whole paper without any special note.

3): If X is an affine set, i.e., X = {u ∈ Rn | Au = b, A ∈ Rm×n}, then, the projection
operator is PX (u) = u + A† (b−Au), where A† is Moore-Penrose pseudoinverse of A if

Rank (A) < m, and A† = AT
(
AAT

)−1
when Rank (A) = m.

4): If X is a half-space set, i.e., X =
{
u ∈ Rn | aTu ≤ b, a 6= 0

}
, then, the projec-

tion operator is PX (u) =

{
u+ b−aTu

‖a‖2 a, if aTu > b,

u, if aTu ≤ b.
For more information regarding the

projection operators, please refer to (Bauschke and Combettes; Parikh et al. (2014)).

2.5 Graph Theory

An undirected communication topology graph is a triplet G = (V, E ,A) with node set V =
{ν1, ν2, ..., νn}, edge set E ⊆ V × V and connection matrix A = {aij}n×n with nonnegative
elements aij = aji > 0 if (i, j) ∈ E , and aij = aji = 0 otherwise. The coupling of agents
in an undirected graph is unordered, which means that there exists information exchange
for both agent i and agent j. A path in an undirected graph between agent i and agent j
is a sequence of edges of the form (i, i1), (i1, i2), . . . , (is, j), where i, i1, · · · , is, j denote
different agents. Let Ni = {j| (i, j) ∈ E} be an agent i’s neighbor set. The undirected
graph G is connected if there exists a path between any pair of distinct nodes vi and vj
(i, j = 1, 2, ..., n) (see Godsil and Royle (2001)).

2.6 Smoothing approximation

The main characteristic of the smoothing method is to approximate the nonsmooth function
with a parameterized smoothing function. In this paper, we adopt a smoothing function,
which is defined as follows:

Definition 6. Let f̂ : X × [0, µ̄] → R with µ̄ > 0 be a smoothing function of the convex
function f : X → R, if f̂ (·, µ) is continuous differentiable for any fixed µ̄ ≥ µ > 0, then it
enjoys the following properties ( see Bian and Chen (2020); Chen (2012) )

(i) (approximation property) lim
x→w,µ→0

f̂ (x, µ) = f (w) , ∀ w ∈ X ;

(ii) (convexity) For any fixed µ > 0, f̂ (x, µ) is a convex function of x in X ;

(iii) (gradient consistency)
{

lim
x→w,µ→0

∇xf̂
(
x, µ

)}
⊆ ∂f

(
w
)
,∀ w ∈ X ;
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(iv) (gradient boundedness and Lipschitz continuous of µ) There exists a positive con-
stant κf̂ > 0 such that ∣∣∣∇µf̂ (x, µ)

∣∣∣ ≤ κf̂ ∀ µ ∈ [0, µ̄] ,∀ x ∈ X ,

and for any x ∈ X ,u1, µ2 ∈ [0, µ̄], it follows∣∣∣f̂ (x, µ1)− f̂ (x, µ2)
∣∣∣ ≤ κf̂ |µ1 − µ2| ;

(v) (Lipschitz continuity with respect to x) there is a constant ` such that for any fixed
µ ∈ (0, µ̄], ∇xf̂ (x, ·) (i.e., the gradient of f̂ (x, µ) with respect to x when µ is fixed) is
Lipschitz continuous with respect to x on X with a Lipschitz constant `

µ .

In addition, the Definition 6 (iv) implies that
∣∣∣f̂ (x, µ)− f (x)

∣∣∣ ≤ κf̂µ, ∀ 0 < µ ≤
µ̄, x ∈ X .

The smoothing function satisfying the above conditions in Definition 6 enjoys the
following properties (see Bian and Chen (2013)):

Lemma 7. 1): If f̂1, f̂2, ..., f̂n are smoothing functions of f1, f2, ..., fn, then
∑n

i=1 cif̂i is a
smoothing function of

∑n
i=1 cifi with κ∑m

i=1 cif̂i
=
∑m

i=1 ciκf̂i when ci ≥ 0 and fi is regular

for any i = 1, 2, ..., n.
2): If Φ : X → R is locally Lipschitz, Ψ : R → R is continuously differentiable and

globally Lipschitz with a Lipschitz constant lΨ , then Ψ
(
Φ̂
)

is a smoothing function of Ψ (Φ)

with κΨ(Φ̂) = lΨκΦ̂, where Φ̂ is a smoothing function of Φ.

3): Let Φ : Rm → R be regular and Ψ : Rn → Rm be continuously differentiable. If Φ̂ is
a smoothing function of Φ, then Φ̂ (Ψ) is a smoothing function of Φ (Ψ) with κΦ̂(Ψ) = κΦ̂.

Example 1. The existing results in (Chen (2012)) provide some theoretical basis to con-
struct smoothing functions that satisfy the conditions in Definition 6. A smoothing func-
tion for the g (s) = max {0, s} is given by

ĝ (s, µ) =

{
max {0, s} , if |s| > µ,
(s+µ)2

4µ , if |s| ≤ µ,
(10)

with a κĝ = 1
4 . Note that ĝ (s, µ) is convex and nondecreasing of s with any fixed 0 < µ ≤ µ̄,

is also nondecreasing with respect to µ for any fixed s, and lim
µ→0

ĝ (s, µ) = max {0, s} (see

Figure 1 : (left)).
The smoothing approximation function of θ (s) = |s| is

θ̂ (s, µ) =

{
|s| , if |s| > µ

2 ,
s2

µ + µ
4 , if |s| ≤

µ
2 ,

(11)

where lim
µ→0

θ̂ (s, µ) = |s|, and κθ̂ = 1
4 (it is used in Section 5.2).

As can be seen from Figure 1: (right) that θ̂ (s, µ) is also convex and nondecreasing for
any fixed 0 < µ ≤ µ̄, and nondecreasing with respect of s for any fixed s.
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Figure 1: (left) The smoothing function ĝ (s, µ) with different µ. (right) The smoothing
function θ̂ (s, µ) with different µ.

2.7 Notation

Let Rn (Rm×n) be the n-dimensional (or m-by-n) real vectors ( or real matrices), and In be a
n×n identity matrix. For vectors x, y ∈ Rn, xT y =

∑n
i=1 xiyi, and the superscript T repre-

sents transpose. ‖·‖ is the Euclidean norm (i.e., 2-norm), ‖·‖1 is the 1-norm. L1
loc ([t0,+∞))

represents the local Lebesgue integral functions on [t0,+∞). Let Ai ∈ Rpi×qi(pi, qi > 0), i =
1, ..., n, then we define Ā = bldiag {A1, ..., An} ∈ R

∑n
i=1 pi×

∑n
i=1 qi , which means a block di-

agonal matrix. For xi ∈ Rm, i = 1, ..., n, we use col (x1, ..., xn) ∈ Rmn to denote an mn
column vector. 1 and 0 are a scalar or an all-ones column vector and an all-zeros column
vector which can be obtained according to the context in the paper.

3. Optimization approaches for problem (1) in the smooth case

In this section, we propose an APDMD approach to address the problem (1) with smooth
and convex objective function. Then, we extend it to solve ECCP (12) and DEMO (13) in
the smooth case, to obtain ADPDMD (40) and ADMD (50), respectively. To our best knowl-
edge, there are no accelerated mirror dynamical approaches for the problem (1), distributed
accelerated dynamical approaches for ECCP (12) and DEMO (13) only with smooth convex
objective functions.

To make the well-posedness of the problem (1), some appropriate assumptions are
needed, which are fairly standard.

Assumption 3.1

1. The objective function f (x) is smooth and convex on an open set containing X ,
where X is a closed and convex set;

2. The function ψ is proper, essentially strictly convex and cofinite (see Section 2.3);

3. (Slater’s condition) There exists a vector x ∈ int (X ) that satisfies Ax = b.

The formulation (1) covers two important network optimization problems as follows:
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Scenario 1: Distributed Constrained Consensus Problem (DCCP). Consider a network
of n agents over an undirected graph G. The aims of it are to cooperate for seeking the
minimum of the following problem:

min
x∈Rnm

f (x) =

n∑
i=1

fi (xi),

s.t. Lx = 0 (i.e., xi = xj , i, j = 1, ..., n), xi ∈ Xi ⊂ Rm,
(12)

where x = col (x1, ..., xn) ∈ Rnm, and X = Πn
i=1Xi ⊂ Rnm. L = Ln ⊗ Im ∈ Rnm×nm

and Ln ∈ Rn×n is the Laplacian matrix of G, Lx = 0 is applied to ensure the consensus of
xi = xj , i, j = 1, 2, ..., n in a distributed way since the agent i only accesses its local function
fi : Xi → R and the constraint Xi ∈ Rm.

Scenario 2: Distributed Extended Monotropic Optimization (DEMO). Consider a net-
work of n agents reciprocating information over a graph G. There exists a local objective
function fi (xi) : Xi → R and a local feasible constraint set Xi ⊂ Rpi , i = 1, ..., n. Let
x = col (x1, ..., xn), X = Πn

i=1Xi ⊂ R
∑n
i=1 pi , then, the DEMO problem is

min
x∈R

∑n
i=1

pi

f (x) =

n∑
i=1

fi (xi), s.t.

n∑
i=1

Aixi =

n∑
i=1

di, xi ∈ Xi, i = 1, 2, ..., n, (13)

where A = [A1, ..., An] ∈ Rm×
∑n
i=1 pi and Ai ∈ Rm×pi .

To ensure the well-posedness of DCCP (12) and DEMO (13), some appropriate assump-
tions need to be made on them, which are fairly standard as follows:

Assumption 3.2
1. The objective function f (x) is

∑m
i=1 fi (xi) and for all i = 1, ..., n, fi (xi) is smooth

and convex on an open set containing Xi, and Xi is a closed and convex set;
2. For all i = 1, ..., n, ψi is proper, essentially strictly convex and cofinite (see Section

2.3);
3. The communication graph G is connected and undirected;
4. The Slater’s condition of DCCP (12) and DEMO (13) is satisfied.

3.1 APDMD for problem (1) with smooth convex objective functions

Inspired by the accelerated mirror descent in (Krichene et al. (2015)) and primal-dual
dynamical approach in (Feijer and Paganini (2010)), we propose the following APDMD:

ẋ (t) = α
t (∇ψ∗ (u (t))− x (t)) ,

u̇ (t) = − t
α

(
∇f (x (t)) + βAT (Ax (t)− b) +AT v (t)

)
− ζẋ (t) ,

λ̇ (t) = α
t (v (t)− λ (t)) ,

v̇ (t) = t
α (A∇ψ∗ (u (t))− b)− ζλ̇ (t) ,

x (t0) = x0, u (t0) = u0 with ∇ψ∗ (u0) = x0 ∈ X , λ (t0) = λ0, v (t0) = v0,

(14)

where t ≥ t0 > 0, β ≥ 0, ζ ≥ 0 and α ≥ 2. The illustration of the APDMD (14) is in Figure
2: (left).

Note that the APDMD (14) can be regarded as the following second-order dynamical
approach:

10
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

ẍ (t) + α+1
t ẋ (t) +∇2ψ∗

(
∇ψ

(
x (t) + t

α ẋ (t)
))

×
(
∇f (x (t)) + βAT (Ax (t)− b) +AT

(
λ (t) + t

α λ̇ (t)
))

+αζ
t ∇

2ψ∗
(
∇ψ

(
x (t) + t

α ẋ (t)
))
ẋ = 0,

λ̈ (t) + α+1
t λ̇ (t)−A

(
x (t) + t

α ẋ (t)
)

+ b+ αζ
t λ̇ (t) = 0,

x (t0) = x0 ∈ X , ẋ (t0) = ẋ0, λ (t0) = λ0, λ̇ (t0) = λ̇0,

(15)

i.e., 

ẍ (t) +
(
α+1
t In + αζ

t ∇
2ψ∗

(
∇ψ

(
x (t) + t

α ẋ (t)
)))

ẋ (t)

+∇2ψ∗
(
∇ψ

(
x (t) + t

α ẋ (t)
))
∇xLβ

(
x (t) , λ (t) + t

α λ̇ (t)
)

= 0,

λ̈ (t) +
(
α+1
t In + αζ

t In

)
λ̇ (t)−∇λLβ

(
x (t) + t

α ẋ (t) , λ (t)
)

= 0,

x (t0) = x0 ∈ X , ẋ (t0) = ẋ0, λ (t0) = λ0, λ̇ (t0) = λ̇0,

(16)

where the Hessian term ∇2ψ∗
(
∇ψ

(
x (t) + t

α ẋ (t)
))

is nonlinear transformation. It applies

to ∇f (x (t)) + βAT (Ax (t)− b) +AT
(
λ (t) + t

α λ̇ (t)
)

to guarantee the trajectory of x(t) is

inside the feasible set X in the intuitive understanding (the rigorous proof is postponed to
Lemma 8). The form in (16) allows us to understand more intuitively why the proposed
(14) is called the primal-dual method that is with primal variable x and dual variable λ.

Figure 2: (left) Illustration of APDMD (14). (right) Feasibility of x (t) to APDMD (14).

3.2 Interpretation of the APDMD

The APDMD (14) (i.e., (15)) can be interpreted from different perspectives: neurodynamic
approach, Hamilton’s system, game theory and control theory.

• Neurodynamic approach perspective. The APDMD (14) be regarded as a neu-
rodynamic approach (describe the dynamic behavior of neurons), thus APDMD can

11
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Figure 3: Circuit architecture diagram of APDMD (14) with 1© t
α ẋ + x = ∇ψ∗ (u),

2© u̇ = − t
α

(
∇f (x) + βAT (Ax− b) +AT v

)
− ζẋ, 3© t

α λ̇ + λ = v, 4© v̇ =
t
α (A∇ψ∗ (u)− b)− ζλ̇.

12
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be implemented by analog circuit like the Hopfield neural network in Hopfield and
Tank (1986), as shown in Figure 3. The circuit in Figure 3 is designed according to
APDMD (14) by using analog adders, analog subtracters, analog multipliers, analog
integrators , etc. When the circuit is turned on, the stable value of the voltage at
position x in Figure 3 is the stable point to the APDMD (14) (i.e., an optimal solution
to the problem (1)). For more information about neurodynamic approaches and their
circuits, please see (Kennedy and Chua (1988)).

• Hamiltonian system perspective. The Hamiltonian-based system approach is
used to design accelerated dynamical approaches for solving the problem (3), which
has recently been widely studied in (Diakonikolas and Jordan (2021); Wibisono et al.
(2016)), and it plays a key role in designing of APDMD (14) and the development of
our Lyapunov analysis method.

Designing the first Hamiltonian (time-dependent) system

H1 (x̄ (t) , u (t) , η (t) , ˙̄x (t) , η̇ (t))

=ψ∗ (u (t)) + Γ (η (t))

(
f

(
x̄ (t)

η (t)

)
+ βη (t)

∥∥∥∥A( x̄ (t)

η (t)

)
− b
∥∥∥∥2

+v (t)T
(
A

(
x̄ (t)

η (t)

)
− b
))

+
ζη̇ (t)

η3 (t)

(
˙̄x (t)T x̄ (t)− η̇ (t) η (t)

2

∥∥∥∥ x̄ (t)

η (t)

∥∥∥∥2
)

with x̄ (t) = η (t)x (t), η (t) = tα and Γ (η (t)) = (η(t))
2
α

α2 .

The corresponding continuous-time dynamics of H1 is

d

dt
(x̄ (t)) =η̇ (t)

dx̄ (t)

dη (t)
= η̇ (t)∇uH1 (x̄ (t) , u (t) , η (t) , ˙̄x (t) , η̇ (t)) = η̇ (t)∇ψ∗ (u (t))

⇒ ẋ (t) =
α

t
(∇ψ∗ (u (t))− x (t)) ;

d

dt
u (t) =η̇ (t)

du (t)

dη (t)
= −Γ (η (t)) η̇ (t)∇x̄H1 (x̄ (t) , u (t) , η (t) , ˙̄x (t) , η̇ (t))

⇒ u̇ (t) = − t
α

(
∇f (x (t)) + βAT (Ax (x (t))− b) +AT v (t)

)
− ζẋ (t) .

Furthermore, setting the second Hamiltonian (time-dependent) system be

H2

(
λ̄ (t) , v (t) , η (t) , ˙̄λ (t) , η̇ (t)

)
=

1

2
‖v (t)‖2 −

(
λ̄ (t)

η (t)

)T
(Aψ∗ (u (t))− b)

+
ζη̇ (t)

η3 (t)

(
λ̄ (t)T ˙̄λ (t)− 1

2
η̇ (t) η (t)

∥∥∥∥ λ̄ (t)

η (t)

∥∥∥∥2
)

where λ̄ (t) = η (t)λ (t).

13
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The corresponding continuous-time dynamics of H2 is

d

dt

(
λ̄ (t)

)
=η̇ (t)

dλ̄ (t)

dη (t)
= η̇ (t)∇vH2

(
λ̄ (t) , v (t) , η (t) , ˙̄λ (t) , η̇ (t)

)
= η̇ (t) v (t)

⇒ λ̇ (t) =
α

t
(v (t)− λ (t))

d

dt
v (t) =η̇ (t)

dv (t)

dη (t)
= −Γ (η (t)) η̇ (t)∇λ̄H2

(
λ̄ (t) , v (t) , η (t) , ˙̄λ (t) , η̇ (t)

)
⇒ v̇ (t) = − t

α
(b−Au (t))− ζλ̇ (t) .

From the above conclusions, the APDMD (14) can be obtained directly.

• Game theoretic standpoint. Let us consider x (t) and λ (t) as two players who
compete with each other. Briefly, we identify players by their actions. We can see that
each player anticipates the opponent’s movement in APDMD (15). In the coupling
term, the player λ (t) takes account of the anticipated position of the player x (t), i.e.,
x (t) + t

α ẋ (t). Conversely, for player x (t), it takes account of the anticipated position

of the player λ (t), i.e., λ (t) + t
α λ̇ (t).

• Control theoretic view. The APDMD (15) can also be associated with control
theory and state derivative feedback. Let χ (t) = col (x (t) , λ (t)), the APDMD (15)
can be written in the following formulation

χ̈ (t) +
α+ 1

t
χ̇ (t) = Υ (t, χ (t) , χ̇ (t)) ,

with an operator Υ , i.e., a feedback control term which takes the constraint into
account. It is a function of the state χ (t), its derivative χ̇ (t) and time t. For a
comprehensive understanding of state derivative feedback, the readers can consult in
(Michiels et al. (2009)).

3.3 Feasibility, existence and uniqueness of strong global solution to APDMD

In this subsection, we illustrate the feasibility, the existence and uniqueness of the strong
global solution x (t) for APDMD (14) by the Cauchy-Lipschitz-Picard theorem in (Bolte
(2003)).

Lemma 8. For any initial values (x (t0) , u (t0) , λ (t0) , υ (t0)) ∈ X × Rn × Rm × Rm, the
variable x (t) ∈ X , ∀ t ≥ t0 > 0, i.e., the solution x (t) is feasible.

Proof Inspired by the work in (Krichene et al. (2016)), we provide a rigorous proof for the
feasibility by contradiction. Suppose there exist t1 > 0 and x (t1) /∈ X . Since X is closed
and convex, by the separation theorem, there exists a hyperplane that strictly separates
x (t1) and the set X . That is, there exist ω, a ∈ Rn such that (x (t1)− a)T ω > 0 and
(x (t)− a)T ω < 0,∀x ∈ X . Let d (x (t)) = (x (t)− a)T ω. Note that the trajectory x (t)
is continuous, then t → d (x (t)) is continuous, and d (x (t0)) = (x (t0)− a)T ω < 0 due to
x0 ∈ X , d (x (t1)) = (x (t1)− a)T ω > 0 due to x (t1) /∈ X . Thus, there is a t2 such that
d (x (t2)) = 0, i.e., d (x (t)) > 0, t ∈ [t2, t1), which implies t2 is the last time when x (t)
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crosses the separating hyperplane, and t2 = inf
{
t : d

(
x
(
t
′
))

> 0,∀t′ ∈ [t, t1]
}

. We have

d (x (t1))− d (x (t2)) > 0, according to Taylor’s theorem and ẋ (t) = α
t (∇ψ∗ (u (t))− x (t)),

there exists τ ∈ [t2, t1], such that

d (x (t1))− d (x (t2)) =ḋ (x (τ)) = (ẋ (τ))T ω =
α

τ
ωT (∇ψ∗ (u (τ))− x (τ))

=
α

τ
(d (∇ψ∗ (u (τ)))− d (x (τ))) < 0,

since ∇ψ∗ (u0) ∈ X . It leads to a contradiction, which concludes the proof and is shown in
Figure 2 (right).

Definition 9. Let x : [t0,+∞) → X , λ : [t0,+∞) → Rm with the corresponding product
space structure X × Rm and t0 > 0. (x, u, λ, v) is a strong global solution of APDMD (14)
if it satisfies the following properties:

(i) x, u : [t0,+∞)→ Rn, λ, v : [t0,+∞)→ Rm are locally absolutely continuous;

(ii)


ẋ (t) = α

t (∇ψ∗ (u (t))− x (t)) ,

u̇ (t) = − t
α

(
∇f (x (t)) + βAT (Ax (t)− b) +AT v (t)

)
− ζẋ (t) ,

λ̇ (t) = α
t (v (t)− λ (t)) ,

v̇ (t) = t
α (A∇ψ∗ (u (t))− b)− ζλ̇ (t) ,

, t ∈ [t0,+∞);

(iii) x (t0) = x0 = ∇ψ∗ (u0) ∈ X , u (t0) = u0, λ (t0) = λ0, v (t0) = v0.

A mapping x : [t0,+∞) → Rn is called locally absoutely continuous if it is absolutely
continuous on every compact interval [t0, T ] with T > t0. For the absolutely continuous
function x : [t0,+∞)→ Rn, it has the following equivalent characterizations:

(a) There exists an integrable function x : [t0, T )→ Rn, such that

x (t) = x (t0) +

ˆ t

t0

x (s) ds, ∀t ∈ [t0, T ] ;

(b) x is a continuous function and its distribuional derivative is Lebesque integrable on
the interval [t0, T ];

(c) For every ε > 0, there exists π > 0, such that for any finite family of intervals
Ik = (ak, bk) from [t0, T ], the following implication is valid:[

Ik ∩ Ij = � and
∑
k

|bk − ak| < π

]
⇒

[∑
k

‖x (bk)− x (ak)‖ < ε

]
.

Theorem 10. For any initial values (x (t0) , u (t0) , λ (t0) , υ (t0)) ∈ X × Rn × Rm × Rm,
there exists a unique strong global solution of the APDMD.

Proof Let Y (t) = (x (t) , u (t) , λ (t) , v (t)), then the APDMD can be rewritten as follows:{
Ẏ (t) = F (t, Y (t))

Y (t0) = (x (t0) , u (t0) , λ (t0) , υ (t0)) ,
(17)
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where F : [t0,+∞)×X ×Rn×Rm×Rm, F (t, Y ) =
(
α
t (∇ψ∗ (u)− x) , − ζẋ (t)− t

α (∇f (x)

+βAT (Ax− b)−AT v
)
, αt (v − λ) , tα (A∇ψ∗ (u)− b) , αt (v − λ) , tα (A∇ψ∗ (u)− b)− ζλ̇ (t)

)
.

According to the Cauchy-Lipschitz-Picard theorem, there exists a unique strong global
solution for APDMD (14), i.e., (15), if the following conditions (I) and (II) are fulfilled.

(I): For every t ∈ [t0,+∞), the mapping F (t, ·) is l (t)-Lipschitz continuous and l (·) ∈
L1

loc ([t0,+∞)).

(II): For any Y : [t0,+∞)→ X×Rn×Rm×Rm, we have F (·, Y (t)) ∈ L1
loc ([t0,+∞) ,X

×Rn × Rm × Rm).

The proof of (I). Let t ∈ [t0,+∞) be fixed and utilize the Lipschitz continuous of ∇ψ∗,
∇f and ‖X + Y‖2 ≤ 2 ‖X‖2 + 2 ‖Y‖2 for any vectors X and Y, then, for any Y and Ŷ , we
have

∥∥∥F (t, Y (t))− F
(
t, Ŷ (t)

)∥∥∥
≤

 t2

α2

((
4β2δmax

(
ATA

)2
+ 4l2f + δmax

(
ATA

)
l2ψ∗ + 2δmax

(
ATA

))
+
α2
(

6 + 2ζ + (2 + ζ) l2ψ∗
)

t2


1
2

×
∥∥∥Y (t)− Ŷ (t)

∥∥∥ ,
where δmax (A) is the maximum singular value of matrix A and the inequality holds from the
Lipschitz continuous properties of∇f and∇ψ∗ that have Lipschitz constants lf and lψ∗ . Let

l (t) be

(
t2

α2

((
4β2δmax

(
ATA

)2
+ 4l2f + δmax

(
ATA

)
l2ψ∗ + 2δmax

(
ATA

))
+

α2
(

6+2ζ+(2+ζ)l2
ψ∗

)
t2

) 1
2

,

one has
∥∥∥F (t, Y (t))− F

(
t, Ŷ (t)

)∥∥∥ ≤ l (t)
∥∥∥Y (t)− Ŷ (t)

∥∥∥ .
Note that l (t) is continuous on [t0,+∞). Hence l (·) is integrable on [t0, T ] for all

0 < t0 < T < +∞.

The proof of (II). For arbitrary Y ∈ X × Rn × Rm × Rm and 0 < t0 < T , we have

ˆ T
t0

‖F (t, Y (t))‖dt

=

ˆ T
t0

(
(1+ζ)α2

t2
‖∇ψ∗ (u (t))− x (t)‖2 + α2

t2
‖v (t)− λ (t)‖2

+
t2

α2
‖A (∇ψ∗ (u (t))− x∗)‖2 +

t2

α2

∥∥∇f (x (t)) + βATA (x (t)− x∗)−AT v (t)
∥∥2
) 1

2

dt

≤
ˆ T
t0

(
2(1+ζ)α2

t2
‖∇ψ∗ (u (t))‖2 +

4t2β2δmax(ATA)
2

α2 ‖x (t)‖2
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+
2α2

t2
‖v (t)‖2 +

2α2

t2
‖λ (t)‖2 +

2 (1 + ζ)α2

t2
‖x (t)‖2 +

2t2δmax

(
ATA

)
α2

‖∇ψ∗ (u (t))‖2

+
2t2δmax

(
ATA

)
α2

‖x∗‖2 +
4t2

α2
‖∇f (x (t))‖2 +

4t2δmax

(
ATA

)
α2

‖v (t)‖2

+
4t2β2δmax(ATA)

2

α2 ‖x∗‖2
) 1

2
dt

≤
√
‖∇ψ∗ (u)‖2 + ‖x‖2 + ‖λ‖2 + ‖v‖2 + ‖x∗‖2 + ‖∇f (x (t))‖2

×
(

(8 + 4ζ)α2

t2
+

2t2

α2

(
4δmax

(
ATA

)
+ 4β2δmax

(
ATA

)2
+ 2
)) 1

2

,

and the conclusion holds by the continuity of the following function

t→
(

(8 + 4ζ)α2

t2
+

2t2

α2

(
4δmax

(
ATA

)
+ 4β2δmax

(
ATA

)2
+ 2
)) 1

2

.

In view of the above statements (I) and (II), the existence and uniqueness of a strong
global solution for the dynamical system (17) can be obtained. This leads directly to the
existence and uniqueness of a strong global solution for APDMD.

3.4 Convergence rate of APDMD

With the help of the Lyapunov analysis method with Bregman divergence function, we will
illustrate the accelerated convergence properties of the APDMD (14) as follows.

Theorem 11. Suppose Assumption 3.1 holds. Let (x (t) , λ (t)) and (x∗, λ∗) be the solu-
tion trajectory and optimal solution for APDMD (14) and problem (1), respectively. Then
for any (x (t0) , u (t0) , λ (t0) , υ (t0)) ∈ X×Rn×Rm×Rm, and let Lβ (x (t) , λ (t)) = f (x (t))+

λ (t)T (Ax (t)− b)+ β
2 ‖Ax (t)− b‖2, and consider a Lyapunov function V : [t0, T )→ [0,+∞)

which is given by

V (t) =V1 (t) + V2 (t) + V3 (t) , (18)

where 

V1 (t) = t2

α2 (Lβ (x (t) , λ∗)− Lβ (x∗, λ (t)))

= t2

α2

(
f (x (t))− f (x∗) + β

2 ‖Ax (t)− b‖2 +ATλ∗ (x (t)− x∗)
)
,

V2 (t) = Dψ∗ (u (t) , u∗) + ζ
2 ‖x (t)− x∗‖2

= ψ∗ (u (t))− ψ∗ (u∗)−∇ψ∗ (u∗)T (u (t)− u∗) + ζ
2 ‖x (t)− x∗‖2 ,

V3 (t) = Dh (v (t) , v∗) + ζ
2 ‖λ (t)− λ∗‖2

= 1
2 ‖v (t)− v∗‖2 + ζ

2 ‖λ (t)− λ∗‖2 ,

where Dψ∗ (u, u∗) with u∗ = ∇ψ (x∗), Dh (v, v∗) with v∗ = λ∗ are two Bregman divergences
associated with suitable functions ψ∗ and h that are determined by different requirements,
respectively. The following statements are true:
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(I) ζ = 0, β ≥ 0.
(i) α > 2. For any t > t0 > 0, x (t) ∈ X , we have
1) t

α ẋ (t) + x (t) = ψ∗ (u (t)) and t
α λ̇ (t) + λ (t) = v (t) are bounded;

2) One has

Lβ (x (t) , λ∗)− Lβ (x∗, λ (t)) ≤ α2V (t0)

t2
; (19)

3) if, in addition, β > 0,

‖Ax (t)− b‖2 ≤ 2α2V (t0)

βt2
; (20a)

ˆ +∞

t0

t ‖Ax (t)− b‖2dt < +∞; (20b)

(ii) α > 2. For any t > t0 > 0, x (t) ∈ X , we have

ˆ +∞

t0

t (Lβ (x (t) , λ∗)− Lβ (x∗, λ (t)))dt < +∞; (21)

(II) ζ > 0, β > 0.
(i) α > 2. For any t > t0 > 0, x (t) ∈ X , one has
1) x (t) and λ (t) are bounded;

‖ẋ (t)‖ = O

(
1

t

)
,
∥∥∥λ̇ (t)

∥∥∥ = O

(
1

t

)
; (22)

2)

ˆ +∞

t0

t ‖ẋ (t)‖2 dt 6 α

ζ
V (t0) < +∞; (23a)

ˆ +∞

t0

t
∥∥∥λ̇ (t)

∥∥∥2
dt 6

α

ζ
V (t0) < +∞; (23b)

3)

Lβ (x (t) , λ∗)− Lβ (x∗, λ (t)) ≤ α2V (t0)

t2
; (24a)

‖Ax (t)− b‖ 6 2ζα2C1

t2
; (24b)

|f (x (t))− f (x∗)| 6 α2

t2
(V (t0) + 2ζ ‖λ∗‖C1) +

2βζ2α4C2
1

t4
; (24c)

where C1 = sup
t∈[t0,+∞)

{
t
ζα

∥∥∥λ̇ (t)
∥∥∥+ t0

ζα

∥∥∥λ̇ (t0)
∥∥∥+ 1+ζ

ζ

∥∥λ (t)− λ
(
t0
)∥∥+

t20
α2 ‖Ax (t0)− b‖

}
<

+∞.
(ii) α > 2. For any t > t0 > 0, x (t) ∈ X , we have

ˆ +∞

t0

t (Lβ (x (t) , λ∗)− Lβ (x∗, λ (t)))dt < +∞. (25)
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Proof Note that the Laypunov function V1 (t) > βt2

2α2 ‖Ax (t)− b‖2 > 0 since

Lβ (x (t) , λ∗)− Lβ (x∗, λ (t))

=f (x (t))− f (x∗) +
β

2
‖Ax (t)− b‖2 +ATλ∗ (x (t)− x∗)

∈f (x (t))− f (x∗) +
β

2
‖Ax (t)− b‖2 − (∇f (x∗) +NX (x∗))T (x (t)− x∗)

≥f (x (t))− f (x∗)− f (x (t)) + f (x∗) +
β

2
‖Ax (t)− b‖2

≥β
2
‖Ax (t)− b‖2 ≥ 0,∀ (x (t) , λ (t)) ∈ X × Rm,

where NX (x∗) =
{
w ∈ Rn|wT (v − x∗) ≤ 0,∀v ∈ X

}
is normal cone to set Ω at point x∗.

When ζ = 0. Since ψ∗ (·) is convex, it gives Dψ∗ (u (t) , u∗) ≥ 0, and h (·) = 1
2 ‖·‖

2 is
strongly convex, we can obtain that Dh (v (t) , λ∗) ≥ 0 and ‖v (t)‖ → +∞, V2 (t) → +∞,
i.e., V2 (t) is radially unbounded of variable v (t). Thus, V (t) is nonnegative and radially
unbounded of variable v (t).

When ζ > 0. According to ζ
2 ‖x (t)− x∗‖2, one has ‖x (t)‖ → +∞,V2 (t) → +∞ which

means V2 (t) is nonnegative and radially unbounded of x (t). In addition, for the V3 (t),
since Dh (v (t) , v∗) = 1

2 ‖v (t)− v∗‖2 and ζ
2 ‖λ (t)− λ∗‖2 > 0 are strongly convex functions

of variables v (t) and λ (t), it implies ‖v (t)‖ → +∞ or ‖λ (t)‖ → +∞, V3 (t)→ +∞. Thus,
V3 (t) is nonnegative and radially unbounded of variables v (t) and λ (t). Thus, V (t) is
nonnegative and radially unbounded of variables x (t), v (t) and λ (t).

The derivatives of V1 (t), V2 (t) and V3 (t) along the trajectory of APDMD with x (t) ∈ X ,
∇ψ∗ (u∗) = x∗ and b = Ax∗ are given by

V̇1 (t) =
2t

α2
(Lβ (x (t) , λ∗)− Lβ (x∗, λ (t))) + (∇ψ∗ (u (t))− x (t))T

× t

α

(
∇f (x (t)) +

β

2
AT (Ax (t)− b) +ATλ∗

)
=

2t

α2

(
f (x (t))− f (x∗) +

β

2
‖Ax (t)− b‖2 +

(
ATλ∗

)T
(x (t)− x∗)

)
+
t

α

(
∇f (x (t)) + βATA (x (t)− x∗) +ATλ∗

)T
× (∇ψ∗ (u (t))−∇ψ∗ (u∗)) + (∇ψ∗ (u∗)− x (t))T

× t

α

(
∇f (x (t)) + βATA (x (t)− x∗) +ATλ∗

)
,

(26)

V̇2 (t) =ζ (x (t)− x∗)T ẋ (t)− t

α
(∇ψ∗ (u (t))−∇ψ∗ (u∗))T

×
(
∇f (x (t)) + βAT (Ax (t)− b) +AT v (t)

)
− ζ (∇ψ∗ (u (t))−∇ψ∗ (u∗))T ẋ (t)

=− ζt

α
‖ẋ (t)‖2 − t

α
(∇ψ∗ (u (t))−∇ψ∗ (u∗))T

×
(
∇f (x (t)) + βATA (x (t)− x∗) +ATλ∗

)
− t

α
(∇ψ∗ (u (t))−∇ψ∗ (u∗))T

(
AT v (t)−ATλ∗

)
,

(27)
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V̇3 (t) =
t

α
(v (t)− λ∗)T A (∇ψ∗ (u (t))− x∗)

− ζ (v (t)− λ∗)T λ̇ (t) + ζ (λ (t)− λ∗)T λ̇ (t)

=
t

α
(v (t)− λ∗)T A (∇ψ∗ (u (t))− x∗)− ζt

α

∥∥∥λ̇ (t)
∥∥∥2
.

(28)

Adding (26), (27) and (28) together, and using Ax∗ = b, we have

V̇ (t) =V̇1 (t) + V̇2 (t) + V̇3 (t)

=
2t

α2
(Lβ (x (t) , λ∗)− Lβ (x∗, λ (t)))− ζt

α
‖ẋ (t)‖2 − ζt

α

∥∥∥λ̇ (t)
∥∥∥2

+
t

α
(x∗ − x (t))T

(
∇f (x (t)) + βATA (x (t)− x∗) +ATλ∗

)
≤ 2t

α2
(Lβ (x (t) , λ∗)− Lβ (x∗, λ (t)))− t

α
(Lβ (x∗, λ∗)− Lβ (x (t) , λ∗))

− βt

2α
‖Ax (t)− b‖2 − ζt

α
‖ẋ (t)‖2 − ζt

α

∥∥∥λ̇ (t)
∥∥∥2

=− tα− 2

α
(Lβ (x (t) , λ∗)− Lβ (x∗, λ (t)))− βt

2α
‖Ax (t)− b‖2

− ζt

α
‖ẋ (t)‖2 − ζt

α

∥∥∥λ̇ (t)
∥∥∥2
≤ 0,

(29)

where the second equation holds from ∇ψ∗ (u∗) = x∗, the first inequality is satisfied due
to the convexity of Lβ (x (t) , λ∗) of x (t) with fixed λ∗, the third equation holds because
of Lβ (x∗, λ (t)) = Lβ (x∗, λ∗) and the last inequality is established since α ≥ 2, ζ ≥ 0 and
Lβ (x (t) , λ∗)− Lβ (x∗, λ (t)) ≥ 0.

From (29), we get V̇ (t) ≤ 0, t ≥ t0 > 0, which means V (t) is nonincreasing when
t ≥ t0 > 0, i.e., 0 < V (t) 6 V (t0) , t ≥ t0 > 0.

(I) ζ = 0, β ≥ 0.
(i) If α > 2.
1) According to the definition of V (t) in (18) and V̇ (t) ≤ 0, t ≥ t0 > 0, one has

0 ≤ 1

2lψ∗

∥∥∥∥ tαẋ (t) + x (t)− x∗
∥∥∥∥2

+
1

2

∥∥∥∥ tαλ̇ (t) + λ (t)− λ∗
∥∥∥∥2

=
1

2lψ∗
‖ψ∗ (u (t))− x∗‖2 +

1

2
‖v (t)− λ∗‖2

≤Dψ∗ (u (t) , u∗) +Dh (v (t) , λ∗) 6 V (t0) < +∞,

which implies that sup
t∈[t9,+∞)

∥∥∥ tα λ̇ (t) + λ (t)
∥∥∥ < +∞ and sup

t∈[t9,+∞)

∥∥ t
α ẋ (t) + x (t)

∥∥ < +∞, ∀x (t) ∈

X , i.e., t
α ẋ (t) + x (t) = ψ∗ (u (t)) and t

α λ̇ (t) + λ (t) = v (t) are bounded.

2) From the definition of V (t) in (18) and V̇ (t) ≤ 0, t ≥ t0 > 0, one also has

0 6
t2

α2
(Lβ (x (t) , λ∗)− Lβ (x∗, λ (t))) 6 V (t0) < +∞,

which means Lβ (x (t) , λ∗)− Lβ (x∗, λ (t)) ≤ α2V(t0)
t2

, t > t0 > 0, x (t) ∈ X .
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3) From the definition of V (t) in (18) and V̇ (t) ≤ 0, t ≥ t0 > 0, we obtain

0 6
βt2

2α2
‖Ax (t)− b‖2 6 V (t0) < +∞,

which implies ‖Ax (t)− b‖2 ≤ 2α2V(t0)
βt2

,∀ t > t0, x (t) ∈ X . In addition, (29) with α > 2, ζ =

0, β > 0, we can get V̇ (t) 6 − βt
2α ‖Ax (t)− b‖2 ,∀ t > t0, x (t) ∈ X , and integrating the

inequality above yields
ˆ +∞

t0

t ‖Ax (t)− b‖2dt 6 2α

β
V (t0)− 2α

β
V (+∞) 6

2α

β
V (t0) < +∞,∀x (t) ∈ X .

(ii) α > 2. From (29) with α > 2, ζ = 0, β ≥ 0, we can get

V̇ (t) 6 −tα− 2

α
(Lβ (x (t) , λ∗)− Lβ (x∗, λ (t))) , ∀ t > t0, x (t) ∈ X ,

and integrating the inequality above gives
ˆ +∞

t0

t (Lβ (x (t) , λ∗)− Lβ (x∗, λ (t)))dt

6
α

α− 2
V (t0)− α

α− 2
V (+∞) 6

α

α− 2
V (t0) < +∞,∀x (t) ∈ X .

(II) ζ > 0, β > 0 .
(i) α > 2.
1) From the definition of V (t) in (18) and V̇ (t) ≤ 0, t ≥ t0 > 0, one has

sup
t∈[t0,+∞)

∥∥∥∥ tαẋ (t) + x (t)− x∗
∥∥∥∥ 6

√
2V (t0) < +∞,∀x (t) ∈ X

sup
t∈[t0,+∞)

∥∥∥∥ tαλ̇ (t) + λ (t)− λ∗
∥∥∥∥ 6

√
2V (t0) < +∞,

sup
t∈[t0,+∞)

‖x (t)− x∗‖ 6
√

2

ζ
V (t0) < +∞, ∀x (t) ∈ X

sup
t∈[t0,+∞)

‖λ (t)− λ∗‖ 6
√

2

ζ
V (t0) < +∞,

which means that x (t) ,∀ t > t0, x (t) ∈ X and λ (t) are bounded. In addition, by using the
triangle inequality, we obtain

t ‖ẋ (t)‖ 6α
∥∥∥∥ tαẋ (t) + x (t)− x∗

∥∥∥∥+ α ‖x (t)− x∗‖

6a
(√

ζ + 1
)√2

ζ
V (t0) < +∞,∀ t > t0, x (t) ∈ X ;

t
∥∥∥λ̇ (t)

∥∥∥ 6α

∥∥∥∥ tαλ̇ (t) + λ (t)− λ∗
∥∥∥∥+ α ‖λ (t)− λ∗‖

6a
(√

ζ + 1
)√2

ζ
V (t0) < +∞,∀ t > t0,
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it means ‖ẋ (t)‖ = O
(

1
t

)
,∀t > t0, x (t) ∈ X and

∥∥∥λ̇ (t)
∥∥∥ = O

(
1
t

)
,∀t > t0.

2) From (29) with α ≥ 2, ζ > 0, β ≥ 0, we can get V̇ (t) 6 − ζt
α ‖ẋ (t)‖2− ζt

α

∥∥∥λ̇ (t)
∥∥∥2
, ∀ t >

t0, x (t) ∈ X , and integrating the inequality above, we can obtain for any t ≥ t0 > 0

ˆ +∞

t0

t ‖ẋ (t)‖2 dt 6 α

ζ
V (t0) < +∞,

ˆ +∞

t0

t
∥∥∥λ̇ (t)

∥∥∥2
dt 6

α

ζ
V (t0) < +∞.

3) In addition, together with (18) and V̇ (t) ≤ 0, t ≥ t0 > 0, we have

0 6
t2

α2
(Lβ (x (t) , λ∗)− Lβ (x∗, λ (t))) 6 V (t0) < +∞, (30)

which implies Lβ (x (t) , λ∗)− Lβ (x∗, λ (t)) ≤ α2V(t0)
t2

.
From the first, third and fourth equalities in APDMD (14), for every t ≥ t0, we have

λ (t)− λ (t0) =

ˆ t

t0

λ̇ (s) ds

=
1

ζ

ˆ t

t0

s
α (A∇ψ∗ (u (s))− b) ds − 1

ζ

ˆ t

t0

v̇ (s) ds

=
1

ζ

ˆ t

t0

s
α (A∇ψ∗ (u (s))− b) ds +

t0
ζα
λ̇ (t0) +

1

ζ
λ (t0)− t

ζα
λ̇ (t)− 1

ζ
λ (t)

⇒ t

ζα
λ̇ (t) +

1 + ζ

ζ
λ (t)− t0

ζα
λ̇ (t0)− 1 + ζ

ζ
λ (t0)

=
1

ζ

ˆ t

t0

s
α (Ax (s)− b) ds +

1

ζ

ˆ t

t0

s2

α2d (Ax (s)− b) ds

=
1

ζ

ˆ t

t0

s
α (Ax (s)− b) ds +

t2

ζα2
(Ax (t)− b)

− t20
ζα2

(Ax (t0)− b)− 1

ζ

ˆ t

t0

2s
α2 (Ax (s)− b) ds

=
t2

ζα2
(Ax (t)− b)− t20

ζα2
(Ax (t0)− b) +

1

ζ

ˆ t

t0

s

(
α− 2

α2

)
(Ax (s)− b) ds,

(31)

where the second equality holds from the fourth equality in APDMD (14) λ̇ (t) = t
ζα

(A∇ψ∗ (u (t))− b) − 1
ζ v̇ (t), the third equality is satisfied due to v (t) = t

α λ̇ (t) + λ (t), i.e.,
the third equality in APDMD (14), and the fourth equality holds because of ∇ψ∗ (u (t)) =
x (t) + t

α ẋ (t), i.e., the first equality in APDMD (14).
It follows from (31) that,∥∥∥∥ t2

ζα2
(Ax (t)− b) +

ˆ t

t0

(
α− 2

s

)
s2

ζα2 (Ax (s)− b) ds
∥∥∥∥ 6 C1, ∀t > t0 > 0, x (t) ∈ X . (32)
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where C1 = sup
t∈[t0,+∞)

{
t
ζα

∥∥∥λ̇ (t)
∥∥∥+ t0

ζα

∥∥∥λ̇ (t0)
∥∥∥+ 1+ζ

ζ ‖λ (t)− λ (t0)‖+
t20
α2 ‖Ax (t0)− b‖

}
<

+∞. Setting

g (t) =
t2

ζα2
(Ax (t)− b) , a (t) =

α− 2

α2
,∀t > t0 > 0,

and applying Lemma 12 to get that

t2

ζα2
‖Ax (t)− b‖ 6 2C1

⇒‖Ax (t)− b‖ 6 2ζα2C1

t2
,∀t > t0 > 0, x (t) ∈ X .

(33)

Since Lβ (x (t) , λ∗)−Lβ (x∗, λ (t)) = f (x (t))−f (x∗)+ β
2 ‖Ax (t)− b‖2+(Ax (t)− b)T λ∗.

Using (30) and (33) we get

|f (x (t))− f (x∗)|

6Lβ (x (t) , λ∗)− Lβ (x∗, λ (t)) + ‖λ∗‖ ‖Ax (t)− b‖+
β

2
‖Ax (t)− b‖2

6
α2

t2
(V (t0) + 2ζ ‖λ∗‖C1) +

2βζ2α4C2
1

t4
,∀t > t0 > 0, x (t) ∈ X .

(ii) α > 2. The inequality (29) with α > 2, ζ > 0, β ≥ 0, we can get V̇ (t) 6
−tα−2

α (Lβ (x (t) , λ∗)− Lβ (x∗, λ (t))) , ∀ t > t0, x (t) ∈ X , and integrating the inequality
above gives

ˆ +∞

t0

t (Lβ (x (t) , λ∗)− Lβ (x∗, λ (t)))dt 6
α

α− 2
V (t0)− α

α− 2
V (+∞)

6
α

α− 2
V (t0) < +∞, ∀x (t) ∈ X .

Thus, the proof is completed.

Lemma 12. (Hulett and Nguyen (2023), He et al. (2022), He et al. (2023)) Assume that
g : [t0,+∞)→ R is a continuously differentiable function of t, and a : [t0,+∞)→ [0,+∞)
is a continuous function, t > t0 > 0, C > 0. If∣∣∣∣g (t) +

ˆ t

t0

a (s) g (s) ds

∣∣∣∣ 6 C, t > t0 > 0,

then

sup
t>t0
|g (t)| 6 2C < +∞, t > t0 > 0.
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3.5 Examples of the APDMD

In this subsection, we will illustrate some examples of the APDMD (14), i.e., (15), in other
words, the APDMD can reduce to some classical and new dynamical approaches when
choosing different constraint set X , i.e., X is an Euclidean space, X is a positive-orthant
constrained set, X is a unit simplex set and X is a closed and convex set, and its projection
operator PX has a closed form solution (the detailed description is given in (Parikh et al.
(2014)).

Case 1: If X is an Euclidean space, i.e., X = Rn. Let ψ
(
x (t) + α

t ẋ (t)
)
= 1

2

∥∥x (t) + α
t ẋ (t)

∥∥2
,

then, one has ∇ψ
(
x (t) + α

t ẋ (t)
)

= u (t), ψ∗ (u (t)) = 1
2 ‖u (t)‖2, ∇ψ∗ (u (t)) = u (t),

∇2ψ∗
(
∇ψ

(
x (t) (t) + α

t ẋ (t)
))
≡ In. The APDMD (15) reduces to the classical acceler-

ated primal-dual dynamical approaches in (He et al. (2021); Zeng et al. (2022); Boţ and
Nguyen (2021); Attouch et al. (2022)).


ẍ (t) + α+1+αζ

t ẋ (t)

+
(
∇f (x (t)) + βAT (Ax (t)− b) +AT

(
λ (t) + t

α λ̇ (t)
))

= 0,

λ̈ (t) + α+1+αζ
t λ̇ (t)−A

(
x (t) + t

α ẋ (t)
)

+ b = 0,

x (t0) = x0 ∈ Rn, ẋ (t0) = 0, λ (t0) = λ0, λ̇ (t0) = 0.

(34)

Case 2: In (Banerjee et al. (2005)), if X is a positive-orthant constrained set, i.e.,
X = Rn+. Let the negative entropy function ψ (x) =

∑n
i=1 xi lnxi be a distance generating

function in this case. Then, one has ∇ψ (x) = col (1 + lnx1, ..., 1 + lnxn) and ψ∗ (u) =∑n
i=1 e

ui−1, ∇ψ∗ (u) = col
(
eu1−1, ..., eun−1

)
, ∇2ψ∗ (u (t)) = diag

(
eu1−1, ..., eun−1

)
. Thus,

for all x ∈ Rn+, we have

∇2ψ∗
(
∇ψ

(
x (t) +

t

α
ẋ (t)

))
=diag

(
x1 (t) +

t

α
x1 (t) , ..., xn (t) +

t

α
xn (t)

)
= diag

(
x (t) +

t

α
ẋ (t)

)
.

Correspondingly, APDMD (15) is turned into
ẍ (t) + α+1

t

(
In + αζ

α+1diag
(
x (t) + t

α ẋ (t)
))
ẋ (t)

+diag
(
x (t) + t

α ẋ (t)
) (
∇f (x (t)) + βAT (Ax (t)− b) +AT

(
λ (t) + t

α λ̇ (t)
))

= 0,

λ̈ (t) + α+1+αζ
t λ̇ (t)−A

(
x (t) + t

α ẋ (t)
)

+ b = 0,

x (t0) = x0 ∈ X , ẋ (t0) = ẋ0, λ (t0) = λ0, λ̇ (t0) = λ̇0,

(35)

In addition, for the constrained set X = Rn+, the distance function can also be se-

lected as ψ (x) = −
∑n

i=1 lnxi. Then, we have ∇ψ (x) = col
(
− 1
x1
, ...,− 1

xn

)
and the Breg-

man divergence of ψ for x and y is Dψ (x, y) =
∑n

i=1

(
xi
yi

ln xi
yi
− 1
)

(named the Itakura-

Saito divergence). Further we have ψ∗ (u) = −
∑n

i=1 (1 + ln (−ui)) on Rn−, ∇ψ∗ (u) =
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col
(
− 1
u1
, ...,− 1

un

)
and ∇2ψ∗ = diag

(
1

(u1)2
, ..., 1

(un)2

)
on Rn−. To sum up, one has

∇2ψ∗
(
∇ψ

(
x (t) +

t

α
ẋ (t)

))
=diag

((
x1 (t) +

t

α
ẋ1 (t)

)2

, ...,

(
xn +

t

α
ẋn (t)

)2
)
.

(36)

Case 3: In (Beck and Teboulle (2003)), if X is a unit simplex set, i.e., X = 4 ={
x ∈ Rn+|

∑n
i=1 xi = 1

}
. Considering a distance-generating function ψ (x) =

∑n
i=1 xi lnxi +

IX (x), where
∑n

i=1 xi lnxi is the negative entropy function and IX (x) is the indicator
function on X and its Bregman divergence is Dψ (x, y) =

∑n
i=1 xi ln xi

yi between the vectors
x, y (called Kullback-Leibler divergence). Then, we have

∇ψ (x) = col (1 + lnx1, ..., 1 + lnxn) , ∀x ∈ X ,

ψ∗ (u) = ln

(
n∑
i=1

eui

)
,∇ψ∗ (u) = col

(
eu1∑n
i=1 e

ui
, ...,

eun∑n
i=1 e

ui

)
,

[
∇2ψ∗ (u)

]
ij

=
eui
∑n

i=1 e
ui − eujeui

(
∑n

i=1 e
ui)2 , ∀ i, j ∈ n.

Furthermore, for any i, j = 1, ..., n, we have[
∇2ψ∗

(
∇ψ

(
x (t) +

t

α
ẋ (t)

))]
ij

=

(
xi (t) +

t

α
ẋi (t)

)
−
(
xi (t) +

t

α
ẋi (t)

)(
xj (t) +

t

α
ẋj (t)

)
.

Therefore, the APDMD (15) reduces to

ẍi (t) + α+1
t ẋi (t) +

(
xi (t) + t

α ẋi (t)
) ((
∇f (x (t)) + βAT (Ax (t)− b)

+AT
(
λ (t) + t

α λ̇ (t)
)

+ αζ
t ẋ (t)

)
i
−
(
x (t) + t

α ẋ (t)
)T

(∇f (x (t))

+βAT (Ax (t)− b) +AT
(
λ (t) + t

α λ̇ (t)
)

+ αζ
t ẋ (t)

))
= 0,∀i = 1, ..., n,

λ̈ (t) + α+1+αζ
t λ̇ (t)−A

(
x (t) + t

α ẋ (t)
)

+ b = 0,

x (t0) = x0 ∈ X , ẋ (t0) = ẋ0, λ (t0) = λ0, λ̇ (t0) = λ̇0,

(37)

where the
(
∇f (x (t)) + βAT (Ax (t)− b) +AT

(
λ (t) + t

α λ̇ (t)
)

+ αζ
t ẋ (t)

)
i

is the i-th ele-

ment of ∇f (x (t)) + βAT (Ax (t)− b) +AT
(
λ (t) + t

α λ̇ (t)
)

+ αζ
t ẋ (t).

Case 4: If X is a closed and convex set, and its projection operator PX has a closed
form solution, moreover, setting ψ (x) be 1

2 ‖x‖
2 + IX (x), one has ∂ψ (x) = x+NX (x) and

Dψ (x, y) = 1
2 ‖x− y‖

2 , ∀x, y ∈ X . Furthermore, one has ψ∗ (u) = 1
2

(
‖u‖2 − ‖u− PX (u)‖2

)
,

∇ψ∗ (u) = PX (u). According to the above discussion, the APDMD (14) reduces to a new
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accelerated primal-dual projection dynamical (APDPD) approach :

ẋ (t) = α
t (PX (u (t))− x (t)) ,

u̇ (t) = − t
α

(
∇f (x (t)) + βAT (Ax (t)− b) +AT v (t)

)
− ζẋ (t) ,

λ̇ (t) = α
t (v (t)− λ (t)) ,

v̇ (t) = t
α (APX (u (t))− b)− ζλ̇ (t) ,

x (t0) = x0, u (t0) = u0 with x0 = PX (u0) ∈ X ;λ (t0) = λ0, v (t0) = 0.

(38)

3.6 APDMD for DCCP (12) in the smooth case

In this subsection, inspired by the APDMD (14) and distributed consensus theorem, an
accelerated distributed primal-dual mirror dynamical (ADPDMD) approach for DCCP (12)
in the smooth case is proposed and discussed.

For DCCP (12) with smooth convex objective functions, the proposed ADPDMD with
α > 2, β > 0, ζ > 0 is given by

ẋi (t) = α
t (∇ψ∗i (ui (t))− xi (t)) ,

u̇i (t) = − t
α

(
∇fi (xi (t)) + β

∑n
j=1 aij (xi (t)− xj (t))

+
∑n

j=1 aij

(
λi (t) + t

α λ̇i (t)− λj (t)− t
α λ̇j (t)

))
− ζẋi (t) ,

λ̇i (t) = α
t (vi (t)− λi (t)) ,

v̇i (t) = t
α

∑n
j=1 aij

(
∇ψ∗i (ui (t))−∇ψ∗j (uj (t))

)
− ζλ̇i (t) ,

xi (t0) = xi,0,∇ψ∗i (ui (t0)) = xi,0 ∈ Xi,
λi (t0) = λi,0, vi (t0) = vi,0, i = 1, ..., n.

(39)

Defining L = Ln ⊗ Im, where Ln is the Laplacian matrix of graph G and let x =

col (x1, ..., xn) ∈ Rnm, ẋ = col (ẋ1, ..., ẋn) ∈ Rnm, λ = col (λ1, ..., λn) ∈ Rnm, λ̇ = col
(
λ̇1, ..., λ̇n

)
∈

Rnm,∇f (x) = col (∇f1 (x1) , ...,∇fn (xn)) ∈ Rnm,∇ψ∗ (u) = col (∇ψ∗1 (u1) , ...,∇ψ∗n (un)) ∈
Rnm and X =

∏n
i=1Xi is the Cartesian product of set Xi, i = 1, ..., n.

Then the compact formula of APDMD (39) is given by
ẋ (t) = α

t (∇ψ∗ (u (t))− x (t)) ,

u̇ (t) = − t
α (∇f (x (t)) + βLx (t) + Lv (t))− ζẋ (t) ,

λ̇ (t) = α
t (v (t)− λ (t)) , v̇ (t) = t

αL∇ψ
∗ (u (t))− ζλ̇ (t) ,

x (t0) = x0,∇ψ∗ (u (t0)) = x0 ∈ X , λ (t0) = λ0, v (t0) = v0.

(40)

Next, we will illustrate the accelerated convergence rate of the ADPDMD (40) by the
Lyapunov analysis method.

Theorem 13. Suppose Assumption 3.2 holds and let (x (t) , λ (t)) and (x∗, λ∗) be a so-
lution trajectory and an optimal solution for ADPDMD (40) and DCCP (12), respectively.
Then for any (x (t0) , u (t0) , λ (t0) , υ (t0)) ∈ X ×Rnm×Rnm×Rnm and let Lβ (x (t) , λ (t)) =

f (x (t))+ β
2x (t)T Lx (t)+λ (t)T Lx (t), and consider the following candidate Lyapunov func-

tion:

V (t) = V1 (t) + V2 (t) + V3 (t) , (41)
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with 

V1 (t) = t2

α2 (Lβ (x (t) , λ∗)− Lβ (x∗, λ (t)))

= t2

α2

(
f (x (t))− f (x∗) + β

2x (t)Lx (t)2 + Lλ∗
)
,

V2 (t) = Dψ∗ (u (t) , u∗) + ζ
2 ‖x (t)− x∗‖2

= ψ∗ (u (t))− ψ∗ (u∗)−∇ψ∗ (u∗)T (u (t)− u∗) + ζ
2 ‖x (t)− x∗‖2 ,

V3 (t) = Dh (v (t) , v∗) + ζ
2 ‖λ (t)− λ∗‖2

= 1
2 ‖v (t)− v∗‖2 + ζ

2 ‖λ (t)− λ∗‖2 ,

where u∗ = ∇ψ (x∗) , v∗ = λ∗. The following statements are true:

(I) ζ = 0, β ≥ 0.

(i) α > 2. For any t > t0 > 0, x (t) ∈ X , we have

1) t
α ẋ (t) +x (t) = ψ∗ (u (t)) and t

α λ̇ (t) +λ (t) = v (t) of ADPDMD (40) are bounded;

2) One has

Lβ (x (t) , λ∗)− Lβ (x∗, λ (t)) ≤ α2V (t0)

t2
; (42)

3) if, in addition, β > 0,

x (t)T Lx (t) ≤ 2α2V (t0)

βt2
; (43a)

ˆ +∞

t0

tx (t)T Lx (t)dt < +∞; (43b)

(ii) α > 2. For any t > t0 > 0, x (t) ∈ X , we can get

ˆ +∞

t0

t (Lβ (x (t) , λ∗)− Lβ (x∗, λ (t)))dt < +∞; (44)

(II) ζ > 0, β > 0.

(i) α > 2. For any t > t0 > 0, x (t) ∈ X , one has

1) x (t) and λ (t) of ADPDMD (40) are bounded;

‖ẋ (t)‖ = O

(
1

t

)
,
∥∥∥λ̇ (t)

∥∥∥ = O

(
1

t

)
; (45)

2)

ˆ +∞

t0

t ‖ẋ (t)‖2 dt 6 α

ζ
V (t0) < +∞; (46a)

ˆ +∞

t0

t
∥∥∥λ̇ (t)

∥∥∥2
dt 6

α

ζ
V (t0) < +∞; (46b)
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3)

Lβ (x (t) , λ∗)− Lβ (x∗, λ (t)) ≤ α2V (t0)

t2
; (47a)√

x (t)T Lx (t) 6
2ζα2C1

t2
; (47b)

|f (x (t))− f (x∗)| 6 α2

t2
(V (t0) + 2ζ ‖λ∗‖C1) +

2βζ2α4C2
1

t4
; (47c)

where C1 = sup
t∈[t0,+∞)

{
t
ζα

∥∥∥λ̇ (t)
∥∥∥+ t0

ζα

∥∥∥λ̇ (t0)
∥∥∥+ 1+ζ

ζ

∥∥λ (t)− λ
(
t0
)∥∥+

t20
α2 ‖Lx (t0)‖

}
<

+∞.

(ii) α > 2. For any t > t0 > 0, x (t) ∈ X , we have

ˆ +∞

t0

t (Lβ (x (t) , λ∗)− Lβ (x∗, λ (t)))dt < +∞. (48)

Proof

Following the similar steps as the proof of Theorem 11, the proof can be obtained
easily. Due to space limitations, we omit the proof.

3.7 APDMD for DEMO (13) in smooth case

In this subsection, to address the DEMO (13), where its objective function is smooth
and convex, an accelerated distributed mirror dynamical (ADMD) approach is investigated
based on APDMD (14). Recalling the DEMO (13), the coupled equations

∑n
i=1Aixi =∑n

i=1 di ∈ Rm can be equivalently decomposed as Āx−d+Ly = 0 ∈ Rnm with L = Ln⊗Im
and an auxiliary variable y = col (y1, ..., yn) ∈ Rnm by using the properties of the Lapla-
cian matrix of undirected G (i.e., ker (Ln) = {ς1|ς ∈ R}, rang (Ln) =

{
ω ∈ Rn|ωT 1 = 0

}
).

Therefore, the DEMO (13) is equivalent to:

min
x∈R

∑n
i=1

pi ,y∈Rnm
f (x) =

n∑
i=1

fi (xi),

s.t. Āx− d+ Ly = 0, x ∈ X =

n∏
i=1

Xi,
(49)

where Ā = bldiag {Ap1 , Ap2 , ..., Api} ∈ Rnm×
∑n
i=1 pi , d = col (d1, d2, ..., dn) ∈ Rnm, and

X =
∏n
i=1Xi is the Cartesian product of set Xi, i = 1, ..., n.

To deal with the modified DEMO (49) with smooth convex objective functions, we
propose the following accelerated distributed mirror dynamical (ADMD) approach with
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t ≥ t0 > 0 and α > 2 and ζ > 0 as follows:

ẋ (t) = α
t (∇ψ∗ (u (t))− x (t)) , u̇ (t) = − t

α

(
∇f (x (t)) + ĀT v (t)

)
− ζẋ (t) ,

λ̇ (t) = α
t (v (t)− λ (t)) , v̇ (t) = t

α

(
Āψ∗ (u (t))− d− βLλ (t) + Lz (t)

)
− ζλ̇ (t) ,

ẏ (t) = α
t (z (t)− y (t)) , ż (t) = − t

αLv (t)− ζẏ (t) ,

x (t0) = x0, u (t0) = u0 with ∇ψ∗ (u0) = x0 ∈ X ,
λ (t0) = λ0, v (t0) = v0, y (t0) = y0, z (t0) = z0.

(50)

Theorem 14. Suppose Assumption 3.2 holds and let (x (t) , λ (t) , y (t) , u (t) ,
v (t) , z (t)) be a solution trajectory and (x∗, λ∗, y∗, u∗, v∗, z∗) be an optimal solution of
ADMD (50), respectively. Then, for any (x (t0) , u (t0) , λ (t0) , υ (t0) , y (t0) , z (t0)) ∈ X ×
R
∑n
i=1 pi×Rnm×Rnm×Rnm×Rnm, and let Lβ (x (t) , λ (t) , y (t)) = f (x (t))− β

2λ (t)T Lλ (t)+

λ (t)T
(
Āx (t)− d+ Ly (t)

)
, and design a Lyapunov function as follows:

V (t) =V1 (t) + V2 (t) + V3 (t) + V4 (t) , (51)

with 

V1 (t) = t2

α2 (Lβ (x (t) , y∗, λ∗)− Lβ (x∗, y∗, λ (t)))

= t2

α2

(
f (x (t))− f (x∗) + (λ∗)T

(
Āx (t)− d− Ly∗

)
+ 1

2λ (t)T Lλ (t)
)

V2 (t) = Dψ∗ (u (t) , u∗) + ζ
2 ‖x (t)− x∗‖2

= ψ∗ (u (t))− ψ∗ (u∗)−∇ψ∗ (u∗)T (u (t)− u∗) + ζ
2 ‖x (t)− x∗‖2 ,

V3 (t) = Dh (v (t) , v∗) + ζ
2 ‖λ (t)− λ∗‖2 = 1

2 ‖v (t)− v∗‖2 + ζ
2 ‖λ (t)− λ∗‖2 ,

V4 (t) = Dh (z (t) , z∗) + ζ
2 ‖y (t)− y∗‖2 = 1

2 ‖z (t)− z∗‖2 + ζ
2 ‖y (t)− y∗‖2 ,

where u∗ = ∇ψ (x∗), v∗ = λ∗ and z∗ = y∗. We have the following statements:
(I) ζ = 0, β ≥ 0.

(i) α > 2. For any t > t0 > 0, x (t) ∈ X , we have
1) t

α ẋ (t) +x (t) = ψ∗ (u (t)), t
α λ̇ (t) +λ (t) = v (t) and t

α ẏ (t) + y (t) = z (t) of ADMD
(50) are bounded;

2) One has

Lβ (x (t) , y∗, λ∗)− Lβ (x∗, y∗, λ (t)) ≤ α2V (t0)

t2
; (52)

3) if, in addition, β > 0,

λ (t)T Lλ (t) ≤ 2α2V (t0)

βt2
; (53a)

ˆ +∞

t0

tλ (t)T Lλ (t)dt < +∞; (53b)

(ii) α > 2. For any t > t0 > 0, x (t) ∈ X , we can get

ˆ +∞

t0

t (Lβ (x (t) , y∗, λ∗)− Lβ (x∗, y∗, λ (t)))dt < +∞; (54)
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(II) ζ > 0, β ≥ 0.
(i) α > 2. For any t > t0 > 0, x (t) ∈ X , one has
1) x (t), y (t) and λ (t) of ADMD (50) are bounded;

‖ẋ (t)‖ = O

(
1

t

)
, ‖ẏ (t)‖ = O

(
1

t

)
,
∥∥∥λ̇ (t)

∥∥∥ = O

(
1

t

)
; (55)

2)
ˆ +∞

t0

t ‖ẋ (t)‖2 dt 6 α

ζ
V (t0) < +∞; (56a)

ˆ +∞

t0

t ‖ẏ (t)‖2 dt 6 α

ζ
V (t0) < +∞; (56b)

ˆ +∞

t0

t
∥∥∥λ̇ (t)

∥∥∥2
dt 6

α

ζ
V (t0) < +∞; (56c)

3)

Lβ (x (t) , y∗, λ∗)− Lβ (x∗, y∗, λ (t)) ≤ α2V (t0)

t2
; (57)

(ii) α > 2. For any t > t0 > 0, x (t) ∈ X , we have
ˆ +∞

t0

t (Lβ (x (t) , y∗, λ∗)− Lβ (x∗, y∗, λ (t)))dt < +∞. (58)

Proof Using the same proof steps as Theorem 11 with Āx∗ = d+Ly∗, v∗ = λ∗, y∗ = z∗,
∇ψ∗ (u∗) = x∗, and Lλ∗ = 0, we can get

V̇ (t) =V̇1 (t) + V̇2 (t) + V̇3 (t) + V̇4 (t)

=
2t

α2

(
f (x (t))− f (x∗) + (λ∗)T

(
Āx (t)− d− Ly∗

)
+
β

2
λ (t)T Lλ (t)

)
+
t

α

(
∇f (x (t)) + ĀTλ∗

)T
(x∗ − x (t))

+
βt

α
(Lλ (t))T (v (t)− v∗) +

βt

α
(Lλ (t))T (v∗ − λ (t))

− t

α

(
Ā∇ψ∗ (u (t))− d− Ly∗

)T
(v (t)− v∗) +

t

α
(y∗)T Lv (t)

+
t

α
(v (t)− v∗)T

(
Āψ∗ (u (t))− d− βLλ (t)

)
+
t

α
(v (t)− v∗)T Lz (t)− t

α
(z (t)− z∗)T Lv (t)− t

α
(z∗)T Lv (t)

− tζ

α

∥∥∥λ̇ (t)
∥∥∥2
− tζ

α
‖ẏ (t)‖2 − tζ

α
‖ẋ (t)‖2

6− (α− 2) t

α2
(Lβ (x (t) , y∗, λ∗)− Lβ (x∗, y∗, λ (t)))

− βt

2α
λ (t)T Lλ (t)− tζ

α

∥∥∥λ̇ (t)
∥∥∥2
− tζ

α
‖ẏ (t)‖2 − tζ

α
‖ẋ (t)‖2

60.

(59)
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The rest results of proof follows from Theorem 11, which we can easily prove. Due to
space limitations, we omit the proof.

4. Optimization approaches for problem (1) in the nonsmooth case

For a vast amount of applications (e.g., signal processing, image processing, machine learn-
ing), nonsmooth functions are prevalent. To encompass these practical situations, we need
to consider the case that the objective function f(x) is nonsmooth. In order to adapt
the APDMD (14) to this nonsmooth case, we will consider a corresponding smoothing
accelerated primal-dual mirror dynamical (SAPDMD) approaches based on smoothing ap-
proximation in (2.6) as follows:

ẋµ (t) = α
t (∇ψ∗ (uµ (t))− xµ (t)) ,

u̇µ (t) = − t
α

(
∇xf̂ (xµ (t) , µ (t)) + βAT (Axµ (t)− b) +AT vµ (t)

)
− ζẋµ (t) ,

λ̇µ (t) = α
t (vµ (t)− λµ (t)) ,

v̇µ (t) = t
α (A∇ψ∗ (uµ (t))− b (t))− ζv̇µ (t) ,

xµ (t0) = xµ0 , u
µ (t0) = uµ0 ,∇ψ∗ (uµ0 ) = xµ0 ,

λµ (t0) = λµ0 , v
µ (t0) = vµ0 , µ (t0) = µ0,

(60)

where t ≥ t0 > 0, β ≥ 0, ζ ≥ 0, α ≥ 2 and µ (t) ≤ µ0
t2α

. The superscript µ means
the trajectories that are obtained by the smoothing dynamical approaches, which is used
to distinguish the trajectories obtained by the dynamical approaches without smoothing
approximation, i.e., APDMD (14), ADPDMD (40) and ADMD (50). The ∇xf̂ (xµ (t) , µ (t))
is the gradient of smoothing function of f̂ (xµ (t) , µ (t)) with respect of xµ (t) for fixed µ (t).
The SAPDMD (60) is illustrated in Figure 4: (left).

Similar to APDMD (14), the SAPDMD (60) can be equivalent to the following smooth-
ing second-order dynamical approach:

ẍµ (t) + α+1
t ẋµ (t) +∇2ψ∗

(
∇ψ

(
xµ (t) + t

α ẋ
µ (t)

)) (
∇xf̂ (xµ (t) , µ (t))

+βAT (Axµ (t)− b) +AT
(
λµ (t) + t

α λ̇
µ (t)

))
+αζ

t ∇
2ψ∗

(
∇ψ

(
xµ (t) + t

α ẋ
µ (t)

))
ẋµ (t) = 0,

λ̈µ (t) + α+1+αζ
t λ̇µ (t)−A

(
xµ (t) + α

t ẋ
µ (t)

)
+ b = 0,

xµ (t0) = xµ0 ∈ X , ẋµ (t0) = ẋµ0 , λ
µ (t0) = λµ0 , λ̇

µ (t0) = λ̇µ0 .

(61)

4.1 Nonsmooth dynamical approaches comparison

To solve nonsmooth optimization problems, many technologies have been studied and pre-
sented in designing dynamical optimized methods, such as, differential inclusion method in
(Cabot and Paoli (2007); Vassilis et al. (2018); He et al. (2017)), Moreau-Yosida regular-
ization method in (Balavoine et al. (2013); Attouch et al. (2022)) and directional derivative
method in (Su et al. (2016); Fazlyab et al. (2017)).
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Figure 4: (left) The demonstration of SAPDMD (60). (right) The demonstration of the
proof of feasibility of SAPDMD (60)

.

Compared with the dynamical approaches based on techniques mentioned above for
solving nonsmooth optimization problems, our proposed SAPDMD (60) based on smoothing
approximation technology in Section 2.6 has the following differences and preponderances.

• The solutions may be different. The SAPDMD (60) has a strong global solution,
which is similar to that in (9). In (Vassilis et al. (2018); Cabot and Paoli (2007)),
some inertial differential inclusion dynamical approaches are investigated, but they
have shock solutions. The dynamical differential inclusion approaches proposed in
(He et al. (2017); Zeng et al. (2018)) have a Carathéodory’s solution or Filippov’s
solution.

• The SAPDMD (60) can achieve the optimal solution of problem (1) in the nonsmooth
case when µ→ 0, which is different from the works in (Nesterov (2005)) and (Allen-
Zhu and Hazan (2016)). In the famous work (Nesterov (2005)), Nesterov’s pioneered
a smoothing method based on the Fenchel conjugate technique to deal with nons-
mooth optimization problems and applied it to design accelerated algorithms with a
ε-solution, i.e., f (xε)−min f (x) ≤ ε, where ε is a small constant, but it’s not equal
to 0.

• The proposed SAPDMD (60) does not require solving some subproblems. However,
the accelerated dynamic approaches in (Balavoine et al. (2013)) and (Attouch et al.

(2022)) need to use the Moreau-Yosida approximation fρ (x) = min
x∈X

{
f (ξ) + 1

2ρ ‖x− ξ‖
2
}

,

the accelerated dynamical aprroaches in (Su et al. (2016)) and (Fazlyab et al. (2017))
need to utilize d (x; ẋ) = arg max

f∈∂f(x)
fT ẋ, for them in general, there are no closed formulas

available. This is undesirable from the point of view of numerical calculation.
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The existence and uniqueness of the global solutions for SAPDMD (60) can be easily
guaranteed by the Cauchy-Lipschitz-Picard theorem. However, the uniqueness of the
solutions in directional derivative methods in (Su et al. (2016)) and (Fazlyab et al.
(2017)), and differential inclusion methods in (He et al. (2017)) may not be guaranteed.

4.2 Feasibility, existence and uniqueness of strong global solution for
SAPDMD

In this subsection, we illustrate the feasibility, existence and uniqueness of a strong global
solution of xµ (t) for the SAPDMD (60) by the same way as in Section 3.3.

Lemma 15. For any (xµ (t0) , uµ (t0) , λµ (t0) , υµ (t0)) ∈ X×Rn×Rm×Rm with ∇ψ∗
(
uµt0
)

=
xµt0, then the variable xµ (t) of SAPDMD is always in X ,∀ t ≥ t0 > 0, i.e., the feasibility of
x (t) is satisfied.

Proof The proof follows the same arguments as in Lemma 8 by the reductio and separa-
tion hyperplane theorem, we omit it here due to the limitation of space.

Now let us turn to the existence of strong global solution for the problem (1) with
nonsmooth objective functions and we will once again take into account solutions (similar
to Definition 9 to this problem.

Theorem 16. For any initial values (xµ (t0) , uµ (t0) , λµ (t0) , υµ (t0)) ∈ X ×Rn×Rm×Rm,
there exists a unique strong global solution of SAPDMD (60).

Proof Let Y µ (t) = (xµ (t) , uµ (t) , λµ (t) , vµ (t)), then the SAPDMD (60) is equivalent to{
Ẏ µ (t) = H (t, Y µ (t))

Y µ (t0) = (xµ (t0) , uµ (t0) , λµ (t0) , υµ (t0)) ,
(62)

where

H (t, Y µ) =
(α
t

(∇ψ∗ (uµ (t))− xµ (t)) , − t

α

(
∇xf̂ (xµ (t) , µ (t))

− AT vµ (t)
)
− ζẋµ (t) ,

α

t
(vµ (t)− λµ (t)) ,

t

α
(A∇ψ∗ (uµ (t))− b)− ζλ̇µ (t)

)
.

(63)

To prove the existence and uniqueness of the strong global solution Y µ (t) generated by
SAPDMD (60) by the Cauchy-Lipschitz-Picard theorem in (Bolte (2003)), the following
conditions need to be satisfied:

(I): For every t ∈ [t0,+∞), the mapping H (t, ·) is l (t)-Lipschitz continuous and l (·) ∈
L1
loc ([t0,+∞)).

(II) For any Y µ : [t0,+∞)→ X×Rn×Rm×Rm, we haveH (·, Y µ(t)) ∈ L1
loc ([t0,+∞) ,X × Rn,

×Rm × Rm).
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The proof of (I). Let t ∈ [t0,+∞) be fixed and use the Lipschitz continuous of ∇ψ∗,
∇xf (x, µ). Then, for any Y µ, Ŷ µ, we have∥∥∥F (t, Y µ (t))− F

(
t, Ŷ µ (t)

)∥∥∥ ≤ ( t2
α2

(
4β2δmax

(
ATA

)2
+

4`2

µ2 (t)

+ δmax

(
ATA

)
l2ψ∗ + 2δmax

(
ATA

))
+
α2
(

6 + 2ζ + (2 + ζ) l2ψ∗
)

t2


1
2 ∥∥∥Y µ (t)− Ŷ µ (t)

∥∥∥ .
By using the notation l (t) =

(
t2
(

4β2δmax(ATA)
2
+ 4`2

µ2(t)
+δmax(ATA)l2ψ∗+2δmax(ATA)

)
α2

+
α2
(

6+2ζ+(2+ζ)l2
ψ∗

)
t2

) 1
2

, one has
∥∥∥H (t, Y µ (t))−H

(
t, Ŷ u (t)

)∥∥∥ ≤ l (t)
∥∥∥Y µ (t)− Ŷ µ (t)

∥∥∥ .
Note that l (t) is continuous on [t0,+∞). Hence l (·) is integrable on [t0, T ] for all

t0 < T < +∞.
The proof of (II). Let Y ∈ X × Rn × Rm × Rm and t0 < T < +∞, it holds that
ˆ T
t0

‖H (t, Y µ (t))‖dt

≤
√
‖∇ψ∗ (u (t))‖2 + ‖x (t)‖2 + ‖λ (t)‖2 + ‖v (t)‖2 + ‖x∗‖2 +

∥∥∥∇xf̂ (xµ (t) , µ (t))
∥∥∥2

×
(

(8 + 4ζ)α2

t2
+

2t2

α2

(
4δmax

(
ATA

)
+ 4β2δmax

(
ATA

)2
+ 2
))

,

and the conclusion holds by employing the continuity of the function

t→
(

(8 + 4ζ)α2

t2
+

2t2

α2

(
4δmax

(
ATA

)
+ 4β2δmax

(
ATA

)2
+ 2
)) 1

2

on [t0, T ] .

The existence and uniqueness of Y µ (t) to the dynamical system (63) can be guaranteed
by the Cauchy-Lipschitz-Picard theorem, consequently, the existence and uniqueness of the
trajectories of SAPDMD (60) also hold.

4.3 The accelerated convergence of the SAPDMD

In this subsection, we will illustrate the accelerated convergence properties of the SAPDMD
(60) based on the Lyapunov analysis method.

A natural question is whether the Lyapunov analysis method in the smooth case is still
effective in the nonsmooth case. The answer is affirmative, provided some care is taken
in the main three steps of our analysis. First, a time-dependent parameter µ (t) needs to
be introduced in the Lyapunov function. Second, when taking the time derivative of Lya-
punov function, it requires utilizing the full differentiation of the smoothing approximation
function, i.e., ∇µf̂ (x (t) , µ (t)) needs to be considered. The third factor is boundedness of
gradient with respect to µ (t). In turn, all the results and estimation we have presented in
the previous sections can be transferred to this more general nonsmooth context.
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Theorem 17. Suppose that Assumption 3.1 holds and the objective function is nons-
mooth convex. Let (x (t) , λ (t)) and (x∗, λ∗) be a solution trajectory and an optimal solu-
tion of SAPDMD (60), respectively. Defining a Lyapunov function as L̂β (xµ (t) , λµ (t)) =

f̂ (xµ (t) , µ (t)) + λµ (t)T (Axµ (t)− b) + β
2 ‖Ax

µ (t)− b‖2, Lβ (xµ (t) , λµ (t)) = f (xµ (t)) +

λµ (t)T (Axµ (t)− b) + β
2 ‖Ax

µ (t)− b‖2 with β ≥ 0, then, for any (xµ (t) , λµ (t)) ∈ X ×Rm,
and consider a well-designed smooth Lyapunov function

V̂ (t) = V̂1 (t) + V̂2 (t) + V̂3 (t) , (64)

with

V̂1 (t) = t2

α2

(
L̂β (xµ (t) , λ∗)− L̂β (x∗, λµ (t)) + 4κf̂µ (t)

)
= t2

α2

(
f̂ (xµ (t) , µ (t))− f (x∗, µ (t)) + 4κf̂µ (t)

+β
2 ‖Ax

µ (t)− b‖2 + (λ∗)T A (xµ (t)− x∗)
)

V̂2 (t) = Dψ∗ (uµ (t) , u∗) + ζ
2 ‖x

µ (t)− x∗‖2

= ψ∗ (uµ (t))− ψ∗ (u∗)−∇ψ∗ (u∗)T (uµ (t)− u∗) + ζ
2 ‖x

µ (t)− x∗‖2 ,
V̂3 (t) = Dh (vµ (t) , v∗) + ζ

2 ‖λ
µ (t)− λ∗‖2 = 1

2 ‖v
µ (t)− v∗‖2 + ζ

2 ‖λ
µ (t)− λ∗‖2 .

where u∗ = ∇ψ (x∗), v∗ = λ∗. The following statements are true:
(I) ζ = 0, β ≥ 0.

(i) α > 2. For any t > t0 > 0, xµ (t) ∈ X , we have
1) t

α ẋ
µ (t) + xµ (t) = ψ∗ (uµ (t)) and t

α λ̇
µ (t) + λµ (t) = vµ (t) of SAPDMD (60) are

bounded;
2) One has

|Lβ (xµ (t) , λ∗)− Lβ (x∗, λµ (t))| 6 α2V̂ (t0)

t2
+

2κf̂µ0

t2α
; (65)

3) if, in addition, β > 0,

‖Axµ (t)− b‖2 ≤ 2α2V̂ (t0)

βt2
; (66a)

ˆ +∞

t0

t ‖Axµ (t)− b‖2dt < +∞; (66b)

(ii) α > 2. For any t > t0 > 0, x (t) ∈ X , we have

ˆ +∞

t0

t
(
Lβ (xµ (t) , λ∗)− Lβ (x∗, λµ (t)) + 2κf̂µ (t)

)
dt < +∞; (67)

(II) ζ > 0, β > 0.
(i) α > 2. For any t > t0 > 0, xµ (t) ∈ X , one has
1) xµ (t) and λµ (t) are bounded;

‖ẋµ (t)‖ = O

(
1

t

)
,
∥∥∥λ̇µ (t)

∥∥∥ = O

(
1

t

)
; (68)
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2)

ˆ +∞

t0

t
∥∥ẋµ (t)

∥∥2
dt 6

α

ζ
V̂ (t0) < +∞; (69a)

ˆ +∞

t0

t
∥∥∥λ̇µ (t)

∥∥∥2
dt 6

α

ζ
V̂ (t0) < +∞; (69b)

3)

|Lβ (xµ (t) , λ∗)− Lβ (x∗, λµ (t))| 6 α2V̂ (t0)

t2
+

2κf̂µ0

t2α
; (70a)

‖Axµ (t)− b‖ 6 2ζα2C1

t2
; (70b)

|f (xµ (t))− f (x∗)| 6 α2

t2

(
V̂ (t0) + 2ζ ‖λ∗‖ C1

)
+

2βζ2α4C2
1

t4
; (70c)

where C1 = sup
t∈[t0,+∞)

{
t
ζα

∥∥∥λ̇µ (t)
∥∥∥+ t0

ζα

∥∥∥λ̇µ (t0)
∥∥∥+ 1+ζ

ζ ‖λ
µ (t)− λµ (t0)‖+

t20
α2 ‖Axµ (t0)− b‖

}
<

+∞.
(ii) α > 2. For any t > t0 > 0, x (t) ∈ X , we have

ˆ +∞

t0

t
(
Lβ (xµ (t) , λ∗)− Lβ (x∗, λµ (t)) + 2κf̂µ (t)

)
dt < +∞. (71)

Proof
Note that the function V̂1 (t) is nonnegative for any t ≥ t0 > 0 since

ˆ̂Lβ (xµ (t) , λ∗)− L̂β (x∗, λµ (t)) + 4κf̂µ (t)

≥f (xµ (t))− f (x∗) + (λ∗)T A (xµ (t)− x∗) +
β

2
‖Axµ (t)− b‖2 + 2κf̂µ (t)

=Lβ (xµ (t) , λ∗)− Lβ (x∗, λµ (t)) + 2κf̂µ (t) ≥ 0,

(72)

where the first equality holds from f̂ (xµ (t) , µ (t)) − f (xµ (t)) + κf̂µ (t) ≥ 0, f (x∗) −
f (x∗, µ (t)) +κf̂µ (t) ≥ 0 in Definition 6 (iv), and the second inequality is satisfied due to

inequalities (9). Thus the V̂1 (t) > 0 holds, i.e., V̂1 (t) is nonnegative.
When ζ = 0. Since ψ∗ (·) is convex, it gives Dψ∗ (uµ (t) , u∗) ≥ 0, and h (·) = 1

2 ‖·‖
2 is

strongly convex, we can obtain that Dh (vµ (t) , λ∗) ≥ 0 and ‖vµ (t)‖ → +∞, V̂2 (t)→ +∞,
i.e., V̂2 (t) is radially unbounded of variable vµ (t). Thus, V̂ (t) is nonnegative and radially
unbounded of variable vµ (t).

When ζ > 0. According to ζ
2 ‖x

µ (t)− x∗‖2, one has ‖xµ (t)‖ → +∞, V̂2 (t) → +∞
which means V̂2 (t) is nonnegative and radially unbounded of xµ (t). In addition, for the
V̂3 (t), since Dh (vµ (t) , v∗) = 1

2 ‖v
µ (t)− v∗‖2 and ζ

2 ‖λ
µ (t)− λ∗‖2 > 0 are strongly convex

functions of variables vµ (t) and λµ (t), it implies ‖vµ (t)‖ → +∞ or ‖λµ (t)‖ → +∞,
V̂3 (t) → +∞. Thus, V̂3 (t) is nonnegative and radially unbounded of variables vµ (t) and
λµ (t). Thus, V̂ (t) is nonnegative and radially unbounded of variables xµ (t), vµ (t) and
λµ (t).
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The derivatives of V̂1 (t), V̂2 (t) and V̂3 (t) along the trajectory of SAPDMD (60) with
∇ψ∗ (u∗) = x∗ and Ax∗ = b satisfy

˙̂V1 (t) =
2t

α2

(
f̂ (xµ (t) , µ (t))− f (x∗, µ (t)) + (λ∗)T A (xµ (t)− x∗)

+4κf̂µ (t) +
β

2
‖Axµ (t)− b‖2

)
+
t

α
(∇ψ∗ (uµ (t))−∇ψ∗ (u∗))T

×
(
∇xf̂ (xµ (t) , µ (t)) + βAT (Axµ (t)− b) +ATλ∗

)
+
t

α

(
∇xf̂ (xµ (t) , µ (t)) + βAT (Axµ (t)− b) +ATλ∗

)T
× (∇ψ∗ (u∗)− xµ (t)) +

2t2

α2
κf̂ µ̇ (t)

+
t2

α2

(
∇µf̂ (xµ (t) , µ (t)) +∇µf̂ (x∗, µ (t)) + 2κf̂

)
µ̇ (t) ,

(73)

˙̂V2 (t) =− ζ (∇ψ∗ (uµ (t))−∇ψ∗ (u∗))T ẋµ (t)

− t

α

(
∇xf̂ (xµ (t) , µ (t)) + βATA (xµ (t)− x∗) +AT vµ (t)

)T
× (∇ψ∗ (uµ (t))−∇ψ∗ (u∗)) + ζ (xµ (t)− x∗)T ẋµ (t)

=− t

α
(∇ψ∗ (uµ (t))−∇ψ∗ (u∗))T

(
AT vµ (t)−ATλ∗

)
− t

α

(
∇xf̂ (xµ (t) , µ (t)) + βATA (xµ (t)− x∗) +ATλ∗

)T
× (∇ψ∗ (uµ (t))−∇ψ∗ (u∗))− ζt

α
‖ẋµ (t)‖2 ,

(74)

˙̂V3 (t) =
t

α
(vµ (t)− λ∗)T A (∇ψ∗ (uµ (t))− x∗)

− (vµ (t)− λ∗)T λ̇µ (t) + ζ (λµ (t)− λ∗)T λ̇µ (t)

=
t

α
(vµ (t)− λ∗)T A (∇ψ∗ (uµ (t))− x∗)− ζt

α

∥∥∥λ̇µ (t)
∥∥∥2

(75)

Combining (73), (74), (75) with ∇ψ∗ (u∗) = x∗, Ax∗ = b, v∗ = λ∗ and rearranging them
yields

˙̂V (t) =
˙̂V1 (t) +

˙̂V2 (t) +
˙̂V3 (t)

≤ 2t

α2

(
f̂ (xµ (t) , µ (t))− f̂ (x∗, µ (t)) +

β

2
‖Axµ (t)− b‖2 + 4κf̂µ (t)

+ (λ∗)T A (xµ (t)− x∗)
)
− t

α

(
f̂ (xµ (t) , µ (t))− f̂ (x∗, µ (t))

+β ‖Axµ (t)− b‖2 + (λ∗)T A (xµ (t)− x∗)
)

+
2t2

α2
κf̂ µ̇ (t)

− ζt

α
‖ẋµ (t)‖2 − ζt

α

∥∥∥λ̇µ (t)
∥∥∥2
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≤(2− α) t

α2

(
f̂ (xµ (t) , µ (t))− f̂ (x∗, µ (t))2 + 4κf̂µ (t)

+ (λ∗)T A (xµ (t)− x∗) +
β

2
‖Axµ (t)− b‖

)
− tβ

2α
‖Axµ (t)− b‖2 +

4t

α
κf̂µ (t) +

2t2

α2
κf̂ µ̇ (t)

− ζt

α
‖ẋµ (t)‖2 − ζt

α

∥∥∥λ̇µ (t)
∥∥∥2

≤− (α− 2) t

α2

(
L̂β (xµ (t) , λ∗)− L̂β (x∗, λµ (t)) +4κf̂µ (t)

)
− tβ

2α
‖Axµ (t)− b‖2 ≤ 0− ζt

α
‖ẋµ (t)‖2 − ζt

α

∥∥∥λ̇µ (t)
∥∥∥2

≤− (α− 2) t

α2
(Lβ (xµ (t) , λ∗)− Lβ (x∗, λµ (t)) +2κf̂µ (t)

)
− tβ

2α
‖Axµ (t)− b‖2 ≤ 0− ζt

α
‖ẋµ (t)‖2 − ζt

α

∥∥∥λ̇µ (t)
∥∥∥2
,

(76)

where the first inequality holds since ∇µf̂ (xµ (t) , µ (t)) + ∇µf̂ (x∗, µ (t)) + 2κf̂ ≥ 0 and

µ̇ (t) ≤ 0, the second inequality is satisfied because of the convexity of f̂ (xµ (t) , µ (t))
of xµ (t) ∈ X with any fixed µ (t) ∈ (0, µ0], the third inequality holds from µ (t) ≤ µ0

t2α

(i.e., µ̇ (t) ≤ −µ0 (2α) t(−2α−1) and t2

α2κf̂ ≥ 0 imply 2t
α κf̂µ (t) + t2

α2κf̂ µ̇ (t) ≤ 2t
α κf̂µ0t

−2α −
t2

α2κf̂µ0 (2α) t−2α−1 = 2t
α κf̂µ0t

−2α − 2t
α2κf̂µ0t

−2α = 0), and the last inequality holds since

α ≥ 2 and Lβ (xµ (t) , λ∗)− Lβ (x∗, λµ (t)) + 2κf̂µ (t) ≥ 0.

According to inequality (76), we have
˙̂V (t) ≤ 0, t ≥ t0 > 0, i.e., V (t) is nonincreasing

at t ≥ t0 > 0, thus 0 < V̂ (t) 6 V̂ (t0) , t ≥ t0 > 0.

(I) ζ = 0, β ≥ 0.

(i) If α > 2.

1) From the definition of V̂ (t) in (64) and
˙̂V (t) ≤ 0, t ≥ t0 > 0, one has

0 ≤ 1

2lψ∗

∥∥∥∥ tαẋµ (t) + xµ (t)− x∗
∥∥∥∥2

+
1

2

∥∥∥∥ tαλ̇µ (t) + λµ (t)− λ∗
∥∥∥∥2

=
1

2lψ∗
‖ψ∗ (uµ (t))− x∗‖2 +

1

2
‖vµ (t)− λ∗‖2

≤Dψ∗ (uµ (t) , u∗) +Dh (vµ (t) , λ∗) 6 V̂ (t0) < +∞,

which implies that sup
t∈[t0,+∞)

∥∥∥ tα λ̇µ (t) + λµ (t)
∥∥∥ < +∞ and sup

t∈[t0,+∞)

∥∥ t
α ẋ

µ (t) + xµ (t)
∥∥ <

+∞,∀xµ (t) ∈ X , i.e., t
α ẋ

µ (t) + xµ (t) = ψ∗ (uµ (t)) and t
α λ̇

µ (t) + λµ (t) = vµ (t) are
bounded.

2) From the definition of V̂ (t) in (64) and
˙̂V (t) ≤ 0, t ≥ t0 > 0, we can get

0 6
t2

α2

(
Lβ (xµ (t) , λ∗)− Lβ (x∗, λµ (t)) + 2κf̂µ (t)

)
6 V̂ (t0) < +∞,
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which means Lβ (xµ (t) , λ∗) − Lβ (x∗, λµ (t)) + 2κf̂µ (t) ≤ α2V̂(t0)
t2

, ∀ t > t0 > 0, xµ (t) ∈ X .
By using the triangle inequality, one has

|Lβ (xµ (t) , λ∗)− Lβ (x∗, λµ (t))|

6
∣∣∣Lβ (xµ (t) , λ∗)− Lβ (x∗, λµ (t)) + 2κf̂µ (t)

∣∣∣+
∣∣∣2κf̂µ (t)

∣∣∣
6
α2V̂ (t0)

t2
+

2κf̂µ0

t2α
,∀ t > t0 > 0, xµ (t) ∈ X .

3) From the definition of V̂ (t) in (64) and
˙̂V (t) ≤ 0, t ≥ t0 > 0, we have

0 6
βt2

2α2
‖Axµ (t)− b‖2 6 V̂ (t0) < +∞,

which implies ‖Axµ (t)− b‖2 ≤ 2α2V̂(t0)
βt2

, ∀ t > t0 > 0, xµ (t) ∈ X . In addition, if α > 2, ζ =

0, β > 0, it yields to
˙̂V (t) 6 − βt

2α ‖Ax
µ (t)− b‖2 ,∀ t > t0 > 0, xµ (t) ∈ X , and integrating

the inequality above gives

ˆ +∞

t0

t ‖Axµ (t)− b‖2dt 6 2α

β
V̂ (t0) < +∞, ∀ t > t0 > 0, xµ (t) ∈ X .

(ii) α > 2. From (64) with α > 2, ζ = 0, β ≥ 0, we can get

V̇ (t) 6 −tα− 2

α

(
Lβ (xµ (t) , λ∗)− Lβ (x∗, λµ (t)) + 2κf̂µ (t)

)
6 0, ∀ t > t0, x

µ (t) ∈ X ,

and integrating the inequality above gives

ˆ +∞

t0

t
(
Lβ (xµ (t) , λ∗)− Lβ (x∗, λµ (t)) + 2κf̂µ (t)

)
dt

6
α

α− 2
V̂ (t0) < +∞,∀ t > t0 > 0, xµ (t) ∈ X .

(II) ζ > 0, β > 0 .

(i) α > 2.

1) According to the definition of V̂ (t) in (64) and
˙̂V (t) ≤ 0, t ≥ t0 > 0, one has

sup
t∈[t0,+∞)

∥∥∥∥ tαẋµ (t) + xµ (t)− x∗
∥∥∥∥ 6

√
2V̂ (t0) < +∞,∀xµ (t) ∈ X

sup
t∈[t0,+∞)

∥∥∥∥ tαλ̇µ (t) + λµ (t)− λ∗
∥∥∥∥ 6

√
2V̂ (t0) < +∞,

sup
t∈[t0,+∞)

‖xµ (t)− x∗‖ 6
√

2

ζ
V̂ (t0) < +∞,∀xµ (t) ∈ X

sup
t∈[t0,+∞)

‖λµ (t)− λ∗‖ 6
√

2

ζ
V̂ (t0) < +∞,
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which means that xµ (t) ,∀ t > t0, x
µ (t) ∈ X and λµ (t) are bounded. In addition, by using

the triangle inequality, we obtain

t ‖ẋµ (t)‖ 6α
∥∥∥∥ tαẋµ (t) + xµ (t)− x∗

∥∥∥∥+ α ‖xµ (t)− x∗‖

6a
(√

ζ + 1
)√2

ζ
V̂ (t0) < +∞,∀ t > t0 > 0, xµ (t) ∈ X ;

t
∥∥∥λ̇µ (t)

∥∥∥ 6α

∥∥∥∥ tαλ̇µ (t) + λµ (t)− λ∗
∥∥∥∥+ α ‖λµ (t)− λ∗‖

6a
(√

ζ + 1
)√2

ζ
V̂ (t0) < +∞,∀ t > t0,

it means ‖ẋµ (t)‖ = O
(

1
t

)
, ∀t > t0, x

µ (t) ∈ X and
∥∥∥λ̇µ (t)

∥∥∥ = O
(

1
t

)
, ∀t > t0.

2) From (64) with α ≥ 2, ζ > 0, β ≥ 0, we can get V̇ (t) 6 − ζt
α ‖ẋ

µ (t)‖2− ζt
α

∥∥∥λ̇µ (t)
∥∥∥2
,∀ t >

t0 > 0, xµ (t) ∈ X , and integrating the inequality above, we can obtain for any t ≥ t0 > 0

ˆ +∞

t0

t ‖ẋµ (t)‖2 dt 6 α

ζ
V̂ (t0) < +∞,

ˆ +∞

t0

t
∥∥∥λ̇µ (t)

∥∥∥2
dt 6

α

ζ
V̂ (t0) < +∞.

3) In addition, together with (64) and
˙̂V (t) ≤ 0, t ≥ t0 > 0, we can get

0 6
t2

α2

(
Lβ (xµ (t) , λ∗)− Lβ (x∗, λµ (t)) + 2κf̂µ (t)

)
6 V̂ (t0) < +∞,

which means Lβ (xµ (t) , λ∗) − Lβ (x∗, λµ (t)) + 2κf̂µ (t) ≤ α2V̂(t0)
t2

, ∀ t > t0 > 0, xµ (t) ∈ X .
By using the triangle inequality, one has

|Lβ (xµ (t) , λ∗)− Lβ (x∗, λµ (t))|

6
∣∣∣Lβ (xµ (t) , λ∗)− Lβ (x∗, λµ (t)) + 2κf̂µ (t)

∣∣∣+
∣∣∣2κf̂µ (t)

∣∣∣
6
α2V̂ (t0)

t2
+

2κf̂µ0

t2α
,∀ t > t0 > 0, xµ (t) ∈ X .

From the first, third and fourth equalities in SAPDMD (60), for every t ≥ t0, we have

λµ (t)− λµ (t0) =

ˆ t

t0

λ̇µ (s) ds

=
1

ζ

ˆ t

t0

s
α (A∇ψ∗ (uµ (s))− b) ds − 1

ζ

ˆ t

t0

v̇µ (s) ds

=
1

ζ

ˆ t

t0

s
α (A∇ψ∗ (uµ (s))− b) ds

+
t0
ζα
λ̇µ (t0) +

1

ζ
λµ (t0)− t

ζα
λ̇µ (t)− 1

ζ
λµ (t)
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⇒ t

ζα
λ̇µ (t) +

1 + ζ

ζ
λµ (t)− t0

ζα
λ̇µ (t0)− 1 + ζ

ζ
λµ (t0)

=
1

ζ

ˆ t

t0

s
α (Axµ (s)− b) ds +

1

ζ

ˆ t

t0

s2

α2d (Axµ (s)− b) ds

=
1

ζ

ˆ t

t0

s
α (Axµ (s)− b) ds +

t2

ζα2
(Axµ (t)− b)

− t20
ζα2

(Axµ (t0)− b)− 1

ζ

ˆ t

t0

2s
α2 (Axµ (s)− b) ds

=
t2

ζα2
(Axµ (t)− b)− t20

ζα2
(Axµ (t0)− b)

+

ˆ t

t0

s2

ζα2

(
α− 2

s

)
(Axµ (s)− b) ds,

(77)

where the second equality holds from the fourth equality in SAPDMD (60) λ̇µ (t) = −1
ζ v̇

µ (t)+

vµ, the third equality is satisfied due to vµ (t) = t
α λ̇

µ (t) + λµ (t), i.e., the third equality in
SAPDMD (60), and the fourth equality holds because of ∇ψ∗ (uµ (t)) = xµ (t) + t

α ẋ
µ (t),

i.e., the first equality in SAPDMD (60).
It follows from (77) that, for any t > t0 > 0,∥∥∥∥ t2

ζα2
(Axµ (t)− b) +

ˆ t

t0

(
α− 2

s

)
s2

ζα2 (Axµ (s)− b) ds
∥∥∥∥ 6 C1, (78)

where C1 = sup
t∈[t0,+∞)

{
t
ζα

∥∥∥λ̇µ (t)
∥∥∥+ t0

ζα

∥∥∥λ̇µ (t0)
∥∥∥+ 1+ζ

ζ ‖λ
µ (t)− λµ (t0)‖+

t20
α2 ‖Axµ (t0)− b‖

}
<

+∞. Setting

g (t) =
t2

ζα2
(Axµ (t)− b) , a (t) =

α− 2

α2
, ∀t > t0 > 0,

and applying Lemma 12 to get that

t2

ζα2
‖Axµ (t)− b‖ 6 2C1 ⇒ ‖Axµ (t)− b‖ 6 2ζα2C1

t2
,∀t > t0 > 0, xµ (t) ∈ X . (79)

Since Lβ (xµ (t) , λ∗)−Lβ (x∗, λµ (t)) = f (xµ (t))−f (x∗)+β
2 ‖Ax

µ (t)− b‖2+(Axµ (t)− b)T λ∗,
by using (79), we have

|f (xµ (t))− f (x∗)|

6 |Lβ (xµ (t) , λ∗)− Lβ (x∗, λµ (t))|+ ‖λ∗‖ ‖Axµ (t)− b‖+
β

2
‖Axµ (t)− b‖2

6
α2

t2

(
V̂ (t0) + 2ζ ‖λ∗‖ C1

)
+

2βζ2α4C2
1

t4
,∀t > t0 > 0, xµ (t) ∈ X .

(ii) α > 2. From (64) with α > 2, ζ = 0, β ≥ 0, we can get

V̇ (t) 6 −tα− 2

α

(
Lβ (xµ (t) , λ∗)− Lβ (x∗, λµ (t)) + 2κf̂µ (t)

)
6 0,∀ t > t0, x

µ (t) ∈ X ,
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and integrating the inequality above givesˆ +∞

t0

t
(
Lβ (xµ (t) , λ∗)− Lβ (x∗, λµ (t)) + 2κf̂µ (t)

)
dt

6
α

α− 2
V̂ (t0) < +∞,∀ t > t0 > 0, xµ (t) ∈ X .

Thus, the proof is completed.

Similar to the smooth case, the SAPDMD (60) can also be used to address the DCCP
(12) and DEMO (13) with nonsmooth convex objections.

4.4 SAPDMD for DCCP in the nonsmooth case

Based on the SAPDMD (60), a smoothing accelerated dirtibuted primal-dual mirror dy-
namical (SADPDMD) approach for DCCP (12) with nonsmooth convex objective functions
is given by:

ẋµ (t) = α
t (∇ψ∗ (uµ (t))− xµ (t)) ,

u̇µ (t) = − t
α

(
∇xf̂ (xµ (t) , µ (t)) + βLxµ (t) + L (vµ (t))

)
− ζẋµ (t),

λ̇µ (t) = α
t (vµ (t)− λµ (t)) , v̇µ (t) = t

αL∇ψ
∗ (uµ (t))− ζλ̇µ (t),

xµ (t0) = xµ0 ,∇ψ∗ (uµ (t0)) = xµ0 , λ
µ (t0) = λµ0 , v

µ (t0) = vµ0 , µ0 = µ̄ > 0,

(80)

where t ≥ t0 > 0, β ≥ 0, α ≥ 2, and µ (t) ≤ µ0
t2α

.

4.5 The accelerated convergence of the SADPDMD

Now, let’s discuss accelerated convergence properties of SADPDMD (80) with the help of
Lyapunov analysis tool.

Theorem 18. Suppose that Assumption 3.2 holds and the objective function is nons-
mooth. Let (xµ (t) , λµ (t)) and (x∗, λ∗) be a solution trajectory and an optimal solution of
SADPDMD (80), respectively. Let L̂β (xµ (t) , λµ (t)) = f̂ (xµ (t) , µ (t))+β

2 (xµ (t))T L (xµ (t))

+ (λµ (t))T Lxµ (t), Lβ (xµ (t) , λµ (t)) = f (xµ (t)) + β
2 (xµ (t))T L (xµ (t)) + (λµ (t))T Lxµ (t),

and constructing a candidate smoothing Lyapunov function as

V̂ = V̂1 (t) + V̂2 (t) + V̂3 (t) , (81)

with 

V̂1 (t) = t2

α2

(
L̂β (xµ (t) , λ∗)− L̂β (x∗, λµ (t)) + 4κf̂µ (t)

)
= t2

α2

(
f̂ (xµ (t) , µ (t)) + β

2 (xµ (t))T L (xµ (t))

+ (λ∗)T Lxµ (t) + f̂ (x∗, µ (t)) + 4κf̂µ (t)
)

V̂2 (t) = Dψ∗ (uµ (t) , u∗) + ζ
2 ‖u

µ (t)− u∗‖2

= ψ∗ (uµ (t))− ψ∗ (u∗)−∇ψ∗ (u∗)T (uµ (t)− u∗) ,
V̂3 (t) = Dh (vµ (t) , v∗) + ζ

2 ‖λ
µ (t)− λ∗‖2

= 1
2 ‖v

µ (t)− v∗‖2 + ζ
2 ‖λ

µ (t)− λ∗‖2.
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where u∗ = ∇ψ (x∗), v∗ = λ∗. The following statements are true:
(I) ζ = 0, β ≥ 0.

(i) α > 2. For any t > t0 > 0, xµ (t) ∈ X , we have
1) t

α ẋ
µ (t) + xµ (t) = ψ∗ (uµ (t)) and t

α λ̇
µ (t) + λµ (t) = vµ (t) of SADPDMD (80) are

bounded;
2) One has

|Lβ (xµ (t) , λ∗)− Lβ (x∗, λµ (t))| 6 α2V̂ (t0)

t2
+

2κf̂µ0

t2α
; (82)

3) if, in addition, β > 0,

xµ (t)T Lxµ (t) ≤ 2α2V̂ (t0)

βt2
; (83a)

ˆ +∞

t0

txµ (t)T Lxµ (t)dt < +∞; (83b)

(ii) α > 2. For any t > t0 > 0, x (t) ∈ X , we have

ˆ +∞

t0

t
(
Lβ (xµ (t) , λ∗)− Lβ (x∗, λµ (t)) + 2κf̂µ (t)

)
dt < +∞; (84)

(II) ζ > 0, β > 0.
(i) α > 2. For any t > t0 > 0, xµ (t) ∈ X , one has
1) xµ (t) and λµ (t) are bounded;

‖ẋµ (t)‖ = O

(
1

t

)
,
∥∥∥λ̇µ (t)

∥∥∥ = O

(
1

t

)
; (85)

2)

ˆ +∞

t0

t
∥∥ẋµ (t)

∥∥2
dt 6

α

ζ
V̂ (t0) < +∞; (86a)

ˆ +∞

t0

t
∥∥∥λ̇µ (t)

∥∥∥2
dt 6

α

ζ
V̂ (t0) < +∞; (86b)

3)

|Lβ (xµ (t) , λ∗)− Lβ (x∗, λµ (t))| 6 α2V̂ (t0)

t2
+

2κf̂µ0

t2α
; (87a)√

xµ (t)T Lxµ (t) 6
2ζα2C2

t2
; ; (87b)

|f (xµ (t))− f (x∗)| 6 α2

t2

(
V̂ (t0) + 2ζ ‖λ∗‖ C2

)
+

2βζ2α4C2
2

t4
; (87c)

where C2 = sup
t∈[t0,+∞)

{
t
ζα

∥∥∥λ̇µ (t)
∥∥∥+ t0

ζα

∥∥∥λ̇µ (t0)
∥∥∥+ 1+ζ

ζ ‖λ
µ (t)− λµ (t0)‖+

t20
α2 ‖Lxµ (t0)‖

}
<

+∞.
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(ii) α > 2. For any t > t0 > 0, x (t) ∈ X , we haveˆ +∞

t0

t
(
Lβ (xµ (t) , λ∗)− Lβ (x∗, λµ (t)) + 2κf̂µ (t)

)
dt < +∞. (88)

Proof Following similar steps as the proof in Theorem 17, the conclusions can be ob-
tained easily. Due to space limitations, we omit the proof here.

4.6 SADMD for DEMO in the nonsmooth case

To address the DEMO (13) where the objective function is nonsmooth, a smoothing ac-
celerated distributed mirror dynamical (SADMD) approach inspired by the SAPDMD (60)
and distributed consensus theorem is given by

ẋµ (t) = α
t (∇ψ∗ (uµ (t))− xµ (t)) ,

u̇µ (t) = − t
α

(
∇xf̂ (xµ (t) , µ (t)) + ĀT vµ (t)

)
− ζẋµ (t),

λ̇µ (t) = α
t (vµ (t)− λµ (t)) ,

v̇µ (t) = t
α

(
Āψ∗ (uµ (t))− d− βLλµ (t) + Lzµ (t)

)
− ζλ̇µ (t),

ẏµ (t) = α
t (zµ (t)− yµ (t)) , ż (t) = − t

αLv
µ (t)− ζẏµ (t),

xµ (t0) = xµ0 , u
µ (t0) = uµ0 with ∇ψ∗ (u0) = xµ0 ∈ X ,

λµ (t0) = λµ0 , v
µ (t0) = vµ0 , y

µ (t0) = yµ0 , z
µ (t0) = zµ0 , µ0 = µ̄ > 0,

(89)

where t ≥ t0 > 0, β ≥ 0, α ≥ 2, and µ (t) ≤ µ0
t2α

.
The accelerated convergence properties of SADMD (89) will be demonstrated in the

following theorem.

Theorem 19. Suppose that Assumption 3.2 holds, except that the objective function is
nonsmooth. Let (xµ (t) , λµ (t) , yµ (t)) and (x∗, λ∗, y∗) be a solution trajectory and an optimal
solution of SADMD (89), respectively. Then, for any initial values (xµ (t0) , uµ (t0) , λµ (t0) ,
υµ (t0) , yµ (t0) , zµ (t0)) ∈ X×R

∑n
i=1 pi×Rnm×Rnm×Rnm×Rnm and let L̂β (xµ (t) , λµ (t) , yµ (t))

be f̂ (xµ (t) , µ (t))−β
2λ

µ (t)T Lλµ (t)+λµ (t)T
(
Āxµ (t)− d+ Lyµ (t)

)
, Lβ (xµ (t) , λµ (t) , yµ (t)) =

f (xµ (t))− β
2λ

µ (t)T Lλµ (t) + λµ (t)T
(
Āxµ (t)− d+ Lyµ (t)

)
and constructing a smoothing

Lyapunov function as follows:

V̂ (t) = V̂1 (t) + V̂2 (t) + V̂3 (t) + V̂4 (t), (90)

with

V̂β (t) = t2

α2

(
L̂β (xµ (t) (t) , y∗, λ∗)− L̂β (x∗, y∗, λµ (t)) + 4κf̂µ (t)

)
,

= t2

α2

(
f̂ (xµ (t) , µ (t))− f̂ (x∗, µ (t)) + β

2λ
µ (t)T Lλµ (t) ,

+4κf̂µ (t) + (λ∗)T
(
Āxµ (t)− d− Ly∗

))
,

V̂2 (t) = Dψ∗ (uµ (t) , u∗) + ζ
2 ‖x

µ (t)− x∗‖2

= ψ∗ (uµ (t))− ψ∗ (u∗)−∇ψ∗ (u∗)T (uµ (t)− u∗) + ζ
2 ‖x

µ (t)− x∗‖2,
V̂3 (t) = Dh (vµ (t) (t) , v∗) + ζ

2 ‖λ
µ (t)− λ∗‖2 = 1

2 ‖v
µ (t)− λ∗‖2 + ζ

2 ‖x
µ (t)− x∗‖2,

V̂4 (t) = Dh (zµ (t) , z∗) + ζ
2 ‖y

µ (t)− y∗‖2 = 1
2 ‖z

µ (t)− y∗‖2 + ζ
2 ‖y

µ (t)− y∗‖2,
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where u∗ = ∇ψ (x∗), v∗ = λ∗ and z∗ = y∗. The following statements are true.

(I) ζ = 0, β ≥ 0.

(i) α > 2. For any t > t0 > 0, xµ (t) ∈ X , we have

1) t
α ẋ

µ (t) + xµ (t) = ψ∗ (uµ (t)), t
α λ̇

µ (t) + λµ (t) = v (t) and t
α ẏ

µ (t) + yµ (t) = zµ (t)
of SADMD (89) are bounded;

2) One has

|Lβ (xµ (t) , y∗, λ∗)− Lβ (x∗, y∗, λµ (t))| 6 α2V̂ (t0)

t2
+

2κf̂µ0

t2α
; (91)

3) if, in addition, β ≥ 0, one has

λµ (t)T Lλµ (t) ≤ 2α2V̂ (t0)

βt2
; (92a)

ˆ +∞

t0

tλµ (t)T Lλµ (t)dt < +∞; (92b)

(ii) α > 2. For any t > t0 > 0, xµ (t) ∈ X , we can get

ˆ +∞

t0

t
(
Lβ (xµ (t) , y∗, λ∗)− Lβ (x∗, y∗, λµ (t)) + 2κf̂µ (t)

)
dt < +∞; (93)

(II) ζ > 0 and β ≥ 0.

(i) α > 2. For any t > t0 > 0, xµ (t) ∈ X , one has

1) xµ (t), yµ (t) and λµ (t) of SADMD (89) are bounded;

‖ẋµ (t)‖ = O

(
1

t

)
, ‖ẏµ (t)‖ = O

(
1

t

)
,
∥∥∥λ̇µ (t)

∥∥∥ = O

(
1

t

)
; (94)

2)

ˆ +∞

t0

t
∥∥ẋµ (t)

∥∥2
dt 6

α

ζ
V̂ (t0) < +∞; (95a)

ˆ +∞

t0

t ‖ẏ (t)‖2 dt 6 α

ζ
V̂ (t0) < +∞; (95b)

ˆ +∞

t0

t
∥∥∥λ̇ (t)

∥∥∥2
dt 6

α

ζ
V̂ (t0) < +∞; (95c)

3)

|Lβ (xµ (t) , y∗, λ∗)− Lβ (x∗, y∗, λµ (t))| 6 α2V̂ (t0)

t2
+

2κf̂µ0

t2α
; (96)

(ii) α > 2. For any t > t0 > 0, xµ (t) ∈ X , we have

ˆ +∞

t0

t
(
Lβ (xµ (t) , y∗, λ∗)− Lβ (x∗, y∗, λµ (t)) + 2κf̂µ (t)

)
dt < +∞. (97)
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Proof The time derivative of V̂ (t) with Āx∗ = d+ Ly∗, v∗ = λ∗, y∗ = z∗, ∇ψ∗ (u∗) = x∗

and Lλ∗ = 0 is

˙̂V (t) =
˙̂V1 (t) +

˙̂V2 (t) +
˙̂V3 (t) +

˙̂V4 (t)

≤ 2t

α2

(
f̂ (xµ (t) , µ (t))− f̂ (x∗, µ (t)) + (λ∗)T Ā (xµ (t)− x∗) + 4κf̂µ (t)

+
β

2
λµ (t)T Lλµ (t)

)
− tβ

α
(Lλµ (t))T λµ (t) +

4t

α
κf̂µ (t) +

2t2

α2
κf̂ µ̇ (t)

− t

α

(
f̂ (xµ (t) , µ (t))− f̂ (x∗, µ (t)) + (λ∗)T Ā (xµ (t)− x∗) + 4κf̂µ (t)

)
− tζ

α

∥∥∥λ̇µ (t)
∥∥∥2
− tζ

α
‖ẏµ (t)‖2 − tζ

α
‖ẋµ (t)‖2

≤− (α− 2) t

α2

(
f̂ (xµ (t) , µ (t))− f̂ (x∗, µ (t)) + (λ∗)T Ā (xµ (t)− x∗)

+ 4κf̂µ (t) +
β

2
λµ (t)T Lλµ (t)

)
− tβ

2α
λµ (t)T Lλµ (t)

− tζ

α

∥∥∥λ̇µ (t)
∥∥∥2
− tζ

α
‖ẏµ (t)‖2 − tζ

α
‖ẋµ (t)‖2

=− (α− 2) t

α2

(
L̂β (xµ (t) , y∗, λ∗)− L̂β (x∗, y∗, λµ (t)) + 4κf̂µ (t)

)
− tζ

α

∥∥∥λ̇µ (t)
∥∥∥2
− tζ

α
‖ẏµ (t)‖2 − tζ

α
‖ẋµ (t)‖2 − βt

2α
λµ (t)T Lλµ (t)

6− (α− 2) t

α2

(
Lβ (xµ (t) , y∗, λ∗)− Lβ (x∗, y∗, λµ (t)) + 2κf̂µ (t)

)
− tζ

α

∥∥∥λ̇µ (t)
∥∥∥2
− tζ

α
‖ẏµ (t)‖2 − tζ

α
‖ẋµ (t)‖2 − βt

2α
λµ (t)T Lλµ (t)

≤0,

(98)

where the first inequality holds because of ∇µf̂ (xµ (t) , µ (t)) + ∇µf̂ (x∗, µ (t)) + 2κf̂ ≥ 0,

µ̇ (t) ≤ 0, the second inequality is satisfied due to the convexity of f̂ (xµ (t) , µ (t)) of xµ (t) ∈
X with any fixed µ (t) ∈ [0, µ̄] and the property of µ (t) ≤ µ0

t2α
(i.e., µ̇ (t) ≤ −µ0 (2α) t(−2α−1)

and t2

α2κf̂ ≥ 0 implies 2t
α κf̂µ (t)+ t2

α2κf̂ µ̇ (t) ≤ 2t
α κf̂µ0t

−2α− t2

α2κf̂µ0 (2α) t−2α−1 = 2t
α κf̂µ0t

−2α−
2t
α2κf̂µ0t

−2α = 0), the third inequality holds due to f̂ (xµ (t) , µ (t))+κf̂µ (t) > f (xµ (t)), i.e.,

L̂β (xµ (t) , y∗, λ∗) + κf̂ > Lβ (xµ (t) , y∗, λ∗) and (x∗, µ (t)) + κf̂µ (t) > f (x∗) in Definition 6

(iv), i.e., L̂β (xµ (t) , y∗, λ∗) + κf̂µ (t) > Lβ (xµ (t) , y∗, λ∗) and Lβ (x∗, y∗, λµ (t)) + κf̂µ (t) 6

L̂β (x∗, y∗, λµ (t)), and the last inequality is established since α ≥ 2 and Lβ (xµ (t) , λ∗) −
Lβ (x∗, λµ (t)) + 2κf̂µ (t) ≥ 0.

The proof follows from Theorem 17 and Theorem 14, which is easy to prove. Due
to space limitations, we omit the proof here.
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5. Numerical experiment

In this section, we give several numerical experiments to illustrate the effectiveness and
superiority of the proposed accelerated dynamical mirror approaches. We use the ode 15s
stiff ordinary differential equation solver in MATLAB soft to solve the dynamical approaches
in all our numerical experiments.
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Figure 5: APDMD (14) with α = 3, 4, 6, β = 2 and ζ = 0.5 for solving the problem (99).
(left) Trajectories of x (t). (middle) Error of |f (x (t))− f (x∗)|. (right) Error of
‖Ax (t)− b‖.

5.1 In the smooth case

Example 2. Logistic regression Attouch et al. (2022): Consider the problem (1) as
follows:

min f (x) = log
(

1 + exp
(
− (1, 2, 1, 1)T x

))
s.t. Ax = b, x ∈ X ,

(99)

where A =

[
0.2, 1, 1, 2
0, 1, 0.5, 1

]
, b = col (1, 1), X =

{
x ∈ R4

+|
∑4

i=1 xi = 1
}

. The objective

function in problem (99) is convex (but not strongly convex) and smooth, and the prob-
lem (99) is a very popular regularization in machine learning. Applying APDMD (60)
with Kullback-Leibler divergence to address the problem (99). Figure 5: (left) shows the
trajectories x (t) of APDMD (60) versus time; Figure 5: (middle) and (right) display the
error of |f (x (t))− f (x∗)| and ‖Ax (t)− b‖ respectively. The numerical results of gaps for
objective function and equation constraints are in excellent agreement with our theoretical
results, i.e., they both converge at the predicted rates.
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Example 3. Distributed Logistic regression: Consider a distributed problem (12) as
follows:

min f (x) =
n∑
i=1

log

(
1 + exp

(
−
(
i− 1,

i

2
, i, i+ 1

)T
xi

))

s.t. Lx = 0, x ∈
n∏
i=1

Xi,
(100)

where x = (x1, ..., xn)T ∈ R4n. Setting n = 4 and X1 =
{
x1 ∈ R4

+|1Tx = 1
}

, X2 ={
x2 ∈ R4

+

}
, X3 =

{
x3 ∈ R4|

∥∥∥x3 − (0.1, 0.2, 0.5, 0.8)T
∥∥∥ ≤ 2

}
and X4 =

{
x4 ∈ R4| (1,

1, 1, 1)x4 ≤ 4}. Note that the objective function in (100) is convex (but not strongly con-
vex) and smooth, which satisfies the requirement of problem (12) in the smooth case. Ap-
plying ADPDMD (40) with 4 agents (connected as a ring) to solve the problem (100),
i.e., for agent 1, using Kullback-Leibler divergence; for agent 2, applying Itakura-Saito
divergence; for agent 3, adopting projection operator of ball set; for agent 4, utilizing pro-
jection operator of half-space set. Figure 6: (left) shows the trajectories x (t) under
ADPDMD (40) for solving the problem (100) are uniformly convergent and globally asymp-
totically stable, i.e., x1 = x2 = ... = x5; Figure 6: (middle) and (right) display the

errors of |f (x (t))− f (x∗)| and

√
x (t)T Lx (t), respectively. The numerical results show

|f (x (t))− f (x∗)| and

√
x (t)T Lx (t) and

√
x (t)T Lx (t) all converge at the predicted rates.
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Figure 6: ADPDMD (40) with α = 3, β = 2 and ζ = 0.5 for solving the problem (100).
(left) Trajectories x (t). (middle) Error of |f (x (t))− f (x∗)| . (right) Error of√
x (t)T Lx (t).
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Figure 7: ADMD (50) with α = 3, β = 2 and ζ = 0.5 for the solving problem (101). (left)
Trajectories of λ of 10 agents. (middle) Error of |f (xµ (t))− f (x∗)|. (right) Error

of

√
λ (t)T Lλ (t).

Example 4. Distributed quadratic programming: Consider a special case of DEMO
(13) in the smooth case as follows:

min f (x) =
n∑
i=1

xTi Aixi,

s.t. x+ Ly = 0, x ∈
n∏
i=1

Xi,
(101)

where Xi = {xi ∈ Rm|i+ 2 ≤ xi,j � i+ 3, j = 1, ...,m} , i = 1, ..., n, b = col (7, ..., 7)∈ Rnm
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Figure 8: SAPDMD (60) with α = 2, 4, 6, β = 2 and ζ = 0.5 for solving the problem (103).
(left) Reconstructed sparse signal. (middle) Error of |f (xµ (t))− f (x∗)|. (right)
Error of ‖Axµ (t)− b‖.

and y ∈ Rmn is an auxiliary variable. Let n = 10, m = 5 and Ai ∈ R10×10 be a positive semi-
definite matrix generated by standard Gaussian distribution. Let every part xi be an agent,
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and 10 agents are connected as a ring. Applying the ADMD (50) to solve the problem (101)
and the experimental results are shown in Figure 7. In Figure 7: (left), the dual variable λ
is uniformly convergent and globally asymptotically stable, i.e., λ1 = λ2 = ... = λ10; Figure

7: (middle and right) illustrate |f (xµ (t))− f (x∗)| and

√
λ (t)T Lλ (t) of ADMD (50) are

convergent at the predicted rates.
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Figure 9: Convergence rates of SAPDMD (60) with α = 3, 4, β = 2 and ζ = 0.5, CNA-AL in
(Zhao et al. (2021)), PNNSR in (Liu and Wang (2015)) and LPNN-LCA in (Feng
et al. (2016)) for solving the problem (103). (left) Errors of |f (xµ (t))− f (x∗)|.
(right) Errors of ‖Axµ (t)− b‖.

5.2 In the nonsmooth case

Example 5. Nonnegative Basis Pursuit (NBP) in Khajehnejad et al. (2010): Take
into account a NBP as follows:

min f (x) = ‖x‖1 ,
s.t. Ax = b, x ∈ X ,

(102)

where X =
{
x ∈ R128|, xi ≥ 0, i = 1, ..., 128

}
and A ∈ R64×128 is an orthogonal Gaussian

matrix. The objective function in (102) is convex (but not strongly convex) and nons-
mooth as required. Applying the SAPDMD (60) and let ψ (x) =

∑n
i=1 xi lnxi to solve

problem (102). Figure 8 displays the reconstructed sparse signal of x in the left, the error
of |f (xµ (t))− f (x∗)| in the middle, and the error of ‖Axµ (t)− b‖ in the right. All pa-
rameters are complied with the requirement. The numerical results are in good accordance
with our theoretical results, where the |f (xµ (t))− f (x∗)| and ‖Axµ (t)− b‖ are convergent
at the predicted rates. Note that when x ∈ X = Rn, the NBP (102) reduces to the classical
Basis Pursuit (BP) problem as follows:

min f (x) = ‖x‖1 ,
s.t. Ax = b,

(103)
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where A ∈ R30×50, A is an orthogonal Gaussian matrix. We compare with SAPDMD (60)
with α = 3, 5 to classical sparse neurodynamical approaches, CNA-AL in Zhao et al. (2021),
PNNSR in (Liu and Wang (2015)) and LPNN-LCA in (Feng et al. (2016)) for solving Basis
Pursuit problem (103). To simulate a real sparse signal by randomly generating a signal with
a sparsity of 10 (i.e., the number of non-zero elements is 10). The results of the experiment
are shown in Figure 9. The numerical results of |f (xµ (t))− f (x∗)| in Figure 9: (left) and
‖Axµ (t)− b‖ in Figure 9: (right) illustrate that our proposed SAPDMD (60) with α = 3, 4
have faster convergence rates.
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Figure 10: SADPDMD (80) with α = 3, β = 2 and ζ = 0.5 for solving the problem (104).
(left) Trajectories of xµ in 5 agents. (middle) Reconstructed sparse signal of 5
agents. (right) Error of |f (xµ (t))− f (x∗)|.

Example 6. Distributed basis pursuit in row partition in (Zhao et al. (2021)): Take
a distributed basis pursuit with row partition of sensing matrix as follows:

min f (x) =
k∑
i=1

‖xi‖1

s.t. Lx = 0, x ∈ X ,

(104)

where L = Lk ⊗ In ∈ Rkn×kn, X =
{
x ∈ Rkn|Âx = b, Â = bldiag {Am1×n, ..., Amk×n}

∈ Rm×kn, b ∈ Rm
}

, b ∈ Rm. Note that, the problem (104) is convex (but not strongly
convex) and nonsmooth and as a special case of DCCP (12) in the nonsmooth case. Setting
m = 10, k = 5, n = 60, sparsity be 2 and every Ami×n, i = 1, ..., 5 acts as an agent,
and 5 agents are connected as a ring. Applying the SADPDMD (80) with ∇ψ∗ = PX
of affine set X =

{
x ∈ Rkn|Âx = b

}
in Section 2.4 to solve the problem (104) and all

parameters comply with the requirement. The numerical results are displayed in in Figure
10. As can be seen from Figure 10: (left) that the variable x is uniformly convergent and
globally asymptotically stable, i.e., xµ1 = xµ2 = ... = xµ5 ; Figure 10: (middle) shows that
the SADPDMD can efficiently solve the problem (104) and reconstruct the original sparse
signal; the result in Figure 10: (right) is in good accordance with our theoretical results,
i.e., |f (xµ (t))− f (x∗)| is convergent at the predicted rates.
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Figure 11: Convergence rates of SADPDMD (80) with α = 3, β = 2 and ζ = 0.5, XX for
solving the problem (104). (left) Errors of |f (xµ (t))− f (x∗)| for the problem

(103). (right) Errors of

√
xµ (t)T Lxµ (t).

To demonstrate the superiority of the proposed SADPDMD (80), we compare it with
α = 3, β = 2 and ζ = 0.5 to the state-of-the-art distributed sparse dynamical approaches
(CNA-R in (Zhao et al. (2021)), DCPNA-R in (Zhao et al. (2022)) and TLDNA in (Xu
et al. (2022)) for solving the problem (104)), and the experimental results are shown in
Figure 11. The left subfigure in Figure 11 shows that SADPDMD (80) with α = 3 has
fastest convergence rate in |f (xµ (t))− f (x∗)| for solving problem (104), in addition, the
right subfigure in Figure 11: (right) demonstrates that SADPDMD (80) with α = 3 also

has the fastest convergence rate in

√
xµ (t)T Lxµ (t) for solving the problem (104).
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Figure 12: SADMD (89) with α = 3, β = 2 and ζ = 0.5 for solving the problem (105).
(left) Trajectories of λµ (t) of 10 agents. (middle) Reconstructed sparse signal.
(right) Error of |f (xµ (t))− f (x∗)|.
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Example 7. Distributed basis pursuit in column partition in Zhao et al. (2021):
Consider a distributed basis pursuit with column partition of sensing matrix as follows:

min f (x) =

q∑
i=1

‖xi‖1,

s.t. Āx+ Ly = b,

(105)

where Ā = bldiag
{
Am×n1 , ..., Am×nq

}
∈ Rmq×n,

∑q
i=1 nq = n, and y ∈ Rmq is an auxiliary

variable. Note that, the problem (105) is convex (but not strongly convex) and nonsmooth,
which is a special case of DEMO (13). Letting q = 10, and A ∈ R10×60, then Â ∈ R100×60.
Let every part Am×ni , i = 1, ..., 10 be an agent, and 10 agents are connected as a ring.
Applying the ADMD (89) to solve the problem (105) and the experimental results are shown
in Figure 12. Figure 12: (left) displays the dual variable λ is uniformly convergent and
globally asymptotically stable, i.e., λµ1 = λµ2 = ... = λµ10; Figure 12: (middle) describes
that the SADMD (89) is able to efficiently solve the problem (105) and recover the sparse
signal in a distributed way; Figure 12: (right) illustrates |f (xµ (t))− f (x∗)| of SADMD
(89) converges at the predicted rates.

6. Conclusions

In this paper, we have proposed two accelerated primal-dual mirror dynamical approaches
to the problem (1) in the smooth and nonsmooth cases. For the problem (1) in the smooth
case, we first proposed an APDMD on account of mirror dynamical descent and primal-
dual framework, then, by the Lyapunov analysis method, we studied the accelerated con-
vergence properties of the trajectories of APDMD. We have extended the APDMD to two
diustributed networks optimization problems (i.e., DCCP and DEMO) and obtained the
same accelerated convergence rates as APDMD. Then, for the problem (1) with nonsmooth
objective functions, we have studied a SAPDMD (smoothing version of APDMD) and inves-
tigated the convergence rates of SAPDMD under sophisticated smoothing approximation
parameters. Finally, we have also established the convergence results of SADPDMD and
SADMD when applying SAPDMD to deal with DCCP and DEMO. The obtained results
can be straightly forwardly transferred to inertial (primal-dual) dynamical approaches for
the problems (3), (5) and (7). How to effectively discretize the accelerated dynamical ap-
proaches proposed in this manuscript to obtain accelerated primal-dual mirror discrete-time
(numerical) algorithms that match the lower bound theory is our future research direction.
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