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Abstract

Solving high-dimensional partial differential equations (PDEs) is a major challenge in sci-
entific computing. We develop a new numerical method for solving elliptic-type PDEs by
adapting the Q-learning algorithm in reinforcement learning. To solve PDEs with Dirichlet
boundary condition, our “Q-PDE” algorithm is mesh-free and therefore has the potential
to overcome the curse of dimensionality. Using a neural tangent kernel (NTK) approach,
we prove that the neural network approximator for the PDE solution, trained with the Q-
PDE algorithm, converges to the trajectory of an infinite-dimensional ordinary differential
equation (ODE) as the number of hidden units — co. For monotone PDEs (i.e. those given
by monotone operators, which may be nonlinear), despite the lack of a spectral gap in the
NTK, we then prove that the limit neural network, which satisfies the infinite-dimensional
ODE, strongly converges in L? to the PDE solution as the training time — co. More gener-
ally, we can prove that any fixed point of the wide-network limit for the Q-PDE algorithm
is a solution of the PDE (not necessarily under the monotone condition). The numerical
performance of the Q-PDE algorithm is studied for several elliptic PDEs.

Keywords: Deep learning, neural networks, high-dimensional PDEs, high-dimensional
learning, Q-learning.

1. Introduction

High dimensional partial differential equations (PDESs) are widely used in many applications
in physics, engineering, and finance. It is challenging to numerically solve high-dimensional
PDEs, as traditional finite difference methods become computationally intractable due to
the curse of dimensionality. In the past decade, deep learning has become a revolutionary
tool for a number of different areas including image recognition, natural language processing,
and scientific computing. The idea of solving PDEs with deep neural networks has been
rapidly developed in recent years and has achieved promising performance in solving real-
world problems (e.g. Hu et al. (2022), Li et al. (2022), Cai et al. (2021), and Misyris et al.
(2020)).
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A number of deep-learning-based PDE solving algorithms, for instance the deep Galerkin
method (DGM; Sirignano and Spiliopoulos (2018)) and physics-informed neural networks
(PINNs) (Raissi et al. (2019)), have been proposed. Inspired by the Q-learning method
in reinforcement learning, we propose a new “Q-PDE” algorithm which approximates the
solution of PDEs with an artificial neural network. In this paper, we prove that for monotone
PDEs the Q-PDE training process gives an approximation which converges to the solution
of a certain limit equation as the number of hidden units in a single-layer neural network
goes to infinity. Furthermore, we prove that the limit neural network converges strongly to
the solution of the PDE that the algorithm is trying to solve.

Q-learning (Watkins and Dayan (1992)) is a well-known algorithm for computing the
value function of the optimal policy in reinforcement learning. Deep Q-learning (DQN)
(Mnih et al. (2013)), a neural-network-based Q-learning algorithm, has successfully learned
to play Atari games (Mnih et al. (2015)) and subsequently has become widely-used for
many applications (Zhao et al. (2019)). The Q-learning algorithm updates its value func-
tion approximator following a biased gradient estimate computed from input data samples.
We propose an algorithm which is similar to Q-learning in the sense that we update the
parameters of a neural network via a biased gradient flow in continuous time. As far as the
authors are aware, this is the first time that a Q-learning algorithm has been developed to
solve PDEs directly.

The universal approximation theorem (Cybenko (1989)) indicates that the family of
single-layer neural networks are powerful function approximators. However, the universal
approximation theorem only states that there exists a neural network which can approximate
continuous functions arbitrarily well; it does not suggest how to identify the parameters for
such a neural network. When the number of units in our neural network becomes large, it
is, however, possible to obtain asymptotic limits, for example the “neural tangent kernel”
limit (Jacot et al. (2018)), which gives a variant of the law of large numbers for infinitely
wide neural networks. We will use this approach to study the performance of the biased
gradient flow as a training algorithm, and show that the wide-network limit satisfies an
infinite-dimensional ordinary differential equation (ODE).

We apply our Q-PDE approach to second order nonlinear PDEs with Dirichlet bound-
ary conditions. In particular, we are able to give strong convergence results when the
differential operator satisfies a strong monotonicity condition. Monotone PDEs arise in
various applications, particularly in PDEs arising from stochastic modeling — the gener-
ators of ergodic stochastic processes are monotone (when evaluated with their stationary
distributions), which suggests a variety of possible applications of our approach. Further,
the subdifferentials of convex functionals (i.e. of maps from functions to the real line) are
monotone; this suggests that monotone PDEs may be a particularly well-suited class of
equations for gradient methods, as they correspond to (a generalization of) minimizations
of convex functionals. We will see that, given this monotonicity assumption, we can prove
that the limit Q-PDE algorithm will converge (strongly in L?) to the solution of the mono-
tone PDE. More generally, we can prove that any fixed point of the wide-network limit
for the Q-PDE algorithm is a solution of the PDE (not necessarily under the monotone
condition).

In the remainder of the introduction, we provide a brief survey of relevant literature
and some related approaches. The necessary properties of the PDEs which we study, the
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architecture of the neural networks we use, and the Q-PDE training algorithm we propose
are presented in Section 2. Section 3 derives useful properties of the limiting system, while
Section 4 contains a rigorous proof that the training process converges to this limit. Analysis
of the limit neural network, in particular the proof of convergence to the solution of the
PDE, is presented in Section 5. Numerical results are presented in Section 6.

1.1 Summary

In summary, this paper will provide the following;:

e A new neural network training algorithm for second order PDEs (of the form given by
Assumption 13), based on Q-learning (Algorithm 20), and designed to ensure Dirichlet
boundary conditions are enforced.

e Proofs of various functional-analytic properties of the neural tangent kernel limit of
this algorithm (Section 3).

e A rigorous convergence proof of the neural-tangent kernel limit for a wide single-
layer network (Section 4). This limit gives a simple deterministic dynamical system
characterizing the neural network approximation during training (Definition 43).

e Proof that any fixed point of the limit neural network training dynamics is a solution
of the PDE (Theorem 46).

e A strong convergence proof for the limit neural network as the training time ¢t — oo,
when considering a PDE given by a monotone operator (Section 5).

e Numerical examples to demonstrate effectiveness of the training algorithm (Section
6).

A more precise summary of our mathematical results is given in Section 2.3.1.

1.2 Relevant literature

The idea of solving PDEs with artificial neural networks has been rapidly developed in
recent years. Various approaches have been proposed: Lagaris et al. (1998), Lagaris et al.
(2000), Lee and Kang (1990), and Malek and Beidokhti (2006) applied neural networks to
solve differential equations on an a priori fixed mesh. However, the curse of dimensionality
shows that these approaches cannot be extended to high dimensional cases. In contrast,
as a meshfree method, DGM (Sirignano and Spiliopoulos (2018)) randomly samples data
points in each training step. Based on this random grid, it derives an unbiased estimator of
the error of the approximation using the differential operator and the boundary condition
of the PDE and then iteratively updates the neural network parameters with stochastic
gradient descent. This approach has been successful at solving certain high-dimensional
PDEs including free-boundary PDEs, Hamilton-Jacobi-Bellman equations, and Burger’s
equation. Unlike DGM, our algorithm is inspired by Q-learning, in the sense that we
compute a biased gradient estimator as the search direction for parameter training. The
biased gradient estimator does not require taking a derivative of the differential operators
of the neural network; only the gradient of the neural network model itself is required.
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The simplicity of this gradient estimator, together with the monotonicity of the PDEs we
consider, allows a proof of the convergence of the Q-PDE training algorithm to the solution
of the PDE.

Another related area of research is PINNs (Raissi et al. (2019)), which train neural
networks to merge observed data with PDEs. This enables its users to make use of a
priori knowledge of the governing equations in physics. Analysis of solving second order
elliptic/parabolic PDEs with PINNs can be found in Shin et al. (2020). DeepONet (Lu
et al. (2021)) proposes solving a family of PDEs in parallel. Its architecture is split into
two parallel networks: a branch net, which approximates functions related to input PDEs,
and a trunk net that maps spatial coordinates to possible functions. Combining these two
networks, it is possible to learn the solution of a PDE given enough training data from
traditional solvers. Mathematical analysis of DeepONet in detail can be found in Lanthaler
et al. (2021). DeepSets (Germain et al. (2021a)) are designed to solve a class of PDEs which
are invariant to permutations. It computes simultaneously an approximation of the solution
and its gradient. For solving fully nonlinear PDE, Pham et al. (2021) estimates the solution
and its gradient simultaneously by backward time induction. For linear PDEs;, MOD-Net
(Zhang et al. (2021)) uses a DNN to parameterize the Green’s function and approximate
the solution.

Further approaches, which go beyond looking for an approximation of the strong solution
of the PDE directly, have also been studied. Zang et al. (2020) proposes using generative
adversarial networks (GANS) to solve a min-max optimization problem to approximate the
weak solution of the PDE. The Fourier neural operator (FNO) (Li et al. (2020)) approach
makes use of a Fourier transform and learns to solve the PDE via convolution. The solution
of certain PDEs can be expressed in terms of stochastic processes using the Feynman—Kac
formula. Grohs and Herrmann (2020) apply neural networks to learn the solution of a PDE
via its probabilistic representation and numerically demonstrates the approach for Poisson
equations. Based on an analogy between the BSDE and reinforcement learning, E et al.
(2017) proposes an algorithm to solve parabolic semilinear PDEs and the corresponding
backward stochastic differential equations (BSDEs), where the loss function gives the error
between the prescribed terminal condition and the solution of the BSDE. PDE-net and its
variants (Long et al. (2018), Long et al. (2019)) attempt to solve inverse PDE problems: a
neural network is trained to infer the governing PDE given physical data from sensors. In a
recent paper Sirignano et al. (2021), neural network terms are introduced to optimize PDE-
constrained models. The parameters in the PDE are trained using gradient descent, where
the gradient is evaluated by an adjoint PDE. In Ito et al. (2021), a class of numerical schemes
for solving semilinear Hamilton—Jacobi-Bellman—Isaacs (HJBI) boundary value problems is
proposed. By policy iteration, the semilinear problem is reduced into a sequence of linear
Dirichlet problems. They are subsequently approximated by a feedforward neural network
ansatz. For a detailed overview of deep learning for solving PDEs, we refer the reader to E
et al. (2022), Beck et al. (2020) and Germain et al. (2021b), and references therein.

Many of these works do not directly study the process of training the neural network.
Gradient descent-based training of neural networks has been mathematically analyzed us-
ing the neural tangent kernel (NTK) approach (Jacot et al. (2018)). The NTK analysis
characterizes the evolution of the neural network during training in the regime when the
number of hidden units is large. For instance, Jacot et al. (2018), Lee et al. (2017), and Lee
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et al. (2019) study the NTK limit for classical regression problems where a neural network
is trained to predict target data given an input. Using an NTK approach, Wang et al.
(2020) gives a possible explanation as to why sometimes PINNs fail to solve certain PDEs.
Their analysis highlights the difficulty in approximating highly oscillatory functions using
neural networks, due to the lack of a spectral gap in the NTK. The NTK approach is not
without criticism, particularly when applied to deeper neural networks, where it has been
seen to be unable to accurately describe observed performance (see, for example, Ghorbani
et al. (2020) or Chizat et al. (2019)). Alternative approaches include mean-field analysis
(e.g. Mei et al. (2019)).

In this article, we train a neural network to solve a PDE, using a different training
algorithm, for which we give a rigorous proof of the convergence to a NTK limiting regime (as
the width of the neural network increases). This NTK approach yields a particularly simple
dynamic under our training algorithm, allowing us to prove convergence to the solution of
the PDE (as training time increases), despite the poorly behaved spectral properties of the
NTK, for those PDEs given by monotone operators. Our Q-PDE algorithm is substantially
different to the gradient descent algorithm studied in Jacot et al. (2018), Lee et al. (2017),
Lee et al. (2019), since a PDE operator will be directly applied to the neural network to
evaluate the parameter updates.

2. The Q-PDE Algorithm

In this section, we first of all state our assumptions on the PDE and its domain. Then we
describe the neural network approximator and our Q-PDE algorithm.

2.1 Assumptions on the PDE

We consider a class of second-order nonlinear PDEs on a bounded open domain 2 C R”
with Dirichlet boundary conditions:
Lu=0 inQ
B (1)
u=f on 0.

We assume a measure * y is given on 2, with continuous Radon—Nikodym density dju/d Leb
bounded away from 0 and oo (where Leb denotes Lebesgue measure). It follows that
w(Q) < oo and p(A) > 0 for all open sets A C Q; all integrals on Q will be taken with
respect to this measure (unless otherwise indicated).

We will study strong Sobolev solutions to the PDE (1); that is, we are interested in
solutions v € H?, where

W = {f e ()¢ [l = (X 1D°fl12) < oo}, 2)

la|<p

1. For example, p can be taken to be the Lebesgue measure on 2 C R", and the analytic theory we consider
is essentially the same as that when using the Lebesgue measure (i.e. the Sobolev norms using p are
equivalent to those using Leb). We allow for more general p, as this will roughly correspond to a choice
of sampling scheme in our numerical algorithm, and gives us a degree of flexibility when considering the
monotonicity of L.
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where Du is the weak derivative of u and where the boundary condition u|pg = f is
understood in the usual trace-operator sense in H'.

For notational simplicity, we write 7—[%0) = H?NH} for the subspace of functions u € H>
such that u|gpn = 0, that is, with boundary trace zero. This remains a Hilbert space under
the H? inner product. We write || - || (without a subscript) for the L? norm and similarly
for the inner product. We refer to Evans (2010) or Adams and Fournier (2003) for further
details and general theory of these spaces and concepts.

The class of PDEs we will consider are those for which £, f and 2 satisfy some (strong)
regularity conditions, which we now detail. We first of all present the assumptions and
lemmas for the domain and the boundary condition.

Assumption 1 The boundary 982 is C>, for some o € (0, 1), that is, three times contin-
wously differentiable, with a-Holder continuous third derivative.

Assumption 2 (Auxiliary function ) There exists a (known) function n € C3(R™),
which satisfies 0 < n < 1 in Q, and n = 0 on . Furthermore, its first order derivative
does not vanish at the boundary (that is, for x € OQ and n, an outward unit normal vector

at x, we have (Vn(z),n,) #0).

Using Assumptions 1 and 2, we have the following useful result, which allows us to
approximate functions in 7—[%0). Its proof is given in Appendix A.1.

Lemma 3 1. The set of functions C3(Q) N Co(Y) is dense in ’H?O) = H2NH} (under
the H? topology).

2. For any function u € C3(Q) N Co(Y), the function @ = u/n is in CF(Q) C H2.

In addition to these assumptions on £, we make the following assumptions on the
boundary value.

Assumption 4 (Interpolation of the boundary condition function) There exists a
(known) function f € H? such that flaq = f (or, more precisely, if T : HY(Q) — L2(09)

is the boundary trace operator, we have T'(f) = f). In the rest of this paper, for notational
simplicity, we identify f with its extension [ defined on Q.

Remark 5 The ezistence of some f satisfying Assumption 4 is quaranteed, given a solution
u € H? exists (as we could take f = u). Practically, we assume not only that f exists, but
that it is possible for us to use it as part of our numerical method to find w. In many cases,
this is a mild and natural assumption, for instance when we have f = 0, where we can
simply take f = 0.

Now we present the assumptions of the PDE itself.

Assumption 6 (Lipschitz continuity of £) There exists a constant C such that for any
f1, f2 € HENC? and any x € Q, the (nonlinear differential) operator L satisfies

[Lf1(x) = Lf2(2)] < C[fl(x) — fo(@)l + D 105, fi1(x) = O, fo()]
=1

3 D10, A(0) - 2., o).

i,5=1
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Assumption 7 (Integrability of £ at zero) Taking fo =0, we have Lfy € L?.
Remark 8 Under Assumptions 6 and 7, L is a Lipschitz operator L : H?> — L?.

Our algorithm will also make use of the following auxiliary function, which allows us to
control behaviour of functions near the boundary of €.

In order to prove convergence of our scheme for large training time, we will particularly
focus on PDEs given by strongly monotone operators (cf. Browder (1967)), which for
convenience we take with the following sign convention.

Assumption 9 (Strong L?-monotonicity of £) There erists a constant vy > 0 such that
for any f1, fo € /H%o) the operator L satisfies

(f1 = fos L = Lf2) € =3llf1 = follFe (4)
where (-,-) is the L*(u) inner product.

While these assumptions are somewhat restrictive, they are general enough to allow for
the case Lu = Au— yu +r, for r any L? function, where A is the generator of a sufficiently
nice Feller process X and v > 0, for an appropriate choice of sampling distribution u; see
Appendix A.7 for further discussion. In this case, the solution u can be expressed (using
the Feynman—Kac theorem) in terms of the stochastic process,

u(@) = E[e™™ f(X,) + /0 ’ e‘”tr(Xt)dt’Xo - x] (5)

where 7 = inf{t > 0: X; & Q}.

Further, these assumptions are also sufficiently general to allow some nonlinear PDEs
of interest, for example Hamilton—Jacobi—Bellman equations under a Cordes condition, as
discussed by Smears and Siili (2014). The assumption of monotonicity is also connected to
Lyapunov stability analysis, as it is easy to check that strong monotonicity is equivalent
to stating that v — 3||v[|2, is a Lyapunov function for the infinite-dimensional dynamical
system dv/dt = Lv + yv. For more general discussion of monotone operators, and their
connection to analysis of the traditional Galerkin method, we refer to Zeidler (2013).

Our final assumption on the PDE is that a solution exists.

Assumption 10 (Existence of solutions) There exists a (unique) solution u € H? to

(1).

Remark 11 We note that, assuming strong monotonicity (Assumption 9), if a solution
exists then it is guaranteed to be unique: if u,u’ are two solutions, then Lu = Lu', hence
0= (u—uLu—Lu)<—v|u—1u? and sou=u' almost everywhere.

While existence of solutions in H? is a strong assumption, it is often satisfied for weak
solutions to elliptic equations, given the well-known elliptic reqularity results which ensure
solutions are sufficiently smooth.
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Remark 12 The algorithm we present below can easily be extended to higher-order PDFEs.
To do this, further smoothness assumptions (on the activation function o, continuation
value f and auziliary function n) and higher moments of the initial weights w' in the neural
network are needed, and one argument (Lemma 3) needs to be extended using alternative
approaches. In this paper, for the sake of concreteness (and to avoid unduly long deriva-
tions), we present our results for PDEs up to second-order; the details of the extension to
the general case are left as a tedious exercise for the reader.

Summary of assumptions 13 For ease of reference, we now summarize the assumptions
we have made on our PDE:

1. L is a nonlinear second-order differential operator, Lipschitz (as a map H?*(2) —
L%(Q)), square integrable at zero (Assumptions 6, 7).

2. The boundary value f has a known continuation to a function in H?(2) (Assumption

4)-

3. Q C R"™ is bounded and open, and has a C>® boundary 05, which is the zero level
set of a known auxiliary function n € C’E(]R"), and 1 has nonzero derivative on the
boundary (Assumptions 1, 2)

4. L is strongly monotone, and there exists an H?()) solution to the PDE (Assumptions
9, 10).

We emphasise that only parts 1-3 of this assumption will be used, except in Section 5, where
the strong monotonicity and existence of solutions will also be needed.

2.2 Neural Network Configuration

We will approximate the solution to the PDE (1) with a neural network, which will be
trained with a deep Q-learning inspired algorithm. In particular, we will study a single-
layer neural network with N hidden units:

N
1 4 . .
SN (z;6) = Nﬁzgcza(wl-x—i-bl), (6)
1=
where the scaling factor 8 € (%, 1) and ¢ : R — R is a non-linear scalar function. The
parameters 6 are defined as 0 := {c",w",bi}izl,,_.7]v where ¢!, ' € R, and w’ € R™. The
function n can then be used to design a neural network model which automatically satisfies
the boundary condition, introduced by McFall and Mahan (2009):

QN (x;0) := SN (2;0)n(x) + f(x). (7)

Assumption 14 (Activation function) The activation function o € CiH(R) is non-constant,
where Cf is the space of functions with k-th order continuous derivatives.

Remark 15 This assumption coincides with the condition of Theorem 4 of Hornik (1991),
and guarantees that the functions o generate neural nets which are dense in the Sobolev space
H2. (Hornik shows, under this condition, the stronger result of density in H*; we focus on
H?, but require additional bounded derivatives as part of our proof.) We will particularly
make use of this to establish Lemma 30.
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Before training begins (i.e. at ¢ = 0), the neural network parameters are randomly
initialized. The random initialization satisfies the assumptions described below.

Assumption 16 (Neural network initialization) The initialization of the parameters
o, for alli € {1,2,..., N}, satisfies:

e The parameters cé, wé, bf) are independent random variables.
e The random variables cly are bounded, |cf| < Ko, and E[c}] = 0.

o The distribution of the random variables wé, bf) has full support. That is, for any open
set D C R"™ we have P((w}, b)) € D) > 0.

e For any indices i,k € {1,..., N}, we have E[|(w)x|3] < oo, E[|b}]] < .

2.3 Training Algorithm

We now present our algorithm for training the neural network Q™ (x; #) to solve the PDE (1).

At training time ¢, the parameters of the neural network are denoted 0; = {cé, w%, bé}izl 77777 N-
For simplicity, we denote SN (-;6;) as S, and Q™ (;6;) as Q. Then,
QY =S+ f. (8)

Our goal is to design an algorithm to train the approximator Q¥ to find the solution of
the PDE. One approach, see for instance Sirignano and Spiliopoulos (2018), is to train the
model Q" to minimize the average PDE residual:

%jﬁQNchdumy (9)

To improve integrability, we will smoothly truncate this objective function, and use the
result to motivate our training algorithm.

Definition 17 (Smooth truncation function) The functions {¢"¥} yen are a family of
smooth truncation functions if, for some 6 € (0, %),

o )V € CX(R) is increasing on R.

[N | is bounded by 2N°.

YN (z) =z for x € [-N?, NI].
@YY <1 onR

o FN .= (N) - (N) is uniformly Lipschitz continuous on R for all N € N.

For simplicity, we will usually describe the family 1) as a (smooth) truncation function.
A simple example of a truncation function is as follows: take § = (1 — 8)/4 > 0 and

e (l2l=N")? yf lz| > N?,

10
1 if |2| < N°. (10)

wN(w) = /Ox QN(y)dy, where gN(g;) - {
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Remark 18 It is easy to see that, for any smooth truncation function, the related function

FN(z) = (V) - (@) satisfies
|FN(z) —z| < 2|z[1 >Ny for all z € R. (11)

We will use a truncation function 1" to modify (9), and will consider minimizing the
truncated objective:

[ 167 €@ @) o) 12

To minimise a loss function like (12), one can apply gradient-descent based methods.

However, in practice, computing the gradient of E(Q,{V (- 0)) with respect to 6 does not
lead to an algorithm permitting simple analysis, as natural properties of the differential
operator L are not directly preserved. Instead, we introduce a biased gradient estimator as
follows:

Definition 19 The sequence of functions

¥~ [ [wNinV (@) - (V) (LQY <x>>} Vo(— QY (2))du(x) (13)

are called the biased gradient estimators for the truncated loss. These can be approximated
using Monte Carlo sampling, as

M
GO0 = 37 3 [o¥0ar @) VLR @] Tal-@M )
=1

where x; are independent samples from the distribution u.

Our analysis will focus on the biased gradient estimator G, however in our numerical
implementation (in order to avoid the curse of dimensionality) we will use the Monte Carlo
estimates G‘% for large M.

We shall see that this biased gradient is a continuous-space, PDE analog of the classic
Q-learning algorithm. In summary, our “Q-PDE” algorithm for solving PDEs is:

Algorithm 20 (Q-PDE Algorithm) We fiz a family of smooth truncation functions {{)N } nen
and, for each value of N € N, we proceed as follows:

1. Randomly initialize the parameters 6y, as specified in Assumption 16.

2. Train the neural network via the biased gradient flow

db,
= = —aNGN (6y). (15)
with GV as in (13) and learning rate
ol = oV = aN?P1 (16)

where a is a positive constant.

10
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The approzimate solution to the PDE at training time t is QY , as defined by (7).

In the remainder of this paper, we will study this Q-PDE algorithm for solving PDEs
both mathematically and numerically. First, we prove that the neural network model Q¥
converges to the solution of an infinite-dimensional ODE as the number of hidden units
N — 0o. Then, we study the limit ODE, and prove that it converges to the true solution
of the PDE as the training time ¢ — oco. Finally, in Section 6, we demonstrate numerically
that the algorithm performs well in practice with a finite number of hidden units. For high
dimensional PDEs, it is impossible to form mesh-grids to apply conventional finite difference
methods. However, our method is mesh-free. The crucial feature for implementing our
algorithm in practice is to evaluate the integral term GV. As discussed, we can do this
using the Monte Carlo estimate GAN/[, therefore our algorithm has the potential to solve
high-dimensional PDEs.

Remark 21 [t is worth observing that, given this choice of biased gradient flow, there is
generally no guarantee that our algorithm corresponds to stochastic gradient descent applied
to any potential function. The key advantage of the use of this biased gradient is that it
separates the derivatives in 0 from the differential operator L, which allows the underly-
ing properties of the PDE to be preserved more simply. We will see that this results in
particularly simple dynamics in the wide-network limit.

2.3.1 MAIN RESULTS

Our main mathematical results are the following:

Theorem 22 (cf. Theorem 45) Define the kernel

B(z,y) = n(2)1(y)Ecwb [a(w x4 b)o(w-y+b) + o’ (w-z+b)o’ (w-y+b)(z-y+ 1)] :
(17)

where the expectation is taken with respect to the distribution of the random initialization
of ¢, w, and b satisfying Assumption 16, and define the corresponding integral operator
(Bo)(y) = [ B(x,y)v(x)du(x). For a single-hidden layer neural network with N units, as
N — oo the PDE approzimator QN trained using the Q-PDE algorithm converges (in H?,
for each time t) to the deterministic H?-valued dynamical system dQy/dt = aBL(Q;), with

Qo= f, and Qt|lpq = f for all t.
Theorem 23 The limiting dynamical system Q; has the following convergence properties:

o If Q; converges in H' to a fived point Q, then Q is the solution to the PDE (1).
(Theorem 46)

e If L is a monotone operator, and u is the solution to the PDE (1), then for almost
every sequence t, — oo, we have Qy, — u in L. (Theorem 47)

e If L is a Gateaux differentiable monotone operator then, for almost every sequence
ty — 00, we have BLQy, — 0. (Theorem 48)

11
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2.3.2 SIMILARITY TO Q-LEARNING

Our training algorithm’s biased gradient flow is inspired by the classic Q-learning algorithm
in a reinforcement learning setting. The Q-learning algorithm approximates the value func-
tion of the optimal policy for Markov decision problems (MDPs). It seeks to minimize the
error of a parametric approximator, such as a neural network, R(-,-;#):

LO)= > [Y(s,a;0) — R(s,a;0))*n(s,a). (18)
(s,a)eSxX

Here S and X are the finite state and action spaces of the MDP and 7 is a probability mass
function which is strictly positive for every (s,a) € S x X. Y is the target Bellman function

Y (s,a;0) =r(s,a)+~ g max R(s',d’;0)p(s'|s,a). (19)
a’'e
s'eS

Q-learning updates the parametric approximator R via Ox11 = 0 + oziv Ur where U is
a biased estimator of the gradient of (Y — R)2. Since the transition density p(s'|s,a) is
unknown, Y — R is estimated using random samples from the Markov chain (s, ax):

Y (s, ar) — R(sk, ax; Ok) == 1(s, ax) + ymax R(sk+1,a30k) — R(sk, ar; 0).  (20)

The Q-learning algorithm treats Y (and }7) as a constant and takes a derivative only with
respect to the last term in (20). The Q-learning update direction Uy, is:

—U, =: (?(Sk, ak) - R(Sk, g, Hk)> VGk [_R(Ska ak; ek)] (21)

We emphasize that the term VoY is not included, which means U}, is a biased estimator for
the direction of steepest descent.

Returning to the objective function for the Q-PDE algorithm, the gradient of the loss
function (12) is

| [ eQ @) (2@ )] Voey w)duta). (22)

The update direction GV in (13) differs from (22), as VoL@ (x) has been replaced with
Vo(—QN (x)). This is, conceptually, the same update direction as used in the Q-learning
algorithm.

3. Preliminary analysis of the training algorithm

We begin our analysis of the training algorithm (15) by proving several useful bounds, in
particular, that the neural network parameters ¢; and w; are bounded in expectation. The
proof is provided in Appendix A.2. We recall that n is the dimension of our underlying
space, that is, Q C R"™.

Lemma 24 (Boundedness of parameters) For all T > 0, there exists a deterministic
constant C' > 0 such that, for oll N € N, all 0 < t < T, alli € {1,2,...N}, and all
ke{l1,2,..n},

il <C,  Ej(w)i| <C, and  Eb}| < C. (23)

12
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3.0.1 Dynamics oF Q¥

We next consider the evolution of the output of the neural network QY as a function of the
training time ¢. Define B} as the symmetric, positive semi-definite kernel function

BN (z,y) = n(@)n(y) A} (z,y), (24)

where A is the neural tangent kernel (Jacot et al. (2018))
T
AV (@,y) = (Vost @) (VoSN ()
1 , , . .
= > |otwi @+ b)owi -y + b)) (25)
i=1
+ 20! (w4 b)o (wh -y + b)) (@ y + 1)

For any y € (2, we can derive the evolution of value Q¥ (y) using the chain rule:

Q" (y) N do,
= C—. 2
e g0y 2 (26)
The RHS of (26) can be evaluated using (7), (15), and Fubini’s theorem, which yields
N
T o [ 7 (20¥ @) B @)du(o) (27)

where FV is as in Definition 17.

3.0.2 LIMIT KERNEL

Equation (27) shows that the kernel BY has a key role in the dynamics of QV. We now
characterize the limit of BV as N — oo. In Section 4.1, we will study this convergence in
detail.

At time t = 0, the parameters 06, wf), bé are independently sampled. Therefore, for each
(z,y) € Q, by the strong law of large numbers A} (x,y) converges almost surely to A(z,y),
where

Ae,y) = Bep[o(w -z +B)o(w -y +5) + o' (w -2+ )0’ (w -y + bz -y +1)].  (28)
It follows that B’ (z,y) converges almost surely to B(x,y):
i B (w9) = Bla,y) = n(a)ny) Al ). (29)
We can write
B(z,y) = n(@)n(y)Ecawplo(w - 2 + b)o(w -y +b) + *U(z) - U(y)], (30)
where the (w, b-dependent) vector function U is given by U(z) = o/(w - z + b)(z + 1/y/n).

As 0 € C}(R), we know that A, AV, B and BY are all uniformly continuous in (z,y), so
the above a.s. convergences hold for all (z,y) € 2 simultaneously.

13
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Lemma 25 There exists a constant M > 0 such that, for any (x,y) € Q x €,

|B $y|+Z|3ka$y|+Z|3ykyl (z,y)] < M. (31)
k,l

Proof Taking B as defined in (29), asn € C3, o € C’f and each term of {ci};cy is uniformly
bounded, we have |B(x,y)| < C. The partial derivative of B is

Oy, B(z,y)
= () (Dy,1(y)) Az, y) + n(x)n(y) (O, Az, y))
= 1(2)dy,n(y) Az, y) + 1(2)n(y) Ecwp | o(w -  + b)o’ (w - y + b)wy, (32)

+ o' (w -z + b)[wro”(w -y + b)x -y + o' (w -y + b)ag]|.

As before, our assumptions on 7, o and {c}};cn guarantee that the terms in 9, B(x,y) are
uniformly bounded for all z,y € Q, so |9, B(z,y)| < C; similarly for 82 , B(z,y). The
result follows. |
Given we have a kernel B, it is natural to define the corresponding integral operator,
v = [o B(x,y)v(z)du(x). It will be convenient to define this on a slightly larger space than
L?, to account for the effect of the function 7.

Definition 26 We define the function space L2 ={f:Q — R|nf € L?}, and observe (as
n is bounded) that L? C L2

Definition 27 The operator B : L2 — L* is defined by (Bv)(y) = [ B( (x)dp(z) with
B as in (29).

Lemma 28 For any v € L%, we have Bv € ’H?O), or more specifically, Bv € Cg(ﬁ) and
(Bv)(y) = 0 for all y € 09.

Proof From the definition of Bv, we have (Bv)(y y) Jo A( Jo(z)dp(z). Lemma
25 and the smoothness of o and 7 clearly 1mply that BU € C’2( ) C H2 We know that
n(x) = 0 for x € 99, so it is clear that (Bv)(y) = 0 for all y € 9Q. As H} is the kernel (in
H1) of the boundary trace operator, and for smooth functions the trace operator is simply
evaluation of the function on the boundary, it follows that Bv € H(l). We conclude that
BUEH(O) = H?NH}. |

Lemma 29 The linear map B : L% — H? is Lipschitz, in particular, there exists C > 0
such that, for any v € L2 i we have || Bv|lq2 < Clln-vl| 2.

Proof By definition, with D% denoting the differential operator with respect to the y
argument, ||Bvl|3, = > lal<2 |D“Bu||7.. By the boundedness of 7, A and their derivatives,
there exists a constant K such that for any multi-index «a, |D*[n(y)A(z,y)]| < K for any

14
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x,y € . Hence, exchanging the order of integration (with respect to x) and differentiation
(with respect to y) by the dominated convergence theorem,

|(D*Bv) ()] = \Da [ i@ ] =| [ Dot At e @uta)

S/Q D%[n(y) Az, y)In(x)v(z)|du(z <K/ In(z)v(z)|dp(x).
(33)
By Jensen’s inequality, there is a constant C' > 0 such that
(0B W < 12 [ In@@ldn() " < € [ )ete)Pdute) = Clly- ol (3
Integrating over 2, we see that [|[D*Bv||2, < (Cu(Q))[|n - v||3.. Summing over indices o
yields the result. |

Our next challenge is to prove that the image of B is dense in 7—[20 . This will allow us to
represent the solutions to our PDE in terms of B, and is closely related to the universal
approximation theorems of Cybenko (1989), Hornik (1991), and others.

Lemma 30 For a function g € H?(Q), if the equality
/ > D% (w -z +b)D(x)du(x) = 0 (35)
|| <2

holds for all w € R™, b € R, then g =0.

Proof Since y is a finite measure and o € C# (cf. Assumption 14) and non-constant, from
Theorem 4 in Hornik (1991) we have that the linear span of {o(w -z 4 b) }, per is dense in
H2. Hence, there is no nontrivial element of #? orthogonal to o(w - x 4 b) for all w,b. In
other words, for g € H?, if the inner product (Owp, 9)p2 = 0 for all w,b, then g = 0, which
is the stated result. |

Lemma 31 Define S : H* — H? by (Sh)(y) := [ 2o ju1<2 Doh(x) Dy Az, y)dp(x). Then
Sh =0 if and only if h = 0.

Proof We first observe that, as 0 € Ci(R), DY A(z,y) is clearly a C? function of y for all
x. Consider the inner product between Sh and h on H?:

(Sh,h)yz = Y (D*Sh,D“h)

lal<2
/2
Q |Oé1|<2 |a2\<2

Bl [ X {ozrwnge

|1 <2, || <2

X (D;;ID;;Q [a(w x4+ b)o(w -y +b) + AU(x) - U(y)Ddu(x)dﬂ(y)H .

D2 h(z) DS h(y) (Dle;m(x,y))du(a:)du(y)
(36)

15
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Notice that

0<Ecwb[H/ZDah \DeU d,u(x)HQ]

o <2
Ee,wp > D3t h(z)Dy2h(y) | D3 Dy? (U (x) - U(y)) | dp(x)dp(y)
P Jon|<2 o] <2

Combining (36) with (37) we derive

(37)

(Sh, h)y >Ecwb[</ > DEh(z)Dgo(w -z + b)du(x ))2] > 0. (38)

|a|<2
By Lemma 30, for h # 0, there exists ¢ > 0, w* € R", b* € R such that 0 < € =
‘fQ > laj<2 Dih(z) Do (w” - o + b*)d,u(x)’. As this integral is continuous with respect to
the parameters w, b, there exists § > 0 such that for any (w,b) € Rs := {(w,b) : ||w —w*||+

|b—b*| < 8}, we know | [, 2laj<e Deh(z)Dgo(w - x + b)d,u(a?)‘ > §. Therefore, from (38)

we have

2

(Sh, Bz > Ec,w,bK /Q S" DeR(x)Dlo(w- x+b)du(x)>2] > Eeus| Tl | > 0. (39)

Lemma 32 Define the operator A : L> — H? by (Af)(y = Jo A( x)du(z). The
image of A is dense in H?, that is, for any u € H?, there exzsts a sequence {vk}keN in L?
such that limy_, o H.Avk — UHHZ =0.

Proof By the smoothness of the kernel A, we have im(A) := {Av : v € L?} C H% By
definition, for any h, g € H?, the inner product between Ah and g in H? space is

(Ag,h)gz = > (D*Ag, D)2 = / > D¢h(x / DS A, y)g(y)dp(y)dp(x)
lal<2 lal<2

(40)
= [o) [ 3 Deh DA ) du(a)dnte) = (5.8,
|| <2

We introduce the adjoint operator of A on H?, denoted A*, and write

(Ag,h)az = (g, A"h)3z = (g, Sh) 2. (41)

By Lemma 31, Sh = 0 if and only if A = 0. Therefore, by setting g = Sh in (41), we have
(g, A*h)32 = (Sh,Sh)> > 0 for any non-zero h. Thus, ker(A*) := {h € H?: A*h =0} =
{0}. Write im(A) for the closure in H? of im(A). We recall that the ortho-complement in
H? of im(A) is ker(A*), so we can decompose the space H? as H? = im(A) @ ker(A*). We
know that ker(A*) = {0} in %2, and hence conclude that im(A) is dense in H2. [ |
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Theorem 33 (Density in 7-[?0)) The image of B is dense in H%o)} that is, for any u €
7-[?0), there exists a sequence {vy}ren @ L7 such that limy_soo [|Bu — ull32 = 0.

Proof For a function u € C3(Q)NCy(Q), we define the function @& = u/n. By Lemma 3(ii),
@ € CZ(Q) C H?. Since the image of A is dense in H?, there exists a sequence wy € H>
such that || Awy — @l|2 — 0. Consequently, the boundedness of 1 and its derivatives shows
(| n(Awy, — ﬂ)HHg = ||B(wx/n) — uHHQ — 0. Since C3(Q) N Cy(Q) is dense in H%o) (under

the H? topology, Lemma 3(i)), we conclude that the image of B is dense in H%o)' [ |

Remark 34 The above result shows that it is, in principle, possible to approrimate the
PDE solution u using an infinite neural network, with the boundary condition enforced by
n. It also justifies the boundary-matching method proposed by McFall and Mahan (2009). In
particular, asu—(1—n)f € H%O), there exists a sequence vy, € L,27 such that Bug+(1—n)f — u

in H?. Of course, whether a particular training algorithm yields such a sequence is a separate
question.

We collect the remaining key properties of B into the following lemma.
Lemma 35 The linear operator B : L% — H? has the following properties:

1. B is strictly positive definite, and induces a norm || - ||g on L%, given by ||v||g =

V(Bv,v) 2. In particular, ||v||g < oo for allv € L%.

2. There exists a constant A > 0 such that ||Bv||2, < Av[|%.

Proof For v € L%, let g := nv € L?. By definition,
(0,80) = (0.149) = (9. A) = | g(a)o(u) Alw,v)da)uly)
= [ 8@ Eesslti 2+ Dt -+ 0)]da)uy)
+ / 9(@)9(Y)Eewp[*U () - Uy)] dp(x)du(y) (42)
QQ

T

=&m4<4dww+®M@wm02+

c/Ummwwm>
Q

> Ec,w,bK /Q S b)g(x)du(:z:))Q] > 0.

For v # 0, we know g # 0. With Assumption 14, by Theorem 5 in Hornik (1991), there
exists w* € R?, b* € R such that | [ o(w* -z 4+ b*)g(z)dp(z)| = € > 0. As the integral is
continuous with respect to parameters w, b there exists 6 > 0 such that for any (w,b) in
the set Rs := {(w,d) : ||w — w*| 4 |b — b*| < 6}, we have | [ o(w -z + b)g(x)du(x)| > €/2.
Therefore (v, Bv) > Ecyp[( [qo(w-z+ b)g(l‘)du(w))Q] > Ec,w,b[le%] > 0; so B defines a
norm as stated.
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From the above calculations, we also see that A is a positive-definite Hilbert—Schmidt
integral operator on L?. Therefore, its eigenfunctions span the entire L? space and the spec-
tral theorem applies, in particular A has nonnegative eigenvalues bounded above. Suppose
A is the supremum of the eigenvalues of A, we have || Ag|| 2 < A(g,.Ag). Thus, as |n(x)| < 1,
we know [|Bv|7, = [InA(v)[|72 < [AMw)[7: < Anw, A(nv)) = Mv, Bv) = XJv|[. =

4. Convergence to the limit ODE

In this section, we seek to understand the behavior of our approximator Q¥ when N —
o0. We prove that the pre-limit process, {Q(-)}o<i<T, converges to a limiting process
{Q¢(")}o<t<T, in an appropriate space of functions. In this section, we will only use As-
sumptions 13(i—iii), in particular we will not need the assumption that £ is monotone or
that a solution to the PDE exists in 2. The challenge here is that our operator £ is not
generally the gradient of any potential function, and is an unbounded operator (in the L?
or supremum norms), and so some care is needed.

In the following subsections, we first bound the difference between the kernels B} (z,y)
and B(z,y) in a convenient sense. We then show that, as N becomes large, the neural
network approximator converges to the solution of an infinite dimensional ODE. Our main
convergence result is Theorem 45.

4.1 Characterizing the difference between kernels

We characterize the (second order) difference between two kernels at (x,y) by

H( Ay, A)(z,y) := |Ar(z, y) — Aa(z, )| + Z |0y A1 (2, y) — Oy, Az (2, )|

(43)
+ Z’ ykylAl T y 8ykylA2(:B7y)|'

Note that partial derivatives are only taken with respect to y components. From Lemma
25, there exists a constant M such that, for all z,y € ),
H(B,0)(x,y) < M. (44)

Similarly, the (second order) difference between two smooth functions is characterized by

G(f1, f2)(2) : = | fil@) = falw)| + Z 10 J1(2) — Bz, fo()]

45
+Z’ :cka:l - :cka;lfQ(x)’ ( )

4.1.1 DIFFERENCE BETWEEN KERNEL B} (z,y) AND BY(z,v)

In this subsection we characterize the difference between kernel Bi¥ and Bj'. We denote
the expectation taken with respect to randomized initialization by Ec; w6, ]- The proofs
of the following lemmas are included in the appendix.
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Lemma 36 There exists C > 0 such that, for all i,5 € {1,2,....,n}, all0 <t < T, and all
N >0,

AN (z,y) — AN (z,y < CNOHA-1, 46
t 0

N k
_ wp )i
0,47 (2,9) ~ 0, A ()] £ CNO1 |1 4 b=t (KO, ()

N
02, AN (2,y) — 02, A (2, )] < CN“B—?(Z (14 (b)) (1 + <w§>j|)>. (48)
k=1

Lemma 37 There exists C > 0 such that, for all 0 <t < T and all N > 0, the expected
difference between AN and A} satisfies

I[“-?‘00,11107170 [‘H(Aiva(J)V)(xay)‘Q] < CNQ((H—B_I)- (49)

After characterizing the difference between A and A}, we estimate the difference between
the kernels BY¥ and BY.

Lemma 38 There exists C' > 0 such that, for all0 <t <T and all N > 0
Eey,wo,b0 [N%/ ‘H(Bgva B(])V)($a y)}Qdu(x)du(y)] < CN220+6-1), (50)
02

Proof Since BN (z,y) = n(z)n(y)AN (z,y), by the Cauchy-Schwarz inequality and the
assumption n € C3, for some constant C' > 0,

[H(BY, By )@, y)[* < C[\Biv(:vvy) = By (@, ) + D 10y, B (2,y) — 0y, BY' (2, )|
k

(51)
# X 1005 011) = By B )
k,l
By the product rule, we have
8y, B, (,y) = n(x) AY (2, )9y (y) + n()n(y)dy, AY (x.y), (52)
0y, Bl (,9) = n(x) AN (,9)0;., 1(y) + n(2)0y, AL (z,9)0y,1(y)
+ 8y, AY (2, 9)0y,1(y) + n(x)n(y) 9y, AY (2, y). (53)
As n € C3, there exists a constant C' > 0 independent of training time ¢, such that
B (x,y) — By (w,y)| < CIAY (2, y) — A (2, y)], (54)

10y, By () — 0y, By (2,9)| < C ||AY (2, y) — AY (2,9)] + 10y, A (2, y) — 3yiAéV(x,y)I}
(55)
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and
‘a;yJBiv(x7y) - agiyJB(])V(xay)‘
< ClIAY (@,y) = A (@,9)| + 10, A (w,9) — 9,4 (@) (56)
+ 10y, AN (,y) — 3y, A (z,)| + 102, AN (2,) — 02, A (z,9)].
Substituting (54), (55) and (56) in (51),
\H(BY, BY)(z,y)|* < c[rAiV (2,y) — AY (2,92 + D10y, AN (z,y) — 8y, AY (2, y)?
* (57)
+ Z| ykylAN € y askylA[J)V(xay)F}

By Lemma 37, there exists a constant C' > 0 such that for all N € N and any time 0 < ¢ < T
Eco,wo,b0 HH(BgV, Bév)m < CN20+8=1) Thus, by Tonelli’s theorem we have

Eco,w0,b0 [/m \H(BiV7Bév)(w’y)fdu(w)du(y)] < CN2O+L), (58)

Multiplying by N2% on both sides concludes the result. |

4.1.2 DIFFERENCE BETWEEN B (z,y) AND B(z,y)

We now characterize the difference between the kernels B}’ and B. The law of large numbers
implies BY' is converging to B almost surely; here we obtain a bound on its speed of
convergence. Again, the proof of the following lemma is given in the appendix.

Lemma 39 There exists C > 0 such that, for any j,k,l € {1,2,....,n}, V N >0,

2] C
Eco,wo,b0 [}Aév(%y) - A(:E,y)‘ | < N
2] C
Ecmwo,bo U%A{ﬂx,y) - 8yiA(x7y)‘ | < N’ (59)
21 _ C
Eepsun o [[02,, 48 (@.9) - 82, Aw.p)F] < T
Lemma 40 There exists C' > 0 such that, for all N > 0,
2 C
Eco wo.bo [NQ‘S /Q2 |H(BY, B)(z,y)| du(l‘)du(y)] S NTw (60)
Proof Similar to (51), we derive
2
|H(BY', B)(a,y)|” < C{!Aév(w,y) — Az, y)] + D 10y, AY (2,y) — Oy Alw, y)
' (61)

+ Z‘ ykylAO x y 8ZkylA(x7y)|2:| .
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Therefore, Lemma 39 guarantees Ey b, || H(BY, B)(x,y)‘Q] < C/N. By Tonelli’s theo-
rem, we have

Begyin | V2 [ HBY B (o))

9 C
_ /ﬂ N o || H B B) (@, 9) | dia() () < <55

4.1.3 DIFFERENCE BETWEEN KERNEL B} (z,y) AND B(z,y)

Combining the results from the above two subsections, we provide one of our key lemmas.

Lemma 41 The kernels BY¥ and B satisfy

i B[N [ [ BB Pl =0, 6
Proof By the triangle inequality,
H(BY, B)(x,y) < H(BY, BY')(x,y) + H(BY', B)(x,y). (64)
Therefore,
|H(BY, B)(w,y)|* < 2|H(BY, BY)(z,9)|" + 2| H(BY, B)(2,)|". (65)

Combining Lemmas 38 and 40, we have, for any 0 <t < T,
N®Ee 000 [ | 1B B, y)\zdﬂ(fﬂ)du(y)] < CNPEPU L ON®TL(66)
02

Integrating with respect to time,

T
2
Bepmoin |V [ 1B B) o) aute)dut)in
< CT(N2(25+B—1) + j\]?é—l)7

which converges to zero as N — oc. |

4.2 Convergence of initial approximator Qév to Qo

In this subsection, we show that the randomly initialized approximator Q(J)V converges to its
limit, given by Qg := f as the number of hidden units N goes to infinity.

Lemma 42 The initial approrimator Qév satisfies imn— 00 By wo,bo [HQéV — Qg“iﬂ] =0.
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Proof By definition, for any indices k, [,

() . ,
QY (2) — Qolx) = TN cho(w) - + b)),

NP 2~
E N (68)
8%(@6\[—@0)(:5):7;5;?2060(100 2+ b8) (wi) xm Zc o(wh -z + by),
=1 i=1
and
xkxl(QO QO)( )
— ZCO wO :E—i—bl)( ’L)k( 'i 8&017’(33)% ) / zx+b6)(w6)k
NB NP (69)

i=1

nx al

”n Z o' (wh -z + b)) (wh) I’“x’ Z 0T+ by).
=1 =1

As {c}, wi, by} are independent for different i € {1,2,..., N}, we have, for a constant C' > 0
which may vary from line to line,

2
2 n(x C
By |05 (@)~ Qo(@)] = I L B [Potw z +0)?) < ooy, (70)
and
2
Eco,wmbo [|8$kQ(]]V(x) - aszO(a;)‘ :|
2 2.2 1 2 9 C (71)
< artBanns 100w )+ Oun(e) PPl o+ 0P| < o
Similarly,
E N < ¢ 72
CO,w07bO[‘ xkleo (z) — xkleU( )‘ } = N2A-1 (72)

Summing over all indices, then integrating over €, gives E. b, [HQéV—QOHiQ} < CN'-28,
As 8 > 1/2, we have the desired convergence. |

4.3 Convergence of the approximator Q}¥ to Q;

Definition 43 (Wide network limit) Fort > 0, we define the wide network limit Q; by
the infinite-dimensional ODE

d _
ﬁt( ) = a/QE(Qt)(x)B(x,y)d,u(m), for all y € Q, (73)
with initial value Qo(y) = f(y), for all y € Q. Equivalently, we can write
d
% = aBL(Q:), Qo= 1f. (74)
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Theorem 44 The limit ODE (74) admits a unique solution in H?.

Proof From Lemma 29, B is uniformly Lipschitz as a map L? — H2. By Assumption
6, £ is uniformly Lipschitz as a map H? — L2. Hence, the operator BL : H? — H? is
uniformly Lipschitz. From the Picard-Lindel6f theorem (see, for example, Theorem 2.2.1
in Kolokoltsov (2019)), we know that (74) admits a unique solution with @Q; € H? for all
t > 0. |

We next prove that Q¥ converges to Q;, justifying the name ‘wide network limit’.

Theorem 45 (Convergence to the limit process Q;) For any fixed time 0 <t < T,
- N
Jm Eep o |[|QF = Qtllys| = 0. (75)

In particular, the boundary value of Qy is given by Q¢lon = f.
Proof From the dynamics of QY and Q ((27) and (73)) we have

Q¥ w) - QY=o / | P @) B (e, (76)
Qu(y) ~ Qoly) = o /0 | 2@u@ Bl piu(win (77)
Differentiate Q¥ (y) and Q;(y) with respect to y; to obtain
0,00 -0, ) = [ [ F¥CQY@)o, BY @oau@an. (19
0y, Qt(y) — 0y, Qo(y) = oz/0 /QEQu(ﬂz)aka(x,y)du(:c)du. (79)

Twice-differentiate Q¥ and @Q; with respect to yj and y; to obtain:

yklet (y) — ykleO —Oé/ /FN ﬁQN ykleN(:r y)dp(x)du, (80)

Q) = Qo) =0 [ [ £Qu), Bt (81)
Subtracting (76) from (77), we have
Q1 (y) = Qu(w) = 1 (¥) — Qo(v)|

<o [ | | F@)@BY w.9) - LQu@) Bl p)in(e)

<o [ | [P0 w)(BY @) - Bl i)

t
+a/
0

t
+a/
0

du

du

(82)

du

/Q (FN(EQuN(w)) —~ FN(ﬁQu(:U)>B(x,y)dlu<x)

du.

[ (FY(£Qu(a) - £Qu() B, y)duta)
Q
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Subtracting (78) from (79), we have
104, QY () — 0y, Qe ()] — 10, Q8 (y) — 9y Qo(v))|

<o [| [ £ @)(0B2 7.9) = 00 B o) (o)

ra [ [ (FY@QYE) - FY(£Quw)o B )it du )
o | t [ (F%(0Qu) = £Qu(e) 0y, B, ).
Similarly, subtracting (80) from (81), we have
79 ) = 8 Q)| ~ 5,08 @) ~ 8, )
<o [ || FNEQY @3 B w0) = 0, B 1) o)) o) .

du

t
—i—oz/
0

t
+a/
0

As stated in Definition 17, the function FN = (V). (V) satisfies a global Lipschitz
condition. Therefore, for some C > 0,

/g}(FN(ﬁQg(x)) — FN(LQu(x ))aykle(x y)dp(z)

du.

/Q (PN (£Qu(@) ~ £Qu()) 3}, B, y)du(x)

YL@ (@) - FN(ﬁQa(x») < c]chv (&) — £Qu()|
<010 - @+ 10 QN ) - 2n s 9+ X e @1 0) - B 2

= CG(Qt 7Qt)( )
(85)

Summing (82), (83) and (84) over all indices k and [, we have

G(Q, Q:)(y)

(Qt , Qo) (y +C'N5/ /H (z,y)dp(z)du (86)
+0/ /G QY. Qu) () H(B,0)(x, y)dp(x)du
e /0 /Q FN(£Qu(x)) — £Qu(x) [ H(B, 0)(z, y)du(x)du.

Here, the coefficient N° comes from the term FV, as by Assumption 17, |[FN| = |(y) -
(¢¥N)'| < 2N%. As mentioned in Remark 18, we also know |FN(z) — x| < 2|z[1g>Noy- As
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H(B,0) is uniformly bounded (Lemma 25), from inequality (86), for some C' > 0 we have

GQY. Q)W) < G@QN.Qo)(y) + CN? /0 /Q H(BY, B)(x, y)dp()du
¢ N
e /0 /Q G(QY, Qu) () du(x)du (87)
+C/O /ﬂEQu(x)\Il{LQ“(I)PNa}d,u(:z)du.

By multiplying G(QY,Q;)(y) in inequality (87), integrating on both sides, and applying
the Cauchy—Schwarz inequality, from (87) we derive

2

i \G(QéV,Qa(y)\zdu(y)sc( / \G(QiV,Qt)(y)\Qdu(y)f[( / \G(QéV,Qw(y)qu(y))

s ! N 2 :
e [ 1Y e Pan@au)) du

t N )
+ /0 /Q G(QY, Qu) (@) dula)du

t
+/0 /Q|/~'Qu($)!]1{|LQu(m)zNé}du(fU)du]-

We write
3 T
v < / !(@év,@oxy)yzdu(y)) o [ B Pt
% " (89)
- /0 /Q 1LQu(%)|1y1£q, (2)>Noy dp(2)du.

Then the inequality (87) can be formulated as

</Q‘G(QfV7Qt)(y)\2du(y)>éSJN+C/: (/Q\G( 5,Qu)(m)\2du(g¢)>2du. (90)

Since
GO, Q0)(y) = QY () = Qe()| + Y10y, (QF = QW) + D105, 4, (QF — Q)(w)l,
k k,l
(91)
by a simple quadratic-mean inequality we have
QY — Q7 < /Q GQY, Q)W) duly) < (> +n+ DIQY - Qill}e.  (92)
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Consequently, from (90) we derive

t
1QN — Qe < IV + © /0 1Y — Qe (93)

By applying Gronwall’s inequality, (93) yields the exponential bound fg 1QN — Qullp2 du <
(e - 1)
o .

It remains to bound JV in (89), as N goes to infinity. By Lemma 42 and (92),
Eco,wo,bo[fg ‘G(QéV,QO)(y)‘de(y)] — 0. By the dominated convergence theorem, we
obtain fOT Jo ]L’Qu(x)|Il{‘£Qu(x)|2Na}du(a:)du — 0. Finally, by Lemma 41, we show that

Ecy wo.bo [N5 fOT fm ‘H(B{LV,B)(w,y)‘zdu(:c)du(y)du] — 0. Therefore, Ec; w.bo [JV] = 0 as
N — oo and consequently, from the above exponential bound,

T
lim Eoq o | / QY ~ Qulle du] = 0. (94)
N—oo 0
Substituting this result back into inequality (93) and taking the expectation with respect to
the random initialization leads to Hmy o0 Eegwe b [|QF — Qtll32] = 0 for any time t < T.
Finally, observe that Q¥ |sq = f by construction, so almost sure convergence in H? (for
a subsequence of N) and continuity of the boundary trace operator imply Qo = f. H

5. Convergence for large training time

In the previous section, we showed that, as the neural network is made wider, its training
process converges to a process that satisfies an infinite-dimensional ODE (74). In particular,
the wide-limit of the approximate solution has the dynamics % = aBL(Q;). This limit
process can therefore be regarded as an approximation of the setting where we use a large
(single-layer) neural network, and our problem (in the limiting setting) is transformed into
the study of this infinite-dimensional dynamical system. The following theorem is an easy

consequence.

Theorem 46 If the wide-network limit converges in H' to a fized point Q, then Q is a
solution to the PDE (1).

Proof For a fixed point @, we know BL(Q) = 0. From Lemma 35, this implies that
L(Q) = 0, so the PDE dynamics are satisfied. As Q" satisfies the boundary conditions
QNloa = f, and QY — Q; in H? for each t, and Q; — Q in H' we see that @ must satisfy
the boundary condition also (by H!-continuity of the boundary trace operator). [ |

In this section, we will consider the simple case where L is a monotone operator. This
implies that the dynamical system dv/dt = Lv converges in L? exponentially quickly, which
suggests the dynamics of @ will be well behaved. However, the presence of the operator B
leads to some difficulties in our analysis. Nevertheless, we will show that, in this setting,
our approximation @); converges to the true solution u of the PDE, at least for a generic
subsequence of times.
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We assume o = 1 in (16) for notational simplicity in this section, without loss of
generality (as this is a simple rescaling of time).

Theorem 47 Let u be the solution to the PDE (1) under our assumptions (Assumption 13,
now including part w), and assume the neural network configuration satisfies Assumptions
14 and 16. Then the wide network limit {Q¢}i>0 of the Q-PDE algorithm (Definitions 20,
43) satisfies

1 t
t/ 1Qs — ul|22ds — 0 as t — co. (95)
0

In particular, there exists a set A C [0,00) with limy_,o0 (t7*Leb(A N [0,])) =0 such that,
for all sequences ty, — oo which do not take values in A, we have the (strong) L* convergence

1Qu;, — ul[r2 — 0.
Proof We begin by supposing we have a decomposition
Qo= f=u+Bv+y, (96)

for some vy € L% and g € H2. As u € H?, we can choose vy arbitrarily and then find g
using (96). Consider the process v solving the ODE

W~ L(Bu+ut ) (97)
with initial value vy as in (96). As detailed in Appendix A.6, as B and L are both Lipschitz
continuous in appropriate spaces, a standard Picard—Lindelof argument shows that v is
uniquely defined in L%, for all t > 0.

By differentiating Bv; (and using dominated convergence to move the derivative through
B), we obtain

d(Bvg +u+g)  d(Bw)

i == = BL(Bv: +u+ g); Bvy + u+ g = Qo. (98)

In particular, as the ODE defining @ has a unique solution in H? (Theorem 44), we have
the identity Q¢ = Bv; +u + g.

Using the Young inequality 2(z,y) < ~v|z[? + (4/7)||y||* for v > 0, together with the
fact L(u) = 0 and our assumption that £ is strongly monotone and Lipschitz, for some
constant k > 0 we have

d d
%H%H% = = (Bur,ve) = 2(Buy, L(Bve + u + g))
= 2(Bv, L(Buy +u+ g) — L(u+ g)) + 2(Bv, L(u+ g) — L(u)) (99)

IN

4
~2y(|Bue|72 + yllBuel72 + ;llﬁ(u +9) = L(u)]7:

A

< —|1Buel32 + vkl g3z
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From Lemma 35 there exists A > 0 such that, for all v € L7, [|But[|7. < Al|v¢||s. Using this
value of \, as ||g||§_[2 is a constant, %()\HWH% - k:||g\|$_[2) < = A([|1Buelf2, — k:||g\|$_[2) Using
the definition of A and integrating,

(1Buel3z = kllgli3e ) < (Mvell: — Kllglie)

¢ (100)
< (Mlaolls = klle) = A [ (1BuilEs = ko) ds.

Writing hy = fg (||Bvs|2, — k:HgH%_tz)ds, we see dhy/dt < (AJvol|s — k:HgH%_lz) — yAhg, and
hence Gronwall’s inequality yields

! t
= [ (UBesls = Flale )ds < (el = Mlale) [ e 9as. o)

Recalling that Q; — u = Bvs + g and

1Bv + gllZ2 < 2BulZz +2llgl32 = 2(IBvll72 — kllgllz2) + (2k + 2)llgl3z, (102)

we conclude that, for some constant C' > 0,

t t
/0 1Qs — ulf2ds = /O 1Bus + gl72ds < Ctllgllyez + Cllwoll3. (103)

This inequality must hold for all choices of g and vy satisfying (96), and we can choose
them to optimize (103). We observe that Qoy — u € 7-[?0), as Qo,u € H? and they have the
same boundary value. For every ¢ > 0, by Theorem 33, there exists a choice of v((f) € L%
such that [[Qo —u — BU(()E)HHQ < e. We further recall that ||v((f) 1% < oo for v((f) € L2

Defining ¢( = Qo — u — Bv((f), (103) yields the limit as ¢t — oo
I ; C (e
t/o 1Qs — ullfads < Cllg @+~ llug” 1 — Ce. (104)

As € > 0 was arbitrary, we conclude that limy_oo {} f[f 1Qs — ul|3.ds} = 0.

To obtain the final statement, set 3(t) = suprs; {7 fOT |Qs — ul|32ds}. Observe that
B is a nonincreasing positive function with lim; ,~, 5(t) = 0. Defining the set A = {t :

Q¢ — ul|* > \/B(t)}, Markov’s inequality yields

1Qs — ull72

P1Qs — ull7,
%Leb(Aﬂ [0,]) = %Leb({s Sttt 1}) < 1/0 W)Lds

< %(1/; Qs = uli3= ds) < V/B(E) - 0.

(105)

The above result only considers the convergence of ). In the case where £ is Gateaux
differentiable (which is certainly the case when L is linear), we can give a similar result for
the convergence of £Q;, involving the positive-definite kernel B.
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Theorem 48 Suppose L : H?> — L? is Gateauz differentiable and the conditions of Theorem
47 hold. Then there exists K > 0 such that fg IBLQs||32 ds < K. In particular, there exists
a set A C [0,00) with Leb(A) < oo such that for all sequences t;, — oo which do not take
values in A, we have |BLQy, |2 — 0.

Proof For any w € L?, h € H? we write OL(w; h) = lime_o{(L(w + h) — L(w))/e} for the
Gateaux derivative in direction h evaluated at w, the limit being taken in L2.
We first observe that, as £ is strongly monotone, for any h € H?,

1 1
(hy OL(w; h)) = lim —(h, L(w + eh) = L(w)) < =y lim —5]lehl|72 = =3[|Al[Z..  (106)

e—0 €

Now write v; = LQ;. As Q; € H?, we know that Bv; = BLQ; € H? (as L : H? — L? and
B: L? — H?). By the chain rule, we have dv;/dt = Oﬁ(Qt;th/dt) = Oﬁ(Qt;B[,Qt) =
8£(Qt;th). Therefore,

d d
el = 2<th, %> - 2<th,8£(Qt;th)> < —2||Bug 2. (107)

Lemma 35 gives the bound [ Bu||3, < Allv¢]|s, from which we obtain
t

1Buellz2 < Allvellg < Allvollg — 2/\7/0 1Bus|[*ds. (108)

By Gronwall’s inequality, we conclude
! Bu.||2 2 ! —2X\y(t—s) ||U0”%
s >~ S —— =t .
/ 1B HL2d3<)\Hv0\B/ c as < 1006 . ¢ < o (109)
0 0 g

Taking A = {t : ||Bv¢||2, > 1/t}, the final stated property is obtained from Markov’s
inequality, similarly to in Theorem 47. ]

Corollary 49 Under the conditions and notation of Theorem 48, the sequence LQ)y, con-
verges weakly to zero in L? if and only if it remains bounded in L?.

Proof Recall that a sequence x,, converges L?-weakly to zero if and only if it is L?-bounded
and there exists an L?-dense set ) such that (y,z,) — 0 for all y € ).

We know from Theorem 48 that BLQ:, — 0 strongly in L? so, for any v € L2
(Bv, LQy,) = (v, BLQy,) — 0. In particular, we see that (y,Q;,) — 0 for any y € im(B).
We know from Theorem 33 that im(1) is dense in 72, and hence in L?. The result follows. B

6. Numerical experiments

In this section, we present numerical results where we apply our algorithm to solve a family
of partial differential equations. The approximator matches the solution of the differential
equation closely in a relatively short period of training time in these test cases.
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6.1 Discretization of the continuous-time algorithm

As a reminder, in a continuous time setting, the algorithm follows a biased gradient flow:
do,/dt = —aN G (6;), based on the biased gradient estimator

G (0:) = /Q 20(LQY () (LQY (2))Vo(—1@Q1 (x))du(w). (110)
A natural discretization of our algorithm with which we train our approximator is

Or1 — Op = — G, (111)

where
. 1 M ‘ . .
G = i > 2 (LY ()¢ (LQY () Vo (—QF (1)) (112)
i=1

is an unbiased estimator of G{/V , given {37%}1212 u the random grid independently sampled
from distribution p at time step ¢, and ;" is the learning rate. More advanced discretization
methods, for example the ADAM adaptive gradient descent rule (Kingma and Ba (2014))
can also be used, and (as is common in gradient based optimization problems) give a
noticeable improvement in performance.

The Q-learning algorithm for solving PDEs as follows:

Algorithm 1: Q-PDE Algorithm

Parameters: Hyper-parameters of the single-layer neural network; Domain 2;
PDE operator £; Boundary condition at 9€2; Sampling measure p; Number of
Monte Carlo points M;

Upper bound of training time 7'

Initialise: Neural net S7V; Auxiliary function n; Approximator Q~ based on SV
and 7; Smoothing function ¢"V; Learning rate scheduler {c;" }>0; Stopping
criteria €; Current time t = 0.

while err > e and t <T do

Sample M points in Q using u, {z;};
Compute biased gradient estimator G]]\\g’t using (112);

Update neural network parameters via (111);
Compute err = ﬁ Zf\il PN (LQN (24))?;
Update time t;

end

Return approximator Qév .

We implement this algorithm using PyTorch (with backpropagation to compute gradi-
ents in both parameters and the state variable x) and the standard ADAM optimization
scheduler for . 2

2. The implementation is available at https://github.com/DeqingJ/QPDE.
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6.2 Test equation: Survival time of a Brownian motion

Suppose 2 is the n-dimensional unit ball. For n-dimensional Brownian motion X; starting
from point z € R™, we wish to compute

u(z) = E[/Om e_vtdt‘Xo = :1:} (113)

where 7q is the first exit time of X for domain €. By the Feynman—Kac theorem (applied
to the process X stopped at 7q), this expectation is given by the solution of the following
PDE:

(114)
u =0 on 09,

{1—7u—|—%Au =0 inQ
where Aw is the Laplacian of u. We consider this problem as a good test case as its explicit
solution is known to us, allowing us to check if our algorithm works for a high-dimensional
version of this PDE. We initialize a single neural network S~ equipped with sigmoid activa-
tion function, and introduce auxiliary function n(z) = 1—||z||?. The approximator Q = S-n
is trained to fit the solution. As shown in the following subsections, through our algorithm,
the approximator ) learns to have the solution of the PDE with different discounting factor
in different dimensions. For detailed configuration of our approximator, see Appendix A.8.

6.2.1 1-DIMENSIONAL CASE

For dimension n = 1, domain Q = (—1, 1). The exact solution of this differential equation is
u(z) = % + ¢1(eV?® 4 e V21%) where ¢ = —1/(y(e"V?T + eV?7)). For this subsection, set
v = 0.1. To keep track of the training progress, we monitor the average loss level at time
t, that is e; =~ fQ [£Q]?du where 1 is the Lebesgue measure on €2, which can be estimated
using our sample of evaluation points at each time.

Training loss Value of £Q7(x)

100 —— Operator loss level, Q-PDE 0.005 —— Operator error, Q-PDE
107 0.004
1072 0.003

-
10 0.002

Loss level
£Qr(x)

1074
0.001

10°°
0.000

107

—0.001

0 10000 20000 30000 40000 50000 60000 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
Training epoch X

Figure 1: Loss level during and after training

The left side of Figure 1 shows how the average operator loss smoothly decays during
training. The right side of it plots the operator error at terminal time EQ¥ (z). For a
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perfect fit, the operator loss LQ7(z) should be zero across the entire domain. We observe
that for our approximator, the norm of this loss remains small and fluctuates around 0. In
Figure 2, we compare our approximator QY with the exact solution. Here 7 indicates the
training time at which we observed the minimal loss e, which occurs for 7 close to the
terminal time 7. (Given the fluctuations observed in the loss, chosing this minimal point
can give a noticeable qualitative improvement in performance.) The relative error of our
approximation at z, given by [(QY (z) — u(z))/u(z)|, remains lower than 0.02%.

Solution of the PDE Relative error in percentage

0.070%
0.8

0.060%

0.050%

o
EY

0.040%

o
IS

0.030%

Value function
Relative error

0.020%

°
N

0.010%

—— Exact solution
0.0 ¢ Q-PDE Approximate solution 0.000%

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
X X

Figure 2: Approximate and exact solutions in 1d case

6.2.2 20-DIMENSIONAL CASE

Now we consider the 20-dimensional case. High-dimensional PDEs are typically hard to
solve, as mesh grids are computationally unaffordable in these cases. However, as a mesh-
free method, our algorithm can be applied. We numerically solve the PDE (114) for dis-
counting factor v = 0.2 via our algorithm and compare the result with the exact solution,
given by

1 Ja(iv2el)
w0 =3 (- L atve) )

where Jy is the ninth-order Bessel function of the first kind. We also compare the training
results of our method to the results from the Deep Galerkin Method (which does stochastic
gradient descent with an unbiased gradient estimate) as a benchmark.

Our approximator trained with the Q-PDE algorithm is able to accurately approximate
the solution of the 20-dimensional PDE. Left of Figure 3 shows that the operator loss is less
than 107> after training for 40,000 epochs, for both Q-PDE and DGM. For both methods,
we observe cyclic behavior in the loss during training, which appears similar to the slingshot
effect discussed in Thilak et al. (2022), which is potentially a consequence of momentum
accumulation of the ADAM optimizer. A full understanding of this effect (which we have
not observed when using a simple gradient descent optimizer) is left for future work.
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Training loss le-7

S —— Loss level, DGM 25 " . «  Error of Q-PDE
10 —— loss_level, Q-PDE ' +  Error of DGM
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o

Loss level
= =
o o]

Mean square error

o
o

0.0

0 5000 10000 15000 20000 25000 30000 35000 40000 0.0 0.2 0.4 0.6 0.8 1.0
Training epoch Distance from the Origin

Figure 3: Average loss level during training

The solution u of this PDE is radially symmetric, that is, it can be represented by a
function which depends on ||z|| rather than z. For the right side of Figure 3, we verify that
our approximate solution is close to this function for different ||z|| € [0,1]. For 0 < r <1,
we randomly generate 100 sample points {2, };j=1,. 100 on the sphere ||z|| = r and compute
the mean-squared error of the set of values {QY (x;,)} as compared to the exact solution.
It is shown that for different r, the mean-squared error of the neural network approximator
is consistently small. Q-PDE solution obtains smaller error than our DGM solution, but
they are at the same scale.

For 0 < r <1, we also consider the maximum relative error, defined as

R, — max { ‘ QN (i) — u(wiy) ‘} (116)

Ti,r w(zir)

Solution of the PDE Maximum relative error

Error of Q-PDE
Error of DGM

0.60%
0.04 1

0.50%

o
o
@

0.40%

o
o
N}

Value function
Relative Error

0.30% A

0.01 1 0.20%

—— Exact solution
Approximated solution, Q-PDE 0.10% 4
0.004 ¢ Approximated solution, DGM

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Distance from the Origin Distance from the Origin

Figure 4: Relative and absolute errors of the approximate solution, in terms of distance
from the origin.

The left plot of Figure 4 implies that this error remains small for all 0 < r < 1. Again,
DGM solution admits slightly larger relative error. Meanwhile, as DGM solution is trained
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with exact gradients which are computationally more expensive, consequently, it takes 5
times longer to train. Both DGM and Q-PDE solutions reach high accuracy. We plot a
scatter plot for {QY (w;)} in the right side in Figure 4 and compare with the exact solution
u. The approximate solutions closely matches the exact solution.

7. Conclusion

In this paper, we propose a novel algorithm which numerically solves elliptic PDEs. The
neural network approximator is designed to match the Dirichlet boundary condition of the
PDE and is trained to satisfy the PDE operator. We prove that for single-layer neural net-
work approximators, as the number of hidden units — 0o, the evolution of the approximator
during training is characterized by a limit ODE. We further prove that as the training time
— 00, the solution of the limit ODE converges to the classical solution of the PDE. In
addition, we provide a numerical test case to show that our algorithm can numerically solve
(high-dimensional) PDEs.
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Appendix A. Appendix

In our proofs, the constants K, C' may vary from line to line.

A.1 Proof of Lemma 3

Proof We first prove® statement i. Suppose that u € H?(Q2)NH(2). Consider the Poisson
problem solved by wu:

{—Au =f inQ, (117)

u=0 on 09,

where f := —Au € L*(Q). Let f, € C°(2) be a sequence with f,, — f € L*(Q). Then

consider the Poisson problem

{—Aun = f, in Q, (118)

Uy, =0 on 09.

Since (by Assumption 1) 9Q € C3“ for a Hélder exponent o € (0,1) and f,, € C§°(Q) C
C1(Q), by the Schauder theory for elliptic boundary-value problems (see, for example,
Theorems 6.14 and 6.19 in Gilbarg and Trudinger (1998)), there exists a unique solution
up € C3%(Q) N Cy(Q) to this boundary-value problem. As

{—A(u )= (f— fa) Q

(119)
U — Uy =0 on 0,

and 99 € C3 (and therefore also C?), and u—u,, € H%(Q), it follows from Theorem 3.1.2.1
and Remark 3.1.2.2 in Grisvard (2011), that for some C' > 0

[ = unllgz < CllA(w = un)l| 2 = Cf = fallLz = 0 (120)

as n — oo. Thus, we have constructed a sequence of functions u,, € C>%(Q) N H{ which
converges to u € H?(2) in the H? norm. Therefore, C3%(Q) N Cy(Q) is dense in H?(Q) N
HE(Q). As

(03@@) N co(ﬁ)) c (03@) N co(ﬁ)), (121)

we conclude that C3(2) N Cp(?) is also dense in H2(Q) NH(Q).

We now prove statement 7i. Take an arbitrary u € C3(Q) N Cy(Q2), and define @ = u/7.
It is clear that ii|q is in C3(Q), from classical rules of calculus, as n|g > 0. In particular, @
and its derivatives are bounded on any closed subset of €2, so we only need to consider the
behavior of 4 in a neighbourhood of 0f2.

We know that 7 has nonvanishing derivative on 0f2, and equals zero on 02, which implies
that |(Vn(z),ng)| > 0 for each = € 92, where n, is the outward pointing normal at x. As
0f) is compact, this implies that

i%fQ (Vn(z),ng)| >¢€, for some e > 0. (122)
Te

3. Thanks to Endre Siili for suggesting the proof of statement i given here.
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As u € C3(2) N Cy(Q), for any = € 9N, we also have limsup,,_,, [u(z’)| = 0.

Consider a smooth path p: [0,1) — Q with limy_,; p(t) = z € Q. For a function g with
domain 2 (e.g. g =1, u or ), we write g, for the composition g o p with domain [0,1).
Suppose p does not approach 9f2 tangentially, in particular,

1%irr{(d,o/dt,n@ >e¢ and |dp/dt]| =1. (123)
—
As (Vn(z),y) =0 for all y L n,, we have

Lim |y, (¢)] = [(Vi(), ng)| {dp/dt, nz) > €. (124)

t—1

Using L’Hopital’s rule, we can determine the behaviour of 4, (and its derivatives) as
t — 1. In particular, by repeated application of the rule, as t — 1

/
u u
N

i, = ) (125)
T
/ / " 1!
~y _ TpUp — NpUp Up p -
i =2>r P _, P _Pg (126)
P 2 o
n; 2n, 27,
2,1 1 !, /1\2 n n 1!
il = 2ot =ty = 2yt 20 Uy My Ty o g (127)

L g,
1, B, 3m, *m, °

Considering t =~ 1, as \n;,| > €2, the right hand side of each of these terms is bounded,
with a uniform bound for all paths under consideration. Writing Dy (@) for the directional
derivative of @ in a direction h, we know ||@)|| = || Dgp/q:(@)|| and [|@y|| = ||D3p/dt(ﬂ)|\. We
can therefore find a single value K > 0, and take a ball B, around each x € 912, such that,

within each B,, for all unit vectors h satisfying (h,n,) > e,
|a| + [Dn(@)] + [ Di(a)] < K. (128)

As Q\ (UzeanBz) is compact, we know that, for K sufficiently large, (128) also holds on
Q\ (UgesaBz), for all unit vectors h. We conclude that (128) holds on all of Q, that is, @,
and its directional first and second derivatives (except possibly in tangent directions at the
boundary), are uniformly bounded.

However, as 02 is a C®“ boundary (in particular, for all ¢ sufficiently small and any
x € 0N the set {y € R" : (y,n,) > €} is a convex cone containing a linear basis for R"),
this implies that the first and second derivatives of @ are also uniformly bounded on 2. We
conclude that @ € CZ(12). [ |

A.2 Proof of Lemma 24

Proof (1) From the training algorithm, calculating the entries in vector VoQ¥ (z), we have

0@ _ n(@)o(w -z +bj)
e (&) = A : (129)
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Therefore, by (15), applying the chain rule we derive

i
dcy _

e /Q FN(LQY (2))n(z)o(w] - o + B)du(z).

By the boundedness of the functions 'V,  and o, the RHS of (130) is bounded:

| PN Q¥ @nt@lotu] o+ B)duta)| < KN
Q
where K is a constant. Therefore, we conclude that

| < |cb] + | — cb] < Ko+ aNTP~ UK < C.

(2) Similar to above, considering the w entries in the vector VoQ.¥ (), we have

9N . n(@)o’(wi -z + b)cjay

a(wi)e NP

Therefore w; satisfies:

d(wj)
dt

— o [ PN LQY @)n(o)clo (wf o + H)anda(e).
Q
By the boundedness of F, 1, ¢/ and ¢}, the RHS of (134) is bounded by
\ Y@ @ntedo’ i o+ H)aduta)| < KN
Q

where K is a constant. Therefore,

|(wi)l < 1)l + [(wie — (wh)a| < [(wh)x| + aNFTHE < [(w))e| + C.

Taking an expectation on both sides, we obtain
E|(w)x| < C.

(3) Considering the b’ entries in the vector VoQ¥ (), we have

00 ) _ nla)o'(ui -+ H)d
abi I '

Therefore, b satisfies

b _ B / FN(LQN (x))n(x)cio’ (wh - - + b})dpu(z).
dt Q

By the boundedness of F, 5, ¢/ and ¢}, the RHS of (134) is bounded by

/Q FN(LQN)@)n(@)cio (w] - o + b)du()| < KN,
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where K is a constant. Therefore,
i| < |bh| + b — | < |bh| + aNTPTLK < |b| + C. (141)
Taking an expectation on both sides, we obtain

E[b| < C. (142)

A.3 Proof of Lemma 36
Proof (1) Notice that

N E [U(wt'x+bt)0(wt‘y+bt)_U(wo'x‘*‘bo)U(U’o'y‘f‘ba)
i—1

by (Gl 4 )0l -+ 8 — o (G x+ba>af<wa'y+ba>]|
N
1 7 74
< 0 2 ot bty ) ot Wy + )
+ |z - yHct - Co ”0 (wt -+ bt)U (wt -y + bt)|
iyl (wf -+ B (i -y 4 B) — o (wh - @+ By (- y + bo>|].
(143)

For a smooth function f : R — R, applying the mean value theorem with respect to w},
there exists w* € R™ such that

fwi -z +b)f(wi - y+b) — f(wh -z +Db)f(wh-y+b)

i i * * . . (144)
= (w} —wp) - [/ 2+ ) (" y+b)a+ f(w @+ ) f (W y+ by
By the fact that o € C{}(R) and |c},| < C for any u € [0,7], we have
oY - o
AN (z,y) = AV (@) < = [(Hﬂﬂlll +lyll)llwi — wolly + |2 - ylle; — o
NS (145)

+ Jlwp = wplla(llzlls + lyll)|z -yl + (1 + |z - y])Ib; - b I]

Therefore, by (131), (140) and (135), the increments of ¢;, b; and w; are bounded by
CNO+B=1 Therefore, we have

AN (@) — A (2,9)] < ON+F-1 [(Hxh i)+ eyl + e y@ < ONTH1. (146)
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(2) By definition,

N
1
AN (29) = 3 [(’(wé“ w4 b)o’ wf 4 bf) (wf)i + of o (wf -3+ 0o (wf -y + B

’“)a”(wé“-y+bf)x-y(wf)i].
(147)

Similarly to in (143), we split the difference between 9, AY (z,y) and 9,, A} (z,y) into terms

N

1
0,2 (0.1) = 0,48 )] < 3 Y- [t - o) (ko 1) b
k=1

— a(wlg -T+ bé)a'(wéc -xT+ blg)(wg)i

2 2
+ ‘c,’f o' (wk - x4+ F) o’ (wh -y 4+ )y — Ko (wh -z + b)) o! (wh -y + b))z

2
6 6 @+ b5)o" (wh -y + b6)z - y(wp)i

2
+ ‘c,’f a'(wf -x+ b,’f)a"(wf “y+ bf)x . y(wf)z —cg o' (w§ -
(148)

Applying the mean value theorem with respect to wi to each term on the RHS of (148),
using the fact that o € C{}(R) and that |c¢i| < C for any ¢ € [0, 7], we have

N
C
0y AT (2, ) — 0y AG (,9)] < 2 D [I(wf)i = (W)l + ()l (2l + Iyl |wf — w§llx
k=1

+ e = cpllal + | (Il + lyllollwd = wgll + |(wp)i = (wg)illz -yl
+ i = cplI(wg) e -yl + |(w§) || - ¢ —wh L+ |- )b — bf
¢ — coll(wg yl + [(wo)'llz - yl(llzll + lyll)lwy = wglls + (1 + [z - y]) by = bgl] -

Therefore, by the boundedness of |cf — ck|, |bF — b&], |(wF); — (wg):| and ||wf — w§||1 we

derive
N N B—1 Zl]cvzl |(w§)z|
10y, AL (2, y) = 9y Ag (2, y)| < ONPTH 1+ === (Ja -yl + 1)L + [lzfl1 + [lyll1)

Tl (L4 Dzl + yll) + e y|] < ON*L,
By definition,
o(wy - @+ bF)o" (wf -z + ) (w); (wy);

x4 b)o" (wf -y + bF)ai(wf);

a0 (wy -y + b)) (wf)s

Fox A 0F)o" (wf -y 0 )a - y(w))i(wp) |-
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The difference between 8§iyj AN and 851_%_ A} can be split into terms

N
1
O, AT (29) = 0 AT (9 < 5 D [1a<wf o )0 (wf -z + b)) (wi(wf)r
k=1
— ol - o+ 0§)o" (wh - o + W) wh)i(wf)| + |0’ (wf -2 + 6)o” (wf -y + Vp)aiCuh)

2 2
= 7o (wh - @+ U)o (- y + Uil | + [ (wf @ ) (k- y + b ()

k

2
— ol (wh - )0 (- y + ) ()] + | (wh - )0 -y ) -y i),

2
— ¢ o' (wf -z + bg)o" (wh - y + b6z - y(wp)i(wp); H

(149)

We apply the mean value theorem to each term above, leading to

N k k
_ _ wWq )i LWy )5
02, AN (2,y) — 62, AN (w,y)| < NP 1[Ek—1'( 0)ill(B)sl 1yt 41y (el + iyl + 1)

N
Zk; 1 | (w)il
N

+ Z]kvzlj‘v(wo )J’ [(

[T+ |2+ Nzl + llyll) + |- y]]

L+ |z (L + lzll + lyll) + |2yl + 1+ || + |aj] + -y | < ONOHL

A.4 Proof of Lemma 37

Proof Taking squares and then expectations on both sides of inequalities (46), (47), and
(48) gives

Eeo,wo b0 [|A7 (2, y) — A (2, y)[P] < ON?OHF-1,
Ecy,wo,b0 [|8ykAiV(aj Y) — aykA(J)V(fa y)lﬂ < CN2(6+6_1)7 (150)

Eeo w0,b0 U ykyzAiv(x’y) 8ZkylAéV(x7y)|2 < CNZOTAD)
Summing these inequalities for all k,1 € {1,2,..,n} and applying the Cauchy—Schwarz in-
equality gives the result. |

A.5 Proof of Lemma 39
Proof First note that

N
1
Eco,wo,b0 [Aé\/(x’ )] = Ecowo,b0 [N Z a wo T+ bk (wlS Y+ blg)
k=1 (151)

2
+of @ yo(wh x4+ b)o (wh -y +b5) | = Az, ).
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We can also calculate

1
IEco,wo,bo UA(])V([E’ y) - A(x7 y)‘Q] - Var[AéV(xa y)] = NV&I’[U(%; C,w, b) ' U(y7 ¢, w, b)} (152)
1

< NEc,w,b’U(x; Caw7b) : U(ya Cawab)|2 < N

For the partial derivatives, for any fixed x,y € 2,

Q

0y (0 w2+ By +b) + 0 (w- 2+ D)o’ (w -y + D))
= lo(w - x + b)o’' (w - y + b)w; (153)
+ o' (w -z 4+ b)o’(w-y + b)a; + x - yo' (w -z + b)o” (w -y + b)w;|
and
|8§iyj (o(w-z+b)o(w-y+b)+ o' (w-z+b)d' (w-y+b)x-y)
= |o(w -z +b)o"(w -y + byww; + ' (w -z + b)o” (w -y + b) (z;w; + zjw;) (154)
+ Ex - yo'(w -z + b)o™ (w - y + b)ww,|.
These are locally bounded around (x,y) € €2, so by Leibniz’s integral rule, we swap the
expectation and the differential operator
Oy A2, y) = 0y, Eepplo(w -z +b)a(w -y +b) + o’ (w -z + b)o' (w -y + b)z - y]
=E. [0y (c(w-2x+b)o(w-y+b)+ co'(w-z+b)o' (w-y+b)x-y)] (155)
= Ecq,w0,b0 [8%.146\/ (=, )],

and
02, A@.9) = 02, Ecupglo(w- @+ Bo(w -y +b) + o/ (w- 2+ b)'(w- y + ba -]
= Ec,w,b[aiyj(a(w cx+b)o(w-y+b)+ o’ (w-x+b)o’(w-y+b)z-y)] (156)
= Eeywo,b0 [a;yj Aév (z,y)]-

Therefore, we can bound the first-derivative variance Var[dy, AY (z,y)]:

1
Eco,wo,bolayiA(])V(x? y) - 8yiA(x7 y)‘Q = *Vaf[ayi(U(ﬂfs ¢, w, b) : U(fU? c,w, b))]

N
1 1 C
< —Eewp|0y; (U(x;c,w,b) - U(y;c,w,b))|2 < —E¢wp[(Clwi| + Clzi| + Clz - y||w1|)2] < =,
N N N
and similarly the second derivative variance Var[agiyj AN (z,y)]:
1
Eeo o0 |0y, 40 (2,9) = Oy Al y)* = S Var[0, (U (3 ¢,w,0) - Uly; e, w,b))]
1
< B0, (U wb) - Uly: e, b))
1 C
< Eewsl(Clwiws| + Clagw;| + Clajwil + Cla - yllwiw;|)*] < .
|
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A.6 Existence of ODE solutions

Lemma 50 Under the assumptions of Theorem 47, for any q € H?, and any initial value
vy € L727, the ODE

d
W L(Bu+a) (157)

admits a unique solution v taking values in L%.

Proof Consider the process w; = nv;. This has initial value wg = nug € L?, and satisfies

the dynamics

dwt

5 = NEBw/n) + q) = Glw). (158)

From Lemma 29, the map w ~ B(w/n) is uniformly Lipschitz as a map L?> — H2. By
Assumption 6, £ is uniformly Lipschitz as a map #? — L?. By Assumption 2, 1 is bounded
on Q. Therefore, G : L? — L? is uniformly Lipschitz.

From the Picard-Lindel6f theorem (see, for example, (Kolokoltsov, 2019, Theorem
2.2.1)), we know that (158) admits a unique solution with w; € L? for all + > 0. Us-
ing this, together with the fact n > 0 on €, we see that there is a unique v; = w/n
satisfying the original equation, with values in L%. |

A.7 Monotonicity for linear elliptic PDE

In this subsection, we give a brief proof of monotonicity of a class of elliptic linear differential
operators, with particular choices of sampling measure p. Our results in this appendix are
not exhaustive, but demonstrate some of the flexibility of the equations we have considered.

Lemma 51 Consider an autonomous Markov process X satisfying the SDE
dXt = V(Xt)dt + O'(Xt)th (159)

where v : Q — R™ and o : Q@ — R™™ and W is an R"-valued standard Brownian motion.
Suppose further that v and o both vanish outside Q2. For an absolutely continuous measure
woon Q, with density f,, let v, o and f, be sufficiently smooth that

{ — Y e @) fu(@)] + X 5 (00 )is (@) fu(@)] }

7" = sup < oo0. (160)

€

fu(x)

Then the generator of X satisfies, for all u € H?,
(v gy s Z oo iyt < T (161)
]3 i0x;/ — 2 ’

where the inner product and norm are both taken in L?(S, ).
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Proof Consider a copy of X initialized with Xg ~ p. The Fokker—Plank equation states
that the density of Xy satisfies f(z,0) = f, and

a 52 .
Z@xz ' 2] +Z&Elam]( )ij (@) f(z,1)] (162)

and hence, using the definition of v*,
9
ot

As f(x,t) is positive, we can define an operator

(e "t f(x,t) <0. (163)

Tiu(zx) := E[U(Xf)e_%t Xo = x} (164)
which satisfies, by Jensen’s inequality,
I Tyull oy < /Q WA(1)e T f(t 2)dw < /Q () fu () = [ul,  (165)

so the operator T; is a contraction. It is easy to Verlfy that T} is also a strongly continuous
semigroup, and its generator is given by u +— —%-u + Au, where A is the generator of X.
By the Lumer—Phillips theorem (Lumer and Phllhps (1961)), we know that the generator
of Ty is dissipative on L?(£2, i), that is

« . ou 1 0?
(u, = Tu+ Au) = <u,—72u+§i:yi8;+2%:(gﬂ)ijam§%> <0. (166)

Rearrangement yields the result. |

Remark 52 This result immediately shows that if u is a stationary distribution for the
Markov process, then v* = 0 and the generator of X is automatically L?-dissipative. (This
result is known, see, for example, (Kallenberg, 2002, Chapter 20).) This suggests that this
will often be a wise choice for p in linear problems, if it is known explicitly.

By manipulating the choice of measure i, or equivalently setting u equal to Lebesgue
measure and considering the equivalent PDE

Lu = f(x)Lu =0, (167)

this result can be leveraged usefully, provided the drift of X does not grow quickly. Similar
results for other bounds on b can also be obtained.

Lemma 53 Consider a process X as in Lemma 51. Suppose that o is constant and there
exist bounded functions g; : R — R for i < n such that, for all x € (Q,

V2 - Z ((‘fziw(a:) + g(mi)l/i(if)) + > gili)g;(z;) (00 )iz (168)

i ij
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Then the generator of X satisfies (u, Au) < 3||ul|, where p is the measure on Q with

Lebesgue density '
fu=Cen (3 [ w0)ac),

for C'" a normalizing constant. In particular, this implies that the operator

Lu=1r—~u+ Au (169)
is strongly monotone, in the sense of Assumption 9.
Proof We calculate
- L@ @]+ Y e l(0a )y @)
i 8.1‘1 " i 8%‘28.7}] JIH
0 170
= =3 (5@ @) + i) ) + 3 gege) oo g fute) T
i ! i,
< 'qu(x)-
Therefore, in (160) we have v* < «y, and the result follows from (161). |

Remark 54 In one dimension, (168) is clearly satisfied whenever we know that 4o2(y +
V') > —12, by taking g(z) = —v(x)/(20?%).

A.8 Configuration of the numerical test cases

A.8.1 TABLE OF HYPER PARAMETERS

Dimension | Method | Layer | Units | Activation | Optimizer | Numer of MC samples
1 Q—PDE 1 64 Sigmoid ADAM ZMC:H{, UMC:Qk
20 Q-PDE 1 256 Sigmoid ADAM Irro=2k, uprc=10k
20 DGM 1 256 Sigmoid ADAM Inro=2k, uprc=10k

A.8.2 INITIALIZATION OF NEURAL NETWORKS

Parameters of the single-layer net Sy are randomly sampled: ¢, are i.i.d sampled from uni-
form distribution U[—1, 1]; w{, and bf are i.i.d sampled from Gaussian distribution N (0, I;)
and N (0,1) where I is the identity matrix of dimension d.

A.8.3 LEARNING PROCESS

We use @Q; := S; - as the approximator, where n(z) := 1 — ||z||?>. We apply the built-in
ADAM optimizer in our test with initial learning rate lo = 0.5, and the learning rate decays
as iy = lo/(1+t/200). In each step, we sample MC samples for gradient estimate. As a larger
number of MC sample points reduces the random error, we linearly increase the number M;
of MC points to be sampled at each step as M; = round(Iy;c + (upre — lyre)t/T'), where T
is the terminal number of training steps.
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