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Abstract

A recurrent neural network (RNN) is a widely used deep-learning network for dealing with
sequential data. Imitating a dynamical system, an infinite-width RNN can approximate
any open dynamical system in a compact domain. In general, deep narrow networks with
bounded width and arbitrary depth are more effective than wide shallow networks with
arbitrary width and bounded depth in practice; however, the universal approximation
theorem for deep narrow structures has yet to be extensively studied. In this study, we
prove the universality of deep narrow RNNs and show that the upper bound of the minimum
width for universality can be independent of the length of the data. Specifically, we show a
deep RNN with ReLLU activation can approximate any continuous function or L? function
with the widths d, + dy + 3 and max{d, + 1, d,}, respectively, where the target function
maps a finite sequence of vectors in R% to a finite sequence of vectors in R%. We also
compute the additional width required if the activation function is sigmoid or more. In
addition, we prove the universality of other recurrent networks, such as bidirectional RNNs.
Bridging a multi-layer perceptron and an RNN, our theory and technique can shed light
on further research on deep RNNs.

Keywords: recurrent neural network, universal approximation, deep narrow network,
sequential data, minimum width

1. Introduction

Deep learning, a type of machine learning that approximates a target function using a
numerical model called an artificial neural network, has shown tremendous success in diverse
fields, such as regression (Garnelo et al., 2018), image processing (Dai et al., 2021; Zhai et al.,
2022), speech recognition (Baevski et al., 2020), and natural language processing (LeCun
et al., 2015; Lavanya and Sasikala, 2021).

While the excellent performance of deep learning is attributed to a combination of
various factors, it is reasonable to speculate that its notable success is partially based on

(©2023 Chang hoon Song, Geonho Hwang, Jun ho Lee and Myungjoo Kang.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v24/22-1191.html.


https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v24/22-1191.html

SonG, HwANG, LEE AND KANG

the wniversal approrimation theorem, which states that neural networks are capable of
arbitrarily accurate approximations of the target function.

Formally, for any given function f in a target class and ¢ > 0, there exists a network A/
such that ||f — NV < e. In topological language, the theorem states that a set of networks
is dense in the class of the target function. In this sense, the closure of the network defines
the range of functions it network can represent.

As universality provides the expressive power of a network structure, studies on the uni-
versal approximation theorem have attracted increasing attention. Examples include the
universality of multi-layer perceptrons (MLPs), the most basic neural networks (Cybenko,
1989; Hornik et al., 1989; Leshno et al., 1993), and the universality of recurrent neural net-
works (RNNs) with the target class of open dynamical systems (Schéfer and Zimmermann,
2007). Recently, Zhou (2020) has demonstrated the universality of convolutional neural
networks.

Classical universal approximation theorems specialize in the representation power of
shallow wide networks with bounded depth and unbounded width. Based on mounting em-
pirical evidence that deep networks demonstrate better performance than wide networks,
the construction of deep networks instead of shallow networks has gained considerable at-
tention in recent literature. Consequently, researchers have started to analyze the universal
approximation property of deep networks (Cohen et al., 2016; Lin and Jegelka, 2018; Rol-
nick and Tegmark, 2018; Kidger and Lyons, 2020). Studies on MLP have shown that wide
shallow networks require only two depths to have universality, while deep narrow networks
require widths at least as their input dimension.

A wide network obtains universality by increasing its width even if the depth is only
two (Cybenko, 1989; Hornik et al., 1989; Leshno et al., 1993). However, in the case of a
deep network, there is a function for a narrow network that cannot be able to approximated,
regardless of its depth (Lu et al., 2017; Park et al., 2021). Therefore, clarifying the minimum
width to guarantee universality is crucial, and studies are underway to investigate its lower
and upper bounds, narrowing the gap.

Recurrent neural networks (RNNs) (Rumelhart et al., 1986; Elman, 1990) have been
crucial for modeling complex temporal dependencies in sequential data. They have various
applications in diverse fields, such as language modeling (Mikolov et al., 2010; Jozefowicz
et al., 2016), speech recognition (Graves and Jaitly, 2014; Bahdanau et al., 2016), recommen-
dation systems (Hidasi et al., 2015; Wu et al., 2017), and machine translation (Bahdanau
et al., 2014). Deep RNNs are widely used and have been successfully applied in practical ap-
plications. However, their theoretical understanding remains elusive despite their intensive
use. This deficiency in existing studies motivated our work.

In this study, we prove the universal approximation theorem of deep narrow RNNs
and discover the upper bound of their minimum width. The target class consists of a
sequence-to-sequence function that depends solely on past information. We refer to such
functions as past-dependent functions. We provide the upper bound of the minimum width
of the RNN for universality in the space of the past-dependent functions. Surprisingly, the
upper bound is independent of the length of the sequence. This theoretical result highlights
the suitability of the recurrent structure for sequential data compared with other network
structures. Furthermore, our results are not restricted to RNNs; they can be generalized to
variants of RNNs, including long short-term memory (LSTM), gated recurrent units (GRU),
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Network Function class Activation Result
RNN C (K,R%)T ReLU Wnin < dg + dy + 3
conti. nonpoly1 Wmin < dg +dy +3
conti. nonpoly? Wmin < dg +dy + 4
Lp (IC,Rdy)Jr conti. nonpoly!? Wmin < max{d; +1,d,} +1
LP (R%, Rdv)1 ReLU Winin = max {dy + 1,dy}
LSTM  C (K,Rd%)f Winin < dy + dy + 3
LP (IC,]Rdy)Jr Win < max{d; +1,d,} +1
GRU C (K,R%)T Wnin < dg + dy + 3
LP (K,Rdy)T Win < max{d; +1,d,} +1
BRNN C (K,R%) ReLU Winin < dy + dy + 3
conti. nonpoly1 Wmin < dg +dy +3
conti. nonpoly? Wmin < dg +dy + 4
Lp (IC,Rdy) conti. nonpoly!? Wmin < max{d; +1,d,} +1
LP (R%=, R%) ReLU Winin < max {dy + 1,dy}

t requires the class to consists of past-dependent functions.

! requires an activation o to be continuously differentiable at some point zo with o(z0) = 0 and
o'(20) # 0. tanh belongs here.
requires an activation o to be continuously differentiable at some point 2o with o'(20) # 0. A
logistic sigmoid function belongs here.

Table 1: Summary of our results on the upper bound of the minimal width wpin
for the universality of RNNs. In the table, K indicates a compact subset
of R% and 1 < p < co. We abbreviate continuous to “conti”.

and bidirectional RNNs (BRNN). As corollaries of our main theorem, LSTM and GRU are
shown to have the same universality and target class as an RNN. We also prove that the
BRNN can approximate any sequence-to-sequence function in a continuous or LP space
under the respective norms. We also present the upper bound of the minimum width for
these variants. Table 1 outlines our main results.

1.1 Summary of Contributions

With a target class of functions that map a finite sequence x € R%* to a finite sequence
y € RW*N we prove the following:

e A deep RNN can approximate any past-dependent sequence-to-sequence continuous
function with width d, + d, + 3 for the ReLU or tanh', and d, + dy + 4 for non-
degenerating activations.

e A deep RNN can approximate any past-dependent LP function (1 < p < oo) with
width max{d, +1,d,} for the ReLU activation and max {d, + 1,d,} + 1 for non-
degenerating activations.
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e A deep BRNN can approximate any sequence-to-sequence continuous function with
width d; + dy + 3 for the ReLU or tanh!, and d, + d, + 4 for non-degenerating
activations.

e A deep BRNN can approximate any sequence-to-sequence LP function (1 < p < 00)
with width max{d, +1,d,} for the ReLU activation and max{d, +1,d,} + 1 for
non-degenerating activations.

e A deep LSTM or GRU can approximate any past-dependent sequence-to-sequence
continuous function with width d,+d,+3 and L? function with width max {d, + 1, d, }+
1.

1.2 Organization

In Section 2, we briefly review previous studies on the universality of neural networks. Sec-
tion 3 provides some notations, network configuration, a description of the target function
class, and the condition of the activation function. Section 4 addresses the approximation
property in a continuous function space. First, we fit only the last component of an output
sequence and extend it to all components of the sequence. In Section 5, we present the
upper bound of the minimum width in LP space. As an expansion of our theorems, the
universal approximation theorems for the LSTM, GRU, and BRNN are deduced in Section
6. Sections 7 and 8 present a discussion and conclusions, respectively.

2. Related Works

We briefly review some of the results of studies on the universal approximation property.
Studies have been conducted to determine whether a neural network can learn a sufficiently
wide range of functions, that is, whether it has universal properties. Cybenko (1989) and
Hornik et al. (1989) first proved that the most basic network, a simple two-layered MLP,
can approximate arbitrary continuous functions defined on a compact set. Some follow-up
studies have investigated the universal properties of other structures for a specific task,
such as a convolutional neural network for image processing (Zhou, 2020), an RNN for open
dynamical systems (Schifer and Zimmermann, 2007; Hanson and Raginsky, 2020), and
transformer networks for translation and speech recognition (Yun et al., 2020). Particularly
for RNNs, Schéfer and Zimmermann (2007) showed that an open dynamical system with
continuous state transition and output function can be approximated by a network with
a wide RNN cell and subsequent linear layer in finite time. Hanson and Raginsky (2020)
showed that the trajectory of the dynamical system can be reproduced with arbitrarily
small errors up to infinite time, assuming a stability condition on long-term behavior.
While such prior studies mainly focused on wide and shallow networks, several studies
have determined whether a deep narrow network with bounded width can approximate
arbitrary functions in some kinds of target function classes, such as a space of continuous
functions or an LP space (Lu et al., 2017; Hanin and Sellke, 2017; Johnson, 2019; Kidger
and Lyons, 2020; Park et al., 2021). Unlike the case of a wide network that requires only

1. Generally, non-degenerate o with o(z9) = 0 requires the same minimal width as tanh.
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one hidden layer for universality, there exists a function that cannot be approximated by
any network whose width is less than a certain threshold. Specifically, in a continuous
function space C (K,R%) with the supreme-norm | f||,, = sup,cx ||f(z)|| on a compact
subset K C R%_ Hanin and Sellke (2017) showed negative and positive results that MLPs
do not attain universality with width d,. Still, width d, + d,, is sufficient for MLPs to
achieve universality with the ReLU activation function. Johnson (2019); Kidger and Lyons
(2020) generalized the condition on the activation and proved that d is too narrow, but
d; + dy + 2 is sufficiently wide for the universality in C (K , Rdy). On the other hand, in
an LP space LP (R% R%) with LP-norm 1£1l, = (Jpao f(x)dz) VP for p € [0,00), Lu et al.
(2017) showed that the width d, is insufficient for MLPs to have universality, but d, + 4 is
enough, with the ReLU activation when p = 1 and d, = 1. Kidger and Lyons (2020) found
that MLPs whose width is d, + d, + 1 achieve universality in L? (Rdl,Rdy) with the ReLU
activation, and Park et al. (2021) determined the exact value max {d, + 1,d,} required for
universality in the LP space with ReLU.

As described earlier, studies on deep narrow MLP have been actively conducted, but the
approximation ability of deep narrow RNNs remains unclear. This is because the process
by which the input affects the result is complicated compared with that of an MLP. The
RNN cell transfers information to both the next time step in the same layer and the same
time step in the next layer, which makes it difficult to investigate the minimal width. In
this regard, we examined the structure of the RNN to apply the methodology and results
from the study of MLPs to deep narrow RNNs.

3. Terminologies and Notations

This section introduces the definition of network architecture and the notation used through-
out this paper. d, and d, denote the dimension of input and output space, respectively.
o is an activation function unless otherwise stated. Sometimes, v indicates a vector with
suitable dimensions.

First, we used square brackets, subscripts, and colon symbols to index a sequence of
vectors. More precisely, for a given sequence of d,-dimensional vectors x : N — R% x[t];
or z[t] denotes the j-th component of the t-th vector. The colon symbol : is used to denote
a continuous index, such as zfa : b] = (x[i]),<;<p or z[tla:y = (z[t]a, T[t]ar1, - Lalt]y) e
RP=2+1 We call the sequential index ¢ by time and each z[t] a token.

Second, we define the token-wise linear maps P : Rd=xN _y RdsxN and Q : RIs*N
R%*N to connect the input, hidden state, and output space. As the dimension of the hidden
state space R% on which the RNN cells act is different from those of the input domain R%
and output domain R%, we need maps adjusting the dimensions of the spaces. For a given
matrix P € R%*%  a lifting map P(x)[t] :== Px[t] lifts the input vector to the hidden state
space. Similarly, for a given matrix Q € R%*% a projection map Q(s)[t] == Qs[t] projects
a hidden state onto the output vector. As the first token defines a token-wise map, we
sometimes represent token-wise maps without a time length, such as P : R% — R% instead
of P : Rd&*N _y Rdsx N,

Subsequently, an RNN is constructed using a composition of basic recurrent cells between
the lifting and projection maps. We considered four basic cells: RNN, LSTM, GRU, and
BRNN.
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e RNN Cell A recurrent cell, recurrent layer, or RNN cell R maps an input sequence
= (z[1],2[2],...) = (@[t]);eny € RE*N to an output sequence y = (yt]),cpy € RN
using

ylt+ 1] =R(x)[t + 1] = 0 (AR(z)[t] + Bx[t + 1] + 0), (1)
where ¢ is an activation function, A, B € R%*% are the weight matrices, and 6 € R%

is the bias vector. The initial state R(x)[0] can be an arbitrary constant vector, which
is zero vector O in this setting.

e LSTM cell An LSTM cell is an RNN cell variant with an internal cell state and gate
structures. As an original version proposed in Hochreiter and Schmidhuber (1997), an
LSTM cell includes only two gates: an input gate and an output gate. Still, the base
of almost all networks used in modern deep learning is LSTM cells with an additional
gate called the forget gate, introduced in Gers et al. (2000). Hence we present the
LSTM cell with three gates instead of the original one.

Mathematically, an LSTM cell Rzg7as is a process that computes an output h € R%
and cell state ¢ € R% defined by the following relation:

it + 1] = osig (Wiz[t + 1] + U;h[t] + b;)
[t +1] = osig (Wealt + 1] + Ugh[t] + by)
gt + 1] = tanh (Wyx[t + 1] + Uyh[t] + by)
olt + 1] = osig (Wox[t + 1] 4+ U,h[t] + bo)
cft+1] = fit +1] O clt] +i[t + 1] © g[t + 1]
[t +1]

}
Rt + 1] = o[t + 1] © tanh (c[t + 1])

where W, € R%*ds and U, € R%*ds gre weight matrices; b, € R% is the bias
vector for each x = 14, f, g,0; and oy is the sigmoid activation function. © denotes
component-wise multiplication, and we set the initial state to zero in this study.

Although some variants of the LSTM have additional connections, such as peephole
connection, our result for LSTM extends naturally.

e GRU cell Another import variation of an RNN is GRU, proposed by Cho et al.
(2014). Mathematically, a GRU cell Rggry is a process that computes h€ R% defined
by

r[t + 1] = osig (Wya[t + 1] + Uph[t] + b,)
[t+ 1] = tanh (th[t + 1] +Up(r [t+ 1] © h[t]) +bp),
(3)
2[t + 1] = ogig (Woz[t + 1] + ULA[t] +b.),
At 4+ 1] = (1 — 2[t + 1]) h[t] + 2[t + 1]Oh[t + 1],

where W, € R%*ds and U, € R%*ds are weight matrices, b, € R% is the bias vector
for each * =, z, h, and oy, is the sigmoid activation function. ® denotes component-
wise multiplication, and we set the initial state to zero in this study.

e BRNN cell A BRNN cell BR consists of a pair of RNN cells and a token-wise linear
map that follows the cells (Schuster and Paliwal, 1997). An RNN cell R; in the BRNN
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cell BR receives input from z[1] to z[IN] and the other Ry receives input from z[N] to
x[1] in reverse order. Then, the linear map £ in BR combines the two outputs from
the RNN cells. Specifically, a BRNN cell BR is defined as follows:

R(z)[t +1] == 0 (AR1(2z)[t] + Bx[t + 1] + ),
R(z)[t — 1] == 0 (AR(x)[t] + Bz[t — 1] + 6),
BR()[t] := £ (R(x)[t], R(x)[¢])

= WR(z)[t] + WR(z)[t].

where A, B, A, B, W, and W are weight matrices; § and # are bias vectors.

e Network architecture An RNN N comprises a lifting map P, projection map Q,
and L recurrent cells Rq,...,R;

N :=QoRpo---0Rj0P. (5)

We denote the network as a stack RNN or deep RNN when L > 2, and each output
of the cell R; as the i-th hidden state. d, indicates the width of the network. As a
special case, a recurrent cell R in (1) is a composition of activation and a token-wise
affine map with A = 0; A token-wise MLP is a specific example of RNN. If LSTM,
GRU, or BRNN cells replace recurrent cells, the network is called an LSTM, a GRU,
or a BRNN.

In addition to the type of cell, the activation function o affects universality. We focus on
the case of ReLLU or tanh while also considering the general activation function satisfying
the condition proposed by (Kidger and Lyons, 2020). ¢ is a continuous non-polynomial
function that is continuously differentiable at some zy with o/(z9) # 0. We refer to the
condition as a non-degenerate condition and zy as a non-degenerating point.

Finally, the target class must be set as a subset of the sequence-to-sequence function
space, from R% to R%. Given an RNN N, each token y[t] of the output sequence y = N (x)
depends only on z[1:t] == (z[1],z[2],...,z[t]) for the input sequence z. We define this
property as past dependency and a function with this property as a past-dependent function.
More precisely, if all the output tokens of a sequence-to-sequence function are given by
flt] (z[1:1]) for functions f[t] : R%** — R%  we say that the function is past-dependent.
Meanwhile, we must fix the finite length or terminal time N < oo of the input and output
sequence. Without additional assumptions such as in (Hanson and Raginsky, 2020), errors
generally accumulate over time, making it impossible to approximate implicit dynamics up
to infinite time regardless of past dependency. Therefore we set the target function class as
a class of past-dependent sequence-to-sequence functions with sequence length N.

Remark 1 On a compact domain and under bounded length, the continuity of f : R%=*N —
R%*N implies that of each f[t] : R%=*t — R% and vice versa. In the case of the LP norm
with 1 < p < oo, f: R&XN 5 R&WXN 45 [P integrable if and only if f[t] is LP integrable
for each t. In both cases, the sequence of functions (fpn),cy converges to g if and only if
(falt)pen converges to glt] for each t. Thus, we focus on approximating f[t] for each t
under the given conditions.
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Remark 2 There are typical tasks where the length of the output sequence differs from
that of the input sequence. In translation tasks, for instance, inputs and outputs are sen-
tences represented as sequences of tokens of words in different languages, and the length
of each sequence differs in general. Nevertheless, even in such a case, a sequence T =
(z[1],2[2],...,z[N]) € R%=*N can be naturally embedded into R%=*M for an integer M > N
as an extended sequence (z[1],z[2],...,z[N],0,...,0) or (0,...,0,z[1],z[2],...,z[N]). By
the natural embedding, a map between sequences f : R&*Nt 5 RA&vxN2 s g special case of
a map between f : R&>M _ RA&XM for an integer M > Ny, No.

Sometimes, only the last value N (z)[N] is required considering an RNN N as a sequence-
to-vector function A : R%*N — R We freely use the terminology RNN for sequence-to-
sequence and sequence-to-vector functions because there is no confusion when the output
domain is evident.

We have described all the concepts necessary to set a problem, but we end this section
with an introduction to the concepts used in the proof of the main theorem. For the con-
venience of the proof, we slightly modify the activation o to act only on some components,
instead of all components. With activation ¢ and index set I C N, the modified activation

o is defined as
o1 (5); = { o(s;) ifiel (6)

S; otherwise

Using the modified activation function oy, the basic cells of the network are modified in (1).
For example, a modified recurrent cell can be defined as

R(x)[t +1]; = o1 (AR(z)[t] + Bzt + 1] 4+ 0),

[ o (AR(z)[t] + Ba[t + 1] +0), ifiel (7)
B { (AR(z)[t] + Bzt + 1] + 6), otherwise

Similarly, modified RNN, LSTM, GRU, or BRNN is defined using modified cells in (1). This
concept is similar to the enhanced neuron of Kidger and Lyons (2020) in that activation
can be selectively applied, but is different in that activation can be applied to partial
components.

As activation leads to the non-linearity of a network, modifying the activation can
affect the minimum width of the network. Fortunately, the following lemma shows that the
minimum width increases by at most one owing to the modification. We briefly introduce
the ideas here, with a detailed proof provided in the appendix.

Lemma 3 Let R : RN — RN pe g modified RNN cell, @ : R* — R%, and P : R* — R¢
be a token-wise linear projection and lifting map. Suppose that an activation function o of
R is non-degenerate with a non-degenerating point zy. Then for any compact subset K C R?
and € > 0, there exists RNN cells R1, Ry : RUTAOIXN _y RUAFBENXN ~4nd o token-wise
linear map P : R4 — RIHB@) Q. RIHA@)  RE sych that

sup [|[QoRoP(z) — QoRy0oRi0P(z) <e (8)
zeKN
where (o) = 0 #olz)=0
1 otherwise
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Proof [Sketch of proof] The detailed proof is available in Appendix B. We use the Taylor
expansion of o at zg to recover the value before activation. For the i-th component with
i & I, choose a small § > 0 and linearly approximate o (zg + dz) as o(z) + d0’(20)2. An
affine transform after the Taylor expansion recovers z. |

Remark 4 Since the additional width is only used to mowve the input of each RNN cell to
near zg, it seems easily removable using a bias term at first glance, provided the projection
map is affine instead of linear. However, a bias term 0 in (1) is fized across all time steps,
while we need different translations: one for the first token and the other for tokens after
the second.

For example, for an RNN cell R® : RN — RPN defined by

RO()[t+1] = o (aR5(x)[t] + ozt + 1] + 9) , 9)

we need 0 = zy to use the Taylor expansion at zy to the first token R (x)[1] = o (6z[1] + 6).
When 0 = zy, we cannot represent the second token

Ré(2)[2] = o <aR5(x)[1} +6z[2] + zo) (10)
=0 (a (o (20) + 00" (20) z[1] + 0 (8)) + dz[2] + 20) , (11)

as the Taylor expansion at zy unless ao (z9) = 0.

In other words, the need for the additional width originates from that previous state
R(z)[t — 1] appears only after the second token. Nonetheless, we can make 3 = 0, by setting
the proper initial state for each RNN cell and using an affine projection map.

The lemma implies that a modified RNN can be approximated by an RNN with at most
one additional width. For a given modified RNN QoRjo---0Rq 0P of width d and € > 0,
we can find RNN Rq,..., Ry, and linear maps P1,...,Pr, Q1,..., Q9 such that

sup [[QoRpo---0oR1oP(x) = (QrRarRar1PL) o---0 (QURaRIPY) (2)|| < e (12)
zeKN

The composition R o P of an RNN cell R and token-wise linear map P can be substituted
by another RNN cell R’. More concretely, for R and P defined by

R(z)[t+ 1] = o (AR(z)[t] + Bx[t + 1]+ 0), (13)
P()[t] = P (z]t]), (14)

R o P defines an RNN cell R’
R'(z)[t +1] = 0 (AR (z)[t] + BPz[t + 1] +0) . (15)

Thus, Roj11 (P111Q;) becomes a recurrent cell, and (QpRorRar—1Pr)o- - -0(Q1R2R1P1) ()
defines a network of form (5).
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4. Universal Approximation for Deep RNN in Continuous Function Space

This section introduces the universal approximation theorem of deep RNNs in continuous
function space.

Theorem 5 (Universal approximation theorem of deep RNN 1) Let f : R&XN
R%*N be g continuous past-dependent sequence-to-sequence function and o be a non-degenerate
activation function. Then, for any € > 0 and compact subset K C R% | there exists a deep

RNN N of width dy 4+ dy + 3 + o(0) such that

sup sup | f(z)[t] - N(2)[t]]| <e, (16)

zeKN 1<t<N

0 o is ReLU or a non-degenerating function with o (z9) = 0.
where a (o) =

1 o is a non-degenerating function with o (29) # 0.

To prove the above theorem, we deal with the case of the sequence-to-vector function
N : R%XN s R first, in subsection 4. Then, we extend our idea to a sequence-to-sequence
function using bias terms to separate the input vectors at different times in subsection 4,
and the proof of Theorem 5 is presented at the end of this section. As the number of
additional components required in each step in the subsections depends on the activation
function, we use (o) to state the theorem briefly.

4.1 Approximation of sequence-to-vector function

The motivation for approximating a sequence-to-vector function f : R%*N — R% is to
copy a two-layered MLP via a modified RNN. Note that the output of a two-layered MLP is
a linear sum of outputs of its hidden nodes, and each output of the hidden nodes is a linear
sum of inputs with the following activation function. In Lemma 6, we construct a modified
RNN that simulates a hidden node of an MLP, which can be represented as the sum of the
inner product of some matrices and N input vectors in R% with activation. After that,
we use an additional buffer component in Lemma 7 to copy another hidden node in the
two-layered MLP and the following modified RNN cell accumulates two results from the
nodes. The buffer component of the modified RNN cell is then reset to zero to copy another
hidden node. Repeating the procedure, the modified RNN with bounded width copies the
two-layered MLP.

Now, we present the statements and sketches of the proof corresponding to each step.
The following lemma implies that a modified RNN can compute the linear sum of all the
input components, which copies the hidden node of a two-layered MLP.

Lemma 6 Suppose A[l], A[2],---, A[N] € R'*% qre the given matrices. Then there exists
a modified RNNN =RyoRN_10--0R10P: R=*xN _y Rdet1)xN of width d, + 1 such
that (the symbol x indicates that there exists some value irrelevant to the proof)

N()[t] = [x[tq fort <N,
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Proof [Sketch of the proof] The detailed proof is available in Appendix C. Define the m-th
modified RNN cell R,,, of the form of (1) without activation, with A, = [Odz Xdo Odﬂ”“] ,

ledx 1
[Idz Od, x1
b, 1
final output y[N] after N layers becomes a linear combination of b;x[j] with some constant
coefficients «; ; and SN, Z;V: 1 i jbiz[j]. Thus the coefficient of z[j] is represented by

B, = ] where by, € R1*%s. Then, the (d, + 1)th component y[N]g, 1 of the

Efil @;,jb;, which we wish to be A[j] for each j = 1,2,..., N. In matrix formulation, we
b1
intend to find b satisfying ATb = A, where A = {aijticijon € RVXN p= | | € RN*de,
by
All]
and A = © |. As A is invertible there exist b; that solve (ATb)j = Alj]. [ |
A[N]

After copying a hidden node using the above lemma, we add a component, (d;+2)th, to
copy another hidden node. Then the results are accumulated in the (d, + 1)th component,
and the final component is to be reset to copy another node. As the process is repeated, a
modified RNN replicates the output node of a two-layered MLP.

Lemma 7 Suppose w; € R, A;[t] € R™% are given fort =1,2,...,N andi=1,2,..., M.
Then, there exists a modified RNN N : R%*N 4 R of width d + 2 such that

N(z) = Z w;io (Z A [t]x[t]) . (18)

Proof First construct a modified RNN A : R%&*N —y RUA=+2)XN of width d, + 2 such that

gl
M(z)[t] = | = for t < N, (19)
| 0
[ z[N]
Ni@IN] = |0 (2, Ailtll) | (20)
0

as Lemma 6. Note that the final component does not affect the first linear summation
and remains zero. Next, using the components except for the (d, + 1)th one, construct
Ny : RUA2)XN _y R(det2) XN which satisfies

x[t]
NoNy(2)[t] = | = for t < N, (21)
L
NoNi(2)[N] = |7 (20 Aultl=[]) | | (22)
o (324 Aelt]a (]
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and use one modified RNN cell R after A5 to add the results and reset the last component:

xt]
RNoNL(2)[t] = | * |, (23)
| 0
[ z[N]
RNoNi (z)[N] = |wio (3 Ai[tlzt]) + wao (30 Ao[t]z[t]) | - (24)
i 0

As the (d;+2)th component is reset to zero, we use it to compute the third sum wso (> As[t]z[t])
and repeat until we obtain the final network N such that

z[N]

N@)N = | S8 wio (T, Ailtlelt]) | - (25)
0

Remark 8 The above lemma implies that a modified RNN of width d, + 2 can copy the
output node of a two-layered MLP. We can extend this result to an arbitrary d,-dimensional
case. Note that the first d, components remain fized, the (dy + 1)th component computes
a part of the linear sum approrimating the target function, and the (d, + 2)th component
computes another part and is reset. When we need to copy another output node for another
component of the output of the target function f : R&*N — R&WXN " only one additional
width is sufficient. Indeed, the (dy + 2)th component computes the sum and the final compo-
nent, and the (d;+3)th component acts as a buffer to be reset in that case. By repeating this
process, we obtain (dy + dy + 1)-dimensional output from the modified RNN, which includes
all dy, outputs of the MLP and the components from the (d + 1)th to the (dy + dy)th ones.

Theorem 9 (Universal approximation theorem of deep RNN 2) Suppose a target
f: R%&=XN 5 R 4s a continuous sequence-to-vector function, K C R% s q compact
subset, o is a non-degenerating activation function, and zy is the non-degenerating point.
Then, for any e > 0, there exists a deep RNN N : R%=*N — Rdv of width d, + dy + 1+ B(o)
such that
sup [If(z) = N(@)] < e, (26)
zeKN
. 0 ifO' (Z()) =0
where (o) = { 1 otherwise

Proof We present the proof for d, = 1 here, but adding d, — 1 width for each output
component works for the case d, > 1. By the universal approximation theorem of the MLP,
Theorem 1 in Leshno et al. (1993), there exist w; and A;[t] for i =1,..., M such that

M N
fa) = > wio <Z Aimxm>

12

sup < ; (27)

ze KN
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Note that there exists a modified RNN A : R%*N & R of width d, + 2,

~ M N
N(z)=> wo (Z A; [t]w[t]) . (28)
i=1 t=1

By Lemma 3, there exists an RNN A : R=>*Y — R of width d,. + 2 + 3(c) such that

sup ||V (z) — N (z)|| < S (29)
TeEK™
Hence we have ||f(z) — N(z)]| < e. [ ]

4.2 Approximation of sequence-to-sequence function

Now, we consider an RNN R as a function from sequence x to sequence y = R(x)
defined by (1). Although the above results are remarkable in that the minimal width has
an upper bound independent of the length of the sequence, it only approximates a part
of the output sequence. Meanwhile, as the hidden states calculated in each RNN cell are
connected closely for different times, fitting all the functions that can be independent of
each other becomes a more challenging problem. For example, the coefficient of z[t — 1]
in N (z)[t] equals the coefficient of z[t] in N (x)[t + 1] if A is an RNN defined as in the
proof of Lemma 6. This correlation originates from the fact that x[t — 1] and x[t] arrive at
N (z)[t], N(z)[t + 1] via the same intermediate process, 1-time step, and N layers.

We sever the correlation between the coefficients of z[t — 1] and x[t] by defining the time-
enhanced recurrent cell in Definition 10 and proceed similarly as in the previous subsection
till the Lemma 12.

Definition 10 Time-enhanced recurrent cell, or layer, is a process that maps sequence
z = (z[t]);eny € RSN to sequence y = (y[t]),;en € R¥*N via

ylt +1] = R(x)[t + 1] = o (A[t + 1|R(x)[t] + B[t + 1]z[t + 1] + 0]t + 1]) (30)

where o is an activation function, A[t], B[t] € R%*%s are weight matrices and 0t] € R% is
the bias given for each time step t.

Like RNN, time-enhanced RNN indicates a composition of the form (1) with time-enhanced
recurrent cells instead of RNN cells, and we denote it as TRNN. The modified TRNN in-
dicates a TRNN whose activation functions in some cell act on only part of the compo-
nents. Time-enhanced BRNN, denoted as TBRNN, indicates a BRNN whose recurrent lay-
ers in each direction are replaced by time-enhanced layers. A modified TBRNN indicates
a TBRNN whose activation function is modified to act on only part of the components.
With the proof of Lemma 3 using A[t], B[t] instead of A, B, a TRNN can approximate a
modified TRNN.

The following lemma shows that the modified TRNN successfully eliminates the corre-
lation between outputs. See the appendix for the complete proof.

13



SonG, HwANG, LEE AND KANG

Lemma 11 Suppose Aj[t] € R{Xdz are the given matrices for 1 <t < N, 1< j <t. Then
there exists a modified TRNN N : RA«*N s RetDXN o wyidth dy, + 1 such that

Nt = lo (S Aj[t]xm)] | Gy
forallt=1,2,...,N.

Proof [Sketch of proof] The detailed proof is available in Appendix D. The main idea is to
use by,[t] € R*4= instead of by, € R™% in the proof of Lemma 6 with a modified TRNN
R of the form

R(x)[t+ 1] = anOdedz 1] ﬁ(m)[t]—k[bidﬁ:flzl] ﬂ x[t—i—l]). (32)

The time-index coefficient by, [t] separates the calculation along the same intermediate pro-
cess mentioned at the beginning of this subsection. For instance, a process from time t;
to t1 + 1 results differently from ¢o to to + 1 for by, [t1] # b [t2], even in the same layer.

As the coefficient matrices at each time [t] after N layers are full rank, we can find b,,|[t]
implementing the required linear combination for each time. |

Recall the proof of Lemma 7. An additional width serves as a buffer to implement and
accumulate linear sum in a node in an MLP. Similarly, we proceed with Lemma 11 instead
of Lemma 6 to conclude that there exists a modified TRNN N of width d; + 2 such that
each N[t] reproduces an MLP approximating f[t].

Lemma 12 Suppose wi[t] € R, A;;[t] € RY*% are the given matrices for 1 < t < N,
1<j<t 1<i<M. Then, there exists a modified TRNN N : R%*N _ RN of width
d, + 2 such that

M t
N@)H = wiltlo | Y Aij[talj] (33)
=1 j=1

Proof We omit the detailed proof because it is almost the same as the proof of Lemma
7. The only difference is to use by, [t] instead of by, to construct A;;[t] and w;[t] as in the
proof of Lemma 11. |

This implies that the modified TRNN can approximate any past-dependent sequence-to-
sequence function.

Finally, we connect the TRNN and RNN. Although it is unclear whether a modified
RNN can approximate an arbitrary modified TRNN, there exists a modified RNN that
approximates the specific one described in Lemma 11.

Lemma 13 Let N be a given modified TRNN that computes (31) with width d, + 1 and
K C R% be a compact set. Then, for any € > 0 there exists a modified RNN N of width
dy + 2+ (o) such that

sup HJ\N/(:L') - N(x)H <€, (34)
rzeKN

where v(ReLU) = 0, v(0) = 1 for non-degenerating activation o. As a corollary, there
exists a modified RNN N of width d, + 3+~ (¢) approzimating N in Lemma 12.

14
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Proof [Sketch of proof] Detailed proof is available in Appendix E. Note that a function A
in (31) is constructed by modified TRNN cells of the form in (32). Since by,[t] is the only
time-dependent coefficient in (32), it is enough to show that an RNN cell can approximate

Iy,  Od,x1 _ (=lt]
boult] 1 X for X = 0
map x[t] — by, [t]z[t] is what we need.

a function X — [ } € R%*1 In particular, approximating a

While an MLP can approximate map z[t] — by, [t]z[t] on a compact set K, it is hard
to use token-wise MLP since we need different outputs for the same vector at other time
steps. For instance, for a v € K and a sequence = = (z[1],z[2]) = (v,v) € K?, a token-wise
MLP cannot simultaneously approximate two outputs, by,[l]v and by, [2]v. Still, it is not
the case when the domain K of z[1] and the domain K of z[2] are disjoint compact sets,
and there is an MLP that approximates v — b,,[1]v for v € Ky and v — by, [2]v for v € Kj.
From this point of view, we use an RNN and a token-wise MLP, to embed each vector of
the input sequence into disjoint compact sets and to approximate the output b, [t]z[t] on
each compact set, respectively.

Now we present how to construct disjoint sets and the token-wise MLP.

Without loss of generality, we can assume K C [0, %]dz and construct the first cell as

the output at time ¢ to be x[t|+t14,. As N compact sets K +14,, K+214,,..., K+ N1y,
are disjoint, ¢ and x[t] = y — t are uniquely determined for each y € K + ¢1,,. Thus,
for any given b[t] € R'*%  there exists an MLP of width d, + 1 + ~ () approximating
y = x[t] + t1g, — b[t]z[t] on | |, (K + t14,) as a function from R% — R (Hanin and Sellke,
a:[t] + tldz

wma]
as a function from R% to R%*!. Fortunately, the first d, components preserve the original
input data in the proofs of Proposition 2 in Hanin and Sellke (2017), and Proposition
4.2(Register Model) in Kidger and Lyons (2020). Thus, an MLP of width d; + 1+ (o)
approximates b[t]z[t] while keeping the = + t14, in the first d, components, and the MLP
is common across overall ¢ as inputs at different times ¢, and 9 are already embedded in
disjoint sets K +t114, and K + t214,. Note that a token-wise MLP is a special case of an
RNN of the same width. Nonetheless, we need an additional width to keep the (d + 1)th
component approximating b[t]z[t]. With the token-wise MLP implemented by an RNN and
additional buffer width, we construct a modified RNN of width d, +2+~(¢) approximating
the modified TRNN cell used in the proof of Lemma 11. |

2017; Kidger and Lyons, 2020). Indeed, we need to approximate x[t]| +t14, + [

4.3 Proof of Theorem 5

Summarizing all the results, we have the universality of a deep RNN in a continuous
function space.

Proof [Proof of Theorem 5] As mentioned in Remark 8, we can set dy, = 1 for notational
convenience. By Lemma 12, there exists a modified TRNN N of width d, + 2 such that

sup
ze K"

f@) =N <5 (35)

15
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As N is a composition of modified TRNN cells of width d, + 2 satisfying (31), there exists
a modified RNN N of width d, + 3 + (o) such that

N(z) — N(z) H <

sup

€
zeK" 3

Then, by Lemma 3, there exists an RNN N of width d; + 3+ (o) + (0) = dy + 4 + a(o)
such that

- €
sup ||V (z) — N(z)|| < 3 (37)
zeK™
The triangle inequality yields
sup [|f(z) = N(z)[| <e. (38)
zeK"
|

Remark 14 The number of additional widths a(o) = B(o)+~y(o) depends on the condition
of the activation function o. Here, (o) is required to find the token-wise MLP that approz-
imates embedding from R% to R%+1. If further studies determine a tighter upper bound
of the minimum width of an MLP to have the universal property in a continuous function
space, we can reduce or even remove a(o) according to the result.

There is still a wide gap between the lower bound d, and upper bound d, +dy +4 + a(o) of
the minimum width, and hence, we expect to be able to achieve universality with a narrower
width. For example, if N = 1, an RNN is simply an MLP, and the RNN has universality
without a node required to compute the effect of t. Therefore, apart from the result of the
minimum width of an MLP, further studies are required to determine whether ~y is essential
for the case of N > 2.

5. Universal Approximation for Stack RNN in L” Space

This section introduces the universal approximation theorem of a deep RNN in L? function
space for 1 < p < co.

Theorem 15 (Universal approximation theorem of deep RNN 3) Let f : RE=xN
R%*N be a past-dependent sequence-to-sequence function in LP (RdIXN,RdyXN) for 1 <
p < 00, and o be a non-degenerate activation function with the non-degenerating point zg.
Then, for any € > 0 and compact subset K C R%  there exists a deep RNN N of width
max {d, + 1,dy,} + 1 satisfying

sup || f(@)[t] = N (@) [t]l| 1o () < € (39)

1<t<N

Moreover, if the activation o is ReLU, there exists a deep RNN N of width max {d, + 1,d,}
satisfying
sup [ (2)[1) = N @)l ) < € (40)

1<t<N

16
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Before beginning the proof of the theorem, we assume K C [0, l]dx without loss of
generality and summarize the scheme that will be used in the proof. Park et al. (2021)
constructed an MLP of width max{d, +1,d,}+ (o) approximating a given target function
f, using the “encoding scheme.” More concretely, the MLP is separated into three parts:
encoder, memorizer, and decoder.

First, the encoder part quantizes each component of the input and output into a finite
set. The authors use the quantization function g, : [0,1] — C,

gn(v) == max {c eC, ’ c< v} ) (41)

where C, :={0,27",2x 27" ...,1 —27"}. Then, each quantized vector is encoded into a
real number by concatenating its components through the encoder Encyy : [0, 1]% — C4_ s

Encay(x) = qu(a;)2 DM, (42)

For small §; > 0, the authors construct an MLP Ny : [0,1]% — Cy_ 3 of width d,+147(0)
satisfying
|Encas(z) — Nene(2)]] < 61 (43)

Although the quantization causes a loss in input information, the LP norm neglects some
loss in a sufficiently small domain.

After encoding the input = to Encys(z) with large M, authors use the information of
z in Encps(x) to obtain the information of the target output f(z). More precisely, they
define the memorizer Memps s : Cg,ar — Cq, 010 to map the encoded input Encys () to the
encoded output Encyy (f(z)) as

Mem (Encys(z)) = (Encpp of o qpr) (), (44)

assuming the quantized map qp; acts on x component-wise in the above equation. Then,
an MLP Nenm of width 2 4+ (o) approximates Mem; that is, for any d2 > 0, there exists

Ninem satisfying
sup ||[Mem(Enc(x)) — Npem (Enc(z))|| < 2. (45)

z€[0,1]dx

Finally, the decoder reconstructs the original output vector from the encoded output
vector by cutting off the concatenated components. Owing to the preceding encoder and
memorizer, it is enough to define only the value of the decoder on Cg4, 5. Hence the decoder

Dec : Cq,nrr — Cf\lj, = (Car)™ is determined by
Decypyr(v) =10 where {9} = Ency/ (v) N Ci},. (46)

Indeed, for small 03 > 0, Park et al. (2021) construct an MLP Ngec : Cg,ar — Cj\l}, of width
dy + (o) so that
|Decpr (v) — Ngee(v)]| < I3 (47)

Although (43) and (47) are not equations but approximations when the activation is just
non-degenerate, the composition N' = Ny © Nipem © Nene approximates a target f with
sufficiently large M, M’ and sufficiently small 7, ds.

17
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Let us return to the proof of Theorem 15. We construct the encoder, memorizer, and
decoder similarly. As the encoder and decoder is independent of time ¢, we use a token-wise
MLP and modified RNNs define the token-wise MLPs. On the other hand, the memorizer
must work differently according to the time ¢ owing to the multiple output functions. Instead
of implementing various memorizers, we separate their input and output domains at each
time by translation. Then, it is enough to define one memorizer on the disjoint union of
domains.

Proof [Proof of Theorem 15] We first combine the token-wise encoder and translation for
the separation of the domains. Consider the token-wise encoder Ency; : R%*N — RIXN
and the following recurrent cell R : RPN — RIXN

R@)[t+ 1] = 27 EMIDR )] + o[t + 1] + 1. (48)
Then the composition Rene = R Encys defines an encoder of sequence from KV to RM*V:
t t
Renc(@)[t] = > 2707 D4EM 4N " Ency (afj]) 270 DEMFL, (49)
j=1 j=1

where © = (x[t])t:h“’N is a sequence in K. Note that the range D of Rey. is a disjoint
union of compact sets;

N
D=| | {Renc(a)[t] : 2 € KN} (50)
t=1

Hence there exists a memorizer Mem : R — R satisfying

Mem(Rene()[t]) = Encas (f (qar(2)) [£) (51)

for each t =1,2,..., N. The token-wise decoder Decy; is the last part of the proof.

To complete the proof, we need an approximation of the token-wise encoder Enc,; :
R?% — R, a modified recurrent cell R : RPN — RN token-wise memorizer Mem : R —
R, and token-wise decoder Decyy : R — R%. Following Park et al. (2021), there exist
MLPs of width d, + 1+ v(0), 2 + v(0), and dy, + (o) that approximate Encp;, Mem,
and Decy;s respectively. Lemma 3 shows that R is approximated by an RNN of width
1 + B(0). Hence, an RNN of width max {d, +1+~(0),1+ §(0),2+~(0),dy + (o)} =
max {d; + 1,d,} + v(0) approximates the target function f.

In the case of ReLU activation, we can extend the domain KV to as stated in
Park et al. (2020). Nonetheless, we present briefly how to deal with the subtle problem that
the support of a network is not compact generally.

We project each input z[t] € R% by Pps: R% — R% defined by

RdIXN

x x € [-L, L],
_L -6 —
Plz) = g(m—i—L—i—5) x € [-L—0,—1], (52)
—s(—L—-6) xe[L, L+ 0],
0 otherwise.

Note that an MLP with width d,+1 computes P, s. We will choose large L to cover enough
domain for z € R%*N and small § to reduce the projection error.

18
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First, choose a large L so that Hf(:r)[t]HLP(R@\[_L’LW) < Sforallt =1,2,...,N.
Second, construct an RNN N = Ny © Npem © Nene as above with A(0) = 0, such
that || f(z)[t] —J\/'(:E)[t]HLp([_L i) < £. We impose a condition N(0) = 0 to bound
error outside [—L, L]%, which is possible because we may set f(0)[t] = 0 for all ¢ un-
der the LP norm. Finally, set § so small that Hf(x)[t]HLp([_L_(;’LJr(;}dI\[_L’L}dI) < § and
N (z)[t ]HLP([ L8 Lo)da\[ L Ljde) < &. After inserting the projection Pr s before the en-
coder Ny, and deﬁnmg new RNN NV = N o Py s, we have

Hf(x) [t] — t]HLp Rda ) (53)
< I (@)1 - <>H||Lp< L) T [ F@1 = N @W | o iy (54)
<5+ 1@ - N<m>muLp([,L,a,LH]M\[,L,L]dm) (55)
+ 11 £@)[) = N @ o (15,14 5300) (56)

< 5+ 5+ 1@ oo -1, 1o (57)
<e (58)
|

6. Variants of RNN

This section describes the universal property of some variants of RNN, particularly LSTM,
GRU, or BRNN. LSTM and GRU are proposed to solve the long-term dependency problem.
As an RNN has difficulty calculating and updating its parameters for long sequential data,
LSTM and GRU take advantage of additional structures in their cells. We prove that they
have the same universal property as the original RNN. On the other hand, a BRNN is
proposed to overcome the past dependency of an RNN. BRNN consists of two RNN cells,
one of which works in reverse order. We prove the universal approximation theorem of a
BRNN with the target class of any sequence-to-sequence function.

The universal property of an LSTM originates from the universality of an RNN. Math-
ematically LSTM Rpgra indicates a process that computes two outputs, h and ¢, defined
by (2). As an LSTM can reproduce an RNN with the same width, we have the following
corollary:

Corollary 16 (Universal approximation theorem of deep LSTM) Let f : RN _,
R%W*N be o continuous past-dependent sequence-to-sequence function. Then, for any € > 0
and compact subset K C R% | there exists a deep LSTM Nisrar, of width dy + dy + 3, such
that
sup sup_ ||/ (@)[t] — Niosrar(@)[H]l < e. (59)
reKN 1<t<N
If feL? (RdIXN,RdyXN), there exists a deep LSTM Npsrar, of width max {d, +1,d,}+1,
such that

sup [F(@)t] = Nusrar (@)1 < e (60)
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Proof We set all parameters but W, Uy, by, and by as zeros, and then (2) is simplified as

c[t + 1] = osig(by) © clt] + %tanh (Ugh[t] + Wyx[t + 1] + by) ,

X (61)
hit+1] = B tanh (c[t + 1]).
For any € > 0, by with sufficiently large negative components yields
1 1
Hh[t +1] — B tanh <2 tanh (Ughlt] + Wyt + 1] + bg)) H < e. (62)

Thus, an LSTM reproduces an RNN whose activation function is (% tanh) o (% tanh) without
any additional width in its hidden states. In other words, an LSTM of width d approximates
an RNN of width d equipped with the activation function (% tanh) ) (% tanh). |

The universality of GRU is proved similarly.

Corollary 17 (Universal approximation theorem of deep GRU) Let f : Ré*N
R%*N be o continuous past-dependent sequence-to-sequence function. Then, for any € > 0
and compact subset K C R%  there exists a deep GRU Nggry, of width d, + dy + 3, such
that

sup sup || f(2)[t] - Naru(2)[E]]| < e (63)
zeKN 1<E<SN

If f € LP (RA=XN RW*N) there exists a deep GRU Ngru, of width max {d, + 1,dy} + 1,
such that

sup || f(2)[t] = Neru (@) [H)l| Lo revy < € (64)
1<t<N

Proof Setting only Wy, Uy, by, and b, as non-zero, the GRU is simplified as
1
hit + 1] = (1 — osig (b2)) h[t] + osig (b) tanh <th[t + 1]+ §Uhh[t] + bh> . (65)
For any € > 0, a sufficiently large b, yields

1
Hh[t + 1] — tanh <th[t + 1]+ FUnhlf] + bh>

‘ < €. (66)

Hence, we attain the corollary. |

Remark 18 We refer to the width as the mazimum of hidden states. Howewver, the def-
inition is somewhat inappropriate, as LSTM and GRU cells have multiple hidden states;
hence, there are several times more components than an RNN with the same width. Thus
we expect that they have better approximation power or have a smaller minimum width for
universality than an RNN. Nevertheless, we retain the theoretical proof as future work to
identify whether they have different abilities in approzimation or examine why they exhibit
different performances in practical applications.
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Now, let us focus on the universality of a BRNN. Recall that a stack of modified recurrent
cells N construct a linear combination of the previous input components z[1 : t] at each
time,

xlt]
N x)|t| = |: t . :| . 67
W= [5e, Ajfrals] (67
Therefore, if we reverse the order of sequence and flow of the recurrent structure, a stack of

reverse modified recurrent cells A/ constructs a linear combination of the subsequent input
components z[t : N| at each time,

- x[t]
N@lt = {zjit B, [t]xm] | (68)

From this point of view, we expect that a stacked BRNN successfully approximates an arbi-
trary sequence-to-sequence function beyond the past dependency. As previously mentioned,
we prove it in the following lemma.

Lemma 19 Suppose Aj[t] € ]Rlxij”f are the given matrices for 1 <t < N,1<j < N. Then
there exists a modified TBRNN N : Rd=*N — RU=+DXN £ pidth dy + 1 such that

[t
N(z)[t] = [a (Zév:l Ejj[t]z[j])] ’ (69)

forallt=1,2,...,N.

Proof [Sketch of proof] The detailed proof is available in Appendix F. We use modified
TBRNN cells with either only a forward modified TRNN or a backward modified TRNN.
The stacked forward modified TRNN cells compute 23:1 Aj[t]x]j], and the stacked back-

ward modified TRNN cells compute Z;V:t 1 Ajltlz[5]. [ |

As in previous cases, we have the following theorem for a TBRNN. The proof is almost
the same as that of Lemma 12 and 7.

Lemma 20 Suppose w;[t] € R, A;;[t] € RY*% are the given matrices for 1 <t < N,
1<j<N,1<i< M. Then there exists a modified TBRNN N : RdaxN _y RIXN of width
d, + 2 such that

) M N
N@)[ =Y wiltlo | Y Aijltlali] | - (70)
i=1 j=1

Proof First, construct a modified deep TBRNN N : Rée*N _ RAe+2)XN of width d, + 2
such that
x[t]
Ni@)lf] = o (X Avslali]) | (71)
0
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as Lemma 19. The final component does not affect the first linear summation and remains
zero. After Ny, use the (d, + 2)th component to obtain a stack of cells Ny : R(4=+2)xN _,
R(@=+2)XN “which satisfies

x[t]
NoNi(2)[t] = |7 (X501 Avsltlzli]) | | (72)
o (370, Az jlt)(s]
and use a modified RNN cell R to sum up the results and reset the last component:
|t]
RN (@)ft] = (wiltlo (S0, Avsltlali)) + weltlr (2 Azgllali]) |- (73)
0

As the (dy+2)th component resets to zero, we use it to compute the third sum ws[t]o (3 As ;[t]x[j])
and repeat until we obtain the final network N such that
x[t]
N@)t) = [ wiltle (2, Augltlali) | (74)
0
|

The following lemma fills the gap between a modified TBRNN and a modified BRNN.

Lemma 21 Let N be a modified TBRNN that computes (69) and K C R% be a compact
set. Then for any € > 0 there exists a modified BRNN N of width d, + 2+ v(c) such that

sup H/\~/'(ac) — /\7(1:)” <€, (75)

zC€KN

where v(ReLU) = 0, v(0) = 1 for non-degenerating activation o.
Moreover, there exists « BRNN N of width d, + 3 + (o) such that

sup HN(Q:) - N(az)H <e (76)
zeKN
0 o is ReLU or a non-degenerating function with o (zg) = 0.

1 o is a non-degenerating function with o (z9) # 0.

where a (o) = {

Proof We omit these details because we only need to construct a modified RNN that ap-
proximates (67) and (68) using Lemma 13. As only the forward or backward modified RNN
cell is used in the proof of Lemma 19, it is enough for the modified BRNN to approximate
either the forward or backward modified TRNN. Thus, it follows from Lemma 13. Lemma
3 provides the second part of this theorem. [ |

Finally, we obtain the universal approximation theorem of the BRNN from the previous
results.
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Theorem 22 (Universal approximation theorem of deep BRNN 1) Let f : R%*N
R%*N be a continuous sequence to sequence function and o be a non-degenerate activation
function. Then for any € > 0 and compact subset K C R%  there exists a deep BRNN N
of width dy + dy + 3 + (o), such that

sup sup |[f(2)[t] = N (2)[t]]| <e, (77)

zeKN 1<t<N

0 o is ReLU or a non-degenerating function with o (z9) = 0.

where o (o) = {

1 o is a non-degenerating function with o (zy) # 0.

Proof As in the proof of Theorem 5, we set dy =1 for notational convenience. According
Lemma 20, there exists a modified TBRNN N of width d, + 2 such that

f@) = N@)|| <. (78)

sup
ze K"

Lemma 21 implies that there exists a BRNN of width d, + 4 + a(c) such that

sup N(:c)—/\/(x)H <= (79)
TEK™ 2
The triangle inequality leads to
sup [ f(z) = N(z)[| <e. (80)
TzeK™
|

In the LP space, we have similar results with RNNs much more straightforward than in
continuous function spaces as the only encoder needs bidirectional flow.

Theorem 23 (Universal approximation theorem of deep BRNN 2) Let f : R%*N
R%&*N be o sequence-to-sequence function in LP (RdIXN,RdyXN) for1 <p< oo, and o be a
non-degenerate activation function with the non-degenerating point zg. Then, for any ¢ > 0
and compact subset K C R% | there exists a deep BRNN N of width max {dy+1,dy} +1
satisfying
sup. || £(@)[t] = N (@)l o ey < € (s1)
1<t<N
Moreover, if the activation o is ReLU, there exists a deep BRNN N of width max {d, + 1,d,}
satisfying
sup. [1£(@)t] = N @[l (g < e (52)
1<t<N
Proof Recall that in the RNN case, z[l : t] € K is encoded as a concatenation of
a decimal representation of each x[1],x[2],...,z[t], cutting it off at a certain number of
digits. The backward process carries the same work, and then the encoded results will be
connected. Since the cells constructing the encoders are the same as equation (48), we omit
the further step. |
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7. Discussion

We proved the universal approximation theorem and calculated the upper bound of the
minimum width of an RNN, an LSTM, a GRU, and a BRNN. In this section, we illustrate
how our results support the performance of a recurrent network.

We show that an RNN needs a width of at most d, + d, + 4 to approximate a function
from a sequence of d,-dimensional vectors to a sequence of d,-dimensional vectors. The
upper bound of the minimum width of the network depends only on the input and output
dimensions, regardless of the length of the sequence. The independence of the sequence
length indicates that the recurrent structure is much more effective in learning a function
on sequential inputs. To approximate a function defined on a long sequence, a network with
a feed-forward structure requires a wide width proportional to the length of the sequence.
For example, an MLP should have a wider width than Nd, if it approximates a function
f : REXN 5 R defined on a sequence (Johnson, 2019). However, with the recurrent
structure, it is possible to approximate via a narrow network of width d, + 1 regardless
of the length, because the minimum width is independent of the length N. This suggests
that the recurrent structure, which transfers information between different time steps in the
same layer, is crucial for success with sequential data.

From a practical point of view, this fact further implies that there is no need to limit
the length of the time steps that affect dynamics to learn the internal dynamics between se-
quential data. For instance, suppose that a pair of long sequential data (z[t]) and (y[t]) have
an unknown relation y[t] = f («[t — p],z[t — p+ 1], ..., z[t]). Even without prior knowledge
of f and p, a deep RNN learns the relation if we train the network with inputs z[1 : ¢] and
outputs y[t]. The MLP cannot reproduce the result because the required width increases
proportionally to p, which is an unknown factor. The difference between these networks
theoretically supports that recurrent networks are appropriate when dealing with sequential
data whose underlying dynamics are unknown in the real world.

8. Conclusion

In this study, we investigated the universality and upper bound of the minimum width of
deep RNNs. The upper bound of the minimum width serves as a theoretical basis for the
effectiveness of deep RNNs, especially when underlying dynamics of the data are unknown.

Our methodology enables various follow-up studies, as it connects an MLP and a deep
RNN. For example, the framework disentangles the time dependency of output sequence of
an RNN. This makes it feasible to investigate a trade-off between width and depth in the
representation ability or error bounds of the deep RNN, which has not been studied because
of the entangled flow with time and depth. In addition, we separated the required width
into three parts: one maintains inputs and results, another resolves the time dependency,
and the third modifies the activation. Assuming some underlying dynamics in the output
sequence, such as an open dynamical system, we expect to reduce the required minimum
width on each part because there is a natural dependency between the outputs, and the
inputs are embedded in a specific way by the dynamics.

However, as LSTMs and GRUs have multiple hidden states in the cell process, they
may have a smaller minimum width than the RNN. By constructing an LSTM and a GRU
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to use the hidden states to save data and resolve the time dependency, we hope that our
techniques demonstrated in the proof help analyze why these networks have a better result
in practice and suffer less from long-term dependency.
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Symbol Description
o Activation function
or Modified activation function
T Input sequence of vectors
Y Output sequence of vectors
t Order of element in a sequence
alt]; i-th component of ¢-element of a sequence a
dy Dimension of input vector
ds Dimension of hidden state in RNN, or width
dy Dimension of output vector
N Length of the input and output sequence
K A compact subset of R%
Om.n Zero matrix of size m x n
0 Zero vector of size k, 0y = [0 0--- O]T
k
1 One vector of size k, 1 = [1 1--. 1]T
k
I, Identity matrix of size k X k
RNN Recurrent Neural Network defined in page 6
TRNN Time-enhanced Recurrent Neural Network, defined by replacing
recurrent cell with time-enhanced recurrent cell in RNN.
Time-enhenced cell and TRN are defined in page 13
BRNN Bidirectional Recurrent Neural Network defined in page 7
TBRNN Time-enhanced Bidirectional Recurrent Neural Network

defined in page 13

Appendix A. Notations

Appendix B. Proof of the Lemma 3

Without loss of generality, we may assume P is an identity map and I = {1,2,...,k}. Let
R(2)[t + 1] = o7 (AR(2)[t] + Bz[t + 1] + 6) be a given modified RNN cell, and Q(z)[t] =
Qz[t] be a given token-wise linear projection map. We use notations Oy, ,, and 1,, to denote
zero matrix in R™*™ and one vector in R™ respectively. Sometimes we omit O,, , symbol
in some block-diagonal matrices if the size of the zero matrix is clear.

Case 1: 0(29) =0
Let P be the identity map. For § > 0 define R{ as

RS (z[t +1]) := o (§Baft + 1] + 60 + 21y) .

Since o is non-degenerating at zg and ¢’ is continuous at zp, we have

RS o P(x)[t + 1] = 60" (20) (Bt + 1] + 0) + o(6).

26

(83)

(84)



MINIMAL WIDTH FOR UNIVERSAL PROPERTY OF DEEP RNN

Then construct a second cell to compute transition as

o'(z 201a—r

Rg(z)[t+1]=g(mg(g@)[t]+10)[51[’“ Id_k] x[t—i—l]-i—[ O ])

~ . Ik _ Ik‘
where A = [ (Udlj A [ - (Z )Id k]
After that, the first output of RRIP(z) becomes

0’(120) Fllk fd—k] Rit)l1]+ [Zo(l)j—kD

U([( (Ba[1] +6),,, + 6~ o(5) D

20lg— + 0(Bzx[l] + 9)k+1:d + 0(0)
_ [ o (Bz[1] +80),, +o(1) ]
"(20)6 (Bz[1 ]+9)k+1d+0(5)

_ [ R(z)[11:x +o(1) ]
0’ (20)0R(z)[1]+1:a + 0(d) |

RIRIP(x)[1] = o (

Now use mathematical induction on time ¢ to compute RIR{P(x) assuming

_ R(x)[t]1:x + o(1)
RYRYP(2)[t] = [ "(20)0R(z)[t ]k+1d+0(5)} '

From a direct calculation, we attain

01(120) {5—% Id_k] R({P(m)[t+1]+[z£§_k]

1 (Sflfk
o’(20) [ La—r
B B[t + 1)1 + 011 + 0 1o(6)

- [zold_k +0 (B[t +1]+0), ., + 0(6)} ’

oo o[ 8

and

[t o(1)
0lgk |: oo’ (zo) la- k:| |: .’E t k+1 d+ 0(5)

[ R(2)[thk + o(1) ]
R(x)[t]k+1:a + o(1)
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With the sum of above two results, we obtain the induction hypothesis (90) for ¢ + 1,

RIREP (x)[t + 1] (98)
_ ~ 1 571[].C 0k
=0 <AR§R‘{7>(x)[t]  7) { I ] RYP(z)[t + 1] + [Z[)ld—k]> (99)
Zold K+ (AR( )[ ])k+1 aTo (B:v[t + ] + 9)k+1:d +0(9)
_ R(2)[t + 11k +0(1)
ol G A oy
Setting Q% = Q [Ik } and choosing d small enough complete the proof:
g " g g :
iyl — 0 | R o) ] _ o -
PRIRIP(2)[f] = Q [% Cr )] — OR(@)[f] +o(1) » QR(@)[f].  (102)

Case 2: o(29) #0

When o(zg) # 0, there is 0(29) term independent of ¢ in the Taylor expansion of o(zg+0x) =
o(z0) + 60'(z0)x + 0(d). An additional width removes the term in this case; hence we need
a lifting map P : RN — RA+DXN,

Pl ="y (103

Now for § > 0 define R as

RS (X) = o (5 [B 0} X 46 m 4 z01d+1> . (104)

As in the previous case, we have

; (105)

R? ° P(x)[t 4 1] _ |:U(Z0)1d + (50/(20) (Bx[t + 1] + é) +o0 ((5)]

a(20)
and construct a second cell RS to compute

o(z0)
50/(20)1k
20lg41—k — (( ))1d+1 k

(106)

Rg(x)[tﬂ] =0 (A”Rg(gg)[t] + 1 [5_1—7k

o’ (z0) }x[t+1]+

Tip1—k
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I
S S S S
507 (20) d—k 507 (z0) d—k| -

- A
where A = [ 5Id+1—k] [ 0} 0

After that, the first output of RRIP(z)[t] becomes

—1
R%R‘EP(x)[l]:a( el L LR

o(z0)
_501(202 l)k
O\ Z
201dr1-k = 570y Ld+1-k

U/(Z(])
(107)
(B:c[l]_+ é)l:kf 0(9)
=o | |(20la—k +6(Bz[1] +0), ., + o)) (108)
20
o (Bz[1] + 6?:)1:]C +o(1)
= |0(20)1a—k + 0'(20)0 (Bz[1] + ), ., + 0(0) (109)
o(zo)
R(@)[1x + o(1)
= J(Zo)ld,k + UI(Z0)5R($>[1]k+1:d + 0(5) . (110)
o(z0)
Assume R{RIP(x) and use mathematical induction on time .
R(a) )1 + o(1)
RERYP(2)[t] = | o(20)La-r + 0’ (20)0R (@) [t]i+1:a + 0(8) | - (111)
U(Z())
Direct calculation yields
1 67l Sp(y _5(;%23) 1
o’ (z0) [ IdH—J Rip)lt+ 1)+ 20lg41—k — %1d+l—k (112)
B.%'[t "i__l]l:k + gl:k:” 0(1)
= |:Zo]_dk—f-(5(Bl‘[t+ 1] +9)k+1:d+0(5)] , (113)
20
and
ARSRSP(2)[t] (114)
) R() [t + o(1)
= A |0(20) 14—k + 0" (20)0R(2)[t]k+1:a + 0(6) (115)
o (z0)
7 R(x)[t]1r + o(1)
I A -
" s ][R e+ o<1>] (116)
(AR(2)[t]),, + o(1)
= [0 (AR(2)[t]) 1.4 + 0(0) (117)
0
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Adding two terms in (106), we obtain the induction hypothesis (111) for ¢ + 1,
R(z)[t + 1)1 + o(1)

'RgR({’P@J)[t + 1] = U(Zo)]_d,k -+ O”(Zo)dﬁ(l’)[t + 1]k+1:d + 0((5) . (118)
o (20)
Iy,
Setting Q% = [Q O] mfd—k —ﬁld#@ and choosing § small enough com-
0

plete the proof:
R(2)[t]1x + o(1)

QPRIRIP(2)[t] = [Q 0] |R(@)[tks1.d + 0(1)| = QR(2)[t] + o(1) — QR(x)[t]. (119)
0

Appendix C. Proof of the Lemma 6
It suffices to show that there exists a modified RNN A that computes

z[N]
M= 5 ] (120)
for given matrices A[1],..., A[N] € Rt*d,

RNN should have multiple layers to implement the arbitrary linear combination. To
overcome the complex time dependency deriving from deep structures and explicitly for-
mulate the results of deep modified RNN, we force A and B to use the information of the
previous time step in a limited way. Define the modified RNN cell at [-th layer R; as

Ry(2)[t + 1] = ARy (2)[t] + Bzt + 1] (121)
where 4; = [%dlz;idz Odf,1 B = Iglz Odlz,l] for by € R1xds

Construct a modified RNN N7, for each L € N as

NL SZRLORL_lo---ORh (122)

and denote the output of Ny, at each time m for an input sequence z’ = [ﬂ € Ré=+t1 of

embedding of x:
T(n,m) =N, (2') [m]. (123)

Then we have the following lemma.

Lemma 24 Let T'(n,m) be the matriz defined by (123). Then we have

x[m]
T(n,m) = oo 0o (nt+m—i— ) 124
( ) Zi:l Zj:l( +n i ])b:c[ l (124)
where (Z) means binomial coefficient k,( I forn > k. We define (”) = 0 for the case of

k>mn orn <0 for notational convemence
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Proof Since there is no activation in modified RNN (121), T'(n, m) has the form of

T(n,m) = (125)

|:Zz IZJ lanmb .CC[ ]
From the definition of the modified RNN cell and 7', we first show that « satisfies the
recurrence relation

J 2,]
Q; n’ 1,m n,m— 1
2,] +Of

z ,J )

n,m:{ nlm—i—anml—{—l, if n =1 and m = j, (126)

otherwise

0 0
by definition, and (125) holds when n = 0. Now assume (125) holds for n < N, any m.
To show that (125) holds for n = N + 1 and any m, use mathematical induction on m.
By definition, we have oznjo = 0 for any n. Thus (125) holds when n = N + 1 and m = 0.
Assume it holds for n = N 4+ 1 and m < M. Then

using mathematical induction on n,m in turn. Initially, 7°(0,m) = a:m] , T'(n,0) = { dz’l]

T(N+1,M +1)

o |:Odmdx de,1:| TM |: Idgc de71:| TM+1
= N 1L,M NM 1
O1,d. 1 > 12] 1 + Lj bN+1 1 > 12; 1 * Zj

Od, 1 N Thr+1
N+1 M ') 00 N+1,M NM+1 .
Zz 1 ZJ RS b,;xj bnt1Tp+1 + Zi:l Zj:l (ai,j + a; > bil'j

(127)
Hence the relation holds for n = N + 1 and any m > 0.
Now remains to show
i (m r?fiz J) ifl1< z'g n,1<73<m (128)
bJ 0 otherwise
From the initial condition of «, we know a? Jm = a J = 0 for all n,m € N. After some

direct calculation with the recurrence relation (125) of a, we have

1 1

i) Ifn<iorm<j, o) =0as ;" = "+

Y I — Lj i,j—1 —

ii) am-fa] +a  +1=1
1 1 om—1 . . ' ‘
iii) o/;n —al My o/ T =ap)" implies g} = 1 for m > j.
. o ' 1 -1
iv) Similarly, a?ij = a Lig Q; mi—l — gn b implies o; ’j =1 for n > i.

,J ,J

Now use mathematical induction on n + m starting from n +m = ¢ + j to show a ] =

(m+g_; J) forn >4, m>j.
i) n+m =i+ j holds only if n =4, m = j for n > i, m > j. In the case, al’;: =
(m—&-n?])
n—1i :
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ii) Assume that (128) holds for any n, m with n +m = k as induction hypothesis. Now
w1 =

suppose n +m = k + 1 for given n, m. If n =4 or m = j we already know o,

(m”“i*j). Otherwise n —1 > ¢, m — 1 > j, and we have

n—i
ol = a5 !
_(mt+n—-1-i—j n m+n—1—i—j
- n—1—1 n—1 (129)

o (mtn—i—j
N n—i ’

which completes the proof.

|
We have computed the output of modified RNN Ay such that
z[N]
Ny (2') [N] = { i ] 130
() [N Zfil Zjvzl (2 o) bi[] (130)
. 2n—i—j : -1
If the square matrix Ay = {( o ])}léi,jSN has inverse Ay = {)‘ivj}lﬁi,jSN’ b =

N AiAlt] satisfies

ﬁfﬁf(?ﬁ;j;j>@xm::g;égéé(?ﬁ;j;j)AmAmxu
SR

=35, Alt)als]

= ZAU]mm,

where ¢ is the Kronecker delta function.
The following lemma completes the proof.

i=1 j=1

Lemma 25 Matriz A,, = {(an—_i;j)}K‘ _ € R™ ™ is invertible.
_7’7‘7_n

Proof Use mathematical induction on n. Aj is a trivial case. Assume A,, is invertible.

I R G I G IR G B O B
<%D@ﬁ(%ﬁm<g)ﬁb

An+1 == (131)

(")

L (©)

[ R e B

(")) (")
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Applying elementary row operation to A,11 by multiplying the matrix £ on the left and
elementary column operation to EA,; by multiplying the matrix E7 on the right where

1 -1 0 ... 0 O
0o 1 -1 ... 0 O
0 0 1 ... 0 0
0 0 O 1 -1
0 0 0 1]

we obtain the following relation:

o) G Gy - G O
(n—2) (n—2) (n 2) (n—2) 0 A 0
EAp BT = : : : : = [Olnn Tl} . (133)
(") (%) () - ) 0
0 0 0 e 0 1]
Hence A, 41 is invertible by the induction hypothesis. |

Corollary 26 The following matriz A, j, € RF*™ 4s full-rank.

oy — i — i
Ay = {( e 9)} . (134)
n—1 n—k+1<i<n,1<j<n

We will use the matrix A, ;, in the proof of Lemma 11 to approximate a sequence-to-sequence
function.

Appendix D. Proof of Lemma 11

Define token-wise lifting map P : R% — R%*1 and modified TRNN cell TR, : R(d=+)xN _
R(@=+DXN a5 in the proof of Lemma 6:

Pl = |5 (135)
TRUX)[E +1] = ATRUX)[E + Bt (X)[t + 1], (136)

— Odz ,dz Odz 1 — Idz Odz 1 1xdg
where A; = [01 h E Bi[t] = il 1 for b;[t] € R"*%*. Then we have

T(n,m) =N, (x) [m]
2[m] (137)

[Zi’il So2y (M) by [J’]HC[J'J ’
where z € R=*N and Nj = TR o TR_10---0 TR0 P.
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Since for each t, the matrix

A {<2N—i—j)} {<2N—t+1—z’—j>}
N,N—t+1 = . = .
N —i t<i<N,1<j<N N —j 1<i<N—t+1,1<j<N

(138)
is full-rank, there exist by[t], ba[t], ..., by[t] satisfying
bit] Ai[N]
ANN-t1 | P | = I (139)
b [t] Alt]
or
N .
S (M el - A (140)
5 N—j
7j=1
for each kK =1,2,..., N. Then we obtain
s N4t—i—3\, . ..
=303 (VT Jutiel
i=1 j=1
t N .
N+4+t—i—j qo.
= ZZ ( N )bi[]]xb] (141)

1

<.
Il
-

1

I
(]~
=
=
ial
=,

<.
Il
-

Appendix E. Proof of Lemma 13

As one of the modified TRNNs that computes (31), we use the modified TRNN defined in
Appendix D. Specifically, we show that for a given [, there exists a modified RNN of width
dy + 2 + (o) that approximates the modified TRNN cell TR; : R(d+DxN _y R(det1)xN
defined by (135). Suppose K C R%, K’ C R are compact sets and X € (K x K’)N C
R=+DXN  Then the output of the TRNN cell TR; is

TRUX)H] = | Xl

S bIX [ + 2y Xl s (142)

Without loss of generality, assume K C [0, 1] % and let v = (o). Let P : Réetl 5 Rbat2+7
Xl:dz

be a token-wise linear map defined by P(X) = 0 . Construct the modified recurrent

Xdz+1
07
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cells Ry, Ry : RUa+2H(@NxN _y R(AA2+7(0))xN g for X/ € R(deF2+7)xN

[O4, . 04,
Ru(X)[t+1] = 1 RO+ XE+1+ | 1 |, (143)
i O147,14+ 014+
-Idz 1dz
Ro(X)[t +1] = b X'[1]. (144)
L O’Y»'Y

Then, by definition for X € (K x K'),

t
Xt]a,+1
O'Y

RoRAP(X)[t] = (145)

Note that D; = {RaR1P(X)[i]1q, | X € (K x KN} = {X[i]1.q, +t1q, | X € (K x K)™}
are disjoint each other, D; N D; = ¢ for all ¢ # j.

By the universal approximation theorem of deep MLP from Hanin and Sellke (2017);
Kidger and Lyons (2020), for any & > 0, there exists an MLP N ypp : R% — RéFL of
width d, + 1 4 7 such that for v € R%

Nivrp(V)id, =v (146)
sup sup ||b[t] (v —t1dy) — Nparp(v)d,+1]] < 01 (147)
t:1,...,N ’UEDt

Since token-wise MLP is implemented by RNN with the same width, there exists an RNN
Nt RE+247 o RAa+247 of width d, + 2+ whose components all but (d, +2)-th construct
Nivrp so that for all X' € Rd=F2+7

N(X[t] = X'[t]d,+2 : (148)
Then for X € (K x K') we have
NRR1P(X)[t] = X[ta,+1 : (149)

Finally, define a recurrent cell Rg : R%+2t7Y — Ré%+2+Y of width d, + 2 + 7 as

Iq,
Ody+1,dy+1
Rg(X’)[t +1] = 1 Rg(X’)[t] +

O%“{

X'[t +1], (150)
077

)
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and attain

X[t]l:dx + tldz
Nivep (X[ta, +11a,)g 4
t . . t .
> it Movinp (X [Gl1d, +31a,) g1 + 22521 X Dlde+1
0,

RsN1RoR1P(X)[t] = (151)

!/
With the token-wise projection map Q : R%2+7 — R%+! defined by Q(X') = [))({,Ldz ],

dg+2
an RNN QRN RoR P : Rt XN _y RldetDXN of width dy + 24~ maps X € R(d=+1)xN
to

= | Xlthua, 11, ] (152)
Zj:l M,MLP (X[j]1:d, + jldz)derl + 2221 X[jla,+1]

Since Ni,vrp (X [jlia, +31a,) 4,41 — bilil X [f]1:a,, we have

ORsNRaR1P(X)[t]

sup  [|TRi(X) — QRsNiR2R1P(X)]| — 0, (153)
Xe(KxKNN

as §; — 0. Approximating all TR; in Appendix D finishes the proof.

Appendix F. Proof of Lemma 19

The main idea of the proof is to separate the linear sum Zjvzl Ajtlx[j] into the past-

dependent part Z§;1 A;[t]z]j] and the remainder part Z;V:t A;[t]z[j]. Then, we construct

modified TBRNN with 2NV cells; the former N cells have only a forward recurrent cell to
compute the past-dependent part, and the latter N cells have only a backward recurrent
cell to compute the remainder.

Let the first N modified TRNN cells R; : R(&FDXN _ R(de+DXN for 1 < | < N be

defined as in the proof of Lemma 11:

R (X) [t + 1] = AR (X) [t] + Bl[t]X[t + 1], (154)

where A; = Od,.d, Oy 1 , Bi[t] = la,  Od, for b[t] € R Then, with token-
Ol,dw 1 bl[t] 1

wise lifting map P : R% — R%*! defined by P(z) = [:(1):
N:Ryo---0RjoP :REXN _ RlADXN We know that if Cj[m] € R'*% are given for
1<m < N and 1 <i <m, there exist b[t] for 1 <[ < N, such that

], we construct modified TRNN

N:Bm—{mm[m] } 155
V=5 Cfmlai (155)
Therefore, we will determine C;[m] after constructing the latter N cells. Let f,,, = Y /" | Cy[m]x|i]
for brief notation.

After Ny, construct N modified TRNN cells R; : R(=+DxN _y RdetDXN f5. 1 < | < N
in reverse order:

R (X) [t -1 = AR (X) [t] + B[t} X[t — 1], (156)
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A Odz,dm Odz71 D, _ Idz Od(E71 1 1><dz \ / )
where A; = {Oml e Bi[t] = ol 1 for bj[t] € R**% . Define Ny = Ry o

-0 Rq, and we obtain the following result after a similar calculation with input sequence

Xt =A@t = [}

Ny (X)[N+1-1] (157)
B [N +1—t]
N [Z§:1 [ (NTEBIN + 1= jlalN + 1= 5]+ (YR fva ]}] - (1%8)
We want to find f,, and b;[m] so that
N
Ny (X) [N +1=tlap1 =D AN +1— t]afi], (159)
=1

foreacht=1,2,..., N.
Note that 22:1 Zf\;l (N%:?_j)i)i[N+1—j]:c[N+1—j] does not contain z[1], z[2], ..., z[N—

(2

t] terms, so 22:1 (Nt\fj_j) fni1j should contain SNT8 A [N + 1 — t]a[i].

1 t _ N+1-j
S (T = (YY) X e i-gell as)
7=1 7=1 1=1
t N+1-j Not—1-] .
= 2 2 ( N1 )C’i[N + 1 — jlx[d] (161)

N N+1—1
= 2 Z(N+]$_1 )C[N+1—J][] (162)

+ Z<N+Nt_1 )C[N+1—]][] (163)

Since matrix A; = {(Nﬂflfj is a lower triangular (N + 1 — 7) X

)}1§t§N+17i,1§j§N+171

N-1
(N +1—1) matrix with unit diagonal components, there exist C;[i], C;[i+1], ..., C;[N] such
that
¢
N+t
Z( +N_1 )C[N-I—l—j] AN +1—1], (164)
j=1

foreacht=1,2,...,N +1—1.
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We now have
t .
N+t—1—3
) < N_1 )fNHj (165)

N N+1—i . N+1—t
= > 2 (N e _‘7>C¢[N+ 1—jlafi] + Y AN +1—t]afi] (166)

. , N -1 '
i=N+42—t j=1 =1
t—1 1 . N+1—t
N+t—-1-j . . .
= < N1 )CN+1—z‘[N+1—J]33[N+1—Z]+ Z Ai[N + 1 — t][i]
=1 j=1 i—1
(167)
t—1 j . N+1-t
N+t—1—1 . ' .
:ZZ< N >CN+1J-[N+1—@]$[N+1—3]+ Z AN +1 — t]a[i].
7j=1 =1 i=1
(168)

We switch i and j for the last equation. By Corollary 26, there exist b;[N + 1 — j] satisfying

N . .
N4+t—i—7\- .
biIN +1— 1
S (M- (169
/N 4t—1—i ,
= AN+1—j[N+1 —t] — Z < N1 >CN+1_j[N—|- 1 —Z], (170)
=1
forj=1,2,...,t—1, and
N
NA4t—i—j\- .
BN +1— 171
S (NN ()
= ANy j[N+1—1], (172)

for j =t.

With the above Cj[m] and b;[m], equation (159) holds for each ¢t = 1,2,..., N. It remains
to construct modified TRNN cells to implement f,,, which comes directly from the proof
of Lemma 11.
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