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Abstract
Constructing unbiased estimators from Markov chain Monte Carlo (MCMC) outputs is a
difficult problem that has recently received a lot of attention in the statistics and machine
learning communities. However, the current unbiased MCMC framework only works when
the quantity of interest is an expectation, which excludes many practical applications. In
this paper, we propose a general method for constructing unbiased estimators for functions
of expectations and extend it to construct unbiased estimators for nested expectations.
Our approach combines and generalizes the unbiased MCMC and Multilevel Monte Carlo
(MLMC) methods. In contrast to traditional sequential methods, our estimator can be
implemented on parallel processors. We show that our estimator has a finite variance
and computational complexity and can achieve ε-accuracy within the optimal O(1/ε2)
computational cost under mild conditions. Numerical experiments confirm our theoretical
findings and demonstrate the benefits of unbiased estimators in the massively parallel
regime.
Keywords: unbiased estimator, function of expectation, parallel computation, nested
expectation, coupling

1. Introduction

Monte Carlo methods generate unbiased estimators for the expectation of a distribution.
In practice, however, it may be impractical to sample from the underlying distribution and
the quantity of interest may not be an expectation. In the context of statistical inference,
it is very common that estimation problems can be represented as estimating a quantity
of the form T (π), where π is one or a group of distributions and T is a functional of π.
We begin by considering several motivating examples to gain a deeper understanding of the
different forms that T (π) might take.
Example 1 (Integration) Let π be a probability distribution and f a π-integrable func-
tion. The problem of estimating Eπ[f ] can be viewed as estimating T (π) where T is the
integral operator: T (π) :=

∫
f(x)π(dx).

Example 2 (Nested Monte Carlo) Let π be a probability distribution, and suppose the
quantity of our interest has the form T (π) := Eπ[λ], where λ is itself intractable. The in-

©2023 Tianze Wang and Guanyang Wang.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v24/22-1468.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v24/22-1468.html


Wang and Wang

tractable function λ may take the form λ(x) := f(x, γ(x)), where γ(x) = Ey∼p(y|x)[φ(x, y)] is
a conditional expectation. One concrete example is the two-stage optimal stopping problem,
where γ(x) = max{x,E[y|x]}. Estimating the nested expectation is known as a challenging
problem in Monte Carlo methods due to its involved structure (Rainforth et al., 2018).

Example 3 (Ratios of normalizing constants) Suppose π1(x) = f1(x)/Z1 and π2(x) =
f2(x)/Z2 are two probability densities with common support. We assume f1 and f2 can be
easily evaluated, but the normalizing constants Z1 and Z2 are computationally intractable.
Consider the task of estimating the ratio of normalizing constants, i.e., Z1/Z2, standard
calculation shows Z1/Z2 = Eπ2 [f1]/Eπ1 [f2]. The problem can be viewed as estimating T (π)
by choosing π as the product measure π1 × π2, and T (π) := Eπ2 [f1]/Eπ1 [f2]. The problem
finds statistical and physics applications, including hypothesis testing, Bayesian inference,
and estimating free energy differences. We refer the readers to Meng and Wong (1996) for
other applications.

Example 4 (Quantile estimation) Let π be a probability distribution with cumulative
distribution function Fπ and q a constant in (0, 1). Estimating the q-th quantile of π can be
formulated as estimating T (π) where T (π) := infv{Fπ(v) ≥ q}. Quantile estimation problem
has applications in statistics, economics, and other fields. We refer the readers to Koenker
and Hallock (2001); Takeuchi et al. (2006); Romano et al. (2019) for more discussions, and
Doss et al. (2014) for an MCMC-based method.

In all the examples above, the distribution π can be intractable. In some cases, such as
Example 1 and 2, the quantity of interest is an expectation under π, although the function
inside the expectation may or may not be intractable. In other cases, including Example 3
and 4, T is a functional of π, but not an expectation.

Throughout this paper, we focus on designing unbiased estimators of T (π) assuming
one can only access outputs from some MCMC algorithm that leaves π as stationary dis-
tribution. Unbiased estimators are of particular interest because they can help users save
computation time in a parallel implementation environment by separating the issue of bias
from the issue of variance. To elaborate, classical MCMC estimators, which are based on
the empirical distribution after running the MCMC algorithm for a fixed number of iter-
ations, are generally biased unless the algorithm is initialized at the target distribution π.
This bias can be problematic in a parallel computing environment, where the number of
processors is huge but the computational budget per processor is limited. In contrast, un-
biased estimators can be computed on different devices in parallel without communication,
allowing users to control the mean-squared error (which is only determined by the variance)
to an arbitrarily low level by simply increasing the number of processors. Evidences support
the advantage of unbiased estimators in parallel Monte Carlo algorithms are provided in
Rosenthal (2000); Nguyen et al. (2022).

To see the advantage of unbiased estimators clearly, one can consider the following
comparison: Suppose we are in an environment with sufficiently many processors. Given a
quantity T (π) that users wish to estimate, and an ε2-tolerance level for the mean-squared
error (MSE). It is known (page 21 of Geyer (2011)) that the bias of standard MCMC
estimators is of order 1/n, where n is the number of iterations. No matter how many
processors there are, users have to run each MCMC algorithm on each processor for n ≥
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O(1/ε) steps to ensure the bias is less than ε (otherwise, the squared bias would be greater
than ε2, which leads to the MSE being larger than ε2). Therefore the completion time for
a standard MCMC estimator is at least of order 1/ε, which grows to infinity as ε goes to 0.
In contrast, a typically unbiased Monte Carlo estimator (such as Glynn and Rhee (2014);
Jacob et al. (2020); Zhou et al. (2022) and the estimator presented in this paper) has zero
bias, finite variance, and a random computational cost with finite expectation. Therefore
the users can independently implement the estimators on V/ε2 processors to achieve ε2-
MSE, where V is the variance of one such estimator. The average completion time is O(1),
which compares much more favorably than the standard MCMC’s O(1/ε) completion time.
Our empirical experiments also justify the practical usefulness of our unbiased estimators
in the parallel environment.

On top of parallel computing, the confidence intervals can be easily constructed using
unbiased estimators from Monte Carlo outputs to improve uncertainty quantification in
cases where the variance is hard to estimate. Moreover, these unbiased estimators are often
more adaptable and can be used as subroutines in more complicated Monte Carlo problems
like pseudo-marginal MCMC algorithms (Andrieu and Roberts, 2009) and nested Monte
Carlo problems (Rainforth et al., 2018; Zhou et al., 2022).

Without further assumption on T and π, it is well known that constructing unbiased
estimators of T (π) is difficult. Computational challenges appear in both components of
the pair (T , π). The bias of standard Monte Carlo estimators arises from the nonlinearity
of T and the sampling error of the MCMC algorithm. Fortunately, recent works provide
promising solutions when one component of the above (T , π) pair is easy while the other is
relatively difficult. We briefly review the following two cases separately:

• (Case 1: Easy T , difficult π): When T is an integral operator with respect to some
tractable function f , but π is infeasible to sample from, i.e., T (π) := Eπ[f ] for some
intractable π. The problem is considered by Jacob, O’Leary, and Atchadé (JOA
henceforth) (Jacob et al., 2020). The JOA estimator, which follows the idea of Glynn
and Rhee (2014), solves this problem via couplings of Markov chains. The unbiased
MCMC framework has recently raised much attention. It has been applied in conver-
gence diagnostics (Biswas et al., 2019; Biswas and Mackey, 2021; Biswas et al., 2022),
gradient estimation (Ruiz et al., 2020), asymptotic variance estimation Douc et al.
(2022), and so on.

• (Case 2: Easy π, difficult T ): When π can be sampled perfectly, but T (π) := g(Eπ[f ])
is a function of the expectation, or T is an expectation with respect to a function which
further depends on an expectation (e.g, the nested expectation), the state of the art
debiasing technique is the unbiased MLMC method developed by McLeish, Glynn,
Rhee, and Blanchet (Blanchet et al., 2015; Rhee and Glynn, 2015; McLeish, 2011)
which is a randomized version of the celebrated (non-randomized) MLMC methods
pioneered by Heinrich and Giles (Heinrich, 2001; Giles, 2008, 2015). Unbiased MLMC
methods have also found many applications, including gradient estimation (Shi and
Cornish, 2021), optimal stopping (Zhou et al., 2022), robust optimization (Levy et al.,
2020).

In summary, the unbiased MCMC method assumes easy T (an integral operator) but
difficult π, and the unbiased MLMC method assumes easy π (perfectly simulable) but
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difficult T . Both assumptions can be violated in many practical applications, such as
Example 2—4. Although immense progress has been made, there is no systematic way of
constructing unbiased estimators for general T (π) beyond special cases.

In this article, we present a step toward designing unbiased estimators of T (π) for
the general (T , π) pair by combining and extending the ideas of the unbiased MCMC and
MLMC methods. We propose generic unbiased estimators for functions of expectations, i.e.,
T (π) = g(m(π)) := g(Eπ[f(X)]) where π is a d-dimensional probability measure that can
only be approximately sampled by MCMC methods, f : Rd → Rm is a deterministic map,
and g : Rm → R is a deterministic function 1. Other technical assumptions will be made
clear in the subsequent sections. The unbiased estimator is easily parallelizable. It has
both finite variance and computational cost for a general class of problems, which implies
a ‘square root convergence rate’ that matches the optimal rate of Monte Carlo methods
(Novak, 2006) given by the Central Limit Theorem. Moreover, some technical assumptions
on g relax the standard ‘linear growth’ assumption in Blanchet and Glynn (2015) and
Blanchet et al. (2019), which may be of independent interest.

Our method can be naturally generalized to the unbiased estimation of the nested ex-
pectation introduced in Example 2 under intractable distributions. The nested expectation
is commonly regarded as a challenging task for Monte Carlo simulation. Even if one can
sample perfectly from the underlying distribution, the standard ‘plug-in’ Monte Carlo esti-
mator is not only biased but also has a suboptimal computational cost (O(ε−3) or O(ε−4))
under varying assumptions to achieve a mean square error (MSE) of ε2. The proposed
estimator has three advantages over the standard ‘plug-in’ estimator. It is unbiased, has
O(ε−2) expected computational cost to achieve ε2-MSE, and works when the conditional
distribution can only be approximated by MCMC methods.

Our method naturally connects the unbiased MCMC with the MLMC method. Un-
biased MCMC is an emerging area in statistics and machine learning for its potential for
parallelization. The methodology in Jacob et al. (2020) has been extended to different
MCMC algorithms, including the Hamiltonian Monte Carlo (Heng and Jacob, 2019) and
the pseudo-marginal MCMC (Middleton et al., 2020). Meanwhile, the MLMC method
(both the non-randomized and randomized version) is shown to be successful in applied
math, operation research, and computational finance for estimating the expectation of SDE
solutions (Giles, 2008; Rhee and Glynn, 2015), option pricing (Belomestny et al., 2015; Zhou
et al., 2022), and inverse problems (Hoang et al., 2013; Dodwell et al., 2015; Beskos et al.,
2017; Jasra et al., 2018). When the quantity of interest is Eπ[f ] for challenging underlying
distribution π (in contrast to g(Eπ[f ]) that we considered here), there already exists similar
ideas on combining the unbiased MLMC and MCMC framework on specific problems. In
Heng et al. (2023), Heng et al. (2021), the authors propose a four-way coupling mechanism
to unbiasedly estimate Eπ[f ] when π arises from some stochastic differential equations.
Nevertheless, overall, the connections between unbiased MCMC and MLMC methods still
seem largely unexplored. We hope this work will serve as a bridge for these communities
and invite researchers from broader areas to develop these methods together.

The rest of this paper is organized as follows. Section 1.1 introduces the notations. In
Section 2, we describe the high-level idea behind our method without diving into details.

1. For simplicity, we only consider scalar-valued g in this paper, though our method can be naturally
generalized to vector-valued functions.
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This section will also clarify the connections between unbiased MCMC and MLMC methods.
We formally propose our unbiased estimator in Section 3.1. In Section 3.2, we generalize
our estimator for estimating nested expectations. In Section 3.4, we state the assumptions
and prove the theoretical properties. In Section 4, we implement our method on several
examples to study its empirical performance. We conclude this paper in Section 5. Technical
details such as proofs and additional experiments are deferred to the Appendix.

1.1 Notations

Throughout this article, we preserve the notation g to denote a function from its domain
D ⊂ Rm to R. We write π as a d-dimensional probability measure, and π1, · · · , πd for its
marginal distributions. We denote by mf (π) := Eπ[f(X)] the expected value/vector of f
under π, and write it as m(π) when it is unlikely to cause confusion. The Lp norm of
v ∈ Rd is written as ‖v‖p :=

(∑d
i=1|vi|p

)1/p
. For the L2 norm, we simply write ‖v‖ := ‖v‖2.

The geometric distribution with success probability r is denoted by Geo(r), and write its
probability mass function as pn = pn(r) = (1 − r)n−1r. The uniform distribution on [0, 1]
is denoted by U[0, 1]. The multivariate normal with mean µ and covariance matrix Σ is
denoted by N(µ,Σ). The binomial distribution with N trials and parameter p is denoted by
Binom(N, p). The Poisson distribution with parameter λ is denoted by Poi(λ). Given a set
A ⊂ Rd, we denote by A◦ all the interior points of A. For a differentiable function h : Rd →
R, we denote byDh := ( ∂h∂x1

, ∂h∂x2
, · · · , ∂h∂xd ) the gradient of h. Given two probability measures

µ and ν, we write their total variation (TV) distance as ‖µ − ν‖TV := supA|µ(A) − ν(A)|.
We adopt the convention that ∑n

i=m ai = 0 if m > n.

2. A Simple Identity: Unbiased MCMC Meets MLMC

Consider the task of designing unbiased estimators of g(m(π)) = g
(
Eπ[f(X)]

)
. The problem

is extensively studied in the literature when one can draw independent and identically dis-
tributed (i.i.d.) samples from π. Unbiased estimators are known to exist or not exist under
different contexts (Keane and O’Brien, 1994; Jacob and Thiery, 2015). Different debiasing
techniques (Nacu and Peres, 2005; Blanchet et al., 2015; Blanchet and Glynn, 2015; Vihola,
2018) have been proposed and analyzed. Among existing methods, the unbiased MLMC
framework works with the greatest generality.

When π is infeasible to sample from, our first observation is based on the following
simple identity. For every random variable H with E[H] = m(π), we have:

g(m(π)) = g(E[H]). (1)

Formula (1) is mathematically straightforward, but the right-hand side of (1) is compu-
tationally more tractable than the left-hand side. To be more precise, one main difficulty in
estimating g(m(π)) arises from the difficulty in sampling π. However, our observation is the
quantity g(m(π)) essentially depends only m(π)—an expectation under π, but not π itself.
Therefore, the quantity m(π) can be replaced by the expectation of any unbiased estimator
of m(π). In other words, we can relax the previous assumption ‘i.i.d. samples from π’
by ‘i.i.d. unbiased estimators of m(π)’. Suppose H1, H2, . . . are i.i.d. unbiased estimators
of m(π) that we can sample from. Then it suffices to estimate g(E[H1]) unbiasedly. The
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difficulty is now reduced to estimating a function of expectation, and the existing unbiased
MLMC methods can be applied.

After observing (1), it suffices to construct unbiased estimators of m(π) provided that
π cannot be directly simulated. The unbiased MCMC framework provides us with natural
solutions. Suppose a Markov chain with transition kernel P that targets π as stationary
distribution. It is often possible to construct a pair of coupled Markov chains (Y, Z) =
(Yt, Zt)∞t=1 that both evolve according to P . By design, if the pair (Yt, Zt−1) meets at some
random time τ and stays together after meeting, then the Jacob-O’Leary-Atchadé (JOA)
estimator, which will be formally introduced in shortly later, is unbiased for m(π). Putting
the unbiased MLMC and JOA estimator together, we can unbiasedly estimate g(m(π))
using the following two-step strategy described in Figure 1 below. The unbiased MCMC
algorithm is used here as a generator for random variables with expectation m(π). We
will use the outputs of the unbiased MCMC algorithm as inputs to feed into the unbiased
MLMC approach and eventually construct an unbiased estimator of g(m(π)).

Figure 1: The workflow for constructing an unbiased estimator of g(m(π)).

3. Unbiased Estimators for Functions of Expectation

In this section, we discuss our estimator for g(m(π)) from MCMC outputs in detail. We start
with a brief review of the JOA estimator of m(π) in Section 3.1.1. Our general framework
is described in Section 3.1.2. A family of simplified estimators is given in Section 3.1.3
when g admits additional structures. In Section 3.2, we discuss the unbiased estimation of
nested expectations using a generalized version of our approach. In Section 3.3, we discuss
the problem regarding the domain of g and provide a transformation to avoid the domain
problem. In Section 3.4, we give theoretical justifications for our method.

3.1 Constructing an Unbiased Estimator

3.1.1 The Jacob-O’Leary-Atchadé (JOA) estimator of m(π)

Let Ω be a Polish space equipped with the standard Borel σ-algebra F . Let P : Ω× F →
[0, 1] be the Markov transition kernel that leaves π as stationary distribution. The Jacob-
O’Leary-Atchadé (JOA) estimator uses a coupled pair of Markov chains that both have
transition kernel P . Formally, the coupled pair (Y,Z) = (Yt, Zt)∞t=1 is a Markov chain
on the product space Ω × Ω. The transition kernel P̄ , which is also called the coupling of
(Y, Z), satisfies P̄ ((x, y), A×Ω) = P (x,A), P̄ ((x, y),Ω×B) = P (y,B) for every x, y ∈ Ω and
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A,B ∈ F . The coupled chain starts with Y0 ∼ π0, Y1 ∼ P (Y0, ·) and Z0 ∼ π0 independently.
Then at each step t ≥ 2, one samples (Yt, Zt−1) ∼ P̄ ((Yt−1, Zt−2), ·). Suppose the coupling
P̄ is ‘faithful’ (Rosenthal, 1997), meaning that there is a random but finite time τ such that
Yτ = Zτ−1, and Yt = Zt−1 for every t ≥ τ . Then for every k, the estimator Hk(Y, Z) :=
f(Yk) +∑τ−1

i=k+1(f(Yi)− f(Zi−1)) is unbiased for Eπ[f ]. The following informal calculation
shows the unbiasedness in Jacob et al. (2020):

m(π) = lim
n→∞

E[f(Yn)] = E[f(Yk)] +
∞∑

n=k+1
(E[f(Yn)]− E[f(Yn−1)])

= E[f(Yk)] +
∞∑

n=k+1
E[f(Zn)− f(Yn−1)]

= E[f(Yk)] +
τ−1∑

n=k+1
E[f(Zn)− f(Yn−1)] = E[Hk(Y,Z)].

The rigorous proof requires assumptions on the target π and the distribution of τ , see Jacob
et al. (2020); Middleton et al. (2020) and our appendix for details. In principle, the above
construction works for arbitrary initialization π0, though the efficiency depends crucially on
the initialization. In practice, users typically choose π0 in the same way as they initialize
their standard MCMC algorithm. Furthermore, for any fixed integer m ≥ k, the ‘time-
averaged’ estimator Hk:m(Y,Z) := (m−k+1)−1∑m

l=kHl(Y,Z) clearly retains unbiasedness
and reduces the variance. In practice, users typically choose k to be a large quantile of the
coupling time and m to be several multiples of k. Theoretical and empirical investigations
of these methods are provided in O’Leary and Wang (2021); Wang et al. (2021). More
sophisticated estimators using L-lag coupled chains are discussed in Biswas et al. (2019),
but the main idea remains the same.

3.1.2 Unbiased Estimator of g(m(π))
Suppose we can access a routine S such as the JOA estimator in Section 3.1.1, which
outputs unbiased estimators of m(π). The estimator of g(m(π)) can then be constructed
by the randomized MLMC method. Let H1, H2, · · · , H2m be a sequence of i.i.d. random
variables. We let SH(2m) := ∑2m

k=1Hi be the summation of all the 2m terms, and let
SO
H(m) := ∑m

k=1H2k−1, S
E
H(m) := ∑m

k=1H2k be the summation of all the odd and even
terms, respectively. Our estimator is described by Algorithm 1.

Now we discuss the construction of our estimatorW for g(m(π)). Our approach is closely
related to the Blanchet—Glynn estimator (Blanchet et al., 2015). The critical difference is
that our method relaxes the assumption ‘i.i.d. samples from π’ by ‘unbiased estimator of
m(π)’ and incorporates the JOA estimator as a subroutine. Since exact sampling from π is
generally challenging, this relaxation is crucial for practical applications.

After rewriting g(m(π)) = g(E[H]), the core idea is to write g(E[H]) as the limit of a
sequence of expectations. Here we use the Law of Large Numbers and write

g(E[H]) = E[ lim
n→∞

g(SH(2n)/2n)] = lim
n→∞

E[g(SH(2n)/2n)].

After introducing our technical assumptions, we will justify the validity of exchanging the
order between the expectation and limit. Then one can write the limit of expectations as
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Input:
• A subroutine S for generating unbiased estimators of m(π)
• A function g : D → R
• The parameter p for geometric distribution

Output: Unbiased estimator of g(m(π))
1. Sample N from the geometric distribution Geo(p)
2. Call S for 2N times and label the outputs by H1, ...,H2N

3. Calculate the quantities SH(2N ), SO
H(2N−1) and SE

H(2N−1) defined above

4. Calculate ∆N = g
(
SH(2N )/2N

)
− 1

2

(
g
(
SO
H(2N−1)/2N−1

)
+ g

(
SE
H(2N−1)/2N−1

))
Return: W = ∆N/pN + g(H1).

Algorithm 1: Unbiased Multilevel Monte-Carlo estimator

an infinite summation of consecutive sums, i.e.,

g(E[H]) = lim
n→∞

E[g(SH(2n)/2n)] = E[g(H1)] +
∞∑
n=1

E[g(SH(2n)/2n)]− E[g(SH(2n−1)/2n−1)]

= E[g(H1)] +
∞∑
n=1

E[∆n],

where ∆n is defined in Step 4 in Algorithm 1. For each fixed n, the random variable ∆n

can be simulated with cost 2n. To tackle the infinite summation of the expectations, one
can choose a random level N with probability pN and construct the importance sampling-
type estimator ∆N/pN . The following informal calculation justifies the unbiasedness of W
(output of Algorithm 1).

E [W ] = E [g(H1)] + E [∆N/pN ] = E [g(H1)] + E[E [∆N/pN | N ]]

= E [g(H1)] +
∞∑
n=1

E[∆n] = E [g(H1)] +
∞∑
n=1

(E[g(SH(2n)/2n)]− E[g(SH(2n−1)/2n−1)])

= lim
n→∞

E[g(SH(2n)/2n)] = g(E[H]) = g(m(π)).

Moreover, constructing ∆n is a crucial step in Algorithm 1. The construction in Step 4
of Algorithm 1 is often referred to as the ‘antithetic difference estimator,’ which is also used
in Giles and Szpruch (2014); Blanchet et al. (2015). A natural question is whether one can
replace the antithetic difference design with the following seemingly more straightforward
estimator: ∆̃n = g (SH(2n)/2n)−g

(
SH(2n−1)/2n−1) . It turns out we cannot. The rationale

behind the antithetic difference design is that we want to control both the variance and
computational cost simultaneously. As we will see from Section 3.4, the antithetic difference
design allows one to cancel both the constant and linear terms in the Taylor expansion. In
contrast, ∆̃n only cancels the constant term. This difference eventually implies our unbiased
estimator (output of Algorithm 1) will have both finite variance and finite computational
cost only if we use the antithetic difference design.
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It may seem daunting that Algorithm 1 generates 2N samples for each implementation.
However, the actual computational cost is reasonable as the random variable N follows a
geometric distribution and therefore has an exponentially light tail that compensates for
the exponentially increasing term 2N . To be more precise, suppose it takes unit cost to
call S once, in several practical cases including Blanchet and Glynn (2015), the authors
choose p = 1− 2−1.5 ≈ 0.646, the expected computational cost for implementing Algorithm
1 once is then around ∑∞n=0 2n(1− p)n−1p = p

1−p
√

2 ≈ 2.580. Therefore, the expected cost
of Algorithm 1 is shorter than calling the subroutine S three times. Detailed discussion on
the computational cost and the choice of p can be found in Section 3.4.

We use the JOA estimator in Algorithm 1 as our algorithm needs a subroutine to sam-
ple unbiased estimators of m(π). In principle, any unbiased estimator of m(π) (see, e.g.,
Agapiou et al. (2018); Ruzayqat et al. (2022)) can also be fed into Algorithm 1 as a sub-
routine. On the other hand, the JOA estimator appears to be the most general framework
for constructing unbiased estimators of m(π) given intractable π. For concreteness, we will
assume the subroutine S is the JOA estimator subsequently.

3.1.3 Unbiased estimator of polynomials and other special functions

Section 3.1.2 provides us with a relatively general framework for unbiased estimators of
g(m(π)). In some situations where the target function g has certain nice properties, the
unbiased estimators can be easily obtained without resorting to the unbiased MLMC frame-
work. For example, if g(x) = xk is a univariate monomial function, one can call the un-
biased MCMC algorithm k times and obtain unbiased estimators H1, · · · , Hk of Eπ[X].
The estimator ∏k

l=1Hl will then be unbiased for m(π)k. The argument above can be
naturally extended to the case where m(π) ∈ Rm and g : Rm → R is a multivariate
polynomial function. We use the multi-index k = (k1, · · · , km) with ∑m

i=1 ki ≤ n where
k1, . . . , km are non-negative integers, and xk = xk1

1 x
k2
2 · · ·xkmm . Let g(x) = ∑

k≤n αkx
k

denote a multivariate polynomial with degree at most n. The unbiased estimator of
g(m(π)) can be constructed as follows. First, we call the unbiased MCMC subroutine S
for n times and label the outputs by H1, · · · , Hn, each is an independent vector-valued
unbiased estimator of m(π). Then for each k = (k1, · · · , km) we calculate the quan-
tity Ĥ(k) = ∏k1

l1=1Hl1,1
∏k1+k2
l2=k1+1Hl2,2 · · ·

∏k1+···+km
lm=k1+···+km−1+1Hlm,m, where Ha,b stands for

the b-th coordinate of Ha ∈ Rd. It is clear from the independence of H1, · · · , Hn that
E[Ĥ(k)] = m(π)k. Finally, we output ∑k αkĤ(k), which is unbiased for g(m(π)) by the
linearity of expectation. It is different from Algorithm 1 as it requires a fixed number of
calls for S.

When g : R → R is a real analytic function on D, i.e., g(x) = ∑∞
n=0 ai(x − a)n for

some real number a, where ai = g(i)(a)/i!. Suppose Ñ is a non-negative integer random
variable with P(Ñ = k) = qk. The unbiased estimator for g(m(π)) can be constructed
by first generating Ñ , and then calling the subroutine S for Ñ times to generate unbiased
estimators of Eπ[X]. Denote the outputs by H1, · · ·HÑ , the final estimator can be expressed
by (aÑ/qÑ ) · (∏Ñ

j=1(Hj − a)/Ñ !) This idea exists in previous literature, such as Blanchet
et al. (2015), when π can be perfectly simulated. We generalize this idea to the case where π
is intractable. In particular, when g(x) = ex and Ñ follow from the Poisson distribution, the
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estimator is known as the ‘Poisson estimator’, which is used in both physics and statistics,
see Wagner (1987); Papaspiliopoulos (2009); Fearnhead et al. (2010).

As discussed above, these power-series-type estimators require the function g to have all
order derivatives at a. Meanwhile, constructing the estimator typically necessitates users
having access to all the higher-order derivatives of g. However, this becomes impractical
when g is complicated. Therefore, throughout this paper, we will primarily focus on using
the unbiased MLMC framework for estimating g(m(π)) given its generality. This subsection
intends to remind our readers that more straightforward choices may exist when g behaves
‘nice’ enough.

3.2 Nested Expectations

Now we extend our method to estimate the nested expectations. Recall that a nested expec-
tation can be written as Eπ[λ], where λ(x) := f(x, γ(x)), where γ(x) = Ey∼π(y|x)[φ(x, y)]
is another expectation under the conditional distribution. We first decompose the joint
distribution π(x, y) as the marginal distribution π(x) times the conditional distribution
of π(y|x). When fixing x = x0, then λ(x0) = f(x0,Ey∼π(y|x0)[φ(x0, y)]) is a function of
Eπ(y|x0)[φ(x0, y)] and our previous framework can be applied. Our estimator is as follows.

1. Sample x from π(x)
2. Given x fixed, generate an unbiased estimator λ̂(x) of λ(x) using Algorithm 1

Return: λ̂(x).

Algorithm 2: Unbiased Multilevel Monte-Carlo estimator for nested expectation

Algorithm 2 can be viewed as the ‘conditional’ version of Algorithm 1. We first sample
x and apply Algorithm 1 to generate an unbiased estimator under π(·|x). After taking the
randomness of x into account, we show the output Algorithm 2 is unbiased for Eπ[λ].

Proposition 1 We have E[λ̂] = Eπ[λ].

Proposition 1 will be established as part of the proof for Theorem 4, with detailed
explanations provided in Appendix A.4.

Algorithm 2 is useful when π(x) can be directly sampled from, and π(y|x) can be
approximated sampled from some MCMC algorithms. To see the potential applications of
Algorithm 2, we present a typical example of the nested expectation, namely estimating
the expected utility under partial information (Giles, 2018; Giles and Goda, 2019). Other
examples, including the Bayesian experimental design and variational autoencoders, are
given in Rainforth et al. (2018); Hironaka and Goda (2023); Goda et al. (2022).

Example 5 (The utility under partial information) Suppose we have a two-stage pro-
cess (X,Y ) with joint distribution π(x, y). Suppose we have D possible strategies (for exam-
ple, treatments), each with corresponding utility fd(x, y) for d ∈ {1, · · · , D}. If we have to
choose a strategy without seeing the values of (X,Y ), the optimal expected utility would be
maxd E[fd(X,Y )]. Similarly, after seeing the whole information, the optimal utility would be
E[maxd fd(X,Y )]. In the intermediate case, if one has observed only X, the optimal strategy
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would maximize the conditional utility, i.e., d∗(X) = arg maxd E[fd(X,Y )|X]. The optimal
utility with partial information is E[maxd E[fd(X,Y )|X]], which is a nested expectation.

The expected utility under partial information finds applications in computational fi-
nance, especially in option pricing Belomestny et al. (2015); Zhou et al. (2022). Meanwhile,
the difference between full and partial utility E[maxd fd(X,Y )] − E[maxd E[fd(X,Y )|X]]
quantifies the ‘value’ of the information in Y , which also has applications in the evaluation
of Value-at-Risk (VaR) (Giles, 2018) and medical areas (Ades et al., 2004). Existing lit-
erature typically assumes one can sample directly from π(x, y), and regard the intractable
π(x, y) as an open question, see Section 5 of Giles and Goda (2019) for discussions.

3.3 The Domain Problem and the δ-transformation

There is an extra subtlety in implementing Algorithm 1. Besides requiring H to be an
unbiased estimator of m(π), Algorithm 1 implicitly requires the range of SH(m)/m to be a
subset of the domain of g. This constraint is naturally satisfied when g : D → R has domain
D = Rm, such as g(x) = ex, or g(x1, x2) = max{x1, x2, 1}. However, many natural functions
are not defined on the whole space, such as g(x) = 1/x, or g(x1, x2) = x1/x2. These
functions arise in statistical applications such as doubly-intractable problems (Lyne et al.,
2015), estimating the ratio of normalizing constants (Meng and Wong, 1996). Unfortunately,
Algorithm 1 cannot be implemented if SH(m)/m falls outside D.

Consider a concrete problem of estimating g(m(π))) = 1/m(π) where π is a probability
measure on Ω. The problem can be naturally avoided if SH(m)/m 6= 0 almost surely, which
is often the case for continuous state-space Ω. However, the algorithm may fail for discrete
state spaces. Even if Ω only contains positive numbers, the resulting JOA estimator may
still take 0 with positive probability. The same problem gets worse if the domain of g is of
the form {x | ‖x‖ ≥ c}, where both continuous and discrete Markov chains may fail.

We add an extra δ-transformation to address this issue when needed. Suppose D ⊃
Rd \ Bδ, where Bδ := {x | ‖x‖ ≤ δ}. In other words, D contains everything in Rd except
for a compact set. Let H be the output of the unbiased MCMC subroutine S. If ‖H‖ ≤ δ,
we flip a fair coin and move H to H + (2δ/

√
d)~1 given head and H − (2δ/

√
d)~1 given

tail, where ~1 is the all-one vector in Rd. Formally the transformation can be defined as
H → H̃ := H1‖H‖≥δ + (H + (2δ/

√
d)~1B)1‖H‖<δ, where B follows a uniform two-point

distribution on {−1, 1}. After the transformation, H̃ has support in D, and the next
proposition shows H̃ has the same expectation as H (and therefore still unbiased), with
covariance matrix no larger than the covariance of H plus a scalar times identity matrix.

Proposition 2 Let H̃ be δ-transformation of H, then ‖H̃‖ ≥ δ and E[H̃] = E[H] = m(π),
and Cov[H̃] = Cov[H] + 4δ2P[‖H‖≤δ]

d Id 4 Cov[H] + 4δ2

d Id. Here A 4 B means B − A is a
symmetric positive semi-definite matrix.

The δ-transformation can be used after Step 2 of Algorithm 1 for the outputs of the
unbiased MCMC algorithm. After getting H1, . . . ,H2N of m(π), we could apply the δ-
transformation on each of them to ensure every H̃i is still unbiased but has support inside
D. Since the above proposition shows the δ-transformation only increases the variance by
no more than 4δ2, theoretical results in Section 3.4 below also hold for estimators after
the transformation, albeit a slightly worse dependency on the constants. To mitigate the
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increase in variance resulting from the δ-transformation, Proposition 2 also advises users to
select the smallest feasible value of δ that satisfies our assumption D ⊃ Rd \Bδ.

3.4 Theoretical Results

With all the notations above, we are ready to state our technical assumptions and prove the
theoretical results. Our theoretical analysis will focus on the unbiased estimator described
in Algorithm 1. All the results still go through if the δ-transformation is needed. Recall
that g is a function from D to R, and H1, H2, · · · are i.i.d. unbiased estimators of m(π).
Now we denote by Vn ⊂ Rd the range of (H1 + · · ·+Hn)/n for every n and V := ∪∞n=1Vn.
Our assumptions are posed on both g and Hi:

Assumption 3.1 (Domain) The function g : D → R satisfies V ⊂ D. Moreover, m(π)
is in the interior of D, i.e., m(π) ∈ D◦.

Assumption 3.2 (Consistency) E[g(SH(n)/n)]→ g(m(π)) as n→∞.

Assumption 3.3 (Smoothness) The function g is continuously differentiable in a neigh-
borhood of m(π), and Dg (·) is locally Hölder continuous with exponent α > 0. In other
words, there exists ε > 0, α > 0 and c = c(ε) > 0 such that s for every x, y ∈ (m(π) −
ε,m(π) + ε), ‖Dg(x)−Dg(y)‖ ≤ c‖x− y‖α.

Assumption 3.4 (Moment) There exists some l > 2 + α such that H has finite l-th
moments, i.e., E[‖H1‖ll] = ∑m

i=1 E[|H1,i|l] <∞.

Assumption 3.5 (Smoothness—Moment Tradeoff) Under the assumption that 3.4 is
already satisfied, there exist constants s > 1, αs ∈ R, and Cs > 0 such that 2αs+(s−1)l > 2s
and E(|∆n|2s) ≤ Cs2−αsn for every n ≥ 0, where

∆n =

g (SH(2n)/2n)− 1
2

(
g
(
SO
H(2n−1)/2n−1

)
+ g

(
SE
H(2n−1)/2n−1

))
n ≥ 1

g(H1) n = 0.

We briefly comment on the Assumptions 3.1—3.5. The descriptions below are mostly
pedagogical, and the detailed proofs are deferred to the Appendix (Section A).

The Domain Assumption 3.1 guarantees Algorithm 1 can be implemented. When g does
not directly satisfy this assumption, but D ⊃ Rd \ Bδ, then we apply the δ-transformation
to enforce the first half of Assumption 3.1 holds. All the theoretical results still hold.

The consistency Assumption 3.2 is expected and somewhat necessary. It appears in
related works, including Vihola (2018); Blanchet and Glynn (2015) explicitly or implicitly.
Due to the Law of Large Numbers, we already know SH(n)/n → m(π) almost surely,
therefore g(SH(n)/n) converges to g(m(π)) due to the continuity of g. Assumption 3.2
requires the expectation of g(SH(n)/n) to converge to the expectation of its limit. When g
is itself bounded, or g(SH(n)/n) can be uniformly bounded by a random variable with finite
mean, then Assumption 3.2 holds automatically due to the dominant convergence theorem.
In addition, since the sequence of random variables {SH(n)/n} is uniformly integrable,
SH(n)/n converges to E[H] both almost surely and in L1. If we know |g(x)| ≤ c(1 + ‖x‖)
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for some universal constant c, then Assumption 3.2 still holds by the generalized dominant
convergence theorem (Folland, 1999). In other cases, it is necessary to manually verify
Assumption 3.2, such as demonstrating the uniform integrability of g(SH(n)/n).

The Smoothness Assumption 3.3 guarantees both g is smooth enough at a neighborhood
of m(π), and the derivative of g is Hölder continuous. When g is infinitely differentiable,
and there is no singularity on a neighborhood of m(π), then we expect Assumption 3.3 to
hold with α ≥ 1. We emphasize that we only require Dg to be locally Hölder continuous
near m(π), which is much weaker than requiring Dg to be globally Hölder continuous.

The Moment Assumption 3.4 requires more than l-th moment of the unbiased estimator
Hi, where l is strictly larger than 2+α. When the JOA estimator is used for generating Hi,
Assumption 3.4 generally holds when f has strictly more than l-th moment under π, and the
coupling time τ has a very light tail. The tail behavior of τ is closely related to the mixing
time of the underlying MCMC algorithm. We recall that a π-stationary Markov chain with
transition kernel P is said to be geometrically ergodic if there is a γ ∈ (0, 1) and a function
C : Ω→ (0,∞) such that ‖Pn(x, ·)− π‖TV ≤ C(x)γn, for π—a.s. x. Geometric ergodicity
is a central notion in MCMC theory. There is a large body of literature, including but not
limited to, Mengersen and Tweedie (1996); Roberts and Tweedie (1996a,b); Wang (2022);
Livingstone et al. (2019), that shows a wide family of MCMC algorithms is geometrically
ergodic.

Our result for guaranteeing Assumption 3.4 is the following.

Proposition 3 (Verifying Assumption 3.4, informal) Suppose the Markov chain P is
π-stationary and geometrically ergodic, and f is a measurable function with finite p-th
moment under π for any p > l. Suppose also there exists a set S ⊂ Ω, a constant ε̃ ∈ (0, 1)
such that inf(x,y)∈S×S P̄ ((x, y),D) ≥ ε̃, where D := {(x, x) : x ∈ Ω} is the diagonal of Ω×Ω.
Then the JOA estimator Hk(Y,Z) := f(Yk) + ∑τ−1

i=k+1(f(Yi) − f(Zi−1)) has a finite l-th
moment, and therefore satisfies Assumption 3.4.

The formal description of the above proposition and the detailed proofs will be deferred to
Appendix A.3. It can be viewed as a slightly stronger version of Proposition 3.1 in Jacob
et al. (2020), where the authors established the finite second-order moment.

The Tradeoff Assumption 3.5 bounds E[|∆n|2s]. The condition 2αs+(s−1)l > 2s reflects
the tradeoff between the smoothness of g and the moment assumption on Hi. Consider the
following scenarios: 1: Suppose g is at least twice continuously differentiable, and the
derivative Dg is Lipschitz continuous. Then we have ∆n = O((SH(2n)/2n)2) by Taylor
expansion. Meanwhile, the Central Limit Theorem (CLT) shows ∆n = Op(2−n). Therefore
we choose αs = s, and Assumption 3.5 is true for positive l. In this case, Assumption 3.5
is weaker than Assumption 3.4. 2: Suppose g is at most of linear growth, i.e., |g(x)| ≤
c(1 + ‖x‖). In this case we can only bound ∆n by Op(2−n/2) again by the CLT. We choose
αs = s/2 and it thus requires l > s/(s − 1). This is also the assumption in Blanchet and
Glynn (2015); Blanchet et al. (2019). 3: Assuming that E[|∆n|2s] is upper bounded by a
constant C(s) that solely relies on s, this occurs when either the function g is bounded, or H
is supported in a compact region. Then we can choose αs = 0, and therefore l > 2s/(s−1).
In summary, stronger smoothness requirements on g result in weaker assumptions on the
moment of Hi, and vice versa.

Our main theoretical result is as follows.
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Theorem 1 Under Assumptions 3.1—3.5, define γ := min{α, αss + (s−1)l
2s − 1} (which is

strictly positive according to Assumption 3.5), if N ∈ {1, 2, . . .} is geometrically distributed
with success parameter p ∈

(
1
2 , 1−

1
2(1+γ)

)
, then the estimator W := ∆N

pN
+ g(H1) described

in Algorithm 1 satisfies:

1. E[W ] = g(m(π)),

2. There exists a constant C such that Var(W ) ≤ E[W 2] ≤ Cp−1 2−(1+γ)

1−
(
(1−p)21+γ

)−1 ≤

Cp−1 2−(1+γ)

1−
(
(1−p)21+γ

)−1 <∞.

3. The expected computational cost of Algorithm 1 is finite.

The proof of Theorem 1 relies on the following key lemma to bound ∆n:

Lemma 2 Under Assumptions 3.1—3.5, E[|∆n|2] = C2−(1+γ)n, where γ = {α, αss + (s−1)l
2s −

1} > 0, and C = C(m, l, ε, s, α) is a constant.

The proof is deferred to Appendix A.2, but the main idea is to use the antithetic
design to cancel the linear term in the Taylor expansion. This cancellation in turn gives us
E[|∆n|2] = O(2−(1+Ω(1))n), which has an O(2−(Ω(1))n) gain over the canonical rate from the
CLT. With Lemma 2 in hand, we are ready to show Theorem 1.
Proof [Proof of Theorem 1] We will first show Statement 1 assuming Statement 2 holds.
Then we show both Statement 2 and 3 holds.

Proof of Statement 1: Suppose W has a finite second moment, then the conditional
expectation E[W |N ] is well defined (see Section 4.1 of Durrett (2019)). By the law of iter-
ated expectation: E[W ] = E

[
E[W | N ]

]
= E[g(H1)] + E

[E[∆n|N ]
pN

]
= E[g(H1)] + E

[
dN/pN

]
,

where dn = E[g(SH(2n)/2n)] − E[g(SH(2n−1)/2n−1)]. We can further calculate E
[
dN/pN

]
:

E
[
dN/pN ] = ∑∞

i=1(di/pi)pi = ∑∞
i=1 di. Therefore E[W ] = limn→∞ E[g(SH(2n)/2n)] =

g(m(π)), as desired. The last equality uses Assumption 3.2.
Proof of Statement 2: Since E[W 2] ≤ 2

(
E[g(H1)2] + E

[
∆2
N/p

2
N

])
, it suffices to show

E
[
∆2
N/p

2
N

]
<∞. We have E

[
∆2
N/p

2
N

]
= ∑∞

n=1 E[∆2
n](1− p)−n+1p−1. By Lemma 2,

E
[∆2

N

p2
N

]
≤ Cp−1(1− p)

∞∑
n=1

2−(1+γ)n(1− p)−n = Cp−1(1− p)
∞∑
n=1

(
(1− p)21+γ)−n

= Cp−1 2−(1+γ)

1−
(
(1− p)21+γ)−1 <∞,

where the last inequality follows from (1− p) > 2−(γ+1).
Proof of Statement 3: Let CH be the computation cost for implementing the unbiased

MCMC subroutine S once. It is shown in Jacob et al. (2020) that CH <∞. The computa-
tion cost for implementing Algorithm 1 essentially comes from 2N calls of the subroutine S,
where N ∼ Geo(p). Therefore it suffices to show 2N has a finite expectation. We calculate

E[2N ] =
∞∑
n=1

2np(n) =
∞∑
n=1

2n(1− p)n−1p = 2p
2p− 1 <∞,
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where the last inequality follows from p > 1/2.

Theorem 1 immediately implies the following corollary on the computational cost, with
proof given in Appendix A.5.

Corollary 3 Under Assumption 3.1—3.5, for any ε > 0, we can construct an estimator
W̃ := ∑n

i=1Wi/n by applying Algorithm 1 repeatedly for n iterations and calculating their
average. This construction This construction allows us to achieve an expected computational
cost of O(1/ε2), ensuring that the mean square error between W̃ and the ground truth
g(m(π)) remains bounded by ε2, i.e. E[(W̃ − g(m(π)))2] ≤ ε2.

The computation cost O(1/ε2) is shown to be rate-optimal for Monte Carlo estima-
tors (Heinrich, 1992; Dagum et al., 2000). Moreover, when many processors are available,
users often care more about the completion time of each processor rather than the total
computational cost of all the processors. The following proposition compares the expected
completion time between our unbiased estimator with the standard Monte Carlo estimator.
To fix ideas, we assume the standard single-chain Monte Carlo estimator is of the form
SMC(k, n) := g(∑n

i=k f(Xi)/(n− k + 1), where k, n are chosen by users. Here {Xi}ni=1 is a
Markov chain with the same transition kernel P used in the subroutine S, which satisfies
the assumptions in Proposition 3. The constant k is known as the ‘burn-in’ period, and n
is the total number of iterations of the Monte Carlo algorithm. We also define the standard
multiple-chain Monte Carlo estimator as ∑m

j=1 SMC,j(k, n)/m, which is the average over m
independent single-chain estimators. Proposition 4 shows our unbiased estimators have a
much faster completion time than the classical estimators in the massively parallel regime.
The proof of Proposition 4 is given in Appendix A.5.

Proposition 4 Under Assumption 3.1—3.5, fix any error tolerance level ε > 0, any p ∈
(1/2, 1/21+γ), let W denote the output random variable after implementing Algorithm 1
with parameter p. Suppose the users have more than Varp[W ]/ε2 available processors, then
the users can construct an estimator with MSE at most ε2 within expected computing time
O(1) per processor. In contrast, the standard multiple-chain Monte Carlo estimators with
any fixed burn-in period k (which is independent of ε) have computing time O(1/ε) per
processor.

It is important to note that the analysis of completion time for both methods is con-
ducted relative to the value of ε. This means that we are holding the dimensionality and
other parameters constant throughout the analysis.

Now we discuss the choice of the parameter p when implementing Algorithm 1 in prac-
tice. Theorem 1 suggests every p ∈ (1/2, 1 − 1/21+γ) guarantees unbiasedness, finite vari-
ance, and finite computational cost. On the other hand, a larger value of p yields a faster
completion time but a larger variance for obtaining one estimator using Algorithm 1. The
actual choice of p depends on the user’s objective and the number of available processors.
Here we discuss two practical scenarios:

• Suppose the user has sufficiently many processors and wants to minimize the com-
pletion time. The users should choose the parameter p as larger as possible (but
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no larger than the theoretical limit 1 − 1/21+γ) to fully utilize their parallel compu-
tation capacity. To be precise, for fixed p ∈ (1 − 1/21+γ) and error tolerance level
ε > 0, ‘sufficiently many’ means more than Varp(W )/ε2 processors, where Varp(W )
is the variance of the output of Algorithm 1 with input parameter p. In practice,
the quantity Varp(W ) is usually unknown to the users as a-priori. Nevertheless, users
can either use the upper bound in Theorem 1 as a conservative estimate or run some
pre-experiments to estimate Varp(W ).

• Suppose the user wants to minimize the total computational cost over all the proces-
sors (which is different from the completion time when multiple processors are avail-
able). Then the objective is to minimize the work-normalized variance σ̃2

p(W ) defined
in Glynn and Whitt (1992), which is the product of the computation cost and the vari-
ance of an individual estimator. Then it follows from the above calculation that the
σ̃2(W ) is upper bounded by a constant multiple of∑∞n=1

(
(1−p)21+γ)−n×∑∞n=1

(
2(1−

p)
)n
. Applying the Cauchy-Schwarz inequality to this product of sums, one obtains

an upper bound which can be minimized in closed form by taking p = 1 − 2−1− γ2 .
When γ = 1, p can be chosen as 1 − 2− 3

2 ≈ 0.646, recovering the result in Blanchet
and Glynn (2015).

We also present two CLTs of our estimator. These results directly follow the standard
arguments from Glynn and Heidelberger (1991); Blanchet and Glynn (2015). These results
show our estimator has the ‘square-root’ convergence rate. The CLTs can also help establish
confidence intervals.

• When the number of estimators W1,W2, . . . ,Wn, . . . in Algorithm 1 goes to infinity,
we have

(∑n

i=1 Wi√
n
− g(m(π))

)
→ N(0,Var(W1)) as n→∞.

• Given a fixed budget b, let N(b) be the number of i.i.d. estimators W1,W2, . . . ,WN(b)

that can be generated by time b. Then we have
√
b ·
(∑N(b)

i=1 Wi

N(b) − g(m(π))
)
→

N(0, σ̃2(W )) as b→∞, where σ̃2(W ) is the work-normalized variance defined above.

3.5 Theoretical Results for Unbiased Estimators of Nested Expectation

To conclude this section, we present a theoretical justification of our extension for nested
expectations (Section 3.2). Let us recall that our objective is to obtain an unbiased estima-
tion of Ex[f(x,Ey[φ(x, y)|x])]. We make the assumption that x can be simulated perfectly,
whereas π(y | x) can only be sampled approximately using an MCMC algorithm. We also
define a family of functions {gx} where gx(y) := f(x, y).

To begin our Algorithm 2, we initially generate a sample x from π(x). Then, with x
fixed, we sample N ∼ Geo(p) and apply the unbiased MCMC subroutine for 2N times to
generate H1(x), · · · , H2N (x) which are all i.i.d. unbiased estimators of Ey[φ(x, y)|x]. Then
we create the ∆N as described in Algorithm 1 and output λ̂(x) = ∆N/pN + gx(H1) which
is unbiased for gx(E[φ(x, y)|x]).

To state our assumptions, we define that gx uniformly satisfies the domain assump-
tion 3.1 if each gx fulfills Assumption 3.1 with m(π(y|x)) := Ey[φ(x, y)|x]. Likewise, we
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state that gx uniformly satisfies assumption 3.2 if E[gx(SH(n)/n)|x] → g(m(π(y|x))). Ad-
ditionally, we state that gx uniformly satisfies assumption 3.3 if every gx satisfies 3.3, and
the corresponding Hölder constants are independent of x. The following theorem presents
theoretical results for unbiased estimators of nested expectations.

Theorem 4 Under the assumptions that gx uniformly satisfies Assumptions 3.1 through
3.3, and that Assumptions 3.4 and 3.5 are valid, let γ := min{α, αss + (s−1)l

2s − 1} (which is
strictly positive according to Assumption 3.5). If N ∈ {1, 2, . . .} is geometrically distributed
with success parameter p ∈

(
1
2 , 1−

1
2(1+γ)

)
, then the estimator λ̂(x) described in Algorithm

2 satisfies:

1. E[λ̂(x)] = Ex[f(x,Ey[φ(x, y)|x])],

2. There exists a constant C such that

Var(λ̂(x)) ≤ Cp−1 2−(1+γ)

1−
(
(1− p)21+γ)−1 ≤ Cp

−1 2−(1+γ)

1−
(
(1− p)21+γ)−1 <∞.

3. The expected computational cost of Algorithm 2 is finite.

The proof is presented in Appendix A.4.

4. Numerical Examples

Now we investigate the empirical performance of the proposed method with several exam-
ples. We first implement the algorithm on a multivariate Beta distribution and then on a
2-D Ising model with periodic boundaries. In both examples, we compare the performance
of our estimator with the standard Monte Carlo estimator when multiple processors are
available. Finally, we estimate the nested expectations using a small real-data example
modeled by the cut-distribution. Throughout this section, the standard Monte-Carlo (or
MCMC/Metropolis—Hastings/Gibbs sampler) estimator for g(Eπ[f ]) should be understood
as the the ‘plug-in’ estimator g(∑n

i=l f(Xi)/(n − l + 1)), where {Xi} follows some MCMC
algorithm targeting at π with a burn-in period l. Fix any quantity µ that users wish to
estimate, we define the relative error of an estimator X as

√
E[(X − µ)2]/|µ|.

4.1 Product of Inverse Expectations

We begin with a toy model with known ground truth. Let X = (X1, · · · , XK) be a random
vector with independent componentsXi ∼ Beta(i, 1). We are interested in the product of the
inverse expectation: gK (E[X]) = ∏K

i=1 1/E[Xi]. Standard calculation shows gK (E[X]) =
K + 1. Meanwhile, gK cannot be expressed as an expectation, so existing methods fail to
provide unbiased estimators.

We apply our method to this problem. We first test the sensitivity of Algorithm 1 to the
parameter p, the success probability of the geometric distribution. Setting K = 8, and using
the R package ‘unbiasedmcmc’ in Jacob et al. (2020) for estimating E[Xi] 2, we generate

2. Here the Beta distribution can be perfectly sampled, and there is no need to use the JOA estimator in
practice. However, for illustrating our general framework, we still implement the JOA estimators for
estimating E[Xi] via couplings of MCMC algorithms.
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Figure 2: The relative error (line plot) and standard error (histogram) plots for gK based
on 5 × 104 unbiased estimators. Left: Fix dimension K = 8, parameter p varies
from 0.6− 0.8. Right: Fix parameter p = 0.7, dimension K varies from 1 to 8.

5×104 unbiased estimates of gK (·) using Algorithm 1 with parameter p ranging from 0.6 to
0.8, k = 4× 104 and m = 4k. Figure 2(a) reports the relative and standard errors for each
p. The plot shows that the estimates are pretty accurate and vary little for different p. We
set p = 0.7 in the following experiments to ensure high accuracy and efficient computation.
Then we let K change from 1 to 8 and test the accuracy of our method when the dimension
varies. For each K, we implement Algorithm 1 for 5× 104 times independently to generate
unbiased estimators of gK . Our point estimates and the corresponding standard errors are
reported in Figure 2(b). It is clear that the point estimates are highly accurate and fit the
ground truth almost perfectly. The standard error gets larger when K increases, indicating
a higher uncertainty under higher dimensionality.

Now we compare our estimator with a Metropolis-Hastings estimator to show the per-
formance of our method in the parallel regime. To make a fair computation, we use the
same random-walk transition kernel in both the unbiased MCMC subroutine S of Algorithm
1 and the Metropolis-Hastings algorithm. Since Algorithm 1 takes a random computation
time per run, we follow Nguyen et al. (2022) to ensure equal computation time across pro-
cessors as follows: On each processor, we always first run Algorithm 1 and record its running
time. Then we run the standard MCMC algorithm for the same time and discard the first
10% samples as burn-in. This way, the two algorithms have the same computational cost
for each processor. Finally, we run both methods independently on multiple processors and
compare their accuracy after averaging their results respectively over all the processors.

Figure 3(a) depicts the different bias/variance behaviors between a single standard
MCMC estimator and our unbiased estimator. A standard MCMC estimator is typically
slightly biased but with a smaller variance. Here, the MCMC estimator slightly overesti-
mates the ground truth. In contrast, our unbiased estimator completely eliminates the bias
but has a larger variance. For a single estimator, the standard MCMC estimator has a
smaller MSE.

Nevertheless, the benefit of unbiasedness becomes significant in the parallel regime, as
averaging over multiple processors significantly decreases the variance but keeps the bias
the same. As shown in Figure 3(b), when we increase the number of processors, the relative
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Figure 3: Left: Box plot of 5× 104 estimators generated by Metropolis-Hastings and Algo-
rithm 1. The red dashed line represents the true value. Right: Relative error of
the standard MCMC estimator (red) and unbiased estimator (black) as a function
of the number of processors.

error of our unbiased estimators eventually vanishes. In contrast, the error of the MCMC
estimator will never converge to 0 due to its systematic bias. Here the relative error from
the systematic bias of MCMC is around 0.5%. In this example, our estimator becomes more
accurate than the standard MCMC estimator when there are more than 2500 processors.

4.2 Ising Model

We examine our method on the 2-D square-lattice Ising model. Let Λ be a set of n × n
lattice sites with periodic boundary conditions. A spin configuration σ ∈ {−1, 1}n×n is an
assignment of spins to all the lattice vertices. A 2-D Ising model is a probability distribution
over all the spin configurations, defined as pθ(σ) = exp(−θH(σ))/Z(θ). Here H(σ) =
−
∑
〈I,J〉 σiσj is the ‘the Hamiltonian function’, where the sum is over all pairs of neighboring

sites. The normalizing constant Z(θ) = ∑
σ exp(−θH(σ)) is the partition function. The

parameter θ ≥ 0 is interpreted as the inverse temperature in physics.
Now we consider the problem of estimating the ratio of normalizing constant Z(θ1)/Z(θ2).

The problem, also known as estimating the free energy differences, is of great interest in
computational physics and statistics (Bennett, 1976; Meng and Wong, 1996). Previous lit-
erature has faced challenges in obtaining unbiased estimators of Z(θ1)/Z(θ2) due to the
computational intensity involved in sampling the Ising model perfectly (see Propp and
Wilson (1996)). Therefore, our approach can be considered as an unbiased alternative to
existing methods such as importance or bridge samplers (Meng and Wong, 1996; Gelman
and Meng, 1998).

We will use our method to construct unbiased estimators of Z(θ1)/Z(θ2). First, we
notice that the ratio can be written as Z(θ1)/Z(θ2) = Eθ2 [eθ2H(σ)]/Eθ1 [eθ1H(σ)]. For fixed
θ1, θ2, we call the JOA estimators for unbiased estimation of Z(θ1) and Z(θ2) independently
and feed them into Algorithm 1 for unbiased estimators of the ratio. The JOA estimators
can be obtained via coupling two Gibbs samplers using the package ‘unbiasedmcmc’ in
Jacob et al. (2020). We implement our method using n = 12, p = 0.7, k = 4× 103,m = 2k,
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Figure 4: Left: The unbiased estimates of Z(θ1)/Z(θ2) for n = 12. Solid lines represent
θ2 = 0.02 and dash lines represent θ2 = 0.10. Right: Relative error for different
algorithms. Black lines are unbiased estimators, and red lines are standard Gibbs
sampler estimators.

θ1 ∈ {0.02, 0.03, . . . , 0.18} and θ2 ∈ {0.02, 0.10} on a CPU-based computer cluster. For
each combination of (θ1, θ2), we use our unbiased method to generate 2 × 104 unbiased
estimators each. We present results in Figure 4(a). The solid line represents our estimates
for Z(θ1)/Z(0.02) and dash line represents our estimates for Z(θ1)/Z(0.10). For comparison,
we also run 2 × 104 independent repetitions of the standard Gibbs sampler estimators for
each combination of (θ1, θ2). Using the same method described in the previous example
(Section 4.1), each run of the Gibbs sampler takes the same amount of time as the unbiased
estimator.

To check the accuracy and compare with the standard Gibbs sampler estimator, we need
to know the ground truth for every Z(θ1)/Z(θ2), which is not analytically tractable. Here
for each pair (θ1, θ2), we run a very long Gibbs sampler for 2× 105 steps with half burn-in
and run 104 independent repetitions to estimate both Eθ2 [eθ2H(σ)] and Eθ1 [eθ1H(σ)]. Then
we use their ratio as a proxy for our ground truth for Z(θ1)/Z(θ2). Figure 4(b) compares
these two methods in terms of their estimation error as a function of θ1. As shown in
the plot, for every (θ1, θ2) pair, our unbiased estimator has a relative error very close to
0. This suggests our estimator is highly accurate. In contrast, the Gibbs sampler has a
non-negligible bias, which grows as θ1 grows. In particular, the error (which comes from
bias) of the standard Gibbs sampler estimator is more than 6% when θ1 gets closer to 0.18,
while our unbiased estimator has an error much less than 1%.

To further examine the error of both methods as a function of the number of processors,
we fix θ2 = 0.1 and choose θ1 = 0.15 and 0.18 to plot the relative error versus the number of
processors in Figure 5. The behavior is very similar to Figure 3 for the Beta example. Again,
as the number of processors increases, the error of the unbiased Monte Carlo estimator
vanishes when the number of processors increases. In contrast, the systematic bias causes
the error of the Gibbs sampler is always no less than 1.5% and 6% for θ1 = 0.15 and
0.18, respectively, no matter how many processors are used. Together with the experiments
in Section 4.1, it is clear that our estimator is significantly preferable to the standard
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Figure 5: Relative error of the standard MCMC estimator (red) and unbiased estimator
(black) as a function of the number of processors.

Monte Carlo method when the users have many parallel processors but a limited budget
per processor.

4.3 Nested Expectation

Finally, we estimate the following nested expectation: U := Eθ1 [maxd Eθ2|θ1 [fd(θ1, θ2)|θ1]].
The quantity maxd Eθ2|θ1 [fd(θ1, θ2)|θ1] is often interpreted as the utility or the optimal
outcome over D possible choices given the information of θ1. Since U contains a nested
expectation, with an outer expectation over θ1 and an inner expectation over θ2|θ1, the
vanilla Monte Carlo approach (sample N1 realizations of θ1, and sample N2 realizations
of θ2 given each θ

(i)
1 ) typically has suboptimal computational complexity O(ε−3) or even

O(ε−4) for ε root mean square error (rMSE) under varying assumptions. Therefore, MLMC
methods have been proposed when both θ1 and θ2|θ1 can be perfectly sampled. The case
where θ2|θ1 can only be approximately sampled is considered open in (Giles and Goda,
2019).

We construct unbiased estimators of U using the method described in Section 3.2. In
this example, suppose we have two models. The first model comprises parameter θ1 with
prior π1(θ1), data Y1 with likelihood p1(y|θ1), the second model comprises parameter θ2
with prior π2(θ2), data Y2 with likelihood p2(y|θ1, θ2). The cut distribution is defined as
π?(θ1, θ2) := π(θ1|Y1)π(θ2|Y2, θ1). This is different from the usual posterior distribution
π(θ1, θ2|Y1, Y2) = π(θ1|Y1, Y2)π(θ2|Y2, θ1). In the cut model, the distribution of θ1 depends
on the observations from the first model (Y1) but not the second model (Y2). Since the
cut model prevents the information in the second model from influencing the inference on
the first, it is often used as an alternative to Bayes full posterior in the presence of model
misspecification. Conducting inference on the cut model is challenging. The conditional
distribution π(θ2|Y2, θ1) is usually only known up a normalizing constant Z(θ1). Standard
MCMC methods on the joint space (θ1, θ2) cannot be directly implemented due to the
intractability of Z(θ1), see (Plummer, 2015) for detailed discussions.

In our case, we consider the real-data example used in (Plummer, 2015; Jacob et al.,
2020) from epidemiology, which is motivated by a study of the international correlation
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Figure 6: Left: Estimates and 95% CIs for λd computed from 105 JOA estimators. Right:
Histogram of estimators for Eθ1 [maxd Eθ2|θ1 [λd]] computed from 105 calls of Al-
gorithm 2.

between human papilloma virus (HPV) prevalence and cervical cancer incidence (Maucort-
Boulch et al., 2008). The first module consists of high-risk HPV prevalence data from 13
countries. The data Y1 = {(Zi, Ni)}13

i=1 consists of 13 pair of integers, where Zi is the
number of women infected with HPV, from country i with population Ni. We assume
a prior Beta(1, 1) on each component of θ1 independently, and an independent binomial
likelihood Zi ∼ Binom(Ni, θi) for each i. This yields a product beta posterior for θ1.
The second module consists of the cancer data from the same 13 countries. The data
Y2 = {(X1,i, X2,i)}13

i=1 consists 13 pair of integers, where X1,i is numbers of cancer cases
arising from X2,i woman-years of follow-up. We assume a bivariate normal prior with mean
0 and a diagonal covariance matrix with variance 103 per component on the parameter
θ2 ∈ R2, and a Poisson regression model X1,i ∼ Poi(exp(λi)), where λi = θ2,1+θ1,iθ2,2+X2,i.

Under the cut model, the first parameter π(θ1|Y1) can be sampled from the product beta,
and the second parameter can be approximately sampled from π(θ2|Y2, θ1) using MCMC.
Suppose we are interested in U := Eθ1 [maxd∈{1,2,...,13} Eθ2|θ1 [λd]], which corresponds to
the expectation of the largest parameter in the Poisson regression after observing θ1. We
implement Algorithm 2 with parameter p = 0.7 to get unbiased estimators of U . In each
run, we first sample one θ1 from the product beta posterior, then use the JOA estimator
with k = 2 × 103,m = 3 × 103 by the R package ‘unbiasedMCMC’ to generate unbiased
estimators of Eθ2|θ1 [λd]. Finally, we use the unbiased MLMC method to eliminate the bias.
Our estimates are presented in Figure 6 below. Figure 6(a) gives the estimates and their
CIs of λd for each d. Figure 6(b) gives the histogram and the fitted curve from 105 unbiased
estimators of U . Figure 6(a) suggests the 12-th country has the largest λd, which is around
21, which is consistent with the result from our unbiased estimator on Figure 6(b).

In order to assess the accuracy of our estimator and compare it with the standard
Metropolis-Hastings estimator, we initially execute 6×103 steps of the Metropolis-Hastings
algorithm. The outcome of this execution is then utilized as a substitute for the true value
of Eθ1 [maxd∈1,2,...,13 Eθ2|θ1 [λd]]. In Figure 7(a), we can observe the distinct bias/variance
characteristics displayed by a single standard MCMC estimator in comparison to our unbi-
ased estimator. Similar to our previous example illustrated in Figure 3(a), a single standard
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Figure 7: Left: Box plot of 105 estimators generated by Metropolis-Hastings and Algorithm
2. The red dashed line represents the true value. Right: Relative error of the
standard MCMC estimator (red) and unbiased estimator (black) as a function of
the number of processors.

Metropolis—Hastings estimator exhibits a smaller variance but also slightly underestimate
the true value, whereas our estimator is unbiased but has a larger variance. Moving on to
Figure 7(b), as the number of processors increases, the error of the unbiased Monte Carlo
estimator progressively diminishes. In contrast, the systematic bias leads to the error of the
Metropolis—Hastings estimator always remaining at no less than 0.5%.

5. Future Works

Based on the combination and generalization of the unbiased MCMC and MLMC method,
we propose general unbiased estimators of g(Eπ[f ]) when π can only be approximately sam-
pled. We further extend this framework to estimate nested expectations under intractable
distributions. Although promising, the existing framework (Algorithm 1 and its variants)
still has the potential to be generalized. We highlight the potential paths forward.

First, T is assumed to be a function of the expectation. This assumption excludes many
important applications, including the quantile and maximum a posteriori (MAP) estima-
tions, where T depends directly on the probability measure instead of the expectation of
some probability measure. We plan to develop a general method to include some/all of
the applications above. Taking a step back, many computational challenges remain even
assuming T (π) := g(Eπ[f ]). Algorithm 1 implicitly requires the range of SH(m)/m is a
subset of the domain of g. For example, our algorithm fails when g(x) =

√
x since the JOA

estimator may not always be non-negative. As remarked by several authors (Lyne et al.,
2015), the domain problem is deeply connected with the sign problem in computational
physics, which is NP-hard in its general form. Progress on the domain problem should not
only let us improve our existing framework but also benefit both the statistics and physics
communities. Lastly, the practical efficiency of the existing estimator (Algorithm 1) is still
largely unexplored. In particular, empirical results suggest that the parameter p in Algo-
rithm 1 significantly influences both the variance and the computation cost. Therefore, a
strategy of optimizing the parameter p is an interesting open problem. Meanwhile, although
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our existing estimator has already achieved the square-root convergence, a stratified version
such as Vihola (2018) may still be able to further reduce variance and improve the constant
before the rate.
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Appendix A. Proofs

A.1 Auxiliary Lemmas

In this section we prove some auxiliary results that will be used throughout the technical
proofs. We start (without proof) the well-known Marcinkiewicz-Zygmund inequality, and
then prove two useful corollaries based on this inequality.

Lemma 5 (Marcinkiewicz-Zygmund inequality) (Marcinkiewicz and Zygmund, 1937).
If X1, · · · , Xn are independent random variables with E[Xi] = 0 and E [|Xi|p] <∞ for some
p > 2. Then,

E
[∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣
p]
≤ CpE

( n∑
i=1
|Xi|2

)p/2 ,
where Cp is a constant that only depends on p.

One corollary of the Marcinkiewicz-Zygmund inequality is:

Corollary 6 With all the assumptions as above, if we further assume that X1, · · · , Xn are
i.i.d.. Then,

E
[∣∣∣∣∣ 1n

n∑
i=1

Xi

∣∣∣∣∣
p]
≤ Cp

E|X1|p

np/2
.

Proof [Proof of Corollary 6] Applying the Marcinkiewicz-Zygmund inequality on
(X1/n,X2/n, . . . ,Xn/n), we have:

E
[∣∣∣∣∣ 1n

n∑
i=1

Xi

∣∣∣∣∣
p]
≤ CpE

( n∑
i=1

∣∣Xi

n

∣∣2)p/2 .
Since xp/2 is convex, we have(

n∑
i=1

∣∣Xi

n

∣∣2)p/2 =
(

1
n

n∑
i=1

|Xi|2

n

)p/2
≤ 1
n

n∑
i=1

|Xi|p

np/2
.
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Taking expectation on both sides of the above inequality yields

E

( n∑
i=1

∣∣Xi

n

∣∣2)p/2 ≤ E|X1|p

np/2
,

and our desired inequality follows.

The Marcinkiewicz-Zygmund inequality naturally generalizes to random vectors.

Corollary 7 (Multivariate Marcinkiewicz-Zygmund inequality) Let X1, · · · , Xn be
i.i.d. random vectors in Rm, with E[Xi] = 0 and E[‖Xi‖pp] = E[∑m

j=1|Xi,j |p] <∞. Then

E
[∥∥ 1
n

n∑
i=1

Xi

∥∥p
p

]
≤ Cp

E
[
‖X1‖pp

]
np/2

.

Proof [Proof of Corollary 7] We know

E
[∥∥ 1
n

n∑
i=1

Xi

∥∥p
p

]
=

m∑
j=1

E
[∣∣ 1
n

n∑
i=1

Xi,j

∣∣p] .
Applying Corollary 6 on each component of each Xi yields

m∑
j=1

E
[∣∣ 1
n

n∑
i=1

Xi,j

∣∣p] ≤ Cp m∑
j=1

E|X1,j |p

np/2
= Cp

E
[
‖X1‖pp

]
np/2

,

as desired.
We also need the following inequality to compare ‖x‖p and ‖x‖q for p 6= q and x ∈ Rm. The
proof follows directly from the Hölder’s inequality, and we omit its proof here.

Lemma 8 For any x ∈ Rm and 0 < p < q, we have:

‖x‖p ≤ m1/p−1/q‖x‖q.

A.2 Bounding E[|∆n|2]

Recall that ∆n = g (SH(2n)/2n) − 1
2

(
g
(
SOH(2n−1)/2n−1

)
+ g

(
SEH(2n−1)/2n−1

))
, and the

final estimator takes the form ∆N/pN + g(H1). Therefore, understanding the theoretical
properties of ∆n is crucial for studying our estimator.
Proof [Proof of Lemma 2] For simplicity, we denote m(π) by µ. By Assumption 3.3, there
exists ε > 0 such that g is α-Hölder continuous on (µ− ε, µ+ ε), we can then write ∆n as:

|∆n| = |∆n|1(A1) + |∆n|1(A2), (2)

where A1 is the event{∥∥∥∥∥SO
H(2n−1)
2n−1 − µ

∥∥∥∥∥ < ε

}
∩
{∥∥∥∥∥SE

H(2n−1)
2n−1 − µ

∥∥∥∥∥ < ε

}
,
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and A2 is the event {
max

(∥∥∥∥∥SO
H(2n−1)
2n−1 − µ

∥∥∥∥∥ ,
∥∥∥∥∥SE

H(2n−1)
2n−1 − µ

∥∥∥∥∥
)
≥ ε

}

Under the event A1, we have
∥∥∥∥SO

H(2n−1)
2n−1 − µ

∥∥∥∥ < ε and
∥∥∥∥SE

H(2n−1)
2n−1 − µ

∥∥∥∥ < ε. This further
implies ∥∥∥∥SH(2n)

2n − µ
∥∥∥∥ < ε

by the triangle inequality and the fact SH(2n)
2n = 1

2

(
SO
H(2n−1)
2n−1 + SE

H(2n−1)
2n−1

)
.

Then we can write ∆n as:

∆n = g

(
SH(2n)

2n
)
− 1

2

(
g

(
SO
H(2n−1)
2n−1

)
+ g

(
SE
H(2n−1)
2n−1

))

= 1
2

(
g

(
SH(2n)

2n
)
− g

(
SO
H(2n−1)
2n−1

))
+ 1

2

(
g

(
SH(2n)

2n
)
− g

(
SE
H(2n−1)
2n−1

))

= 1
2Dg(ξO

n )
(
SH(2n)

2n − SO
H(2n−1)
2n−1

)
+ 1

2Dg(ξE
n)
(
SH(2n)

2n − SE
H(2n−1)
2n−1

)

= 1
4
(
Dg(ξO

n )−Dg(ξE
n)
) SE

H(2n−1)− SO
H(2n−1)

2n−1 ,

where ξO
n is a convex combination of SH(2n)

2n and SO
H(2n−1)
2n−1 , ξE

n is a convex combination of
SH(2n)

2n and SE
H(2n−1)
2n−1 by the Multivariate Mean value Theorem. Under A1, both ξO

n and ξE
n

are within the ε-neighbor of µ, applying the α-Hölder continuous assumption yields

|∆n| ≤ c1(ε)
∥∥∥ξO
n − ξE

n

∥∥∥α · ∥∥∥∥∥SO
H(2n−1)− SE

H(2n−1)
2n−1

∥∥∥∥∥ ≤ c2(ε)
∥∥∥∥∥SO

H(2n−1)− SE
H(2n−1)

2n−1

∥∥∥∥∥
1+α

.

Then,

E
[
|∆n|21(A1)

]
≤ c2(ε)E

∥∥∥∥∥SO
H(2n−1)− SE

H(2n−1)
2n−1

∥∥∥∥∥
2(1+α)

 . (3)

Since SO
H(2n−1) and SE

H(2n−1) are vectors in Rm, applying Lemma 8 on p = 2, q = 2(1 +α)
gives: ∥∥∥∥∥SO

H(2n−1)− SE
H(2n−1)

2n−1

∥∥∥∥∥
2(1+α)

≤ mα

∥∥∥∥∥SO
H(2n−1)− SE

H(2n−1)
2n−1

∥∥∥∥∥
2(1+α)

2(1+α)
(4)

Since SO
H(2n−1) − SE

H(2n−1) is the sum of 2n−1 i.i.d. random variables, each with the
same distribution as H2−H1, applying the Multivariate Marcinkiewicz-Zygmund inequality
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(Corollary 7) gives us:

E

∥∥∥∥∥SO
H(2n−1)− SE

H(2n−1)
2n−1

∥∥∥∥∥
2(1+α)

2(1+α)

 ≤ C2(1+α) ·
E
[
‖H2 −H1‖2(1+α)

2(1+α)

]
2(1+α)(n−1) (5)

≤ C2(1+α) · 23(1+α) ·
E
[
‖H1‖2(1+α)

2(1+α)

]
2(1+α)n . (6)

where the last step uses the inequality (a + b)p ≤ 2p−1(|a|p + |b|p) for p ≥ 2. It is worth
mentioning that the right hand side of (6) is finite as Assumption 3.4 guarantees H1 has
finite l-th moment with l > 2 + α. Combining (3), (4), and (6), we have:

E
[
|∆n|21(A1)

]
≤ C1(m,α, ε)2−n(1+α), (7)

where C1(m,α, ε) = c2(ε) ·C2(1+α) ·23(1+α) ·E
[
‖H1‖2(1+α)

2(1+α)

]
is a constant when Assumptions

3.1—3.4 are satisfied.
Under A2, we have:

|∆n|21(A2) ≤ |∆n|21
(∥∥∥∥∥SO

H(2n−1)
2n−1 − µ

∥∥∥∥∥ > ε

)
+ |∆n|21

(∥∥∥∥∥SE
H(2n−1)
2n−1 − µ

∥∥∥∥∥ > ε

)
(8)

Now we upper bound the first term’s expectation,

E
[
|∆n|21

(∥∥∥∥∥SO
H(2n−1)
2n−1 − µ

∥∥∥∥∥ > ε

)]
≤ E[|∆n|2s]1/sP

(∥∥∥∥∥SO
H(2n−1)
2n−1 − µ

∥∥∥∥∥ > ε

)(s−1)/s

(9)

≤ C1/s
s 2−αsn/sP

(∥∥∥∥∥SO
H(2n−1)
2n−1 − µ

∥∥∥∥∥ > ε

)(s−1)/s

(10)

≤ C1/s
s (ε−l(s−1)/s) · 2−αsn/sE

[∥∥SO
H(2n−1)
2n−1 − µ

∥∥l](s−1)/s

.

(11)

Here (9) follows from the Hölder’s inequality, (10) uses Assumption 3.5, and (11) fol-
lows from the Markov’s inequality. Again, using Lemma 8 and Corollary 7, the term
E
[∥∥SO

H(2n−1)
2n−1 − µ

∥∥l] can be upper bounded by:

E
[∥∥SO

H(2n−1)
2n−1 − µ

∥∥l] ≤ ml/2−1E
[∥∥SO

H(2n−1)
2n−1 − µ

∥∥l
l

]
≤ 2l/2 ·ml/2−1 · Cl ·

E
[
‖H1‖ll

]
2nl/2

. (12)

Combining (11) and (12), we have

E
[
|∆n|21

(∥∥∥∥∥SO
H(2n−1)
2n−1 − µ

∥∥∥∥∥ > ε

)]
≤ C2(m, l, ε, s)2−αsn/s2−nl(s−1)/(2s)

= C2(m, l, ε, s)2−n
(
αs
s

+ (s−1)l
2s

)
,
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where C2(m, l, ε, s) = C1/s
s ·

(
ε−l2l/2 ·ml/2−1 · Cl · E

[
‖H1‖ll

])(s−1)/s
is a constant when As-

sumptions 3.1 - 3.5 are satisfied. Furthermore, by Assumption 3.5, 2αs + (s− 1)l > 2s. It
is clear that αs

s + (s−1)l
2s > 1, and therefore

E
[
|∆n|21

(∥∥∥∥∥SO
H(2n−1)
2n−1 − µ

∥∥∥∥∥ > ε

)]
≤ C2(m, l, ε, s)2−(1+α̃)n, (13)

where α̃ = αs
s + (s−1)l

2s − 1 > 0. The same argument also shows

E
[
|∆n|21

(∥∥∥∥∥SE
H(2n−1)
2n−1 − µ

∥∥∥∥∥ > ε

)]
≤ C2(m, l, ε, s)2−(1+α̃)n. (14)

Combining (13), (14), and (8), we have

E
[
|∆n|21(A2)

]
≤ 2C2(m, l, ε, s)2−(1+α̃)n. (15)

Finally, taking γ = min{α, α̃}, C = C1 + 2C2, and using (2), (7), and (15), we conclude:

E[|∆n|2] ≤ C2−n(1+γ). (16)

A.3 The Moment Assumption 3.4 and Markov Chain Mixing

In this subsection we discuss the relation between the Moment Assumption 3.4 and the
mixing time of the underlying Markov chain. Throughout this subsection, the unbiased
estimator H of m(π) is assumed to be the JOA estimator Hk(Y, Z) defined in Section 3.1.1,
which also extends to Hk:m(Y,Z) = (m− k + 1)−1∑m

l=kHl(Y,Z) naturally.
Before giving a formal statement of Proposition 3, we first recall some definitions in

Markov chain theory. We say a π-invariant, φ-irreducible and aperiodic Markov transition
kernel P satisfies a geometric drift condition if there exists a measurable function V : Ω→
[1,∞), λ ∈ (0, 1), and a measurable set S such that for all x ∈ Ω:∫

P (x, dy)V (y) ≤ λV (x) + b1(x ∈ S). (17)

Moreover, the set S is called a small set if there exists a positive integer m, ε > 0, and a
probability measure ν on such that for every x ∈ S:

Pm(x, ·) ≥ εµ(·). (18)

The technical definitions for irreducibility, aperiodicity and small sets can be found in Chap-
ter 5 of Meyn and Tweedie (2012). The geometric drift condition is a key tool guaranteeing
the geometric ergodicity of a Markov chain, meaning the Markov chain P converges to its
stationary distribution π at a geometric rate. It is known that the geometric drift condition
is satisfied for a wide family of Metropolis-Hastings algorithms. We refer the readers to
Mengersen and Tweedie (1996); Roberts and Tweedie (1996b) for existing results.

Now we give a formal statement of Proposition 3.
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Proposition 5 (Formal version of Proposition 3) Suppose the Markov transition ker-
nel described in Section 3.1.1 satisfies a geometric drift condition with a small set S of the
form S = {x : V (x) ≤ L} for λ+ b/(1 + L) < 1. Suppose there exists ε̃ ∈ (0, 1) such that

inf
(x,y)∈S×S

P̄ ((x, y),D) ≥ ε̃,

where D := {(x, x) : x ∈ Ω} is the diagonal of Ω × Ω. Suppose also there exists p > l and
Dp > 0 such that E[‖f(Yt)‖pp] < Dp for every t. Then E[‖Hk(Y,Z)‖ll] <∞ for every k.

The main ingredient in the proof of Proposition 5 is to control the tail probability of
the meeting time τ . We say τ has a β-polynomial tail if there exists a constant Kβ > 0
such that

P(τ > n) ≤ Kβn
−β. (19)

We say τ has an exponential tail if there exists a constant K > 0 and γ ∈ (0, 1) such that

P(τ > n) ≤ Kγn. (20)

Our next result gives sufficient conditions to ensure Assumption 3.4.

Lemma 9 Suppose one of the following holds:

• There exist p > l, β > 0, and Dp > 0 such that 1
p +β > 1

l ; E[‖f(Yt)‖pp] < Dp for every
t, and τ has a β-polynomial tail;

• There exist p > l and Dp > 0 such that E[‖f(Yt)‖pp] < Dp for every t, and τ has an
exponential tail.

Then E[‖Hk(Y, Z)‖ll] <∞ for every k.

Proof [Proof of Lemma 9] We start with the first case. Without loss of generality, we
assume k = 0 and the estimator H0(Y,Z) := f(Y0) + ∑τ−1

i=1 (f(Yi) − f(Zi−1)) takes scalar
value. Let Dk := f(Yk)− f(Zk−1) for k ≥ 1, and D0 = f(Y0), the estimator can be written
as:

H0(Y,Z) =
∞∑
k=0

Dk1(τ > k).

The meeting time τ is almost surely (a.s.) finite by the β-polynomial assumption, therefore
H0(Y,Z) is the limit of Hn

0 (Y,Z) := ∑n
k=0Dk1(τ > k) in the a.s. sense. We will now prove

Hn
0 (Y,Z)→ H0(Y, Z) in Ll, which further implies E[|H0(Y, Z)|l] <∞.

By the Minkowski’s inequality on the probability space Ll(Ω), we have

(
E[|Hn

0 (Y, Z)−H0(Y,Z)|l]
)1/l =

(
E[
∣∣ ∞∑
k=n+1

Dk1(τ > k)
∣∣l])1/l (21)

≤
∞∑

k=n+1

(
E[|Dk1(τ > k)|l]

)1/l
. (22)

29



Wang and Wang

Every term in (22) can be upper bounded by the Hölder’s inequality

(
E[|Dk1(τ > k)|l]

)1/l ≤ (E[|Dk|p])1/p(P(τ > k)
)1/q here 1/q = 1/l − 1/p (23)

≤ (2Dp)1/pK
1/q
β k−β/q (24)

= (2Dp)1/pK
1/q
β k

− β
1
l

− 1
p . (25)

Since β > 1
l −

1
p > 0, the right hand side of (24) is summable. Therefore we conclude

∞∑
k=n+1

(
E[|Dk1(τ > k)|l]

)1/l → 0

as n→∞, so Hn
0 (Y, Z)→ H0(Y,Z) in Ll.

In the second case, exponential light tail implies β-polynomial tail for every β > 0, our
result immediately follows from the first case.

The assumption E[‖f(Yt)‖p] < Dp in Lemma 9 is generally satisfied as long as f has p-th
moment under the stationary distribution π. It remains to verify the tail conditions of τ ,
i.e., formula (19) or (20). The exponential tail (20) and polynomial tail (19) are closely
related to the geometric ergodicity and polynomial ergodicity of the underlying marginal
Markov chain P , respectively. For simplicity, we only give conditions for the exponential
tail here, which is provided in Jacob et al. (2020). The sufficient conditions of polynomial
tail of τ can be founded in Theorem 2 of Middleton et al. (2020).

Proposition 6 (Proposition 3.4 in Jacob et al. (2020)) Suppose the Markov transi-
tion kernel described in Section 3.1.1 satisfies a geometric drift condition with a small set
S of the form S = {x : V (x) ≤ L} for λ + b/(1 + L) < 1. Suppose there exists ε̃ ∈ (0, 1)
such that

inf
(x,y)∈S×S

P̄ ((x, y),D) ≥ ε̃,

where D := {(x, x) : x ∈ Ω} is the diagonal of Ω × Ω. Then the meeting time τ has a
exponential light tail.

Combining Lemma 9 and Proposition 6, the proof of Proposition 5 is immediate.
Proof [Proof of Proposition 5] By Proposition 6, we know τ has an exponential tail. Using
the second case of Lemma 9, our result follows.
It is still possible to further strengthen Proposition 5 given extra assumptions on τ or f .
For example, when τ has an exponential tail and Eπ[eθf ] <∞ for a univariate f and some
θ > 0, one can then prove the JOA estimator also has an exponential moment, and thus
has every finite-order moment. The existence of an exponential moment may help analyze
the concentration properties of the JOA estimator.
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A.4 Proof of Theorem 4

The proof of Theorem 4 is similar to Theorem 1. We present the detailed calculations here
for concreteness.

We begin by introducing a lemma that serves as the counterpart to Lemma 2, specifically
designed for nested expectations.

Lemma 10 With all the assumptions in Theorem 4, we have E[|∆n|2] = C2−(1+γ)n, where
γ = min{α, αss + (s−1)l

2s − 1}, and C = C(m, l, ε, s, α) is a constant.

Proof We denote m(π(y|x)) by µ(x). By Assumption 3.3, there exists ε > 0 such that gx
is α-Hölder continuous on (µ(x)− ε, µ(x) + ε), we can then write ∆n as:

|∆n| = |∆n|1(A1) + |∆n|1(A2), (26)

where A1 is the event{∥∥∥∥∥S
O
H(x)(2n−1)

2n−1 − µ(x)
∥∥∥∥∥ < ε

}
∩
{∥∥∥∥∥S

E
H(x)(2n−1)

2n−1 − µ(x)
∥∥∥∥∥ < ε

}
,

and A2 is the event{
max

(∥∥∥∥∥S
O
H(x)(2n−1)

2n−1 − µ(x)
∥∥∥∥∥ ,
∥∥∥∥∥S

E
H(x)(2n−1)

2n−1 − µ(x)
∥∥∥∥∥
)
≥ ε

}
.

Under the event A1, we have
∥∥∥∥SO

H(x)(2n−1)
2n−1 − µ(x)

∥∥∥∥ < ε and
∥∥∥∥SE

H(x)(2n−1)
2n−1 − µ(x)

∥∥∥∥ < ε.
This further implies ∥∥∥∥∥SH(x)(2n)

2n − µ(x)
∥∥∥∥∥ < ε.

Then we can write ∆n as:

∆n = gx

(
SH(x)(2n)

2n

)
− 1

2

(
gx

(
SO
H(x)(2n−1)

2n−1

)
+ gx

(
SE
H(x)(2n−1)

2n−1

))

= 1
2

(
gx

(
SH(x)(2n)

2n

)
− gx

(
SO
H(x)(2n−1)

2n−1

))
+ 1

2

(
gx

(
SH(x)(2n)

2n

)
− gx

(
SE
H(x)(2n−1)

2n−1

))

= 1
2Dgx(ξO

n )
(
SH(x)(2n)

2n −
SO
H(x)(2n−1)

2n−1

)
+ 1

2Dgx(ξE
n)
(
SH(x)(2n)

2n −
SE
H(x)(2n−1)

2n−1

)

= 1
4
(
Dgx(ξO

n )−Dgx(ξE
n)
) SE

H(x)(2n−1)− SO
H(x)(2n−1)

2n−1 ,

where ξO
n is a convex combination of SH(x)(2n)

2n and
SO
H(x)(2n−1)

2n−1 , ξE
n is a convex combination of

SH(x)(2n)
2n and

SE
H(x)(2n−1)

2n−1 by the Multivariate Mean value Theorem. Under A1, both ξO
n and

ξE
n are within the ε-neighbor of µ(x), applying the α-Hölder continuous assumption yields
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|∆n| ≤ c1(ε)
∥∥∥ξO
n − ξE

n

∥∥∥α · ∥∥∥∥∥S
O
H(x)(2n−1)− SE

H(x)(2n−1)
2n−1

∥∥∥∥∥
≤ c2(ε)

∥∥∥∥∥S
O
H(x)(2n−1)− SE

H(x)(2n−1)
2n−1

∥∥∥∥∥
1+α

.

Then,

E
[
|∆n|21(A1)

]
≤ c2(ε)E

∥∥∥∥∥S
O
H(x)(2n−1)− SE

H(x)(2n−1)
2n−1

∥∥∥∥∥
2(1+α) . (27)

Since SO
H(x)(2n−1) and SE

H(x)(2n−1) are vectors in Rm, applying Lemma 8 on p = 2, q =
2(1 + α) gives:

∥∥∥∥∥S
O
H(x)(2n−1)− SE

H(x)(2n−1)
2n−1

∥∥∥∥∥
2(1+α)

≤ mα

∥∥∥∥∥S
O
H(x)(2n−1)− SE

H(x)(2n−1)
2n−1

∥∥∥∥∥
2(1+α)

2(1+α)
(28)

Since SO
H(x)(2n−1) − SE

H(x)(2n−1) is the sum of 2n−1 i.i.d. random variables, each with
the same distribution as H2(x)−H1(x), applying the Multivariate Marcinkiewicz-Zygmund
inequality (Corollary 7) on the conditional distribution of H2 − H1 given x, then taking
expectation over π(x) gives us:

E

∥∥∥∥∥S
O
H(x)(2n−1)− SE

H(x)(2n−1)
2n−1

∥∥∥∥∥
2(1+α)

2(1+α)

 ≤ C2(1+α) ·
E
[
‖H2 −H1‖2(1+α)

2(1+α)

]
2(1+α)(n−1) (29)

≤ C2(1+α) · 23(1+α) ·
E
[
‖H1‖2(1+α)

2(1+α)

]
2(1+α)n . (30)

where the last step uses the inequality (a + b)p ≤ 2p−1(|a|p + |b|p) for p ≥ 2. It is worth
mentioning that the right hand side of (30) is finite as Assumption 3.4 guarantees H1 has
finite l-th moment with l > 2 + α. Combining (27), (28), and (30), we have:

E
[
|∆n|21(A1)

]
≤ C1(m,α, ε)2−n(1+α), (31)

where C1(m,α, ε) = c2(ε) ·C2(1+α) ·23(1+α) ·E
[
‖H1‖2(1+α)

2(1+α)

]
is a constant when Assumptions

3.1—3.4 are satisfied.
Under A2, we have:

|∆n|21(A2) ≤ |∆n|21
(∥∥∥∥∥S

O
H(x)(2n−1)

2n−1 − µ(x)
∥∥∥∥∥ > ε

)
+ |∆n|21

(∥∥∥∥∥S
E
H(x)(2n−1)

2n−1 − µ(x)
∥∥∥∥∥ > ε

)
(32)
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Now we upper bound the first term’s expectation,

E
[
|∆n|21

(∥∥∥∥∥S
O
H(x)(2n−1)

2n−1 − µ(x)
∥∥∥∥∥ > ε

)]
(33)

≤E[|∆n|2s]1/sP
(∥∥∥∥∥S

O
H(x)(2n−1)

2n−1 − µ(x)
∥∥∥∥∥ > ε

)(s−1)/s

(34)

≤C1/s
s 2−αsn/sP

(∥∥∥∥∥S
O
H(x)(2n−1)

2n−1 − µ(x)
∥∥∥∥∥ > ε

)(s−1)/s

(35)

≤C1/s
s · (ε−l(s−1)/s) · 2−αsn/s · E

[∥∥SO
H(x)(2n−1)

2n−1 − µ(x)
∥∥l](s−1)/s

. (36)

Here (34) follows from the Hölder’s inequality, (35) uses Assumption 3.5, and (36) fol-
lows from the Markov’s inequality. Again, using Lemma 8 and Corollary 7 (again, on the
conditional distribution of H given x, and then taking expectation over π(x)), the term
E
[∥∥SO

H(x)(2n−1)
2n−1 − µ(x)

∥∥l] can be upper bounded by:

E
[∥∥SO

H(x)(2n−1)
2n−1 − µ(x)

∥∥l] ≤ ml/2−1E
[∥∥SO

H(x)(2n−1)
2n−1 − µ(x)

∥∥l
l

]
(37)

≤ 2l/2 ·ml/2−1 · Cl ·
E
[
‖H1‖ll

]
2nl/2

. (38)

Combining (36) and (37), we have

E
[
|∆n|21

(∥∥∥∥∥S
O
H(x)(2n−1)

2n−1 − µ(x)
∥∥∥∥∥ > ε

)]
≤ C2(m, l, ε, s)2−αsn/s2−nl(s−1)/(2s)

= C2(m, l, ε, s)2−n
(
αs
s

+ (s−1)l
2s

)
,

where C2(m, l, ε, s) = C1/s
s ·

(
ε−l2l/2 ·ml/2−1 · Cl · E

[
‖H1‖ll

])(s−1)/s
is a constant when As-

sumptions 3.1 - 3.5 are satisfied. Furthermore, by Assumption 3.5, 2αs + (s− 1)l > 2s. It
is clear that αs

s + (s−1)l
2s > 1, and therefore

E
[
|∆n|21

(∥∥∥∥∥S
O
H(x)(2n−1)

2n−1 − µ(x)
∥∥∥∥∥ > ε

)]
≤ C2(m, l, ε, s)2−(1+α̃)n, (39)

where α̃ = αs
s + (s−1)l

2s − 1 > 0. The same argument also shows

E
[
|∆n|21

(∥∥∥∥∥S
E
H(x)(2n−1)

2n−1 − µ(x)
∥∥∥∥∥ > ε

)]
≤ C2(m, l, ε, s)2−(1+α̃)n. (40)

Combining (39), (40), and (32), we have

E
[
|∆n|21(A2)

]
≤ 2C2(m, l, ε, s)2−(1+α̃)n. (41)
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Finally, taking γ = min{α, α̃}, C = C1 + 2C2, and using (26), (31), and (41), we conclude:

E[|∆n|2] ≤ C2−n(1+γ). (42)

Then the proof of Theorem 4 follows from a direct calculation.
Proof [Proof of Theorem 4] We will first show Statement 1 assuming Statement 2 holds.
Then we show both Statement 2 and 3 holds.

Proof of Statement 1: We first argue E[λ̂ | x] is well-defined, and equals to λ(x). Since
Statement 2 implies λ̂ has a finite second moment, we know the E[λ̂ | x] is well-defined (see
Section 4.1 of Durrett (2019)). Meanwhile, λ̂(x) is unbiased for λ(x) according to Theorem
1. Finally, it is clear by the law of iterated expectation that E[λ̂] = E[E[λ̂ | x]] = Ex[λ(x)] =
Ex[f(x,Ey[φ(x, y) | x])], as desired.

Proof of Statement 2: It suffices to show E
[
∆2
N/p

2
N

]
< ∞. We have E

[
∆2
N/p

2
N

]
=∑∞

n=1 E[∆2
n](1− p)−n+1p−1. By Lemma 10,

E
[∆2

N

p2
N

]
≤ Cp−1(1− p)

∞∑
n=1

2−(1+γ)n(1− p)−n = Cp−1(1− p)
∞∑
n=1

(
(1− p)21+γ)−n

= Cp−1 2−(1+γ)

1−
(
(1− p)21+γ)−1 <∞,

where the last inequality follows from (1− p) > 2−(γ+1).
Proof of Statement 3: Let CH be the computation cost for implementing the unbiased

MCMC subroutine S once. It is shown in Jacob et al. (2020) that CH <∞. The computa-
tion cost for implementing Algorithm 1 essentially comes from 2N calls of the subroutine S,
where N ∼ Geo(p). Therefore it suffices to show 2N has a finite expectation. We calculate

E[2N ] =
∞∑
n=1

2np(n) =
∞∑
n=1

2n(1− p)n−1p = 2p
2p− 1 <∞,

where the last inequality follows from p > 1/2.

A.5 Other Technical Proofs

A.5.1 Proof of Proposition 2

Proof We first show the unbiasedness of H̃. Notice that

H̃ = H1‖H‖≥δ + (H + (2δ/
√
d)~1B)1‖H‖<δ

where B ∼ U{−1, 1} is independent with H. Therefore,

E[H̃] = E[H1‖H‖≥δ] + E[(H + (2δ/
√
d)~1B)1‖H‖<δ] = E[H1‖H‖≥δ] + E[H1‖H‖<δ] = E[H].
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For the covariance, we can calculate the expectation of E[H̃iH̃j ]:

E[H̃iH̃j ] = E
[(
Hi1‖H‖≥δ + (Hi + 2δ√

d
~1B)1‖H‖<δ

)(
Hj1‖H‖≥δ + (Hj + 2δ√

d
~1B)1‖H‖<δ

)]
= E[HiHj1‖H‖≥δ] + E[HiHj1‖H‖<δ] + 4δ2

d
P[‖H‖ ≤ δ]

= E[HiHj ] + 4δ2

d
P[‖H‖ ≤ δ],

the second to last equality follows from the fact that B has zero expectation and is inde-
pendent with H. Therefore, we have

Cov[H̃] = Cov[H] + 4δ2P[‖H‖ ≤ δ]
d

Id 4 Cov[H] + 4δ2

d
Id,

as desired.

A.5.2 Proof of Corollary 3

Proof Let W be the estimator output from Algorithm 1. Let Cost(W ) denote its expected
computational cost. From Theorem 1, we know both Var(W ) and Cost(W ) is finite. For
any fixed integer n, let W1,W2, . . . ,Wn be the outputs of n independent calls of Algorithm
1, and let W̃ :=

∑n

i=1 Wi

n be its average. It follow from the unbiasedness of each Wi that:

E[(W̃ − g(m(π)))2] = Var(W̃ ) = Var(W )
n

.

Taking n = Var(W )/ε2, then the mean square error of W̃ will be no larger than ε2, and the
expected computational cost will be nCost(W ) = Var(W )Cost(W )/ε2 = O(1/ε2).

A.6 Proof of Proposition 4

Proof Since we have more than Varp[W ]/ε2 available processors, we can implement Algo-
rithm 1 on each processor once, and average over all the results. The expected computing
time per processor is then the expected time of implementing Algorithm 1 once. Theorem
1 shows the expected computing time per processor is O(1) for our unbiased Monte Carlo
method.

For the standard Monte Carlo estimator SMC(k, n) := g(∑n
i=k f(Xi)/(n−k+1)), we may

first assume k = 1, which means no burn-in is used. Recall that the MSE of any estimator
is no less than its squared bias. It follows from Geyer (2011) that the bias of ∑n

i=1 f(Xi)/n
(with respect to Eπ[f ]) is of order O(1/n). The smoothness assumptions on g show the
bias of each Monte Carlo estimator g(∑n

i=k f(Xi)/(n−k+ 1) is also of order O(1/n). Since
the bias is unchanged after averaging arbitrarily many i.i.d. estimators, users have to run
their MCMC algorithm for at least n = O(1/ε) iterations to guarantee the squared bias
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is of order O(ε2). For each fixed k, the estimator g(∑n
i=k f(Xi)/(n − k + 1)) have bias of

O(1/n). Therefore for each fixed k, users have to run their algorithm at least O(1/ε) steps.
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