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Abstract

In data-parallel optimization of machine learning models, workers collaborate to improve
their estimates of the model: more accurate gradients allow them to use larger learning
rates and optimize faster. In the decentralized setting, in which workers communicate over a
sparse graph, current theory fails to capture important aspects of real-world behavior. First,
the ‘spectral gap’ of the communication graph is not predictive of its empirical performance
in (deep) learning. Second, current theory does not explain that collaboration enables larger
learning rates than training alone. In fact, it prescribes smaller learning rates, which further
decrease as graphs become larger, failing to explain convergence dynamics in infinite graphs.
This paper aims to paint an accurate picture of sparsely-connected distributed optimization.
We quantify how the graph topology influences convergence in a quadratic toy problem and
provide theoretical results for general smooth and (strongly) convex objectives. Our theory
matches empirical observations in deep learning, and accurately describes the relative merits
of different graph topologies. This paper is an extension of the conference paper by Vogels
et al. (2022). Code: github.com/epfml/topology-in-decentralized-learning.

Keywords: decentralized learning, convex optimization, stochastic gradient descent,
gossip algorithms, spectral gap

1. Introduction

Distributed data-parallel optimization algorithms help us tackle the increasing complexity of
machine learning models and of the data on which they are trained. We can classify those
training algorithms as either centralized or decentralized, and we often consider those settings
to have different benefits over training ‘alone’. In the centralized setting, workers compute
gradients on independent mini-batches of data, and they average those gradients between all
workers. The resulting lower variance in the updates enables larger learning rates and faster
training. In the decentralized setting, workers average their models with only a sparse set of
‘neighbors’ in a graph instead of all-to-all, and they may have private datasets sampled from
different distributions. As the benefit of decentralized learning, we usually focus only on the
(indirect) access to other worker’s datasets, and not of faster training.
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Figure 1: ‘Time to target’ for D-SGD (Lian et al., 2017) with constant learning rates on
an i.i.d. isotropic quadratic dataset (Section 3.1). The noise disappears at the
optimum. Compared to optimizing alone, 32 workers in a ring (left) are faster for
any learning rate, but the largest improvement comes from being able to use a
large learning rate. This benefit is not captured by current theory, which prescribes
a smaller learning rate than training alone. On the right, we see that rings of
increasing size enable larger learning rates and faster optimization. Because a
ring’s spectral gap goes to zero with the size of the ring, this cannot be explained
by current theory.

Homogeneous (i.i.d.) setting. While decentralized learning is typically studied with hetero-
geneous datasets across workers, sparse (decentralized) averaging between them is also useful
when worker’s data is identically distributed (i.i.d.) (Lu and De Sa, 2021). As an example,
sparse averaging is used in data centers to mitigate communication bottlenecks (Assran et al.,
2019). When the data is i.i.d. (or heterogeneity is mild), the goal of sparse averaging is to
optimize faster, just like in centralized (all-to-all) graphs. Yet, current decentralized learning
theory poorly explains this speed-up. Analyses typically show that, for small enough learning
rates, training with sparse averaging behaves the same as with all-to-all averaging (Lian
et al., 2017; Koloskova et al., 2020) and so it reduces the gradient variance by the number of
workers compared to training alone with the same small learning rate. In practice, however,
such small learning rates would never be used. In fact, a reduction in variance should allow
us to use a larger learning rate than training alone, rather than imposing a smaller one.
Contrary to current theory, we show that (sparse) averaging lowers variance throughout all
phases of training (both initially and asymptotically), allowing to take higher learning rates,
which directly speeds up convergence. We characterize how much averaging with various
communication graphs reduces the variance, and show that centralized performance (variance
divided by the number of workers) is not always achieved when using optimal large learning
rates. The behavior we explain is illustrated in Figure 1.

Heterogeneous (non-i.i.d.) setting. In standard analyses, heterogeneity affects convergence
in a very worst-case manner. Standard guarantees intuitively correspond to the pessimistic
case in which the most distant workers have the most different functions. These guarantees are
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typically loose in the settings where workers have different finite datasets sampled i.i.d. from
the same distribution, or if each worker has a lot of diversity in its close neighbors. In this
work, we characterize the impact of heterogeneity together with the communication graph,
enabling non-trivial guarantees even for infinite graphs under non-adversarial heterogeneity
patterns.

Spectral gap. In both the homogeneous and heterogeneous settings, the graph topology
appears in current convergence rates through the spectral gap of its averaging (gossip) matrix.
The spectral gap poses a conservative lower bound on how much one averaging step brings
all worker’s models closer together. The larger, the better. If the spectral gap is small, a
significantly smaller learning rate is required to make the algorithm behave close to SGD
with all-to-all averaging with the same learning rate. Unfortunately, we experimentally
observe that, both in deep learning and in convex optimization, the spectral gap of the
communication graph is not predictive of its performance under tuned learning rates.

The problem with the spectral gap quantity is clearly illustrated in a simple example. Let
the communication graph be a ring of varying size. As the size of the ring increases to infinity,
its spectral gap goes to zero since it becomes harder and harder to achieve consensus between
all the workers. This leads to the optimization progress predicted by current theory to go to
zero as well. In some cases, when the worker’s objectives are adversarially heterogeneous
in a way that requires workers to obtain information from all others, this is indeed what
happens. In typical cases, however, this view is overly pessimistic. In particular, this view
does not match the empirical behavior with i.i.d. data. With i.i.d. data, as the size of the
ring increases, the convergence rate actually improves (Figure 1), until it saturates at a point
that depends on the problem.

In this work, we aim to accurately describe the behavior of distributed learning algorithms
with sparse averaging, both in theory and in practice. We aim to do so both in the high learning
rate regime, which was previously studied in the conference version of this paper Vogels et al.
(2022), as well as in the small learning rate regime, in which we characterize the interplay
between topology and data heterogeneity, as well as stochastic noise.

• We quantify the role of the graph in a quadratic toy problem designed to mimic the
initial phase of deep learning (Section 3.1), showing that averaging enables a larger
learning rate.

• From these insights, we derive a problem-independent notion of ‘effective number of
neighbors’ in a graph that is consistent with time-varying topologies and infinite graphs,
and is predictive of a graph’s empirical performance in both convex and deep learning.

• We provide convergence proofs for (strongly) convex objectives that do not depend on
the spectral gap of the graph (Section 4), and consider finer spectral quantities instead.
Our rates disentangle the homogeneous and heterogeneous settings, and highlight that
all problems behave as if they were homogeneous when the iterates are far from the
optimum.

At its core, our analysis does not enforce global consensus, but only between workers that are
close to each other in the graph. Our theory shows that sparse averaging provably enables
larger learning rates and thus speeds up optimization. These insights prove to be relevant in
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deep learning, where we accurately describe the performance of a variety of topologies, while
their spectral gap does not (Section 5).

2. Related Work

This paper studies decentralized SGD. Koloskova et al. (2020) obtain the tightest bounds
for this algorithm in the general setting where workers optimize heterogeneous objectives.
They show that gossip averaging reduces the asymptotic variance suffered by the algorithm
at the cost of a degradation (depending on the spectral gap of the gossip matrix) of the
initial linear convergence term. This key term does not improve through collaboration and
gives rise to a smaller learning rate than training alone. Besides, as discussed above, this
implies that optimization is not possible in the limit of large graphs, even in the absence of
heterogeneity: for instance, the spectral gap of an infinite ring is zero, which would lead to a
learning rate of zero as well.

These rates suggest that decentralized averaging speeds up the last part of training
(dominated by variance), at the cost of slowing down the initial (linear convergence) phase.
Beyond the work of Koloskova et al. (2020), many papers focus on linear speedup (in the
variance phase) over optimizing alone, and prove similar results in a variety of settings (Lian
et al., 2017; Tang et al., 2018; Lian et al., 2018). All these results rely on the following insight:
while linear speedup is only achieved for small learning rates, SGD eventually requires such
small learning rates anyway (because of, e.g., stochastic noise, or non-smoothness). This
observation leads these works to argue that “topology does not matter”. This is the case
indeed, but only for very small learning rates, as shown in Figure 1. Besides, while linear
speedup might be achievable indeed for very small learning rates, some level of variance
reduction should be obtained by averaging for any learning rate. In practice, averaging
speeds up both the initial and last part of training and in a possibly non-linear way. This is
what we show in this work, both in theory and in practice.

Another line of work studies decentralized SGD under statistical assumptions on the local
data. In particular, Richards and Rebeschini (2020) show favorable properties for D-SGD
with graph-dependent implicit regularization and attain optimal statistical rates. Their
suggested learning rate does depend on the spectral gap of the communication network, and
it goes to zero when the spectral gap shrinks. Richards and Rebeschini (2019) also show that
larger (constant) learning rates can be used in decentralized GD, but their analysis focuses
on decentralized kernel regression. Their analysis relies on statistical concentration of local
objectives rather, while the analysis in this paper relies on the notion of local neighborhoods.

2.1 Gossiping in Infinite Graphs

An important feature of our results is that they do not depend on the spectral gap, and
so they apply independently of the size of the graph. Instead, our results rely on new
quantities that involve a combination of the graph topology and the heterogeneity pattern.
These may depend on the spectral gap in extreme cases, but are much better in general.
Berthier et al. (2020) study acceleration of gossip averaging in infinite graphs, and obtain the
same conclusions as we do: although spectral gap is useful for asymptotics (how long does
information take to spread in the whole graph), it fails to accurately describe the transient
regime of gossip averaging, i.e., how quickly information spreads over local neighborhoods in
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the first few gossip rounds. This is especially limiting for optimization (compared to just
averaging), as new local updates need to be averaged at every step. The averaging for latest
gradient updates always starts in the transient regime, implying that the transient regime of
gossip averaging deeply affects the asymptotic regime of decentralized SGD. In this work, we
build on tools from Berthier et al. (2020) to show how the effective number of neighbors, a
key quantity we introduce, is related to the graph’s spectral dimension.

2.2 The Impact of the Graph Topology

Lian et al. (2017) argue that the topology of the graph does not matter, and Pu et al. (2021);
Olshevsky (2022) also discuss asymptotic network independence. Yet, this is only true for
asymptotic rates in specific settings, as illustrated in Figure 1. Neglia et al. (2020) investigate
the impact of the graph on decentralized optimization, and contradict this claim. Similarly
to us, they show that the graph has an impact in the early phases of training. Their analysis
of the heterogeneous setting, their analysis depends on how gradient heterogeneity spans the
eigenspace of the Laplacian. Their assumptions, however, differ from ours, and they retain
an unavoidable dependence on the spectral gap of the graph. Our results are different in
nature, and show the benefits of averaging and the impact of the graph through the choice
of large learning rates, and a better dependence on the noise and the heterogeneity for a
given learning rate. Even et al. (2021) also consider the impact of the graph on decentralized
learning. They focus on non-worst-case dependence on heterogeneous delays, and still obtain
spectral-gap-like quantities but on a reweighted gossip matrix. Lan et al. (2023) also consider
graph topology invariant complexities, but only in terms of computation complexity. The
communication complexity they obtain still depends (as expected) on the spectral gap.

Another line of work studies the interaction of topology with particular patterns of data
heterogeneity (Le Bars et al., 2023; Dandi et al., 2022), and how to optimize graphs with this
heterogeneity in mind. Our analysis highlights the role of heterogeneity through a different
quantity than these works, that we believe is tight. Besides, both works either try to reduce
this heterogeneity all along the trajectory, or optimize for both the spectral gap of the graph
and the heterogeneity term. Instead, we show that heterogeneity changes the fixed-point of
the algorithm but not the global dynamics.

2.3 Time-varying Topologies

Time-varying topologies are popular for decentralized deep learning in data centers due to
their strong mixing (Assran et al., 2019; Wang et al., 2019). The benefit of varying the
communication topology over time is not easily explained through standard theory, but
requires dedicated analysis (Ying et al., 2021). While our proofs only cover static topologies,
the quantities that appear in our analysis can be computed for time-varying schemes, too.
With these quantities, we can empirically study static and time-varying schemes in the same
framework.

2.4 Conference Version

This paper is an extension of Vogels et al. (2022), which focused on the homogeneous setting
where all workers share the same global optimum. In this extension, we introduce a simpler
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analysis that strictly improves and generalizes the previous one, extending the results to the
important heterogeneous setting. In the conference version, it remained unclear if larger
learning rates could only be achieved thanks to homogeneity. We also connect the quantities
we introduce to the spectral dimension of a graph, and use this connection to derive explicit
formulas for the optimal learning rates based on the spectral dimension. This allows us to
accurately compare with previous bounds (for instance Koloskova et al. (2020)) and show
that we improve on them in all settings.

3. Measuring Collaboration in Decentralized Learning

Both this paper’s analysis of decentralized SGD for general convex objectives and its deep
learning experiments revolve around a notion of ‘effective number of neighbors’ that we
would introduce in Section 3.2. The aim of this section is to motivate the quantity based on
a simple toy model for which we can exactly characterize the convergence (Section 3.1). We
then connect this quantity to the typical graph metrics such as spectral gap and spectral
dimensions in Section 3.3.

3.1 A Toy Problem: D-SGD on Isotropic Random Quadratics

The aim of this section is to provide intuition while avoiding the complexities of general
analysis. To keep this section light, we omit any derivations. The appendix of (Vogels et al.,
2022) contains a longer version of this section that includes derivations and proofs.

We consider n workers that jointly optimize an isotropic quadratic Ed∼N d(0,1)
1
2(d

⊤x)2 =
1
2∥x∥2 with a unique global minimum x⋆ = 0. The workers access the quadratic through
stochastic gradients of the form g(x) = dd⊤x, with d ∼ N d(0, 1). This corresponds to
a linear model with infinite data, and where the model can fit the data perfectly, so that
stochastic noise goes to zero close to the optimum. We empirically find that this simple model
is a meaningful proxy for the initial phase of (over-parameterized) deep learning (Section 5).
A benefit of this model is that we can compute exact rates for it. These rates illustrate the
behavior that we capture more generally in the theory of Section 4.

The stochasticity in this toy problem can be quantified by the noise level

ζ = sup
x∈Rd

Ed∥g(x)∥2
∥x∥2 = sup

x∈Rd

Ed∥dd⊤x∥2
∥x∥2 , (1)

which is equal to ζ = d+ 2, due to the random normal distribution of d.
The workers run the D-SGD algorithm (Lian et al., 2017). Each worker i has its own

copy xi ∈ Rd of the model, and they alternate between local model updates xi ← xi− ηg(xi)
and averaging their models with others: xi ←

∑n
j=1wijxj . The averaging weights wij are

summarized in the gossip matrix W ∈ Rn×n. A non-zero weight wij indicates that i and
j are directly connected. In the following, we assume that W is symmetric and doubly
stochastic:

∑n
j=1wij = 1 ∀i.

On our objective, D-SGD either converges or diverges linearly. Whenever it converges,
i.e., when the learning rate is small enough, there is a convergence rate r such that

E∥x(t)
i ∥2 ≤ (1− r)∥x(t−1)

i ∥2,

6



Beyond Spectral Gap

with equality as t→∞. When the workers train alone (W = I), the convergence rate for a
given learning rate η reads:

ralone = 1− (1− η)2 − (ζ − 1)η2. (2)

The optimal learning rate η⋆ = 1
ζ balances the optimization term (1− η)2 and the stochastic

term (ζ − 1)η2. In the centralized (fully connected) setting (wij =
1
n ∀i, j), the rate is simple

as well:

rcentralized = 1− (1− η)2 − (ζ − 1)η2

n
. (3)

Averaging between n workers reduces the impact of the gradient noise, and the optimal
learning rate grows to η⋆ = n

n+ζ−1 . We find that D-SGD with a general gossip matrix W
interpolates those results.

3.2 The Effective Number of Neighbors

To quantify the reduction of the (ζ − 1)η2 term in general, we introduce the problem-
independent notion of effective number of neighbors nW(γ) of the gossip matrix W and
decay parameter γ.

Definition 1 (Effective Number of Neighbors) The effective number of neighbors nW(γ) =

limt→∞

∑n
i=1 Var[y

(t)
i ]∑n

i=1 Var[z
(t)
i ]

measures the ratio of the asymptotic variance of the processes

y(t+1) =
√
γ · y(t) + ξ(t), where y(t) ∈ Rn and ξ(t) ∼ N n(0, 1) (4)

and

z(t+1) = W(
√
γ · z(t) + ξ(t)), where z(t) ∈ Rn and ξ(t) ∼ N n(0, 1). (5)

We call y and z random walks because workers repeatedly add noise to their state, somewhat
like SGD’s parameter updates. This should not be confused with a ‘random walk’ over nodes
in the graph.

Since averaging with W decreases the variance of the random walk by at most n, the
effective number of neighbors is a number between 1 and n. The decay γ modulates the
sensitivity to communication delays. If γ = 0, workers only benefit from averaging with their
direct neighbors. As γ increases, multi-hop connections play an increasingly important role.
As γ approaches 1, delayed and undelayed noise contributions become equally weighted, and
the reduction tends to n for any connected topology.

Proposition 2 For regular doubly-stochastic symmetric gossip matrices W with eigenvalues
λ1, . . . , λn, nW(γ) has a closed-form expression

nW(γ) =

1
1−γ

1
n

∑n
i=1

λi
2

1−λ2
i γ

. (6)
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Figure 2: The effective number of neighbors for several topologies measured by their variance
reduction in (5). The point γ on the x-axis that matters depends on the learning
rate and the task. Which topology is ‘best’ varies from problem to problem. For
large decay rates γ (corresponding small learning rates), all connected topologies
achieve variance reduction close to a fully connected graph. For small decay rates
(large learning rates), workers only benefit from their direct neighbors (e.g. 3 in
a ring). These curves can be computed explicitly for constant topologies, and
simulated efficiently for the time-varying exponential scheme (Assran et al., 2019).

This follows from unrolling the recursions for y and z, using the eigendecomposition of W,
and the limit lim t→∞∑t

k=1 x
k = x

1−x .

While this closed-form expression only covers a restricted set of gossip matrices, the notion
of variance reduction in random walks, however, naturally extends to infinite topologies or
time-varying averaging schemes. Figure 2 illustrates nW for various topologies.

In our exact characterization of the convergence of D-SGD on the isotropic quadratic toy
problem, we find that the effective number of neighbors appears in place of the number of
workers n in the fully-connected rate of Equation 3. The rate r is the unique solution to

r = 1− (1− η)2 − (ζ − 1)η2

nW

( (1−η)2

1−r

) . (7)

For fully-connected and disconnected W, nW(γ) = n or 1 respectively, irrespective of γ, and
Equation 7 recovers Equations 2 and 3. For other graphs, the effective number of workers
depends on the learning rate. Current theory only considers the case where nW ≈ n, but
the small learning rates this requires can make the term (1 − η)2 too large, defeating the
purpose of collaboration.

Beyond this toy problem, we find that the proposed notion of effective number of neighbors
is also meaningful in the analysis of general objectives (Section 4) and in deep learning
(Section 5).
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3.3 Links Between the Effective Number of Neighbors and Other Graph
Quantities

In general, the effective number of neighbors function nW(γ) cannot be summarized by a
single scalar. Figure 2 demonstrates that the behavior of this function varies from graph to
graph. We can, however, bound the effective number of neighbors by known graph quantities
such as its spectral gap or spectral dimension.

We aim to create bounds for both finite and infinite graphs. To allow for this, we introduce
a generalization of Proposition 2 as an integral over the spectral measure dσ of the gossip
matrix, instead of a sum over its eigenvalues:

nW(γ)−1 = (1− γ)

∫ 1

0

λ2

1− γλ2
dσ(λ). (8)

For finite graphs, dσ is a sum of Dirac deltas of mass 1
n at each eigenvalue of matrix W,

recovering Equation (6).

3.4 Upper and Lower Bounds

We can use the fact that there all eigenvalues λ are ≤ 1, leading to:

nW(γ)−1 ≤ (1− γ)

∫ 1

0

1

1− γ
dσ(λ) = 1, (9)

This lower bound to the ‘effective number of neighbors’ corresponds to a disconnected graph.
On the other hand, for finite graphs, we can use the fact that σ(λ) contains a series of n

Diracs. The peak at λ = 1, corresponding to the fully-averaged state, has value 1
n , while the

other peaks have values ≥ 0. Using this bound, we obtain

nW(γ)−1 ≥ 1− γ

1− γ

1

n
=

1

n
. (10)

This upper bound to the ‘effective number of neighbors’ is tight for a fully-connected graph.

3.5 Bounding by Spectral Gap

If the graph has a spectral gap α, this means that σ(λ) contains a Dirac delta with mass 1
n

at λ = 1, corresponding to the fully-averaged state. The rest of σ(λ) has mass n−1
n and is

contained in the subdomain λ ∈ [0, 1− α]. In this setting, we obtain

nW(γ)−1 ≤ 1

n
+

n− 1

n

(1− γ)(1− α)2

1− γ(1− α)2
. (11)

This lower bound to the ‘effective number of neighbors’ is typically pessimistic, but it is tight
for the finite gossip matrix W = (1− α)I+ α

n11
⊤.

3.6 Bounding by Spectral Dimension

Next, we will link the notion of ‘effective number of neighbors’ to the spectral dimension ds
of the graph (Berthier, 2021, e.g. Definition 1.9), which controls the decay of eigenvalues
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near 1. This notion is usually linked with the spectral measure of the Laplacian of the
graph. However, to avoid introducing too many graph-related quantities, we define spectral
dimension with respect to the gossip matrix W. Standard definitions using the Laplacian
LW = I−W are equivalent. In the remainder of this paper, the ‘graph’ will always refer to
the communication graph implicitly induced by W of Laplacian LW.

Definition 3 (Spectral Dimension) A gossip matrix has a spectral dimension at least ds
if there exists cs > 0 such that for all λ ∈ [0, 1], the density of its eigenvalues is bounded by

σ((λ, 1)) ≤ c−1
s (1− λ)

ds
2 . (12)

The notation σ((λ, 1)) here refers to the integral
∫ 1
λ σ(l)dl. The spectral dimension of a

graph has a natural geometric interpretation. For instance, the line (or ring) are of spectral
dimension ds = 1, whereas 2-dimensional grids are of spectral dimension 2. More generally,
a d-dimensional torus is of spectral dimension d. Besides, the spectral dimension describes
macroscopic topological features and are robust to microscopic changes. For instance, random
geometric graphs are of spectral dimension 2. Similarly, hierarchical scale-free networks with
weighted shortcuts have spectral dimension smaller than 2 in general, and equal to 2 for
non-fractal graphs (Hwang et al., 2010).

Note that since finite graphs have a spectral gap, σ((λ2(W), 1)) = 0 and so finite graphs
verify (12) for any spectral dimension ds. However, the notion of spectral dimension is still
relevant for finite graphs, since the constant cs blows up when ds is bigger than the actual
spectral dimension of an infinite graph with similar topology. Alternatively, it is sometimes
helpful to explicitly take the spectral gap into account in (12), as in Berthier et al. (2020,
Section 6).

We now proceed to bounding nW(γ) using the spectral dimension. Since λ 7→ λ2(1 −
γλ2)−1 is a non-negative non-decreasing function on [0, 1], we can use Berthier et al. (2020,
Lemma C.1) to obtain that:

nW(γ)−1 ≤ 1

n
+ c−1

s (1− γ)

∫ 1

0

λ2

1− γλ2
(1− λ)

ds
2
−1dλ. (13)

The term 1
n comes from the fact that for finite graphs, the density dσ includes a Dirac delta

with mass 1
n at eigenvalue 1. This Dirac is not affected by spectral dimension, and is required

for consistency, as it ensures that nW(γ) ≤ n for any finite graph. To evaluate the integral,
we then distinguish three cases.

3.7 Case ds > 2

Since γλ < 1, then 1− λ ≤ 1− γλ2. In particular we use integration by parts to get:

nW(γ)−1 − n−1 ≤ c−1
s (1− γ)

∫ 1

0
λ2(1− γλ2)

ds
2
−2dλ

≤ − (1− γ)c−1
s

2γ(ds/2− 1)

∫ 1

0
−2γλ(ds/2− 1)(1− γλ2)

ds
2
−2dλ

=
(1− γ)c−1

s

γ(ds − 2)

[
1− (1− γ)

ds
2
−1
]
.
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This leads to a scaling of:

nW(γ) ≥
(
1

n
+

(1− γ)

γ(ds − 2)cs

)−1

. (14)

For large enough n, we obtain the same scaling of (1− γ)−1 as in the previous section, thus
indicating that for networks that are well-enough connected (ds > 2), the spectral dimension
only affects the constants, and not the scaling in γ.

3.8 Case ds = 2

When ds = 2, only the primitive of the integrand changes, leading to:

nW(γ) ≥
(
1

n
− (1− γ) ln(1− γ)

2γcs

)−1

(15)

3.9 Case ds < 2

In this case, we start by splitting the integral as:

(1− γ)

∫ 1

0

λ2(1− λ)
ds
2
−1

(1− γλ2)
dλ = (1− γ)

∫ γ

0

λ2(1− λ)
ds
2
−1

(1− γλ2)
dλ+ (1− γ)

∫ 1

γ

λ2(1− λ)
ds
2
−1

(1− γλ2)
dλ

For the first term, note that γλ ≤ 1, so (1− γλ2)−1 ≤ (1− λ)−1, leading to:

(1− γ)

∫ γ

0

λ2(1− λ)
ds
2
−1

(1− γλ2)
dλ ≤ (1− γ)

∫ γ

0
(1− λ)

ds
2
−2dλ

=
2(1− γ)

2− ds

[
(1− γ)

ds
2
−1 − 1

]
≤ 2

2− ds
(1− γ)

ds
2 .

For the second term, note that λ2 ≤ 1, so (1− γλ2)−1 ≤ (1− γ)−1, leading to:

(1− γ)

∫ 1

γ

λ2(1− λ)
ds
2
−1

(1− γλ2)
dλ ≤

∫ 1

γ
(1− λ)

ds
2
−1dλ =

2

ds
(1− γ)

ds
2 . (16)

In the end, we obtain that nW(γ)−1 − 1
n ≤ 2

cs

[
1

2−ds
+ 1

ds

]
(1− γ)

ds
2 , and so:

nW(γ) ≥
(
1

n
+

4(1− γ)
ds
2

ds(2− ds)cs

)−1

. (17)

In this case, scaling in γ is impacted by the spectral dimension. Better-connected graphs
benefit more from higher γ.

4. Convergence Analysis

In the previous section, we have derived exact rates for a specific function. Now we present
convergence rates for general (strongly) convex functions that are consistent with our

11
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observations in the previous section. We obtain rates that depend on the level of noise, the
hardness of the objective, and the topology of the graph. More formally, we assume that we
would like to solve the following problem:

min
θ∈Rd

n∑
i=1

fi(θ) = min
x∈Rnd,xi=xj

n∑
i=1

fi(xi). (18)

In this case, xi ∈ Rd represents the local variable of node i, and x ∈ Rnd the stacked variables
of all nodes. We will assume the following iterations for D-SGD:

(D-SGD): x
(t+1)
i =

n∑
j=1

wijx
(t)
j − η∇f

ξ
(t)
i

(x
(t)
i ) (19)

where f
ξ
(t)
i

represent sampled data points and the gossip weights wij are elements of W.
Denoting LW = I−W, we rewrite this expression in matrix form as:

x(t+1) = x(t) −
[
η∇Fξ(t)(x

(t)) + LWx(t)
]
, (20)

where (∇Fξ(t)(x
(t)))i = ∇fξ(t)i

(x
(t)
i ). We abuse notations in the sense that W ∈ Rnd×nd is

now the Kronecker product of the standard n×n gossip matrix and the d×d identity matrix.
This definition is a slight departure from the conference version of this work (Vogels

et al., 2022), which alternated randomly between gossip steps and gradient updates instead
of in turns. The analysis of the randomized setting is still possible, but with heterogeneous
objectives xi ̸=

∑n
j=1wijxj , even for the fixed points of D-SGD (19), and randomizing the

updates adds undesirable variance. Similarly, it is also possible to analyze the popular variant
x(t+1) = W[x(t) − η∇Fξ(t)(x

(t))], which locally averages the stochastic gradients before they
are applied. Yet, the D-SGD algorithm in (19) allows communications and computations to
be performed in parallel, and leads to a simpler analysis. We analyze this model under the
following assumptions, where Df (x, y) = f(x)− f(y)−∇f(y)⊤(x− y) denotes the Bregman
divergence of f between points x and y. These assumptions are standard, and in particular
the end of (iii) simply allows some very large (or even unbounded) smoothness constants ζξ
as long as the corresponding functions have a low probability to be sampled.

Assumption 4 The stochastic gradients are such that: (i) the sampled data points ξ
(t)
i and

ξ
(ℓ)
j are independent across times t, ℓ and nodes i ̸= j. (ii) stochastic gradients are locally

unbiased: E [f
ξ
(t)
i

] = fi for all t, i (iii) the objectives f
ξ
(t)
i

are convex and ζξ-smooth for all t, i,

with E
[
ζξDfξ(x, y)

]
≤ ζDf (x, y) for all x, y. (iv) all local objectives fi are µ-strongly-convex

for µ ≥ 0 and L-smooth.

4.1 Large Learning Rates

The smoothness constant ζ of the stochastic functions fξ defines the level of noise in the
problem (the lower, the better) in the transient regime. The ratio ζ/L compares the difficulty
of optimizing with stochastic gradients to the difficulty with the true global gradient before
reaching the ‘variance region’ in which the iterates of D-SGD with a constant learning rate lie

12
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almost surely as t→∞. This ratio is thus especially important in interpolating settings when
all f

ξ
(t)
i

have the same minimum, so that the ‘variance region’ is reduced to the optimum x⋆.
Assuming better smoothness for the global average objective than for the local functions
is key to showing that averaging between workers allows for larger learning rates. Without
communication, convergence to the ‘variance region’ is ensured for learning rates η ≤ 1/ζ. If
ζ ≈ L, there is little noise and cooperation only helps to reduce the final variance, and to get
closer to the global minimum (instead of just your own). Yet, in noisy regimes (ζ ≫ L), such
as in Section 3.1 in which ζ = d+ 2≫ 1 = L, averaging enables larger learning rates up to
min(1/L, n/ζ), greatly speeding up the initial training phase. This is precisely what we will
prove in Theorem 6.

If the workers always remain close (xi ≈ 1
n(x1+ . . .+xn) ∀i, or equivalently 1

n11
⊤x ≈ x),

D-SGD behaves the same as SGD on the average parameter 1
n

∑n
i=1 xi, and the learning rate

depends on max(ζ/n, L), showing a reduction of variance by n. Maintaining “ 1
n11

⊤x ≈ x”,
however, requires a small learning rate. This is a common starting point for the analysis of
D-SGD, in particular for the proofs in Koloskova et al. (2020). On the other extreme, if we
do not assume closeness between workers, “Ix ≈ x” always holds. In this case, there is no
variance reduction, but no requirement for a small learning rate either. In Section 3.1, we
found that, at the optimal learning rate, workers are not close to all other workers, but they
are close to others that are not too far away in the graph.

We capture the concept of ‘local closeness’ by defining a neighborhood matrix M ∈ Rn×n.
It allows us to consider semi-local averaging beyond direct neighbors, but without fully
averaging with the whole graph. We ensure that “Mx ≈ x”, leading to an improvement in the
smoothness somewhere between ζ (achieved alone) and ζ/n (achieved when global consensus
is maintained). Each neighborhood matrix M implies a requirement on the learning rate, as
well as an improvement in smoothness.

While we can conduct our analysis with any M, those matrices that strike a good balance
between the learning rate requirement and improved smoothness are most interesting. Based
on Section 3.1, we therefore focus on a specific construction of matrices: We choose M as
the covariance of a decay-γ ‘random walk process’ with the graph, as in (5), meaning that

M = (1− γ)
∞∑
k=1

γk−1W2k = (1− γ)W2(I− γW2)−1. (21)

Varying γ induces a spectrum of averaging neighborhoods from M = W2 (γ = 0) to
M = 1

n11
⊤ (γ = 1). γ also implies an effective number of neighbors nW(γ): the larger γ,

the larger nW(γ). We make the following assumption on the neighborhood matrix M:

Assumption 5 The neighborhood matrix M is of the form of (21), and all the diagonal
elements have the same value, i.e., Mii = Mjj for all i, j.

Assumption 5 implies that Mii
−1 = nW(γ): the effective number of neighbors defined in (6)

is equal to the inverse of the self-weights of M. This comes from the fact that the trace of
M is equal to the sum of its eigenvalues. Otherwise, all results that require Assumption 5
hold by replacing nW(γ) with miniMii

−1. Besides this interesting relationship with the
effective number of neighbors nW(γ), we will be interested in another spectral property
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of M, namely the constant β(γ) (which only depends on γ through M, but we make this
dependence explicit), which is such that:

LM ≼ β(γ)−1LWW (22)

This constant can be interpreted as the strong convexity of the semi-norm defined by LWW
relatively to the one defined by LM. Due to the form of M, we have 1− λ2(W) ≤ β(γ) ≤ 1,
and the lower bound is tight for γ → 1. However, the specific form of M (involving
neighborhoods as defined by W) and the use of γ < 1 ensure a much larger constant β(γ) in
general.

4.2 Fixed Points of D-(S)GD

Vogels et al. (2022) consider a homogeneous setting, in which E f
ξ
(t)
i

= f for all i. We now go
beyond this analysis, and consider a setting in which local functions fi might be different. In
this case, constant-learning-rate Decentralized Gradient Descent (the deterministic version
of D-SGD) does not converge to the minimizer of the average function but to a different one.
Let us now consider this fixed point x⋆

η, which is equal to x⋆ in the homogeneous setting,
and in general verifies:

η∇F (x⋆
η) + LWx⋆

η = 0. (23)

Note that x⋆
η crucially depends on the learning rate η (which we emphasize in the notation)

and that it is generally not at consensus (LWx⋆
η ̸= 0). This bias has been studied

before (Yuan et al., 2016; Koloskova et al., 2020) and is the reason why ‘gradient tracking’
algorithms (Shi et al., 2015; Nedic et al., 2017) have been developed. Yet, we improve over
previous works in two ways: (i) we obtain a tighter bound on the distance between x⋆ and
x⋆
η, and (ii) we show that the iterates actually converge to x⋆

η in the noiseless setting (and in
particular do not oscillate). In the presence of stochastic noise, D-SGD will oscillate in a
neighborhood (proportional to the gradients’ variance) of this fixed point x⋆

η, and so from
now on we will refer to x⋆

η as the fixed point of D-SGD.
In the remainder of this section, we show that the results from Vogels et al. (2022) still

hold as long as we replace the global minimizer x⋆ (solution of Problem (18)) by this fixed
point x⋆

η. More specifically, we measure convergence by ensuring the decrease of the following
Lyapunov function:

Lt = ∥x(t) − x⋆
η∥2M + ω∥x(t) − x⋆

η∥2LM
= (1− ω)∥x(t) − x⋆

η∥2M + ω∥x(t) − x⋆
η∥2, (24)

for some parameter ω ∈ [0, 1], and where LM = I−M. Then, we will show how these results
imply convergence to a neighborhood of x⋆

η, and that this neighborhood shrinks with smaller
learning rates η. More specifically, the section unrolls as follows:

1. Theorem 6 first proves a general convergence result to x⋆
η, the fixed point of D-(S)GD.

2. Theorem 9 then bounds the distance to the true optimum for general learning rates.

3. Corollary 10 finally gives a full convergence result with optimized learning rates.
Readers interested in quickly comparing our results with state-of-the art ones can skip
to this result.
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4.3 General Convergence Result

Theorem 6 provides convergence rates for any choice of the parameter γ that determines the
neighborhood matrix M, and for any Lyapunov parameter ω. The best rates are obtained
for specific γ and ω that balance the benefit of averaging with the constraint it imposes on
closeness between neighbors. We will discuss these choices more in depth in the next section.

Theorem 6 If Assumptions 4 and 5 hold and if η is such that

η ≤ min

β(γ)ω

L
,

1

4
([

nW(γ)−1 + ω
]
ζ + L

)
 , (25)

then the Lyapunov function defined in (24) verifies the following:

L(t+1) ≤ (1− ηµ)L(t) + η2σ2
M,

where σ2
M = 2[(1− ω)nW(γ)−1 + ω]E

[
∥∇Fξt(x

⋆
η)−∇F (x⋆

η)∥2
]
.

This theorem shows convergence (up to a variance region) to the fixed point x⋆
η of D-SGD,

regardless of the ‘true’ minimizer x⋆. Although converging to x⋆
η might not be ideal depending

on the use case (but do keep in mind that x⋆
η → x⋆ as η shrinks), this is what D-SGD does,

and so we believe it is important to start by stating this clearly. The homogeneous case did
not have this problem since x⋆

η = x⋆ for all η for η that implied convergence.
Parameter ω ∈ [0, 1] is free, and it is often convenient to choose it as ω = ηL/β(γ) to get

rid of the first condition on η. Yet, we present the result with a free parameter ω since, as we
will see in the remainder of this section, setting ω = nW(γ)−1 allows for simple corollaries.
Proof We now detail the proof, which is both a simplification and generalization of
Theorem IV from Vogels et al. (2022). The main difference is how the Lyapunov function is
built and used. First note that ∥x(t)∥2LM

is replaced by ∥x(t) − x⋆
η∥2LM

, which does not just
measure how close x(t) is to consensus, but rather how far x(t) is to optimum in the space
spanned by LM. Although they are the same in the homogeneous case, many generalizations
were possible.

Then, the way this Lyapunov is used also differs. In the conference paper, the proof was
built in the following way: one term of the Lyapunov represented the distance to optimum
(the M term), and the other one represents the distance to consensus (the LM term). Each
gradient update reduces the distance to optimum but might increase the distance to consensus,
and each gossip update shrinks the distance to consensus by a constant factor. We analyzed
the two separately, and then balanced ω to obtain overall decrease. However, many of the
subsequent derivations could not be applied when replacing x⋆, the global minimizer, by x⋆

η,
which is the fixed-point of the D-SGD iterations. For instance, we don’t have that LMx⋆

η = 0
(or equivalently that Mx⋆

η = x⋆
η) anymore, which was used extensively with x⋆.

In the new proof, we analyze the contributions from both parts of the Lyapunov (M and
LM) at once, which surprisingly simplifies things. For instance, when bounding gradient
terms in Part 3, we rewrite the matrix inducing the norm in the Lyapunov as I− (1− ω)LM.
For the error terms, on contrary, we used the formulation (1− ω)M+ ωI. This might seem
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anecdotal, but it is mandatory to obtain a tight heterogeneous proof, and ensure in particular
that (28), (29) and (30) simplify well when they are summed.

4.4 General Decomposition

We first analyze the first term in the Lyapunov (24), and use the fixed-point conditions of
(23) to write:

E
[
∥x(t+1) − x⋆

η∥2M
]
= ∥x(t) − x⋆

η∥2M + ∥η∇Fξt(x
(t)) + LWx(t)∥2M

− 2η
[
∇F (x(t))−∇F (x⋆

η)
]⊤

M(x(t) − x⋆
η)− 2∥x(t) − x⋆

η∥2LWM.
(26)

The second term is the same with M in place of I.

4.5 Error Terms

We start by bounding the error terms, and use the optimality conditions to obtain:

E
[
∥η∇Fξt(x

(t)) + LWx(t)∥2M
]

= E
[
∥η
[
∇Fξt(x

(t))−∇F (x⋆
η)
]
+ LW(x(t) − x⋆

η)∥2M
]

= E
[
∥η
(
∇Fξt(x

(t))−∇Fξt(x
⋆
η)
)
+
[
η
(
∇Fξt(x

⋆
η)−∇F (x⋆

η)
)
+ LW(x(t) − x⋆

η)
]
∥2M
]

≤ 2η2 E ∥∇Fξt(x
(t))−∇Fξt(x

⋆
η)∥2M+2η2 E ∥∇Fξt(x

⋆
η)−∇F (x⋆

η)∥2M+2∥x(t) − x⋆
η∥2LWMLW

,

where the last inequality comes from the bias-variance decomposition. The second term
corresponds to variance, whereas the first and last one will be canceled by descent terms.

4.6 Stochastic Gradient Noise

To bound the first term, we crucially use that stochastic noises are independent for two
different nodes, so in particular:

E
[
∥∇Fξt(x

(t))−∇Fξt(x
⋆
η)∥2M

]
= nW(γ)−1 E

[
∥∇Fξt(x

(t))−∇Fξt(x
⋆
η)∥2

]
+ ∥∇F (x(t))−∇F (x⋆

η)∥2M−nW(γ)−1I

≤ 2nW(γ)−1 E
[
ζξtDFξt

(x⋆
η,x

(t))
]
+ ∥∇F (x(t))−∇F (x⋆

η)∥2

≤ 2
[
nW(γ)−1ζ + L

]
DF (x

(t),x⋆
η),

where we used that M ≼ I, the L-cocoercivity of F , and the noise assumption, i.e.,
E
[
ζξtDFξt

]
≤ ζDF . The effective number of neighbors nW(γ) kicks in since Assump-

tion 5 implies that the diagonal of M is equal to nW(γ)−1I. Using independence again, we
obtain:

E
[
∥∇Fξt(x

⋆
η)−∇F (x⋆

η)∥2M
]
= nW(γ)−1 E

[
∥∇Fξt(x

⋆
η)−∇F (x⋆

η)∥2
]

(27)
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Performing the same computations for the E
[
∥∇Fξt(x

(t))−∇F (x⋆
η)∥2

]
term and adding

consensus error leads to:

E ∥η∇Fξt(x
(t)) + LWx(t)∥2(1−ω)M+ωI ≤ 4

[[
(1− ω)nW(γ)−1 + ω

]
ζ + (1− ω)L

]
DF (x

(t),x⋆
η)

+ 2η2((1− ω)nW(γ)−1 + ω)E ∥∇Fξt(x
⋆
η)−∇F (x⋆

η)∥2

+ 2∥x(t) − x⋆
η∥2LW[M+ωLM]LW

(28)

Here, the first term will be controlled by the descent obtained through the gradient terms,
and the second one through communication terms.

4.7 Gradient Terms

We first analyze the effect of all gradient terms. In particular, we use that (1− ω)M+ ωI =
I− (1− ω)LM. Then, we use that

[
∇F (x(t))−∇F (x⋆

η)
]⊤

(x(t) − x⋆
η) = DF (x

(t),x⋆
η) +DF (x

⋆
η,x

(t)),

and:

−2
[
∇F (x(t))−∇F (x⋆

η)
]⊤
LM(x(t) − x⋆

η) ≤ 2∥∇F (x(t))−∇F (x⋆
η)∥∥LM(x(t) − x⋆

η)∥

≤ 1

2L
∥∇F (x(t))−∇F (x⋆

η)∥2 + 2L∥x(t) − x⋆
η∥2LM

2

≤ DF (x
(t),x⋆

η) + 2L∥x(t) − x⋆
η∥2LM

2 .

Overall, the gradient terms sum to:

− 2
[
∇F (x(t))−∇F (x⋆

η)
]⊤

(x(t) − x⋆
η) + 2(1− ω)

[
∇F (x(t))−∇F (x⋆

η)
]⊤

LM(x(t) − x⋆
η)

≤ −2DF (x
⋆
η,x

(t))− (2− (1− ω))DF (x
(t),x⋆

η) + 2(1− ω)L∥x(t) − x⋆
η∥LM

2

≤ −µ∥x(t) − x⋆
η∥2 −DF (x

(t),x⋆
η) + 2L∥x(t) − x⋆

η∥LM
2

≤ −(1− ω)µ∥x(t) − x⋆
η∥2M − ωµ∥x(t) − x⋆

η∥2 −DF (x
(t),x⋆

η) +
2L

β(γ)
∥x(t) − x⋆

η∥LMLWW,

(29)

where we used that LM ≼ β(γ)−1LWW, and I ≽ (1− ω)M+ ωI

4.8 Gossip Terms

We simply recall the gossip terms we use for descent here, which write:

−2∥x(t) − x⋆
η∥2LWM − 2ω∥x(t) − x⋆

η∥2LWLM
. (30)
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4.9 Putting Everything Together

We now add all the descent and error terms together. More specifically, using Equa-
tions (28), (29) and (30) we obtain:

L(t+1) ≤ (1− ηµ)L(t)

− 2∥x(t) − x⋆
η∥2LWM(I−LW)

− 2ω [1− ηL/(ωβ(γ))] ∥x(t) − x⋆
η∥2LWLMW

− η
(
1− 4η

[[
(1− ω)nW(γ)−1 + ω

]
ζ + (1− ω)L

])
DF (x

(t),x⋆
η)

+ 2η2
[
(1− ω)nW(γ)−1 + ω

]
E
[
∥∇Fξt(x

⋆
η)−∇F (x⋆

η)∥2
]
.

The conditions in the theorem are chosen so that the terms from lines 3 and 4 are positive
(which is automatically true for line 2), and using that 1− ω ≤ 1 (since ω is small anyway).

4.10 Main Corollaries

Parameter γ controls the size of the local neighborhoods considered in the analysis, which
should ideally match how many nodes each node actually sees (which de pends on the step
size). Theorem 6 is written in a way that suggests that one needs to set proper γ and
ω parameters to obtain fast convergence. However , γ and ω do not appear in D-SGD’s
implementation, so in practice one only needs to tune the learning rate, as always.

For the theory, one wants to have γ ≈ 1 to ensure small residual variance, but a too large
γ does not meet the step-size condition. Thus, there are two cases: (i) we want to set γ to
have the largest possible learning rate, and (ii) for a fixed (admissible) learning rate, we want
to choose the smallest γ that allows it. These two cases are treated below.

4.11 Large Learning Rate: Speeding Up Convergence for Large Errors

We now investigate Theorem 6 in the case in which both the noise σ2 and the heterogeneity
∥∇F (x⋆)∥2

LW
† are small (compared to L(0)), and so we would like to have the highest

possible learning rate in order to ensure fast decrease of the objective (which is consistent
with Figure 1). Using (25), we obtain a rate for each parameter γ that controls the local
neighborhood size (remember that β(γ) depends on γ). The task that remains is to find
the γ parameter that gives the best convergence guarantees (the largest learning rate). As
explained before, one should never reduce the learning rate in order to be close to others,
because the goal of collaboration (in this regime in which we are not affected by variance
and heterogeneity) is to increase the learning rate.

We illustrate this in Figure Figure 3, that we obtain by choosing ω = nW(γ)−1, and
evaluating the two terms of (25) for different values of γ. The expression for the linear part
of the curve (before consensus dominates) is given in Corollary 7.

18



Beyond Spectral Gap

5 10 15 20 25 30
0.000

0.001

0.002

0.003

0.004

0.005

↑ Learning rate given by Theorem 1 (L = 1.0, ζ = 2000)
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M

Figure 3: Maximum learning rates prescribed by Theorem 6, varying the parameter γ that
implies an effective neighborhood size (x-axis) and an averaging matrix M (drawn
as heatmaps). On the left, we show the details for a 32-worker ring topology, and
on the right, we compare it to more connected topologies. Increasing γ (and with
it nW(γ)) initially leads to larger learning rates thanks to noise reduction. At the
optimum, the cost of consensus exceeds the benefit of further reduced noise.

Corollary 7 Consider that Assumptions 4 and 5 hold, then the largest (up to constants)
learning rate is obtained as:

η = (8ζ/nW(γ) + 4L)−1 , for γ such that 4nW(γ)−1β(γ)(2nW(γ)−1ζ + L) ≤ L (31)

We see that the learning rate scales linearly with the number of effective neighbors in this case
(which is equivalent to taking a mini-batch of size linear in nW(γ)) until a certain number
of neighbors is reached (condition on the right), or centralized performance is achieved
(ζ = nW(γ)L). The condition on γ always has a solution since when γ ≈ 0, both β(γ)
and nW(γ)−1 are close to 1, and they both decrease when γ grows. This corollary directly
follows from taking ω = nW(γ)−1 in Theorem 6. Note that a slightly tighter choice could be
obtained by setting ω = ηβ(γ)/L.

4.12 Investigating β(γ)

We now evaluate β(γ) in order to obtain more precise bounds. In particular, choosing M as
in (21), the eigenvalues of LM are equal to:

λLM
i =

1− λ2
i

1− γλ2
i

, (32)

where λi are the eigenvalues of W. In particular, β(γ)LM ≼ WLW translates into the fact
that for all i such that λi ̸= 1 (automatically verified in this case), we want for all i:

β(γ) ≤ 1− γλ2
i

1− λ2
i

(1− λi)λi =
λi(1− γλ2

i )

1 + λi
. (33)
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We now make the assumption that λmin(W) ≥ 1
2 (which can be enforced by taking W′ =

(I+W)/2), but note that the theory holds regardless. We motivate this simplifying assumption
by the fact that for arbitrarily small spectral gaps, the right side of (33) is always minimized
for λ2(W) assuming γ is large enough, so the actual value of λmin(W) < 1 does not matter.
In particular, in this case, neglecting the effect of the spectral gap, we can just take:

β(γ) =
1− γλ2(W)

4
≥ 1− γ

4
, (34)

Note that β(γ) allows for large γ when the spectral gap 1− λ2(W) is large, but we allow
non-trivial learning rates η > 0 even when λ2(W) = 1 (infinite graphs) as long as γ < 1.

4.13 Optimal Choice of nW(γ)

Leveraging the spectral dimension results from Section 3.1, we obtain the following corollary:

Corollary 8 Under Assumption 4 and 5, and assuming that λmin(W) ≥ 1
2 , that the commu-

nication graph has spectral dimension ds > 2, and that ζ ≫ L, the highest possible learning
rate is

η =
1

8

(
cs(ds − 2)

ζ2L

) 1
3

, obtained for nW(γ) =

(
cs(ds − 2)

ζ

L

) 1
3

(35)

This result follows from Corollary 7, which, if ζ ≫ L, writes:

L

ζ
≥ 8nW(γ)−2β(γ) = nW(γ)−3cs(ds − 2), (36)

where the right part is obtained by plugging in the expressions for β(γ) from (34) into
nW(γ)−1 ≤ 2(1−γ)

cs(ds−2) from (14) (assuming γ ≥ 1/2). Then, one can solve for 1− γ. Assump-
tions besides Assumption 4 allow to give a simple result in this specific case, but similar
expressions can easily be obtained for ds ≤ 2 and ζ < LnW(γ).

4.14 Small Learning Rate: Approaching the Optimum Arbitrarily Closely

Theorem 6 gives a convergence result to x⋆
η, the fixed point of D-SGD, and we have investigated

in the previous section the behavior of D-SGD for large learning rates. In Theorem 9, we
focus on small error levels, for which the variance and heterogeneity terms dominate, and we
would like to take small learning rates η. In this setting, we bound the distance between the
current iterate and the true minimizer x⋆ instead of x⋆

η. We also provide a result that gets
rid of all dependence on x⋆

η, and only explicitly depends on the learning rate η.
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Theorem 9 Under the same assumptions and conditions on the learning rate as Theo-
rem 6 and Corollary 8, we have that:

∥x(t) − x⋆∥M ≤ 2(1− ηµ)tL(0) + 2ησ2
M

µ
+ 2η2(1 + κ)∥LW

†∇F (x⋆
η)∥2 (37)

We can further remove x⋆
η from the bound, and obtain:

∥x(t) − x⋆∥M ≤ 2(1− ηµ)tL(0) +
6ησ2

M,⋆

µ
+ 6η2κp−1∆2

W,

where σ2
M,⋆ = (nW(γ)−1+ω)E

[
∥∇Fξ(x

⋆)−∇F (x⋆)∥2
]

and p−1 = maxη
∥LW

†∇F (x⋆
η)∥2

∥∇F (x⋆
η)∥2LW

†
,

so that p ≥ 1− λ2(W), and ∆2
W = ∥∇F (x⋆)∥2

LW
†

The norm ∥x(t)−x⋆∥2M considers convergence of locally averaged neighborhoods, but ∥x(t)−
x⋆∥2M ≥ ∥x(t)−x⋆∥2 since 1 is an eigenvector of M with eigenvalue 1. We now briefly discuss
the various terms in this corollary, and then prove it.

4.15 Heterogeneity Term

The term due to heterogeneity only depends on the distance between the true optimum
x⋆ and the fixed point x⋆

η, which we then transform into a condition on ∥∇F (x⋆)∥2
LW

† . In
particular, it is not influenced by the choice of M (and thus of γ).

4.16 Constant p

We introduce constant p to get rid of the explicit dependence on x⋆
η. Indeed, p−1 intuitively

denotes how large LW
† is in the direction of∇F (x⋆

η). For instance, if∇F (x⋆
η) is an eigenvector

of W associated with eigenvalue λ, then we have p = 1 − λ. In the worst case, we have
that p = 1− λ2(W), but p can be much better in general, when the heterogeneity is spread
evenly, instead of having very different functions on distant nodes.

4.17 Variance Term

In this case, the largest variance reduction (of order n) is obtained by taking ω and nW(γ)−1

as small as possible. For learning rates that are too large to imply nW(γ)−1 ≈ n−1, decreasing
it decreases the variance term in two ways: (i) directly, through the η term, (ii) indirectly,
by allowing to take smaller values of nW(γ)−1.

For very large (infinite) graphs, we can take ω = nW(γ)−1, and in this case Theorem 6
gives that the smallest nW(γ)−1 is given by nW(γ)−1β(γ) = ηL. Using spectral dimension
results (for instance with ds > 2), we obtain (similarly to Corollary 8) that any β(γ) smaller
than β(γ) = (1− γ)/4 = nW(γ)−1cs(ds − 2)/8, is suitable, and so we can take γ such that:

nW(γ)−1 =

√
8ηL

cs(ds − 2)
, (38)

21



Vogels, Hendrikx and Jaggi

so the residual variance term for this choice of nW(γ)−1 is of order:

O
(
η

3
2

µ

√
L

cs(ds − 2)
E
[
∥∇Fξ(x

⋆)−∇F (x⋆)∥2
])

(39)

In particular, we obtain super-linear scaling when reducing the learning rate η thanks to the
added benefit of gaining more effective neighbors. Note that again, the cases ds ≤ 2 can be
treated in the same way.
Proof [Theorem 9] We start by writing:

∥x(t) − x⋆∥2M ≤ 2∥x(t) − x⋆
η∥2M + 2∥x⋆

η − x⋆∥2M ≤ 2L(t) + 2∥x⋆
η − x⋆∥2. (40)

Theorem 6 ensures that L(t) becomes small, and so we are left with bounding the distance
between x⋆

η and x⋆.

4.18 Distance to the Global Minimizer

We define x⋆
η = 11⊤x⋆

η/n. Using the fact that both x⋆
η and x⋆ are at consensus, and

1⊤∇F (x⋆
η) = 0 (immediate from (23)), we write:

DF (x
⋆,x⋆

η) = F (x⋆)− F (x⋆
η)−∇F (x⋆

η)
⊤(x⋆ − x⋆

η)

= F (x⋆
η)− F (x⋆

η)−∇F (x⋆
η)

⊤(x⋆
η − x⋆

η) + F (x⋆)− F (x⋆
η)

≤ DF (x⋆
η,x

⋆
η), (41)

where we use in the last line that x⋆ is the minimizer of F on the consensus space. Therefore:

∥x⋆
η − x⋆∥2 = ∥x⋆

η − x⋆∥2 + ∥x⋆
η − x⋆

η∥2 ≤
2

µ
DF (x

⋆,x⋆
η) + ∥x⋆

η − x⋆
η∥2

≤ 2

µ
DF (x⋆

η,x
⋆
η) + ∥x⋆

η − x⋆
η∥2 ≤

(
1 +

L

µ

)
∥x⋆

η − x⋆
η∥2

= η2
(
1 +

L

µ

)
∥LW

†∇F (x⋆
η)∥2.

Note that the result depends on the heterogeneity pattern of the gradients at the fixed point,
and might be bounded (and even small) even when W has no spectral gap. However, this
quantity is proportional to the squared inverse spectral gap in the worst case.

4.19 Monotonicity in η

We now prove that ∥∇F (x⋆
η)∥2LW

† decreases when η increases, and so is maximal for η = 0,
corresponding to x⋆

η = x⋆. More specifically:

d∥∇F (x⋆
η)∥2LW

†

dη
=

d
[
η−2∥x⋆

η∥2LW

]
dη

= −
2∥x⋆

η∥2LW

η3
+ 2η−2(x⋆

η)
⊤LW

dx⋆
η

dη

Differentiating the fixed-point conditions, we obtain that

η∇2F (x⋆
η)
dx⋆

η

dη
+∇F (x⋆

η) + LW

dx⋆
η

dη
= 0, (42)
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so that:

dx⋆
η

dη
= −

(
η∇2F (x⋆

η) + LW

)−1∇F (x⋆
η) = η−1

(
η∇2F (x⋆

η) + LW

)−1
LWx⋆

η. (43)

Plugging this into (43) and using that ∇2F (x⋆
η) is positive semi-definite, we obtain:

d∥∇F (x⋆
η)∥2LW

†

dη
= − 2

η3
(x⋆

η)
⊤
[
LW − LW

(
LW + η∇2F (x⋆

η)
)−1

LW

]
x⋆
η

≤ − 2

η3
(x⋆

η)
⊤
[
LW − LWLW

†LW

]
x⋆
η = 0.

4.20 Getting Rid of x⋆
η

By definition of p, we can write:

∥LW
†∇F (x⋆

η)∥2 ≤ p−1∥∇F (x⋆
η)∥2LW

† ≤ p−1∥∇F (x⋆)∥2
LW

† . (44)

Note that we have to bound this constant p in order to use the monotonicity in η of
∥∇F (x⋆

η)∥2LW
† since this result does not hold for ∥LW

†∇F (x⋆
η)∥2. For the variance, we write:

E
[
∥∇Fξt(x

⋆
η)−∇F (x⋆

η)∥2
]
≤ 3E

[
∥∇Fξt(x

⋆
η)−∇Fξt(x

⋆)∥2
]

+ 3E
[
∥∇Fξt(x

⋆)−∇F (x⋆)∥2
]
+ 3∥∇F (x⋆

η)−∇F (x⋆)∥2

≤ 3σ2
M,⋆ + 3 (ζ + L)DF (x

⋆,x⋆
η).

From here, we use Equation (41) and obtain that:

E
[
∥∇Fξt(x

⋆
η)−∇F (x⋆

η)∥2
]
≤ 3σ2

M,⋆ + 3L (ζ + L) η2∥LW
†∇F (x⋆

η)∥2. (45)

To obtain the final result, we use that η(nW(γ)−1+ω)(ζ+L) ≤ 1/4 thanks to the conditions
on the learning rate.

4.21 Comparison with Existing Work

Expressed in the form of Koloskova et al. (2020), we can summarize the previous corollaries
into the following result by taking either η as the largest possible constant (as indicated in
Corollary 8) or η = Õ(1/(µT )). Here, Õ denotes inequality up to logarithmic factors, and
recall that ∥x(t) − x⋆∥2M ≥ ∥x(t) − x⋆∥2. We recall that L is the smoothness of the global
objective f , ζ is the smoothness of the stochastic functions fξ, µ is the strong convexity
parameter, ds is the spectral dimension of the gossip matrix W (and we assume ds > 2) and
cs is the associated constant.
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Corollary 10 (Final result.) Under the same assumptions as Corollary 8, there exists
a choice of learning rate such that the expected squared distance to the global optimum
after T steps of D-SGD ∥x(t) − x⋆∥2 is of order:

Õ
(

σ2

µ2TnW(γ∗small)
+

L∆2
W

µ3pT 2
+ exp

[
−nW(γ∗large)

µ

ζ
T

])
, (46)

where ∆2
W and p are defined in Theorem 9, and x(t) is the average parameter. The

optimal effective number of neighbors for respectively small and large learning rates are:

nW(γ∗small) = min

(√
dsT

Lcs
, n

)
and nW(γ∗large) = min

((
csdsζ

L

) 1
3

, n

)
. (47)

This result can be contrasted with the result from Koloskova et al. (2020), which writes:

Õ
(

σ2

µ2T

[
1

n
+

L

µ(1− λ2(W))T

]
+

L∆2

µ3(1− λ2(W))2T 2
+ exp

[
−µ(1− λ2(W))

ζ
T

])
, (48)

Note that Pu et al. (2021) obtain comparable results, and in particular for the asymptotic
variance. Yet, their results do not state a clear dependence on µ and ζ, and are overall less
tight, which is why we stick to (48). We now make the following observations.

4.22 Scheduling the Learning Rate

Here, the learning rate is either chosen as ηlarge = nW(γ∗large)/ζ, or as ηsmall = Õ((µT )−1). In
practice, one would start with the large learning rate, and switching to ηsmall when training
does not improve anymore (heterogeneity/variance terms dominate), or use decreasing step-
sizes. To efficiently include this in the analysis, one needs to bound ∥x⋆

η − x⋆
η′∥2 for η ̸= η′,

which can be done for instance by deriving a Lipschitz continuity bound from (43).

4.23 Exponential Decrease Term

We first show an improvement in the exponential decrease term. Indeed, nW(γ∗large)/(1−
λ2(W)), the ratio between the largest learning rate permitted in our analysis versus existing
ones, is always large since nW(γ∗large) ≥ 1 and 1 − λ2(W) ≤ 1. Besides, the exponential
decrease term is no longer affected by the spectral gap in our analysis, which only affects
how big nW(γ) can be. This improvement holds even when ζ = L (in this case nW(γ) = 1
is enough), and is due to the fact that heterogeneity only affects lower-order terms, so that
when cooperation brings nothing it doesn’t hurt convergence either.

4.24 Impact of Heterogeneity

The improvement in the heterogeneous case does not depend on some γ, and relies on
bounding heterogeneity in a non-worst case fashion. Indeed, ζW and p capture the interplay
between how heterogeneity is distributed among nodes, and the actual topology of the graph.
Note that this does not contradict the lower bound from Koloskova et al. (2020), since
∆2

W/p = ∆2/(1− λ2(W))2 in the worst case. In the worst case, the heterogeneity pattern
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of ∇F (x⋆) is aligned with the smallest eigenvalue of LW, i.e., very distant nodes have very
different objectives. The quantity p, however, gives more fine-grained bounds that depend
on the actual heterogeneity pattern in general.

4.25 Variance Term

One key difference between the analyses is on the variance term that involves σ2. Both analyses
depend on the variance of a single node, σ2/(µT ), which is then multiplied by a ‘variance
reduction’ term. In both cases, this term is of the form nW(γ)−1 + ηLβ(γ)−1. However, the
standard analysis implicitly use γ = 1, and so nW(γ) = n, and β(γ) = 1− λ2(W). Then,
the form from (48) follows from taking η = Õ(1/(µT )). Our analysis on the other hands
relies on tuning γ such that nW(γ)−1 + ηLβ(γ)−1 is the smallest possible, and is therefore
strictly better than just considering γ = 1. Assuming a given spectral dimension ds > 2 for
the graph leads to (46), but any assumption that precisely relates nW(γ) and γ would allow
getting similar results.

While the Õ(T−2) in the variance term of Koloskova et al. (2020) seems better than our
Õ(T−3/2) term, this is misleading because constants are very important in this case. Our rate
is optimized by over γ, which accounts for the fact that if the Õ(T−2) term dominates, then it
is better to just consider a smaller neighborhood. In that case, we would not benefit from n−1

variance reduction anyway. Our result optimally balances the two variance terms from (48)
instead. Thanks to this balancing, we obtain that in graphs of spectral dimension ds > 2, the
variance decreases as Õ(T− 3

2 ) with a learning rate of Õ(T−1) due to the combined effect of a
smaller learning rate and adding more effective neighbors. In finite graphs, this effect caps
at nW(γ) = n, and the time needed to achieve it (i.e., to obtain 1/n = L/[µ(1− λ2(W))T ])
is sometimes called the transient time (Huang and Pu, 2022).

Finally, note that our analysis and the analysis of Koloskova et al. (2020) allow for
different generalizations of the standard framework: our analysis applies to arbitrarily large
(infinite) graphs, while Koloskova et al. (2020) can handle time-varying graphs with weak
(multi-round) connectivity assumptions.

5. Empirical Relevance in Deep Learning

While the theoretical results in this paper are for convex functions, the initial motivation
for this work comes from observations in deep learning. First, it is crucial in deep learning
to use a large learning rate in the initial phase of training (Li et al., 2019; Wang et al.,
2022). Contrary to what current theory prescribes, we do not use smaller learning rates in
decentralized optimization than when training alone (even when data is heterogeneous.) And
second, we find that the spectral gap of a topology is not predictive of the performance of
that topology in deep learning experiments.

In this section, we experiment with a variety of 32-worker topologies on Cifar-10 (Krizhevsky
et al.) with a VGG-11 model (Simonyan and Zisserman, 2015). Like other recent works (Lin
et al., 2021; Vogels et al., 2021), we opt for this older model, because it does not include
BatchNorm (Ioffe and Szegedy, 2015) which forms an orthogonal challenge for decentralized
SGD. Please refer to Appendix E of (Vogels et al., 2022) for full details on the experimental
setup. Our set of topologies includes regular graphs like rings and toruses, but also irregular
graphs such as a binary tree (Vogels et al., 2021) and social network (Davis et al., 1930),
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↑ Cifar-10 training loss after 2.5k steps (∼25 epochs)

Learning rate→
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Hypercube
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Solo
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Time-varying exponential
Torus (4x8)

Two cliques

Figure 4: Training loss reached after 2.5k SGD steps with a variety of graph topologies. In
all cases, averaging yields a small increase in speed for small learning rates, but a
large gain over training alone comes from being able to increase the learning rate.
While the star has a better spectral gap (0.031) than the ring (0.013), it performs
worse, and does not allow large learning rates. For reference, similar curves for
fully-connected graphs of varying sizes are in the appendix of Vogels et al. (2022).

and a time-varying exponential scheme (Assran et al., 2019). We focus on the initial phase
of training, 25k steps in our case, where both train and test loss converge close to linearly.
Using a large learning rate in this phase is found to be important for good generalization (Li
et al., 2019; Wang et al., 2022).

Figure 4 shows the loss reached after the first 2.5k SGD steps for all topologies and for a
dense grid of learning rates. The curves have the same global structure as those for isotropic
quadratics Figure 1: (sparse) averaging yields a small increase in speed for small learning
rates, but a large gain over training alone comes from being able to increase the learning
rate. The best schemes support almost the same learning rate as 32 fully-connected workers,
and get close in performance.

We also find that the random walks introduced in Section 3.1 are a good model for
variance between workers in deep learning. Figure 5 shows the empirical covariance between
the workers after 100 SGD steps. Just like for isotropic quadratics, the covariance is accurately
modeled by the covariance in the random walk process for a certain decay rate γ.

Finally, we observe that the effective number of neighbors computed by the variance
reduction in a random walk (Section 3.1) accurately describes the relative performance under
tuned learning rates of graph topologies on our task, including for irregular and time-varying
topologies. This is in contrast to the topology’s spectral gaps, which we find to be not
predictive. We fit a decay rate γ = 0.951 that seems to capture the specifics of our problem,
and show the correlation in Figure 6.

Vogels et al. (2022, Appendix F) replicate the same experiments in a different setting.
There, we use larger graphs (of 64 workers), a different model and data set (an MLP on
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Figure 5: Measured covariance in Cifar-10 (second row) between workers using various graphs
(top row). After 10 epochs, we store a checkpoint of the model and train repeatedly
for 100 SGD steps, yielding 100 models for 32 workers. We show normalized
covariance matrices between the workers. These are very well approximated by
the covariance in the random walk process of Section 3.1 (third row). We print
the fitted decay parameters and corresponding ‘effective number of neighbors’.

↑ Cifar-10 training loss after 2.5k steps (∼25 epochs)
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Figure 6: Cifar-10 training loss after 2.5k steps for all studied topologies with their optimal
learning rates. Colors match Figure 4, and × indicates fully-connected graphs
with varying number of workers. After fitting a decay parameter γ = 0.951 that
captures problem specifics, the effective number of neighbors (left) as measured
by variance reduction in a random walk (like in Section 3.1) explains the relative
performance of these graphs much better than the spectral gap of these topologies
(right).
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Fashion MNIST (Xiao et al., 2017)), and no momentum or weight decay. The results in this
setting are qualitatively comparable to the ones presented above.

6. Conclusion

We have shown that the sparse averaging in decentralized learning allows larger learning rates
to be used, and that it speeds up training. With the optimal large learning rate, the workers’
models are not guaranteed to remain close to their global average. Enforcing global consensus
is often unnecessary and the small learning rates it requires can be counter-productive. Indeed,
models do remain close to some local average in a weighted neighborhood around them
even with high learning rates. The workers benefit from a number of ‘effective neighbors’,
potentially smaller than the whole graph, that allow them to use larger learning rates while
retaining sufficient consensus within the ‘local neighborhood’. Both our theoretical and
experimental results indicate that D-SGD actually behaves similarly to mini-batch SGD,
where the effective size of the mini-batch is dictated by the effective number of neighbors.

Similar insights apply when nodes have heterogeneous local functions: there is no need
to enforce global averaging over the whole network when heterogeneity is small across local
neighborhoods. Besides, there is no need to compensate for heterogeneity in the early phases
of training, when models are all far from the global optimum.

Based on our insights, we encourage practitioners of sparse distributed learning algorithms
to look beyond the spectral gap of graph topologies, and to investigate the actual ‘effective
number of neighbors’ that is used. We also hope that our insights motivate theoreticians to
be mindful of assumptions that artificially limit the learning rate, even though they are tight
in worst cases. Indeed, the spectral gap is omnipresent in the decentralized litterature, which
sometimes hides some subtle phenomena such as the superlinear decrease of the variance in
the learning rate, that we highlight.

We show experimentally that our conclusions hold in deep learning, but extending our
theory to the non-convex setting is an important open direction that could reveal interesting
new phenomena. Another interesting direction would be to better understand (beyond the
worst-case) the effective number of neighbors for irregular graphs.
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