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Abstract
The problems of Lasso regression and optimal design of experiments share a critical prop-
erty: their optimal solutions are typically sparse, i.e., only a small fraction of the optimal
variables are non-zero. Therefore, the identification of the support of an optimal solution
reduces the dimensionality of the problem and can yield a substantial simplification of the
calculations. It has recently been shown that linear regression with a squared `1-norm
sparsity-inducing penalty is equivalent to an optimal experimental design problem. In this
work, we use this equivalence to derive safe screening rules that can be used to discard
inessential samples. Compared to previously existing rules, the new tests are much faster
to compute, especially for problems involving a parameter space of high dimension, and can
be used dynamically within any iterative solver, with negligible computational overhead.
Moreover, we show how an existing homotopy algorithm to compute the regularization path
of the lasso method can be reparametrized with respect to the squared `1-penalty. This
allows the computation of a Bayes c-optimal design in a finite number of steps and can
be several orders of magnitude faster than standard first-order algorithms. The efficiency
of the new screening rules and of the homotopy algorithm are demonstrated on different
examples based on real data.
Keywords: Design of experiments, Screening rules, Sparsity-inducing penalty, Lasso,
L-optimality

1. Introduction

Estimation or prediction of unknown quantities from experimental data are among the most
classical problems in statistics and machine learning. Optimal design of experiments plays a
central role in this process, as it questions which data should be collected in order to make
estimation/prediction as accurate as possible. In a regression problem, the quality of an
experimental design is usually measured through the covariance matrix of the estimator it
produces, and a scalar criterion, function of this matrix, is then minimized to provide an
A-, c-, D-, E- or L-optimal design. One can refer, e.g., to Fedorov (1972); Silvey (1980);
Pukelsheim (1993) for a thorough exposition of the theory of optimal experiments and a
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discussion of optimality criteria. Similarly, supervised learning in a classification problem
requires labelling samples that are originally unlabelled. This operation may involve taking
physical measurements, conducting a poll, running computer simulations or consulting an
expert. Here, the aim of optimal design theory is to select the best possible subset of the
data to be labelled, subject to a budget constraint. In machine learning, optimal design is
also known as active learning (Cohn et al., 1996).

In this paper, we focus on optimal design for Bayesian estimation. The design is com-
puted off-line, before the collection of any data. However, we assume that prior information
on the quantity to be estimated is available, which means that the approach could also
be used in a sequential setting: in that case, the selection of batches of additional samples
relies on the information gathered through data collection at previous iterations. A cen-
tral objective of this work is to derive screening rules that can be used to safely discard
useless samples, and hence speed-up the computation of Bayesian optimal designs, by ex-
ploiting the recently discovered connection between c-optimal design and a problem similar
to Lasso-regression (Sagnol and Pauwels, 2019).

For most optimality criteria, the computation of an optimal exact design, i.e., a multiset
of samples of given cardinality minimizing the optimality criterion, is NP-hard (Welch, 1982;
Civril and Magdon-Ismail, 2009; Černỳ and Hladík, 2012). To circumvent this issue, standard
approaches rely on approximate design theory ; see, e.g., Silvey (1980); Pukelsheim (1993).
When the set of admissible experimental conditions (the full data set available) is finite, it
consists in solving a continuous relaxation of the problem in which the design is represented
by a vector w lying in the probability simplex, such that the weight wi corresponds to the
fraction of experimental resources allocated to the i-th sample. Then, various rounding
techniques can be used to turn w into an exact design satisfying performance guarantees;
see, e.g., Pukelsheim and Rieder (1992); Singh and Xie (2020).

In general, only a few samples contribute to an optimal design w∗; that is, most of the
optimal weights w∗i equal zero. We say that a sample with w∗i = 0 is inessential. Identi-
fying inessential samples is crucial to algorithms that compute optimal designs, since their
removal from the set of candidates speeds up subsequent iterations: indeed, the complexity
per iteration of design algorithms that operate on a finite set of samples S is typically pro-
portional to the cardinality of S. The idea originated from Pronzato (2003) and Harman
and Pronzato (2007) for D-optimal design (and for the construction of the minimum-volume
ellipsoid containing a set of points). It was further extended to Kiefer’s (1974) ϕp-criteria
(Pronzato, 2013), to E-optimal design (Harman and Rosa, 2019), and to the elimination
of inessential points in the smallest enclosing ball problem (Pronzato, 2019a). A related
idea was recently used for the computation of exact designs, for criteria used in the field of
active learning (Anstreicher, 2020; Li et al., 2022). There, convex relaxations of the problem
with some variables fixed at 0 or 1 are solved at internal nodes of a branch-and-bound tree
to obtain certificates that some design points are inessential, or must be part of the exact
optimal design. This permits to accelerate the pruning of the branch-and-bound tree.

The recent work of Sagnol and Pauwels (2019) sheds more light on the sparsity of optimal
designs, as it shows the equivalence between c-optimal design and a variant of the Lasso
regression problem in which the sparsity-inducing `1-norm penalty is squared. Analogously,
L-optimal design is equivalent to group-Lasso regression with a squared `1,2-norm penalty;
see Section 3.1 for more details on the precise meaning of “equivalent”. In the field of Lasso-
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regression, the idea of deriving screening criteria, i.e., inequalities satisfied by points that
do not support any optimal solution and can thus be safely eliminated, dates back to El
Ghaoui et al. (2012). These screening rules have been refined in subsequent work (Xiang and
Ramadge, 2012; Fercoq et al., 2015; Xiang et al., 2016; Ndiaye et al., 2017), with important
developments concerning their usage to speed up the solution of a Lasso problem: Bonnefoy
et al. (2015) developed dynamical tests that can be run during the progress of any Lasso
algorithm (rather that only at the beginning); Wang et al. (2015) proposed sequential tests
in which a sequence of Lasso problems are solved for decreasing values of the regularization
parameter α, the optimal solution x∗(αk) of the problem for the regularization parameter
α = αk being used to screen-out features in the Lasso problem with regularization parameter
αk+1 < αk.

Our contribution in this work is the development of efficient screening rules for c-and
L-optimal designs in the context of Bayesian estimation. In contrast to the elimination rules
presented in our previous work (Pronzato and Sagnol, 2021), which also work in the absence
of prior but require heavy algebraic computations such as taking matrix square-roots, the
present paper leverages the equivalence with a Lasso problem and the geometry of its dual.
This yields lightweight screening rules that only require the computation of matrix-vector
products and can be used periodically with any algorithm computing an optimal design.
While the techniques we use are similar to those used for example in (Fercoq et al., 2015) for
the Lasso problem, the adaptation is not straightforward since the sparsity-inducing penalty
is squared, which changes the geometric nature of the dual problem. We also show that a
homotopy algorithm used to compute the regularization path of a lasso problem (Osborne
et al., 2000; Efron et al., 2004) can be adapted to construct a (Bayesian) c-optimal design,
sometimes much faster than with state-of-the art algorithms. Last but not least, the code
used in our experiments has been published in the form of a python package (qlasso) and
is available at https://gitlab.com/gsagnol/qlasso.

The rest of the paper is organized as follows: Section 2 introduces the c- and L-optimal
design problems considered in this paper. Section 3 presents the quadratic lasso problem and
gives precise statements about its equivalence with an optimal design problem. The dual
quadratic lasso problem is derived and we show that it can be interpreted as a projection
over a polyhedral cone. Our main result is stated in Theorem 3.6 in the form of a general
screening rule, which is declined in two corollaries giving inequalities adapted for algorithms
iterating either on lasso variables (Corollary 3.7) or on design weights (Corollary 3.8). These
results are adapted to the case of L-optimality in Appendix A. The adaptation of the ho-
motopy algorithm for the lasso to the case of Bayesian c-optimality is derived in Section 4.
Finally, numerical examples demonstrating the performance of the new screening rules and
the homotopy algorithm are presented in Section 5.

2. Background on optimal designs and notation

Let H = {Hi, i = 1, . . . , p} denote a set of m × m symmetric positive definite matrices,
which we shall call elementary information matrices. For any vector of weights w in the
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probability simplex

Pp = {w ∈ Rp, w ≥ 0,

p∑
i=1

wi = 1} ,

we denote by M(w) the information matrix

M(w) =

p∑
i=1

wi Hi . (2.1)

For c a given vector in Rm, a c-optimal design is a solution of the optimization problem

min
w∈Pp

φc(w) = Φc[M(w)] = c>M−1(w)c , (2.2)

where the decision variable w defines a probability measure over the finite space [p] =
{1, . . . , p} and is called design. We shall denote w∗ a c-optimal design. Note that nor w∗

neither M(w∗) are necessarily unique, but Theorem 3.2 shows that M−1(w∗)c is unique.
More generally, we also consider L-optimal designs that minimize a linear optimality cri-
terion: given an m ×m positive semidefinite matrix C = KK> � 0, an L-optimal design
solves

min
w∈Pp

φL(w) = ΦL[M(w)] = trace[CM−1(w)] = trace[K>M−1(w) K] . (2.3)

Note that L-optimality contains c-optimality (for K = c, see (2.2)), and A-optimality (for
K = C = Im) as special cases (hence L-optimality is also called AK-optimality by some
authors).

These problems arise in the context of Bayesian estimation for the linear model

Yi = a>i θ + εi ∀i ∈ [p], (2.4)

where ai ∈ Rm is a sample ofm features, Yi is the (noisy) observation for the ith sample, and
the errors εi are mutually independent and normal N (0, σ2). We further assume that a prior
N (θ0,Σ) on the vector of unknown parameters θ is available, with Σ an m ×m-positive
definite matrix (which we write Σ � 0).

Suppose that n observations are collected according to the design w ∈Pp, with w such
such that nwi ∈ Z≥0 for all i; that is, for each i we collect ni = nwi independent observations

Yi,j , j ∈ [ni]. Then, the posterior variance of c>θ is σ2

n · c
>
(∑

iwiaia
>
i + σ2

n Σ−1
)−1

c.

Minimizing this posterior variance is equivalent to minimizing c′>M−1(w)c′ where c′ =
Σ1/2c, M(w) =

∑p
i=1wi Hi and Hi = a′ia

′
i
>+λ Im for all i, with a′i = Σ1/2ai and λ = σ2/n.

We can thus assume without any loss of generality that Σ = Im and that Hi is of the form

Hi = aia
>
i + λ Im , λ > 0 . (2.5)

Following the same lines as above, we see that minimizing φL(w) is equivalent to min-
imizing the sum of posterior variances of the vector K>θ in the regression model with
Gaussian prior. One may refer to Pilz (1983) for a book-length exposition on optimal design
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for Bayesian estimation (Bayesian optimal design). It is noteworthy that L-optimality finds
other applications than in design for parameter estimation. For instance, A-optimality can
be used to construct space-filling designs, by kernel-based (Gauthier and Pronzato, 2017) or
geometrical (Pronzato and Zhigljavsky, 2019) approaches. In (Pronzato, 2019b), L-optimal
designs are also used to estimate Sobol’ indices for sensitivity analysis. An example of space-
filling based on L-optimality with p = 213 = 8 192 and m = 50 is presented in Section 5.2.

In the rest of the paper we adopt the machinery of approximate design theory and ig-
nore the integrality requirements nwi ∈ Z≥0. We thus obtain the convex optimization
problems (2.2) and (2.3) for c- and L-optimality, respectively. Various algorithms have
been proposed to solve these problems, starting from traditional methods such as vertex-
direction algorithms (Wynn, 1970; Fedorov, 1972), which are adaptations of the celebrated
Frank-Wolfe method, and multiplicative weight update algorithms (Fellman, 1974; Yu, 2010).
Another approach is to reformulate these problems as second-order cone programs, which
can be handled by interior-point solvers (Sagnol, 2011). Recent progress has been obtained
through randomization (Harman et al., 2020), or through a reformulation as an uncon-
strained problem with squared lasso penalty, for which algorithms such as FISTA or block
coordinate descent can be used (Sagnol and Pauwels, 2019). The screening rules presented
in this paper can be used to speed-up any of the aforementioned algorithms. These rules are
in the form of inequalities that are satisfied by any inessential sample ai such that w∗i = 0
for all optimal designs w∗. When this occurs, we also say that the design point ai or the
matrix Hi cannot support an optimal design.

We denote respectively by ‖x‖ =
(∑p

i=1 x
2
i

)1/2, ‖x‖1 =
∑p

i=1 |xi| and ‖v‖∞ = maxi∈[p] |xi|
the `2-, `1- and `∞-norm of a vector x ∈ Rp; ei denotes the i-th canonical basis vector of
Rp. For a p× r matrix X, we denote by ‖X‖F = [trace(X>X)]1/2 the Frobenius norm of X

and by ‖X‖1,2 =
∑p

i=1 ‖Xi,·‖ =
∑p

i=1

(∑r
j=1 X2

i,j

)1/2
its `1,2-norm, with Xi,· denoting the

ith row of X; Bm(x, ρ) denotes the closed Euclidean ball with center x and radius ρ in Rm.

3. Optimal design and (quadratic) Lasso

3.1 Equivalence of Optimal Design and Quadratic Lasso

Sagnol and Pauwels (2019) have shown the equivalence between c- (respectively, L-) optimal
design and a quadratic Lasso (respectively, group-Lasso) problem.

We present below a simplified proof of this result for the case of c-optimality, which also
leads to a more precise statement. The extension of this result to the case of L-optimality
is carried out in Appendix A.

Theorem 3.1. Let Hi be given by (2.5) and denote by A the m × p matrix with columns
(ai)i∈[p]. Then, the c-optimal design problem (2.2) is equivalent to the following problem,
which we call quadratic Lasso:

min
x∈Rp

Lλ(x) = ‖Ax− c‖2 + λ ‖x‖21, (3.1)

in the following sense:

(i) the optimal value of (3.1) is equal to λφc(w∗), where w∗ is a c-optimal design;
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(ii) If x∗ solves the quadratic Lasso problem and A>c 6= 0, then x∗ 6= 0 and ŵ∗ = ŵ(x∗)
is c-optimal, where

ŵi(x) =
|xi|
‖x‖1

, ∀i ∈ [p] , x 6= 0 ; (3.2)

(iii) If w∗ ∈Pp is c-optimal, then x̂∗ = x̂(w∗) is optimal for (3.1), where

x̂i(w) = wi a
>
i M−1(w)c , ∀i ∈ [p] . (3.3)

(iv) In the pathological case A>c = 0, the unique optimal solution to the quadratic lasso is
x∗ = 0, while every design w ∈Pp is c-optimal.

Proof We introduce the function v : Rp ×Pp → R ∪ {∞} by

v(x,w) = ‖Ax− c‖2 + λ

p∑
i=1

x2
i

wi
, (3.4)

where the function is defined by continuity when wi = 0, that is, we assume that x2i
0 = 0

if xi = 0 and x2i
0 = ∞ otherwise 1. We note that v is convex, as x 7→ ‖Ax − c‖ is convex

and (xi, wi) 7→
x2i
wi

= wi ·
(
xi
wi

)2 is the perspective function of xi 7→ x2
i ; see, e.g., Boyd and

Vandenberghe (2004).
We next use the fact that that for all x ∈ Rp \ {0}, the function w 7→

∑
i x

2
i /wi is

minimized over Pp for w = ŵ(x) given by (3.2). Therefore, it holds

min
w∈Pp

v(x,w) = v(x, ŵ(x)) = ‖Ax− c‖2 + λ

p∑
i=1

x2
i

|xi|
· ‖x‖1 = Lλ(x), (3.5)

and the equation minw∈Pp v(x,w) = Lλ(x) remains valid for x = 0 (with Lλ(0) = ‖c‖2).
On the other hand, we can also minimize v(x,w) with respect to x for a fixed w ∈Pp.

If wi = 0, then all minimizers x̂ of v(x,w) must satisfy xi = 0, as otherwise v(x,w) = ∞.
We thus restrict to optimizing the other coordinates of xi, which corresponds to minimizing
a function of the same form as x 7→ v(x,w), but for some w 6= 0. We thus assume w.l.o.g.
that w 6= 0. Denote by D(w) = diag{w1, . . . , wp}. The problem to solve is in fact a least
square problem, as

v(x,w) = ‖Ax− c‖2 + λx>D−1(w)x .

The unique minimizer is thus

x̂ =
[
A>A + λD−1(w)

]−1
A>c =

1

λ

[
Im −D(w)A>M−1(w)A

]
D(w)A>c

= D(w)A>M−1(w)c ,

1. As shown in Sagnol and Pauwels (2019), v(x,w) actually represents the variance of the unbiased linear
estimator ξ̂ = x>Y +(c−A>x)>Z for ξ = c>θ, in the model with observations Y = A>θ+ε, Z = θ+ν
and errors ε ∼ N (0, λDiag({w1, . . . , wp})−1), ν ∼ N (0, Im), with ε and ν mutually independent.
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where we have used the Sherman-Morrison-Woodbury identity for the second equality and
the definition of M(w) which gives AD(w)A> = M(w) − λI for the last one. Therefore,
x̂i = wi a

>
i M−1(w)c. Note that this formula is also valid for the coordinates i ∈ [p] with

wi = 0, as we set x̂i = 0 in this case. Thus, x̂ = x̂(w), as given by (3.3).
Substitution in v(x,w) yields

min
x∈Rp

v(x,w) = v(x̂(w),w) = ‖AD(w)A>M−1(w)c− c‖2 + λ

p∑
i=1

wi(a
>
i M−1(w)c)2

= ‖λM−1(w)c‖2 + λ

p∑
i=1

wi · cTM−1(w)aia
>
i M−1(w)c

= λ ·
[
c>M−1(w)(λIm +

p∑
i=1

wiaia
>
i )M−1(w)c

]
= λφc(w), (3.6)

where we have used AD(w)A> + λIm =
∑p

i=1wiaia
>
i + λIm = M(w).

Now, the theorem easily follows from the above observations. For (i), we use that

min
x∈Rp

Lλ(x) = min
x∈Rp,w∈Pp

v(x,w) = min
w∈Pp

λφc(w), (3.7)

where the first equality results from (3.5) and the second one from (3.6). For (ii), we first
prove that x∗ 6= 0 holds for every optimal solution to the quadratic lasso whenever A>c 6= 0.
Let i be any index such that a>i c 6= 0. Then, we define x =

a>i c

‖ai‖2+λ
ei. It holds

Lλ(x) =

∥∥∥∥ a>i c

‖ai‖2 + λ
ai − c

∥∥∥∥2

+ λ
(a>i c)2

(‖ai‖2 + λ)2
= ‖c‖2 − (a>i c)2

‖ai‖2 + λ
< ‖c‖2 = Lλ(0),

which shows that 0 cannot be optimal for the quadratic lasso. Now, let x∗ be an optimal
solution to the quadratic lasso. We have, for any w ∈Pp,

λφc(w)
(3.6)
= min

x∈Rp
v(x,w) ≥ min

x∈Rp
min
w∈Pp

v(x,w)
(3.5)
= min

x∈Rp
Lλ(x) = Lλ(x∗)

(3.5)
= v(x∗, ŵ(x∗)) ≥ min

x′∈Rp
v(x′, ŵ(x∗))

(3.6)
= λφc(ŵ(x∗)) ,

which shows that ŵ∗ = ŵ(x∗) is c-optimal. Similarly, for (iii), let w∗ be a c-optimal design.
Then, for any x ∈ Rp,

Lλ(x)
(3.5)
= min

w∈Pp

v(x,w) ≥ min
w∈Pp

min
x∈Rp

v(x,w)
(3.6)
= min

w∈Pp

λφc(w) = λφc(w
∗)

(3.6)
= v(x̂(w∗),w∗) ≥ min

w′∈Pp

v(x̂(w∗),w′)
(3.5)
= Lλ(x̂(w∗)),

and x̂∗ = x̂(w∗) is thus an optimal solution of the quadratic lasso problem.

7



Sagnol and Pronzato

It only remains to handle the pathological case (iv), that is, A>c = 0. For any x 6= 0,
we have Lλ(x) = ‖Ax − c‖2 + λ‖x‖21 = ‖c‖2 + ‖Ax‖2 + λ‖x‖21 > ‖c‖2 = Lλ(0), so the
unique optimal solution to (3.1) is x∗ = 0. On the other hand, by (3.7), c-optimal designs
are minimizers of w 7→ v(x∗,w) = v(0,w), which is the constant function w 7→ ‖c‖2.

For all x ∈ Rp, observe that

Lλ(x) = v(x, ŵ(x)) ≥ min
x′∈Rp

v(x′, ŵ(x)) = λφc(ŵ(x)) , (3.8)

with equality when x is such that ŵ(x) corresponds to c-optimal weights w∗, and therefore
when xi = x̂i(w

∗) = w∗i a>i M−1(w∗)c, ∀i ∈ [p]. In other words, both minimization problems
minx Lλ(x) and minx λφc(ŵ(x)) share the same optimal value λφc(w∗), but the former
objective function dominates the latter.

Remark 1. By alternating minimization of (3.4) with respect to w and x, with wk →
xk+1 = x̂(wk)→ wk+1 = ŵ(xk+1)→ · · · , where ŵ(x) and x̂(w) are respectively defined by
(3.2) and (3.3), we obtain that wk+1 = ŵ(x̂(wk)) is given by

wk+1
i =

wki
∣∣a>i M−1(wk)c

∣∣∑p
j=1w

k
j

∣∣∣a>j M−1(wk)c
∣∣∣ .

Since we only consider weights that sum to one, we may rewrite φc(w) as φc(w) = φ′c(w) =

c>
[(∑p

i=1wi aia
>
i

)
+ λIm

]−1
c. Denote by ∇φ′c(w) the gradient of φ′c(·) at w. Since its

i-th component {∇φ′c(w)}i is equal to −c>M−1(w)aia
>
i M−1(w)c = −(a>i M−1(w)c)2, the

alternate minimization algorithm above corresponds to

wk+1
i =

wki
∣∣{∇φ′c(wk)}i

∣∣1/2∑p
j=1w

k
j |{∇φ′c(wk)}j |1/2

, (3.9)

which coincides with a variant of the multiplicative weight update algorithm of Fellman (1974)
for the minimization of φ′c(w); see also Yu (2010). /

3.2 The dual quadratic Lasso

The primal corresponds to (3.1); that is, minx∈Rp Lλ(x). Introducing an auxiliary variable
z = Ax− c, we can write this problem as a saddle point problem

min
x∈Rp, z∈Rm

max
y∈Rm

λ ‖x‖21 + ‖z‖2 + 2y>(z−Ax + c) , (3.10)

and therefore the Lagrangian dual problem reads

max
y∈Rm

[
2y>c + min

z∈Rm

(
‖z‖2 + 2y>z

)
+ min

x∈Rp

(
λ ‖x‖21 − 2y>Ax

)]
. (3.11)
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Now, recall that the convex conjugate of a function f : Rp → R is f∗ : y 7→ supx x>y−
f(x), so the above problem can be rewritten as

max
y∈Rm

[
2 y>c− 2g∗2(−y)− 2λ g∗1

(A>y

λ

)]
,

where g1(x) = ‖x‖21/2 and g2(x) = ‖x‖2/2. The dual problem then takes a simple form,
noting that for any norm ‖ · ‖, the convex conjugate of g : x 7→ ‖x‖2/2 is g∗ : y 7→ ‖y‖2∗/2,
where ‖ · ‖∗ is the dual norm of ‖ · ‖; see Boyd and Vandenberghe (2004, Chapter 3). Hence
the expression to be maximized in (3.11) is 2 y>c−‖y‖2−‖A>y‖2∞/λ. To summarize, since
2y>c− ‖y‖2 = ‖c‖2 − ‖y − c‖2, the dual (quadratic) Lasso is

max
y∈Rm

Dλ(y) = ‖c‖2 − ‖y − c‖2 − ‖A
>y‖2∞
λ

. (3.12)

Moreover, there is no duality gap, since both the primal and dual problems are uncon-
strained, and Slater’s constraint qualification trivially holds (see, e.g., Boyd and Vanden-
berghe (2004)):

min
x∈Rp

Lλ(x) = max
y∈Rm

Dλ(y) . (3.13)

3.3 Dual-optimal solution

The following theorem gives a necessary and sufficient condition for a pair (x∗,y∗) to be
primal-dual optimal for the quadratic Lasso.

Theorem 3.2. A pair (x∗,y∗) ∈ Rp ×Rm is primal-dual optimal, i.e., Dλ(y∗) = Lλ(x∗),
if and only if

y∗ = c−Ax∗, ‖A>y∗‖∞ = λ‖x‖1, and ∀i ∈ [p],

{
|a>i y∗| ≤ λ‖x∗‖1 if x∗i = 0;
a>i y∗ = λ sign(x∗i )‖x∗‖1 otherwise.

(3.14)

In particular,

x∗i (‖A>y∗‖∞ − |a>i y∗|) = 0 for all i ∈ [p] . (3.15)

Moreover, the dual optimal point y∗ is unique and satisfies y∗ = λM−1
∗ c, where M∗ =

M(ŵ(x∗)), with ŵ(x) given by (3.2).

Proof (i) Uniqueness of the dual optimal solution. The dual problem maxy∈Rm Dλ(y) is
equivalent to

min
y∈Rm, ‖A>y‖∞≤

√
λu
‖y − c‖2 + u2 = min

y∈Pλ(A)
‖y − c‖2 , (3.16)

where y = (y>, u)> and c = (c>, 0)> belong to Rm+1 and Pλ(A) is the polyhedral cone

Pλ(A) = {y = (y>, u)> ∈ Rm+1 : |a>i y| ≤
√
λu for all i = 1, . . . ,m} , (3.17)

9
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showing that the optimal solution for the dual corresponds to the unique orthogonal projec-
tion of c onto Pλ(A); see Figure 1 for an illustration.
(ii) Optimality conditions. The optimization problem is convex and Slater’s condition holds,
so the Karush-Kuhn-Tucker (KKT) conditions are necessary and sufficient to characterize
a pair (x∗,y∗) of primal-dual optimal solutions. The primal problem consists of minimizing
2(λg1(x) + g2(z)) under the constraint z = Ax − c, so the KKT system reduces to primal
feasibility, i.e., z∗ = Ax∗ − c, and stationarity of the Lagrangian (3.10), i.e.,

0 ∈ ∂
(
x, z 7→ 2(λg1(x) + g2(z) + y>(z−Ax + c))

)∣∣∣
x=x∗,z=z∗

.

Differentiating with respect to z gives ∇z(1
2‖z‖

2 + y∗>z)|z=z∗ = z∗+ y∗ = 0, which already
shows that y∗ = −z∗ = c−Ax∗.

As the Lagrangian (3.10) is not differentiable with respect to x, the stationarity condition
with respect to x is slightly more complicated. We must solve

0 ∈ ∂(x 7→ λg1(x)− y∗>Ax)|x=x∗ ,

which is equivalent to A>y∗/λ ∈ ∂g1(x∗). Since ∂g1(x) = {‖x‖1 · u : u ∈ ∂‖x‖1} (see, e.g.,
Sagnol and Pauwels (2019)) and since u ∈ ∂‖x‖1 if and only if ui ∈ [−1, 1] whenever xi = 0
and ui = sign(xi) otherwise, we get the following equivalent condition:

∃u ∈ ∂‖x∗‖1 : A>y∗ = λ‖x∗‖1 u

⇐⇒ ∀i ∈ [p],
(
x∗i = 0 ∧ |a>i y∗| ≤ λ‖x∗‖1

)
or

(
x∗i 6= 0 ∧ a>i y∗ = λ sign(x∗i ) ‖x∗‖1

)
.

(iii) Alternative expression of y∗. We prove that M∗(c−Ax∗) = λc, which implies c−Ax∗ =
λM−1

∗ c, as desired. Let D∗ = D(ŵ(x∗)) = (1/‖x∗‖1) diag{x∗1, . . . , x∗p}. We have

M∗(c−Ax∗)− λc = (M∗ − λI)(c−Ax∗)− λAx∗ = AD∗A
>y∗ − λAx∗

= A[D∗A
>y∗ − λx∗].

Finally, the optimality conditions imply |x∗i |a>i y∗ = λxi‖x‖∗1, ∀i ∈ [p], hence D∗A
>y∗ −

λx∗ = 0.

We also recall a well known analogous optimality condition for the problem of c-optimal
design. Based on a stationarity condition, the so-called Equivalence Theorem from optimal
design theory states that w∗ ∈ Pp is c-optimal if and only if the directional derivative of
φc(·) in the direction of any vertex of Pp is non-negative; see, e.g., Silvey (1980); Pukelsheim
(1993).

Theorem 3.3. Suppose that the Hi’s in H satisfy (2.5). Then the vector of weights w∗ is
c-optimal if and only if c>M−1(w∗)(aia

>
i + λIm)M−1(w∗)c ≤ φc(w

∗) for all i ∈ [p], with
equality for all i such that w∗i > 0.

Note that the theorem implies that w∗i (|a>i M−1(w∗)c| − ‖A>M−1(w∗)c‖∞) = 0 for all
i ∈ [p] when w∗ is c-optimal. In particular, |a>i M−1(w∗)c| does not depend on i ∈ [p] as soon
as w∗i > 0, and the elements of x̂(w∗) must be of the form x̂i(w

∗) = ±w∗i ‖A>M−1(w∗)c‖∞.

10



Fast Screening Rules for Optimal Design via Quadratic Lasso

Figure 1: Uniqueness of the dual optimal solution y∗.

Hence, |x̂i(w∗)| is proportional to w∗i and we have ŵ(x̂(w∗)) = w∗, i.e., w∗ is a fixed point
of the mapping w 7→ ŵ(x̂(w)).

We next prove an important property about x̂(w). For w ∈Pp and x ∈ Rp, we define

y1(x) = c−Ax and y2(w) = λM−1(w)c. (3.18)

Note that Theorem 3.2 implies that y1(x∗) = y2(ŵ(x∗)) for any optimal solution x∗ of the
quadratic lasso problem. The next lemma states that the equation obtained by inverting
the role of w and x holds for any design w ∈Pp.

Lemma 3.4. Let w ∈Pp. Then,

y1(x̂(w)) = y2(w) , (3.19)

where x̂(w) is defined by (3.3), and y1,y2 are defined by (3.18).

Proof Denote D = D(w) = diag{w1, . . . , wp}. By definition, M = M(w) = ADA>+λIm
and (3.3) gives x̂(w) = DA>M−1c. It follows that

y1(x̂(w)) = c−Ax̂(w) = c−ADA>M−1c =
[
M−ADA>

]
M−1c = λM−1c = y2(w) .

We conclude this section by making explicit the connection between the quadratic and
standard lasso problems. This connection will be exploited in Section 4 to derive a new
algorithm for the computation of c-optimal designs. The (standard) lasso problem reads

min
x∈Rp

1

2
‖Ax− c‖2 + α‖x‖1, (3.20)

11
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that is, (3.20) is the Lagrange relaxation of the minimization of 1
2‖Ax − c‖2 under the

constraint ‖x‖1 < t, or equivalently ‖x‖21 < t2, for some t > 0. The formulation (3.1)
with a squared penalty ‖x‖21 thus corresponds to the Lagrangian relaxation of the same
problem, with the precise relationship between t2 and λ depending on c and A. (Note that
there is a factor 1

2 in front of ‖Ax − c‖2 in the standard lasso problem (3.20), but not
in (3.1): this factor is commonly introduced in the standard lasso to have full symmetry
with the dual problem; we have refrained from introducing such a factor for the quadratic
lasso problem (3.1), as this would make the formulas of the next section more complex.)

Theorem 3.5. Let α < ‖A>c‖∞ and x∗ be an optimal solution to the the standard lasso
problem (3.20). Then, x∗ 6= 0∗ and x∗ is an optimal solution to the quadratic lasso (3.1)
with λ = λ(α) = α/‖x∗‖1. Conversely, for all λ > 0, if A>c 6= 0 and x∗ is an optimal
solution to the quadratic lasso (3.1), then x∗ is also an optimal solution to the standard
lasso (3.20) with α = α(λ) = λ‖x∗‖1.

Proof This property is a simple consequence of the KKT conditions of the standard lasso
problem (3.20), which can be found, e.g., in Xiang et al. (2016), and read as follows: x∗

solves (3.20) if and only if there exists a dual vector θ∗ such that

c = Ax∗ + αθ∗ and ∀i ∈ [p], a>i θ
∗ ∈

{
{sign(x∗i )} if x∗i 6= 0;
[−1, 1] if x∗i = 0.

(3.21)

First note that x∗ = 0 can only satisfy (3.21) if θ∗ = c/α, which implies ‖A>c‖∞ =
α‖A>θ∗‖∞ ≤ α.

Now, let α < ‖A>c‖∞ and x∗ 6= 0 be an optimal solution to the standard lasso prob-
lem (3.20), and denote by θ∗ a corresponding optimal dual vector. Define λ = α

‖x∗‖1 , and
y∗ = αθ∗ = λ‖x∗‖1θ∗. Clearly, (3.21) and x∗ 6= 0 imply that (x∗,y∗) fulfills the KKT
system (3.14), hence x∗ is an optimal solution to the quadratic lasso (3.1). Conversely, if
A>c 6= 0 and x∗ solves the quadratic lasso, we know from Theorem 3.1 that x∗ 6= 0, so
α = α(λ) = λ‖x∗‖1 > 0. Further, if (x∗,y∗) solves the KKT equations (3.14), then (x∗,θ∗)
solves (3.21) with θ∗ = y∗/α. Thus, x∗ solves the standard lasso with regularizer α.

3.4 Screening rules for inessential ai’s

The objective is to derive an inequality that must be satisfied by any ai that may support
an optimal design. To this end, we first use information about the current iterate x for
Problem (3.1) to construct a dual solution y(x). Then, we derive a bound on ‖y(x) − y∗‖
and exploit the optimality conditions of the dual problem (3.16).

Theorem 3.6. Let y ∈ Rm be an ε-suboptimal dual solution, i.e., Dλ(y) ≥ Dλ(y∗) − ε.
Then, any ai satisfying

D0(ai; y, ε) = ‖A>y‖∞ − |a>i y| −
√
ε(‖ai‖2 + λ) > 0

cannot support an optimal design.

12
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Proof We use the same construction as in part (i) of the proof of Theorem 3.2, and denote
y = (y>, u)>, y∗ = (y∗>, u∗)> and c = (c>, 0)>, with y∗ the optimal solution of the dual
problem (3.12), u = ‖A>y‖∞/

√
λ and u∗ = ‖A>y∗‖∞/

√
λ. Then, Dλ(y) = ‖c‖2−‖y−c‖2

and Dλ(y∗) = ‖c‖2−‖y∗−c‖2. The quantity (y−y∗)>(y∗−c) is nonnegative, as y ∈ Pλ(A)
is feasible for the conic formulation of the dual problem (3.16), and by optimality of y∗ the
gradient ∇‖y − c‖2|y=y∗

= 2(y∗ − c) defines a supporting hyperplane to Pλ(A).

If we denote r = ‖y−c‖ and r∗ = ‖y∗−c‖, then we can write r2 = ‖y−y∗+y∗−c‖2 =
‖y − y∗‖2 + r2

∗ + 2(y − y∗)>(y∗ − c), hence r2 − r2
∗ ≥ ‖y − y∗‖2. In addition,

r2 − r2
∗ = Dλ(y∗)−Dλ(y) ≤ ε .

We thus obtain ‖y − y∗‖2 ≤ r2 − r2
∗ ≤ ε; i.e. y∗ ∈ Bm+1(y,

√
ε).

Due to the KKT-condition (3.14) for Problem (3.16), it holds x∗i (|a>i y∗| −
√
λu∗) = 0

for all i ∈ [p]. Therefore, any ai that supports an optimal design corresponds to an active
constraint at the optimum, and thus satisfies |a>i y∗| =

√
λu∗. But y∗ ∈ Bm+1(y,

√
ε)

implies

|a>i y∗| −
√
λu∗ ≤ |a>i y| −

√
λu+

√
ε(‖ai‖2 + λ) ,

showing that any ai such that |a>i y| <
√
λu −

√
ε(‖ai‖2 + λ) cannot support an optimal

design.

Specializing the above result for the dual solutions y1(x) = c − Ax and y2(ŵ(x)) =
λM−1(ŵ(x))c (which are reasonable choices by Theorem 3.2), we obtain the screening
criteria given in Corollaries 3.7 and 3.8.

Corollary 3.7. Let x ∈ Rp, and define

D1(ai; x) = D0

(
ai; y1, Lλ(x)−Dλ(y1)

)
= ‖v‖∞ − |vi| −

(
‖v‖2∞
λ

+ λ‖x‖21 − 2 x>v

)1/2 √
‖ai‖2 + λ , (3.22)

where y1 = y1(x) = c−Ax and v = v(x) = A>y1(x). Then, any ai satisfying D1

(
ai; x

)
>

0 cannot support an optimal design.

Proof The result directly follows from Theorem 3.6. The expression Lλ(x)−Dλ[y1(x)] is
an upper bound on the duality gap at x, as Dλ(y∗) − Dλ[y1(x)] = Lλ(x∗) − Dλ[y1(x)] ≤
Lλ(x)−Dλ[y1(x)]. Direct calculation gives

Lλ(x)−Dλ[y1(x)] =
‖v‖2∞
λ

+ λ‖x‖21 − 2 x>v ,

which gives the expression (3.22) for D1.

13
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Corollary 3.8. Let x ∈ Rp \ {0}, and define

D2(ai; x) = D0

(
ai; y2, λ c>M−1(ŵ(x))c−Dλ(y2)

)
= ‖v′‖∞ − |v′i| −

(
‖v′‖2∞
λ

+ y>2 [y2 − c]

)1/2√
‖ai‖2 + λ , (3.23)

where y2 = y2(ŵ(x)) = λM−1(ŵ(x))c and v′ = v′(x) = A>y2(ŵ(x)). Then, any ai
satisfying D2(ai; x) > 0 cannot support an optimal design.

Proof This time, we use λφc(ŵ(x)) − Dλ[y2(ŵ(x))] as an upper bound on the dual-
ity gap at x, which follows from Dλ(y∗) − Dλ[y2(ŵ(x))] = λφc(w

∗) − Dλ[y2(ŵ(x))] ≤
λφc(ŵ(x)) − Dλ[y2(ŵ(x))]. Direct calculation gives λ c>M−1(ŵ(x))c − Dλ[y2(ŵ(x))] =
‖v′‖2∞/λ+ y>2 (ŵ(x))[y2(ŵ(x))− c] and therefore (3.23).

More generally, as λφc(ŵ(x)) ≤ Lλ(x), see (3.8), the substitution of λφc(ŵ(x)) for
Lλ(x) in the construction of D1(ai; x) yields a better bound

D̃1(ai; x) = D0

(
ai; y1(x), λφc(ŵ(x))−Dλ(y1(x))

)
≥ D1(ai; x) .

The reason for using this refined bound on the duality gap in D2 (see Corollary 3.8) but not
in D1 is computational efficiency: the calculation of D1 is dominated by the computation
of v, which requires O(mp) operations, while the calculation of D2 is dominated by the
computation of y2(ŵ(x)) that takes O(m2p) operations. However, if we are willing to pay
this higher computational cost then we might as well take advantage of the improved bound
on the duality gap, hence its use in D2.

In practice, the exact complexity of a screening operation depends on the algorithm used
to solve the optimization problem (3.1). The above discussion assumes that this algorithm
works directly on the primal variables x, such as FISTA or the block coordinate descent
proposed in (Sagnol and Pauwels, 2019). An example comparing the efficiencies of screening
with D1 and D2 is given in Section 5.1. However, the situation is quite different when the al-
gorithm operates on the design weights w, such as the multiplicative update algorithm (3.9):
the vector y2(w) is then readily obtained from intermediate calculations when computing
the gradient ∇φ′c(w), and there is no computational incentive to use D1 rather than D̃1

anymore. Moreover, in this case, starting from w, we use x = x̂(w) in D̃1 and ŵ(x) = w
in D2, see (3.2) and (3.3). Lemma 3.4 then implies that y2(w) = y1(x) = λM−1(w)c, so
that D̃1 and D2 coincide. Rewriting this bound as a function of w, we obtain

D′2(ai; w) = ‖v‖∞ − |vi| −
(
‖v‖2∞
λ

+ y>(y − c)

)1/2 √
‖ai‖2 + λ ,

where y = y(w) = λM−1(w)c and v = A>y. We thus have the following property.

Corollary 3.9. Let M be any matrix in the convex hull of H with the Hi satisfying (2.5).
Then, any matrix Hi in H such that B(M,Hi) > 0, where

B(M,Hi) =
{

(1 + δ) Φc(M)− λ c>M−2c
}1/2

−
[
δΦc(M)

(
1 +
‖ai‖2

λ

)]1/2

− |c>M−1ai|

and δ = maxHi∈H c>M−1HiM
−1c/(c>M−1c)− 1, does not support a c-optimal design.

14



Fast Screening Rules for Optimal Design via Quadratic Lasso

Proof We have M = M(w) for some w ∈ Pp. Direct calculation gives D′2(ai; w) =
λB(M,Hi).

Note that δ ≥ 0 and Φc(M) ≤ (1 + δ)φc(w
∗) with w∗ a c-optimal design, see Pronzato

and Sagnol (2021).

4. A homotopy algorithm for the quadratic Lasso

In the standard Lasso problem (3.20) (with non-squared penalty α‖x‖1), the dual problem
geometrically corresponds to the projection of the point c/α onto the polytope Q = {z :
‖A>z‖∞ ≤ 1}. This was used by Osborne et al. (2000) to design a homotopy algorithm
which starts from a large value of α (such that c/α ∈ Q and the projection is trivial) and
stores the required data to maintain the projection of c/α onto Q as α decreases. One
advantage of this technique is that it can be used to compute the full regularization path,
i.e., a set of optimal solutions x∗(α) to Problem (3.20) for all α > 0. This is particularly
interesting in applications of the Lasso algorithms for which the value of the regularization
parameter α must be tuned using cross-validation, as in the least angle regression (LARS)
method for model selection (Efron et al., 2004). In this section, we use Theorem 3.5 to
adapt the homotopy method to the case of a quadratic Lasso penalty, and hence to the case
of c-optimality.

In c-optimal design, λ is a fixed constant related to the variance of the observations and
the variance-covariance matrix of the prior (see Section 2), and computing the full regular-
ization path

(
w∗(λ)

)
λ≥0

is not essential. The example in Section 5.1 nevertheless illustrates
that the proposed homotopy method can yield a faster design construction than standard
first-order algorithms, by several orders of magnitude, although the objective is to solve
Problem (2.2) for a unique λ > 0. On the negative side, one should notice that pathological
cases are known for the standard lasso problem (3.20) for which the regularization path can
have up to 3n breakpoints (Mairal and Yu, 2012).

The main idea of the homotopy algorithm is that the projection z∗(α) of c/α over Q has
a closed form solution if we know on which face of Q the projection lies. By tracking the
subset of equalities of the form a>i z∗(α) = ±1 that hold as α is decreased, the algorithm can
detect the next “breakpoint” in the regularization path, that is, the largest value of α below
the current value such that z∗(α) changes of face of Q. Moreover, it can be seen that z∗(α)
is linear between two successive breakpoints, and we also obtain a corresponding primal
optimal solution x∗(α) that is continuous and piecewise linear with respect to α. In the end,
the algorithm produces a decreasing sequence of breakpoints ‖A>c‖∞ = α1 > α2 > . . . >
αN = 0 and of corresponding solutions x∗1, . . . ,x

∗
N , such that x∗(α) = x∗1 = 0 is optimal for

all α ≥ α1, and for all k and α of the form α = (1 − θ)αk+1 + θαk ∈ [αk+1, αk] for some
θ ∈ [0, 1], an optimal solution is given by

x∗(α) = (1− θ)x∗k+1 + θx∗k. (4.1)

The situation is in fact similar for the quadratic lasso. Recall the geometric interpretation
of the dual problem (3.16): y∗ = (y∗>, u∗)> is the projection of the vector c = (c>, 0)> onto
the polyhedral cone Pλ(A) given by (3.17). The projection y∗ lies on a face of Pλ(A), which

15



Sagnol and Pronzato

can be identified with the subset of equalities of the form a>i y∗ = ±
√
λu∗ satisfied at y∗.

The sequence of faces on which y∗ lies as λ decreases is in one-to-one correspondence with
the faces visited by the homotopy algorithm for the standard lasso problem. Rather than re-
inventing the wheel by following the path of y∗ on the faces of Pλ(A) as λ decreases, we are
going to use Theorem 3.5 to reparametrize the regularization path between two successive
breakpoints as a function of λ.

Theorem 4.1. Let (α1,x
∗
1), . . . , (αN ,x

∗
N ) with ‖A>c‖∞ = α1 > . . . > αN = 0 denote the

sequence of breakpoints and corresponding solutions to the standard lasso problem returned
by the homotopy algorithm. Define λ1 = ∞ and λk = αk

‖x∗k‖1
for all k ∈ {2, . . . , N}. Then,

we have λ1 > λ2 > . . . > λN = 0, and for all λ ∈ [λk+1, λk), an optimal solution to the
quadratic lasso (3.1) is given by

x∗ =
(αk − λ‖x∗k‖1)x∗k+1 + (λ‖x∗k+1‖1 − αk+1)x∗k

αk − αk+1 + λ(‖x∗k+1‖1 − ‖x∗k‖1)
. (4.2)

and a c−optimal design is

w∗ = ŵ(x∗) =
(αk − λ‖x∗k‖1) · |x∗k+1|+ (λ‖x∗k+1‖1 − αk+1) · |x∗k|

αk‖x∗k+1‖1 − αk+1‖x∗k‖1
, (4.3)

where |x∗k| ∈ Rp represents the coordinate-wise absolute values of x∗k, that is, (|x∗k|)i =
|x∗k,i|,∀i ∈ [p]. In particular, λ 7→ w∗ is continuous and piecewise linear.

Proof We first observe that 0 = ‖x∗1‖ ≤ ‖x∗2‖ ≤ . . . ≤ ‖x∗N‖, which follows from the
convexity of the Pareto-front for the minimization of the two objectives ‖Ax − c‖2 and
‖x‖1; see Boyd and Vandenberghe (2004, §4.7.5). Thus, we have λ1 > . . . > λN , and for all
λ > 0 there exists k ∈ {1, . . . , N − 1} such that λk+1 ≤ λ < λk. By Theorem 3.5 and (4.1),
for all θ ∈ [0, 1] the point x∗

(
(1− θ)α∗k+1 + θα∗k

)
= (1− θ)x∗k+1 + θx∗k solves the quadratic

lasso with regularizer

λ =
(1− θ)α∗k+1 + θα∗k
‖(1− θ)x∗k+1 + θx∗k‖1

=
(1− θ)α∗k+1 + θα∗k

(1− θ)‖x∗k+1‖1 + θ‖x∗k‖1
,

where the second equality comes from the fact that no coordinate of x∗(α) changes sign
between two consecutive breakpoints, that is, x∗k,i · x∗k+1,i ≥ 0 holds for all i ∈ [p]. Solving

for θ yields θ =
λ‖x∗k+1‖1−αk+1

αk−αk+1+λ(‖x∗k+1‖1−‖x
∗
k‖1) . It is easy to verify that θ lies in [0, 1], as desired,

by using the inequalities αk+1 ≤ λ‖x∗k+1‖1, λ‖x∗k‖1 ≤ αk, αk > αk+1 and ‖x∗k+1‖1 ≥ ‖x∗k‖1.
Substituting the value of θ in x∗ = (1− θ)x∗k+1 + θx∗k yields the formula (4.2). Finally, we
replace x∗ by its value in w∗ = ŵ(x∗) to obtain (4.3).

The steps of the homotopy algorithm for the standard lasso problem are summarized in
lines 1–13 of Algorithm 1, following the description of the algorithm given by Mairal and Yu
(2012). Here, the notation AJ = [aj ]j∈J ∈ Rm×|J | stands for the submatrix of A formed by
the columns indexed in J , and J̄ := [p] \ J denotes the complement of J in [p]. Note that
practical enhancements can easily be added. In particular, one can replace lines 8–11 by a
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Algorithm 1 Homotopy algorithm for the quadratic lasso/c-optimal design.

1: procedure Homotopy(A = [a1, . . . ,an] ∈ Rm×n, c ∈ Rm, λ > 0)
2: Initialization: α1 ← ‖A>c‖∞; x∗1 ← 0; λ1 ←∞
3: j0 ← arg maxj∈[p] |a>j c|; J ← {j0}; k ← 0
4: while λ < λk+1 do
5: k ← k + 1
6: ε← sign(A>(c−Ax∗k)) ∈ {−1, 0, 1}p

7: For all α ∈ R define ξ(α) ∈ Rp by
{
ξJ(α) = (A>J AJ)−1(A>J c− α · εJ);
ξJ̄(α) = 0.

8: Find the largest α ∈ [0, αk) such that either:
9: • |a>j (c−AJξJ(α))| = α for some j ∈ J̄ ; In that case set J ← J ∪ {j}

10: • ξ∗j (α) = 0 for some j ∈ J ; In that case, set J ← J \ {j}
11: If no such α exists, set α← 0
12: αk+1 ← α; x∗k+1 ← ξ∗(αk+1); λk+1 ← αk+1

‖x∗k+1‖1
13: end while

14: return x∗ given by (4.2) and/or the c-optimal design w∗ given by (4.3).
15: end procedure

closed-form expression to find the next break point α. One can also store the inverse matrix
(A>J AJ)−1 to accelerate the computation of the vectors (A>J AJ)−1A>J c and (A>J AJ)−1ε,
and use rank-one update formulas at the end of each iteration; see Osborne et al. (2000) for
more details.

Since by Theorem 4.1 we have ∞ = λ1 > λ2 > . . . > λN = 0, the algorithm exits the
while loop with λ ∈ [λk+1, λk), so the vector x∗ (or w∗) returned by Algorithm 1 is an
optimal solution to the quadratic lasso (respectively, a c-optimal design).

Remark 2. Degeneracy can occur if the polytope Q has a particular geometrical structure,
which can prevent Algorithm 1 from terminating (this might happen if the largest α we are
looking for at line 8 is realized for several distinct indices j ∈ J or j ∈ J̄). To avoid this,
a typical approach consists in adding random noise to the data, so that the problem becomes
non-degenerate with probability 1. Alternatively, we can choose the index entering or leaving
J arbitrarily among the maximizers, and implement an anti-cycling rule to ensure that the
same face of Q is not visited twice; see, e.g., Gill et al. (1989). One should note that, even
for non-degenerate problems, numerical issues can occur when the decrease of α at a given
iteration is less than machine precision. /

Remark 3. The generalization of this approach to the quadratic group lasso (and thus to
L-optimality) is not straightforward, as the polyhedral structure of the dual feasible region
is lost when r > 1; see (A.7). Nevertheless we point out that there have been attempts to
design homotopy algorithms for more general penalty functions (Zhou and Wu, 2014), such
as group-lasso (Yau and Hui, 2017), relying on the fact that the optimal solution X∗(α)
solves an ordinary differential equation in the interior of the segment (α1, α2) between two
breakpoints of the regularization path.

17



Sagnol and Pronzato

5. Examples

The example of Section 5.1 is directly taken from the literature on Lasso regression. A
second example, concerning L-optimal design, is presented in Section 5.2.

5.1 Optimal design for image classification

We use the training set of the well known MNIST database (LeCun and Cortes, 2010),
which contains 60 000 28×28 images in grey levels of handwritten digits, each associated
with a label for the digit in {0, . . . , 9} it represents. For our purpose, we build a smaller
training set of 600 images of each digit, which we arrange in a matrix A ∈ R784×6 000. The
ith column ai is a vector representing the levels of grey of the m = 282 = 784 pixels of one
image, and has been normalized so that ‖ai‖ = 1. As there are 600 images for each digit in
{0, . . . , 9}, p = 6 000. We choose an arbitrary image that does not belong to the training
set, and transform it as above into a vector c ∈ R784 of unit norm. The c-optimal design
problem thus attempts to find which images should be labeled to best predict the label of
the image represented by the vector c, and one can legitimately assume that these images
will represent the same digit.

This problem illustrates well the equivalence between a design problem (where we try
to select samples that “span” the subspace c ·R well) and a Lasso problem (where the data
matrix has been transposed, so samples become features and vice-versa, and we want to select
features that “explain” the target vector c well). For a given value of λ penalizing non-sparse
solutions, the Lasso problem (3.1) tries to express the vector c as a linear combination of a
few images ai. If the label of c is unknown, this can be interpreted as a task of supervised
learning: for well chosen values of the penalty parameter λ, we expect that the vast majority
of ai’s supporting the solution x∗ will have the same label as c, which can be used to classify
the unknown image. Alternatively, if no labels were provided, we could use this approach
repeatedly in a leave-one-out manner (i.e., select one sample to be the vector c and use the
other p − 1 samples to build the matrix A) to perform an unsupervised learning task and
construct clusters of images that are likely to share the same label.

The 10 support points of the optimal solution for λ = 0.4 are displayed in Figure 3 (left),
together with the image corresponding to the vector c: as expected, all images represent the
same digit (here, a six). Figure 2 shows the evolution of the duality gap Lλ(x)−Dλ(y1(x))
for λ = 0.4, when the Coordinate Descent (CD) algorithm2 described in (Sagnol and Pauwels,
2019) is used (left), as well as the percentage of support points ρ(k) that have been eliminated
after k iterations (right). As m is large and r = 1 (this is a c-optimal design problem),
one iteration of the CD algorithm is much faster than one iteration of the multiplicative
algorithm (3.9): the former has complexity O(m · r) to update a single row of the matrix X;
when r = 1, this means that a single coordinate of x is updated in O(m); an iteration cycling
over pi = (1−ρ(i)) ·p remaining coordinates has thus complexity O(pi ·m). In contrast, the
multiplicative algorithm is dominated by the computation of the information matrix M(w),
which takes O(pi ·m2) when pi coordinates remain. See Table 1 and its presentation below
for an empirical comparison of the running times3 of the different algorithms.

2. Sagnol and Pauwels (2019) actually present a block CD algorithm for Bayes L-optimality. For c-optimal
designs, the blocks are of size r = 1 so this is indeed a CD algorithm.

3. Calculations are in python on a PC at 2.7 GHz and 16 GB RAM.
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Figure 2: Evolution of the duality gap Lλ(x)−Dλ(y1(x)) (left) and of the proportion ρ(k) of points
eliminated after k iterations (right) for the screening bounds D1 and D2 applied with
different periodicities.

We only compare the bounds D1 and D2, as for large m the overhead of using B1, B2

or B3 is too high and B4 cannot be applied for r < m. Several observations can be made.
First, when screening is performed every 5 or 25 iterations, on the right panel ρ(k) is larger
for D2 than for D1, with the consequence that D2 eliminates points slightly earlier than D1

(we observe no difference when screening is performed every 100 iterations, the two curves
superimpose perfectly). Second, the curves on the left panel show that the computational
cost of the screening test applied to one ai is generally higher for D2 than for D1. Indeed,
the rate of convergence is related to the slope of the curve showing the evolution of the
duality gap. Ignore the initial part of the plot, where the number of remaining points to be
tested varies much according to the method and periodicity. Once enough points have been
eliminated, the slope for D2 decreases when the period between two successive screenings
decreases. On the opposite, the slope stays roughly constant for D1: screening with D1 every
5, 25 or 100 iterations yields the same convergence rate; the more frequent the screening,
the earlier the elimination, and thus the induced acceleration.

The effect of the regularization parameter λ is shown on Figure 3 (right), together with
the convergence of the homotopy algorithm. The problem is badly conditioned for small
λ, which slows down convergence and delays elimination of non-supporting points (we use
D1 every 10 iterations). Note, however, that the problem of c−optimal design obtained
in the limit λ → 0 can be solved efficiently by linear programming (Harman and Jurík,
2008). Interestingly, we see that the homotopy algorithm usually requires less time to get
an exact solution than the CD algorithm needs to get a reasonable approximate solution,
for most values of λ. The speed-up can attain several orders of magnitude: for λ = 10−2,
the homotopy algorithm computes an exact solution to the problem in less than 4 s, while
the duality gap for the CD algorithm with D1 is still 10−3 after 67 s; for λ = 10−4, the
homotopy algorithm finds an exact solution within 45 s, while the CD algorithm with D1

still has a duality gap or more than 10−4 after 2 000 s.
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Table 1: Time (in s) to reach an exact solution with the Homotopy algorithm and a near-optimal
solution (tolerance=10−4) with different algorithms, for several values of λ.

λ 100 10−1 10−2 10−3 10−4

Homotopy 0.22 0.73 3.16 13.05 44.66
CD 1.68 7.15 29.00 201.23 2012.15

MWU 53.92 67.39 204.67 432.39 619.09
FISTA 141.86 674.51 2011.01 – –
FW 14.86 – – – –

SOCP-1 62.57 66.41 72.59 72.16 64.86
SOCP-2 13.54 13.71 13.53 13.81 13.91

For the above experiment, the CD algorithm was used as a reference because it per-
formed better than first-order algorithms. Table 1 compares the running time of the homo-
topy algorithm and CD with several first order algorithms (Multiplicative weight updates
(MWU), FISTA, Frank-Wolfe (FW)), as well the time required by a commercial solver
(Gurobi (Gurobi Optimization, LLC, 2023) used with the PICOS interface (Sagnol and
Stahlberg, 2022) in Python) to solve two different Second-Order Cone Programming (SOCP)
formulations of the problem. The first formulation (SOCP-1) comes from (Sagnol, 2011) and
read min{c>x : ‖x‖2 ≤ v, (a>i x)2 ≤ ui, ui + λv ≤ 1, ∀i ∈ [p]}. The second one (SOCP-2)
is a direct reformulation of (3.1): min{u + λt : ‖Ax − c‖2 ≤ u, ‖x‖1 ≤ v, v2 ≤ t}, and
performs significantly better. Note that the reported times are for the computation of an
exact solution (up to machine precision) of the problem by using the homotopy method,
while we have used a tolerance of 10−4 for all other algorithms. We used the screening rule
D1 with τ = 10 for CD, MWU, FISTA and FW. Observe that although the CD iterations
are faster than the MWU iterations, this algorithm has a slow convergence for small values
of λ. Thus, more iterations are required and MWU is faster than CD for λ = 10−4. Also,
due to the very slow convergence of FW and FISTA for small values of λ, we have not been
able to reach the desired tolerance within 1 hour in some of the experiments. In contrast,
the SOCP solver appears to be insensitive to the value of λ.

Finally, in Figure 4 we compare the effect of the screening rule D1 on three algorithms for
an L-optimal design problem with r = 50. The training set contains p = 1 200 images (there
are 120 samples for each digit), the images have been down-sampled tom = 202 = 400 pixels,
and the matrix K ∈ Rm×r is formed by a collection of 5 images of each digit, randomly
chosen outside the training set. The top-left panel of the figure shows the support of the
corresponding L-optimal design (for λ = 0.4): it contains at least one representative of each
digit, and thus fulfills the objective of selecting a subset of samples that spans the subspace
of all handwritten digits well. The other three panels show that application of the screening
rule speeds up computations for the three algorithms considered, with, however, different
gains. In this example, the multiplicative weight update algorithm benefits the most from
the screening rule, but block CD yields the fastest convergence, with an acceleration factor
of about two when D1 is used every 10 iterations.
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Figure 3: Left: Image corresponding to c and support points of the optimal solution for λ = 0.4.
Right: The colored curves indicate the convergence of the CD algorithm for different
values of the regularization parameter λ (duality gap shown on leftmost y-axis), when
D1 is used every 10 iterations. The black curve shows the progression of λi (rightmost
y-axis) along time for the homotopy algorithm. The markers on this curve indicate
the points in time where the homotopy algorithm has reached an exact solution for the
corresponding value of λ.

5.2 An example of L-optimal design: IMSE optimal design in random-field
models

We consider the framework of (Gauthier and Pronzato, 2017) for the minimization of the
Integrated Mean-Squared Error (IMSE) in a random-field interpolation model Zs, indexed
by a space variable s ∈ S ⊂ Rd. We assume that Zs is Gaussian, centered, with covariance
E{Zs1Zs2} = γ(s1, s2). After observation at n design points Sn = {s1, . . . , sn} in S , the
IMSE for a given measure of interest µ on S is

IMSE(Sn) =

∫
S

[
γ(s, s)− γ>n (s)Γ−1

n γn(s)
]
dµ(s),

with γn(s) = (γ(s1, s), . . . , γ(sn, s))> and (Γn)i,j = γ(si, sj), i, j = 1, . . . , n.
The truncation of a particular Karhunen-Loève expansion of Zs yields a Bayesian linear

model, with the eigenfunctions as regression functions, and the construction of an IMSE-
optimal design can be cast as an L-optimal design problem. The solution is much facilitated
when µ is replaced by a discrete measure µp supported on a finite set Sp ⊂ S and design
points are selected within Sp. Denote Dp = diag{µp(s1), . . . , µp(sp)}. We diagonalize the
p× p matrix D

1/2
p ΓpD

1/2
p into UpΛpU

>
p , with Λp = diag{λ1, . . . , λp} and UpU

>
p = Ip, and

define Vp = D
−1/2
p Up. The ith column vi of Vp corresponds to an eigenvector of ΓpDp for

the eigenvalue λi and satisfies v>i Dpvj = δi,j (the Kronecker symbol) for all i, j. We assume
that the λi are ordered by decreasing values, and introduce a spectral truncation by using the
m largest eigenvalues only. Denoting by Φm the p×m matrix with ith column equal to vi,
i = 1, . . . ,m, we obtain the Bayesian linear model Zsi = φ>m,iβ+εsi , where β has the normal
prior N (0m,Λm), φ>m,i is the ith row of Φm, and where the εsi are normal random variables,
independent of β, with zero mean and covariance E{εsi , εsj} = γ(si, sj) − φ>m,iΛmφm,j for
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(a)

(c)

(b)

(d)

Figure 4: (a) L-optimal design for λ = 0.4 over the MNIST database, with a training set of p = 1200
images (120 per digit) of size m = 400 = 20×20, with K containing r = 50 images, i.e., 5
images of each digit (top left). (b-d) Convergence of three algorithms, with and without
the screening test D1 run every 10 iterations: Multiplicative Weight Update (b); FISTA
(c); Block CD (d).

all i, j. Finally, we neglect correlations and approximate the IMSE via the estimation of β
by its posterior mean in

Z ′si = φ>m,iβ + ε′si , (5.1)

where the errors ε′si are uncorrelated but heteroscedastic, with variance σ2
i = E{εsi , εsi} =

γ(si, si) − φ>m,iΛmφm,i; see Gauthier and Pronzato (2017). After observations at n points
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si with indices in Jn ⊆ {1, . . . , p}, the approximated IMSE is then

ÎMSE(Jn) = trace

(∑
i∈Jn

1

σ2
i

φm,iφ
>
m,i + Λ−1

m

)−1
 =

1

N
trace

[
CM−1(w(Jn))

]
, (5.2)

where C = Λm and M(w) is defined by (2.1), with Hi given by (2.5), λ = 1/n, ai =

Λ
1/2
m φm,i/σi for all i, and wi(Jn) equal to 1/n for i ∈ Jn and zero otherwise. We thus consider

the minimization of trace
[
CM−1(w)

]
for the construction of IMSE optimal designs.

We take µ uniform and µp(si) = 1/p for all i. The covariance of the random field is
given by Matérn 3/2 kernel,

γ(s1, s2) = (1 + θ ‖s1 − s2‖) exp(−θ ‖s1 − s2‖) ,

where we take θ = 10. The left panel of Figure 5 shows the type of designs that are obtained.
Here Sp corresponds to a 33 × 33 regular grid in S = [0, 1]2 and the truncation level m
equals 10. The construction relies on approximate design theory and we still need to extract
an exact design (a finite set of support points) once optimal weights have been determined.
Several approaches can be used, see Gauthier and Pronzato (2017, 2016), which are beyond
the scope of this paper. In particular, the method does not allow full control of the size of
resulting design (which is of the order of magnitude of m). A straightforward approach is to
simply remove points with negligible weights: on Figure 5-left, the 8 design points marked
by a blue • have total weight less than 7.14 10−5, the 12 other points are well spread over
S , with associated weights wi ∈ (0.0688, 0.0955). An important limitation of this approach
comes from the need to diagonalize a p× p matrix, with p being necessarily large when d is
large. A possible solution when µ is uniform on X = [0, 1]d is to use a separable covariance
so that eigenvalues (respectively, eigenfunctions) are products (respectively, tensor products)
of their one-dimensional counterparts; see Pronzato (2019b). Alternatively, one can use a
sparse kernel induced by k � p points, which reduces the size of the matrix to be diagonalized
(k×k instead of p×p); see (Sagnol et al., 2016) where this approach is used for the sequential
design of computer experiments.

In the rest of the example, S is the hypercube [0, 1]d with d = 5, Sp corresponds to the
first p points of Sobol’ low-discrepancy sequence in S , with p = 8 192. The truncation level
is set at m = 50. We consider the elimination of inessential Hi, or equivalently of inessential
si ∈ Sp, during the construction of an optimal design with the algorithm

wk+1
i =

wki a>i M−1(wk)CM−1(wk)ai∑p
j=1w

k
j a>j M−1(wk)CM−1(wk)aj

, (5.3)

initialized at w0
i = 1/p for all i. As shown in (Pronzato and Sagnol, 2021), screening is

computationally more efficient when applied periodically, every τ iterations, rather than
at each k, and we use τ = 100 in the example. When inessential si are eliminated by a
screening test performed with M(wk), the weights of the remaining points, with indices in
Ik, are renormalized into wki /

∑
i∈Ik w

k
i before application of (5.3). The algorithm is stopped

when δ < 10−6, with δ, given by (A.9), measuring the (sub-)optimality of wk.
We compare the bound D2 of Corollary A.5 (i.e., the bound B of Corollary A.6) with

the bounds B1 to B4 given in (Pronzato and Sagnol, 2021) for elimination of inessential
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points, both in terms of efficiency and computational time. Consider iteration k where a
screening test is performed, using the matrix Mk = M(wk). B1 and B2 are consequences
of the Equivalence Theorem (see Theorem 3.3 for the case of c-optimality) and require the
calculation of the minimum and maximum eigenvalues of M

−1/2
k HiM

−1/2
k for each Hi tested.

B3 is derived from a second-order-cone-programming formulation of the design problem
(Sagnol, 2011), its calculation requires the solution of one-dimensional convex minimization
problem for each Hi; we use the dichotomy line-search algorithm of Pronzato and Sagnol
(2021) with the precision parameter ε fixed at 0.01. B4 corresponds to the method proposed
in (Pronzato, 2013)4 and requires the calculation of the maximum eigenvalue of Mk.

The right panel of Figure 5 shows the proportion ρ(k) of points eliminated along itera-
tions for the five methods considered (note the staircase growth due to periodic screening
every τ = 100 iterations only). There is a rather clear global hierarchy in terms of elimina-
tion efficiency in this example, with B3 � D2 � B2 � B1 � B4 (B1 eliminates more points
than B2 and D2 in the early iterations, although this is not visible on the plot). Since the
cost of one iteration of (5.3) is roughly proportional to the size of w, that is, p(1− ρ(k)) at
iteration k, we rescale the iteration counter k into C(k) =

∑k
i=1(1 − ρ(i)) to count pseudo

iterations that consider the decreasing size of wk. The left panel of Figure 6 presents δ (log
scale) as a function of C(k): it shows the acceleration provided by elimination of inessential
points by each one of the method considered (compare with the curve with black � for
which ρ(k) ≡ 0) if one neglects the computational time of the screening tests. The hierarchy
observed on Figure 5-right is confirmed. The right panel of Figure 6 shows δ as a function
of the true computational time5. The most efficient method in terms of elimination, B3

(magenta +), yields the slowest convergence due to its high computational cost6. Screening
by D2 (red ♦), which does not require any eigenvalue calculation or numerical optimization,
provides a speed-up factor of about 5 compared to the direct application of (5.3) without
screening (black �). Due to its reasonable computational cost, B4 (black ×) ensures a
significant acceleration too despite its low screening efficiency. The poor performance of
screening with B1 (red F) and B2 (blue O) is explained by the dimension 50 × 50 of the
matrices Mk. Notice that elimination of inessential points does not provide any speedup in
terms of number of iterations required for a given accuracy: 18 738 iterations are needed to
reach δ ≤ 10−6 with or without screening (217 points have then a positive weight, among
which 15 have a total mass less than 5 10−5).

The hierarchy between methods in terms of computational time depends on m and may
vary with the choice of the kernel γ(·, ·) (in particular, with its correlation length), but in
this example the ranking was fairly stable when varying γ (we also used the Matérn 1/2 and
5/2 kernels and the Gaussian, i.e., squared exponential, kernel) and the number p of Sobol’
points in Sp.

4. The method proposed there is for A-optimality, but since the matrix C in (5.2) has full rank, the problem
can be straightforwardly transformed into an A-optimal design problem.

5. Calculations are in Matlab, on a PC with a clock speed of 2.5 GHz and 32 GB RAM — only the
comparison between curves is of interest.

6. The situation is reversed when λ = 0 in (2.5) and all Hi have rank 1 (so that neither D2 nor B2 can be
used): B3 has an explicit expression and due to its high efficiency can provide an important acceleration
factor; see Pronzato and Sagnol (2021).
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B1

B2
B3

B4

D2

Figure 5: Left: Design obtained when Sp is a 33 × 33 regular grid in S = [0, 1]2, m = 10 (the 8
points marked with a blue • have negligible weight). Right: evolution of the proportion
ρ(k) of points eliminated by the five methods considered along iterations (d = 5, p = 8 192,
m = 50).

B1

B2
B3

B4

D2

B1

B2
B3

B4

D2

Figure 6: Left: Evolution of δ given by (A.9) as a function of the pseudo iteration number (the
computational cost of each screening test is ignored). Right: Evolution of δ as a function
of computational time (in seconds).

6. Conclusion

We have shown that the reformulation of c- and L-optimal design problems as a linear re-
gression problem with squared sparsity-inducing penalty can be used to obtain safe screening
rules. These rules are much faster to compute than those previously proposed in the optimal
design community, especially for problems with a high dimensional parameter space. Their
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efficiency has been demonstrated on several experiments using real data sets. In addition,
we have leveraged the polyhedral conic geometry of the dual quadratic-lasso problem to de-
velop a new homotopy algorithm for Bayesian c-optimal design. This algorithm terminates
after a finite number of steps with an optimal design and can be several orders of magnitude
faster than standard first-order algorithms.
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Appendix A. L-optimality and quadratic group Lasso

In order to generalize the results of Section 3 to the case of L-optimality, we start with the counterpart
of Theorem 3.1 for matrices Hi of the form Hi = AiA

>
i + λ I for some Ai ∈ Rm×q, for all i ∈ [p].

This result is interesting in its own right, as this situation arises naturally for the linear model with
multiresponse experiments, where (2.4) is replaced by a q-dimensional observation Yi = A>i θ + εi.

Theorem A.1. Let Hi = AiA
>
i + λ I, with Ai ∈ Rm×q. Then, the c-optimal design problem (2.2)

is equivalent to the following problem:

min
x1,...,xp∈Rq

L q
λ (x) =

∥∥∥∥∥
p∑
i=1

Aixi − c

∥∥∥∥∥
2

+ λ

(
p∑
i=1

‖xi‖

)2

, (A.1)

in the following sense:

(i) the optimal value of (A.1) is equal to λφc(w∗), where w∗ is a c-optimal design;

(ii) If x∗ = (x∗1, . . . ,x
∗
p) solves (A.1) and A>i c 6= 0 for some i ∈ [p], then x∗ 6= 0 and ŵ∗ = ŵ(x∗)

is c-optimal, where

ŵi(x) =
‖xi‖∑p
j=1 ‖xj‖

, ∀i ∈ [p] , x 6= 0 ; (A.2)

(iii) If w∗ ∈Pp is c-optimal, then x̂∗ = (x̂1(w∗), . . . , x̂p(w
∗)) is optimal for (A.1), where

x̂i(w) = wi A
>
i M−1(w)c , ∀i ∈ [p] . (A.3)

(iv) In the pathological case A>i c = 0, ∀i ∈ [p], the unique optimal solution to the quadratic lasso
is x∗ = 0, while every design w ∈Pp is c-optimal.

Proof The proof follows almost the same lines as the proof of Theorem 3.1, with the difference
that we define A = [A1, . . . ,Ap] ∈ Rm×(pq) and D(w) = diag(w) ⊗ Iq ∈ Rpq×pq, i.e., the diagonal
matrix with p diagonal blocks of the form wiIq. Then, we still have M(w) = AD(w)A>+λIm. We
also change the definition of the function v to

v(x,w) =

∥∥∥∥∥
p∑
i=1

Aixi − c

∥∥∥∥∥
2

+ λ

p∑
i=1

‖xi‖2

wi
= ‖Ax− c‖2 + λx>D−1(w)x.

Here, the function (xi, wi) 7→ ‖xi‖2
wi

is the perspective function of xi 7→ ‖xi‖2, hence it is convex,
and defined by continuity in wi = 0 (i.e., ‖xi‖2/0 = 0 if xi = 0 and ‖xi‖2/0 =∞ otherwise).

The rest of the proof is identical to that of Theorem 3.1. We obtain that (3.5) and (3.6) hold,
which imply (i), (ii) and (iii). That x = 0 cannot be optimal whenever A>c 6= 0 follows from

Lλ(
a>k c

‖ak‖2 + λ
ek) = ‖c‖2 − (a>k c)2

‖ak‖2 + λ
< ‖c‖2 = Lλ(0),

if k is such that the kth column ak of A satisfy a>k c 6= 0. The proof of point (iv) for the case
A>c = 0 is also the same as for Theorem 3.1.

Let us return to the case where Hi = aia
>
i + λIm. The generalization of Theorem 3.1 to the

case of L-optimality is now straightforward following (Sagnol, 2011). Let K ∈ Rm×r and define
c = vec(K) ∈ Rmr. Then, for all w ∈Pp we have

φL(w) = ΦL[M(w)] = trace[K>M−1(w) K] = c>M̃−1(w)c,
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where

M̃(w) = Ir ⊗M(w) =

p∑
i=1

wi(Ir ⊗ (aia
>
i )) + λIrm =

p∑
i=1

wi H̃i ,

and H̃i = (Ir⊗ai)(Ir⊗ai)
>+λIrm. Note that H̃i has the form ÃiÃ

>
i +λI with Ãi = Ir⊗ai ∈ Rrm×r.

Theorem A.1 can thus be applied to L-optimality. Straightforward manipulations allows one to get
rid off Kronecker products by reshaping the vector x ∈ Rpr into a matrix X ∈ Rp×r, which yields
the following result.

Theorem A.2. Let Hi be given by (2.5) and denote by A the m× p-matrix with columns (ai)i∈[p].
Consider the L-optimal design problem where we minimize φL(w) given by (2.3) with respect to
w ∈ Pp with K an m × r matrix. This problem is equivalent to the following one, which we call
quadratic group Lasso,

min
X∈Rp×r

L ′λ(X) = ‖AX−K‖2F + λ (‖X‖1,2)2 , (A.4)

in the following sense:

(i) the optimal value of (A.4) is equal to λφL(w∗), where w∗ is an L-optimal design;

(ii) If X∗ solves the quadratic group Lasso problem and A>K 6= O, then ŵ∗ = ŵ(X∗) is L-
optimal, where

ŵi(X) =
‖Xi,·‖
‖X‖1,2

∀i ∈ [p] , X 6= O ; (A.5)

(iii) If w∗ ∈Pp is L-optimal, then X̂∗ = X̂(w∗) is optimal for (A.4), where

X̂i,·(w) = wi a
>
i M−1(w)K . (A.6)

(iv) In the pathological case A>K = O, the unique optimal solution to the quadratic lasso is
x∗ = O, while every design w ∈Pp is c-optimal.

Proceeding as above, we can also show that the dual of the quadratic group Lasso problem can
be written as

max
y∈Rm

D ′λ(Y) = ‖K‖2F − ‖Y −K‖2F −
maxi∈[p] ‖Y>ai‖2

λ
, (A.7)

and that the following relations between optimal primal and dual variables hold:

Y∗ = K−AX∗ = λM−1(w∗)K ,

with w∗ an L-optimal design. The generalization of Theorem 3.6 is not completely straightforward,
though. We first prove the following lemma:

Lemma A.3. Let Y ∈ Rm×r and a ∈ Rm. Then,

sup
Z∈Rm×r

{‖Z>a‖ : ‖Y − Z‖F ≤ R} = ‖Y>a‖+R ‖a‖ ,

the supremum being reached for Z = Z∗ = Y +R aa>Y/(‖a‖ ‖Y>a‖).
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Proof Denote by yi and zi the i-th column of Y and Z, respectively, and define ui = ‖yi − zi‖,
i ∈ [r], and u = (u1, . . . , ur)

>. Then, |z>i a| ≤ |y>i a|+ ui ‖a‖, i ∈ [r]. Therefore,

‖Z>a‖2 =

r∑
i=1

(z>i a)2 ≤
∑
i

(|y>i a|+ ui‖a‖)2 = ‖Y>a‖2 + ‖u‖2 ‖a‖2 + 2‖a‖
r∑
i=1

ui |y>i a|

≤ ‖Y>a‖2 + ‖u‖2 ‖a‖2 + 2‖a‖ ‖u‖ ‖Y>a‖
≤ ‖Y>a‖2 +R2 |a‖2 + 2R ‖a‖ ‖Y>a‖ = (‖Y>a‖+R‖a‖)2 ,

where we used the Cauchy-Schwarz inequality and ‖u‖2 = ‖Y − Z‖F ≤ R. The supremum is
reached when ui = α|y>i a|, i ∈ [r] for some α > 0 and zi − yi = βi a, i.e., Z = Y + aβ> for some
β = (β1, . . . , βr)

> ∈ Rr. Direct calculation shows that it implies Z = Z∗.

Theorem A.4. Let Y ∈ Rm×r be an ε-suboptimal dual solution, i.e., D ′λ(Y) ≥ D ′λ(Y∗)− ε. Then,
any ai satisfying

D0(ai; Y, ε) = max
j∈[p]
‖Y>aj‖ − ‖Y>ai‖ −

√
ε(‖ai‖2 + λ) > 0

cannot support an optimal design.

Proof Let u = maxi∈[p] ‖Y>ai‖/
√
λ and u∗ = maxi∈[p] ‖Y∗>ai‖/

√
λ. Following the same lines as

in the proof of Theorem 3.6, we get ‖Y −Y∗‖2F + (u− u∗)2 ≤ ε.
Now, the complementary slackness condition of optimality of (A.4) and (A.7) indicates that the

i-th row of X∗ vanishes whenever ‖Y∗>ai‖ <
√
λu∗, and thus ai is inessential. Using ‖Y−Y∗‖F ≤√

ε− (u− u∗)2 and Lemma A.3, we get

‖Y∗>ai‖ −
√
λu∗ ≤ sup

u′
−
√
λu′ + sup

Y′∈Rm×r

{‖Y
′>ai‖ : ‖Y −Y′‖F ≤

√
ε− (u− u′)2}

= sup
u′

−
√
λu′ + ‖Y>ai‖+

√
ε− (u− u′)2 ‖ai‖ .

Simple calculations show that the supremum is attained at u′ = u ±
√
λε/
√
‖ai‖2 + λ, and substi-

tution yields

‖Y∗>ai‖ −
√
λu∗ ≤ ‖Y>ai‖ −

√
λu+

√
ε(‖ai‖2 + λ) .

Therefore, ai is inessential if ‖Y>ai‖ −maxj∈[p] ‖Y>aj‖+
√
ε(‖ai‖2 + λ) < 0.

As in Section 3.4, we obtain two screening rules for L-optimality by considering the dual points
Y1(X) = K−AX and Y2(ŵ(X)) = λM−1(ŵ(X))K, where

M(ŵ(X)) =
1

‖X‖1,2

p∑
i=1

‖Xi,·‖ aia
>
i + λIm .

Corollary A.5. Let X ∈ Rp×r. If

D1(ai; X) = D0

(
ai; Y1(X), L ′λ(X)−D ′λ[Y1(X)]

)
> 0,

or X 6= O and

D2(ai; X) = D0

(
ai; Y2(ŵ(X)), λ trace[K>M−1(ŵ(X))K]−D ′λ[Y2(ŵ(X))]

)
> 0,

then ai cannot support an L-optimal design.

31



Sagnol and Pronzato

As in Section 3.4, in a design context one may start with a given w and use X = X̂(w) in D1

and ŵ(X) = w in D2. Similarly to Lemma 3.4, we have Y1(X̂(w)) = Y2(w) and we obtain the
following generalization of Corollary 3.9.

Corollary A.6. Let M be any matrix in the convex hull of H with the Hi satisfying (2.5). Then,
any matrix Hi in H such that B(M,Hi) > 0, where

B(M,Hi) =
{

(1 + δ) ΦL(M)− λ trace(K>M−2K)
}1/2

−
[
δΦL(M)

(
1 +
‖ai‖2

λ

)]1/2
− |K>M−1ai| (A.8)

and

δ = max
Hi∈H

trace(K>M−1HiM
−1K)

trace(K>M−1K)
− 1 , (A.9)

does not support a c-optimal design.

We have δ ≥ 0 and ΦL(M) ≤ (1 + δ)φL(w∗) with w∗ an L-optimal design.
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