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Abstract
Gaussian process regression underpins countless academic and industrial applications of
machine learning and statistics, with maximum likelihood estimation routinely used to select
appropriate parameters for the covariance kernel. However, it remains an open problem
to establish the circumstances in which maximum likelihood estimation is well-posed, that
is, when the predictions of the regression model are insensitive to small perturbations of
the data. This article identifies scenarios where the maximum likelihood estimator fails
to be well-posed, in that the predictive distributions are not Lipschitz in the data with
respect to the Hellinger distance. These failure cases occur in the noiseless data setting, for
any Gaussian process with a stationary covariance function whose lengthscale parameter is
estimated using maximum likelihood. Although the failure of maximum likelihood estimation
is part of Gaussian process folklore, these rigorous theoretical results appear to be the first
of their kind. The implication of these negative results is that well-posedness may need to
be assessed post-hoc, on a case-by-case basis, when maximum likelihood estimation is used
to train a Gaussian process model.
Keywords: Gaussian processes, maximum likelihood estimation, ill-posedness, stationary
kernels

1. Introduction

Gaussian process regression is a popular tool used to construct a predictive model for a
response variable as a function of one or more covariates of interest. As a strict generalisation
of classical linear regression, and with the support of production-level software, Gaussian
process regression has found myriad applications in both the academic and industrial contexts.
The success of Gaussian process regression, both in terms of predictive performance and
quality of uncertainty quantification, is contingent on the use of a suitable covariance kernel K
for the Gaussian process model. This is often achieved by choosing K from a parametric
set {Kθ}θ∈Θ of candidate covariance kernels, with the parameter θ ∈ Θ being selected based
on the training data set. The predictive performance of Gaussian processes is well-understood
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in a variety of asymptotic settings (e.g., Stein, 1999; Anderes, 2010; van der Vaart and van
Zanten, 2011; Bachoc et al., 2017; Karvonen et al., 2020). However, not much is known about
the non-asymptotic setting when θ is estimated from a training data set. In particular, it is
an open problem to understand when the predictions from a Gaussian process model are well-
posed, in the sense that the predictions of the model are either continuous in the training data
set or insensitive to small perturbations of the training data set. Theoretical understanding
of well-posedness is urgently needed to support the use of Gaussian process regression in
sensitive applications, such as in mine gas safety monitoring (Dong, 2012), malicious maritime
activity detection (Kowalska and Peel, 2012), and climate modelling (Revell et al., 2018),
where the reliability and robustness of predictions is critical.

Several methods exist to estimate θ, including maximum likelihood estimation (Mardia
and Marshall, 1984), maximum a posteriori estimation (e.g., Cunningham et al., 2008),
cross-validation (Geisser and Eddy, 1979), Bayesian inference (MacKay, 1992), kernel flows
(Chen et al., 2021), and various bespoke approaches, for example when θ are the parameters
of a neural network in a deep kernel (Wilson et al., 2016). Among these, maximum likelihood
estimators θML are arguably most widely used, for example being the default approach in
Gaussian process software (Rasmussen and Nickisch, 2010; Pedregosa et al., 2011; Roustant
et al., 2012; GPy, since 2012; Matthews et al., 2017). In addition to statistics and machine
learning, maximum likelihood is also occasionally used in the applied mathematical literature
to construct a kernel interpolant; see Fasshauer and McCourt (2015, Section 14.3) and
Cavoretto (2021) for recent examples. Compared to other approaches, maximum likelihood
is attractive due to the absence of any additional degrees of freedom (e.g., cross-validation
requires a choice for how data are partitioned) and the possibility for automatic gradient-based
optimisation.

Suppose that the data are modelled as being generated by a Gaussian process defined
by a mean function m and a positive-definite covariance kernel Kθ. For a noiseless training
data set Y = (y1, . . . , yn) ∈ Rn, associated to a set X of distinct covariates x1, . . . , xn ∈ Rd,
a maximum likelihood estimator θML of θ satisfies

θML ∈ arg min
θ∈Θ

`(θ | Y ) with `(θ | Y ) = Y T
mKθ(X,X)−1Ym + log detKθ(X,X), (1.1)

where Kθ(X,X) = (Kθ(xi, xj))
n
i,j=1 ∈ Rn×n is the positive-definite covariance matrix and

Ym = (yi −m(xi))
n
i=1 ∈ Rn. See Stein (1999, Section 6.4) or Rasmussen and Williams (2006,

Section 5.4.1). Despite the simple form of the optimisation problem (1.1), there is only
limited understanding of the behaviour of θML in the deterministic interpolation regime,
where the data yi = f(xi) are, in truth, generated from a fixed but unknown function
f : Rd → R. An important open problem is to understand the behaviour of θML in terms
of the data-generating function f and the set of covariates, and the implications of this
behaviour for predictions produced by the Gaussian process model.

The deterministic interpolation regime represents a simple but important instance of Gaus-
sian process regression widely used in, for example, emulation of computer experiments (Sacks
et al., 1989; Kennedy and O’Hagan, 2002), probabilistic numerical computation (Diaconis,
1988; Cockayne et al., 2019; Hennig et al., 2022), and Bayesian optimisation (Snoek et al.,
2012). However, this regime is challenging to analyse, and results concerning maximum likeli-
hood estimation appear limited to the asymptotic analyses. Xu and Stein (2017); Karvonen
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et al. (2020); and Wang (2021) exploited a closed form for the maximum likelihood estimator
of a scale parameter (i.e., θ = {σ} and Kθ = σ2K) to analyse its behaviour as n→∞ in the
fixed domain setting where the covariates {xi}∞i=1 are dense in a compact subset of Rd. In a
similar manner, Karvonen et al. (2019) analysed maximum likelihood estimation of the scale
and lengthscale parameters (i.e., θ = {σ, λ} and Kθ(x, x

′) = σ2K(x/λ, x′/λ)) for a particular
non-stationary Ornstein–Uhlenbeck process, while Karvonen (2023) obtained asymptotic
lower bounds on estimates of the smoothness parameter of the Matérn model. The non-
asymptotic behaviour of maximum likelihood estimation in the deterministic interpolation
regime has yet to be studied.

1.1 Contributions

The principal contributions of this work are to demonstrate how the concept of well-posedness
can be applied to Gaussian process interpolation and how rigorous theoretical analysis of
well-posedness can be performed. We prove that, in the deterministic interpolation regime,
maximum likelihood estimation of a lengthscale parameter can fail to be well-posed. We
emphasise that this is a non-asymptotic (i.e., the number n of observations is kept fixed)
result, in contrast to earlier work, and is based on the observation that the maximum
likelihood estimate λML of a lengthscale parameter λ is infinite if the observations differ from
the prior mean function by a constant vertical shift.

To be more precise, consider a Gaussian process with prior mean functionm and stationary
covariance function of the form

Kλ(x, y) = Φ

(
x− y
λ

)
for x, y ∈ Rd, (1.2)

where the lengthscale parameter λ > 0 determines the spatial correlation distance of the
resulting Gaussian random field. If the function Φ: Rd → R is continuous, the covariance
function (1.2) tends pointwise to the constant Φ(0) as λ → ∞. Thus, if the data are
approximately shifted from the mean function m by a constant, it is intuitive that a large
value will be taken by the maximum likelihood estimate λML. It is rigorously proven in
this article (see Theorem 2.3) that if (a) n ≥ 2 is fixed, (b) the function Φ in (1.2) satisfies
certain mild regularity conditions, and (c) there is a constant c ∈ R such that the data are
m-constant in that

yi = m(xi) + c for i = 1, . . . , n, (1.3)

then λML =∞. This result can be viewed as a generalisation of the simple fact that maximum
likelihood estimation fails if the data are fully explained by the prior mean: if yi = m(xi) for
every i = 1, . . . , n, the first term of `(λ | Y ) in (1.1) is zero and thus the estimate of λ must be
infinite because Kλ(X,X) tends to a singular matrix if and only if λ→∞. From λML =∞
it follows that the pointwise predictions produced by the fitted Gaussian process model assign
all probability to a single point (see Theorem 2.6). This phenomenon is undesirable, as it is
not reasonable to claim infinite precision from a finite data set (which could, in this case,
involve as few as n = 2 values being observed). Secondly, we prove that if the data are not
m-constant, then λML <∞ so that the predictive distributions are non-degenerate. Using
these results we show in Section 2.4 that maximum likelihood estimation is not well-posed
in general, in the sense that the resulting predictive distributions are not Lipschitz in the
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data with respect to the Hellinger distance, which means that predictive inference can be
sensitive to small perturbations of the data set.1

A constant mean shift in (1.3) is not a pathological case in the deterministic interpolation
context, though it does highlight one sense in which mathematical analysis may be easier
when the data are assumed to come from a stochastic process, since a constant mean shift
may be neglected as a measure zero event in that setting. For example, Gaussian process
regression has been used to explore discrepancy between computer models (Brevault et al.,
2020), where a constant mean shift between the output of two computer models for the same
phenomenon could reasonably be expected. Similarly, in probabilistic numerical computation
one could encounter a constant mean shift (e.g., when modelling an integrand in Bayesian
cubature, if that integrand is in fact constant; Briol et al., 2019), or in applications of
Bayesian optimisation, where the data are obtained in a region where the objective function
is constant. The role of this article is therefore to highlight an important failure mode
of maximum likelihood estimation in Gaussian process interpolation and, in doing so, to
underscore the need for an improved theoretical understanding of parameter estimation in
general.

It would be tempting to attribute these failings to the simplicity of the maximum
likelihood estimator and the modelling choices that we consider, for surely something more
sophisticated ought to render the problem well-posed. Section 3 demonstrates that there may
not exist an easy solution in the deterministic interpolation regime, at least if the tractability
of a Gaussian process model is to be retained. Namely, we prove the following extensions:

(i) A certain cross-validation estimator of the scale parameter shares the undesirable
property of producing infinite lengthscale estimates when the data are m-constant.

(ii) Inclusion of a parametric prior mean function, which too is estimated from the data
(i.e., as in universal kriging), does not prevent ill-posedness.

(iii) Simultaneous maximum likelihood estimation of the scale and lengthscale parameters
does not prevent ill-posedness.

What does guarantee well-posedness is the inclusion of a regularisation or a nugget term,
which corresponds to an assumption by the user that the data are corrupted by additive
Gaussian noise. It is intuitive that the maximum likelihood estimator should be more
well-behaved if the data-generating process is noisy as it may be merely by chance that
the data set is m-constant. Less intuitive is the numerical evidence in Section 4.1, which
indicates that λML is infinite even in the regularised setting as long as the regularisation term
is sufficiently large. A possible interpretation of this observation is that for sufficiently large
assumed noise level any data could have been plausibly generated by a constant mean shift
of the prior mean. The use of regularisation can hardly be considered a proper solution to
ill-posedness because the interpolation property of the conditional process, desirable in many
applications, is lost and an influential degree of freedom is introduced. As demonstrated
in Section 4.2, another option for guaranteeing that the lengthscale estimates are always

1. Note that this notion of well-posedness of a parameter estimation method is stronger than that of its
robustness, defined by Gu et al. (2018, Section 3) essentially as the impossibility of obtaining a singular
covariance matrix.
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finite is to place a hyperprior on the lengthscale and use maximum a posteriori estimation.
However, because the hyperprior determines the estimator, this approach is rather arbitrary
and does not lend itself well to automation in software.

Most of our results apply to Matérn-type covariance functions whose Fourier transforms
decay polynomially (see Assumption 2.2). Section 5 discusses generalisations of this Fourier
assumption, lengthscale estimation for product kernels, and the use of general linear informa-
tion, such as derivative data. Our proofs are predominantly based on reproducing kernel
Hilbert space (RKHS) techniques and approximation theory in Sobolev spaces. Complete
proofs are relegated to Section 7. No familiarity with RKHSs or Sobolev spaces is required
to understand the statements of our main results and, outside the proofs, it is only in
Section 5 that these concepts are used. Practical and theoretical implications of our results
are discussed in Section 6.

1.2 Related Literature

For fixed kernel parameters θ, the mathematical properties of Gaussian process interpolation
as n → ∞ can be deduced from the equivalent perspective of optimal interpolation in an
RKHS. See Fasshauer (2011); Scheuerer et al. (2013); and Kanagawa et al. (2018) for reviews
on this equivalence. The setting where the data-generating function f is randomised has
received considerable attention and a large number of results have been obtained. Consistency
and asymptotic normality results for maximum likelihood estimation of scale and lengthscale
parameters can be found in, for example, Ying (1991); Zhang (2004); Loh (2005); Du et al.
(2009); Anderes (2010); Kaufman and Shaby (2013); Bachoc (2013); and Bevilacqua et al.
(2019). The use of maximum likelihood to estimate smoothness parameters (i.e., controlling
the differentiability of the Gaussian process sample paths) has also been considered, notably
by Szabó et al. (2015); Knapik et al. (2016); Chen et al. (2021); and Karvonen (2023). A well
known issue with maximum likelihood estimation occurs when θ is non-identifiable, as can
happen when one attempts to simultaneously estimate scale, lengthscale, and smoothness
parameters in the Matérn covariance model (Zhang, 2004). However, a lack of identifiability
does not affect the predictions produced by the model or the combinations of parameters
that can be identified (the so-called microergodic parameters). These related works, whilst
providing useful insight and powerful theoretical tools and techniques, do not apply in the
non-asymptotic deterministic interpolation regime where θ is estimated using maximum
likelihood.

2. Maximum Likelihood Estimation Is Not Well-Posed

Given any function f and a set X of points x1, . . . , xn in the domain of f , we use f(X) to
denote the n-vector (f(x1), . . . , f(xn)). All vectors in this article are to be understood to be
in column format.

2.1 Gaussian Process Interpolation

In Gaussian process interpolation, the data are modelled as discrete and noiseless observations
from a Gaussian process sample path. A Gaussian process fGP ∼ GP(m,K) on Rd is a
stochastic process characterised by a mean function m : Rd → R and a covariance kernel
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K : Rd × Rd → R:

E[fGP(x)] = m(x) and Cov[fGP(x), fGP(y)] = K(x, y)

for all x, y ∈ Rd. Let K(X,X) = (K(xi, xj))
n
i,j=1 ∈ Rn×n. That fGP is Gaussian means that

all its finite-dimensional distributions are normally distributed, which is to say that

fGP(X) ∼ N(m(X),K(X,X))

for any finite set of points X ⊂ Rd. Throughout this article the covariance kernel is assumed
to be (strictly) positive-definite, which means that

n∑
i=1

n∑
j=1

aiajK(xi, xj) > 0 (2.1)

for any n ∈ N, any non-zero vector a = (a1, . . . , an), and any distinct points xi ∈ Rd. This
implies that the covariance matrix K(X,X) is positive-definite and non-singular if X consists
of distinct points. A covariance kernel is stationary if there is a function Φ: Rd → R such
that

K(x, y) = Φ(x− y) for all x, y ∈ Rd. (2.2)

If Φ is to yield a positive-definite covariance kernel, it is necessary that Φ(0) > 0 because
otherwise the condition (2.1) fails for n = 1. For the purposes of this article, the Matérn
kernels constitute the most important class of stationary covariance functions. Let σ, λ, and
ν be positive. A Matérn kernel with scale σ, lengthscale λ, and smoothness ν is given by

K(x, y) = σ2 21−ν

Γ(ν)

(√
2ν ‖x− y‖

λ

)ν
Kν
(√

2ν ‖x− y‖
λ

)
, (2.3)

where Γ is the Gamma function and Kν the modified Bessel function of the second kind.
Suppose that a noiseless training data set Y = (y1, . . . , yn) ∈ Rn associated to a set X of

distinct covariates x1, . . . , xn ∈ Rd has been obtained and let Ym = Y −m(X). Define

K(x,X) = (K(x, xi))
n
i=1 ∈ Rn and K(X, y) = (K(xi, y))ni=1 ∈ Rn

for any x, y ∈ Rd. The mean and covariance functions of the conditional Gaussian process
fGP | Y are obtained from the well known expressions

µ(x) = E[fGP(x) | Y ] = m(x) +K(x,X)TK(X,X)−1Ym (2.4)

and

P (x, y)2 = Cov[fGP(x), fGP(y) | Y ] = K(x, y)−K(x,X)TK(X,X)−1K(X, y). (2.5)

We use the simplified notation P (x, x)2 = P (x)2 for the conditional variance. It is often
convenient, especially in our proofs, to use the function

s(x) = K(x,X)TK(X,X)−1Ym (2.6)

and write the conditional mean as µ = m + s. The assumption that there is no noise
means that we are in the deterministic interpolation regime where µ is an interpolant to the
data, which is to say that µ(xi) = yi and P (xi) = 0 for every i = 1, . . . , n. Crucially, this
assumption allows us to leverage well known equivalences, reviewed in Section 7.1, between
Gaussian process interpolation and kernel-based minimum-norm interpolation (e.g., Scheuerer
et al., 2013; Kanagawa et al., 2018).
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Figure 1: Translates of Matérn kernels in (2.3), as well as sample paths from the corresponding
Gaussian processes on the domain [0, 1], with σ = 1, ν = 3/2, and three different λ.

2.2 Maximum Likelihood Estimation

Maximum likelihood estimation is the most common method used to select parameters θ ∈ Θ
of a parametrised covariance kernel Kθ. Under the Gaussian process model GP(m,Kθ), the
probability density function of the data Y given θ is (e.g., Rasmussen and Williams, 2006,
Section 5.4.1)

1

det(2πKθ(X,X))1/2
exp

(
− 1

2
Y T
mKθ(X,X)−1Ym

)
. (2.7)

Maximising (2.7) over Θ is equivalent to minimising

`(θ | Y ) = Y T
mKθ(X,X)−1Ym + log detKθ(X,X), (2.8)

which we call the modified log-likelihood function, being the log-likelihood function up to
subtraction and multiplication by negative constants. That is, any maximum likelihood
estimate (which may not be unique if ` is multimodal) of θ satisfies

θML ∈ arg min
θ∈Θ

`(θ | Y ).

The two terms that comprise the modified log-likelihood function (2.8) are usually called the
(negative) data-fit and model complexity terms, respectively. Throughout the article we use
subscripts to denote that various quantities depend on the kernel parameters. For example,
the parameter-dependent conditional mean and covariance are

µθ(x) = m(x) +Kθ(x,X)TKθ(X,X)−1Ym,

Pθ(x, y)2 = Kθ(x, y)−Kθ(x,X)TKθ(X,X)−1Kθ(X, y).

We are interested in estimation of the lengthscale parameter λ > 0 which parametrises
any stationary kernel of the form (2.2) as

Kλ(x, y) = Φ

(
x− y
λ

)
and determines the spatial correlation distance of the resulting Gaussian process (see Figure 1).
A maximum likelihood estimate of λ therefore satisfies

λML ∈ arg min
λ>0

`(λ | Y ) = arg min
λ>0

{
Y T
mKλ(X,X)−1Ym + log detKλ(X,X)

}
.
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Specifically, we are interested in rigorously proving that λML = ∞ in certain cases. As λ
increases, the kernel Kλ tends pointwise to Φ(0), which is not positive-definite, and the
covariance matrices in the predictive mean (2.4) and covariance (2.5) become singular if
n > 1. However, the limits limλ→∞ µλ and limλ→∞ Pλ(x, y)2 do exist for most commonly
used kernels, such as Matérns and the Gaussian, and it is in this limiting sense that one
should interpret the conditional moments when λ =∞. This is discussed in more detail in
Section 2.3.

Our results on the behaviour of λML (and, later, other estimators of λ) show that Gaussian
process interpolation fails, producing degenerate predictive distributions, when the data are
m-constant and the function Φ has a polynomially decaying Fourier transform.

Definition 2.1 (Constant data) Given a mean function m, we say that the data Y are
m-constant if there is a constant c ∈ R such that

Ym = Y −m(X) = (c, . . . , c) ∈ Rn.

Let f̂(ξ) =
∫
Rd g(x)e−iξTx dx denote the Fourier transform of an integrable function

f : Rd → R. We use the following assumption on the rate of decay of the Fourier transform
of a stationary kernel.

Assumption 2.2 (Stationary Sobolev kernel) There are a continuous and integrable
function Φ: Rd → R and constants C1, C2 > 0 and α > d/2 such that K(x, y) = Φ(x− y)
for all x, y ∈ Rd and

C1(1 + ‖ξ‖2)−α ≤ Φ̂(ξ) ≤ C2(1 + ‖ξ‖2)−α (2.9)

for all ξ ∈ Rd.

If d = 1 and Assumption 2.2 holds for α = p+ 1 ∈ N, the kernel is p times differentiable
in that the derivative

∂2p

∂xp∂yp
K(x, y)

∣∣∣x=0
y=0

= (−1)pΦ2p(0)

exists. As a consequence, the process fGP ∼ GP(m,K) is p times mean-square differen-
tiable (Stein, 1999, Section 2.4). That a kernel satisfying (2.9) is called a Sobolev kernel
is because its RKHS is norm-equivalent to the Sobolev space Wα

2 (Rd) of order α. The
norm-equivalence is a crucial ingredient in several of our proofs and is reviewed, together
with Sobolev spaces, in more detail in Section 7.3. One can also prove that the sample paths
of fGP are elements of certain Sobolev spaces (Scheuerer, 2011; Steinwart, 2019; Henderson,
2022). The Fourier transform of the function

Φ(z) = σ2 21−ν

Γ(ν)

(√
2ν ‖z‖

)νKν(√2ν‖z‖
)
, z ∈ Rd,

which defines a Matérn kernel in (2.3), is (e.g., Stein, 1999, p. 49)

Φ̂(ξ) = σ2 Γ(ν + d/2)

πd/2Γ(ν)
(2ν)ν

(
2ν + ‖ξ‖2

)−(ν+d/2)
. (2.10)

Therefore a Matérn kernel with smoothness ν > 0 satisfies Assumption 2.2 with α = ν + d/2.
With these preliminaries we are ready to state the main result of this article on the

behaviour of maximum likelihood estimates of λ. The result is illustrated in Figure 2.
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Figure 2: The modified log-likelihood function for the Matérn kernel (2.3) with parameters
σ = 1 and ν = 5/2 given three different data vectors Y obtained at the points
X = {1, 1.2, 2} ⊂ R. Note the non-linear y-axis.

Theorem 2.3 (Maximum likelihood estimation) Suppose that the kernel K satisfies
Assumption 2.2 and n ≥ 2. If the data Y are m-constant, then

lim
λ→∞

`(λ | Y ) = −∞ and λML =∞. (2.11)

If the data Y are not m-constant, then

lim
λ→∞

`(λ | Y ) =∞ and λML <∞. (2.12)

Proof See Section 7.4. The proof uses RKHS techniques to show that under Assumption 2.2
the data-fit term, as a function of λ, (a) is upper bounded if the data are m-constant and
(b) grows polynomially if the data are not m-constant, while the covariance matrix tends to
the matrix consisting of Φ(0)’s as λ→∞ and it can be shown that its log-determinant (i.e.,
the model complexity) tends to negative infinity with at most rate − log λ.

Remark 2.4 It would be very interesting and useful to obtain a more quantitative version
of Theorem 2.3 which would, for example, state that

λML ≥ g(constm(Y )) (2.13)

for some measure constm(Y ) of how far Y are from being m-constant (i.e., constm(Y ) = 0
if and only if Y are m-constant) and some decreasing function g : (0,∞) → R such that
g(r) → ∞ as r → 0. Unfortunately, the techniques we use to prove Theorem 2.3 are not
precise enough to prove any form of (2.13).

Remark 2.5 For simplicity, suppose that m ≡ 0 so that the data being m-constant means
that Y = (c, . . . , c) for some c ∈ R. Because the case λ =∞ formally corresponds to a model

9



Karvonen & Oates

with a constant kernel, one might be tempted to interpret Theorem 2.3 as a special case of
a general theorem which would state that θML takes the value θ̄ for which the data are fully
explained by a single translate of Kθ̄. However, there can be no such theorem. For suppose
that there are θ̄ ∈ Θ and i ∈ {1, . . . , n} such that the data could have been generated by the
translate of Kθ̄ at xi. That is, Y = aKθ̄(xi, X) for some a ∈ R. Then

`(θ | Y ) = Y TKθ(X,X)−1Y + log detKθ(X,X)

would have to attain its minimum at θ = θ̄. But because the data-fit term is non-negative and
the model complexity term does not depend on the data, it is clear that a minimum can be
attained at θ̄ only by “chance” or if log detKθ̄(X,X) = −∞, which happens only if Kθ̄(X,X)
is singular or, in other words, if Kθ̄ is not a valid positive-definite kernel. That is, there can
be no general theorem that θML = θ̄ if it is required that Kθ̄ be a well-defined positive-definite
kernel.

Next we discuss the behaviour of the conditional mean and covariance and give a precise
meaning to ill-posedness of Gaussian process interpolation that we have repeatedly alluded
to.

2.3 Conditional Mean and Variance in the Flat Limit

Given Theorem 2.3, the question that arises is how the conditional mean (2.4) and covari-
ance (2.5) behave if the data are m-constant. As the kernel becomes constant for λ =∞, the
linear systems in the equations which define the conditional moments are singular if n ≥ 2.
The sensible approach is therefore to consider the limits of µλ(x) and Pλ(x, y) as λ → ∞.
This flat limit has been extensively studied during the past twenty years in the literature
on radial basis function interpolation; see, for instance, Lee et al. (2015) or Barthelmé and
Usevich (2021) and the references therein. Flat limits have been recently considered in the
context of Gaussian process interpolation by Barthelmé et al. (2022). The conclusion of
this body of research is that, under certain assumptions on the kernel and the covariate set
geometry, the kernel-dependent term of the conditional mean in (2.6) tends pointwise to (a) a
polynomial interpolant if the kernel is infinitely differentiable (Lee et al., 2007, Theorem 3.4)
or (b) a polyharmonic spline interpolant if the kernel is finitely differentiable (Song et al.,
2012, Theorem 1). Interestingly, if the data are m-constant, we find that it is possible to
present a simpler proof that is completely self-contained.

Theorem 2.6 Suppose that K satisfies Assumption 2.2 and n ≥ 1. If Ym = (c, . . . , c) for
some c ∈ R, then

lim
λ→∞

µλ(x) = m(x) + c and lim
λ→∞

|Pλ(x, y)| = 0

for any x, y ∈ Rd.

Proof See Section 7.5.

10
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Figure 3: The conditional mean function for λ ∈ {1, 10, 100} when X = {−1, 0, 1} ⊂ R,
Y = (1, 1, 1), the prior mean is zero, and K is the Matérn kernel (2.3) with σ = 1
and ν = 3/2.

Theorem 2.6 is illustrated in Figure 3. Since Φ is assumed continuous in Assumption 2.2,
µλ(x) and Pλ(x, y) are continuous functions of λ for any fixed x, y ∈ Rd (which is proved
similarly to Lemma 7.1). Therefore Theorem 2.6 justifies writing

µλ=∞(x) = m(x) + c and Pλ=∞(x, y) = 0. (2.14)

2.4 Ill-Posedness

By the classical definition of Hadamard, an inference or estimation problem is well-posed if
(i) a solution exists, (ii) the solution is unique, and (iii) the solution depends on continuously
on the data. If these conditions are not met, the problem is ill-posed. In the Bayesian
inverse problems literature, where the solution is a posterior measure, the third condition
is often strengthened to a requirement that the posterior be locally Lipschitz in the data
with respect to the Hellinger distance (Stuart, 2010, Section 4). One of the reasons that
make Hellinger distance suitable in our context is that two distributions that are close in
Hellinger distance are close also in mean and variance. However, one may also consider other
probability metrics (e.g., Latz, 2020). In this section we show that prediction using Gaussian
process interpolation is not well-posed in the latter Lipschitz–Hellinger sense if the lengthscale
parameter is set using maximum likelihood. Bringing formal notions of well-posedness to
bear on Gaussian process interpolation has not, to the best of our knowledge, previously
been attempted.

Let Q1 and Q2 be two probability distributions on Rq that are absolutely continuous
with respect a reference measure ν on Rq and let q1 and q2 denote their Radon–Nikodym
derivatives with respect to ν. The squared Hellinger distance between Q1 and Q2 is

dHel(Q1, Q2)2 =
1

2

∫
Rq

(
q1(x)1/2 − q2(x)1/2

)2
dν(x). (2.15)

The Hellinger distance does not depend on the reference measure ν, which means that for
distributions that admit Lebesgue density functions we may set dν(x) = dx. For univariate
Gaussians Q1 = N(µ1,Σ1) and Q2 = N(µ2,Σ2), we have

dHel(Q1, Q2)2 = 1−
√

2(Σ1Σ2)1/4

√
Σ1 + Σ2

exp

(
− (µ1 − µ2)2

4(Σ1 + Σ2)

)
. (2.16)

11
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Let Q(Y ) stand for a posterior measure given an observed data vector Y ∈ Rn. The posterior
is said to be well-posed if for every ε > 0 there exists L > 0 such that

dHel
(
Q(Y ), Q(Y ′)

)
≤ L ‖Y − Y ′‖ (2.17)

for any data vectors Y, Y ′ ∈ Rn for which ‖Y − Y ′‖ ≤ ε.
Let us consider the Gaussian process predictive distribution at some unobserved point

x0 /∈ X as the posterior and set

QGP(Y ) = N(µλML(Y )(x0), PλML(Y )(x0)2), (2.18)

where we use λML(Y ) to denote that a maximum likelihood estimate depends on the data Y .
We may assume that λML(Y ) (or, if the modified log-likelihood function has multiple global
minimum points, the largest of these) is a continuous function of the data, for otherwise
predictions would not be continuous in the data, let alone Lipschitz. Let ε > 0 and let
(Yk)∞k=1 and (Y ′k)∞k=1 be two data sequences which satisfy ‖Yk − Y ′k‖ ≤ ε for every k ∈ N and
which converge to an m-constant data set:

lim
k→∞

Yk −m(X) = lim
k→∞

Y ′k −m(X) = (c, . . . , c) ∈ Rn

for some c ∈ R. By Theorems 2.3 and 2.6 and the assumed continuity of λML(Y ) in the data,
these sequences can be selected such that

Σk := PλML(Yk)(x0)2 = C1e−k and Σ′k := PλML(Y ′k)(x0)2 = C2k
−1

for some positive constants C1 and C2. Since e−x ≤ 1 for all x ≥ 0, we get from (2.16)
and (2.18) that

dHel(QGP(Yk), QGP(Y ′k))2 ≥ 1−
√

2(ΣkΣ
′
k)

1/4

√
Σk + Σ′k

= 1−
√

2(C1C2)1/4k−1/4e−k/4√
C1e−k + C2k

−1

≥ 1−
√

2C
1/4
1 C

−1/4
2 k1/4e−k/4,

where the second term tends to zero as k →∞. Therefore

dHel(QGP(Yk), QGP(Y ′k))→ 1 as k →∞

even though ‖Yk − Y ′k‖ → 0 as k →∞. This shows that the Lipschitz condition (2.17) fails
to hold when the data domain is

Rn = {Y ∈ Rn : Y is not m-constant } ⊂ Rn,

the set of data sets that are not m-constant. That is, we have shown that the mapping
QGP : Rn → P defined in (2.18) is not Lipschitz, where P is the space of probability
distributions on R equipped with the Hellinger distance.

The above derivation is a consequence of the fact that, from Theorem 2.3 and the
interpretation in (2.14),

PλML(Y )(x0)2 = 0

12
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if the data Y are m-constant. Then for any data Y ′ which are not m-constant we compute
from (2.16) that

dHel(QGP(Y ), QGP(Y ′)) = 1,

which means that the predictive distribution is not continuous at any data which are m-
constant. Note that this is a purely formal computation because (2.15) and (2.16) are valid
only for measures which are absolutely continuous with respect a common reference measure,
which is not the case with the degenerate Gaussian predictive distribution Y that arises
from m-constant data and the non-degenerate Gaussian Y ′. By observing that the argument
above uses Theorem 2.3 only to guarantee the existence of data Y for which λML(Y ) =∞,
we may formulate the following generic ill-posedness theorem.

Theorem 2.7 (Ill-posedness) Suppose that K satisfies Assumption 2.2 and n ≥ 1. Let
λ̄ : Rn → [0,∞] be any estimator of λ and define Rn = {Y ∈ Rn : λ̄(Y ) < ∞} ⊂ Rn.
If there are data Y ∈ Rn such that λ̄(Y ) = ∞ (i.e., Rn 6= Rn), then Gaussian process
interpolation is ill-posed, in the sense that the predictive distribution mapping QGP : Rn → P
defined in (2.18) is not Lipschitz for any x0 /∈ X.

The main message of Theorem 2.7 is that a lengthscale estimator, whatever it might be,
must be finite for any data in order for Gaussian process interpolation to be well-posed.

3. What Does Not Help

The Gaussian process model in Theorem 2.3 is fairly simple, having a fixed prior mean
function and a single estimated hyperparameter. One might hope that additional modelling
choices—or the use of an altogether different parameter estimation method—would yield a
well-posed Gaussian process model. In this section we show that this is not to be for several
common approaches. Each theorem in this section shows that an estimator of λ is infinite if
the data are m-constant, so that Theorem 2.7 consequently establishes that Gaussian process
interpolation is ill-posed.

3.1 Cross-Validation

Leave-one-out cross-validation is a popular alternative to maximum likelihood estimation that
has been shown to confer robustness when the Gaussian process model is misspecified (Bachoc,
2013). In Gaussian process interpolation the objective function that is typically used is

`CV(θ | Y ) =
n∑
k=1

[(
yk − µθ,n,k(xk)
Pθ,n,k(xk)

)2

+ log[Pθ,n,k(xk)
2]

]
, (3.1)

where µθ,n,k = m + sθ,n,k and Pθ,n,k denote the Gaussian process conditional mean and
standard deviation functions in (2.4)–(2.6) based on data at the points X \ {xk}; see, for
example, Section 4.2 in Currin et al. (1988) or Section 5.4.1 in Rasmussen and Williams
(2006). Subscripts are again used to make explicit the dependency of these functions on the
kernel parameters θ. Any corresponding parameter estimate θCV satisfies

θCV ∈ arg min
θ∈Θ

`CV(θ | Y ).

13
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The cross-validation objective function (3.1) is obtained by summing negative predictive
log-probabilities of yk given data at X \ {xk} and discarding terms which do not depend
on θ. Unfortunately, leave-one-out cross-validation also fails to be well-posed. This may not
be surprising given that there is a close connection between maximum likelihood estimation
and cross-validation (Fong and Holmes, 2020).

Theorem 3.1 (Cross-validation) Suppose that K satisfies Assumption 2.2 and n ≥ 2. If
the data Y are m-constant, then

lim
λ→∞

`CV(λ | Y ) = −∞ and λCV =∞. (3.2)

Proof See Section 7.6. Despite the ostensibly different forms of the objective functions (2.8)
and (3.1), the proof is, in consequence of Proposition 7.5, in essence all but identical to the
proof of Equation (2.11) in Theorem 2.3.

We believe that `CV(λ | Y ) and λCV satisfy a version of Equation (2.12) if the data are
not m-constant but have been unable to furnish a proof; see Remark 7.8.

Remark 3.2 A non-probabilistic alternative to (3.1) is to simply minimise the sum of
squared leave-one-out errors (e.g., Rippa, 1999):

`CV(2)(θ | Y ) =
n∑
k=1

(yk − µθ,n,k(xk))2 ≥ 0 and θCV(2) ∈ arg min
θ∈Θ

`CV(2)(θ | Y ).

Consider estimating the lengthscale parameter λ using this procedure. If the data Y are
m-constant such that Ym = Y −m(X) = (c, . . . , c), it follows from Theorem 2.6 that µλ,n,k
tends pointwise to m+ c as λ→∞ if K satisfies Assumption 2.2. Therefore

lim
λ→∞

`CV(2)(λ | Y ) = lim
λ→∞

n∑
k=1

(m(xk) + c− µλ,n,k(xk))2 = 0,

from which it follows that λCV(2) =∞, or at least that `CV(2)(λ | Y ) has one of its minima
at infinity. Therefore also this procedure is ill-posed.

3.2 Unknown Parametric Prior Mean

So far we have considered a setting where the prior mean function m is known and fixed. But
in methods such as universal kriging the mean is assumed to be an unknown element of the
linear span of a finite number of basis functions, typically polynomials, and its coefficients are
estimated from the data. See, for example, O’Hagan (1978) or Chapters 3 and 4 in Santner
et al. (2003).

Let the basis functions be ϕ1, . . . , ϕq for q ≤ n and define the matrix V (X) ∈ Rn×q with
elements

(V (X))i,j = ϕj(xi).

Suppose that the mean function is m =
∑q

j=1 βjϕj for unknown coefficients β = (β1, . . . , βq)
which we wish to estimate using maximum likelihood. The full modified log-likelihood

14
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function for both the kernel parameters θ and the coefficients β is obtained by inserting the
parametric prior mean in (2.8):

`(θ, β | Y ) = (Y − V (X)β)TKθ(X,X)−1(Y − V (X)β) + log detKθ(X,X). (3.3)

Any maximum likelihood estimates satisfy

{θML, βML} ∈ arg min
θ∈Θ, β∈Rq

`(θ, β | Y ).

The natural generalisation of Definition 2.1 to this setting is that there exist some coefficients
for which the data are m-constant. That is, that there exist constants c and β∗ = (β∗1 , . . . , β

∗
q )

(which need not be unique) such that

yi −
q∑
j=1

β∗jϕj(xi) = c for every i = 1, . . . , n. (3.4)

The next theorem shows that the maximum likelihood estimate of the lengthscale parameter λ
is badly behaved if the data satisfy the above assumption.

Theorem 3.3 Suppose that K satisfies Assumption 2.2 and n ≥ 2. If the data Y satisfy (3.4),
then

λML =∞ if {λML, βML} ∈ arg min
λ>0, β∈Rq

`(λ, β | Y ).

Proof See Section 7.6. The proof is similar to that of Equation (2.11) in Theorem 2.3.

Remark 3.4 If the matrix V (X) has full rank, one can compute that

βML =
[
V (X)TKθ(X,X)−1V (X)

]−1
V (X)TKθ(X,X)−1Y

for any fixed θ. If q = n, the matrix V (X) is square and non-singular so that the above
maximum likelihood estimate simplifies to βML = V (X)−1Y . Inserting this to (3.3) eliminates
the data-fit term and we are left with `(θ, βML | Y ) = log detKθ(X,X). The maximum
likelihood estimate of θ is therefore obtained by minimising complexity of the model. If θ = λ,
this naturally leads to λML = ∞ since this is the only value of the lengthscale parameter
for which the covariance matrix becomes singular. The interpretation of this phenomenon
is that maximum likelihood estimation picks the simplest possible model if the data are fully
explained by the prior mean.

3.3 Simultaneous Estimation of the Scaling Parameter

One typically estimates the lengthscale parameter simultaneously with the scale or magnitude
parameter σ > 0. Suppose that θ = {λ, σ} and the covariance kernel is parametrised as
Kθ(x, y) = σ2Kλ(x, y). Then

`(λ, σ | Y ) =
1

σ2
Y T
mKλ(X,X)−1Ym + log detKλ(X,X) + n log σ2

15
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and maximum likelihood estimates satisfy

{λML, σML} ∈ arg min
σ,λ>0

`(λ, σ | Y ). (3.5)

Unfortunately, the behaviour of the maximum likelihood estimate λML is identical to the case
in Theorem 2.3 where σ is held fixed. Let σML(λ) denote the maximum likelihood estimate
of σ for a fixed λ > 0.

Theorem 3.5 (Simultaneous estimation) Suppose that K satisfies Assumption 2.2 and
n ≥ 2. Consider the maximum likelihood estimates in (3.5). If the data Y are m-constant
and Ym 6= 0, then

lim
λ→∞

`(λ, σML(λ) | Y ) = −∞ and λML =∞.

Proof See Section 7.6. The proof does not fundamentally differ from that of Theorem 2.3.

If it happens that Ym = 0, the modified log-likelihood function is simply

`(λ, σ | Y ) = log detKλ(X,X) + n log σ2.

Then `(λ, σ | Y ) = −∞ if and only if λ → ∞ or σ → 0. Either of these cases results zero
conditional variance and degenerate predictive distributions.

4. Regularisation

This section discusses two types of regularisation that can be used to ensure the well-
posedness of Gaussian process regression or finiteness of a lengthscale estimator. However,
these approaches may induce unwanted side effects and are, to some extent, arbitrary.

4.1 Regularisation via Observation Noise

Let δ > 0 be a regularisation parameter (alternatively, smoothing parameter, nugget or jitter).
Denote the n× n identity matrix with In. The regularised versions of the Gaussian process
conditional mean and covariance in (2.4) and (2.5) are

µδ(x) = m(x) +K(x,X)T(K(X,X) + δ2In)−1Ym,

P δ(x, y)2 = K(x, y)−K(x,X)T(K(X,X) + δ2In)−1K(X, y)

and that of the modified log-likelihood function is

`δ(λ | Y ) = Y T
m(Kλ(X,X) + δ2In)−1Ym + log det(Kλ(X,X) + δ2In). (4.1)

In this section every quantity which is superscripted with δ stands for the corresponding
quantity defined in Section 2 but with K(X,X) replaced by K(X,X) + δ2In. Although
the above expressions arise from assuming that the data are corrupted by additive and
independent zero-mean Gaussian noise terms with variances δ2, regularisation is often used
purely out of convenience (that is, even when one does not believe that the data are noisy)
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Figure 4: The regularised maximum likelihood estimate λδML in (4.2) as a function of the
regularisation parameter δ for four different data sets Y ∈ R3.

as it improves the condition number of the covariance matrix that needs to be inverted (e.g.,
Ranjan et al., 2011; Adrianakis and Challenor, 2012).

Because (K(X,X) + δ2In)−1 < K(X,X)−1 in the Loewner ordering of positive-
semidefinite matrices, we easily derive that the regularised conditional variance is everywhere
positive:

P δ(x)2 = P δ(x, x)2 > P (x)2 ≥ 0 for every x ∈ Rd.

Consider then the lengthscale parameter λ and the corresponding kernel Kλ and assume for
simplicity that Kλ(x, y) → 1 as λ → ∞ for all x, y ∈ Ω. Then it is straightforward to use
the Sherman–Morrison formula to compute that

lim
λ→∞

P δλ(x)2 = lim
λ→∞

[
Kλ(x, y)−Kλ(x,X)T(Kλ(X,X) + δ2In)−1Kλ(x,X)

]
=

1

1 + nδ−2

and

lim
λ→∞

µδλ(x) = m(x) +
δ−2

1 + nδ−2

n∑
i=1

(yi −m(xi))

for any x ∈ Rd and Ym ∈ Rn. These estimates and computations establish that under
regularisation no finite-dimensional distribution of the conditional Gaussian process can
tend to a degenerate Gaussian as λ varies. It follows that regularised Gaussian process
interpolation is well-posed in the sense discussed in Section 2.4 as long as the estimator of
λ is continuous in the data. However, the price one pays for vanquishing ill-conditioning
is that the conditional mean no longer interpolates the data, which may be undesirable in
applications where the data are truly noiseless, and that an additional degree of freedom is
introduced. Favorable convergence rates of Gaussian process interpolation (asymptotically
as n → ∞) are also lost under regularisation unless one has the regularisation parameter
tend to zero with an appropriate rate (Wendland and Rieger, 2005, Section 3).

Even though maximum likelihood estimation of λ cannot cause ill-posedness in the
regularised setting (assuming the estimator is continuous in the data), there remains the
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interesting question of how λδML, as computed by minimising the regularised modified log-
likelihood function in (4.1), behaves if the data are m-constant. Our attempts at proving any
properties of λδML have been unsuccessful, and therefore here we limit ourselves to a simple
numerical investigation, the results of which are depicted in Figure 4. This figure plots

λδML = arg min
λ>0

`δ(λ | Y ) (4.2)

as a function of δ > 0 for four different data vectors Y ∈ R3 (we set m ≡ 0) when
X = {1, 1.2, 2.0} ⊂ R and K is the Matérn kernel in (2.3) with parameters σ = 1 and
ν = 3/2. Minimisation was performed using grid search. It appears that for each data set the
maximum likelihood estimate λδML has a singularity at a certain value δ∞ of δ and that δ∞
is smaller when the data Y are closer to being constant. This suggests that, for a sufficiently
large δ, maximum likelihood estimation always reverts to the simplest possible model, that
obtained with λ = ∞. One way to interpret this observation is that any given data set
could have been plausibly generated by a constant function if the data set is assumed to be
corrupted by Gaussian noise with sufficiently large variance (i.e., if δ2 is sufficiently large).

4.2 Regularisation via Lengthscale Hyperprior

Suppose that a prior with a density function p is placed on the parameters θ. Then the
posterior for θ has the log-density

log p(θ | Y ) = −1

2
`(θ | Y ) + log p(θ) + constant,

where `(θ | Y ) is the modified log-likelihood function in (2.8). Any maximiser θMAP of the
posterior density is called a maximum a posteriori (MAP) estimate of θ. Equivalently,

θMAP ∈ arg min
θ∈Θ

`MAP(θ | Y ) for `MAP(θ | Y ) =
1

2
`(θ | Y )− log p(θ). (4.3)

The following theorem shows that assigning a non-heavy-tailed hyperprior on the lengthscale λ
ensures that its MAP estimate is finite regardless of the data.

Theorem 4.1 Suppose that K satisfies Assumption 2.2, n ≥ 1, and

λ(α−d/2)np(λ)→ 0 as λ→∞, (4.4)

where α > d/2 is the constant in Assumption 2.2. If Y ∈ Rn are any data, then

lim
λ→∞

`MAP(λ | Y ) =∞ and λMAP <∞.

Proof See Section 7.7. The essence of the proof is that the assumption on tail decay of p
ensures that − log p(λ) dominates `MAP(λ | Y ) as λ→∞.

Because, for fixed Y , the choice of the hyperprior p completely determines the estimator,
MAP estimation is rather arbitrary and not well-suited to deployment in general-purpose
software.
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5. Generalisations and Extensions

This section discusses some generalisations of Theorem 2.3 for (a) general linear data, (b)
lengthscale estimation for product kernels, and (c) kernels which do not satisfy the Fourier
decay assumption in (2.9).

5.1 Linear Information and General Kernels

In this section we generalise part of Theorem 2.3 by replacing the domain Rd with an
arbitrary vector space Ω, using a more liberal definition of a lengthscale parameter, and
considering general linear data, such as derivative evaluations. Though somewhat technical,
the assumptions that this generalisation requires can be verified in some settings of practical
interest.

Let Ω be a vector space and Kθ : Ω×Ω→ R a positive-definite kernel on Ω for each θ ∈ Θ.
We use H(Kθ,Ω) to denote the RKHS of Kθ on Ω; see Section 7.1 for details. Let F (Ω) be a
set of real-valued functions defined on Ω which contains H(Kθ,Ω) for every θ ∈ Θ as well as
all constant functions and the prior mean function m. Let L = {L1, . . . , Ln} be a collection
of n ≥ 2 non-trivial (i.e., none of them is the zero functional) linear information functionals
defined on F (Ω). These functionals are assumed to be linearly independent and bounded
on H(Kθ,Ω) for every θ ∈ Θ, in that there is Cθ > 0 such that |Li(f)| ≤ Cθ ‖f‖H(Kθ,Ω) for
every f ∈ H(Kθ,Ω). We assume that the data

YL = (L1f, . . . , Lnf) ∈ Rn (5.1)

consist of applications of the information functionals to an underlying (and unknown) data-
generating function f ∈ F (Ω). The setting considered earlier in this article is recovered
by selecting the point evaluation functionals defined as Lif = f(xi). Partial derivative
data, defined by Lif = ∂pif(xi) for some xi ∈ Ω and pi ≥ 0, also occurs commonly in
Gaussian process applications (e.g., Solak et al., 2002). If necessary to avoid ambiguity, we
use superscripts to denote the argument with respect to which an information functional is
to be applied.

Let L(m) = (Lim)ni=1 ∈ Rn and set YL,m = YL − L(m) ∈ Rn. Also set

Kθ(L,L) = (Lxi L
y
jKθ(x, y))ni,j=1 ∈ Rn×n and Kθ(L, x) = (LiKθ(·, x))ni=1 ∈ Rn,

which are well-defined by the assumption that the information functionals are bounded on
H(Kθ,Ω). The vector Kθ(x,L) is defined analogously to Kθ(L, x) but with the information
functionals applied to the second argument. The Gaussian process fGP ∼ GP(m,Kθ)
conditioned on the general linear data YL in (5.1) has the mean

E[fGP(x) | YL] = Y T
L,mKθ(L,L)−1Kθ(L, x),

and covariance

Cov[fGP(x), fGP(y) | YL] = Kθ(x, y)−Kθ(x,L)TKθ(L,L)−1Kθ(L, y).

The modified log-likelihood function is

`(θ | YL) = Y T
L,mKθ(L,L)−1YL,m + log detKθ(L,L). (5.2)
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Let g : (0,∞)→ (0,∞) be a continuous function such that (a) lim supλ→0 g(λ) <∞, (b)
limλ→∞ g(λ) =∞, and (c) g(λ1) = 1 for some λ1 > 0. Define

Kλ(x, y) = K

(
x

g(λ)
,
y

g(λ)

)
for any λ > 0 and x, y ∈ Ω. (5.3)

The parameter λ can be interpreted as a generalised version of the lengthscale parameter of a
stationary kernel in (1.2). Stationary kernels are recovered from (5.3) by setting g(λ) = λ and
K(x, y) = Φ(x− y). The exponential kernel Kλ(x, y) = exp(xy/λ) is a simple non-stationary
example that is occasionally used. We are interested in maximum likelihood estimates λML(L)

of λ, any of which satisfies

λML(L) ∈ arg min
λ>0

`(λ | YL) = arg min
λ>0

{
Y T
L,mKλ(L,L)−1YL,m + log detKλ(L,L)

}
.

In this setting we say that the data YL arem-constant if there is a constant function c : Ω→ R
such that

YL,m = (L1c, . . . , Lnc). (5.4)

To prove a generalisation of Theorem 2.3 we need the following technical assumption.

Assumption 5.1 Every element of the matrix Kλ(L,L) is a continuous function of λ > 0
and

(a) lim inf
λ→0

emin(Kλ(L,L)) > 0 and (b) lim
λ→∞

detKλ(L,L) = 0,

where emin(A) denotes the smallest eigenvalue of a matrix A.

Theorem 5.2 Suppose that Assumption 5.1 holds and let Ωb be any convex subset of Ω such
that (a) 0 ∈ Ωb and (b) Lf1 = Lf2 for every L ∈ L and all f1, f2 ∈ F (Ω) such that f1 = f2

on Ωb. If the data YL are m-constant and constant functions are contained in H(K,Ωb), then

lim
λ→∞

`(λ | YL) = −∞ and λML(L) =∞.

Proof See Section 7.8. The proof is in essence identical to that of (2.11), but more technical.

Assumption 5.1 and other assumptions in Theorem 5.2 may be verified on case-by-case
basis. For example, let Ω = R and

Kλ(x, y) =

(
1 +

√
3 |x− y|
λ

)
exp

(
−
√

3 |x− y|
λ

)
,

which is the Matérn kernel in (2.3) with smoothness ν = 3/2. Suppose that L1f = f ′(x1) and
Lif = f(xi) for i = 2, . . . , n and distinct x2, . . . , xn. One may easily find a convex Ωb ⊂ R
such that 0, x1, x2, . . . , xn ∈ Ωb (e.g., a ball centered at the origin with radius that exceeds
the maximal norm of the points). Because this set can be taken to be bounded, it follows
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from (2.10) and the results reviewed in Section 7.3 that constant functions are contained in
H(K,Ωb). To verify Assumption 5.1, observe that the generalised covariance matrix is

Kλ(L,L) =

(
aλ bTλ
bλ Kλ(X ′, X ′)

)
, (5.5)

where Kλ(X ′, X ′) ∈ R(n−1)×(n−1) is the regular covariance matrix for the points x2, . . . , xn,

aλ =
∂2

∂x∂y
Kλ(x, y)

∣∣∣∣x=x1
y=x1

=
3

λ2
,

and

(bλ)i−1 =
∂

∂x
Kλ(x, xi)

∣∣∣∣
x=x1

= − 3

λ2
(x1 − xi) exp

(
−
√

3 |x1 − xi|
λ

)
for i = 2, . . . , n. The entries of bλ, as well as aλ, are continuous in λ on (0,∞). We compute
limλ→0 aλ = ∞ and limλ→∞ aλ = 0, as well as limλ→0(bλ)i−1 = 0 and limλ→∞(bλ)i−1 = 0
for each i = 2, . . . , n. Therefore limλ→0Kλ(L,L) = diag(∞, 1, . . . , 1) and limλ→∞Kλ(L,L)
is singular because its first row is zero. Assumption 5.1 thus holds and it follows from
Theorem 5.2 that λML(L) =∞ if YL,m = (0, c, . . . , c) for some c ∈ R.

5.2 Product Kernels and Multiple Lengthscales

Here we consider a setting where the covariance kernel is a product of stationary kernels
equipped with dimensionwise lengthscale parameters. That is, θ = {λ1, . . . , λd} and the
kernel has the product form

Kθ(x, y) =

d∏
i=1

Ki,λi(xi, yi) =

d∏
i=1

Φi

(
xi − yi
λi

)
, (5.6)

where x = (x1, . . . , xd) ∈ Rd, y = (y1, . . . , yd) ∈ Rd and Ki(xi, yi) = Φi(xi−yi) are stationary
kernels on R parametrised by positive lengthscale parameters λi. Recall the definition of
Matérn kernel from (2.3). The product Matérn kernel

Kθ(x, y) = σ2
d∏
i=1

[
21−νi

Γ(νi)

(√
2νi |xi − yi|

λi

)νi
Kνi
(√

2νi |xi − yi|
λi

)]
,

where νi > 0, is a commonly used product kernel of the form (5.6).
For simplicity, let us consider maximum likelihood estimation of only one of the d

lengthscale parameters. For p ∈ {1, . . . , d}, we are interested in the behaviour of

λp,ML = arg min
λp>0

`(λ1, . . . , λd | Y ), (5.7)

where `(λ1, . . . , λd | Y ) is the modified log-likelihood function in (2.8) for θ = {λ1, . . . , λd}
and the product kernel in (5.6) and λi for i 6= p are fixed. For product covariates X of the
form

X = X1 × · · · ×Xd, where Xi = {xi,1, . . . , xi,ni} ⊂ R, (5.8)
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we say that the associated data Y are m-constant along dimension p if

yi1,...,id −m(x1,i1 , . . . , xd,id) does not depend on ip = 1, . . . , np,

where the datum yi1,...,id is associated with the covariate (x1,i1 , . . . , xd,id) ∈ X. For example,
the data

Y = (y1,1, y1,2, y1,3, y2,1, y2,2, y2,3) = (0, 1, 2, 0, 1, 2)

are constant along dimension p = 1 for the product design

X = {x1,1, x1,2} × {x2,1, x2,2, x2,3} =
{

(x1,1, x2,1), (x1,1, x2,2), (x1,1, x2,3),

(x1,2, x2,1), (x1,2, x2,2), (x1,2, x2,3)
}

in R2 and the prior mean m ≡ 0.

Theorem 5.3 (Estimation of multiple lengthscales) Consider the product kernel
in (5.6) and suppose that the stationary kernels K1, . . . ,Kd on R satisfy Assumption 2.2. If
X has the product form (5.8) with ni ≥ 1 for each i = 1, . . . , d and the data Y are m-constant
along dimension p ∈ {1, . . . , d}, then

lim
λp→∞

`(λ1, . . . , λd | Y ) = −∞ and λp,ML =∞,

where λp,ML is the maximum likelihood estimate of the pth lengthscale parameter in (5.7).

Proof See Section 7.9. The product form of the kernel and the covariates allow one to
write the full covariance matrix Kθ(X,X) as a Kronecker product of Ki,λ(Xi, Xi). One
may then utilise the properties of Kronecker products and subsequently follow the proof of
Theorem 2.3.

Note that the constants C1, C2 and α in Assumption 2.2 may differ from one constituent
kernel Ki to another. Theorem 5.3 provides some theoretical justification for the use of
maximum likelihood estimation of lengthscales as an automatic relevance determination
method (Rasmussen and Williams, 2006, Section 5.1). When the data are independent of the
pth input dimension, the lengthscale for this dimension is set to infinite and the dimension is
effectively ignored.

5.3 Infinitely Smooth Stationary Kernels

Commonly used infinitely smooth stationary kernels, such as the Gaussian and the inverse
quadratic (or Cauchy) defined by

Φ(z) = exp(−‖z‖2) and Φ(z) =
1

1 + ‖z‖2
, (5.9)

respectively, do not satisfy Assumption 2.2 because their Fourier transforms decay (at least)
exponentially. The exponential decay of their Fourier transforms implies that these kernels
are analytic. The purpose of Assumption 2.2 is to guarantee that constant functions are
contained in the RKHS of K on a bounded set, a result which in turn can be exploited to
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prove that the data-fit term Y T
mKλ(X,X)−1Ym is a bounded function of λ whenever the

data are m-constant (see Lemma 7.2). However, it is known that the RKHSs of analytic
stationary kernels, such as those in (5.9), do not contain constant functions (Steinwart et al.,
2006; Sun and Zhou, 2008; Minh, 2010; Dette and Zhigljavsky, 2021). But this does have to
mean that the data-fit term explodes as λ→∞.

Increasing the lengthscale parameter is equivalent to coalescence of the points to the
origin. That is, using the kernel Kλ and points X is equivalent to using the kernel K and the
scaled points Xλ = {x1/λ, . . . , xn/λ}, each of which tends to the origin as λ→∞. Suppose
for simplicity that d = 1. When the points coalesce, one’s data effectively comprises the
value at the origin of the data-generating function and its successive derivatives up to order
n− 1. We refer to Section 11 in Schaback (2008) and Chapter 5 in Oettershagen (2017) for
more discussion and some results regarding this phenomenon. The computations in Section 2
of Dette and Zhigljavsky (2021) are also relevant. If the data are m-constant such that
Ym = (c, . . . , c) and the kernel K(x, y) = Φ(x − y) is sufficiently smooth, this reasoning
suggests the conjecture that

lim
λ→∞

Y T
mKλ(X,X)−1Ym = lim

λ→∞
Y T
mK(Xλ, Xλ)−1Ym = DT

0W
−1D0 (5.10)

where D0 = (c, 0, . . . , 0) ∈ Rn and the Wronskian W ∈ Rn×n has the elements

(W )i+1,j+1 =
∂i+j

∂vi∂wj
K(v, w)

∣∣∣
v=0
w=0

(5.11)

for i, j = 0, . . . , n− 1. The conjectured limit DT
0W

−1D0 is the data-fit term in (5.2) for the
information functionals defined as Lif = f (i−1)(0) for i = 1, . . . , n and general m-constant
data in (5.4). A proof of (5.10) is the main ingredient in the proof of the following theorem,
which partially generalises Theorem 2.3 for infinitely differentiable kernels when d = 1.

Theorem 5.4 Let d = 1 and K(x, y) = Φ(x− y). Suppose that (i) the function Φ: R→ R
is integrable and infinitely differentiable in a neighbourhood of the origin; (ii) Φ(k)(0) = 0 for
every odd k; and (iii) the Fourier transform of Φ is everywhere positive. If n ≥ 1 and the
data Y are m-constant, then

lim
λ→∞

`(λ | Y ) = −∞ and λML =∞.

Proof See Section 7.10. The proof uses Equation (32) in Barthelmé and Usevich (2021).

6. Conclusion and Implications

In this article we have proved that Gaussian process regression with noiseless data and a
stationary covariance kernel is ill-posed if the lengthscale parameter of the kernel is estimated
using maximum likelihood: When the data differ from the prior mean by a constant mean
shift, the maximum likelihood estimate of the lengthscale parameter is infinite (Theorem 2.3)
and the conditional Gaussian process is degenerate (Theorem 2.6). As shown in Section 3,
these conclusions remain valid under more general parametrisations and also applies to
leave-one-out cross-validation.

23



Karvonen & Oates

6.1 Practical Implications

In a way, our results imply a practical simplification. If the data are m-constant (which,
when the prior mean m is known and fixed, is trivial to check), there is no need for numerical
optimisation of the log-likelihood function as one can use Theorem 2.3 to set λML = ∞
and Theorem 2.6 to compute the conditional mean and covariance. However, degeneracy
of the resulting conditional process implies that there is no predictive uncertainty and the
conditional process is therefore useless as a tool for uncertainty quantification. Except for
switching to a non-stationary kernel, we do not know of a good approach to fix this, and
it may be that some non-stationary kernels are equally problematic and induce similar
behaviour when some of their parameters are estimated.

A numerical issue that is encountered when the data are close to being m-constant is
that of ill-conditioning of the covariance matrix. As λ→∞, the condition number of the
covariance matrix Kλ(X,X) increases with a rate related to the smoothness of the kernel.
This means that one cannot compute the modified log-likelihood function for large values
of λ. In practice one therefore has to either introduce a regularisation parameter to upper
bound the condition number as a function of λ or select a finite maximal lengthscale λmax > 0
for which `(λ | Y ) can be reliably computed and find the maximum likelihood estimate in
(0, λmax]. When the data are m-constant, restricting the feasible set for λ to (0, λmax] is likely
to result in λML = λmax, so that the user effectively selects an arbitrary (though probably
fairly large) lengthscale in this case. The dependence of predictions in λmax may or may not
be problematic depending on the context.

A practical recommendation borne out by our results is that all Gaussian process
implementations which use maximum likelihood but not regularisation should check if the
data are m-constant. If the check indicates that the data are m-constant, an implementation
should either (a) forgo lengthscale estimation and output a degenerate conditional process
or (b) throw an error and inform the user of the problem. If the approach (a) is chosen it
should be made clear to the user that the output is degenerate as this may have important
ramifications in the applied context. A more general research programme suggests itself:

(i) To characterise, for each estimator of the kernel parameters θ, the problematic data
sets Y which cause Gaussian process regression or interpolation to be ill-posed.

(ii) To hard-code Gaussian process software to throw an error (or at least a warning) when
such data are encountered.

6.2 Theoretical Implications

When analysing the convergence of Gaussian process regression as n → ∞, it is typically
assumed that the covariance kernel is fixed. To the best of our knowledge, in the deterministic
interpolation regime only Teckentrup (2020) and Wynne et al. (2021) allow the kernel
parameters other than scaling parameter σ from Section 3.3 (which does not affect the
conditional mean) to vary. Their results are generic in that no specific parameter estimation
method is considered and the parameter estimates are simply assumed to remain within
certain sets. In Wynne et al. (2021) only a smoothness parameter, such as the parameter ν
of Matérn kernels (2.3), is allowed to vary. Teckentrup (2020, Theorem 3.5) considers kernels
which satisfy Assumption 2.2 and proves that the conditional mean in (2.4) tends to the true
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data-generating function f such that Y = f(X) if (i) this function has certain smoothness
and (ii) there is a compact set which contains the estimate of λ for every n. As we have
seen in this article, the second assumption fails if f happens to be a mean shift of the prior
mean (i.e., f = m+ c for some c ∈ R) and λ is estimated using maximum likelihood. This
demonstrates that unless one imposes an artificial upper bound on the parameter estimates,
smoothness assumptions alone are not sufficient for comprehensive convergence analysis of
Gaussian process regression.

6.3 On Estimation of Other Parameters

We conclude by pointing out that our ill-posedness results are specific to lengthscale estimation
and should not be expected to extend to estimation of other kernel parameters. Two examples
serve to illustrate this. First, consider the scale parametrisation Kσ(x, y) = σ2K(x, y) for
a scale parameter σ > 0. From (2.8) it is straightforward to compute that the maximum
likelihood estimate of σ is available in closed form:

σML =

√
Y T
mK(X,X)−1Ym

n
.

Here only the data Y = m(X) yield a problematic parameter estimate σML = 0 that results
in degenerate predictive distributions. Consider then estimation of the smoothness parameter
ν > 0 of a Matérn kernel Kν in (2.3). The presence of the coefficient 21−ν/Γ(ν) ensures that
Kν(x, x) = σ2 for every ν > 0, which has two implications:

• As is well known, Kν(x, y) tends to the Gaussian kernel σ2 exp(−‖x− y‖2/(2λ2)) as
ν →∞ for all x, y ∈ Rd.

• As ν → 0, Kν(x, y) → σ2 if x = y and Kν(x, y) → 0 if x 6= y. The latter of these
claims follows from the facts that K0(z), the Bessel function of the second kind of
zeroth order, is well-defined if z 6= 0 and Γ(ν)→∞ as ν → 0.

This shows that both potentially problematic limiting cases, ν → 0 and ν →∞, yield valid
positive-definite kernels. Consequently, degenerate predictive distributions can never arise
from estimation of the Matérn smoothness parameter.

7. Proofs

This section contains proofs for the results in Sections 2 to 5.

7.1 Interpolation in Reproducing Kernel Hilbert Spaces

Let Ω be an arbitrary set and K : Ω× Ω→ R a positive-definite kernel, which means that

n∑
n=1

n∑
j=1

aiajK(xi, xj) > 0 (7.1)

for any n ∈ N, any non-zero vector a = (a1, . . . , an), and any distinct points xi ∈ Ω. The
kernel is positive-semidefinite if the inequality in (7.1) is not required to be strict. Then
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K induces a unique reproducing kernel Hilbert space (RKHS), H(K,Ω). This is a Hilbert
space consisting of real-valued functions defined on Ω and is equipped with an inner product
〈·, ·〉H(K,Ω) and the corresponding norm ‖·‖H(K,Ω). The kernel translate K(·, x) is an element
of H(K,Ω) for every x ∈ Ω and the kernel has the reproducing property

〈K(·, x), f〉H(K,Ω) = f(x) for all x ∈ Ω and f ∈ H(K,Ω).

It is usually not straightforward to determine whether or not a given function is an element
of H(K,Ω). However, the RKHS of a kernel which satisfies Assumption 2.2 on the rate of
decay of its Fourier transform is a Sobolev space; see Section 7.3. For more information on
RKHSs we refer the reader to Berlinet and Thomas-Agnan (2004) and Chapters 10 and 16
in Wendland (2005).

We are interested in optimal interpolation in an RKHS. Let f : Ω→ R be any function (i.e.,
not necessarily an element of the RKHS) that is to be interpolated at a set of distinct points
X = {xi}ni=1 ⊂ Ω. The kernel interpolant sf,X is the unique minimum norm interpolant to f
at these points:

sf,X = arg min
s∈H(K,Ω)

{
‖s‖H(K,Ω) : s(xi) = f(xi) for every i = 1, . . . , n

}
. (7.2)

The kernel interpolant has the explicit linear-algebraic form

sf,X(x) = K(x,X)TK(X,X)−1f(X), (7.3)

which equals the conditional mean in (2.4) when m ≡ 0. This is the famous equivalence
between Gaussian process interpolation and optimal interpolation in an RKHS whose origins
can be traced back at least to the work of Kimeldorf and Wahba (1970). From (7.3) it is
straightforward to compute that (e.g., Fasshauer, 2011, Section 5.1)

‖sf,X‖2H(K,Ω) = f(X)TK(X,X)−1f(X), (7.4)

which equals the data-fit term in (2.8) for m ≡ 0. Note that a particular implication
of (7.2) and (7.4) is that f(X)TK(X,X)−1f(X) ≤ ‖f‖2H(K,Ω) if f ∈ H(K,Ω). How these
properties of sf,X follow is explained in more detail in the proof of Proposition 7.10 concerning
interpolation based on general linear data. For the conditional variance we use the notation

PX(x)2 = K(x, x)−K(x,X)TK(X,X)−1K(X,x), (7.5)

which makes the dependency on the points X explicit. Now, for every x ∈ Ω it holds
that (e.g., Wendland, 2005, Theorem 11.4)

|f(x)− sf,X(x)| ≤ ‖f‖H(K,Ω) PX(x) (7.6)

if f ∈ H(K,Ω), so that the conditional standard deviation controls the interpolation error.

7.2 On Notation

The proofs require notation that is more expressive than what we have used elsewhere in
this article. Therefore the conditional variance in (2.5) equals the conditional variance (7.5)
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whose dependency on the covariates has been made explicit. Similarly, the function s in (2.6)
equals the kernel interpolant sf,X in (7.3) for any function f such that f(X) = Ym. It is
often necessary or useful to indicate that various quantities depend on the kernel parameters
(either θ or λ). We use subscripts for this purpose. Subscripts are also used as shorthands
for point sets formed by removing some elements of X = {xi}ni=1 in the following way:
Xk = {xi}ki=1 and Xn,k = X \ {xk}. Analogous notation is used for the conditional standard
deviation and mean and the kernel interpolant constructed at these point sets, so that

Pθ,k = Pθ,Xk = Pθ,{x1,...,xk} and Pθ,n,k = Pθ,Xn,k = Pθ,X\{xk}

and
sθ,k = sθ,f,Xk = sθ,f,{x1,...,xk} and sθ,n,k = sθ,f,Xn,k = sθ,f,X\{xk}

for k ≤ n and f such that f(X) = Ym. These notational conventions are reintroduced
preceding their use in the proofs.

7.3 Sobolev Spaces

For α ≥ 0, the Sobolev space Wα
2 (Rd) consists of square-integrable functions f : Rd → R

such that
‖f‖2Wα

2 (Rd) =

∫
Rd

(1 + ‖ξ‖2)α |f̂(ξ)|2 dξ <∞. (7.7)

On Ω ⊂ Rd, the Sobolev space Wα
2 (Ω) consists of those f : Ω→ R which admit an extension

fe ∈Wα
2 (Rd) such that fe|Ω = f . The norm of Wα

2 (Ω) is

‖f‖Wα
2 (Ω) = inf

fe∈Wα
2 (Rd)

{
‖fe‖Wα

2 (Rd) : fe|Ω = f
}
. (7.8)

If α ∈ N0, Wα
2 (Rd) consists of functions whose weak derivatives up to order α exist and

are square-integrable. It is a standard result (e.g., Wendland, 2005, Corollary 10.13) that
for a kernel K which satisfies Assumption 2.2 the RKHS H(K,Rd) is norm-equivalent to
Wα

2 (Rd). This is to say that H(K,Rd) and Wα
2 (Rd) are equal as sets and that there are

positive constants C1 and C2 such that

C1 ‖f‖Wα
2 (Rd) ≤ ‖f‖H(K,Rd) ≤ C2 ‖f‖Wα

2 (Rd)

for every f ∈ H(K,Rd). An analogous result carries over to H(K,Ω), which is related to
H(K,Rd) in the same way as Wα

2 (Ω) is to Wα
2 (Rd) via (7.8). We use the following two facts

in the proof of Theorem 2.3:

• Let B be any open ball centered at the origin. Then constant functions are contained
in Wα

2 (Ω) for any α ≥ 0 because one can construct a bump function which is constant
in B and whose Fourier transform decays with a super-algebraic rate.

• The function Φ, which defines K in Assumption 2.2, is Hölder continuous with the
exponent β(α) = min{1, α− d/2} > 0 on any sufficiently regular domain Ω (e.g., an
open ball). That is, there is a positive constant C such that

|Φ(0)− Φ(x)| ≤ C ‖x‖β(α) (7.9)
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for any x ∈ Ω. This assertion is a consequence of the classical inclusion relation between
Sobolev and Hölder spaces (e.g., Triebel, 1978, Remark 2 on p. 206). That Φ is an
element of Wα

2 (Rd) is easy to verify using (2.9) and (7.7).

7.4 Proof of Theorem 2.3

We split the proof of Theorem 2.3, which is repeated below, in two.

Theorem 2.3 (Maximum likelihood estimation) Suppose that the kernel K satisfies
Assumption 2.2 and n ≥ 2. If the data Y are m-constant, then

lim
λ→∞

`(λ | Y ) = −∞ and λML =∞. (2.11)

If the data Y are not m-constant, then

lim
λ→∞

`(λ | Y ) =∞ and λML <∞. (2.12)

Equation (2.11) is a rather straightforward consequence of (7.4) when one interprets λ as
a scaling of the covariate set instead of a kernel parameter, while proving Equation (2.12)
requires some more work, including upper and lower bounds for the conditional variance.
Most of the proof of Equation (2.11) is contained in the following lemmas, which will be used
again in Section 7.6.

Lemma 7.1 (Continuity of the data-fit and model complexity) Suppose that Φ is
continuous and n ≥ 1. Then the functions

fdf(λ) = Y T
mKλ(X,X)−1Ym and fmc(λ) = log detKλ(X,X)

are well-defined and continuous on (0,∞).

Proof Define Xλ = {xi/λ}ni=1 and observe that Kλ(X,X) = K(Xλ, Xλ). Since K is a
positive-definite kernel and the covariates X are distinct, this shows that Kλ(X,X) is
positive-definite and hence non-singular for every λ > 0. In particular, detKλ(X,X) > 0 for
every λ > 0 by positive-definiteness. Therefore the functions fdf and fmc are well-defined.
Because K(x, y) = Φ(x − y) is continuous, each element of Kλ(X,X) is a continuous
function of λ. From the definition of the determinant it immediately follows that fmc is
continuous. The continuity of fdf is then a consequence of, for example, Cramer’s rule and
the positivity of detKλ(X,X).

Lemma 7.2 (Boundedness of the data-fit term) Suppose that K satisfies Assump-
tion 2.2 and n ≥ 1. If the data Y are m-constant, then there is a constant a > 0 such
that

sup
λ>0

Y T
mKλ(X,X)−1Ym ≤ a.
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Proof Because the data Y are m-constant, we can write Ym = Y −m(X) = f(X) for some
constant function f . Define Xλ = {xi/λ}ni=1 and observe that, since f(Xλ) does not depend
on λ,

Y T
mKλ(X,X)−1Ym = f(Xλ)TK(Xλ, Xλ)−1f(Xλ).

The RKHS H(K,B) contains constant functions if B is any open ball centered at the origin
by the results in Section 7.3. Because X contains a finite number of points, we can trivially
select B such that X ⊂ B. Then the set Xλ is also contained in B whenever λ ≥ 1. Therefore
f ∈ H(K,B) and it follows from (7.2) and (7.4) that

f(Xλ)TK(Xλ, Xλ)−1f(Xλ) ≤ ‖f‖2H(K,B) (7.10)

if λ ≥ 1. Because K(x, y) = Φ(x− y) for Φ which is continuous and integrable on Rd,

K

(
xi
λ
,
xi
λ

)
= Φ(0) > 0 and lim

λ→0
K

(
xi
λ
,
xj
λ

)
= lim

λ→0
Φ

(
xi − xj
λ

)
= 0

for all i 6= j. That is, Kλ(X,X) = K(Xλ, Xλ) tends to a non-zero diagonal matrix as λ→ 0.
Thus by Lemma 7.1, which guarantees the λ-continuity of the data-fit term,

lim
λ→0

Y T
mKλ(X,X)−1Ym = Φ(0)−1 ‖Ym‖2 <∞. (7.11)

From (7.10) and (7.11) and Lemma 7.1 we conclude that there is a constant a > 0 such that

Y T
mKλ(X,X)−1Ym = f(Xλ)TK(Xλ, Xλ)−1f(Xλ) ≤ a

for every λ > 0.

Proof of Equation (2.11) By Lemma 7.2, there is a > 0 such that

0 ≤ Y T
mKλ(X,X)−1Ym ≤ a (7.12)

for all λ > 0. Stationarity and continuity of Φ imply that Kλ(X,X) converges to the identity
matrix times Φ(0) as λ→ 0 and to the singular matrix of Φ(0)’s as λ→∞. Thus it follows
from Lemma 7.1 that

log detKλ(X,X)→ −∞ (7.13)

if and only if λ→∞. By combining (7.12) and (7.13) we conclude that

`(λ | Y ) = Y T
mKλ(X,X)−1Ym + log detKλ(X,X)→ −∞

if and only if λ→∞. Therefore λML = arg minλ>0 `(λ | Y ) =∞.

Three auxiliary results are needed to prove Equation (2.12). The first of these—or its
variants—is well known in scattered data approximation literature (e.g., Schaback, 1995).
The version that we need here is contained in the proof of Theorem 4.4 in Karvonen et al.
(2020).
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Proposition 7.3 Suppose that K satisfies Assumption 2.2 and let X = {xi}ni=1 be any set
of distinct points in Rd. Define ‖x−X‖ = mini=1,...,n ‖x− xi‖. Then there is a positive
constant C, which does not depend on x or X, such that

PX(x)2 ≥ C ‖x−X‖2α−d

for any x ∈ Rd for which ‖x−X‖ ≤ 1, where α > d/2 is the constant in Assumption 2.2.

The second auxiliary result, which is standard and essentially Exercise 8.66 in Iske (2018),
gives a rough upper bound on the conditional variance under Assumption 2.2.

Proposition 7.4 Suppose that K satisfies Assumption 2.2 and let X = {xi}ni=1 be any set
of distinct points in Rd. Let ‖x−X‖ = mini=1,...,n ‖x− xi‖ and β(α) = min{1, α−d/2} > 0,
where α > d/2 is the constant in Assumption 2.2. Then there is a positive constant C, which
does not depend on x or X, such that

PX(x)2 ≤ C ‖x−X‖β(α)

for any x ∈ Rd for which ‖x−X‖ is sufficiently small.

Proof Let x∗ ∈ X be such that ‖x− x∗‖ = ‖x−X‖. Because the standard deviation is a
non-decreasing function in that PX(x) ≤ PX′(x) for any x if X ′ ⊂ X (e.g., Wendland, 2005,
Theorem 16.11), we have

PX(x) ≤ P{x∗}(x). (7.14)

Using the stationarity assumption and (7.5) we write

P{x∗}(x)2 = K(x, x)− K(x, x∗)2

K(x∗, x∗)
= Φ(0)− Φ(x− x∗)2

Φ(0)

=
1

Φ(0)

(
Φ(0) + Φ(x− x∗)

)(
Φ(0)− Φ(x− x∗)

)
.

Applying the Hölder condition (7.9) to |Φ(0)− Φ(x− x∗)| and using Φ(0) ≥ Φ(x−x∗), which
follows from the positive-definiteness of K(x, y) = Φ(x− y), yields the estimate

P{x∗}(x)2 ≤ C ‖x− x∗‖β(α) = C ‖x−X‖β(α)

for a certain positive constant C which depends only on Φ. Using this bound in (7.14)
concludes the proof.

Our third auxiliary result is an expression for the modified log-likelihood function. Al-
though this expression has appeared in the literature (e.g., Xu and Stein, 2017, Section 4.2.2),
we have not encountered its proof and therefore provide one based entirely on linear algebra,
block matrix inversion, and determinantal identities. The expressions for the individual
terms of the modified log-likelihood function are relatively well known. For the data-fit term,
see Schaback and Werner (2006, Theorem 6) or Müller (2008, Bemerkung 3.1.4). We also
point the reader to Section 3 in Scheuerer (2011). The expression for the model complexity
term appear in literature on determinantal point processes (e.g., Bardenet and Hardy, 2020,
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Section 2.4). For the purposes of this proposition and the proof of Equation (2.12) we use
the notation

Pθ,k(x) = Pθ,{x1,...,xk}(x) and sθ,k(x) = sθ,f,{x1,...,xk}(x)

for k ≤ n.

Proposition 7.5 If the points X = {xi}ni=1 are distinct, then

Y T
mKθ(X,X)−1Ym =

n−1∑
k=0

(
yk+1 −m(xk+1)− sθ,k(xk+1)

Pθ,k(xk+1)

)2

(7.15)

and

detKθ(X,X) =
n−1∏
k=0

Pθ,k(xk+1)2, (7.16)

where Pθ,0(x1)2 = Kθ(x1, x1) and sθ,0(x1) = 0.

Proof Denote ym,k = yk −m(xk) and Ym,k = (ym,1, . . . , ym,k) ∈ Rk so that

Y T
mKθ(X,X)−1Ym =

(
ym,n
Ym,n−1

)T(
Kθ(xn, xn) Kθ(xn, Xn−1)T

Kθ(xn, Xn−1) Kθ(Xn−1, Xn−1)

)−1(
ym,n
Ym,n−1

)
.

The block matrix inversion formula, a few lines of straightforward algebra, and (2.4) and (2.5)
then yield

Y T
mKθ(X,X)−1Ym =

(
ym,n − sθ,n−1(xn)

Pθ,n−1(xn)

)2

+ Y T
m,n−1Kθ(Xn−1, Xn−1)−1Ym,n−1,

iteration of which yields the form (7.15) for the data-fit term. The block determinant identity
and the expression (2.5) for the conditional variance yield

detKθ(X,X) =

(
Kθ(xn, xn) Kθ(xn, Xn−1)T

Kθ(xn, Xn−1) Kθ(Xn−1, Xn−1)

)
=
[
Kθ(xn, xn)−Kθ(xn, Xn−1)TKθ(Xn−1, Xn−1)−1Kθ(xn, Xn−1)

]
× detKθ(Xn−1, Xn−1)

= Pθ,n−1(xn)2 detKθ(Xn−1, Xn−1),

iteration of which produces (7.16).

Lemma 7.6 Suppose that K satisfies Assumption 2.2 and let X = {xi}ni=1 be any set of
distinct points in Rd. Then there is a constant C, which does not depend on λ, such that

log detKλ(X,X) ≥ −(2α− d)n log λ+ C

for every sufficiently large λ > 0, where α > d/2 is the constant in Assumption 2.2.
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Proof Let Xk = {x1, . . . , xk} and Xλ,k = λ−1Xk = {λ−1xi}ki=1. Because

Pλ,k(xk+1) = PXλ,k(λ−1xk+1)

and

‖λ−1xk+1 −Xλ,k‖ = min
i=1,...,k

‖λ−1(xk+1 − xi)‖ = λ−1 min
i=1,...,k

‖xk+1 − xi‖

= λ−1 ‖xk+1 −Xk‖ ,

it follows from Proposition 7.3, when applied to the points Xλ,k, that, for a positive constant
C which does not depend on k or λ,

log[Pλ,k(xk+1)2] = log[PXλ,k(λ−1xk+1)2]

≥ −(2α− d) log λ+ (2α− d) log ‖xk+1 −Xk‖+ logC

when λ is large enough that ‖λ−1xk+1 −Xλ,k‖ ≤ 1. Equation (7.16) implies that

log detKλ(X,X) =
n−1∑
k=0

log[Pλ,k(xk+1)2],

which yields the claim.

Proof of Equation (2.12) Under the assumption that the data are not m-constant we can
freely order {x1, . . . , xn} such that y1 −m(x1) 6= y2 −m(x2). Then for the second term of
the data-fit in (7.15) we have

y2 −m(x2)− sλ,1(x2)

Pλ,1(x2)
=
y2 −m(x2)−Kλ(x2, x1)Kλ(x1, x1)−1(y1 −m(x1))

Pλ,1(x2)
. (7.17)

By the stationarity assumption, the numerator on the right-hand side of (7.17) is

y2 −m(x2)− Φ

(
x2 − x1

λ

)
Φ(0)−1(y1 −m(x1)).

As λ→∞, the numerator therefore tends to y2 −m(x2)− (y1 −m(x1)) 6= 0. Consequently,
there is a positive constant C1 independent of λ such that

`(λ | Y ) = Y T
mKλ(X,X)−1Ym + log detKλ(X,X)

=

n−1∑
k=0

(
yk+1 −m(xk+1)− sλ,k(xk+1)

Pλ,k(xk+1)

)2

+ log detKλ(X,X)

≥ C1

Pλ,1(x2)2
+ log detKλ(X,X)

for all sufficiently large λ, where we have discarded all other terms of the data-fit in (7.15)
except the k = 1 term. Proposition 7.4 yields the upper bound

Pλ,1(x2)2 ≤ C2λ
−β(α) (7.18)
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for β(α) > 0, a certain positive constant C2 independent of λ, and all sufficiently large λ.
This bound and Lemma 7.6 then give

`(λ | Y ) ≥ C1

Pλ,1(x2)2
+ log detKλ(X,X) ≥ C1C

−1
2 λβ(α) − (2α− d)n log λ+ C3

when λ is sufficiently large and where none of the constants depend on λ. Therefore

lim
λ→∞

`(λ | Y ) ≥ lim
λ→∞

(
C1C

−1
2 λβ(α) − (2α− d)n log λ

)
=∞

since β(α) > 0. This concludes the proof.

We point out that the lower bound on log detKλ(X,X) in Lemma 7.6 is of independent
interest. See Theorems 4.5 and 6.3 in Barthelmé and Usevich (2021) for other results on the
behaviour of detKλ(X,X) as λ→∞.

7.5 Proof of Theorem 2.6

Theorem 2.6 Suppose that K satisfies Assumption 2.2 and n ≥ 1. If Ym = (c, . . . , c) for
some c ∈ R, then

lim
λ→∞

µλ(x) = m(x) + c and lim
λ→∞

|Pλ(x, y)| = 0

for any x, y ∈ Rd.

Proof Because the data are m-constant, there is a constant function f ≡ c for some c ∈ R
such that Ym = Y −m(X) = f(X). Recall from Section 7.3 that Assumption 2.2 implies
that f is an element of H(K,B) for an open ball B that can be selected such that X ⊂ B.
Let Xλ = {xi/λ}ni=1 and write

µλ(x) = m(x) + sλ(x) = m(x) + sf,Xλ(λ−1x).

The RKHS error estimate (7.6) yields, for any λ ≥ 1,

|m(x) + c− µλ(x)| = |f(λ−1x)− sf,Xλ(λ−1x)| ≤ ‖f‖H(K,B) PXλ(λ−1x). (7.19)

As in the proof of Equation (2.12), Proposition 7.4 yields the bound

Pλ(x)2 = PXλ(λ−1x)2 ≤ Cλ−β(α) (7.20)

for β = min{1, α− d/2} > 0 and a positive constant C which does not depend on λ. The
claim limλ→∞ µλ(x) = m(x) + c is proved by inserting this bound in (7.19). The claim for
the conditional covariance follows from (7.20) and the Cauchy–Schwarz covariance inequality
Pλ(x, y)2 ≤ Pλ(x)Pλ(y).
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Remark 7.7 Note in the above proof it is sufficient that Pλ(x) tends to zero as λ → ∞.
Unlike in the proof of Equation (2.12), the rate with which this convergence occurs is of no
importance. From the proof of Proposition 7.4 it is easy to see that a sufficient condition
for limλ→∞ Pλ(x) = 0 is that K(x, y) = Φ(x− y) for a continuous Φ: Rd → R. Therefore
Theorem 2.6 holds if K is a continuous stationary kernel such that constant functions are
contained in H(K,B) for some open ball B centered at the origin. This generalisation can be
extended also to Equation (2.11) and Theorem 3.1. Further generalisations are discussed in
Section 5.

7.6 Proofs for Section 3

Recall the notational conventions reviewed in Section 7.2. In addition, denote

Xλ,n,k = λ−1Xn,k = {λ−1xi}i 6=k.

Theorem 3.1 (Cross-validation) Suppose that K satisfies Assumption 2.2 and n ≥ 2. If
the data Y are m-constant, then

lim
λ→∞

`CV(λ | Y ) = −∞ and λCV =∞. (3.2)

Proof Since the data are m-constant, there is a constant function f such that Ym =
Y − m(X) = f(X). Recall from Section 7.3 that Assumption 2.2 implies that f is an
element of H(K,B) for an open ball B that can be selected such that X ⊂ B. Observe that
µλ,n,k(x) = m(x) + sλ,n,k(x). Proposition 7.4 and the RKHS error estimate (7.6) yield, for
any λ ≥ 1 and a constant C1 which does not depend on λ,

`CV(λ | Y ) =

n∑
k=1

[(
yk − µλ,n,k(xk)
Pλ,n,k(xk)

)2

+ log[Pλ,n,k(xk)
2]

]

=

n∑
k=1

[(
f(λ−1xk)− sf,Xλ,n,k(λ−1xk)

PXλ,n,k(λ−1xk)

)2

+ log[PXλ,n,k(λ−1xk)
2]

]
≤ n ‖f‖2H(K,B) − β(α)n log λ+ C1,

which establishes that
lim
λ→∞

`CV(λ | Y ) = −∞ (7.21)

since β(α) = min{1, α − d/2} > 0. Because Kλ(x, y) → 0 as λ → 0 if x 6= y, it is easy to
compute from (2.4) and (2.5) that

lim
λ→0

sλ,n,k(xk) = 0 and lim
λ→0

Pλ,n,k(xk) =
√

Φ(0) > 0

for every k. Therefore

lim
λ→0

`CV(λ | Y ) = cnΦ(0)−1 + n log Φ(0) > −∞,

so that it follows from Equation (7.21) and the fact that `CV(λ | Y ) is continuous that
λCV = arg minλ>0 `CV(λ | Y ) =∞.
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Remark 7.8 Proving that limλ→∞ `CV(λ | Y ) = ∞ and λCV < ∞ if the data are not
m-constant is more challenging than the same for the maximum likelihood estimate. This
is because in the proof of Equation (2.12) one could exploit a recursive form of the modified
log-likelihood function that follows from Proposition 7.5 and obtain a closed-form expression
for the term in which the conditional mean and variance are based on one data point. If
n > 2, it is more difficult to analyse any of the analogous terms in `CV(λ | Y ) because each
of these terms is built out of conditional moments based on n− 1 points.

Theorem 3.3 Suppose that K satisfies Assumption 2.2 and n ≥ 2. If the data Y satisfy (3.4),
then

λML =∞ if {λML, βML} ∈ arg min
λ>0, β∈Rq

`(λ, β | Y ).

Proof The modified log-likelihood function is

`(λ, β | Y ) = (Y − V (X)β)TKλ(X,X)−1(Y − V (X)β) + log detKλ(X,X).

By Theorem 2.3 and identification of Y − V (X)β as the vector Ym, `(λ, β | Y ) tends to
negative infinity for a fixed β ∈ Rq if and only if Y − V (X)β = (c, . . . , c) ∈ Rn for some
c ∈ R and λ → ∞. Furthermore, because the data-fit term is non-negative and model
complexity does not depend on β, `(λ, β | Y ) cannot tend to negative infinity if λ is kept
fixed. We conclude that λML =∞ because by the assumption in (3.4) there is β∗ ∈ Rq for
which Y − V (X)β∗ = (c, . . . , c).

Theorem 3.5 (Simultaneous estimation) Suppose that K satisfies Assumption 2.2 and
n ≥ 2. Consider the maximum likelihood estimates in (3.5). If the data Y are m-constant
and Ym 6= 0, then

lim
λ→∞

`(λ, σML(λ) | Y ) = −∞ and λML =∞.

Proof Recall that σML and λML are any minimisers of

`(λ, σ | Y ) =
1

σ2
Y T
mKλ(X,X)−1Ym + log detKλ(X,X) + n log σ2. (7.22)

For a fixed λ it is straightforward to compute that the maximum likelihood estimate of σ is

σML(λ) =

√
Y T
mKλ(X,X)−1Ym

n
.

Plugging this estimate in (7.22) yields that λML is any minimiser of

`(λ, σML(λ) | Y ) = n+ log detKλ(X,X) + n log(Y T
mKλ(X,X)−1Ym)− n log n.

The term n log(Y T
mKλ(X,X)−1Ym) is bounded as a function of λ by Lemma 7.2 and because

we have assumed that Ym 6= 0. A straightforward adaptation of the proof of (2.11) then
establishes the claim.
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7.7 Proof of Theorem 4.1

Theorem 4.1 Suppose that K satisfies Assumption 2.2, n ≥ 1, and

λ(α−d/2)np(λ)→ 0 as λ→∞, (4.4)

where α > d/2 is the constant in Assumption 2.2. If Y ∈ Rn are any data, then

lim
λ→∞

`MAP(λ | Y ) =∞ and λMAP <∞.

Proof Recall that the MAP estimator is any minimiser of

`MAP(λ | Y ) =
1

2
`(λ | Y )− log p(λ),

where `(λ | Y ) is the modified log-likelihood function in (2.8). If the data are not m-constant,
it follows from Theorem 2.3 that `(λ | Y )→∞ as λ→∞. Since p is a probability density
function, it holds that − log p(λ)→∞ as λ→∞. Consequently,

lim
λ→∞

`MAP(λ | Y ) =∞ and λMAP <∞ (7.23)

if the data are not m-constant. Suppose then that the data are m-constant. The non-
negativity of the data-fit term and Lemma 7.6 yield

`MAP(λ | Y ) ≥ −(α− d/2)n log λ+ C − log p(λ) = − log[λ(α−d/2)np(λ)] + C

for a constant C that does not depend on λ. That − log[λ(α−d/2)np(λ)]→∞ as λ→∞ is
true by assumption (4.4). Therefore (7.23) holds also when the data are m-constant.

7.8 Proof of Theorem 5.2

We begin with a technical lemma which is used to establish some properties of the information
functionals.

Lemma 7.9 Let Ω be a vector space and K and Kγ two positive-semidefinite kernels on Ω
such that

Kγ(x, y) = K(γx, γy) for some γ > 0 and all x, y ∈ Ω.

Let fγ be the function x 7→ f(γx) for any f : Ω→ R and, given a linear functional I, define
Iγ via Iγf = Ifγ. Then it holds that

1. if f ∈ H(K,Ω), then fγ ∈ H(Kγ ,Ω);

2. if I is a bounded linear functional on H(Kγ ,Ω), then Iγ is bounded on H(K,Ω);

3. if linear functionals I1, . . . , In are linearly independent on H(Kγ ,Ω), then I1,γ , . . . , In,γ
are linearly independent on H(K,Ω).
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Proof By a classical result (e.g., Paulsen and Raghupathi, 2016, Theorem 3.11) a function f
is an element of H(K,Ω) if and only if there is c ≥ 0 such that c2K(x, y)−f(x)f(y) defines a
positive-semidefinite kernel. If f ∈ H(K,Ω), then ‖f‖H(K,Ω) equals the smallest c for which
this kernel is positive-semidefinite. Let f ∈ H(K,Ω). Therefore c2K(x, y)− f(x)f(y) defines
a positive-semidefinite kernel for some c ≥ 0 and

c2K(γx, γy)− f(γx)f(γy) = c2Kγ(x, y)− fγ(x)fγ(y) (7.24)

also defines a positive-semidefinite kernel. Consequently, fγ ∈ H(Kγ ,Ω). Furthermore,
because c = ‖f‖H(K,Ω) is the smallest c for which the kernels in (7.24) are positive-semidefinite,
we conclude that ‖fγ‖H(Kγ ,Ω) = ‖f‖H(K,Ω). Because I is bounded on H(Kγ ,Ω) and fγ is an
element of H(Kγ ,Ω), there is a constant C > 0, which does not depend on f , such that

|Iγf | = |Ifγ | ≤ C ‖fγ‖H(Kγ ,Ω) = C ‖f‖H(K,Ω) .

This concludes the proof of the first two claims. The third claim also follows because we
have proved that fγ ∈ H(Kγ ,Ω) if f ∈ H(K,Ω) and it holds that

a1I1,γ(f) + · · ·+ anIn,γ(f) = a1I1(fγ) + · · ·+ amIn(fγ)

for any a1, . . . , an ∈ R.

The following proposition is a generalisation of the minimum-norm property for interpo-
lation based on point evaluations that was reviewed in Section 7.1. We have not been able
to locate a convenient reference and therefore provide a proof.

Proposition 7.10 Let K be a positive-definite kernel on a set Ω. If f ∈ H(K,Ω), then

I(f)TK(I, I)−1I(f) ≤ ‖f‖2H(K,Ω) (7.25)

for every n ≥ 1 and every collection I = {I1, . . . , In} of n non-trivial linear functionals which
are linearly independent and bounded on H(K,Ω).

Proof Let sIf be the minimum-norm interpolant to f in H(K,Ω), which is to say that

sIf = arg min
s∈H(K,Ω)

{
‖s‖H(K,Ω) : Is = If for all I ∈ I

}
.

By, for example, Theorem 16.1 in Wendland (2005) or Section 3.3 in Oettershagen (2017)
this interpolant is unique and has the explicit form

(sIf)(x) = I(f)TK(I, I)−1K(I, x) =
n∑
i=1

Iyi (K(x, y))(K(I, I)−1I(f))i.

Recall that we use superscripts to indicate the argument with respect to which a functional
is to be applied. Because 〈IyjK(·, y), Ixi K(x, ·)〉H(K,Ω) = Ixi I

y
jK(x, y), from the reproducing
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property we compute that

‖sIf‖2H(K,Ω) = 〈sIf, sIf〉H(K,Ω)

=
m∑

i,j=1

〈IyjK(·, y), Ixi K(x, ·)〉H(K,Ω)(K(I, I)−1I(f))i(K(I, I)−1I(f))j

=
n∑

i,j=1

Ixi I
y
jK(x, y)(K(I, I)−1I(f))i(K(I, I)−1I(f))j

= I(f)TK(I, I)−1K(I, I)K(I, I)−1I(f)

= I(f)TK(I, I)−1I(f).

If f ∈ H(K,Ω), the condition Is = If for all I ∈ I is trivially satisfied by s = f and
therefore ‖sIf‖2H(K,Ω) = I(f)TK(I, I)−1I(f) ≤ ‖f‖2H(K,Ω).

These preliminaries suffice to prove Theorem 5.2.

Theorem 5.2 Suppose that Assumption 5.1 holds and let Ωb be any convex subset of Ω such
that (a) 0 ∈ Ωb and (b) Lf1 = Lf2 for every L ∈ L and all f1, f2 ∈ F (Ω) such that f1 = f2

on Ωb. If the data YL are m-constant and constant functions are contained in H(K,Ωb), then

lim
λ→∞

`(λ | YL) = −∞ and λML(L) =∞.

Proof Let Li,λ be linear functionals that are defined as Li,λf = Lif(·/g(λ)) for f ∈ H(K,Ω).
These functionals are well-defined because f(·/g(λ)) ∈ H(K1/λ,Ω) ⊂ F (Ω) by Lemma 7.9.
Moreover, by Lemma 7.9 and the assumption that there exists λ1 > 0 such that g(λ1) = 1,
the linear functionals Lλ = {L1,λ, . . . , Ln,λ} are linearly independent and bounded on
H(K,Ω) = H(Kλ1 ,Ω) for every λ > 0. Because g is continuous and g(λ)→∞ as λ→∞,
there is λ0 > 0 such that g(λ) ≥ 1 for all λ ≥ λ0. The assumptions on Ωb imply that
Ωb ⊂ Ωb,λ = {g(λ)x : x ∈ Ωb} if λ ≥ λ0. Let f1, f2 ∈ H(K,Ω) be such that f1 = f2 on Ωb.
Then f1(·/g(λ)) = f2(·/g(λ)) on Ωb ⊂ Ωb,λ and thus

Li,λf1 = Li

[
f1

( ·
g(λ)

)]
= Li

[
f2

( ·
g(λ)

)]
= Li,λf2

by the assumption that Lif1 = Lif2 for every i ∈ {1, . . . , n} and all f1, f2 ∈ F (Ω) such
that f1 = f2 on Ωb. Therefore the functionals Lλ admit well-defined, bounded, and linearly
independent restrictions on H(K,Ωb) for every λ ≥ λ0. Let f ≡ c for c ∈ R be the constant
function such that YL,m = L(f). Then

Y T
L,mKλ(L,L)−1YL,m = L(f)TKλ(L,L)−1L(f) = Lλ(f)TK(Lλ,Lλ)−1Lλ(f)

since f(·/g(λ)) = f for constant functions. The assumption that f ∈ H(K,Ωb) and
Proposition 7.10 then imply that

sup
λ≥λ0

Y T
L,mKλ(L,L)−1YL,m ≤ ‖f‖2H(K,Ωb)

. (7.26)
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By Assumption 5.1, the data-fit term Y T
L,mKλ(L,L)−1YL,m is continuous in λ (which can be

proved similarly to Lemma 7.1) and satisfies

lim sup
λ→0

Y T
L,mKλ(L,L)−1YL,m ≤

1

ρ
‖YL,m‖2 <∞,

where ρ = lim infλ→0 emin(Kλ(L,L)) > 0. From this and (7.26) it follows that there is a ≥ 0
such that

0 ≤ Y T
L,mKλ(L,L)−1YL,m ≤ a (7.27)

for all λ > 0, which is a generalisation of Lemma 7.2. Finally, Assumption 5.1 implies that
detKλ(L,L)→ 0 if and only if λ→∞ since detKλ(L,L) is a continuous function of λ and
positive for every λ > 0 by positive-definiteness of Kλ(L,L) = K(Lλ,Lλ). We thus conclude
from (7.27) that

`(λ | YL) = Y T
L,mKλ(L,L)−1YL,m + log detKλ(L,L)

is a sum two λ-continuous terms, the first of which is bounded while the second tends to
negative infinity if and only if λ→∞. Therefore λML(L) = arg minλ>0 `(λ | YL) =∞.

7.9 Proof of Theorem 5.3

Theorem 5.3 (Estimation of multiple lengthscales) Consider the product kernel
in (5.6) and suppose that the stationary kernels K1, . . . ,Kd on R satisfy Assumption 2.2. If
X has the product form (5.8) with ni ≥ 1 for each i = 1, . . . , d and the data Y are m-constant
along dimension p ∈ {1, . . . , d}, then

lim
λp→∞

`(λ1, . . . , λd | Y ) = −∞ and λp,ML =∞,

where λp,ML is the maximum likelihood estimate of the pth lengthscale parameter in (5.7).

Proof Because both the kernel Kθ and the covariates X have product forms, we may write
the covariance matrix as

Kθ(X,X) = K1,λ1(X1, X1)⊗ · · · ⊗Kd,λd(Xd, Xd),

where ⊗ denotes the Kronecker product. We may assume that p = 1 without loss of generality.
This means that we may write

Ym = Y −m(X) = 1n1 ⊗ Y ′m,

where 1n1 = (1, . . . , 1) ∈ Rn1 and Y ′m ∈ Rn′ for n′ = n2 × · · · × nd is a certain vector. Let
A = K2,λ2(X2, X2)⊗ · · · ⊗Kd,λd(Xd, Xd) ∈ Rn′×n′ . The properties of the Kronecker product
yield

Y T
mKθ(X,X)−1Ym =

[
1Tn1

K1,λ1(X1, X1)−11n1

]
×
[
(Y ′m)TA−1Y ′m

]
and

detKθ(X,X) =
[

detK1,λ1(X1, X1)
]n′ × [detA]n1 .

39



Karvonen & Oates

Because neither Y ′m nor A depends on λ1, we may proceed as in the proof of Theorem 2.3 to
show that 1Tn1

K1,λ1(X1, X1)−11n1 is a bounded function of λ1 while log detK1,λ1(X1, X1)
tends to negative infinity as λ1 →∞.

7.10 Proof of Theorem 5.4

Let d = 1 and K(x, y) = Φ(x − y) for an integrable function Φ: R → R that is infinitely
differentiable in a neighbourhood of the origin. Define the diagonal matrix

∆λ = diag(1, λ−1, . . . , λn−1)

and the Vandermonde matrix

V (X) =


1 x1 · · · xn−1

1
...

...
. . .

...
1 xn · · · xn−1

n

 .

It is a standard result in polynomial interpolation that the Vandermonde matrix is non-singular
when xi are distinct. Recall that W is the Wronskian defined in (5.11). The Wronskian is
non-singular if the Fourier transform of Φ is positive (Lee et al., 2007, Lemma 3.3). To see
this, note first that

(−1)j(−i)i+j
∂i+j

∂vi∂wj
K(v, w)

∣∣∣
v=0
w=0

= (−i)i+jΦ(i+j)(0) =
1

2π

∫
R
ξi+jΦ̂(ξ) dξ

and observe then that

n−1∑
i=0

n−1∑
j=0

aiajΦ
(i+j)(0) =

1

2π

∫
R

Φ̂(ξ)

(
n∑
i=1

aiξ
i

)2

dξ

is positive for any n ∈ N and any non-zero a = (a0, . . . , an−1) ∈ Rn. It follows from these
equations that the Wronskian is non-singular because it can be written as a product of a
positive-definite matrix with elements Φ(i+j)(0) and two non-singular diagonal matrices.

Theorem 5.4 Let d = 1 and K(x, y) = Φ(x− y). Suppose that (i) the function Φ: R→ R
is integrable and infinitely differentiable in a neighbourhood of the origin; (ii) Φ(k)(0) = 0 for
every odd k; and (iii) the Fourier transform of Φ is everywhere positive. If n ≥ 1 and the
data Y are m-constant, then

lim
λ→∞

`(λ | Y ) = −∞ and λML =∞.

Proof We proceed as in the proof of Equation (2.11) in Section 7.4 and conclude that to
prove the claim it is sufficient to show that the limit limλ→∞ Y

T
mKλ(X,X)−1Ym exists and
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is finite. To prove that this is so we use Equation (32) in Barthelmé and Usevich (2021),
which states that

Kλ(X,X) = V (X)∆λW∆λV (X)T + λ−n
[
V (X)∆λW1,λ +W2,λ∆λV (X)T

]
+ λ−2nW3,λ,

where the matrices W1,λ, W2,λ, and W3,λ are bounded as λ → ∞. We may now use this
equation to write

Y T
mKλ(X,X)−1Ym = Y T

mV (X)−T∆−1
λ (W +Aλ)−1∆−1

λ V (X)−1Ym, (7.28)

where

Aλ = λ−n
[
W1,λV (X)−T∆−1

λ + ∆−1
λ V (X)−1W2,λ

]
+ λ−2n∆−1

λ V (X)−1W3,λV (X)−T∆−1
λ .

Since ∆−1
λ = O(λn−1), we conclude that Aλ = O(λ−1). Furthermore, from the assumption

that Ym = (c, . . . , c) for some c ∈ R it follows that V (X)−1Ym = (c, 0, . . . , 0) ∈ Rn.
Consequently, ∆−1

λ V (X)−1Ym = (c, 0, . . . , 0) = D0. Therefore (7.28) yields

Y T
mKλ(X,X)−1Ym = DT

0 (W +Aλ)−1D0 → DT
0W

−1D0 <∞ as λ→∞,

where the Wronskian W is, as noted earlier, non-singular.
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