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Abstract

`1-penalized quantile regression (`1-QR) is a useful tool for modeling the relation-
ship between input and output variables when detecting heterogeneous effects in the high-
dimensional setting. Hypothesis tests can then be formulated based on the debiased `1-QR
estimator that reduces the bias induced by Lasso penalty. However, the non-smoothness
of the quantile loss brings great challenges to the computation, especially when the data
dimension is high. Recently, the convolution-type smoothed quantile regression (SQR)
model has been proposed to overcome such shortcoming, and people developed theory of
estimation and variable selection therein. In this work, we combine the debiased method
with SQR model and come up with the debiased `1-SQR estimator, based on which we
then establish confidence intervals and hypothesis testing in the high-dimensional setup.
Theoretically, we provide the non-asymptotic Bahadur representation for our proposed es-
timator and also the Berry-Esseen bound, which implies the empirical coverage rates for the
studentized confidence intervals. Furthermore, we build up the theory of hypothesis testing
on both a single variable and a group of variables. Finally, we exhibit extensive numerical
experiments on both simulated and real data to demonstrate the good performance of our
method.
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1. Introduction

Due to the development of modern technology, massive complex datasets are gradually
becoming the main objects of research today, which is profoundly affecting statistics com-
munity. In addition to the explosive growth in scale and dimension of data, the heterogene-
ity of intrinsic data structure and the presence of outliers hinder the use of some classical
methods. Take linear model as an example, ordinary least squares (OLS) estimator is sta-
tistically efficient under Gaussian and other light-tailed noises. However, it may fail to be
consistent when dealing with heavy-tailed errors and it is also highly susceptible to outliers.
To overcome the shortcomings of OLS estimator, Koenker and Bassett (1978) first proposed
quantile regression (QR) in his famous seminal work. Compared to OLS regression, quan-
tile regression is robust against the outliers and allows capturing the feature of the entire
conditional distribution function. A comprehensive and systematic overview of quantile
regression can be referred to Koenker et al. (2017).

Consider a linear model y = x>β∗ + ε in the high-dimensional setup, where the num-
ber of features p can be much greater than the sample size n. Under the assumption that
the true parameter β∗ is s-sparse, a widely-used way to perform parameter estimation and
variable selection is applying penalized methods to minimize the empirical risk function.
To achieve sparse estimate, Tibshirani (1996) proposed Lasso method that using `1-penalty
to shrink OLS estimator. Over the last three decades, there are numerous articles focusing
on penalized regression to extract inherent low-dimensional features from high-dimensional
parameter space, and one can refer to Bühlmann and Van de Geer (2011), Hastie et al.
(2019), Wainwright (2019), Fan et al. (2020) for an extensive and in-depth review of high-
dimensional statistics. Beyond estimation and variable selection, another topic that appeals
to statisticians is high-dimensional statistical inference. Due to the non-negligible bias in-
duced by `1-regularization, many different concave penalties have been proposed to elimi-
nate the shrinkage bias, such as SCAD designed by Fan and Li (2001) and MCP designed
by Zhang (2010). Other works about non-convex penalized approach can be found in Fan
and Lv (2011), Wang et al. (2013) and Fan et al. (2014). However, these methods rely
on oracle properties, which is to say one can only make valid inference on the active set.
Under specific minimum signal strength condition (Zhao and Yu, 2006; Wainwright, 2009),
asymptotic normality for the selected variables can be verified, while other variables have
no theoretical guarantees.

Another stream of high-dimensional inferential methods is termed debiasing technique
originated from Zhang and Zhang (2014), in which they implemented low-dimensional pro-
jection (LDP) to correct the bias caused by Lasso estimator and then used the debiased
Lasso estimates to construct confidence intervals. One prominent advantage of debiasing
method is that it enables statistical inference uniformly on all parameters, since it does not
need to impose the minimum signal strength condition. Van de Geer et al. (2014) reformu-
lated the KKT condition of `1-penalized least squares regression and obtained the debiased
(or desparsified in their work) Lasso estimator from an alternative way. The asymptotic
normality they established depends on the accuracy of an approximate inverse of the sam-
ple covariance matrix, where the authors applied nodewise regression (see Meinshausen
and Bühlmann, 2006) to achieve. Furthermore, Javanmard and Montanari (2014a,b) con-
structed the sample precision matrix (inverse of sample covariance matrix) via a series of
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convex programs, and then employed such matrix to design debiased estimator and applied
it to the establishment of confidence intervals and hypothesis testing.

In the context of high-dimensional quantile regression (HDQR), Belloni and Cher-
nozhukov (2011) first investigated `1-penalized QR model and developed a set of results on
model selection and parameter estimation. Later, Wang et al. (2012) studied the method-
ology and theory of nonconvex penalized QR model via SCAD penalty. In Zheng et al.
(2015), they used adaptive `1-penalty to acquire consistent shrinkage of regression quantile
estimates across a continuous range of quantiles levels. Belloni et al. (2015, 2019) further
considered the inference task of high-dimensional instrumental variable quantile regression
(IVQR) model and employed Neyman’s orthogonal score method to realize the goal. Lat-
est results on the estimation and inference of high-dimensional censored QR model can be
referred to Zheng et al. (2018) and Fei et al. (2023). By contrast, there is little work on
hypothesis testing within this HDQR framework. In Zhao et al. (2014), they introduced a
robust testing procedure by means of combining debiasing technique with composite quan-
tile regression (CQR) model that proposed in Zou and Yuan (2008). Shortly afterwards
Bradic and Kolar (2017) extended previous work on debiased method to develop uniform
testing results for a range of quantiles. Based on their defined high-dimensional rank scores,
they provided a distribution-free estimator of the sparsity function and adapted it for in-
ference involving the QR process. Recently, Cheng et al. (2022) engaged researched on
treatment effects in QR with high-dimensional confounding covariates. After applying the
regularized projection score method, the authors showed the consistency and asymptotic
normality of their proposed estimator of the treatment effects. Current testing methods
on HDQR will encounter great difficulties in operation, where the non-smoothness of the
quantile loss further impairs the efficiency of practical algorithms as dimension p increases.

In this paper, we are committed to designing a more computationally efficient testing
procedure for HDQR framework. Generally speaking, QR problem can be transformed into
a linear program (LP), and solving it requires significant computing resources whenever
n and p are large. To speed up resolving QR problem, Horowitz (1998) first proposed to
smooth the quantile loss with a kernel function and the new estimator can be obtained via
first-order optimization algorithms. In Horowitz (1998), the author verified the asymptotic
equivalence between the traditional QR estimator and the new proposed one. Subsequently,
this smoothing method has been extended to various QR-related subjects, and we refer the
reader to Whang (2006), Wu et al. (2015), Galvao and Kato (2016), Kaplan and Sun
(2017), Chen et al. (2019) and de Castro et al. (2019) for more details. It should be
pointed out that Horowitz’s smoothing method gains smoothness at the cost of convexity,
which cannot guarantee the solution is a global minima. This may lead to more complex
situations in high-dimensional settings. An impressive work from Fernandes et al. (2021)
recently presented a convolution-type smoothed quantile regression (SQR) model, of which
the corresponding loss inherits convexity and is smooth with second derivative. For the fixed
p setting, the researchers investigated the asymptotic properties of the SQR estimator. He
et al. (2023) considered the SQR model under the “increasing dimension” regime that allows
dimension p to grow with the sample size n while p < n, and provided an in-depth statistical
analysis from the non-asymptotic viewpoint. Moreover, Tan et al. (2022b) extended this
convolution smoothing technique to the HDQR framework. In their work, they proposed
a multi-step procedure to iteratively solve a sequence of weighted `1-penalized SQR loss
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minimization. They showed that their iterative estimator achieves the optimal rate of
convergence, and obtained the oracle rate under the minimum signal strength condition.
As a special case, they also derived properties of `1-SQR estimate, the solution of minimizing
SQR loss with Lasso penalty. For CQR model, Yan et al. (2023) and Moon and Zhou (2022)
employed the similar smoothing method to overcome the computational challenges therein
and also achieved abundant theoretical results in the increasing dimension regime and high-
dimensional setting respectively. Other relevant works about convolution-type SQR model
can be seen in Jiang and Yu (2021), Tan et al. (2022a), Man et al. (2022), Sang et al. (2022)
and Zhang and Zhu (2022).

Motivated by Tan et al. (2022b), in this work we propose the debiased `1-SQR estimator,
and use it to establish confidence intervals and hypothesis testing in HDQR framework.
Different from previous debiased estimators built by classical QR estimates, our proposed
estimator is generated from `1-SQR estimator that can be efficiently obtained via proximal
gradient descent (PGD) and ADMM-based algorithms. According to He et al. (2023) and
Tan et al. (2022b), the bias induced by smoothing loss can be well controlled after reasonably
tunning the bandwidth parameter, which is insensitive to estimated results. The key to
eliminate the shrinkage bias of `1-SQR estimator is to approximate the inverse of the Hessian
matrix of SQR model, which is constructed in the way similar to that of CLIME estimator
(Cai et al., 2011). Unlike preceding works of Zhao et al. (2014) and Bradic and Kolar (2017),
our debiased `1-SQR estimator does not need to estimate the sparsity function separately
since it is already included in the inverse approximation. After imposing some assumptions
on the population covariance matrix of covariate x and its smoothing type, we obtain the
non-asymptotic error bounds of the approximate inverse matrix in∞- and L1-norm at first.
On the basis of these error bounds, we further provide the Bahadur representation and the
Berry-Esseen bound of our debiased `1-SQR estimator, which refines the results of Tan et al.
(2022b) that only hold for oracle estimator and does not depend on the minimum signal
strength condition. The Berry-Esseen bound immediately implies the empirical coverage
rates for our proposed confidence intervals. Moreover, we consider the hypothesis testing
problems for both a single variable and a group of variables. For testing an individual null
H0,j : β∗j = 0, we take a minimax way to acquire uniformly good performance of tests over
a family of sparse vectors. Specifically, we control the upper bound of Type I errors and
the lower bound of statistical powers. To test a group of hypotheses {H0,j : β∗j = 0}j∈G ,
the Bonferroni procedure is applied within this work to control the familywise error rate
(FWER), which will be discussed in the subsequent sections.

The main contributions of this work are as follows:

1. We design the debiased `1-SQR estimator, and develop inference and hypothesis test-
ing for high-dimensional quantile regression. Different from previous works of Zhao
et al. (2014) and Bradic and Kolar (2017), we relax the independence condition of x
and ε and thus the heteroscedasticity is allowed in this work. Besides, the dimension
p is allowed to be much larger than the sample size n, and the sparsity s can slowly
increase with n satisfying s� n. We provide theoretical results in a non-asymptotic
type while simultaneously allowing both the sparsity s and the ambient dimension p
to depend on the sample size n.
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2. Compared to the existing works of Zhao et al. (2014) and Bradic and Kolar (2017),
our method is computationally efficient and easy to realize. On one end, our pro-
posed debiased estimator is established upon the `1-SQR estimator, which minimizes
a smooth convex programming that can be solved by PGD, ADMM and other efficient
algorithms. On the other end, there is no need to estimate sparsity function addi-
tionally in the construction of our estimator, whereas Zhao et al. (2014) estimated
it via Koenker’s quotient estimator and Bradic and Kolar (2017) introduced a high-
dimensional regression rank scores method. Beyond that, our simulation results also
show that the debiased `1-SQR estimator has better performance for large p setup.

3. We design procedures for testing a single variable and a group of variables. To the
best of our knowledge, theoretical results for testing a single variable under HDQR in
the minimax way is first established in this paper. Besides, we control the FWER for
a group of variables to cope with the simultaneous testing. As far as we know, this is
the first time that the FWER method is introduced into HDQR testing problems.

The rest of the paper is organized as follows. Section 2 presents the background of
sparse quantile regression and the debiasing method, followed by the convolution-type SQR
with `1-regularization. We combine the debiasing method with SQR model and propose
the debiased `1-SQR estimator in Section 2.3. In Section 3, we provide a comprehensive
and in-depth analysis of the debiased `1-SQR estimator from a non-asymptotic viewpoint.
Specifically, properties of the approximated inverse matrix are obtained in Section 3.1. The
Bahadur representation for our proposed estimator is provided in Section 3.2. In Section 3.3,
we construct confidence intervals and verify its non-asymptotic empirical rate via the Berry-
Esseen bound. Section 3.4 introduces the theoretical results on hypothesis testing, and the
content of simultaneous testing can be found in Section 3.5. Extensive numerical studies of
our proposed method on simulated data are exhibited in Section 4, and a real data study is
provided in Section 5. Conclusions and future works are discussed in Section 6. The proofs
of all theoretical results are relegated in the appendix.

Notation: In this work, we use Rp to denote the the p-dimensional Euclidean space.
For every u = (u1, . . . , up)

> ∈ Rp, define ‖u‖0 =
∑p

j=1 I{uj 6= 0}, ‖u‖1 =
∑p

j=1 |uj |,
‖u‖2 =

√∑p
j=1 u

2
j and ‖u‖∞ = max1≤j≤p |uj |. We use bold capital letters to represent

matrices throughout this paper. For any p × q matrix A = (aij) ∈ Rp×q, we define the
elementwise `∞-norm ‖A‖∞ = max1≤i≤p,1≤j≤q = |aij |, the elementwise `1-norm ‖A‖1 =∑p

i=1

∑q
j=1 |aij |, and the matrix `1-norm ‖A‖L1 = max1≤i≤p

∑q
j=1 |aij |. Here we denote I

as the identity matrix. For some r ≥ 0, the unit sphere and the `1-norm ball in Rp are
defined as Sp−1 = {u ∈ Rp : ‖u‖2 = 1} and B1(r) = {u ∈ Rp : ‖u‖1 ≤ r} respectively.
Moreover, for two sequences of non-negative numbers {xn}n≥1 and {yn}n≥1, xn . yn means
that there exists some constant C > 0 independent of n such that xn ≤ Cyn; xn & yn is
equivalent to yn . xn; xn � yn is equivalent to xn . yn and yn . xn. For two positive
definite matrixes A and B, A � B means that A − B is a positive definite matrix; and
A ≺ B means that B−A is a positive definite matrix.
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2. Background and problem setup

In this section, we first give a brief introduction to sparse quantile regression and the debi-
asing technique. Then we present the recent results about the convolution-type smoothed
quantile regression. At the end of this part, we extend the debiasing technique to the high-
dimensional smoothed quantile regression and propose the debiased `1-SQR estimator.

2.1 Sparse quantile regression: `1 penalty and debiasing

Consider a scalar response variable y ∈ R and a p-dimensional covariate vector x =
(x1, . . . , xp)

> ∈ Rp with x1 ≡ 1 across the paper. Let Fy|x(·) be the conditional proba-
bility distribution function of y given x. For some 0 < τ < 1, we model the τ -th conditional
quantile of y given x as F−1

y|x(τ |x) = x>β∗, where β∗ = (β∗1 , . . . , β
∗
p)> ∈ Rp is the true

parameter. Generate n random samples from (y,x) and denote them as {(yi,xi)}ni=1. The
preceding model assumption can be equivalently written as a linear model

yi = xi
>β∗ + εi and P (εi ≤ 0|xi) = τ. (1)

Throughout the paper, we consider the high-dimensional scenario that the number of fea-
tures p can be much greater than the sample size n. More details about the relationship
between p and n will be discussed in Section 3.

Based on the dataset {(yi,xi)}ni=1, the `1-penalized QR estimator β̂ is the global minima
to the following optimization problem

β̂ = argmin
β∈Rp

{
1

n

n∑
i=1

ρτ (yi − x>i β)︸ ︷︷ ︸
=:Q̂(β)

+λ‖β‖1

}
, (2)

where ρτ (u) = u(τ − I{u < 0}) is the asymmetric absolute deviation function, namely the
check loss function, with I{·} representing the indicator function. Due to the shrinkage
property of Lasso penalty, there are extensive works focused on estimation, prediction and
variable selection consistency about `1-QR model including Wang et al. (2007), Belloni and
Chernozhukov (2011), Wang (2013) and Zheng et al. (2015).

For the high-dimensional QR inference problems, the non-negligible bias induced by `1
penalty hinders from using β̂ to achieve valid results. To overcome this obstacle, Belloni
et al. (2015) and Belloni et al. (2019) proposed a three-stage refitting procedure based
on Neyman’s orthogonal score function to construct studentized confidence intervals. In
contrast, Bradic and Kolar (2017) developed the debiasing technique proposed in Zhang
and Zhang (2014) and Van de Geer et al. (2014) for Lasso estimator, and then employed
the debiased `1-QR estimator to implement uniform hypothesis testing. Specifically, given
`1-penalized QR estimator β̂, a debiased estimator β̃ can be constructed as

β̃ = β̂ +
1

n
D̃

n∑
i=1

xiΨτ (yi − x>i β̂), (3)

where Ψτ (u) = τ − I(u < 0) is the subderivative of ρτ (u) and D̃ is an estimator of the
inverse of the matrix E[fε|x(0)xx>] with fε|x being the conditional density function. Under
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the condition that ε and x are independent, D̃ can be estimated as D̃ = ζ̂D̂ with ζ̂ being
an estimator of the sparsity function 1/fε(0) and D̂ being an estimator of the inverse of the
covariance matrix Σ = E(xx>), such results can be found in Zhao et al. (2014) and Bradic
and Kolar (2017). When p > n, Σ̂ = 1

n

∑n
i=1 xix

>
i is not of full rank. To approximate Σ−1

in this scenario, one can turn to using sparse precision matrix estimators, such as celebrated
CLIME estimator (Cai et al., 2011, 2016). After establishing the Bahadur representation of
the debiased estimator (3), one can easily verify its asymptotic normality and immediately
construct the confidence intervals.

Without the independence of ε and x, ζ̂D̂ is no more an appropriate estimator of the
inverse of E[fε|x(0)xx>]. Given some kernel functionK(·), matrix E[fε|x(0)xx>] can be esti-

mated by Powell’s kernel-type estimator (Powell et al., 1991) 1
nh

∑n
i=1K((yi−x>i β̂)/h)xix

>
i ,

in which h > 0 is the bandwidth parameter. Thus, D̃ can be alternatively defined as the
approximate inverse of the matrix 1

nh

∑n
i=1K((yi − x>i β̂)/h)xix

>
i , similar manipulations

can be seen in Lian and Fan (2018) and Zhao et al. (2019). In those two papers, the authors
focused on proposing consistent debiased estimates for support vector machine (SVM) and
QR, respectively, in high-dimensional distributed settings. Nevertheless, to the best of our
knowledge, the asymptotic normality of this kind of kernel-based debiased estimators still
remains unknown. Actually, 1

nh

∑n
i=1K((yi − x>i β)/h)xix

>
i is exactly the Hessian matrix

of the SQR empirical risk function evaluated at β. This motivates us to design a novel
debiased QR estimator by incorporating the ideas of convolution-type smoothing method.
Since the inverse of E[fε|x(0)xx>] is estimated as a whole, our newly proposed debiased
estimator does not rely on the homoscedastic assumption that x and ε are independent of
each other. Besides, we also certify the asymptotic normality of our proposed estimator in
the following analysis.

2.2 Sparse quantile regression: a smoothing approach

Recall that Fε|x(·) is denoted as the conditional distribution of ε given x. Then the popu-
lation quantile risk function can be defined as

Q(β) = E

{∫ ∞
−∞

ρτ (u− x>(β − β∗)) dFε|x(u)

}
.

It is not hard to check that Q(β) is twice differentiable and strongly convex in a neigh-
borhood of β∗ whenever the conditional distribution Fε|x(·) is smooth enough. For every

β ∈ Rp, let F̂ (·;β) be the empirical cumulative distribution function (CDF) of the residuals
{ri(β) := yi−x>i β}ni=1, namely F̂ (u;β) = 1

n

∑n
i=1 I{ri(β) ≤ u} for any u ∈ R. After replac-

ing Fε|x(·) with F̂ (u;β), the empirical risk for quantile loss, Q̂(·) in (2), can be equivalently
expressed as

Q̂(β) =

∫ ∞
−∞

ρτ (u) dF̂ (u;β). (4)

Note that Q̂(·) is non-smooth since it is actually a finite sum of check loss functions evaluated
at various points. Instead of using empirical CDF F̂ (·;β), Fernandes et al. (2021) introduced
a kernel-type CDF and derived a new empirical risk through integrating over the probability
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measure induced by it. Given the residuals ri(β) = yi − x>i β and a bandwidth parameter

h, the kernel-type CDF F̂h(·;β) is established as

F̂h(u;β) =
1

n

n∑
i=1

∫ u

−∞
Kh

(
t− ri(β)

)
dt,

where K(·) is a symmetric and non-negative kernel function and Kh(u) is defined as Kh(u) =
K(u/h)/h. Thus, the corresponding empirical risk function, which is denoted by Q̂h, can
be obtained after integrating with respect to F̂h(u;β)

Q̂h(β) :=

∫ ∞
−∞

ρτ (u) dF̂h(u;β) =
1

nh

n∑
i=1

∫ ∞
−∞

ρτ (u)K

(
u+ x>i β − yi

h

)
du. (5)

By means of the convolution operator “∗”, such empirical risk can also be written as

Q̂h(β) =
1

n

n∑
i=1

`h,τ

(
yi − x>i β

)
with `h,τ (u) = (ρτ ∗Kh) (u) =

∫ ∞
−∞

ρτ (v)Kh(v − u)dv,

(6)

where `h,τ is called as the SQR loss throughout the paper. Denote the integrated kernel func-
tion K̄ : R → [0, 1] as K̄(u) =

∫ u
−∞K(t) dt, and correspondingly K̄h(u) =

∫ u
−∞Kh(t) dt =

K̄(u/h). Then the SQR empirical risk function Q̂h(β) is twice continuously differentiable
with gradient ∇Q̂h(β) = 1

n

∑n
i=1{K̄h(−ri(β)) − τ}xi and Hessian matrix ∇2Q̂h(β) =

1
n

∑n
i=1Kh(−ri(β))xix

>
i .

In Tan et al. (2022b), the authors investigated the high-dimensional sparse QR esti-
mation problem with SQR loss function. Based on the dataset {(yi,xi)}ni=1, the `1-SQR

estimator β̂h is then defined as

β̂h = argmin
β∈Rp

{Q̂h(β) + λ‖β‖1} = argmin
β∈Rp

{
1

n

n∑
i=1

`h,τ

(
yi − x>i β

)
+ λ‖β‖1

}
. (7)

As pointed out by Tan et al. (2022b), the bias of β̂h is composed of two parts: the shrinkage
bias induced by `1 penalty and the smoothing bias caused by SQR loss. After selecting a
proper bandwidth, β̂h reaches the same order convergence rate as the `1-QR estimator β̂.
Hence the `1-SQR estimator β̂h is capable of substituting β̂ as the key role of debiasing.

2.3 Debiasing the `1-SQR estimator

We debias the `1-SQR estimator β̂h along the way of Van de Geer et al. (2014). The
main idea is to invert the Karush-Kuhn-Tucker (KKT) conditions of (7). Since β̂h is the
minimizer of (7), then it satisfies the KKT conditions:

1

n

n∑
i=1

[K̄h(x>i β̂h − yi)− τ ]xi + λg = 0, (8)

where g = (g1, . . . , gp)
> is a subderivative of ‖·‖1 at β̂h satisfying gj = sign(β̂h;j) if β̂h;j 6= 0

and otherwise gj ∈ [−1, 1]. Here β̂h;j denotes the j-th coordinate of β̂h.
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For sufficiently large n, β̂h is close to β∗, and informally the following arguments hold:

1

n

n∑
i=1

[K̄h(x>i β̂h − yi)− τ ]xi

≈ 1

n

n∑
i=1

[K̄h(x>i β
∗ − yi)− τ ]xi + E{[K̄h(x>β̂h − y)− τ ]x} − E{[K̄h(x>β∗ − y)− τ ]x}

≈ 1

n

n∑
i=1

[K̄h(x>i β
∗ − yi)− τ ]xi +∇2Qh(β∗)(β̂h − β∗)

:=
1

n

n∑
i=1

[K̄h(x>i β
∗ − yi)− τ ]xi + Jh(β̂h − β∗), (9)

where Qh(β) = E[Q̂h(β)] and Jh = ∇2Qh(β∗), heuristically the first “≈” is based on
the theory of empirical process, and the second “≈” is deduced from Taylor’s expansion.
Rearranging (9) leads to

β̂h ≈ β∗ + J−1
h

1

n

n∑
i=1

[K̄h(x>i β̂h − yi)− τ ]xi − J−1
h

1

n

n∑
i=1

[K̄h(x>i β
∗ − yi)− τ ]xi.

According to the KKT conditions (8), we know that term J−1
h

1
n

∑n
i=1[K̄h(x>i β̂h−yi)−τ ]xi =

−λJ−1
h g is essentially the shrinkage bias that needs to be removed from the original `1-SQR

estimator β̂h. On the other hand, He et al. (2023) has shown that E{J−1
h

1
n

∑n
i=1[K̄h(x>i β

∗−
yi)−τ ]xi} = O(h2), which suggests that the term J−1

h
1
n

∑n
i=1[K̄h(x>i β

∗−yi)−τ ]xi is asymp-
totic negligible whenever h is small. Therefore, we are motivated to define the debiased
`1-SQR estimator as

β̃h = β̂h + Ŵ
1

n

n∑
i=1

[τ − K̄h(x>i β̂h − yi)]xi, (10)

in which Ŵ is an estimator of the matrix J−1
h .

Under the additional condition that the kernel function K(·) is Lipschitz continuous, He
et al. (2023) verified that ∇2Q̂h(β̂h) = 1

n

∑n
i=1Kh(x>i β̂h−yi)xix>i is a consistent estimator

of Jh = E[Kh(x>β∗ − y)xx>]. As a consequence, we define Ŵ as the approximate inverse

of ∇2Q̂h(β̂h) by employing a similar method proposed by Cai et al. (2011). Concretely, Ŵ
is the solution to the following optimization problem:

Ŵ = argmin
W∈Rp×p

‖W‖1

s.t. ‖W∇2Q̂h(β̂h)− I‖∞ ≤ γn, (11)

where γn is a predetermined tuning parameter. In general, Ŵ is not symmetric since there
is no symmetry constraint on W in (11). To enforce the symmetry, Ŵ = (̂bi,j)1≤i,j≤p only

needs to be further operated as follows. Write Ŵ1 = (̂b1i,j)1≤i,j≤p, which is defined as

b̂1i,j = b̂1j,i = b̂i,jI{|̂bi,j | ≤ |̂bj,i|}+ b̂j,iI{|̂bi,j | > |̂bj,i|}. (12)

9
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Algorithm 1 Debiased estimator for β∗ in high-dimensional smoothed quantile regression

Input: Data {(yi,xi)}ni=1, quantile index τ ∈ (0, 1), kernel function K(·), smoothing band-
width h, tuning parameters λ and γn.

1: Let `1-SQR estimator β̂h be a solution of the optimization problem:

min
β∈Rp

{
1

n

n∑
i=1

`h,τ

(
yi − x>i β

)
+ λ‖β‖1

}
.

2: Compute

∇2Q̂h(β̂h) =
1

n

n∑
i=1

Kh(x>i β̂h − yi)xix>i .

3: Let Ŵ be a solution of the convex program:

min
W∈Rp×p

‖W‖1

s.t.‖W∇2Q̂h(β̂h)− I‖∞ ≤ γn.

4: Define the debiased `1-SQR estimator as follows:

β̃h = β̂h + Ŵ
1

n

n∑
i=1

[τ − K̄h(x>i β̂h − yi)]xi.

Output: The debiased `1-SQR estimator β̃h.

Apparently, Ŵ1 is a symmetric matrix. In this work, without loss of generality we assume
Ŵ is symmetric and use it in the rest of the paper. Note that there is a fine distinction
between (11) and optimization problem (1) in Cai et al. (2011), in which the constraint is
imposed on ‖∇2Q̂h(β̂h)W − I‖∞. Here we write in this way for convenience.

In Algorithm 1, we summarize the details about how to construct the debiased `1-SQR
estimator β̃h. In comparison to the previous debiased `1-QR estimators that originated from
β̂, our proposed β̃h is computationally efficient and easier to obtain. On the one hand, β̃h
is established upon the `1-SQR estimator β̂h, which achieves the same statistical accuracy
as β̂ while greatly improving computational efficiency due to the smoothness of the SQR
loss. Fast and efficient algorithms, like widely-used PGD, ADMM and coordinate descent,
can be applied to solve the optimization problem (Tan et al., 2022b). A more comprehen-
sive discussion can be found in Man et al. (2022). In that work, the authors introduced a
major variant of the local adaptive majorize-minimization (LAMM) algorithm (Fan et al.,
2018) for fitting penalized convolution smoothed quantile regression with many different
regularization terms. On the other hand, there is no need to estimate the sparsity function
separately in the construction of β̃h, since it is already included when approximating the
inverse of Hessian. Apart from this, β̃h works even if the independence between x and ε
is violated. In the subsequent analysis, we first establish the non-asymptotic Bahadur rep-
resentation of β̃h. Based on this result, we then investigate the high-dimensional inference
problems for quantile regression model. For arbitrary linear functional of β∗, we construct

10
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the studentized confidence interval and verify its empirical coverage probability. Testing
procedures for both a single variable and a group of variables are explored and provided
with theoretical guarantees.

3. Statistical analysis

In this section, we provide a complete and in-depth analysis of the debiased `1-SQR esti-
mator β̃h. According to its construction, we first study the properties of Ŵ and explore
the upper bound of γn. Then we establish the Bahadur representation of β̃h from a non-
asymptotic viewpoint, which can further be used to validate the asymptotic normality of
β̃h. Based on these theoretical results, we construct the confidence intervals for arbitrary
linear projection of β∗, from which a pointwise inference for β∗j , j ∈ {1, . . . , p} and the
subgroup hypothesis testing for {β∗j : j ∈ G ⊂ {1, . . . , p}} can be directly achieved.

3.1 General CLIME estimator Ŵ

Before proceeding, we impose some regularity assumptions at first.

Assumption 1 K(·) is a kernel function, which is to say K(·) is non-negative, symmetric,
and satisfies

∫∞
−∞K(u) du = 1. In this paper, K(u) is assumed to be continuously twice

differentiable with uniformly bounded zero-order, first-order and second-order derivatives,
i.e., κu = supu∈RK(u) < ∞, κl = minu∈[−1,1]K(u) > 0, κ′u = supu∈R |K ′(u)| < ∞, and

κ′′u = supu∈R |K ′′(u)| <∞. Moreover, denote κk =
∫∞
−∞ |u|

kK(u) du for k ≥ 1.

Assumption 2 There exists some constant l0 > 0 for the conditional density function
fε|x(·) such that |fε|x(u1)− fε|x(u2)| ≤ l0|u1− u2| for all u1, u2 ∈ R almost surely (over x).
Moreover, suppose there exists two constants f̄ ≥ f > 0 such that fε|x(0) ≥ f almost surely
for all x and supu∈R fε|x(u) ≤ f̄ .

Assumption 3 The covariate x = (x1, . . . , xp)
> ∈ Rp is sub-Gaussian with E(x) = 0 and

Σ = E(xx>) � 0. That is, there exists σ > 0 (without loss of generality assume σ ≥ 1) such

that P{|〈u,w〉| ≥ σt} ≤ 2e−
t2

2 for all u ∈ Sp−1 and t ≥ 0, where w = Σ−
1
2x. Furthermore,

the eigenvalues of the covariance matrix Σ satisfies 0 < Λmin ≤ Λmin(Σ) ≤ 1 ≤ Λmax(Σ) ≤
Λmax <∞ and the precision matrix Σ−1 satisfies ‖Σ−1‖L1 ≤ M for some Λmin, Λmax and

M . Besides, denote α2
x = max1≤j≤p E(x2

j ), mk = supu∈Sp−1 E(|〈u,Σ−
1
2x〉|k), k = 1, 2, . . .,

in which m4 <∞, and without loss of generality assume m2 = 1 in this work.

Assumption 4 β∗ is s-sparse, which means that the cardinality of its support set S = {j :
β∗j 6= 0} satisfies |S| ≤ s� n.

Assumption 1 is the standard condition for kernel function with some additional con-
straints of its derivatives. The requirement κl = minu∈[−1,1]K(u) > 0 is for theoretical
simplicity and can be converted to minu∈[−c,c]K(u) > 0 for some c ∈ (0, 1) via transforma-
tion. Common kernel functions, such as Gaussian kernel, Epanechnikov kernel and logistic
kernel, and their rescaled versions satisfy this condition. Assumption 2 imposes regularity
conditions on the conditional density function. Such conditions are basic and standard in

11



Yan, Wang and Zhang

the research of quantile regression. Assumption 3 is about the covariate x, which is sup-
posed to be from a sub-Gaussian random vector family with zero mean and positive definite
covariance matrix. Similar to Cai et al. (2011) and Bradic and Kolar (2017), the L1-norm
of the precision matrix Σ−1 is assumed to be bounded, and this helps us to establish the
convergence rate associated with Ŵ. Besides, the kurtosis of arbitrary linear projection

〈u,Σ−
1
2x〉 is required to be uniformly bounded. Assumption 4 is the hard sparsity con-

dition of β∗, which can be relaxed to a weaker version that allows some coefficients with
small elements (Belloni et al., 2019). Under these assumptions, we could directly use the
existing properties of β̂h to establish theoretical results of β̃h.

For completeness, we restate the non-asymptotic error bounds of `1-SQR estimator β̂h
verified in Tan et al. (2022b) with a slightly different condition on x.

Theorem 1 (Theorem 4.1 in Tan et al. (2022b)) Suppose Assumptions 1-4 hold, and
the bandwidth h falls into

max

(
αx
f

√
s log p

n
,
α2
xf̄

f2

s log p

n

)
. h ≤ min

{
f/(2l0), (s1/2λ)1/2

}
.

Then, the `1-SQR estimator β̂h with λ � σαx
√
τ(1− τ) log p/n satisfies the bounds

‖β̂h − β∗‖2 ≤ C1f
−1s1/2λ and ‖β̂h − β∗‖1 ≤ C2f

−1sλ (13)

with probability at least 1−1
p , where the constants C1, C2 > 0 depend only on (l0, σ,Λmin, κl, κ2).

From Theorem 1 we find that `1-SQR estimator β̂h reaches the near-minimax rate of
convergence whenever h is selected in the specified interval. On the basis of this result, we
are devoted to studying the optimization problem (11) and quantifying γn. To achieve this
target, we need to introduce another assumption on the inverse of the population Hessian
Jh = ∇2Qh(β∗).

Assumption 5 There exists some M ′ > 0 such that ‖J−1
h ‖L1 ≤ M ′. Moreover, J−1

h :=

(b̃1, . . . , b̃p)
> = (̃bi,j)1≤i,j≤p is sparse row-wise, i.e., max1≤i≤p

∑p
j=1 |̃bi,j |q ≤ cn,p for 0 ≤

q < 1, where cn,p is positive and bounded away from 0 and allowed to increase as n and p
grow.

This assumption requires J−1
h to be sparse both in the sense of L1-norm and matrix row

space. Similar conditions were considered in the literature on precision matrix estimation
and more general inverse Hessian matrix estimation, one can turn to Van de Geer et al.
(2014), Belloni et al. (2016), Cai et al. (2016) and Ning and Liu (2017) for more information.
In fact, the assumption holds pointwise for h. This is because our proposed debiased `1-
SQR estimator β̃h is constructed on the basis of `1-SQR estimator β̂h with some certain
bandwidth h. As He et al. (2023) and Tan et al. (2022b) mentioned, convolution-type
smoothing method is not sensitive to h. When h satisfies certain order conditions, the
errors of `1-SQR estimators with different h are almost the same. Hence, we actually select
one specific value of h in constructing debiased `1-SQR estimator and then building up
theories thereafter. Back to Assumption 5, here we essentially impose the row-wise sparse
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condition for the matrix J−1
h with some certain h. Which is to say, the statement holds for

specific h = h(n, p). Once (n, p) is given, h is determined. This also fits our non-asymptotic
framework.

Next, we turn to consider the accuracy bound of Ŵ as an approximation of the inverse
of ∇2Q̂h(β̂h). Since Ŵ can be treated as a general case of the CLIME estimator that
Cai et al. (2011) proposed for estimating precision matrix, here we extend their method to

investigate the properties of Ŵ and summarize these results in Theorem 2.

Theorem 2 Suppose Assumptions 1-5 hold and the bandwidth h satisfies conditions in
Theorem 1, with probability at least 1− 4

p , we have the following results:

‖Ŵ‖L1 ≤ ‖J−1
h ‖L1 , ‖Ŵ∇2Q̂h(β̂h)− I‖∞ . γn and ‖Ŵ∇2Qh(β∗)− I‖∞ . γn, (14)

where γn =
√

log p
nh + log p

nh + s2 log p(log(p∨n))2

nh3
+s
(√ log p log(p∨n)

nh2
+
√

(log p)2 log(p∨n)
n2h3

+
√

(log p)3 log(p∨n)
n3h4

)
.

As Cai et al. (2011) mentioned that, the convex optimization (11) can be decomposed
into p vector minimization problems. Denote ej as the unit vector in Rp with its j-th
coordinate being 1 and others being 0. For all 1 ≤ j ≤ p, it has been proved that solving (11)
is equivalent to solving the following p optimization problems:

b̂j = argmin
b∈Rp

‖b‖1

s.t. ‖b>∇2Q̂h(β̂h)− e>j ‖∞ ≤ γn, (15)

and Ŵ = (b̂1, . . . , b̂p)
> = (̂bi,j)1≤i,j≤p. Theorem 2 reveals that J−1

h = (̃bi,j)1≤i,j≤p is feasible

for (11), which means b̃j is feasible for (15). Due to the optimality of b̂j , we know that

‖b̂j‖1 ≤ ‖b̃j‖1 holds for 1 ≤ j ≤ p. Hence, motivated by Lemma 7.1 of Cai et al. (2016), the

error bound of ‖Ŵ − J−1
h ‖L1 can be obtained and will be applied to the further analysis.

At the end of this part, we provide the upper bound of ‖Ŵ − J−1
h ‖L1 , which is crucial

for establishing theoretical results afterwards.

Theorem 3 Suppose Assumptions 1-5 hold and the bandwidth h satisfies conditions in
Theorem 1, then we have

‖Ŵ − J−1
h ‖L1 ≤ 8cn,p(γn‖J−1

h ‖L1)1−q � γ1−q
n . (16)

3.2 Bahadur representation

In this part, we investigate the Bahadur representation of β̃h. Different from the setup
in He et al. (2023), the error rate of the Bahadur remainder term in this work is provided
by allowing both p and s to increase with n. Theorems 1, 2 and 3 pave way for the
establishment of this result.
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Denote δ̂h = β̂h − β∗ and ε̂i = ri(β̂h) = yi − x>i β̂h, and consider `1-ball B1(r) = {a ∈
Rp : ‖a‖1 ≤ r}. For arbitrary α ∈ B1(r), it is easy to see that

√
nα>(β̃h − β∗) =

√
nα>(β̂h − β∗) +

1√
n
α>Ŵ

n∑
i=1

[τ − K̄h(x>i β̂h − yi)]xi

=
√
nα>δ̂h +

1√
n
α>Ŵ

n∑
i=1

[τ − K̄h(−εi)]xi +
1√
n
α>Ŵ

n∑
i=1

[K̄h(−εi)− K̄h(−ε̂i)]xi

=
√
nα>δ̂h +

1√
n
α>Ŵ

n∑
i=1

[τ − K̄h(−εi)]xi −
1√
n
α>Ŵ

n∑
i=1

Kh(ζi)xix
>
i δ̂h

=
1√
n
α>J−1

h

n∑
i=1

[τ − K̄h(−εi)]xi +α>(Ŵ − J−1
h )

1√
n

n∑
i=1

[τ − K̄h(−εi)]xi

− 1√
n
α>Ŵ

n∑
i=1

[Kh(ζi)−Kh(−ε̂i)]xix>i δ̂h −
√
nα>(Ŵ∇2Q̂h(β̂h)− I)δ̂h

:=
1√
n
α>J−1

h

n∑
i=1

[τ − K̄h(−εi)]xi + (Γ1 + Γ2 + Γ3), (17)

where ζi is the intermediate value from Taylor’s expansion between −εi and −ε̂i, Γ1 =
α>(Ŵ − J−1

h ) 1√
n

∑n
i=1[τ − K̄h(−εi)]xi, Γ2 = 1√

n
α>Ŵ

∑n
i=1[Kh(−ε̂i) − Kh(ζi)]xix

>
i δ̂h

and Γ3 =
√
nα>(I − Ŵ∇2Q̂h(β̂h))δ̂h. Based on the error bounds of β̃h and Ŵ, the

residual terms Γ1, Γ2, and Γ3 can be well controlled. The following theorem provides the
non-asymptotic Bahadur representation for the linear projection of our proposed debiased
`1-SQR estimator β̃h. In the following, all of the results are established under the case of
q = 0, which is one of the most common matrix sparsity assumptions that many works
considered. Similar conditions can also be found in Liu and Wang (2017), Cheng et al.
(2022), Li et al. (2022) and Tran and Yu (2022) on different topics.

Theorem 4 Suppose Assumptions 1-5 hold, the bandwidth h is required to meet the condi-
tion ( s log p

n )1/2 . h . ( s log p
n )1/4, and the sparsity s satisfies s . (log(p ∨ n))1/2. Then for

any α ∈ B1(r), the debiased `1-SQR estimator β̃h satisfies

|
√
nα>(β̃h − β∗)−

1√
n
α>J−1

h

n∑
i=1

[τ − K̄h(−εi)]xi| .
rcn,ps

2(log p)3/2(log(p ∨ n))5/2

nh3

(18)

with probability at least 1− 5
p .

Remark 1 A necessary condition for the Bahadur residual term to be of order o(1) is that
nh3 →∞ as n→∞. This suggests a less rigorous bound for the bandwidth h with respect
to n, i.e., n−1/3 . h . n−1/4.

Note that the main term of the Bahadur representation in (18) is the same as that
of the SQR estimator in He et al. (2023). In fact, He et al. (2023) investigated the SQR
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model under the “increasing dimension” regime, in which p is allowed to grow up with n
while p < n. In their work, the researchers did not impose the sparse condition on β∗. All
the theoretical results, such as the Bahadur representation, therein were established based
on the SQR estimators without using penalty. While in this work, we focus on the high-
dimensional setting, where p can be much larger than n. The `1-SQR estimator proposed
by Tan et al. (2022b) is available for variable selection in this setting, but not directly for
inference. The `1-penalty makes it sparse while introducing a shrinkage bias. On the basis
of this penalized estimator, we propose the debiased `1-SQR estimator and build up a series
of theories for it. In other words, the Bahadur representation and other results established
in our work extend the corresponding results of the SQR estimator to the high-dimensional
sparse scenarios, where the SQR estimator fails to work. Our proposed debiased `1-SQR
estimator is designed for statistical inference in the high-dimensional setup. It provides
valid inference results for arbitrary parameter, regardless of its signal strength.

3.3 Confidence intervals

In this section, we construct the confidence intervals and state the inference results for
high-dimensional quantile regression based on our proposed debiased `1-SQR estimator β̃h.
For significance level % ∈ (0, 1), let z1−% be the 1− % standard normal percentile point. We
focus on the confidence intervals for α>β∗, from which we can make inference for both a
single variable and a subgroup of variables.

According to Theorem 4, an asymptotic (1 − %)100% confidence interval for α>β∗ is
given by

∆̂n =
[
α>β̃h −

z1− %
2√
n

√
τ(1− τ)α>ŴΣ̂Ŵα,α>β̃h +

z1− %
2√
n

√
τ(1− τ)α>ŴΣ̂Ŵα

]
, (19)

where Σ̂ is the sample covariance matrix previously defined. The next theorem provides
the theoretical coverage probability of ∆̂n, which is essentially the Berry-Esseen bound for
α>β̃h.

Theorem 5 Suppose Assumptions 1-5 hold, the bandwidth h is required to meet the condi-
tion ( s log p

n )1/2 . h . ( s log p
n )1/4, and the sparsity s satisfies s . (log(p ∨ n))1/2. Then for

all α ∈ B1(r), we have

sup
β∗:‖β∗‖0≤s

sup
α∈B1(r)

P
(
α>β∗ ∈ ∆̂n

)
= 1− %+O

(rcn,ps2 log p(log(p ∨ n))2(r +
√

log p log(p ∨ n))

nh3
+ rh2

√
n log(p ∨ n)

)
. (20)

Theorem 5 indicates that for appropriate choice of bandwidth h = h(n, p) → 0, the
coverage probabilities of ∆̂n are close to 1 − % as n, p → ∞ subject to some conditions.
Whenever cn,p and r are considered fixed, the optimal tradeoff between the two error terms

in (20) implicates the selection h � s2/5(log p)3/10(log(p∨n))2/5

n3/10 . After taking h to be selected

from the best tradeoff, the error of coverage probability is of order s4/5(log p)3/5(log(p∨n))13/10

n1/10 ,
which further implicates that the sparsity s and ambient dimension p obey the growth
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condition s8(log p)6(log(p ∨ n))13 . n. Specially, for sparse loading vector α, (20) sheds
light on the construction of the confidence interval for a single variable.

Remark 2 The confidence interval for one coordinate β∗j is obtained by setting α = ej .
For all u ∈ R and any j ∈ {1, . . . , p}, we have

sup
u∈R

∣∣∣∣P(
√
n(β̃h;j − β∗j )√

τ(1− τ)[ŴΣ̂Ŵ]
1/2
j,j

≤ u
)
− Φ(u)

∣∣∣∣ = oP(1), (21)

where β̃h;j is the j-th element of β̃h, [ŴΣ̂Ŵ]j,j is the (j, j)-th entry of matrix ŴΣ̂Ŵ
and Φ(·) denotes the cumulative distribution function of standard normal random variable
N(0, 1).

Remark 3 Whenever the sparsity s does not increase with n and p, our theoretical results
are valid for the high-dimensional setup where log p = O(nc) for some c ∈ (0, 1).

3.4 Hypothesis testing

Based on the result about confidence intervals for the single variable in (21), now we turn
to considering the hypothesis testing problems H0,j : β∗j = 0 versus H1,j : β∗j 6= 0 for any
j ∈ {1, . . . , p} and assign p-values for these tests. The p-value Pj for the null hypothesis
H0,j is defined as

Pj = 2

(
1− Φ

( √
n|β̃h;j |√

τ(1− τ)[ŴΣ̂Ŵ]
1/2
j,j

))
. (22)

According to the procedure of hypothesis testing, we introduce the following decision rule
T̂j based on Pj :

T̂j =

{
1 if Pj ≤ % ( reject H0,j) ,
0 otherwise (acceptH0,j) ,

(23)

in which % is the predetermined Type I error rate. In general, the quality of the test T̂j
is measured by its significance level %j (probability of Type I error) and statistical power
1− πj (πj is the probability of Type II error).

For β∗j 6= 0 with sufficiently small absolute value, the null hypothesis H0,j is indis-
tinguishable from H1,j . Hence, in this work we enforce that |β∗j | > µ whenever β∗j 6= 0.
Analogous to Javanmard and Montanari (2014a) and Javanmard and Montanari (2014b),
we adopt the minimax viewpoint and control the performance of the test over all s-sparse
vectors. Specifically, given a family of decision rules Tj = Tj,X(y) : Rn → {0, 1} with
X ∈ Rn×p and y ∈ Rn, for µ > 0, we define

%j(T ) = sup
β∗

{
Pβ∗(Tj = 1) : β∗ ∈ Rp, ‖β∗‖0 ≤ s, β∗j = 0

}
(24)

and

πj(T ;µ) = sup
β∗

{
Pβ∗(Tj = 0) : β∗ ∈ Rp, ‖β∗‖0 ≤ s, |β∗j | ≥ µ

}
, (25)
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where Pβ∗ is the probability measure induced by (X,y) with respect to the fixed parameter
β∗. Actually speaking, for any s-sparse parameter with β∗j = 0, the probability of false
rejection of the null is upper bounded by %j(T ). Moreover, if β∗ is s-sparse with |β∗j | > µ,
then πj(T ;µ) is the upper bound of the rate of erroneous detection. Next, we establish the

bounds on %j(T̂j) and πj(T̂j ;µ) and conclude these results in the following theorem.

Theorem 6 Suppose Assumptions 1-5 hold, the bandwidth h is required to meet the condi-
tion ( s log p

n )1/2 . h . ( s log p
n )1/4, and the sparsity s satisfies s . (log(p ∨ n))1/2. Consider

a sequence of design matrices X ∈ Rn×p. For any j ∈ {1, . . . , p} and % ∈ [0, 1], we have the
following bounds on the statistical significance and power for testing H0,j : β∗j = 0 against
the alternative |β∗j | ≥ µ:

lim
n→∞

%j(T̂j) ≤ %, (26)

and

lim inf
n→∞

1− πj(T̂j ;µ)

1− πj(µ)
≥ 1, 1− πj(µ) = G

(
%,

√
nE[Kh(ε)]µ√

τ(1− τ)[J−1
h ]

1/2
j,j

)
, (27)

where, for % ∈ [0, 1] and u ∈ (0,∞), the function G(%, u) is defined as follows:

G(%, u) = 2− Φ(z1− %
2

+ u)− Φ(z1− %
2
− u).

Theorem 6 verifies that Type I error %j(T̂j) is uniformly upper bounded by the given

significance level %, and the statistical power 1−πj(T̂j ;µ) is at least 1−πj(µ). As mentioned
in Javanmard and Montanari (2014a), the function G(%, u) is continuous and monotonically
increasing with respect to u for fixed %. It can be checked that G(%, 0) = %, which is
the trivial case obtained by randomly rejecting H0,j with probability %. Given a target

statistical power 1− π ∈ (%, 1), µ is required to satisfy µ ≥ cπ [J−1
h ]

1/2
j,j√

n
for some constant cπ

associated with π. Moreover, the larger µ is, the higher the power 1− πj(T̂j ;µ) achieves.

3.5 Simultaneous testing

In this part, we extend the method to test a group of variables {β∗j : j ∈ G ⊂ {1, . . . , p}}.
Consider the simplest case that the cardinality of G is fixed (or increases with a slow rate)
as n, p→∞. To test the group of hypotheses {H0,j : β∗j = 0}j∈G , here we aim at controlling
the following familywise error rate (FWER)

FWER(T, n) = sup
β∗∈Rp,‖β∗‖0≤s

P
{
∃j ∈ G : β∗j = 0, Tj = 1

}
, (28)

where T = {Tj}j∈G is denoted as the family of tests.

After applying the Bonferroni procedure, we introduce the decision rule T̂ G = {T̂ Gj }j∈G
as

T̂ Gj =

{
1 if Pj ≤ %/|G| ( reject H0,j) ,
0 otherwise (acceptH0,j) ,

(29)

where Pj is given as per (22). Then we obtain the familywise error control and conclude
such result in the following theorem.
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Theorem 7 Suppose Assumptions 1-5 hold, the bandwidth h is required to meet the condi-
tion ( s log p

n )1/2 . h . ( s log p
n )1/4, and the sparsity s satisfies s . (log(p ∨ n))1/2. Consider

a sequence of design matrices X ∈ Rn×p. For testing the group of hypotheses {H0,j : β∗j =

0}j∈G with fixed cardinality |G|, the familywise error rate of the test T̂ G is upper bounded as

lim sup
n→∞

FWER(T̂ G , n) ≤ %. (30)

4. Simulation experiments

In this section, we provide numerical simulations to illustrate finite sample properties of our
proposed debiased `1-SQR estimator β̃h. Under several different settings, we present the
distribution of our test statistic under null hypothesis and the empirical coverage rates of the
confidence intervals in (19). Moreover, we also display the empirical distribution function
of the p-value (22) under the null, which is very similar to the uniform distribution, and
the power function of the test as true variable β∗j varies.

The data are generated from a linear regression model

yi = x>i β
∗ + εi, i = 1, . . . , n,

where the covariates xi = (xi,1, . . . , xi,p)
> are sampled from a multivariate normal distribu-

tion N(0,Σ) with Toeplitz covariance matrix (Σ)j,k = ρ|j−k| for all 1 ≤ j, k ≤ p. The sup-
port set of β∗ is supp(β∗) = {1, 2, . . . , 10} and the non-zero coefficients are β∗j = 1−(j−1)/18
for j ∈ supp(β∗). As for the random noise εi, it follows one of the following three distribu-
tions: (1) standard normal distribution N(0, 1); (2) t-distribution with 1.5 degrees of free-
dom t(1.5); (3) standard Cauchy distribution Cauchy(0, 1). In our simulation experiments,
we consider two settings: moderate one with (n, p) = (500, 500) and high-dimensional one
with (n, p) = (500, 1000). The Gaussian kernel is applied with the bandwidth parameter h
being max{

√
τ(1− τ)(log p)1/2/n3/10, 0.05}. As mentioned in Tan et al. (2022b), the esti-

mated results are insensitive to the choice of bandwidth as long as it is in a proper range.
Besides, tunning parameters γn and λ are selected by cross-validation. In this work, the
quantile level τ is either 0.4 or 0.7, and the Toeplitz matrix coefficient ρ is fixed at 0.1 and
0.5. Empirical coverage rates of constructed confidence intervals are reported over 1000
independent replications.

Let z = (z1, . . . , zp)
> denote the vector with zj =

√
n(β̃h;j−β∗j )√

τ(1−τ)[ŴΣ̂Ŵ]
1/2
j,j

. In Figures 1,

2 and 3, we present the distribution of zj (j ∈ {1, 10, 20}) under null hypothesis under
various settings. From these histograms we find that zj is very close to the standard normal
random variable regardless of the type of noise, even if the stochastic error is from an
extremely heavy tailed family. Our test statistics perform uniformly well for both large and
small signal strengths. Additionally, Q-Q plots in Figures 4, 5 and 6 show the relationship
between the sample quantiles of zj and the quantiles of the standard normal distribution
for one realization. The scattered points are close to the line y = x, which also confirms the
asymptotic normality of z.

Table 1 summarizes the empirical coverage rates of the 95% confidence intervals induced
by β̃h under various settings. Overall, the coverage rates match relatively well to the
preassigned level, as expected from our theoretical results. For most setups, our proposed
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Figure 1: Histograms of (τ(1− τ)[ŴΣ̂Ŵ]j,j)
−1/2 ·

√
n(β̃h;j − β∗j ) under N(0, 1), t(1.5) and

Cauchy(0, 1) noises with (n, p, τ, ρ) = (500, 500, 0.7, 0.1). The red curve depicts
the probability density function of standard normal random variable.

debiased `1-SQR estimator creates confidence intervals with approximately 95% coverage.
The parameters of medium signal strength (β10 in table) can be covered by such confidence
intervals with somewhat lower probability around 90% in some scenarios, which is consistent
with the descriptions in many previous articles about variable selection. Moreover, it can
be found that the empirical coverage rates for (n, p) = (500, 1000) are larger than those for
(n, p) = (500, 500). This manifests that our proposed testing procedure has great potential
in high-dimensional settings.

Figures 7, 8 and 9 exhibit the empirical cumulative distribution functions (CDF) of the
p-values of zj restricted to the variables outside the support. We observe that the p-values
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Figure 2: Histograms of (τ(1− τ)[ŴΣ̂Ŵ]j,j)
−1/2 ·

√
n(β̃h;j − β∗j ) under N(0, 1), t(1.5) and

Cauchy(0, 1) noises with (n, p, τ, ρ) = (500, 500, 0.7, 0.5). The red curve depicts
the probability density function of standard normal random variable.

for these entries are uniformly distributed as theoretically suggested. Compared to N(0, 1)
noise setup, the empirical CDF of p-value is disturbed by the heavy-tailed noises to some
extent.

Furthermore, we present a power curve for testing the null hypothesis H0 : β1 = 0.
For different quantile level τ and Toeplitz matrix coefficient ρ, the associated results are
included in Figure 10. As can be seen from the figure, the test reaches power in a small
range of origin for all of the settings. Compared to the curve under N(0, 1) noise, the power
curves under heavy-tailed noises are relatively backward.
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Figure 3: Histograms of (τ(1− τ)[ŴΣ̂Ŵ]j,j)
−1/2 ·

√
n(β̃h;j − β∗j ) under N(0, 1), t(1.5) and

Cauchy(0, 1) noises with (n, p, τ, ρ) = (500, 1000, 0.7, 0.1). The red curve depicts
the probability density function of standard normal random variable.

5. Real data

For an example of real data, we consider the famous genomic dataset about riboflavin
(vitamin B2) production rate, which is first made publicly available by Bühlmann et al.
(2014). This dataset contains n = 71 samples and p = 4088 covariates that measure the
logarithm of the expression level of 4088 genes. For each sample, there is a single real-valued
response variable that represents the logarithm of the riboflavin production rate.

Many previous works modeled the riboflavin production rate as a linear regression and
applied Lasso method to select important genes. Both of Bühlmann et al. (2014) and Javan-
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Figure 4: Q-Q plots of z for one realization under N(0, 1), t(1.5) and Cauchy(0, 1) noises
with (n, p, τ, ρ) = (500, 500, 0.7, 0.1).

mard and Montanari (2014a) picked out 30 genes corresponding to the nonzero parameters
of the Lasso estimators. Then different methods have been implemented to further refine
the search for crucial genes after variable selection. Among these articles, researchers only
found two significant genes YXLD-at and YXLE-at to the best of our knowledge.
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Figure 5: Q-Q plots of z for one realization under N(0, 1), t(1.5) and Cauchy(0, 1) noises
with (n, p, τ, ρ) = (500, 500, 0.7, 0.5).

In our experiment, we model the riboflavin production rate as a quantile regression
and use `1-SQR to make variable selection at first. The bandwidth h is chosen to be 0.3
and the tunning parameter λ is selected by cross-validation. Implementing such procedures
also picks out 30 genes, which are not exactly the same as those selected by Bühlmann
et al. (2014) and Javanmard and Montanari (2014a). After that, we compute p-values for
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Figure 6: Q-Q plots of z for one realization under N(0, 1), t(1.5) and Cauchy(0, 1) noises
with (n, p, τ, ρ) = (500, 1000, 0.7, 0.1).

different genes based on formula (22), in which the tunning parameter γn is set to be 0.05,
and adjust FWER to 5%. The smallest 5 p-values for genes are presented in Table 2. At the
quantile levels τ ∈ {0.1, 0.2, 0.3}, we all observe that our method successfully selects a new
gene YOAB-at, which is one of the 30 genes that Bühlmann et al. (2014) and Javanmard
and Montanari (2014a) found via Lasso but failed to pick out in the end. Along the route
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Table 1: Empirical coverage rates with sample size n = 500

p τ ρ distribution β1 β10 β20 β100 β200

N(0, 1) 0.9250 0.9260 0.9530 0.9560 0.9490
500 0.7 0.1 t(1.5) 0.9170 0.9220 0.9440 0.9470 0.9460

Cauchy(0, 1) 0.9110 0.9080 0.9380 0.9350 0.9360

N(0, 1) 0.9190 0.9240 0.9510 0.9480 0.9470
500 0.7 0.5 t(1.5) 0.9060 0.9020 0.9380 0.9430 0.9350

Cauchy(0, 1) 0.9030 0.8970 0.9320 0.9360 0.9290

N(0, 1) 0.9350 0.9240 0.9680 0.9670 0.9720
500 0.4 0.1 t(1.5) 0.9160 0.9160 0.9620 0.9560 0.9590

Cauchy(0, 1) 0.9120 0.9130 0.9690 0.9640 0.9610

N(0, 1) 0.9780 0.9670 0.9820 0.9740 0.9860
1000 0.7 0.1 t(1.5) 0.9650 0.9520 0.9610 0.9660 0.9560

Cauchy(0, 1) 0.9570 0.9480 0.9580 0.9530 0.9650
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Figure 7: Empirical CDF of p-values (restricted to the entries out of the support set) for
one realization under N(0, 1), t(1.5) and Cauchy(0, 1) noises with (n, p, τ, ρ) =
(500, 500, 0.7, 0.1).

of Bayes factor, Garcia-Donato and Steel (2021) also claimed that the gene YOAB-at has
a strong effect on the production of riboflavin. This suggests that our debiased `1-SQR
method provides a valid perspective for high-dimensional data analysis. The corresponding
codes are provided in the supplementary materials.

6. Discussion

In this work, we propose the debiased `1-SQR estimator and use it to construct confidence
intervals and implement hypothesis testing under the high-dimensional quantile regression
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Figure 8: Empirical CDF of p-values (restricted to the entries out of the support set) for
one realization under N(0, 1), t(1.5) and Cauchy(0, 1) noises with (n, p, τ, ρ) =
(500, 500, 0.7, 0.5).
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Figure 9: Empirical CDF of p-values (restricted to the entries out of the support set) for
one realization under N(0, 1), t(1.5) and Cauchy(0, 1) noises with (n, p, τ, ρ) =
(500, 1000, 0.7, 0.1).

framework. By taking advantage of convolution-type smoothing method, `1-SQR estimate,
the vital part of our proposed estimator, can be efficiently obtained via coordinate descent
and ADMM-based algorithms. Follow the path of Van de Geer et al. (2014), we then debias
the `1-SQR estimate with the approximate inverse of SQR Hessian matrix. Theoretically,
we provide the non-asymptotic Bahadur representation for our debiased `1-SQR estimator
and also the Berry-Esseen bound, which immediately yields the empirical coverage rate for
the studentized confidence intervals. Besides, procedures for testing a single variable are
designed, and in a minimax perspective we give upper bound of Type I errors and lower
bound of statistical powers over a family of sparse vectors. Furthermore, the familywise
error rate is guaranteed to be well controlled for the simultaneous testing.
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Figure 10: Power curves of testing the null H0 : β20 = 0 under N(0, 1), t(1.5) and
Cauchy(0, 1) noises with (n, p) = (500, 500).

Table 2: The p-values for genes

YOAB-at LYSC-at YEZB-at YURQ-at PRIA-at
τ = 0.1 4.3921× 10−4 5.6768× 10−2 1.1334× 10−1 1.9568× 10−1 2.4639× 10−1

YOAB-at YEZB-at LYSC-at YYDA-at YURQ-at
τ = 0.2 6.5066× 10−4 2.5527× 10−1 3.3260× 10−1 3.5554× 10−1 3.6481× 10−1

YOAB-at YEBC-at YHAI-at LYSC-at YYDA-at
τ = 0.3 2.7525× 10−4 2.0100× 10−1 3.2014× 10−1 3.7809× 10−1 4.0173× 10−1

There are several open questions to be addressed. Nowadays individual data is protected
by privacy policies and cannot be freely shared across different units. Traditional integrative
analysis is no longer an efficient method and even highly challenging in the ultra high
dimensional setting. To the best of our knowledge, latest papers are designing `1-penalized
methods to work on this problem. It is of great interest to extend our debiased `1-SQR
method to this field. On the one hand, we would like to design effective methods to test
the heterogeneity based on our testing statistic. On the other hand, developing distributed
estimator that can accommodate heterogeneity also merits further research. Besides, we
implement simultaneous testing for a group of variables by controlling the familywise error
rate in this work. It still remains unknown for the large-scale multiple testing of high-
dimensional quantile regression. In the future, we are committed to exploring FDR and
other methods to tackle this problem.
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Appendix A. Proof of Main Results

In this appendix, we present the proofs of the results in the paper.

Proof of Theorem 1. Following the proof of Theorem 4.1 in Tan et al. (2022b), we first
bound the k-th (k ≥ 3) absolute moments of all the one-dimensional linear projection of

w = Σ−
1
2x. Under Assumption 3, we know that P{|〈u,w〉| ≥ σt} ≤ 2e−

t2

2 for all u ∈ Sp−1

and t ≥ 0. Then for any k ≥ 3, we have

E|〈u,w〉|k

≤ (E|〈u,w〉|2k)
1
2

=

(
σ2k · 2k

∫ ∞
0

t2k−1P(|〈u,w〉| ≥ σt) dt

) 1
2

≤
(
σ2k · 4k

∫ ∞
0

t2k−1e−
t2

2 dt

) 1
2

= σk(2k+1k!)
1
2 ≤ 2σkk!, (A.1)

where the first inequality follows from the Lyapunov’s inequality and the last one is deduced
from the fact (2k+1k!)

1
2 = 2 · (2k−1k!)

1
2 ≤ 2 · k!. With this result, the rest of the proof is

similar to that of Theorem 4.1 in Tan et al. (2022b).

Proof of Theorem 2. First, we need to find one feasible solution to the optimization
problem (11). In fact, J−1

h is feasible, i.e.,

‖J−1
h ∇

2Q̂h(β̂h)− I‖∞ ≤ γn. (A.2)

Once we have verified this result, the feasibility of Ŵ immediately implies ‖Ŵ∇2Q̂h(β̂h)−
I‖∞ ≤ γn. According to Cai et al. (2011), solving Ŵ can be equivalently transformed

into solving p vector minimization problem in (15). Based on this fact, Ŵ can then be

established row by row. Moreover, every row vector of Ŵ is also optimal according to
the vector minimization problem. Hence, we also have ‖Ŵ‖L1 = max{‖b̂1‖1, . . . , ‖b̂p‖1} =

‖b̂k‖1 ≤ ‖b̃k‖1 ≤ max{‖b̃1‖1, . . . , ‖b̃p‖1} = ‖J−1
h ‖L1 for some k.

Now we are going to verify inequality (A.2). By the definition of the matrix norm, we
know that

‖J−1
h ∇

2Q̂h(β̂h)− I‖∞ = ‖J−1
h (∇2Q̂h(β̂h)− Jh)‖∞ ≤ ‖J−1

h ‖L1‖∇2Q̂h(β̂h)−∇2Qh(β∗)‖∞,

from which the term ‖∇2Q̂h(β̂h)−∇2Qh(β∗)‖∞ can further be written as

‖∇2Q̂h(β̂h)−∇2Qh(β∗)‖∞ ≤ ‖∇2Q̂h(β̂h)−∇2Q̂h(β∗)‖∞ + ‖∇2Q̂h(β∗)−∇2Qh(β∗)‖∞
:= U1 + U2.
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Next, we control U1 and U2 separately. For U2, note that

U2 = ‖∇2Q̂h(β∗)−∇2Qh(β∗)‖∞ = ‖ 1

n

n∑
i=1

Kh(−εi)xix>i − E[Kh(−ε)xx>]‖∞

≤ ‖Σ
1
2 ‖2L1

· ‖ 1

n

n∑
i=1

Kh(−εi)wiw
>
i − E[Kh(−ε)ww>]‖∞

:= ‖Σ
1
2 ‖2L1

· ‖ 1

n

n∑
i=1

(1− E)φiwiw
>
i ‖∞,

where wi = Σ−
1
2xi and φi = Kh(−εi). It is easy to verify that |φi| ≤ κu

h and

E(φ2
i |xi) =

1

h2

∫ ∞
−∞

K2(−u
h

)fεi|xi(u) du =
1

h

∫ ∞
−∞

K2(v)fεi|xi(−hv) dv ≤ f̄κu
h
.

Denote the j-th element ofwi as wi,j . Then for arbitrary pair (j, k) ∈ {1, . . . , p}×{1, . . . , p},
we bound the higher order moments of φiwi,jwi,k by

E|φiwi,jwi,k|m = E|φi(e>j wi)(e
>
kwi)|m ≤

f̄κu
h
· (κu
h

)m−2 · E|e>j wi|m · E|e>kwi|m.

By Lyapunov’s inequality,

(E|e>j wi|m)2 ≤ E|e>j wi|2m ≤ σ2m · 2m
∫ ∞

0
t2m−1P(|〈ej ,wi〉| ≥ σt) dt ≤ 2m+1σ2mm!.

Hence, the Bernstein’s condition can be verified as

E|φiwi,jwi,k|m ≤
m!

2
· (4σ2)2 f̄κu

h
· (2σ2κu

h
)m−2

for m ≥ 2. Applying Bernstein’s inequality and taking union bound over all p2 pairs, we
obtain that for any t > 0, the following inequality holds with probability at least 1−2p2e−t:

‖ 1

n

n∑
i=1

(1− E)φiwiw
>
i ‖∞ = max

1≤j,k≤p
| 1
n

n∑
i=1

(1− E)φiwi,jwi,k| ≤ 2σ2
(
2

√
2f̄κu

t

nh
+ κu

t

nh

)
.

(A.3)

Let t = log 2 + 3 log p, then it follows that with probability at least 1− 1
p we have

U2 ≤ ‖Σ
1
2 ‖2L1

· ‖ 1

n

n∑
i=1

(1− E)φiwiw
>
i ‖∞ ≤ 8‖Σ

1
2 ‖2L1

σ2
(√

2f̄κu
log p

nh
+ κu

log p

nh

)
. (A.4)

To bound U1, observe that

U1 = ‖∇2Q̂h(β̂h)−∇2Q̂h(β∗)‖∞

≤ ‖Σ
1
2 ‖2L1

· ‖ 1

n

n∑
i=1

Kh(−ε̂i)wiw
>
i −

1

n

n∑
i=1

Kh(−εi)wiw
>
i ‖∞,
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where ε̂i = yi − x>i β̂h. By the means of Taylor expansion, we have for arbitrary pair
(j, k) ∈ {1, . . . , p} × {1, . . . , p},

| 1
n

n∑
i=1

Kh(−ε̂i)wi,jwi,k −
1

n

n∑
i=1

Kh(−εi)wi,jwi,k|

= | 1
n

n∑
i=1

[ 1

h2
K ′
(
− εi
h

)
(x>i δ̂h) +

1

2h3
K ′′(ηi)(x

>
i δ̂h)2

]
wi,jwi,k|

≤ | 1

nh2

n∑
i=1

K ′
(
− εi
h

)
wi,jwi,k(x

>
i δ̂h)|+ | 1

2nh3

n∑
i=1

K ′′(ηi)wi,jwi,k(x
>
i δ̂h)2|

:= J1 + J2, (A.5)

where δ̂h = β̂h − β∗ and ηi is an intermediate value between −ε̂i/h and −εi/h. Under
Assumption 1, |K ′′(u)| ≤ κ′′u for any u ∈ R. Then the union upper bound of J2 is

max
1≤j,k≤p

J2 = max
1≤j,k≤p

| 1

2nh3

n∑
i=1

K ′′(ηi)wi,jwi,k(x
>
i δ̂h)2|

≤ max
1≤j,k≤p

κ′′u
2h3
| 1
n

n∑
i=1

wi,jwi,k(‖xi‖∞‖δ̂h‖1)2|

≤ κ′′u
2h3
‖Σ

1
2 ‖2L1
‖δ̂h‖21 · max

1≤i≤n
‖wi‖2∞ · max

1≤j,k≤p
| 1
n

n∑
i=1

wi,jwi,k|

≤ κ′′u
2h3
‖Σ

1
2 ‖2L1
‖δ̂h‖21 · max

1≤i≤n
1≤j≤p

|wi,j |4, (A.6)

where the first inequality is derived from the Hölder’s inequality. The sub-Gaussian nature
of wi,j leads to that for every t > 0,

P( max
1≤i≤n
1≤j≤p

|wi,j | ≥ t) ≤
n∑
i=1

p∑
j=1

P(|wi,j | ≥ t) ≤ 2npe−
t2

2σ2 , (A.7)

in which the first inequality follows from the union bound. Setting t = σ
√

2 log(2np2) and
then we have

max
1≤i≤n
1≤j≤p

|wi,j | ≤ σ
√

2 log(2np2) (A.8)

with probability at least 1 − 1
p . Inserting (A.8) and the `1-norm error bound (13) of δ̂h =

β̂h−β∗ into (A.6) yields that the following union upper bound of J2 holds with probability
at least 1− 2

p ,

max
1≤j,k≤p

J2 ≤
C2

2κ
′′
us

2λ2

2f2h3
‖Σ

1
2 ‖2L1

σ4(2 log(2np2))2 � s2 log p(log(p ∨ n))2

nh3
. (A.9)
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At last, we derive the union upper bound of J1. Similar to (A.6), it is easy to obtain
that

J1 = | 1

nh2

n∑
i=1

K ′(−εi
h

)wi,jwi,k(x
>
i δ̂h)|

≤ ‖Σ
1
2 ‖L1 · ‖δ̂h‖1 · max

1≤i≤n
‖wi‖∞ · |

1

nh2

n∑
i=1

K ′(−εi
h

)wi,jwi,k|, (A.10)

from which the term | 1
nh2
∑n

i=1K
′(− εi

h )wi,jwi,k| can be further controlled as

| 1

nh2

n∑
i=1

K ′(−εi
h

)wi,jwi,k|

≤ | 1

nh2

n∑
i=1

K ′(−εi
h

)wi,jwi,k − E
[ 1

h2
K ′(−εi

h
)wi,jwi,k

]
|+ |E

[ 1

h2
K ′(−εi

h
)wi,jwi,k

]
|.

Given xi, the conditional mean E
[

1
h2
K ′(− εi

h )|xi
]

satisfies

|E
[ 1

h2
K ′(−εi

h
)|xi

]
| = 1

h2
|
∫ ∞
−∞

K ′(−u
h

)fεi|xi(u) du|

≤ 1

h

∫ ∞
−∞
|K ′(v)|fεi|xi(−hv) dv ≤ 2f̄CK

h
,

where CK =
∫∞

0 |K
′(v)|dv <∞ is the total variation of K(·) on [0,∞). Hence we have

|E
[ 1

h2
K ′(−εi

h
)wi,jwi,k

]
| ≤ |E

[
|E
[ 1

h2
K ′(−εi

h
)|xi

]
|wi,jwi,k

]
|

≤ 2f̄CK
h

(
E(wi,j)

2 · E(wi,k)
2
) 1

2 ≤ 8f̄CKσ
2

h
, (A.11)

where the last inequality follows from E(wi,j)
2 ≤ 4σ2 that has been verified in (A.1). For

the centered term
∣∣ 1
nh2
∑n

i=1K
′(− εi

h )wi,jwi,k − E
[

1
h2
K ′(− εi

h )wi,jwi,k
]∣∣, it can be bounded

in a similar way to (A.3). Denote ξi = 1
h2
K ′(− εi

h ), and then under Assumption 1 it can be

verified that |ξi| ≤ κ′u
h2

and

E[ξ2
i |xi] =

1

h4

∫ ∞
−∞

K ′2(−u
h

)fεi|xi(u) du =
1

h3

∫ ∞
−∞

K ′2(v)fεi|xi(−hv) dv ≤ 2f̄κ′uCK
h3

.

Analogously, applying Bernstein’s inequality and the union bound, we find that the following
inequality holds with probability at least 1− 1

p :

max
1≤j,k≤p

| 1

nh2

n∑
i=1

K ′(−εi
h

)wi,jwi,k − E
[ 1

h2
K ′(−εi

h
)wi,jwi,k

]
|

≤ 8σ2
(
2

√
f̄κ′uCK

log p

nh3
+ κ′u

log p

nh2

)
. (A.12)
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Combining this bound with (13), (A.8), (A.10) and (A.11) yields that with probability at
least 1− 3

p ,

max
1≤j,k≤p

J1

≤
8C2σ

3sλ
√

2 log(2np2)

f
‖Σ

1
2 ‖L1

( f̄CK
h

+ 2

√
f̄κ′uCK

log p

nh3
+ κ′u

log p

nh2

)
� s
(√ log p log(p ∨ n)

nh2
+

√
(log p)2 log(p ∨ n)

n2h3
+

√
(log p)3 log(p ∨ n)

n3h4

)
. (A.13)

Consequently, substituting (A.9) and (A.13) into (A.5) leads to that the following upper
bound of U1

U1 .
s2 log p(log(p ∨ n))2

nh3
+s
(√ log p log(p ∨ n)

nh2
+

√
(log p)2 log(p ∨ n)

n2h3
+

√
(log p)3 log(p ∨ n)

n3h4

)
(A.14)

holds with probability at least 1− 3
p .

Finally, with probability at least 1− 4
p we obtain

‖∇2Q̂h(β̂h)−∇2Qh(β∗)‖∞ . γn,

where γn =
√

log p
nh + log p

nh + s2 log p(log(p∨n))2

nh3
+s
(√ log p log(p∨n)

nh2
+
√

(log p)2 log(p∨n)
n2h3

+
√

(log p)3 log(p∨n)
n3h4

)
.

In addition to this, we also have

‖Ŵ∇2Qh(β∗)− I‖∞ ≤ ‖Ŵ∇2Q̂h(β̂h)− I‖∞ + ‖Ŵ(∇2Q̂h(β̂h)−∇2Qh(β∗))‖∞ . γn.
(A.15)

Proof of Theorem 3. Let θi = b̂i− b̃i, θui = (̂bi,1I{|̂bi,1| ≥ 2γn‖J−1
h ‖L1}, . . . , b̂i,pI{|̂bi,p| ≥

2γn‖J−1
h ‖L1})> − b̃i and θli = θi − θui . Then we have

‖b̃i‖1 − ‖θui ‖1 + ‖θli‖1 ≤ ‖b̃i + θui ‖1 + ‖θli‖1 = ‖b̂i‖1 ≤ ‖b̃i‖1,

where the last inequality is according to the optimality of b̂i. Immediately we obtain
‖θli‖1 ≤ ‖θui ‖1, and also ‖θi‖1 ≤ ‖θui ‖1 + ‖θli‖1 ≤ 2‖θui ‖1. Based on the results obtained in
Theorem 2, the following arguments hold

max
1≤i,j≤p

|̂bi,j − b̃i,j | = ‖Ŵ − J−1
h ‖∞ ≤ ‖ŴJh − I‖∞ · ‖J−1

h ‖L1 ≤ γn‖J−1
h ‖L1 .
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To find the upper bound of ‖θui ‖1, we note that

‖θui ‖1 ≤
p∑
j=1

|̂bi,j − b̃i,j |I{|̂bi,j | ≥ 2γn‖J−1
h ‖L1}+

p∑
j=1

|̃bi,j |I{|̂bi,j | < 2γn‖J−1
h ‖L1}

≤
p∑
j=1

‖Ŵ − J−1
h ‖∞I{|̂bi,j | ≥ 2γn‖J−1

h ‖L1 , |̂bi,j − b̃i,j | ≤ γn‖J−1
h ‖L1}

+

p∑
j=1

|̃bi,j |I{|̂bi,j | < 2γn‖J−1
h ‖L1 , |̂bi,j − b̃i,j | ≤ γn‖J−1

h ‖L1}

≤
p∑
j=1

‖Ŵ − J−1
h ‖∞I{|̃bi,j | ≥ γn‖J−1

h ‖L1}+

p∑
j=1

|̃bi,j |I{|̃bi,j | < 3γn‖J−1
h ‖L1}

≤
p∑
j=1

(γn‖J−1
h ‖L1)1−q |̃bi,j |q +

p∑
j=1

(3γn‖J−1
h ‖L1)1−q |̃bi,j |q

≤4cn,p(γn‖J−1
h ‖L1)1−q,

where we introduced the certain event {|̂bi,j − b̃i,j | ≤ γn‖J−1
h ‖L1} in deriving the second

inequality, and the fourth inequality is based on Assumption 5. Therefore, ‖Ŵ−J−1
h ‖L1 =

max1≤i≤p ‖θi‖1 ≤ 8cn,p(γn‖J−1
h ‖L1)1−q � γ1−q

n .

Proof of Theorem 4. First, we derive the union upper bound of Γ1 = α>(Ŵ −
J−1
h ) 1√

n

∑n
i=1[τ − K̄h(−εi)]xi. Since α ∈ B1(r), then we have

sup
α∈B1(r)

|Γ1| = sup
α∈B1(r)

|α>(Ŵ − J−1
h )

1√
n

n∑
i=1

[τ − K̄h(−εi)]xi|

≤ sup
α∈B1(r)

‖(Ŵ − J−1
h )α‖1 · ‖

1√
n

n∑
i=1

[τ − K̄h(−εi)]xi‖∞

≤r sup
‖u‖1≤1

‖(Ŵ − J−1
h )u‖1 · |

1√
n

n∑
i=1

[τ − K̄h(−εi)]| · max
1≤i≤n

‖xi‖∞

≤r‖Ŵ − J−1
h ‖L1 ·

[
| 1√
n

n∑
i=1

[τ − EK̄h(−ε)]|+ | 1√
n

n∑
i=1

[K̄h(−εi)− EK̄h(−ε)]|
]
· max

1≤i≤n
‖xi‖∞,

(A.16)

where the first inequality follows from the Hölder’s inequality, and the second inequality
is based on the definition of α and the property of ‖ · ‖∞-norm. Applying Hoeffding’s
inequality for the term | 1n

∑n
i=1[K̄h(−εi)− EK̄h(−ε)]| implies that for any t ≥ 0,

P
(
| 1
n

n∑
i=1

[K̄h(−εi)− EK̄h(−ε)]| ≥ t
)
≤ 2e−2nt2 .
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Let t =

√
log(2p)

2n , then we obtain

| 1√
n

n∑
i=1

[K̄h(−εi)− EK̄h(−ε)]| ≤
√

log(2p)

2
(A.17)

with probability at least 1− 1
p . On the other hand, it can be verified that

E[K̄h(−ε)|x] =

∫ ∞
−∞

K̄h(−u
h

) dFε|x(u) = −1

h

∫ ∞
−∞

K(−u
h

)Fε|x(u) du

=

∫ ∞
−∞

K(v)Fε|x(−hv) dv = τ +

∫ ∞
−∞

K(v)

∫ −hv
0
{fε|x(t)− fε|x(0)}dt dv,

(A.18)

from which it follows that |E[K̄h(−ε)|x]− τ | ≤ 1
2 l0κ2h

2. Consequently,

| 1√
n

n∑
i=1

[τ − EK̄h(−ε)]| ≤
√
nE|E[K̄h(−ε)|x]− τ | ≤ 1

2
l0κ2

√
nh2. (A.19)

Combining (A.16) with (A.8), (A.15), (A.18) and (A.19) leads to the following union upper
bound of Γ1 holds

sup
α∈B1(r)

|Γ1| . rcn,pγn
√

2 log(2np2)
(1

2
l0κ2

√
nh2 +

√
log(2p)

2

)
� rcn,ps

2(log p)3/2(log(p ∨ n))5/2

nh3
(A.20)

with probability at least 1− 5
p .

Next, we turn to consider the term Γ2 = 1√
n
α>Ŵ

∑n
i=1[Kh(−ε̂i)−Kh(ζi)]xix

>
i δ̂h. By

a similar argument, we get that

sup
α∈B1(r)

|Γ2| = sup
α∈B1(r)

| 1√
n
α>Ŵ

n∑
i=1

[Kh(−ε̂i)−Kh(ζi)]xix
>
i δ̂h|

≤ sup
α∈B1(r)

‖Ŵα‖1 · ‖
1√
n

n∑
i=1

[Kh(−ε̂i)−Kh(ζi)]xix
>
i δ̂h‖∞

≤ r‖Ŵ‖L1 · ‖
1√
n

n∑
i=1

[Kh(−ε̂i)−Kh(ζi)]xix
>
i ‖∞ · ‖δ̂h‖1, (A.21)

in which the last inequality is derived from the fact that ‖Au‖∞ ≤ ‖A‖∞‖u‖1 holds for
any matrix A and vector u. So we only need to upper bound the term ‖ 1√

n

∑n
i=1[Kh(−ε̂i)−
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Kh(ζi)]xix
>
i ‖∞. Note that

‖ 1√
n

n∑
i=1

[Kh(−ε̂i)−Kh(ζi)]xix
>
i ‖∞ ≤ ‖Σ

1
2 ‖2L1

· ‖ 1√
n

n∑
i=1

[Kh(−ε̂i)−Kh(ζi)]wiw
>
i ‖∞

≤ ‖Σ
1
2 ‖2L1

·

{
max

1≤j,k≤p
| 1√
n

n∑
i=1

[Kh(−ε̂i)−Kh(−εi)]wi,jwi,k|

+ max
1≤j,k≤p

| 1√
n

n∑
i=1

[Kh(ζi)−Kh(−εi)]wi,jwi,k|

}
, (A.22)

and |ζi − (−εi)| ≤ |εi − ε̂i| = |x>i δ̂h|. Therefore, applying (A.5), (A.9) and (A.13) implies

‖ 1√
n

n∑
i=1

[Kh(−ε̂i)−Kh(ζi)]xix
>
i ‖∞ . 2

√
n‖Σ

1
2 ‖2L1

( max
1≤j,k≤p

J1 + max
1≤j,k≤p

J2)

.
s2 log p(log(p ∨ n))2

n1/2h3
+ s
(√ log p log(p ∨ n)

h2
+

√
(log p)2 log(p ∨ n)

nh3
+

√
(log p)3 log(p ∨ n)

n2h4

)
.

(A.23)

This bound, together with (13) and (A.8), leads to that with probability at least 1− 4
p we

have

sup
α∈B1(r)

|Γ2| .
rs2(log p)3/2(log(p ∨ n))2

nh3
+ rs

√
(log p)2 log(p ∨ n)

nh2

(
1 +

√
log p

nh
+

log p

nh

)
.

(A.24)

It remains to bound Γ3 =
√
nα>(I− Ŵ∇2Q̂h(β̂h))δ̂h. Observe that

sup
α∈B1(r)

|Γ3| = sup
α∈B1(r)

|
√
nα>(I− Ŵ∇2Q̂h(β̂h))δ̂h|

≤
√
n sup
α∈B1(r)

‖α‖1 · ‖(I− Ŵ∇2Q̂h(β̂h))δ̂h‖∞

≤ r
√
n‖I− Ŵ∇2Q̂h(β̂h)‖∞ · ‖δ̂h‖1. (A.25)

This, combined with (13), (14) and the condition s . (log(p ∨ n))1/2, yields that

sup
α∈B1(r)

|Γ3| . γnrs
√

log p .
rcn,ps

2(log p)3/2(log(p ∨ n))5/2

nh3
. (A.26)

To sum up, the residual terms are upper bounded with probability at least 1− 5
p , i.e.,

sup
α∈B1(r)

|Γ1 + Γ2 + Γ3| .
rcn,ps

2(log p)3/2(log(p ∨ n))5/2

nh3
.
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Proof of Theorem 5. For arbitrary α ∈ B1(r), from (17) we immediately obtain that

√
nα>(β̃h − β∗)√

τ(1− τ)α>ŴΣ̂Ŵα

=

 1√
n

n∑
i=1

α>J−1
h [τ − K̄h(−εi)]xi√

τ(1− τ)α>J−1
h Σ̂J−1

h α
+

Γ1 + Γ2 + Γ3√
τ(1− τ)α>J−1

h Σ̂J−1
h α

 ·
√
α>J−1

h Σ̂J−1
h α

α>ŴΣ̂Ŵα

=

 1√
n

n∑
i=1

α>J−1
h {Eεi [K̄h(−εi)]− K̄h(−εi)}xi√

τ(1− τ)α>J−1
h Σ̂J−1

h α

+
Γ1 + Γ2 + Γ3 + Γ4√
τ(1− τ)α>J−1

h Σ̂J−1
h α

 ·
√
α>J−1

h Σ̂J−1
h α

α>ŴΣ̂Ŵα
, (A.27)

where Γ4 = 1√
n

∑n
i=1

α>J−1
h {τ−Eεi [K̄h(−εi)]}xi√
τ(1−τ)α>J−1

h Σ̂J−1
h α

and Eεi denotes the expectation with respect

to the probability measure generated by the random noise εi.

First, we turn to explore the upper bound of Γ4. Using a similar argument as in the
proof of Theorem 4 yields

|Γ4| ≤
1√
n

n∑
i=1

|α>J−1
h {τ − Eεi [K̄h(−εi)]}xi|√
τ(1− τ)α>J−1

h Σ̂J−1
h α

≤ l0κ2h
2

2
√
τ(1− τ)α>J−1

h Σ̂J−1
h α

· 1√
n

n∑
i=1

|α>J−1
h xi|

≤
√
nl0κ2h

2‖α‖1‖J−1
h ‖L1

2
√
τ(1− τ)α>J−1

h Σ̂J−1
h α

· max
1≤i≤n

‖xi‖∞, (A.28)

in which the second inequality is based on the fact |Eεi [K̄h(−εi)] − τ | ≤ 1
2 l0κ2h

2 that has
been verified beforehand and the last one follows from the Hölder’s inequality. To control
Γ4, we still need to investigate the lower bound of α>J−1

h Σ̂J−1
h α. After introducing the

notation f̃(0) = E[Kh(−ε)], we note that

α>J−1
h Σ̂J−1

h α−
1

f̃(0)
α>J−1

h α = α>
[
J−1
h Σ̂− 1

f̃(0)
I
]
J−1
h α.
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Hence,

α>J−1
h Σ̂J−1

h α ≥
1

f̃(0)
α>J−1

h α−
∣∣α>[J−1

h Σ̂− 1

f̃(0)
I
]
J−1
h α

∣∣
≥ 1

f̃(0)
‖α‖22Λ−1

max(Jh)−
∣∣α>[J−1

h Σ̂− 1

f̃(0)
I
]
J−1
h α

∣∣
≥ 1

2f̃(0) · (f̄ + l0κ1h)
Λ−1

max(Σ)−
∣∣α>[J−1

h Σ̂− 1

f̃(0)
I
]
J−1
h α

∣∣
≥ 1

2(f̄ + l0κ1h)2
Λ−1

max(Σ)−
∣∣α>[J−1

h Σ̂− 1

f̃(0)
I
]
J−1
h α

∣∣, (A.29)

in which the last two inequalities follow from the fact f̃(0) ≤ E|E[Kh(−ε)|x]| ≤ f̄ + l0κ1h
and Jh ≺ 2(f̄ + l0κ1h)Σ. The first result can be established by noting that

E[Kh(−ε)|x] =
1

h

∫ ∞
−∞

K
(
− u

h

)
fε|x(u) du =

∫ ∞
−∞

K(v)fε|x(−hv) dv

= fε|x(0) +

∫ ∞
−∞

K(v)
{
fε|x(−hv)− fε|x(0)

}
dv

≤ f̄ +

∫ ∞
−∞

K(v)
∣∣fε|x(−hv)− fε|x(0)

∣∣dv
≤ f̄ + l0κ1h,

where we use the conditions fε|x(0) ≤ f̄ and |fε|x(u1)− fε|x(u2)| ≤ l0|u1 − u2| in Assump-
tion 2. And the second one is then obtained in the way

Jh = E[Kh(−ε)xx>] ≺ E[2(f̄ + l0κ1h)xx>] = 2(f̄ + l0κ1h)Σ.

For the term
∣∣α>[J−1

h Σ̂− 1

f̃(0)
I
]
J−1
h α

∣∣, it can be bounded as

∣∣α>[J−1
h Σ̂− 1

f̃(0)
I
]
J−1
h α

∣∣
≤
∣∣α>(J−1

h − Ŵ
)
Σ̂J−1

h α
∣∣+
∣∣α>(ŴΣ̂− 1

f̂(0)
I
)
J−1
h α

∣∣+
∣∣ 1

f̂(0)
− 1

f̃(0)

∣∣ · (α>J−1
h α)

≤‖α‖1‖(J−1
h − Ŵ)Σ̂J−1

h α‖∞ + ‖(ŴΣ̂− 1

f̂(0)
I)J−1

h α‖∞‖α‖1

+
∣∣ 1

f̂(0)
− 1

f̃(0)

∣∣ · ‖α‖22Λ−1
min(Jh)

≤
(
‖J−1

h − Ŵ‖L1‖Σ̂‖∞ +
∣∣ 1

f̂(0)

∣∣ · ‖f̂(0)ŴΣ̂− I‖∞
)
‖J−1

h ‖L1‖α‖21

+
∣∣ 1

f̂(0)
− 1

f̃(0)

∣∣ · ‖α‖21Λ−1
min(Jh), (A.30)
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where the second inequality follows from the Hölder’s inequality and f̂(0) is defined as

f̂(0) = 1
n

∑n
i=1Kh(−ε̂i). Consider the term f̂(0)ŴΣ̂− I, it is easy to obtain that

f̂(0)ŴΣ̂− I = Ŵ[
1

n

n∑
i=1

Kh(−ε̂i)Σ̂]− I

= Ŵ
1

n

n∑
i=1

Kh(−ε̂i)xix>i + Ŵ
1

n

n∑
i=1

Kh(−ε̂i)(Σ̂− xix>i )− I

= [Ŵ∇2Q̂h(β̂h)− I] + Ŵ
1

n

n∑
i=1

[Kh(−ε̂i)−Kh(−εi)](Σ̂− xix>i )

+ Ŵ
1

n

n∑
i=1

Kh(−εi)(Σ̂− xix>i )

:= [Ŵ∇2Q̂h(β̂h)− I] + R1 + R2. (A.31)

For R1, we have

‖R1‖∞ = ‖Ŵ 1

n

n∑
i=1

[Kh(−ε̂i)−Kh(−εi)](Σ̂− xix>i )‖∞

≤ ‖Ŵ‖L1 ·
(

max
1≤j,k≤p

∣∣ 1
n

n∑
i=1

[Kh(−ε̂i)−Kh(−εi)]wi,jwi,k
∣∣

+
∣∣ 1
n

n∑
i=1

[Kh(−ε̂i)−Kh(−εi)]
∣∣‖Σ̂‖∞)

≤ ‖Ŵ‖L1 ·
(

max
1≤j,k≤p

∣∣ 1
n

n∑
i=1

[Kh(−ε̂i)−Kh(−εi)]wi,jwi,k
∣∣

+
∣∣ 1
n

n∑
i=1

[Kh(−ε̂i)−Kh(−εi)]
∣∣‖Σ 1

2 ‖2L1
‖ 1

n

n∑
i=1

wiw
>
i ‖∞

)
. (A.32)

By Bernstein’s inequality and union bound, the following inequality holds

max
1≤j,k≤p

| 1
n

n∑
i=1

wi,jwi,k − E(wi,jwi,k)| ≤ 8σ2
(√2 log p

n
+

log p

n

)
(A.33)

with probability at least 1− 1
p . This result, along with (A.5) and the fact |E(wi,jwi,k)| ≤ 4σ2,

yields the upper bound

‖R1‖∞ .
s2 log p(log(p ∨ n))2

nh3
+ s

√
log p log(p ∨ n)

nh2

(
1 +

√
log p

nh
+

√
log p

n
+

log p

nh
+

log p

n

)
.

(A.34)
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Turning to R2, note that

‖R2‖∞ = ‖Ŵ 1

n

n∑
i=1

Kh(−εi)(Σ̂− xix>i )‖∞

≤ ‖Ŵ‖L1 ·
(
‖ 1

n

n∑
i=1

[
Kh(−εi)− E[Kh(−ε)]

]
Σ̂‖∞ + ‖ 1

n

n∑
i=1

[
Kh(−εi)− E[Kh(−ε)]

]
xix

>
i ‖∞

)
≤ ‖Ŵ‖L1 ·

(
‖Σ̂‖∞

∣∣ 1
n

n∑
i=1

[
Kh(−εi)− E[Kh(−ε)]

]∣∣
+ ‖Σ

1
2 ‖2L1

∣∣ 1
n

n∑
i=1

[
Kh(−εi)− E[Kh(−ε)]

]∣∣ max
1≤i≤n
1≤j≤p

|wi,j |2
)
. (A.35)

Since |Kh(·)| ≤ κu/h, then the term | 1n
∑n

i=1

[
Kh(−εi)−E[Kh(−ε)]

]
| can be controlled via

Hoeffding’s inequality as

| 1
n

n∑
i=1

[Kh(−εi)− EKh(−ε)]| ≤
√
κ2
u log(2p)

2nh2
(A.36)

with probability at least 1− 1
p . This leads to the following upper bound

‖R2‖∞ .

√
log p

nh2

(
log(p ∨ n) +

√
log p

n
+

log p

n

)
. (A.37)

Combining this bound with (14) and (A.34) implies

‖f̂(0)ŴΣ̂− I‖∞ .
s2 log p(log(p ∨ n))2

nh3
+

√
log p log(p ∨ n)

nh2

(
s+

√
log(p ∨ n)

)
. (A.38)

Moreover, with overwhelming probability we have

|f̂(0)| = | 1
n

n∑
i=1

Kh(−ε̂i)|

= | 1
n

n∑
i=1

Kh(−ε̂i)−
1

n

n∑
i=1

Kh(−εi) +
1

n

n∑
i=1

Kh(−εi)− E[Kh(−ε)] + f̃(0)|

≥ f̃(0)− | 1
n

n∑
i=1

Kh(−ε̂i)−
1

n

n∑
i=1

Kh(−εi)| − |
1

n

n∑
i=1

Kh(−εi)− E[Kh(−ε)]|

≥ f − l0κ1h− C3s

√
log p log(p ∨ n)

nh2
> 0, (A.39)
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where C3 is some positive constant and the last inequality is based on the fact f̃(0) =
E[E[Kh(−ε)|x]] ≥ f − l0κ1h. On the other hand,

|f̂(0)− f̃(0)| = | 1
n

n∑
i=1

Kh(−ε̂i)− E[Kh(−ε)]|

≤ | 1
n

n∑
i=1

Kh(−ε̂i)−
1

n

n∑
i=1

Kh(−εi)|+ |
1

n

n∑
i=1

Kh(−εi)− E[Kh(−ε)]|

≤ C3s

√
log p log(p ∨ n)

nh2
. (A.40)

Therefore, applying this bound with (16), (A.29), (A.30), (A.38), and (A.39), and then we
find that

α>J−1
h Σ̂J−1

h α ≥
1

2(f̄ + l0κ1h)2
Λ−1

max(Σ)− C4‖J−1
h ‖

2
L1
‖α‖21cn,pγn > 0 (A.41)

for some constant C4 > 0. Eventually, the union upper bound of Γ4 can be written as

sup
α∈B1(r)

|Γ4| . rh2
√
n log(p ∨ n). (A.42)

Next, we investigate the limit properties of the zero-mean partial sum

Sn =
1√
n

n∑
i=1

α>J−1
h {Eεi [K̄h(−εi)]− K̄h(−εi)}xi√

τ(1− τ)α>J−1
h Σ̂J−1

h α
:=

1√
n

n∑
i=1

Zi.

Given X = {xi}ni=1, by the Berry-Esseen inequality (Tyurin (2012)), we have

sup
u∈R

∣∣P{Sn ≤ Var(Sn)
1
2u|X

}
− Φ(u)

∣∣ ≤ ∑n
i=1 Eεi |Zi|3

2(
∑n

i=1 EεiZ2
i )

3
2

, (A.43)

where Eεi denotes the expectation with respect to the probability measure generated by the
random noise εi. Especially,

EεiZ
2
i =

Eεi{K̄h(−εi)− Eεi [K̄h(−εi)]}2

τ(1− τ)
=

Eεi [K̄h(−εi)− τ ]2 − {Eεi [K̄h(−εi)]− τ}2

τ(1− τ)
.

According to (A.18), it can be seen that |Eεi [K̄h(−εi)] − τ | ≤ 1
2 l0κ2h

2. By a change of
variable and integration by parts, we note that

Eεi [K̄h(−εi)]2 = 2

∫ ∞
−∞

K̄(u)K(u)Fεi|xi(−hu) du

=τ − 2hfεi|xi(0)

∫ ∞
−∞

vK̄(v)K(v) dv + 2

∫ ∞
−∞

K̄(v)K(v)

∫ −hv
0
{fε|x(t)− fε|x(0)}dt dv,

from which we immediately get that

τ(1− τ)− C5h− (1 + τ)l0κ2h
2 ≤ Eεi [K̄h(−εi)− τ ]2 ≤ τ(1− τ) + (1 + τ)l0κ2h

2 (A.44)
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with C5 = 2f̄
∫∞
−∞ vK̄(v)K(v) dv = 2f̄

∫∞
0 K̄(v)(1−K̄(v)) dv > 0. Thus, we obtain EεiZ2

i ≤
τ(1−τ)+(1+τ)l0κ2h2

τ(1−τ) and EεiZ2
i ≥

τ(1−τ)−C5h−(1+τ)l0κ2h2− 1
2
l0κ2h2

τ(1−τ) . In other words, EεiZ2
i =

1 +O(h). For the 3-rd moment, it can be verified that

n∑
i=1

Eεi |Zi|3

≤ max
1≤i≤n

|α>J−1
h xi| ·

∑n
i=1α

>J−1
h xix

>
i J−1

h α(
τ(1− τ)α>J−1

h Σ̂J−1
h α

) 3
2

· Eεi
∣∣K̄h(−εi)− Eεi [K̄h(−εi)]

∣∣3
≤2n · max

1≤i≤n
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h xi| ·
(
τ(1− τ)

)− 3
2
(
α>J−1

h Σ̂J−1
h α

)− 1
2 · Eεi

∣∣K̄h(−εi)− Eεi [K̄h(−εi)]
∣∣2

≤2n‖α‖1‖J−1
h ‖L1 · max

1≤i≤n
‖xi‖∞ ·

(
τ(1− τ)α>J−1
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h α

)− 1
2 ·
(
1 +O(h2)

)
. (A.45)

Consequently, for any u ∈ R and α ∈ B1(r), we have

sup
u∈R

α∈B1(r)

∣∣P(Sn ≤ u)− Φ(u)
∣∣ = sup

u∈R
α∈B1(r)

∣∣E[P{Sn ≤ u|X}− Φ(u)
]∣∣

≤ sup
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α∈B1(r)

E
∣∣P{Sn ≤ Var(Sn)

1
2u|X

}
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u

Var(Sn)
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(A.46)

where the second inequality is derived via the properties of the conditional expectation.
Putting together (A.41), (A.43), (A.44) and (A.45) leads to that

E sup
u∈R

α∈B1(r)

∣∣P{Sn ≤ Var(Sn)
1
2u|X

}
− Φ(

u

Var(Sn)
1
2

|X )
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≤C6 sup
α∈B1(r)

‖α‖1 ·
E[max1≤i≤n ‖wi‖∞]√

n
.
r log(p ∨ n)√

n
, (A.47)

in which C6 is some positive constant and the last step follows from the maximal inequal-
ity of the sub-Gaussian random variable, i.e., E[max1≤i≤n ‖wi‖∞] = E[max1≤i≤n

1≤j≤p
|wi,j |] ≤

σ
√

2 log(2np). Moreover, we have already verified that |Var(Sn)− 1| = O(h). Then by an
application of Lemma A.7 in the supplement of Spokoiny and Zhilova (2015), for sufficiently
small h, we have

E sup
u∈R
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u
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1
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∣∣ . h. (A.48)

And hence,

sup
u∈R

α∈B1(r)

∣∣P(Sn ≤ u)− Φ(u)
∣∣ . r log(p ∨ n)√

n
+ h. (A.49)
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To apply Lemma D.3 in the supplement of Barber and Kolar (2018), we still need to

find the upper bound of
∣∣√ α>ŴΣ̂Ŵα

α>J−1
h Σ̂J−1

h α
− 1
∣∣. After simple calculation, we have
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For the difference of those two quadratic forms, it is easy to obtain that∣∣α>(ŴΣ̂Ŵ − J−1
h Σ̂J−1

h )α
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Finally, putting all pieces together and applying Lemma D.3 aforementioned, we conclude
that with probability approaching 1 the following bound holds
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Since the right hand side does not depend on β∗, then the coverage probability (20) follows.

Proof of Theorem 6. At the beginning, we show that %j(T̂j) is uniformly upper bounded

by %. Let Vj =
√
n(β̃h;j−β∗j )√

τ(1−τ)[ŴΣ̂Ŵ]
1/2
j,j

. By the definition of %j(T̂j), we have
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in which the last inequality is derived from (21).

Now we turn to establishing the lower bound for the power of test T̂j . According
to (A.30) and (A.51), setting α = ej therein and implementing a similar analysis thereafter
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yields that for arbitrary δ > 0,

P
(
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p2
, (A.53)

where f̃(0) = E[Kh(ε)], C7 > 0 is some positive constant and the last inequality follows
from a series of exponential inequalities. Therefore, by Borel-Cantelli’s lemma we obtain
that the following inequality holds almost surely
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According to the definition of πj(T̂j ;µ), we have
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where the inequality follows from (A.54) and the condition that |β∗j | ≥ µ.

Proof of Theorem 7. Based on the definition of FWER, we have
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where the first inequality follows from the Bonferroni’s inequality and the second inequality
is via (A.52) with some positive constant C8 > 0.
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