
Journal of Machine Learning Research 24 (2023) 1-52 Submitted 1/23; Revised 11/23; Published 11/23

Optimal Approximation Rates for Deep ReLU Neural Networks on
Sobolev and Besov Spaces

Jonathan W. Siegel JWSIEGEL@TAMU.EDU

Department of Mathematics
Texas A&M University
College Station, TX 77843 USA

Editor: Bharath Sriperumbudur

Abstract
Let Ω = [0,1]d be the unit cube in Rd . We study the problem of how efficiently, in terms of the
number of parameters, deep neural networks with the ReLU activation function can approximate
functions in the Sobolev spaces W s(Lq(Ω)) and Besov spaces Bs

r(Lq(Ω)), with error measured in
the Lp(Ω) norm. This problem is important when studying the application of neural networks in
a variety of fields, including scientific computing and signal processing, and has previously been
solved only when p = q = ∞. Our contribution is to provide a complete solution for all 1≤ p,q≤∞

and s > 0 for which the corresponding Sobolev or Besov space compactly embeds into Lp. The
key technical tool is a novel bit-extraction technique which gives an optimal encoding of sparse
vectors. This enables us to obtain sharp upper bounds in the non-linear regime where p > q. We also
provide a novel method for deriving Lp-approximation lower bounds based upon VC-dimension
when p < ∞. Our results show that very deep ReLU networks significantly outperform classical
methods of approximation in terms of the number of parameters, but that this comes at the cost of
parameters which are not encodable.

1. Introduction

Deep neural networks have achieved remarkable success in both machine learning (LeCun et al.,
2015) and scientific computing (Raissi et al., 2019; Han et al., 2018). However, a precise theoretical
understanding of why deep neural networks are so powerful has not been attained and is an active
area of research. An important part of this theory is the study of the approximation properties of deep
neural networks, i.e. to understand how efficiently a given class of functions can be approximated
using deep neural networks. In this work, we solve this problem for the class of deep ReLU neural
networks (Nair and Hinton, 2010) when approximating functions lying in a Sobolev or Besov space
with error measured in the Lp-norm. We remark that the ReLU activation functions is very widely
used and is a major driver of many recent breakthroughs in deep learning (Goodfellow et al., 2016;
LeCun et al., 2015; Nair and Hinton, 2010).

Let us begin by giving a description of the Sobolev function classes, which are widely used in
the theory of solutions to partial differential equations (PDEs) (Evans, 2010), and the Besov function
classes, which are widely used in approximation theory (DeVore and Lorentz, 1993), statistics
(Donoho and Johnstone, 1995, 1998), and signal processing (DeVore et al., 1992).

Let Ω⊂Rd be a bounded domain, which we take to be the unit cube Ω = [0,1]d in the following.
Due to a variety of extension theorems for Sobolev and Besov spaces (see for instance Evans

c©2023 Jonathan W. Siegel.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at
http://jmlr.org/papers/v24/23-0025.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v24/23-0025.html

SIEGEL

(2010); Di Nezza et al. (2012); DeVore and Lorentz (1993); Whitney (1934)), this is not a significant
restriction and our results will apply to many other sufficiently well-behaved domains. We denote by
Lp(Ω) the set of functions f for which the Lp-norm on Ω is finite, i.e.

‖ f‖Lp(Ω) =

(∫
Ω

| f (x)|pdx
)1/p

< ∞.

When p = ∞, this becomes ‖ f‖L∞(Ω) = esssupx∈Ω | f (x)|. Suppose that s > 0 is a positive integer.
Then f ∈W s(Lq(Ω)) is in the Sobolev space (see Demengel et al. (2012), Chapter 2 for instance)
with s derivatives in Lq if f has weak derivatives of order s and

‖ f‖q
W s(Lq(Ω)) := ‖ f‖q

Lq(Ω)+ ∑
|α|=k
‖Dα f‖q

Lq(Ω) < ∞.

Here α = (αi)
d
i=1 with αi ∈Z≥0 is a multi-index and |α|=∑

d
i=1 αi is the total degree. The W s(Lq(Ω))

semi-norm is defined by

| f |W s(Lq(Ω)) :=

(
∑
|α|=k
‖Dα f‖q

Lq(Ω)

)1/q

, (1.1)

and the standard modifications are made when q = ∞.
When s > 0 is not an integer, we write s = k+ θ with k ≥ 0 an integer and θ ∈ (0,1). The

Sobolev semi-norm is defined by (see Demengel et al. (2012) Chapter 4 or Di Nezza et al. (2012)
Chapter 1 for instance)

| f |qW s(Lq(Ω)) :=
∫

Ω×Ω

|Dα f (x)−Dα f (y)|q

|x− y|d+θq dxdy (1.2)

when 1≤ q < ∞ and

| f |W s(L∞(Ω)) := sup
|α|=k

sup
x,y∈Ω

|Dα f (x)−Dα f (y)|
|x− y|θ

.

We define the Sobolev norm by

‖ f‖q
W s(Lq(Ω)) := ‖ f‖q

Lq(Ω)+ | f |
q
W s(Lq(Ω)),

with the usual modification when q = ∞. We remark that in the case of non-integral s these spaces
are also called Sobolev-Slobodeckij spaces. Sobolev spaces are widely used in PDE theory and
a priori estimates for PDE solutions are often given in terms of Sobolev norms (Evans, 2010).
For applications of neural networks to scientific computing it is thus important to understand how
efficiently neural networks can approximate functions from W s(Lq(Ω)).

Next, we consider the Besov spaces, which we define in terms of moduli of smoothness. Given a
function f ∈ Lq(Ω) and an integer k, the k-th order modulus of smoothness of f is given by

ωk(f , t)q = sup
|h|≤t
‖∆k

h f‖Lq(Ωkh), (1.3)

where h ∈ Rd , the k-th order finite difference ∆k
h is defined by

∆
k
h f (x) =

k

∑
j=0

(−1) j
(

k
j

)
f (x+ jh),

2

APPROXIMATION RATES FOR RELU NETWORKS ON BESOV SPACES

and the Lq norm is taken over the set Ωkh := {x ∈Ω, x+ kh ∈Ω} to guarantee that all terms of the
finite difference are contained in the domain Ω. Fix an integer k > s. The Besov space Bs

r(Lq(Ω)) is
defined via the norm

‖ f‖Bs
r(Lq(Ω)) := ‖ f‖Lq(Ω)+ | f |Bs

r(Lq(Ω)),

with Besov semi-norm given by

| f |Bs
r(Lq(Ω)) :=

(∫
∞

0

ωk(f , t)r
q

tsr+1 dt
)1/r

when r < ∞ and by
| f |Bs

∞(Lq(Ω)) := sup
t>0

t−s
ωk(f , t)q,

when r = ∞. It can be shown that different choices of k > s result in equivalent norms (DeVore and
Lorentz, 1993). One can think of the Besov space Bs

r(Lq(Ω)) roughly as being a space of functions
with s derivatives lying in Lq, similar to the Sobolev space W s(Lq(Ω)), with the additional index r
providing a finer gradation. Indeed, a variety of embedding and interpolation results relating Besov
spaces and Sobolev spaces are known (see for instance DeVore and Popov (1988); DeVore and
Sharpley (1984); Yuan et al. (2010); Kufner et al. (1977)).

Besov spaces are central objects in approximation theory due to their close connection with
approximation by trigonometric polynomials (on the circle) and splines (DeVore and Lorentz, 1993;
Petrushev, 1988). In fact, there are equivalent definitions of the Besov semi-norms in terms of
approximation error by trigonometric polynomials and splines. They are also closely connected to
the theory of wavelets (Daubechies, 1992), and one can give equivalent definitions of the Besov
norms in terms of the wavelet coefficients of f as well (DeVore et al., 1992). For this reason, Besov
spaces play an important role in signal processing (Chambolle et al., 1998; Donoho et al., 1998)
and statistical recovery of functions from point samples (Donoho and Johnstone, 1995, 1998), for
instance.

Our goal is to study the approximation of Sobolev and Besov functions by neural networks. One
of the most important classes of neural networks are deep ReLU neural networks, which we define
as follows. We use the notation AW,b to denote the affine map with weight matrix W and offset, or
bias, b, i.e.

AW,b(x) = Wx+b.

When the weight matrix W is an k×n and the bias b ∈ Rk, the function AW,b : Rn→ Rk maps Rn to
Rk. Let σ denote the ReLU activation function (Nair and Hinton, 2010), specifically

σ(x) =

{
0 x < 0
x x≥ 0.

The ReLU activation function σ has become ubiquitous in deep learning in the last decade and is
used in most state-of-the-art architectures. Since σ is continuous and piecewise linear, it also has the
nice theoretical property that neural networks with ReLU activation function represent continuous
piecewise linear functions. This property has been extensively studied in the computer science
literature (Arora et al., 2018; Wang and Sun, 2005; Serra et al., 2018; Hanin and Rolnick, 2019) and
has been connected with traditional linear finite element methods (He et al., 2020).

3

SIEGEL

When x ∈ Rn, we write σ(x) to denote the application of the activation function σ to each
component of x separately, i.e. σ(x)i = σ(xi). The set of deep ReLU neural networks with width W
and depth L mapping Rd to Rk is given by

ϒ
W,L(Rd ,Rk) := {AWL,bL ◦σ ◦AWL−1,bL−1 ◦σ ◦ · · · ◦σ ◦AW1,b1 ◦σ ◦AW0,b0},

where the weight matrices satisfy WL ∈ Rk×W , W0 ∈ RW×d , and W1, ...,WL−1 ∈ RW×W , and the
biases satisfy b0, ...,bL−1 ∈ RW and bL ∈ Rk. Notice that our definition of width does not include the
input and output dimensions and only includes the intermediate layers. When the depth L = 0, i.e.
when the network is an affine function, there are no intermediate layers and the width is undefined,
in this case we write ϒ0(Rd ,Rk). We also use the notation

ϒ
W,L(Rd) := ϒ

W,L(Rd ,R)

to denote the set of deep ReLU neural networks with width W and depth L which represent scalar
functions. We note that our notation only allows neural networks with fixed width. We do this to
avoid excessively cumbersome notation. We remark that the dimension of any hidden layer can
naturally be expanded and thus any fully connected network can be made to have a fixed width, so
that this restriction is without any significant loss of generality.

The problem we study in this work is to determine optimal Lp-approximation rates

sup
‖ f‖Ws(Lq(Ω))≤1

(
inf

fL∈ϒW,L(Rd)
‖ f − fL‖Lp(Ω)

)
and sup

‖ f‖Bs
r(Lq(Ω))≤1

(
inf

fL∈ϒW,L(Rd)
‖ f − fL‖Lp(Ω)

)
(1.4)

for the class of Sobolev and Besov functions using very deep ReLU networks, i.e. using networks
with a fixed (large enough) width W and depth L→ ∞. We will prove that this gives the best
possible approximation rate in terms of the number of parameters. One can more generally consider
approximation error in terms of both the width W and depth L simultaneously (Shen et al., 2022), but
we leave this more general analysis as future work.

This problem has been previously solved (up to logarithmic factors) in the case where p = q = ∞,
where the optimal rate is given by

inf
fL∈ϒW,L(Rd)

‖ f − fL‖L∞(Ω) ≤C‖ f‖W s(L∞(Ω))L
−2s/d (1.5)

for a sufficiently large but fixed width W . Specifically, this result was obtained for 0 < s ≤ 1 in
Yarotsky (2018) and for all s > 0 (up to logarithmic factors) in Lu et al. (2021). An analogous result
also holds for Bs

r(L∞(Ω)) for 1≤ r ≤ ∞. Further, the best rate when both the width and depth vary
(which generalizes (1.5)) has been obtained in Shen et al. (2022).

The method of proof in these cases uses the bit-extraction technique introduced in Bartlett
et al. (1998) and developed further in Bartlett et al. (2019) to approximate piecewise polynomial
functions on a fixed regular grid with N cells using only O(

√
N) parameters. This enables an

approximation rate of CN−2s/d in terms of the number of parameters N, which is significantly faster
than traditional methods of approximation. This phenomenon has been called the super-convergence
of deep ReLU networks (Yarotsky, 2018; Shen et al., 2022; DeVore et al., 2021; Daubechies et al.,
2022b). The super-convergence has a limit, however, and the rate (1.5) is shown to be optimal using
the VC-dimension of deep ReLU neural networks (Yarotsky, 2018; Shen et al., 2022; Bartlett et al.,
2019).

4

APPROXIMATION RATES FOR RELU NETWORKS ON BESOV SPACES

In this work, we generalize this analysis to determine the optimal approximation rates (1.4) for
all 1≤ p,q≤ ∞ and s > 0, i.e. to the approximation of any Sobolev or Besov class in Lp(Ω), with
the possible exception of the Sobolev embedding endpoint (described below). This was posed as a
significant open problem in DeVore et al. (2021). We remark that the existing upper bounds in L∞

clearly imply corresponding upper bounds in Lp for p < ∞. The key problem lies in extending the
upper bounds to that case where q < ∞, in which case we must approximate a larger function class.
A further problem is the extension of the lower bounds to the case p < ∞, in which we are measuring
error in a weaker norm.

A necessary condition that we have any approximation rate in (1.4) at all is for the Sobolev space
W s(Lq(Ω)) or Besov space Bs

r(Lq(Ω) to be contained in Lp, i.e. W s(Lq(Ω)),Bs
r(Lq(Ω) ⊂ Lp(Ω).

Indeed, any deep ReLU neural network represents a continuous function and so if f /∈ Lp(Ω) it
cannot be approximated at all by deep ReLU networks. We will in fact consider the case where
we have a compact embedding W s(Lq(Ω)),Bs

r(Lq(Ω)⊂⊂ Lp(Ω). Here the symbol A⊂⊂ B for two
Banach spaces A and B means that A is contained in B and the unit ball of A is a compact subset of
B. This compact embedding is guaranteed for both Besov and Sobolev spaces by the strict Sobolev
embedding condition

1
q
− 1

p
− s

d
< 0. (1.6)

We determine the optimal rates in (1.4) under this condition. Specifically, we prove the following
Theorems. The first two give an upper bound on the approximation rate by deep ReLU networks on
Sobolev and Besov spaces, respectively.

Theorem 1 Let Ω = [0,1]d be the unit cube in Rd and let 0 < s < ∞ and 1≤ p,q≤ ∞. Assume that
1
q −

1
p < s

d , which guarantees that we have the compact embedding

W s(Lq(Ω))⊂⊂ Lp(Ω).

Then we have that
inf

fL∈ϒ25d+31,L(Rd)
‖ f − fL‖Lp(Ω) ≤C‖ f‖W s(Lq(Ω))L

−2s/d

for a constant C :=C(s,q, p,d)< ∞.

Theorem 2 Let Ω = [0,1]d be the unit cube in Rd and let 0 < s < ∞ and 1 ≤ r, p,q ≤ ∞. Assume
that 1

q −
1
p < s

d , which guarantees that we have the compact embedding

Bs
r(Lq(Ω))⊂⊂ Lp(Ω).

Then we have that
inf

fL∈ϒ25d+31,L(Rd)
‖ f − fL‖Lp(Ω) ≤C‖ f‖Bs

r(Lq(Ω))L
−2s/d

for a constant C :=C(s,r,q, p,d)< ∞.

Note that the width W = 25d +31 of our networks are fixed as L→ ∞, but scale linearly with the
input dimension d. We remark that a linear scaling with the input dimension is necessary since if
d ≥W , then the set of deep ReLU networks is known to not be dense in C(Ω) (Hanin, 2019). The
next Theorem gives a lower bound which shows that the rates in Theorems 1 and 2 are sharp in terms
of the number of parameters.

5

SIEGEL

Theorem 3 Let r, p,q≥ 1 and s > 0, Ω = [0,1]d be the unit cube, and W,L≥ 1 be integers. Then
there exists an f with ‖ f‖W s(Lq(Ω)) ≤ 1 and ‖ f‖Bs

r(Lq(Ω)) ≤ 1 such that

inf
fW,L∈ϒW,L(Rd)

‖ f − fW,L‖Lp(Ω) ≥C(p,d,s)min{W 2L2 log(WL),W 3L2}−s/d .

We remark that if the embedding condition (1.6) strictly fails, then a simply scaling argument shows
that W s(Lq(Ω)),Bs

r(Lq(Ω))* Lp(Ω) and we cannot get any approximation rate. On the boundary
where the embedding condition (1.6) holds with equality it is not a priori clear whether one has an
embedding or not (this depends on the precise values of s, p,q and r). Consequently this boundary
case is much more subtle and we leave this for future work.

The key technical difficulty in proving Theorem 1 is to deal with the case when p > q, i.e. when
the target function’s (weak) derivatives are in a weaker norm than the error. Classical methods of
approximation using piecewise polynomials or wavelets can attain an approximation rate of CN−s/d

with N wavelet coefficients or piecewise polynomials with N pieces. When p≤ q this rate can be
achieved by linear methods, while for p > q nonlinear, i.e. adaptive, methods are required. For the
precise details of this theory, see for instance DeVore and Lorentz (1993); Lorentz et al. (1996);
DeVore (1998).

Thus, in the linear regime where p≤ q we can use piecewise polynomials on a fixed uniform
grid to approximate f , while in the non-linear regime we need to use piecewise polynomials on
an adaptive (i.e. depending upon f) non-uniform grid. This greatly complicates the bit-extraction
technique used to obtain super-convergence, since the methods in Yarotsky (2018); Shen et al. (2022);
Shijun (2021) are only applicable to regular grids. The tool that we develop to overcome this difficulty
is a novel bit-extraction technique, presented in Theorem 14, which optimally encodes sparse vectors
using deep ReLU networks. Specifically, suppose that x ∈ ZN is an N-dimensional integer vector
with `1-norm bounded by

‖x‖`1 ≤M.

In Theorem 14 we give (depending upon N and M) a deep ReLU neural network construction which
optimally encodes x.

We remark, however, that super-convergence comes at the cost of parameters which are non-
encodable, i.e. cannot be encoded using a fixed number of bits, and this makes the numerical
realization of this approximation rate inherently unstable. In order to better understand this, we recall
the notion of metric entropy first introduced by Kolmogorov. The metric entropy numbers εN(A) of a
set A⊂ X in a Banach space X are given by (see for instance Lorentz et al. (1996), Chapter 15)

εN(A)H = inf{ε > 0 : A is covered by 2N balls of radius ε}.

An encodable approximation method consists of two maps, an encoding map E : A→ {0,1}N

mapping the class A to a bit-string of length N, and a decoding map D : {0,1}N → X which maps
each bit-string to an element of X . This reflects the fact that any method which is implemented on a
classical computer must ultimately encode all parameters using some number of bits. The metric
entropy numbers give the minimal reconstruction error of the best possible encoding scheme.

Let U s(Lq(Ω)) := { f : ‖ f‖W s(Lq(Ω)) ≤ 1} denote the unit ball of the Sobolev space W s(Lq(Ω)).
The metric entropy of this function class is given by

εN(U s(Lq(Ω)))Lp(Ω) h N−s/d

6

APPROXIMATION RATES FOR RELU NETWORKS ON BESOV SPACES

whenever the Sobolev embedding condition (1.6) is strictly satisfied. This is known as the Birman-
Solomyak Theorem (Birman and Solomyak, 1967). The same asymptotics for the metric entropy
also hold for the unit balls in the Besov spaces Bs

r(Lq(Ω)) if the compact embedding condition (4.10)
is satisfied. So the approximation rates in Theorems 1 and 2 are significantly smaller than the metric
entropy of the Sobolev and Besov classes. This manifests itself in the fact that in the construction
of the upper bounds in Theorems 1 and 2 the parameters of the neural network cannot be specified
using a fixed number of bits, but rather need to be specified to higher and higher accuracy as the
network grows (Yarotsky and Zhevnerchuk, 2020), which is a direct consequence of the bit-extraction
technique.

Concerning the lower bounds, the key difficulty in proving Theorem 3 is to extend the VC-
dimension arguments used to obtain lower bounds when the error is measured in L∞ to the case when
the error is measured in the weaker norm Lp for p < ∞. We do this by proving Theorem 22, which
gives a general lower bound for Lp-approximation of Sobolev spaces by classes with bounded VC
dimension. We have recently learned of a different approach to obtaining Lp lower bounds using
VC-dimension (Achour et al., 2022), which is more generally applicable but introduces additional
logarithmic factors in the lower bound.

We remark that there are other results in the literature which obtain approximation rates for deep
ReLU networks on Sobolev spaces, but which do not achieve superconvergence, i.e. for which the
approximation rate is only CN−s/d (up to logarithmic factors), where N is the number of parameters
(Yarotsky, 2017; Gühring et al., 2020). In addition, the approximation of other novel function classes
(other than Sobolev spaces, which suffer the curse of dimensionality) by neural networks has been
extensively studied recently, see for instance Daubechies et al. (2022b); Petersen and Voigtlaender
(2018); Daubechies et al. (2022a); Siegel and Xu (2020, 2022a,b); Bach (2017); Klusowski and
Barron (2018).

Finally, we remark that although we focus on the ReLU activation function due to its popularity
and to simplify the presentation, our results also apply to more general activation functions as well.
Specifically, the lower bounds in Theorem 3 based upon VC-dimension hold for any piecewise
polynomial activation function. The upper bounds in Theorems 1 and 2 hold as long as we can
approximate the ReLU to arbitrary accuracy on compact subsets (i.e. finite intervals) using a network
with a fixed size. Using finite differences this can be done for the ReLUk activation functions, defined
by

σk(x) =

{
0 x < 0
xk x≥ 0,

when k ≥ 1 for instance. In fact, a similar construction using finite differences can approximate the
ReLU as long as the activation function is a continuous piecewise polynomial which is not identically
a polynomial.

The rest of the paper is organized as follows. First, in Section 2 we describe a variety of
deep ReLU neural network constructions which will be used to prove Theorem 1. Many of these
constructions are trivial or well-known, but we collect them for use in the following Sections. Then,
in Section 3 we prove Theorem 14 which gives an optimal representation of sparse vectors using
deep ReLU networks and will be key to proving superconvergence in the non-linear regime p > q. In
Section 4 we give the proof of the upper bounds in Theorems 1 and 2. Finally, in Section 5 we prove
the lower bound Theorem 3 and also prove the optimality of Theorem 14. We remark that throughout
the paper, unless otherwise specified, C will represent a constant which may change from line to line,

7

SIEGEL

as is standard in analysis. The constant C may depend upon some parameters and this dependence
will be made clear in the presentation.

2. Basic Neural Network Constructions

In this section, we collect some important deep ReLU neural network constructions which will be
fundamental in our construction of approximations to Sobolev and Besov functions. Many of these
constructions are well-known and will be used repeatedly to construct more complex networks later
on, so we collect them here for the reader’s convenience.

We being by making some fundamental observations and constructing some basic networks.
Much of these are trivial consequences of the definitions, but we collect them here for future reference.
We begin by noting that by definition we can compose two networks by summing their depths.

Lemma 4 (Composing Networks) Suppose L1,L2≥ 1 and that f ∈ϒW,L1(Rd ,Rk) and g∈ϒW,L2(Rk,Rl).
Then the composition satisfies

g(f (x)) ∈ ϒ
W,L1+L2(Rd ,Rl).

Further, if f is affine, i.e. f ∈ ϒ0(Rd ,Rk), then

g(f (x)) ∈ ϒ
W,L2(Rd ,Rl).

Finally, if instead g is affine, i.e. g ∈ ϒ0(Rk,Rl) then

g(f (x)) ∈ ϒ
W,L1(Rd ,Rl)

We remark that combining this with the simple fact that we can always increase the width of a
network, we can apply Lemma 4 to networks with different widths and the width of the resulting
network will be the maximum of the two widths. We will use this extension without comment in the
following.

Next, we give a simple construction allowing us to apply two networks networks in parallel.

Lemma 5 (Concatenating Networks) Let d = d1+d2 and k = k1+k2 with di,ki ≥ 1. Suppose that
f1 ∈ ϒW1,L(Rd1 ,Rk1) and f2 ∈ ϒW2,L(Rd2 ,Rk2). We view Rd = Rd1⊕Rd2 and Rk = Rk1⊕Rk2 . Then
the function f = f1⊕ f2 : Rd → Rk defined by

(f1⊕ f2)(x1⊕ x2) = f1(x1)⊕ f2(x2)

satisfies f1⊕ f2 ∈ ϒW1+W2,L(Rd ,Rk).

Proof This follows by setting the weight matrices Wi = W1
i ⊕W2

i and bi = b1
i ⊕b2

i , where W1
i ,b

1
i

and W2
i ,b

2
i represent the parameters defining f1 and f2 respectively. Recally that the direct sum of

matrices is simply given by

A⊕B =

(
A 0
0 B

)
.

Note that this result can be applied recursively to concatenate multiple networks. Combining this
with the trivial fact that the identity map is in ϒ2,1(R,R) we see that a network can be applied to only
a few components of its input.

8

APPROXIMATION RATES FOR RELU NETWORKS ON BESOV SPACES

Lemma 6 Let m≥ 0 and suppose that f ∈ ϒW,L(Rd ,Rk). Then the function f ⊕ I on Rd+m defined
by

(f ⊕ I)(x1⊕ x2) = f (x1)⊕ x2

satisfies f ⊕ I ∈ ϒW+2m,L(Rd+m,Rk+m).

Using these basic lemmas we obtain the well-known construction of a deep network which
represents the sum of a collection of smaller networks.

Proposition 7 (Summing Networks) Let fi ∈ ϒW,Li(Rd ,Rk) for i = i, ...,n. Then we have
n

∑
i=1

fi ∈ ϒ
W+2d+2k,L(Rd ,Rk),

where L = ∑
n
i=1 Li.

For completeness we give a detailed proof in Appendix A. An important application of this is the
following well-known result showing how piecewise linear continuous functions can be represented
using deep networks.

Proposition 8 Suppose that f : R→R is a continuous piecewise linear function with k pieces. Then
f ∈ ϒ5,k−1(R).

For the readers convenience, we give the proof in Appendix A.
Next we describe how to approximate products using deep ReLU networks. This will be necessary

in the following to approximate piecewise polynomial functions. The method for doing this is based
upon the construction in Telgarsky (2016) and was first applied to approximating smooth functions
using neural networks in Yarotsky (2017). This construction has since become an important tool in
the analysis of deep ReLU networks and has been used by many different authors (DeVore et al.,
2021; Lu et al., 2021; Petersen and Voigtlaender, 2018). For the readers convenience, we reproduce a
complete description of the construction in Appendix B.

Proposition 9 (Product Network, Proposition 3 in Yarotsky (2017)) Let k ≥ 1. Then there exists
a network fk ∈ ϒ13,6k+3(R2) such that for all x,y ∈ [−1,1] we have

| fk(x,y)− xy| ≤ 6 ·4−k.

The key to obtaining superconvergence for deep ReLU networks is the bit extraction technique,
which was first introduced in Bartlett et al. (1998) with the goal of lower bounding the VC dimension
of the class of neural networks with polynomial activation function. This technique as also been used
to obtain sharp approximation results for deep ReLU networks (Yarotsky, 2018; Shen et al., 2022).
In the following Proposition, which is a minor modification of Lemma 11 in Bartlett et al. (2019), we
construct the bit extraction networks that we will need in our approximation of Sobolev and Besov
functions. For the readers convenience, we give the complete proof in Appendix C.

Proposition 10 (Bit Extraction Network) Let n≥m≥ 0 be an integer. Then there exists a network
fn,m ∈ ϒ9,4m(R,R2) such that for any input x ∈ [0,1] with at most n non-zero bits, i.e.

x = 0.x1x2 · · ·xn (2.1)

with bits xi ∈ {0,1}, we have

fn,m(x) =
(

0.xm+1 · · ·xn

x1x2 · · ·xm.0

)
.

9

SIEGEL

Finally, in order to deal with the case when the error is measured in L∞, we will need the following
technical construction. We construct a ReLU network which takes an input in Rd and returns the k-th
largest entry. The first step is the following simple Lemma, whose proof can be found in Appendix
A.

Lemma 11 (Max-Min Networks) There exists a network p ∈ ϒ4,1(R2,R2) such that

p
((

x
y

))
=

(
max(x,y)
min(x,y)

)
.

Using these networks as building blocks, we can implement a sorting network using deep ReLU
neural networks.

Proposition 12 Let k≥ 1 and d = 2k be a power of 2. Then there exists a network s ∈ ϒ4d,L(Rd ,Rd)
where L =

(k+1
2

)
which sorts the input components.

Note that the power of 2 assumption is for simplicity and is not really necessary. It is also known
that the depth

(k+1
2

)
can be replaced by a multiple Ck where C is a very large constant (Ajtai et al.,

1983; Paterson, 1990), but this will not be important in our argument.
Proof Suppose that (i1, j1), ...,(i2k−1 , j2k−1) is a pairing of the indices of Rd . By Lemma 11 and
Lemma 5, there exists a network g ∈ ϒ4d,1(Rd ,Rd) which satisfies for all l = 1, ...,k−1

g(x)il = max(xil ,x jl), g(x) jl = min(xil ,x jl),

i.e. which sorts the entries in each pair. By a well-known construction of sorting networks (for
instance bitonic sort (Batcher, 1968)), composing

(k+1
2

)
such functions can be used to sort the input.

Finally, we note that by selecting a single output (which is an affine map), we can obtain a network
which outputs any order statistic.

Corollary 13 Let 1≤ τ ≤ d and d = 2k is a power of 2. Then there exists a network gτ ∈ ϒ4d,L(Rd)
with L =

(k+1
2

)
such that

gτ(x) = x(τ),

where x(τ) is the τ-th largest entry of x.

3. Optimal Representation of Sparse Vectors using Deep ReLU Networks

In this section, we prove the main technical result which enables the efficient approximation of
Sobolev and Besov functions in the non-linear regime when q < p. Specifically, we have the
following Theorem showing how to optimally represent sparse integer vectors using deep ReLU
neural networks.

Theorem 14 Let M ≥ 1 and N ≥ 1 and x ∈ ZN be an N-dimensional vector satisfying

‖x‖`1 ≤M. (3.1)

If N ≥M, then there exists a neural network g ∈ ϒ17,L(R,R) with depth

L≤C
√

M(1+ log(N/M))

10

APPROXIMATION RATES FOR RELU NETWORKS ON BESOV SPACES

which satisfies g(n) = xn for n = 1, ...,N.
Further, if N < M, then there exists a neural network g ∈ ϒ17,L(R,R) with depth

L≤C
√

N(1+ log(M/N))

which satisfies g(n) = xn for n = 1, ...,N.

Before proving this theorem, we explain the meaning of the result and give some intuition. We let

SN,M = {x ∈ ZN , ‖x‖`1 ≤M} (3.2)

denote the set of integer vectors which we wish to encode. We can estimate the cardinality of this set
as follows. Using a stars and bars argument we see that

|{x ∈ ZN
≥0, ‖x‖`1 ≤M}|=

(
N +M

N

)
=

(
N +M

M

)
.

Further, the signs of each non-zero entry of the above set can be chosen arbitrarily. The number of
such choices of sign is equal to the number of non-zero entries and is at most min{M,N}. This gives
the bound

|SN,M| ≤

{
2M
(N+M

M

)
N ≥M

2N
(N+M

N

)
N < M.

Taking logarithms and utilizing the bound from Lemma 24 (proved later), we estimate

log |SN,M| ≤C

{
M(1+ log(N/M)) N ≥M
N(1+ log(M/N)) N < M,

(3.3)

and this controls the number of bits required to encode the set SN,M. Theorem 14 implies that
using deep ReLU neural networks, the number of parameters required is the square root of the
number of bits required for such an encoding. This is analogous to the original application of bit
extraction (Bartlett et al., 1998) and underlies the superconvergence phenomenon. Finally, we note
that in Theorem 25 from Section 5 we prove that Theorem 14 itself is optimal as long as M is not
exponentially small or exponentially large relative to N.

Proof of Theorem 14 Let M ≥ 1 and N ≥ 1 be fixed. There are two cases to consider, when N ≥M
and when N < M. The key to the construction in both cases will be an explicit length k binary
encoding of the set SN,M defined in equation (3.2).

By a length k binary encoding we mean a pair of maps:

• E : SN,M →{0,1}≤k (an encoding map which maps SN,M to a bit-string of length at most k)

• D : {0,1}≤k→ SN,M (a decoding map which recovers x ∈ SN,M from a bit-string of length at
most k)

which satisfy
D(E(x)) = x.

Note that the bound in equation (3.3) implies that there exists such an encoding as long as

k ≥C

{
M(1+ log(N/M)) N ≥M
N(1+ log(M/N)) N < M.

11

SIEGEL

However, in order to construct deep ReLU networks which prove Theorem 14, we will need to
construct encoding and decoding maps E and D which are given by an explicit, simple algorithm.
These will then be used to construct the neural network g.

Let us begin with the first case, when N ≥ M. In this case, we set k = 2M(3+ dlog(N/M)e)
(note that all logarithms are taken with base 2). The encoding map E is defined as

E(x) = f1t1 f2t2 · · · fRtR,

the concatenation of R≤ 2M blocks consisting of fi ∈ {0,1}1+dlog(N/M)e and ti ∈ {0,1}2. The fi-bits
encode an offset in {0,1, ...,dN/Me} (via binary expansion), and the ti-bits encode a value in {0,±1}
(via 0 = 00, 1 = 10, and−1 = 01). The fi and ti are determined from the input x∈ SN,M by Algorithm
1.

It is clear that the number of blocks R produced by Algorithm 1 is at most 2M since in each
round of the while loop either fi = dN/Me (which can happen at most M times before the index j
reaches the end of the vector) or the entry r j is decremented (which can happen at most M times
since ‖x‖`1 ≤M).

Algorithm 1 Small `1-norm Encoding Algorithm
Input: x ∈ ZN , ‖x‖`1 ≤M

1: Set j = 0, r = x {Set pointer right before the beginning of the input x and the residual to x}
2: Set i = 1
3: while r 6= 0 do
4: l = min{i : ri 6= 0} {Find the first non-zero index in the residual}
5: if l− j ≤ dN/Me then {If we can make it to the next non-zero index, do so}
6: fi = l− j
7: j = l
8: else {Otherwise go as far as we can}
9: fi = dN/Me

10: j = j+ dN/Me
11: end if
12: if j = l then {If we are at the next non-zero index, ti captures its sign}
13: ti = sgn(r j)
14: r j = r j− ti {This decrements ‖r‖`1 which can happen at most M times}
15: else {This can only happen if fi = dN/Me, which can occur at most M times}
16: ti = 0
17: end if
18: i = i+1
19: end while

Next, we consider the case N < M. In this case we set k = 2N(3+ dlog(M/N)e), and define the
encoding map E via

E(x) = t1 f1t2 f2 · · · tR fR,

i.e. E(x) is the concatenation of R≤ 2N blocks consisting of ti ∈ {0,1}2+dlog(M/N)e and fi ∈ {0,1}.
The fi-bits encode an offset in {0,1}, and the ti-bits encode a value in {−dM/Ne, ...,dM/Ne}. Here
the first bit of each ti determines its sign, while the remaining 1+ dlog(M/N)e bits consist of the

12

APPROXIMATION RATES FOR RELU NETWORKS ON BESOV SPACES

binary expansion of its magnitude (which lies in {0, ...,dM/Ne}). The ti and fi are determined from
the input x ∈ SN,M by Algorithm 2.

It is clear that the number of blocks R produced by Algorithm 2 is at most 2N since in each round
of the while loop either the entry r j is decremented by at least dM/Ne (which can happen at most
N times since ‖x‖`1 ≤M), or the entry r j is zeroed out (which can happen at most N times before
r = 0 since there are only N entries).

Algorithm 2 Large `1-norm Encoding Algorithm
Input: x ∈ ZN , ‖x‖`1 ≤M

1: Set j = 0, r = x {Set pointer right before the beginning of the input x and the residual to x}
2: Set i = 1
3: while r 6= 0 do
4: if j = 0 or r j = 0 then {If the value at the current index is 0, then shift the index}
5: fi = 1
6: j = j+1
7: else
8: fi = 0
9: end if

10: if |r j| ≤ dM/Ne then {If we can fully capture the current value, do so}
11: ti = r j

12: r j = 0 {This zeros out an entry, which can happen at most N times}
13: else {Otherwise capture as much as we can}
14: ti = sgn(r j)dM/Ne
15: r j = r j− ti {This reduces ‖r‖`1 by at least dM/Ne which can happen at most N times}
16: end if
17: i = i+1
18: end while

In both cases, the decoding map D is given by Algorithm 3. It is easy to verify that Algorithm 3
reconstructs the input x from the output of either Algorithm 1 or 2.

Algorithm 3 Decoding Algorithm
Input: A bit string f1t1 · · · fRtR

1: Set x = 0 and j = 0 {Start with the 0 vector}
2: for i = 1, ...,R do
3: j = j+ fi {Shift index by fi}
4: x j = x j + ti {Increment value by ti}
5: end for

We now show how to use these algorithms to construct an appropriate deep ReLU neural network
g. Let S be a threshold parameter, to be chosen later.

Given a vector x ∈ ZN , we decompose it into two pieces x = xB +xs (here xB represents the ‘big’
part and xs the ‘small’ part). We define

xB
i =

{
|xi| xi ≥ S
0 xi < S

13

SIEGEL

and

xs
i =

{
0 xi ≥ S
|xi| xi < S

The large part xB has small support and so can be efficiently encoded as a piecewise linear function.
Specifically, the `1-norm bound (3.1) on x implies that the support of xB is at most of size

|{n : xB
n 6= 0}| ≤ ‖x

B‖`1

S
≤ ‖x‖`1

S
≤ M

S
.

This means that there is a piecewise linear function with at most 3M/S pieces which matches the
values of xB, so by Proposition 8 there exists a network

gB ∈ ϒ
5,L(R)

with depth bounded by L≤ 3M/S such that gB(n) = xB
n for n = 1, ...,N.

The heart of the proof is an efficient encoding of the small part xs. This requires the encoding
and decoding Algorithms 1, 2 and 3. We consider first the case M ≤ N, which is captured in the
following Proposition.

Proposition 15 Let M ≤ N and suppose that x ∈ ZN and satisfies ‖x‖`l ≤M and ‖x‖`∞ < S. Then
there exists a g ∈ ϒ15,L(R) such that g(n) = xn for n = 1, ...,N with

L≤ 8M/S+8S(5+ dlog(N/M)e)+4.

The proof is quite technical, so let us give a high-level description of the ideas first. The idea is to
take the execution of the decoding Algorithm 3 which reconstructs x and to divide it into blocks of
length on the order of S. Each block will start at a point i in the algorithm at which x j = 0 before
step 4 of the loop in 3. During the execution of this block, the index j increases and reaches a larger
value at the end of the block. All of the entries xn for n between these values is reconstructed during
the given block of the reconstruction algorithm.

We now construct three networks. Given an input index n, find the block during which the value
xn is reconstructed. On the input index n, one network outputs the value of j at the beginning of
the block, and another network outputs a real number whose binary expansion contains the bits
consumed during this block. Both of these can be implemented using piecewise linear functions
whose number of pieces is proportional to the number of blocks. The final network extracts the bits
from the output of the second network and implements the execution of algorithm 3 in this block to
reconstruct the value of x.

Before giving the detailed proof of Proposition 15, let us complete the proof of Theorem 14 in
the case M ≤ N. We apply Proposition 15 to the small part xs to get a network gs. Then we use
Proposition 7 to add this network to the network gB representing the large part xB to get a network
g ∈ ϒ17,L(R) with

L≤ 11M/S+8S(5+ dlog(N/M)e)+4

such that g(n) = xn for n = 1, ...,N. Finally, we choose S optimally, namely

S =

√
M

5+ dlog(N/M)e
,

14

APPROXIMATION RATES FOR RELU NETWORKS ON BESOV SPACES

to get L≤C
√

M(1+ log(N/M)) as desired.

Proof of Proposition 15 Let f1t1 · · · fRtR be the output of the encoding Algorithm 1 run on input xs.
Let

F := {i ∈ {1, ...,R} : fi = 0}.

We decompose the set F into intervals, i.e.

F =
T⋃

m=1

[Bm,Um],

where [I,J] := {I, I +1, ...,J} for I ≤ J and Bm+1 >Um +1.
Note that since ‖x‖`∞ < S, the length of these intervals is strictly less than S, i.e. Um−Bm+1 < S

for m = 1, ...,T . This holds since the encoding Algorithm 1 stays at the same index for all steps
i ∈ [Bm,Um]. Hence this index is decremented Um−Bm+1 times and so this quantity must be smaller
than S.

Let ρ = dR/Se and consider steps i0, ..., iρ defined by iρ = R+1 (the end of the algorithm) and

ik =

{
1+ kS 1+ kS /∈ F
Bm−1 1+ kS ∈ [Bm,Um],

for k = 0, ...,ρ−1. (Note that f1 6= 0 since the index j starts at 0 in algorithm 1. Thus 1 /∈ F and so
i0 = 1.)

The bound Um−Bm +1 < S on the length of the interval [Bm,Um] implies that ik > 1+(k−1)S.
This implies that ik−1 < ik and also that the gaps satisfy ik− ik−1 < 2S for all k = 1, ...,ρ .

Next, let indices jk for k = 0, ...,ρ−1 be the values of the index j at the beginning of step ik in the
decoding Algorithm 3. We also set jρ = N. Since by construction the intervals are not consecutive,
i.e. Bm+1 >Um +1, the steps ik /∈ F , i.e. fik > 0. This means that jk−1 < jk for all k = 1, ...,ρ .

Observe that the steps ik and indices jk have been constructed such that for an integer n in the
interval jk < n≤ jk+1, the value xn is only affected during the steps ik, ..., ik+1−1 in the reconstruction
Algorithm 3. Further, the length of each block satisfies ik− ik−1 < 2S.

Next, we construct two piecewise linear functions J and R as follows. For integers n = 1, ...,N,
we set

J(n) = jk for jk < n≤ jk+1,

and
R(n) = rk for jk < n≤ jk+1,

where
rk = 0. fiktik · · · fik+1−1tik+1−1

is the real number whose binary expansion contains the encoding of x from step ik to ik+1− 1
(followed by zeros). Both J and R take at most ρ+1 different values and hence can be implemented by
piecewise linear functions with at most 2ρ+1 pieces. Thus, by Proposition 8 we have J,R∈ϒ5,2ρ(R).

We being our network construction as follows. We begin with the affine map

x→

x
x
x

 ∈ ϒ
0(R,R3),

15

SIEGEL

and use Lemmas 4 and 6 to apply J to the first component and then apply R to the second component
to get

x→

J(x)
x
x

→
J(x)

R(x)
x

 ∈ ϒ
9,4ρ(R,R3).

Composing with the affine map x
y
z

→
z− x

y
0

 ∈ ϒ
0(R3,R3),

and using Lemma 4 again we get that

x→

x− J(x)
R(x)

0

 ∈ ϒ
9,4ρ(R,R3). (3.4)

Applied to an integer jk < n≤ jk+1, this network maps

n→

 n− jk
0. fiktik · · · fik+1−1tik+1−1

0

 .

Thus the first entry is the gap between n and the index j at the beginning of step ik and the last entry
is the value of xn at the beginning of step ik, while the middle entry contains the bits used by the
algorithm between steps ik, ..., ik+1−1. The proof will now be completed by constructing a network
which applies a single step of the decoding Algorithm 3 to each of these entries, this is collected in
the following technical Lemma.

Lemma 16 Given positive integers α and β there exists a network g ∈ ϒ15,4α+16(R3,R3) such that

g :

 x
0. f1t1 · · · fktk

Σ

→
 x− f1

0. f2t2 · · · fktk
Σ+ t1δ (x− f1)


whenever x ∈ Z, k ≤ β and len(fi) = α . Here the fi denote integers encoded via binary expansion
and len(fi) is the length of this expansion, ti ∈ {±1,0} are encoded using two bits (specifically via
0 = 00, 1 = 10 and −1 = 01), Σ denotes a running sum, and δ is the integer Dirac delta defined by

δ (z) =

{
1 z = 0
0 z 6= 0

for integer inputs z.

Before proving this Lemma, let us complete the proof of Proposition 15. We set α = 1+dlog(N/M)e
and β = 2S, and compose the map in (3.4) with 2S copies of the network given by Lemma 16. Then

16

APPROXIMATION RATES FOR RELU NETWORKS ON BESOV SPACES

we finally compose with an affine map which selects the last coordinate. This gives a g ∈ ϒ15,L(R)
with

L = 4ρ +2S(4α +16) = 4dR/Se+8S(5+ dlog(N/M)e)
≤ 8M/S+8S(5+ dlog(N/M)e)+4,

since R≤ 2M.
When applied to an integer n ∈ {1, ...,N} with jk < n ≤ jk+1, the map in (3.4) sets the offset

between n and the index jk at the start of step ik, outputs a number whose binary expansion contains
the bits used from step ik to step ik+1−1, and sets a running sum to 0.

Then the 2S copies of the network from Lemma 16 implement Algorithm 3 from step ik to step
ik+1−1. Note that if the number of steps is less than 2S, the network pads with zero blocks (fi, ti) = 0,
and these additional steps have no effect. Since by construction the entry xn is only modified during
these steps, the running sum will now be equal to xn. Finally, we select the last coordinate, which
guarantees that g(n) = xn.

Proof of Lemma 16 We construct the desired network as follows. We use Lemma 6 to apply the bit
extractor network fn,α from Proposition 10 to the second component. Here we choose n≥ β (α +2),
which is guaranteed to be larger than the length of the bit-string in the second component. This
results in the map  x

0. f1t1 · · · fktk
Σ

→


x
f1

0.t1 f2t2 · · · fktk
Σ

 ∈ ϒ
13,4α(R3,R4).

Subtracting the second component from the first, this gives x
0. f1t1 · · · fktk

Σ

→
 x− f1

0.t1 f2t2 · · · fktk
Σ

 ∈ ϒ
13,4α(R3,R3), (3.5)

and completes the first part of the construction.
Next, we implement a network which extracts the two bits corresponding to t and then adds t

to the third component iff the first component is 0. Let h(z) denote the continuous piecewise linear
function

h(z) =


0 z≤−1
z+1 −1 < z≤ 0
1− z 0 < z≤ 1
0 z > 1.

(3.6)

For integer inputs, h is simply the delta function, i.e. h(z) = δ (z) for z ∈ Z, and by Proposition 8 we
have h ∈ ϒ5,3(R). We first apply an affine map which duplicates the first coordinatez1

z2
z3

→


z1
z1
z2
z3

 ∈ ϒ
0(R3,R4).

17

SIEGEL

Then, we use Lemma 6 to apply h to the second coordinate and apply the bit extractor network fn,1
from Proposition 10 to the third component. As before, we choose n≥ β (α +2) which is guaranteed
to be larger than the length of the bit-string in the second component. This gives (note that we write
b1b2 for the two bits corresponding to t1)

 z1
0.b1b2 f2t2... fktk

z3

→


z1
h(z1)

b1
0.b2 f2t2... fktk

z3

 ∈ ϒ
15,7(R3,R5).

Now we compose this using Lemma 4 with the map
z1
z2
z3
z4
z5

→


z1
z2 + z3−1

z4
z5

→


z1
σ(z2 + z3−1)

z4
z5

→
 z1

z4
z5 +σ(z2 + z3−1)

 ∈ ϒ
7,1(R5,R3).

Here the first and last maps in the composition are affine and the middle map is in ϒ7,1(R4,R4) by
Lemma 6. This gives z1

0.b1b2 f2t2... fktk
z3

→
 z1

0.b2 f2t2... fktk
z3 +σ(h(z1)+b1−1)

 ∈ ϒ
15,8(R3,R3). (3.7)

Notice that σ(h(z1)+b1−1) equals 1 precisely when z1 = 0 and b1 = 1 and equals zero otherwise
(for integral z1).

In an analogous manner, we get z1
0.b2 f2t2... fktk

z3

→
 z1

0. f2t2... fktk
z3−σ(h(z1)+b2−1)

 ∈ ϒ
15,8(R3,R3). (3.8)

Composing the networks in (3.7) and (3.8) will extract t1 ∈ {0,±1} (recall the encoding 0 = 00,
1 = 10 and −1 = 01) and add t1 to the last coordinate iff the first coordinate is 0. Composing this
with the network in (3.5) gives a network g ∈ ϒ15,4α+16(R3,R3) as stated in the Lemma.

Next, we consider the case M > N, which is somewhat complicated by the fact that the threshold
parameter S and the spacing of the blocks are no longer equal in this case. The key construction is
contained in the following Proposition.

Proposition 17 Let M > N and suppose that x ∈ ZN and satisfies ‖x‖`l ≤M and ‖x‖`∞ < S. Then
there exists a g ∈ ϒ15,L(R) such that g(n) = xn for n = 1, ...,N with

L≤ 8M/S+8(SN/M+1)(4+ dlog(M/N)e)+4.

18

APPROXIMATION RATES FOR RELU NETWORKS ON BESOV SPACES

Utilizing this Proposition, we complete the proof of Theorem 14 in the case M > N. We apply
Proposition 17 to xs and use Proposition 7 to add the network to the network representing xB to get a
network g ∈ ϒ17,L(R) representing x with

L≤ 11M/S+8(SN/M+1)(4+ dlog(M/N)e)+4.

Finally, we optimize in S, resulting in a value

S =
M
√

4+ dlog(M/N)e√
N

to get L≤C
√

N(1+ log(M/N) as desired.

Proof of Proposition 17 The proof proceeds in a very similar manner to the proof of Proposition 15
and we only indicate the differences here.

We begin with the same set F and its decomposition into intervals [Bm,Um], except that
f1t1 · · · fRtR is now the output of the encoding Algorithm 2.

Our bound on the block length becomes Um−Bm +1≤ SN/M. This holds since the encoding
algorithm stays at the same index for all steps i ∈ [Bm,Um], and thus this index in decremented
by an amount dM/Ne a total of Um − Bm + 1 times. The bound on the `∞-norm implies that
(M/N)(Um−Bm +1)< S, which gives the desired bound.

Thus, in this case we set T = dSN/Me and ρ = dR/Te and consider steps i0, ..., iρ defined by
iρ = R+1 (the end of the algorithm) and

ik =

{
1+ kT 1+ kT /∈ F
Bm−1 1+ kT ∈ [Bm,Um],

for k = 0, ...,ρ−1.
We now proceed with the same argument as in Proposition 15, except that the bound on Um−

Bm +1 < T implies that all block lengths are bounded by 2T . The proof is finally completed with
the following variant of Lemma 16, which implements a step of the decoding Algorithm 3 with the
values fi and ti encoded as they are for M > N.

Lemma 18 Given positive integers α and β there exists a network g ∈ ϒ15,4α+8(R3,R3) such that

g :

 x
0. f1t1 · · · fktk

Σ

→
 x− f1

0. f2t2 · · · fktk
Σ+ t1δ (x− f1)


whenever x ∈ Z, k ≤ β and len(ti) = α . Here fi ∈ {0,1} are single bits, ti ∈ Z is encoded via binary
expansion with a single bit giving its sign and len(ti) is the length of this expansion, Σ denotes a
running sum, and δ is the integer Dirac delta defined by

δ (z) =

{
1 z = 0
0 z 6= 0

for integer inputs z.

19

SIEGEL

Given this lemma, we complete the proof as before, setting α = 2+ dlog(M/N)e and β = 2T and
composing the network implementing the maps J and R with 2T copies of the network from Lemma
18. This gives a network g ∈ ϒ15,L(R) with

L≤ 4ρ +2T (4α +8) = 4dR/Te+8T (4+ dlog(M/N)e)
≤ 8N/T +8T (4+ dlog(M/N)e)+4

≤ 8M/S+8(SN/M+1)(4+ dlog(M/N)e)+4,

since R≤ 2N and T = dSN/Me.

Proof of Lemma 18 We use Lemma 6 to apply the bit extractor network fn,1 from Proposition 10
to the second component. Here we choose n≥ β (α +1), which is guaranteed to be larger than the
length of the bit-string in the second component. Then we subtract the second component from the
first. This results in the map

 x
0. f1t1 · · · fktk

Σ

→
 x− f1

0.t1 f2t2 · · · fktk
Σ

 ∈ ϒ
13,4(R3,R3),

and completes the first part of the construction.

Now we wish to extract the integer t1 and add it to Σ iff the first coordinate (which is an integer)
is 0. We do this by using Lemma 6 to apply the bit extractor network fn,1 to the second coordinate
and then apply fn,α−1 to the third coordinate of the result to get

 z1
0.b1b2...bα f2t2... fktk

z3

→


z1
b1

b2...bα

0. f2t2... fktk
z3

 ∈ ϒ
15,4α(R3,R5), (3.9)

where we have written b1b2...bα for the bits of t1.

20

APPROXIMATION RATES FOR RELU NETWORKS ON BESOV SPACES

Next, consider the following sequence of compositions, where h is the function defined in (3.6),


z1
z2
z3
z4
z5

→


z1
z1
z2
z3
z4
z5

→


z1
h(z1)

z2
z3
z4
z5

→


z1
z2
z3

z3−2α(1−h(z1)+ z2)
z4
z5

→

→



z1
z2
z3

σ(z3−2α(1−h(z1)+ z2))
z4
z5

→

→


z1
z2
z3
z4

z5 +σ(z3−2α(1−h(z1)+ z2))

 ∈ ϒ
15,4(R5,R5).

(3.10)

Using a sequence of applications of Lemmas 6 and 4, we obtain that this map can be implemented by
a network in ϒ15,4(R5,R5).

Note that when z1 ∈ Z and z2 ∈ {0,1}, we have that (recall that h(z) = δ (z) for integer z)

(1−h(z1)+ z2) =


0 z1 = 0 and z2 = 0
1 z1 6= 0 and z2 = 0
1 z1 = 0 and z2 = 1
2 z1 6= 0 and z2 = 1.

If we also have that z3 ∈ {0, ...,2α}, then it follows that

σ(z3−2α(1−h(z1)+ z2)) =

{
z3 z1 = 0 and z2 = 0
0 otherwise.

Thus, if we compose the network in (3.9) with the network in (3.10), we will add the number b2...bα

(which is less than 2α) to the last coordinate iff z1 = b1 = 0. As b1 = 0 to indicate that t1 is positive
and b2...bα contain the value of t1, his handles the case where t1 is positive and has no effect when t1
is negative.

21

SIEGEL

Next, we construct a network which handles the negative part of t1. This is given by the following
composition

z1
z2
z3
z4
z5

→


z1
z1
z2
z3
z4
z5

→


z1
h(z1)

z2
z3
z4
z5

→


z1
z2
z3

z3−2α(2−h(z1)− z2)
z4
z5

→

→



z1
z2
z3

σ(z3−2α(2−h(z1)− z2))
z4
z5

→

→


z1
z2
z3
z4

z5−σ(z3−2α(2−h(z1)− z2))

 ∈ ϒ
15,4(R5,R5).

(3.11)

When z1 ∈ Z and z2 ∈ {0,1}, we have that

(2−h(z1)− z2) =


1 z1 = 0 and z2 = 0
2 z1 6= 0 and z2 = 0
0 z1 = 0 and z2 = 1
1 z1 6= 0 and z2 = 1.

So, if we compose the network in (3.9) with the network in (3.11), we will subtract the number
b2...bα (which is less than 2α) from the last coordinate iff z1 = 0 and b1 = 1. As b1 = 1 to indicate
that t1 is negative and b2...bα contain the value of t1, this handles the case where t1 is negative and
has no effect when t1 is positive.

We obtain the final network g by successively composing the network in (3.9) with the networks
in (3.10) and (3.11) and then dropping the second and third components.

4. Optimal Approximation of Sobolev Functions Using Deep ReLU Networks

In this section, we give the main construction and the proof of Theorems 1 and 2. A key component of
the proof is the approximation of piecewise polynomial functions using deep ReLU neural networks.
To describe this, we first introduce some notation.

Throughout this section, unless otherwise specified, let b ≥ 2 be a fixed integer. To avoid
excessively cumbersome notation, we suppress the dependence on b in the following notation. Let

22

APPROXIMATION RATES FOR RELU NETWORKS ON BESOV SPACES

l ≥ 0 be an integer and consider the b-adic decomposition of the cube Ω = [0,1)d (note that by
removing a zero-measure set it suffices to consider this half-open cube in the proof) at level l given
by

Ω =
⋃
i∈Il

Ω
l
i, (4.1)

where the index i lies in the index set Il := {0, ...,bl−1}d , and Ωl
i is defined by

Ω
l
i =

d

∏
j=1

[b−li j,b−l(i j +1)). (4.2)

Note that for each l, the bdl subcubes Ωl
i form a partition of the original cube Ω. For an integer k≥ 0,

we let Pk denote the space of polynomials of degree at most k and consider the space

P l
k =

{
f : Ω→ R, f

Ωl
i
∈ Pk for all i ∈ Il

}
of (non-conforming) piecewise polynomials subordinate to the partition (4.1). The space P l

k has
dimension

(d+k
k

)
bdl and a natural (L∞-normalized) basis

ρ
α
l,i(x) =

{
∏

d
j=1(b

lx j− i j)
α j x ∈Ωl

i
0 x /∈Ωl

i

indexed by i ∈ Il and α a d-dimensional multi-index with |α| ≤ k.
In our construction, we will approximate piecewise polynomial functions from P l

k by deep ReLU
neural networks. However, since a deep ReLU network can only represent a piecewise continuous
function, this approximation will not be over the full cube Ω. Rather, we will need to remove an
arbitrarily small region from Ω. This idea is from the method in Shen et al. (2022), where this region
was called the trifling region. Given ε > 0 we define sets

Ω
l
i,ε =

d

∏
j=1

{
[b−li j,b−l(i j +1)− ε) i j < bl−1
[b−li j,b−l(i j +1)) i j = bl−1,

(4.3)

which are slightly shrunk sub-cubes (except at one edge) from (4.2). We then define the good region
to be

Ωl,ε :=
⋃
i∈Il

Ω
l
i,ε .

Next, we will show how to approximate piecewise polynomials from P l
k on the set Ωl,ε . For this, we

begin with the following Lemma, which first appears in Shen et al. (2022). This Lemma is essentially
a minor modification of the bit-extraction technique used to prove Proposition 10. We give a detailed
proof for the reader’s convenience in Appendix C.

Lemma 19 Let l ≥ 0 be an integer and 0 < ε < b−l . Then there exists a deep ReLU neural network
qd ∈ ϒ9d,2(b−1)l(Rd) such that

qd(Ω
l
i,ε) = ind(i) :=

d

∑
j=1

bl(j−1)i j.

23

SIEGEL

Note that here ind(i) ∈ {0, ...,bdl−1} is just an integer index corresponding to the sub-cube position
i.

Using this Lemma we prove the following key technical Proposition, which shows how to
efficiently approximate piecewise polynomial functions on the good set Ωl,ε .

Proposition 20 Let l ≥ 0 be an integer and ε > 0. Suppose that f ∈P l
k is expanded in terms of the

bases ρα
l,i,

f (x) = ∑
|α|≤k, i∈Il

aα
i ρ

α
l,i(x).

Let 1≤ q≤ p≤ ∞ and choose a parameter δ > 0 and an integer m≥ 1. Then there exists a deep
ReLU network fδ ,m ∈ ϒ22d+18,L(Rd) such that

‖ f − fδ ,m‖Lp(Ωl,ε) ≤C
(

δ min
{

1,b−dl
δ
−q
}1/p

+4−m
)(

∑
|α|≤k, i∈Il

|aα
i |q
)1/q

(with the standard modification when q = ∞), and whose depth satisfies

L≤C

{
m+ l +δ−q/2

√
1+dl log(b)+q log(δ) δ−q ≤ bdl

m+ l +bdl/2
√

1− logδ − (dl/q) log(b) δ−q > bdl.

Here the constants C :=C(p,q,d,k,b) only depend upon p,q,d,k and the base b, but not on f , δ , l,
ε , or m.

Before we prove this Proposition, let us explain the intuition behind it and the meaning of the
parameter δ . The parameter δ represents a discretization level for the coefficients aα

i . Specifically,
we will round each coefficient down (in absolute value) to the nearest multiple of δ to produce
an approximation to f . Then, we will represent this approximation by encoding these discretized
coefficients using deep ReLU networks. This reduces to encoding an integer vector which can be
done optimally using Theorem 14. The two regimes δ−q ≤ bdl and δ−q > bdl correspond to the case
of dense and sparse coefficients, which are handled differently in Theorem 14.

Proof of Proposition 20 We begin by decomposing f = ∑|α|≤k fα where

fα(x) = ∑
i∈Id

aα
i ρ

α
l,i(x).

By Proposition 7 and the triangle inequality, it suffices to prove the result for each fα individually
with width W = 20d +17 (at the expense of larger constants). So in the following we assume that
f = fα and write ai := aα

i . By normalizing f we may assume also without loss of generality that(
∑
i∈Il

|ai|q
)1/q

≤ 1. (4.4)

We construct the following network. First, duplicate the input x ∈ Rd three times using an affine
map

x→

x
x
x

 ∈ ϒ
0(Rd ,R3d).

24

APPROXIMATION RATES FOR RELU NETWORKS ON BESOV SPACES

Next, we use Lemmas 6 and 4 to apply the network qd from Lemma 19 to the last coordinate and
apply q1 from Lemma 19 to each entry of the first coordinate to get

x→


q1(x1)

...
q1(xd)

x
qd(x)

 ∈ ϒ
20d,2(b−1)l(Rd ,R2d+1).

We now compose with the affine mapx
y
r

→ (bly− x
r

)
∈ ϒ

0(R2d+1,Rd+1),

where x,y ∈ Rd and r ∈ R, to get

x→


blx1−q(x1)

...
blxd−q(xd)

qd(x)

 ∈ ϒ
20d,2(b−1)l(Rd ,Rd+1). (4.5)

On the set Ωl
i,ε from (4.3) this map becomes

x→


blx1− i1

...
blxd− id

ind(i)

 .

The next step in the construction will be to approximate the coefficients ai. To do this we round the
ai down to the nearest multiple of δ (in absolute value) to get approximate coefficients

ãi := δ sgn(ai)

⌊
|ai|
δ

⌋
.

We estimate the `p-norm of the error this incurs as follows. Write

‖a− ã‖`p =

(
∑
i∈Il

|ai− ãi|p
)1/p

with the standard modification when p = ∞. Note that

‖a− ã‖`q ≤ ‖a‖`q ≤ 1

by (4.4). In addition, it is clear from the rounding procedure that ‖a− ã‖`∞ ≤ δ . Hölder’s inequality
thus implies that (since p≥ q)

‖a− ã‖`p ≤ ‖a− ã‖q/p
`q ‖a− ã‖1−q/p

`∞ ≤ δ
1−q/p.

25

SIEGEL

On the other hand, using that |Il|= bdl , we can use the bound ‖a− ã‖`∞ ≤ δ to get

‖a− ã‖`p ≤ bdl/p
δ .

Putting these together, we get

‖a− ã‖`p ≤ δ min{bdl,δ−q}1/p. (4.6)

Next we construct a ReLU neural network which maps the index ind(i) to the rounded coefficients ãi.
For this Theorem 14 will be key. We set N = bdl and write ãi = δxind(i) for a vector x ∈ ZN defined
by

xind(i) = sgn(ai)

⌊
|ai|
δ

⌋
.

We proceed to estimate ‖x‖`1 . We observe that by (4.4)

N

∑
i=1
|xi|q ≤∑

i∈Il

(
|ai|
δ

)q

≤ δ
−q. (4.7)

Thus ‖x‖`q ≤ δ−1. Moreover, since x ∈ ZN , (4.7) implies that the number of non-zero entries in x
satisfies

|{i : xi 6= 0}| ≤min{δ−q,N}.

We can thus use Hölder’s inequality to get the bound

‖x‖`1 ≤ |{i : xi 6= 0}|1−1/q‖x‖`q ≤ δ
−1 min{δ−q,N}1−1/q.

Using this we apply Theorem 14 with M = δ−1 min{δ−q,N}1−1/q to the vector x. We calculate that
if δ−q ≤ N, then

M = δ
−1

δ
−q(1−1/q) = δ

−q ≤ N,

while if δ q > N, then
M = δ

−1N(1−1/q) = N(δ−qN−1)1/q ≥ N.

Thus, Theorem 14 (combined with a scaling by δ) gives a network g∈ ϒ17,L(R) such that g(ind(i)) =
ãi, whose depth is bounded by

L≤C

{
δ−q/2

√
1+dl log(b)+q log(δ) δ−q ≤ bdl

bdl/2
√

1− logδ − (dl/q) log(b) δ−q > bdl.

Using Lemma 6 to apply g to the last coordinate of the output in (4.5) gives a network f̃δ ∈ ϒ20d+17,L

with depth bounded by

L≤ 2(b−1)l +C

{
δ−q/2

√
1+dl log(b)+q log(δ) δ−q ≤ bdl

bdl/2
√

1− logδ − (dl/q) log(b) δ−q > bdl,

such that for x ∈Ωl
i,ε we have

f̃δ (x) =


blx1− i1

...
blxd− id

ãi

 . (4.8)

26

APPROXIMATION RATES FOR RELU NETWORKS ON BESOV SPACES

Finally, to obtain the network fδ ,m we use Lemma 4 to compose f̃δ with a network Pm which
approximates the product 

z1
...

zd
zd+1

→ zd+1

d

∏
j=1

zα j
j

on the set where |z j| ≤ 1 for all j = 1, ...,d +1. Note from the bound (4.4) we see that |ãi| ≤ |ai| ≤
‖a‖`q ≤ 1. In addition, it is easy to see that for x ∈Ωl

i,ε we have |blx j− i j| ≤ 1 for j = 1, ...,d. Thus
the output of f̃δ satisfies these assumptions for any x ∈Ωl,ε .

We construct the network Pm using Proposition 9 as follows. Choose a parameter m ≥ 1. We
first approximate a function which multiplies the last entry zd+1 by the i-th entry zi. We do this by
duplicating the i-th entry using an affine map and then applying Lemma 6 to apply the network fm

from Proposition 9 to the i-th and last entries
z1
...

zd
zd+1

→


z1
...

zd
zd+1

zi

→
 z1

...
fm(zd+1,zi)

 ∈ ϒ
2d+13,6m+3(Rd+1,Rd+1).

In order to ensure that the resulting approximate product is still bounded in magnitude by 1 (so that
we can recursively apply these products), we apply the map z→max(min(z,−1),1) ∈ ϒ5,2(R) to
the last component. This gives a network Pm

i ∈ ϒ2d+13,6m+5(Rd+1,Rd+1), which maps

Pm
i :


z1
...

zd
zd+1

→


z1
...

zd
zd+1

zi

→
 z1

...
f̃m(zd+1,zi)

 ,

where f̃m(zd+1,zi) = max(min(fm(zd+1,zi),−1),1). Observe that since the true product zd+1zi ∈
[−1,1] the truncation cannot increase the error, so that Proposition 9 implies

| f̃m(zd+1,zi)− zizd+1| ≤ | fm(zd+1,zi)− zizd+1| ≤ 6 ·4−m.

We construct Pm by composing (using Lemma 4) α j copies of Pm
j and then applying an affine map

which selects the last coordinate. Thus Pm ∈ ϒ2d+13,L(Rd+1) with L≤ k(6m+5). Moreover, since
all entries zi are bounded by 1, we calculate that∣∣∣∣∣Pm(z)− zd+1

d

∏
j=1

zα j
j

∣∣∣∣∣≤ d

∑
j=1

α j| f̃m(zd+1,z j)− z jzd+1| ≤ 6k ·4−m. (4.9)

We obtain the network fδ ,m ∈ ϒ20d+17,L(Rd ,R) by composing f̃δ and Pm using Lemma 4. Its depth
is bounded by

L≤ 2(b−1)l + k(6m+5)+C

{
δ−q/2

√
1+dl log(b)+q log(δ) δ−q ≤ bdl

bdl/2
√

1− logδ − (dl/q) log(b) δ−q > bdl,

27

SIEGEL

and we note that k(6m+5)≤Cm for integers m≥ 1 and a constant C :=C(k) which depends upon
k.

We bound the error using equations (4.6), (4.8), (4.9), and the fact that the basis ρα
l,i is normalized

in L∞ and has disjoint support for fixed α to get

‖ f − fδ ,m‖
p
Lp(Ωl,ε)

≤ 2−ld
∑
i∈Il

|ai− ãi|p +(6k ·4−m)p,

so that

‖ f − fδ ,m‖Lp(Ωl,ε) ≤ 2−ld/p‖a− ã‖`p +6k ·4−m ≤C
(

δ min
{

1,2−dl
δ
−q
}1/p

+4−m
)
,

which completes the proof.

Next, we use the construction in Proposition 20 to approximate a target function f ∈W s(Lq(Ω)) in
Lp(Ω) using deep ReLU neural networks, again removing an arbitrarily small trifling set in the spirit
of Shen et al. (2022).

Proposition 21 Let Ω = [0,1)d , 1≤ q≤ p≤∞ and f ∈W s(Lq(Ω)) with ‖ f‖W s(Lq(Ω)) ≤ 1 for s > 0.
Suppose that the Sobolev embedding condition is strictly satisfied, i.e.

1
q
− 1

p
− s

d
< 0, (4.10)

which guarantees the compact embedding W s(Lq(Ω))⊂⊂ Lp(Ω) holds. Let ε > 0 and l0 ≥ 1 be an
integer and set l∗ = bκl0c with

κ :=
s

s+d/p−d/q
.

Note that 1 ≤ κ < ∞ by the Sobolev embedding condition. Then there exists a network fl0,ε ∈
ϒ24d+20,L(Rd) such that

‖ f − fl0,ε‖Lp(Ωl∗ ,ε) ≤Cb−sl0

and whose depth is bounded by
L≤Cbdl0/2.

Here the constants C :=C(s, p,q,d,b) do not depend upon l0, f or ε .

Before giving the detailed proof, let us comment on the intuition and the meaning of κ and l∗.
The idea is to decompose the function f into different scales which consist of piecewise polynomial
functions. We then appoximate these piecewise polynomial functions using neural networks via
Proposition 20 to varying degrees of accuracy dependent on the parameter δ used at each level. The
parameter l0 gives the finest level at which we approximate the coefficients in the dense regime
δ−q > bdl , while the level l∗ is the finest level which appears in the approximation. All levels between
l0 and l∗ are approximated in the sparse regime δ−q ≤ bdl . The parameter κ controls the gap between
l0 and l∗, and essentially measures how adaptive the approximation must be. The proof is completed
by choosing δ optimally at each level, analogous to the proof of the Birman-Solomyak Theorem
(Birman and Solomyak, 1967) which calculates the metric entropy of the Sobolev unit ball.

Proof of Proposition 21 For a function f ∈ Lq(Ω), we write

Π
l
k(f) = arg min

p∈P l
k

‖ f − p‖Lq(Ω)

28

APPROXIMATION RATES FOR RELU NETWORKS ON BESOV SPACES

for the Lq-projection of f onto the space of piecewise polynomials of degree k. We will utilize the
following well-known multiscale dyadic decomposition of the function f , which is a common tool in
harmonic analysis (Birman and Solomyak, 1967; Mallat, 1999; Littlewood and Paley, 1931) and the
analysis of multigrid methods (Bramble et al., 1990),

f =
∞

∑
l=0

fl,

where the components at level l are defined by f0 = Π0
k(f) and fl = Πl

k(f)−Π
l−1
k (f) for l ≥ 1.

Expanding the components fl in the basis ρα
l,i, we write

fl(x) = ∑
|α|≤k, i∈Il

aα
l,iρ

α
l,i(x). (4.11)

The key estimate in the proof is to establish the following coefficient bound

|aα
l,i| ≤Cb(d/q−s)l| f |W s(Lq(Ω

l−1
i−)), (4.12)

where Ω
l−1
i− ⊃Ωl

i is the parent domain of Ωl
i when l≥ 1. When l = 0, we have the simple modification

|aα
0,0| ≤C‖ f‖W s(Lq(Ω)).

We prove (4.12) by utilizing the Bramble-Hilbert lemma (Bramble and Hilbert, 1970) and a
well-known scaling argument. For l ≥ 1 consider the scaling map Sl,i which scales the small domain
Ω

l−1
i− up to the large domain Ω, defined by

Sl,i(f)(x) = f (bl−1x− i−) ∈ Lq(Ω)

for f ∈ Lq(Ω
l−1
i−). We verify the following simple facts

|Sl,i(f)|W s(Lq(Ω)) = b(d/q−s)(l−1)| f |W s(Lq(Ωi−))

Sl,i(fl) = Sl,i(Π
l
k(f)−Π

l−1
k (f)) = Π

1
k(Sl,i(f))−Π

0
k(Sl,i(f))

Sl,i(ρ
α
l,i) = ρ

α
1,j,

(4.13)

where j ∈ {0,1, ...,b}d is the index of Ωl
i in Ω

l−1
i− , i.e. j ≡ i (mod b). From the last two facts we

deduce that
Π

1
k(Sl,i(f))−Π

0
k(Sl,i(f)) = ∑

j∈I1

aα

l,(bi−+j)ρ
α
1,j,

where the aα

l,(bi−+j) are the coefficients from the expansion (4.11) of fl . Combining this with the first
fact from (4.13), it suffices to prove (4.12) when l = 1 and apply this to Sl,i(f).

To prove (4.12) when l = 1, we use the Bramble-Hilbert lemma (Bramble and Hilbert, 1970).
We calculate using the Bramble-Hilbert lemma that

‖Π0
k(f)− f‖Lq(Ω1

i)
≤ ‖Π0

k(f)− f‖Lq(Ω) ≤C| f |W s(Lq(Ω))

‖Π1
k(f)− f‖Lq(Ω1

i)
≤C| f |W s(Lq(Ω1

i))
≤C| f |W s(Lq(Ω)).

29

SIEGEL

Combining these two estimates, we get

‖Π0
k(f)−Π

1
k(f)‖Lq(Ω1

i)
≤C| f |W s(Lq(Ω)).

When l = 0 we make the modification

‖Π0
k(f)‖Lq(Ω) ≤ ‖ f‖Lq(Ω)+‖Π0

k(f)− f‖Lq(Ω) ≤C‖ f‖W s(Lq(Ω)).

Now we use the fact that all norms on the finite dimensional space of polynomials of degree at most
k are equivalent to transfer the Lq bound to a bound on the coefficients. This implies (4.12).

From (4.12), we deduce the following bound on the `q-norm of the coefficients of fl:(
∑

|α|≤k, i∈Il

|aα
l,i|q
)1/q

≤Cb(d/q−s)l

(
∑

|α|≤k, i∈Il

| f |q
W s(Lq(Ω

l−1
i−))

)1/q

≤Cb(d/q−s)l, (4.14)

since ‖ f‖W s(Lq(Ω)) ≤ 1. This follows from the sub-additivity of the Sobolev norm,

∑
i∈Il−1

| f |q
W s(Lq(Ω

l−1
i))
≤ | f |qW s(Lq(Ω)), (4.15)

since each Ω
l−1
i− appears a finite number of times in the sum (4.14) (namely

(k+d
d

)
bd which is

independent of l).
We remark that the Sobolev sub-additivity (4.15) immediately follows from the definitions (1.1)

and (1.2). Note also that the bound (4.14) also easily follows when the standard modifications are
made for q = ∞.

Next, we derive the following bound, which follows from (4.14), the L∞-normalization of the
basis functions ρα

l,i, the fact that for fixed α the functions ρα
l,i have disjoint support, and the assumption

that p≥ q:

‖ fl‖Lp(Ω) ≤ ∑
|α|≤k

b−dl/p

(
∑
i∈Il

|aα
l,i|p
)1/p

≤ b−dl/p
(

k+d
d

)1−1/p
(

∑
|α|≤k, i∈Il

|aα
l,i|p
)1/p

≤Cb(d/q−d/p−s)l.

(4.16)

We now complete the proof by using Proposition 20 to approximate each fl for l = 1, ..., l∗, for
which we must choose appropriate parameters. First, we choose τ > 0 such that

d
q
− d

p
− s+

(
1− q

p

)
τ < 0.

Note that this condition can be satisfied since q ≤ p and the Sobolev embedding condition (4.10)
holds. For each level l we choose parameters

δ = δ (l) =

{
b−dl0/q+τ(l−l0) l ≥ l0
b−dl/q+(s+1)(l−l0) l < l0

(4.17)

30

APPROXIMATION RATES FOR RELU NETWORKS ON BESOV SPACES

and
m = m(l) = K1l0 +K2l (4.18)

in Proposition 20, where K1,K2 > 0 are parameters to be chosen later. Note that δ (l)−q ≤ bdl when
l ≥ l0 and δ (l)−q > bdl when l < l0. This means that the coarser levels are discretized finely and
the coefficients are dense, while the finer levels are discretized coarsely so that the coefficients are
sparse.

So, we define the network fl0,ε using Proposition 7 to be

fl0,ε =
l∗

∑
l=0

fδ (l),m(l),

where fδ (l),m(l) is constructed using Proposition 20 applied to fl with parameters δ = δ (l) and
m = m(l).

Propositions 7 and 20 imply that fl0,ε ∈ ϒ24d+20,L(Rd) with

L≤
l∗

∑
l=0

Ll,

where the depths Ll for each level are bounded using Proposition 20 by

Ll ≤C

{
m(l)+ l +δ (l)−q/2

√
1+dl log(b)+q log(δ (l)) δ (l)−q ≤ bdl

m(l)+ l +bdl/2
√

1− logδ (l)− (dl/q) log(b) δ (l)−q > bdl.

Plugging in the expressions for δ (l) and m(l) given in (4.17) and (4.18), and using that δ (l)−q ≤ bdl

when l ≥ l0 and δ (l)−q > bdl when l < l0, we get the bound

L≤C

(
l∗

∑
l=0

K1l0 +(K2 +1) l +bdl0/2
l0−1

∑
l=0

bd(l−l0)/2
√

1+ log(b)(s+1)(l− l0)

+ bdl0/2
l∗

∑
l=l0

b−τ(l−l0)/2
√

1+ log(b)(d/q+ τ)(l− l0)

)
.

Summing the series above (and noting that the latter two are bounded by convergent geometric
series), we get

L≤C((l∗)2 +bdl0/2).

Note that here the constant C depends upon the choice of parameters K1 and K2. Since l∗ ≤ κl0 is a
linear function of l0, the quadratic term (l∗)2 ≤ (κl0)2 is dominated by the exponential second term.
Thus we get L≤Cbdl0/2 (for a potentially larger constant C).

Finally, we bound the error. For this we use Proposition 20 to bound

‖ fδ (l),m(l)− fl‖Lp(Ωl,ε) ≤C
(

δ (l)min
{

1,b−dl
δ (l)−q

}1/p
+4−m(l)

)(
∑

|α|≤k, i∈Il

|aα
l,i|q
)1/q

.

Combining this with the bound (4.14), plugging in the choices (4.17) and (4.18) (here again we have
b−dlδ (l)−q ≤ 1 when l ≥ l0 and b−dlδ (l)−q > 1 when l < l0), and noting that Ωl,ε ⊃Ωl∗,ε if l ≤ l∗,

31

SIEGEL

we get

l∗

∑
l=0
‖ fδ (l),m(l)− fl‖Lp(Ωl∗ ,ε) ≤C

(
l0−1

∑
l=0

b(d/q−s)l
[
δ (l)+4−m(l)

]
+

l∗

∑
l=l0

b(d/q−s)l
[
δ (l)1−q/pb−(d/p)l +4−m(l)

])
.

Plugging in our choices for δ (l) and m(l), we calculate

l∗

∑
l=0
‖ fδ (l),m(l)− fl‖Lp(Ωl∗ ,ε) ≤C

(
b−sl0

l0−1

∑
l=0

bl−l0

+b−sl0
l∗

∑
l=l0

b(d/q−d/p−s+τ(1−q/p))(l−l0)

+
l∗

∑
l=0

b(d/q−s)l4−K1l0−K2l

)
.

(4.19)

The first sum above is a convergent geometric series and is bounded by Cb−sl0 . Due to the choice of
τ , the second sum is also a convergent gemoetric series, and is also bounded by Cb−sl0 . Choosing
K1 and K2 large enough so that 4−K1 ≤ b−s and 4−K2 < b(s−d/q), the final sum is also a convergent
geometric series which is bounded by Cb−sl0 . Thus, we obtain

l∗

∑
l=0
‖ fδ (l),m(l)− fl‖Lp(Ωl∗ ,ε) ≤Cb−sl0

for an appropriate constant C. Finally, we estimate

‖ f − fl0,ε‖Lp(Ωl∗ ,ε) ≤
l∗

∑
l=0
‖ fδ (l),m(l)− fl‖Lp(Ωl∗ ,ε)+

∞

∑
l=l∗+1

‖ fl‖Lp(Ωl∗,ε).

Utilizing (4.19) and (4.16) we get

‖ f − fl0,ε‖Lp(Ωl∗ ,ε) ≤Cb−sl0 +C
∞

∑
l=l∗+1

b(d/q−d/p−s)l.

The compact Sobolev embedding condition implies that the second sum is a convergent geometric
series, bounded by a multiple of its first term. This gives

‖ f − fl0,ε‖Lp(Ωl∗ ,ε) ≤C(b−sl0 +b(d/q−d/p−s)l∗).

Finally, we use the definition of l∗ and κ to see that

b(d/q−d/p−s)l∗ ≤Cb−sl0 ,

which completes the proof.

We note that a completely analogous Proposition holds for the Besov spaces Bs
r(Lq(Ω)), i.e. Propo-

sition 21 holds with the Sobolev space W s(Lq(Ω)) replaced by Bs
r(Lq(Ω)). The proof is exactly

32

APPROXIMATION RATES FOR RELU NETWORKS ON BESOV SPACES

the same, utilizing a piecewise polynomial approximation, with the main difference being that the
Bramble-Hilbert lemma is replaced by the following bound on piecewise polynomial approximation
of Besov functions, known as Whitney’s theorem (see DeVore and Popov (1988), Section 3 for
instance)

‖Π0
k−1(f)− f‖Lq(Ω) ≤Cωk(f ,1)q,

where Ω = [0,1]d is the unit cube, ωk is the modulus of smoothness introduced in (1.3), and the
constant depends upon d,q and k. This is easily seen to imply that

‖Π0
k(f)− f‖Lq(Ω) ≤C‖ f‖Bs

r(Lq(Ω))

as soon as k > s−1 (for a different constant C which depends upon d,q,k,s and r), and the proof
proceeds utilizing the same scaling argument. In addition, the sub-additivity (4.15) must be replaced
by the corresponding result for Besov spaces

∑
i∈Il−1

| f |q
Bs

r(Lq(Ω
l−1
i))
≤C| f |qBs

r(Lq(Ω)),

which holds with a constant C depending upon the dimension and the particular space (see for
instance DeVore and Sharpley (1993)). With these modifications, the proof proceeds in exactly the
same way.

Finally, we show how to remove the trifling region to give a proof of Theorem 1. This is a
technical construction similar to the method in Shen et al. (2022); Lu et al. (2021); Shijun (2021), but
we significantly reduce the size of the required network (in particular the width no longer depends
exponentially on the input dimension) by using the sorting network construction from Corollary 13.

In addition to using sorting network, in our approach we use different bases bi to create minimally
overlapping trifling regions. This is somewhat different than the aforementioned approaches (Shen
et al., 2022; Lu et al., 2021; Shijun, 2021), which shift the grid to achieve the same effect. The
reason we did this is to avoid the use of Sobolev and Besov extension theorems, as our method
allows everything to stay within the unit cube. Although such extension theorems could be used, they
become quite technical in full generality, and so we have found our approach simpler.

The proof of Theorem 2 is completely analogous using Proposition 21 with the Sobolev spaces
replaced by Besov spaces, and is omitted.

Proof of Theorem 1 We assume without loss of generality that f ∈W s(Lq(Ω)) has been normalized,
i.e. so that ‖ f‖W s(Lq(Ω)) ≤ 1.

In order to remove the trifling region from the preceding construction we will make use of
different bases b. Let r be the smallest integer such that 2r ≥ 2d+2 (so that 2r ≤ 4d+4), set m = 2r,
and set bi = πi (the i-th prime number) for i = 1, ...,m.

Let n≥ bm be an integer. We will construct a network fL ∈ ϒ30d+24,L(Rd) such that

‖ f − fL‖Lp(Ω) ≤Cn−s

with depth L≤Cnd/2, which will complete the proof.
For i = 1, ...,m, set li = blog(n)/ log(bi)c to be the largest power of bi which is at most n, and

write l∗i = bκlic where κ is defined as in Proposition 21. Note that since the πi are all pairwise
relatively prime, the numbers

S :=

{
1

π
l∗1
1

, ...,
π

l∗1
1 −1

π
l∗1
1

,
1

π
l∗2
2

, ...,
π

l∗2
2 −1

π
l∗2
2

, ...,
1

π
l∗m
m
, ...,

π
l∗m
m −1

π
l∗m
m

}

33

SIEGEL

are all distinct. Choose an ε > 0 which satisfies

ε < min
x 6=y∈S

|x− y|, (4.20)

i.e. which is smaller than the distance between the two closest elements of S. This ε has the property
that any x ∈ [0,1] is contained in at most one of the sets

[jπ−l∗i
i − ε, jπ−l∗i

i) for i = 1, ...,m and j = 1, ...,π l∗i
i −1. (4.21)

This means that for any x ∈Ω, we have x /∈Ωl∗i ,ε for at most d different values i. Here Ωl∗i ,ε is the
good region at level l∗i with base bi. This holds since x has d coordinates and each coordinate can be
contained in at most one bad set from (4.21).

We now use Proposition 21, setting l0 = li and using an ε satisfying (4.20), to construct fi ∈
ϒ24d+20,L(Rd) which satisfies

‖ f − fi‖Lp(Ωl∗i ,ε
) ≤Cπ

−sli
i ≤Cn−s

and has depth bounded by
L≤Cπ

dli/2
i ≤Cnd/2.

Finally, we construct the following network. We sequentially duplicate the input and apply the
network fi to the new copy using Lemma 6 to get

x→
(

x
x

)
→
(

x
f1(x)

)
→

 x
x

f1(x)

→
 x

f2(x)
f1(x)

→ ·· · →


fm(x)
...

f2(x)
f1(x)

 ∈ ϒ
30d+24,L(Rd ,Rm) (4.22)

with L≤C ∑
m
i=1 π

dli/2
i ≤Cnd/2.

We construct the network fL ∈ ϒ30d+24,L(Rd) by composing the network from (4.22) with the
order statistic network which selects the median, i.e. the m/2-largest value. By construction the
network depth of fL satisfies

L≤Cnd/2 +

(
m+1

2

)
≤Cnd/2,

since
(m+1

2

)
is a constant independent of n.

To bound the approximation error of fL we introduce the following notation. Given x ∈ [0,1)d ,
we write

K (x) = {i : x ∈Ωl∗i ,ε}

for the set of indices such that x is contained in the good region for the base bi decomposition. Since
x fails to be in Ωl∗i ,ε for at most d values of i, we get

|K (x)| ≥ m−d ≥ m/2+1

since m≥ 2d+2. Thus the m/2-largest element among the f1(x), ..., fm(x) is both smaller and larger
than some element of { fi(x), i ∈K (x)}, which implies

min
i∈K (x)

fi(x)≤ fL(x)≤ max
i∈K (x)

fi(x),

34

APPROXIMATION RATES FOR RELU NETWORKS ON BESOV SPACES

so that
| fL(x)− f (x)| ≤ max

i∈K (x)
| fi(x)− f (x)|.

This completes the proof when p = ∞, since if i ∈K (x) then | fi(x)− f (x)| ≤Cn−s by Proposition
21 and the definition of K (x).

For p < ∞, we note that∫
Ω

| fL(x)− f (x)|pdx≤
∫

Ω

max
i∈K (x)

| fi(x)− f (x)|pdx≤
∫

Ω
∑

i∈K (x)
| fi(x)− f (x)|pdx

≤
m

∑
i=1
‖ fi− f‖p

Lp(Ωl∗i ,ε
)

≤Cn−sp.

Taking p-th roots completes the proof.

5. Lower Bounds

In this section, we study lower bounds on the approximation rates that deep ReLU neural networks
can achieve on Sobolev spaces. Our main result is to prove Theorem 3, which shows that the
construction of Theorem 1 is optimal in terms of the number of parameters. In addition, we show
that the representation of sparse vectors proved in Theorem 14 is optimal.

The key concept is the notion of VC dimension, which was used in Yarotsky (2018); Shen et al.
(2022) to prove lower bounds for approximation in the L∞-norm. We generalize these results to
obtain sharp lower bounds on the approximation in Lp as well. Let K be a class of functions defined
on Rd . The VC-dimension (Vapnik and Chervonenkis, 2015) of K is defined to be the largest number
n such that there exists a set of points x1, ...,xn ∈Ω such that

|{(sgn(g(x1)), ...,sgn(g(xn))), g ∈ K}|= 2n,

i.e. such that every sign pattern at the points x1, ...,xn can be matched by a function from K. Such a
set of points is said to be shattered by K.

The VC dimension of classes of functions defined by neural networks has been extensively
studied and the most precise results are available for piecewise polynomial activation functions. We
will discuss two main results concerning the VC dimension of ϒW,L(Rd). The first bound is most
useful when the depth L is fixed and the width W is large and is given by

VC-dim(ϒW,L(Rd))≤C(W 2L2 log(WL)). (5.1)

This was proved in Theorem 6 of Bartlett et al. (2019). The second bound, which is most informative
when the width W is fixed and the depth L is large is

VC-dim(ϒW,L(Rd))≤C(W 3L2). (5.2)

This was proved in Theorem 8 of Bartlett et al. (2019) using a technique developed in Goldberg and
Jerrum (1993). In either case, the VC-dimension of a deep ReLU neural network with P = O(W 2L)

35

SIEGEL

parameters is bounded by CP2, with this bound achieved up to a constant only in the case where the
width W is fixed and the depth L grows. This bound on the VC-dimension was used in Yarotsky
(2018); Shen et al. (2022) to prove Theorem 3 in the case p = ∞. However, in order to extend the
lower bound to p < ∞ a more sophisticated analysis is required. The key argument is captured in the
following Proposition.

Theorem 22 Let p > 0, Ω = [0,1]d and suppose that K is a translation invariant class of functions
whose VC-dimension is at most n. By translation invariant we mean that f ∈ K implies that
f (·−v) ∈ K for any fixed vector v ∈Rd . Then there exists an f ∈W s(L∞(Ω))∩Bs

1(L∞(Ω)) such that

inf
g∈K
‖ f −g‖Lp(Ω) ≥C(p,d,s)n−

s
d max

{
‖ f‖W s(L∞(Ω)),‖ f‖Bs

1(L∞(Ω))

}
.

Although the translation invariance holds for many function classes of interest, it is an interesting
problem whether it can be removed. Before proving this result, we first show how Theorem 3 follows
from this.

Proof of Theorem 3 Note that the class of deep ReLU networks ϒW,L(Rd) is translation invariant.
Combining this with the VC-dimension bounds (5.1) and (5.2), Theorem 22 implies Theorem 3 in
the case q = ∞ and r = 1. The general case follows trivially since W s(L∞(Ω))⊂W s(Lq(Ω)) for any
q≤ ∞, and Bs

1(L∞(Ω)⊂ Bs
r(Lq(Ω)) for r ≥ 1 and q≤ ∞.

Let us turn to the proof of Theorem 22. A key ingredient is the well-known Sauer-Shelah lemma
(Sauer, 1972; Shelah, 1972).

Lemma 23 (Sauer-Shelah Lemma) Suppose that K has VC-dimension at most n. Given any col-
lection of N points x1, ...,xN ∈Ω, we have

|{(sgn(g(x1)), ...,sgn(g(xN))), g ∈ K}| ≤
n

∑
i=0

(
N
i

)
.

We will also utilize the following elementary bound on the size of a Hamming ball.

Lemma 24 Suppose that N ≥ 2n, then

n

∑
i=0

(
N
i

)
≤ 2NH(n/N),

where H(p) is the entropy function

H(p) =−p log(p)− (1− p) log(1− p).

(Note that all logarithms here are taken base 2.)

Proof Observe that since N−n≥ n, we have(
N−n

N

)N−n(n
N

)n n

∑
i=0

(
N
i

)
≤

n

∑
i=0

(
N
i

)(
N−n

N

)N−i(n
N

)i

<
N

∑
i=0

(
N
i

)(
N−n

N

)N−i(n
N

)i
= 1.

36

APPROXIMATION RATES FOR RELU NETWORKS ON BESOV SPACES

This means that
n

∑
i=0

(
N
i

)
≤

[(
N−n

N

)N−n(n
N

)n
]−1

.

Taking logarithms, we obtain

log

(
n

∑
i=0

(
N
i

))
≤−N

(
(N−n) log

(
N−n

N

)
+n log

(n
N

))
= NH(n/N)

as desired.

Utilizing these lemmas, we give the proof of Theorem 22.

Proof of Theorem 22 Let c < 1/2 be chosen so that H(c) < 1/2 (for instance c = 0.1 will work)
and fix

k := d d
√

n/ce ≤C(d)n1/d ,

and ε := k−1. Next, we consider shifts of an equally spaced grid with side length ε . Specifically, for
each λ ∈ [0,ε)d , define the point set

Xλ =
{

λ + εz, z ∈ [k]d
}
,

where we have written [k] := {0, ...,k−1} for the set of integers from 0 to k−1.
Let us now investigate the set of sign patterns which the class K can match on Xλ . To do this, we

will introduce some notation. For a function g ∈ K, we write

sgn(g|Xλ
) ∈ {±1}[k]d , sgn(g|Xλ

)(z) = sgn(g(λ + εz))

for the set of signs which g takes at the (shifted) grid points Xλ . Here the vector sgn(g|Xλ
) is indexed

by the coordinate z ∈ [k]d which specifies the location of a point in the shifted grid Xλ .
We write

sgn(K|Xλ
) :=

{
sgn(g|Xλ

), g ∈ K
}
⊂ {±1}[k]d

for the set of sign patterns attained by the class K on Xλ . Observe that since K is assumed to be
translation invariant, the set sgn(K|Xλ

) is independent of the shift λ . To see this, let λ ,µ ∈ [0,ε)d be
two different shifts and let g ∈ K. By the translation invariance, we find that the function g′ defined
by

g′(x) = g(x+λ −µ)

is also in K. We easily calculate that

sgn(g|Xλ
) = sgn(g′|Xµ

),

which implies that sgn(K|Xλ
) = sgn(K|Xµ

). In the following we simplify notation and write sgn(K)⊂
{±1}[k]d for this set.

Next, we will show that there exists a choice of signs α ∈ {±1}[k]d which differs from every
element of sgn(K) in a constant fraction of its entries. To do this, it is convenient to use the notion of
the Hamming distance between two sign patterns, which is defined as the number of indices in which
they differ, i.e.

dH(α,β) := |{z ∈ [k]d : α(z) 6= β (z)}|.

37

SIEGEL

We also use the notion of the Hamming ball of radius m around a sign pattern α ∈ {±1}[k]d , which is
defined to be the set of sign patterns which differ from α by at most m entries, i.e.

BH(α,m) = {β ∈ {±1}[k]d , dH(α,β)≤ m}.

We note that Lemma 24 implies the following estimate on the size of BH(α,m) when 2m < kd :

|BH(α,m)|=
m

∑
i=0

(
kd

i

)
≤ 2kdH(m/kd).

Further, our assumption on the VC-dimension of K combined with Lemmas 23 and 24 implies
that

|sgn(K)| ≤ 2kdH(n/kd) ≤ 2kdH(c) < 2kd/2

from our choice of c. If we choose m := bckdc ≤ ckd , it follows that∣∣∣∣∣∣ ⋃
β∈sgn(K)

BH(β ,m)

∣∣∣∣∣∣< 2kd/22kdH(m/kd) < 2kd/22kdH(c) < 2kd
,

so that there must exist an α ∈ {±1}[k]d such that

α /∈
⋃

β∈sgn(K)

BH(β ,m),

and hence
inf

β∈sgn(K)
dH(α,β)≥ m+1≥ ckd . (5.3)

Finally, we choose a compactly supported smooth positive bump function φ whose support is
strictly contained in the unit cube Ω and consider the function

f (x) = ∑
z∈[k]d

α(z)φ(kx− z).

Since the supports of the functions φ(kx− z) are all disjoint, we calculate

‖ f‖W s(L∞(Ω)) = ‖φ(kx− z)‖W s(L∞(Ω)) ≤ ks‖φ‖W s(L∞(Ω)), (5.4)

and also
‖ f‖Bs

1(L∞(Ω)) ≤Cks‖φ‖Bs
1(L∞(Ω)), (5.5)

for an appropriate constant C =C(d,s). Next, let g ∈ K be arbitrary. We calculate∫
Ω

| f (x)−g(x)|pdx =
∫
[0,ε)d

∑
z∈[k]d
| f (λ + εz)−g(λ + εz)|pdλ

=
∫
[0,ε)d

∑
z∈[k]d
|α(z)φ(kλ)−g(λ + εz)|pdλ .

From equation (5.3) and the fact that sgn(g|Xλ
) ∈ sgn(K), we see that

|{z ∈ [k]d , α(z) 6= sgn(g(λ + εz))}| ≥ ckd .

38

APPROXIMATION RATES FOR RELU NETWORKS ON BESOV SPACES

Further, if α(z) 6= sgn(g(λ + εz)), then we have the lower bound

|α(z)φ(kλ)−g(λ + εz)| ≥ φ(kλ)

since φ ≥ 0. This implies that for every λ ∈ [0,ε)d we have the lower bound

∑
z∈[k]d
|α(z)φ(kλ)−g(λ + εz)|p ≥ ckd

φ(kλ)p.

We thus obtain ∫
Ω

| f (x)−g(x)|pdx≥ ckd
∫
[0,ε)d

φ(kλ)pdλ = c
∫

Ω

φ(x)pdx,

from which we deduce
‖ f −g‖Lp(Ω) ≥ c

1
p ‖φ‖Lp(Ω).

Combining this with the bounds (5.4) and (5.5), using that k ≤C(d)n1/d , that φ is a fixed function,
and that g ∈ K was arbitrary, we get

inf
g∈K
‖ f −g‖Lp(Ω) ≥C(d, p)k−s‖ f‖W s(L∞(Ω)) ≥C(d,k)n−s/d max

{
‖ f‖W s(L∞(Ω)),‖ f‖Bs

1(L∞(Ω))

}
,

as desired.

We conclude this section by proving that Theorem 14 is optimal up to a constant as long as the
`1-norm M is not too large and not too small. Specifically, we have the following.

Theorem 25 Let M,N ≥ 1 be integers and define

SN,M = {x ∈ ZN , ‖x‖`1 ≤M}

as in the proof of Theorem 14. Suppose that W,L≥ 1 are integers and that for any x ∈ SN,M there
exists an f ∈ ϒW,L(R) such that f (i) = xi for i = 1, ..,N. There exists a constant C < ∞ such that if
C log(N)< M ≤ N, then

W 4L2 ≥C−1M(1+ log(N/M)),

and if N ≤M < exp(N/C), then

W 4L2 ≥C−1N(1+ log(M/N)).

This result implies that if ϒW,L(R) can match the values of any vector in SN,M for M in the range
(C log(N),exp(N/C)), then the number of parameters must be larger than a constant multiple of
the upper bound proved in Theorem 14. Thus Theorem 14 is sharp in this range. If M <C log(N)
then piecewise linear functions with O(M) pieces can fit SN,M , and if M > exp(N/C) then piecewise
linear functions with O(N) pieces can fit SN,M. This implies that Theorem 14 is no longer sharp
outside this range.
Proof Suppose first that N/2 < M ≤ 2N, i.e. that M is of the same order as N. For any subset
S⊂ {1, ...,N/2} it is easy to construct an x ∈ SN,M such that xi > 0 iff i ∈ S. Thus the class ϒW,L(R)
must shatter a set of size at least N/2 and the VC-dimension bound (5.2) implies the result.

39

SIEGEL

In the case where M << N or M >> N, the proof proceeds in a similar manner as the VC-
dimension bounds from Goldberg and Jerrum (1993); Bartlett et al. (2019) although the VC-
dimension cannot directly be used.

We begin with the case where M ≤ N/2. We will bound the total number of sign patterns that
ϒW,L(R) can match on the input set X = {1, ...,N}. For i = 1, ...,L, let εi ∈ {0,1}W be a sign pattern.
Given an input x ∈ X and a neural network with parameters Wi and bi, consider the signs of the
following quantities

(AW0,b0(x)) j, j = 1, ...,W

(AW1,b1 ◦ ε1 ◦AW0,b0(x)) j, j = 1, ...,W

(AW2,b2 ◦ ε2 ◦AW1,b1 ◦ ε1 ◦AW0,b0(x)) j, j = 1, ...,W
...

(AWL−1,bL−1 ◦ εL−1 ◦ · · · ◦ ε2 ◦AW1,b1 ◦ ε1 ◦AW0,b0(x)) j, j = 1, ..,W

AWL,bL ◦ εL ◦AWL−1,bL−1 ◦ εL−1 ◦ · · · ◦ ε2 ◦AW1,b1 ◦ ε1 ◦AW0,b0(x).

(5.6)

Here εi represents pointwise multiplication by the sign vector εi. For any input x ∈ R the definition
of the ReLU activation function implies that if we recursively set

εi = sgn(AWi−1,bi−1 ◦ εi−1 ◦ · · · ◦ ε2 ◦AW1,b1 ◦ ε1 ◦AW0,b0(x)), (5.7)

then we will have

AWL,bL ◦ εL ◦ · · · ◦ ε2 ◦AW1,b1 ◦ ε1 ◦AW0,b0(x) = AWL,bL ◦σ ◦ · · · ◦σ ◦AW1,b1 ◦σ ◦AW0,b0(x).

This implies that the signs of the quantities in (5.6) ranging over all sign vectors ε1, ...,εL ∈ {0,1}W
uniquely determine the value of the network at x. Thus the number of sign patterns achieved on
the set X is bounded by the number of sign patterns achieved in (5.6) as x ranges over the input set
X , the εi range over the sign vectors {0,1}W , and the parameters Wi, bi range of the set of all real
numbers. As the εi range over the sign vectors {0,1}W and x ranges over X , the quantities in (5.6)
range over N(WL+1)2WL polynomials in the P ≤CW 2L parameter variables Wi, bi of degree at
most L. We can thus use Warren’s Theorem (Warren (1968), Theorem 3) to bound the total number
of sign patterns by (

4eLN(WL+1)2WL

P

)P

≤ (4eLN(WL+1)2WL)CW 2L. (5.8)

Suppose that ϒW,L(R) can match the values of any element in SN,M. Since the set SN,M contains the
indicator function of every subset of {1, ...,N} of size M, we get that(

N
M

)
≤ (4eLN(WL+1)2WL)CW 2L.

Taking logarithms, we get

M log(N/M)≤CW 3L2 +CW 2L log(N)+CW 2L log(4eL(WL+1))

≤CW 3L2 +CW 2L log(N)≤CW 4L2 +CW 2L log(N).

40

APPROXIMATION RATES FOR RELU NETWORKS ON BESOV SPACES

Since M ≤ N/2, we conclude that

M(1+ log(N/M))≤CM log(N/M)≤C max{W 4L2,W 2L log(N)}. (5.9)

In the next few equations, let C denote the constant in (5.9). Suppose that W 4L2 < C−1M(1+
log(N/M)). Then equation (5.9) implies that

W 2L≥M
1+ log(N/M)

C log(N)
.

But this would mean that

M
1+ log(N/M)

C log(N)
≤W 2L =

√
W 4L2 <

√
C−1M(1+ log(N/M)).

Rearranging this, we get the inequality

√
M <

√
C log(N)√

1+ log(N/M)
,

from which we deduce that M ≤C log(N) for a (potentially larger) new constant C.
Next, we consider the case where M > 2N. In this case we consider the following modification

of (5.6)

(AW0,b0(x)) j, j = 1, ...,W

(AW1,b1 ◦ ε1 ◦AW0,b0(x)) j, j = 1, ...,W

(AW2,b2 ◦ ε2 ◦AW1,b1 ◦ ε1 ◦AW0,b0(x)) j, j = 1, ...,W
...

(AWL−1,bL−1 ◦ εL−1 ◦ · · · ◦ ε2 ◦AW1,b1 ◦ ε1 ◦AW0,b0(x)) j, j = 1, ..,W

AWL,bL ◦ εL ◦AWL−1,bL−1 ◦ εL−1 ◦ · · · ◦ ε2 ◦AW1,b1 ◦ ε1 ◦AW0,b0(x)− k, k = 0, ...bM/Nc−1.

(5.10)

The number of sign patterns that can be obtained as x ranges over X , the εi range over {0,1}W , and
the parameters range over the set of real numbers is bounded (using Warren’s Theorem Warren (1968)
by (

4eLN(WL+M)2WL

P

)P

≤ (4eLN(WL+M)2WL)CW 2L.

The only difference to the previous bound (5.8) is that for each choice of x ∈ X and each choice of
signs εi ∈ {0,1}W , the number of equations in (5.10) is WL+ bM/Nc ≤WL+M.

The set SN,M contains all (bM/Nc+1)N−1 vectors whose first N−1 coordinates are arbitrary
integers in {0,1, ...,bM/Nc} and whose last coordinate is chosen to make the `1-norm equal to M.
Thus, setting εi recursively according to (5.7), we see that if every vector in SN,M can be represented
by an element of ϒW,L(R), then

(bM/Nc+1)N−1 ≤ (4eLN(WL+M)2WL)CW 2L.

Taking logarithms and calculating in a similar manner as before, we get

N(1+ log(M/N))≤CW 4L2 +CW 2L log(M).

41

SIEGEL

As before we now deduce that if W 4L2 <C−1N(1+ log(M/N)), then N ≤C log(M).

Acknowledgments

We would like to thank Ron DeVore for suggesting this problem, and Andrea Bonito, Geurgana
Petrova, Zuowei Shen, George Karniadakis, Jinchao Xu, and Qihang Zhou for helpful comments
while preparing this manuscript. We would also like to thank the anonymous reviewers for their
careful reading and helpful comments. This work was supported by the National Science Foundation
(DMS-2111387 and CCF-2205004) as well as a MURI ONR grant N00014-20-1-2787.

Appendix A. Elementary Constructions

Here we give the constructions of sums and of piecewise linear continuous functions using deep
ReLU networks references in Section 2.

Proof of Proposition 7 We will show by induction on j that(
x
0

)
→
(

x
∑

j
i=1 fi(x)

)
∈ ϒ

W+2d+2k,L(Rd+k,Rd+k)

for L = ∑
j
i=1 Li. The base case j = 0 is trivial since the identity map is affine. Suppose we have

shown this for j−1, i.e.(
x
0

)
→
(

x
∑

j−1
i=1 fi(x)

)
∈ ϒ

W+2d+2k,L(Rd+k,Rd+k),

where L = ∑
j−1
i=1 Li. Compose this map with an affine map which duplicates the first entry to get

(
x
0

)
→

 x
x

∑
j−1
i=1 fi(x)

 ∈ ϒ
W+2d+2k,L(Rd+k,R2d+k).

Now, we use Lemma 6 to apply f j to the middle entry. This gives

(
x
0

)
→

 x
f j(x)

∑
j−1
i=1 fi(x)

 ∈ ϒ
W+2d+2k,L+L j(Rd+k,Rd+2k).

We finally compose with the affine mapx
y
z

→ (x
y+ z

)
∈ ϒ

0(Rd+2k,Rd+k),

and apply Lemma 4 to obtain(
x
0

)
→
(

x
∑

j
i=1 fi(x)

)
∈ ϒ

W+2d+2k,L+L j(Rd+k,Rd+k),

42

APPROXIMATION RATES FOR RELU NETWORKS ON BESOV SPACES

which completes the inductive step.
Applying the induction up to j = n, we have that

x→
(

x
0

)
→
(

x
∑

n
i=1 fi(x)

)
→

n

∑
i=1

fi(x) ∈ ϒ
W+2k+2,L(Rd ,Rk),

where L = ∑
n
i=1 Li, since the first and last maps above are affine (applying Lemma 4).

Proof of Proposition 8 First observe that any piecewise linear function f with k pieces can be written
as

f (x) = a0x+ c+
k−1

∑
i=1

aiσ(x−bi) (A.1)

for appropriate weights a0, ...,ak−1 and b1, ...,bk−1. Specifically, the bi are simply equal to the
breakpoints points at which the derivative of f is discontinuous, while the ai give the jump in
derivative at those points. a0 is set equal to the derivative in the left-most component and c is set to
match the value at 0.

Now we apply Proposition 7 to the sum (A.1) to get the desired result, since we easily see that

x→ a0x+ c ∈ ϒ
0(R)

and
x→ aiσ(x−bi) ∈ ϒ

1,1(R).

Proof of Lemma 11 We observe the basic formulas:

max(x,y) = x+σ(y− x), min(x,y) = x−σ(x− y).

We begin with the affine map (
x
y

)
→

 x
y− x
x− y

 ∈ ϒ
0(R2,R3).

Next, we use the fact that σ ∈ ϒ1,1(R) and Lemmas 4 and 6 to apply σ to the last two coordinates.
We get (

x
y

)
→

 x
σ(y− x)
σ(x− y)

 ∈ ϒ
4,1(R2,R3).

Finally, we use Lemma 4 to compose with the affine mapx
y
z

→ (x+ y
x− z

)
.

43

SIEGEL

Appendix B. Product Network Construction

Proof of Proposition 9 Observe that the piecewise linear hat function

f (x) =

{
2x x≤ 1/2
2(1− x) x > 1/2

satisfies f ∈ ϒ5,1(R) by Proposition 8. On the interval [0,1], f composed with itself n times is the
sawtooth function

f ◦n(x) := (f ◦ · · · ◦ f)(x) = f (2n−1x−b2n−1xc),

and one can calculate that (see Yarotsky (2017))

x2 = x−
∞

∑
n=1

4−n f ◦n(x) (B.1)

for x ∈ [0,1].
Using this, we construct a network gk ∈ ϒ7,k(R) such that

sup
x∈[0,1]

|x2−gk(x)| ≤ 4−k. (B.2)

To do this, we first apply the affine map which duplicates the input

x→
(

x
x

)
∈ ϒ

0(R,R2). (B.3)

Next, we show by induction on k that the map

x→
(

x−∑
k
n=1 4−n f ◦n(x)

f ◦k(x)

)
∈ ϒ

7,k(R,R2). (B.4)

The base case k = 0 is simply (B.3).
For the inductive step suppose that (B.4) holds for k ≥ 0. We use Lemma 6 to apply f ∈ ϒ5,1(R)

to the second coordinate, showing that(
x
y

)
→
(

x
f (y)

)
∈ ϒ

7,1(R2,R2).

Using the inductive assumption and Lemma 4, we compose this with the map in (B.4) to get

x→
(

x−∑
k
n=1 4−n f ◦n(x)
f ◦(k+1)(x)

)
∈ ϒ

7,k+1(R,R2).

We again use Lemma 4 and compose with the affine map(
x
y

)
→
(

x+ y
y

)
∈ ϒ

0(R2,R2)

to complete the inductive step.

44

APPROXIMATION RATES FOR RELU NETWORKS ON BESOV SPACES

To construct gk we then simply compose the map in (B.4) with the affine map(
x
y

)
→ x ∈ ϒ

0(R2,R)

which forgets the second coordinate. Then for x ∈ [0,1] we have

gk(x) = x−
k

∑
n=1

4−n f ◦n(x)

and by (B.1) we get the bound (B.2). This gives us a network which approximates x2 on the interval
[0,1].

In order to obtain a network which approximates x2 on [−1,1] we observe that if x ∈ [−1,1],
then σ(x),σ(−x) ∈ [0,1], and

x2 = σ(x)2 +σ(−x)2.

We begin with the single layer network

x→
(

σ(x)
σ(−x)

)
∈ ϒ

2,1(R,R2). (B.5)

Further, applying Lemma 6, we see that(
x
y

)
→
(

gk(x)
y

)
∈ ϒ

9,k(R2,R2)

and also (
x
y

)
→
(

x
gk(y)

)
∈ ϒ

9,k(R2,R2)

Finally, composing all of these and then applying the affine summation map(
x
y

)
→ x+ y ∈ ϒ

0(R2),

we get, using Lemma 4 (note that we can expand the width of the network in (B.5)), a function
hk ∈ ϒ9,2k+1(R) such that on [−1,1], we have

|x2−hk(x)| ≤ |σ(x)2−hk(σ(x))|+ |σ(−x)2−hk(σ(−x))| ≤ 4−k.

(Since one of σ(x) and σ(−x) is 0.)
Finally, to construct a network which approximates products, we use the formula

xy = 2

((
x+ y

2

)2

−
(x

2

)2
−
(y

2

)2
)

If x,y ∈ [−1,1], then all of the terms which are squared in the previous equation are also in [−1,1],
so that we can approximate these squares using the network hk. Applying the affine map(

x
y

)
→

(x+ y)/2
x/2
y/2

 ∈ ϒ
0(R2,R3),

45

SIEGEL

then successively applying hk to the first, second, and third coordinates using Lemmas 6 and 4, and
finally applying the affine map x

y
z

→ 2(x− y− z) ∈ ϒ
0(R3),

we obtain a network fk ∈ ϒ13,6k+3(R2) such that for x,y ∈ [−1,1] we have

| fk(x,y)− xy| ≤ 6 ·4−k,

as desired.

Appendix C. Bit Extraction Network Construction

Proof of Proposition 10 We begin by noting that for any ε > 0 the piecewise linear maps

bε(x) =


0 x≤ 1/2− ε

ε−1(x−1/2+ ε) 1/2− ε < x≤ 1/2
1 x > 1/2

and

gε(x) =


x x≤ 1− ε

1−ε

ε
(1− x) 1− ε < x≤ 1

x−1 x > 1

satisfy bε ,gε ∈ ϒ5,2(R) by Proposition 8. In addition, these functions have been designed so that if
ε < 2−n, we have for any x of the form (2.1) that

bε(x) = x1, gε(2x) = 0.x2x3 · · ·xn.

We now construct the network fn,m by induction on m. In what follows, we assume that all of our
inputs x are of the form (2.1). The base case when m = 0 is simply the affine map

x→
(

x
0

)
∈ ϒ

0(R,R2).

For the inductive step, we suppose that we have constructed a map

fn,m−1(x) =
(

0.xmxm+1 · · ·xn

x1x2 · · ·xm−1.0

)
∈ ϒ

9,4(m−1)(R,R2)

We then compose this network with an affine map which doubles and duplicates the first component

(
x
y

)
→

2x
x
y

 ∈ ϒ
0(R2,R3)

46

APPROXIMATION RATES FOR RELU NETWORKS ON BESOV SPACES

to get the map

x→

 xm.xm+1 · · ·xn

0.xmxm+1 · · ·xn

x1x2 · · ·xm−1.0

 ∈ ϒ
9,4(m−1)(R,R3).

Next we choose ε < 2−n and use Lemmas 4 and 6 to apply gε to the first component and then bε to
the second component. This gives a map

x→

 0.xm+1 · · ·xn

xm

x1x2 · · ·xm−1.0

 ∈ ϒ
9,4m(R,R3).

Finally, we complete the inductive step by composing with the affine mapx
y
z

→ (x
2z+ y

)
∈ ϒ

0(R3,R2).

Proof of Lemma 19 Start with the following piecewise linear function

gε(x) :=


0 x≤ 0
(j+ ε−1(x− j/b)) j/b− ε < x≤ j/b, for j = 1, ...,b−1
j j/b < x≤ (j+1)/b− ε, for j = 0, ...,b−1
b−1 x > 1.

Note that this function has 2b−1 pieces and so by Proposition 8 we have gε ∈ ϒ5,2(b−1)(R).
We set x0 = x and q0 = 0 and consider the following recursion

xn+1 = bxn−gε(xn), qn+1 = bqn +gε(xn).

It is easy to verify that if x0 = x ∈ [jb−l,(j+1)b−l− ε), then ql = j, since in this case all iterates
xn /∈ ∪b

j=1(j/b− ε, j/b) so that gε extracts the first bit in the b-ary expansion of xn

gε(xn) = j if j/b≤ xn < (j+1)/b.

In addition, when x0 = x ∈ [1−b−l,1], then ql = bl−1 since gε(xn) = b−1 for all n.
We implement this recursion using a deep ReLU network as follows. We begin with the affine

map

x→

x
x
0

=

x0
x0
q0

 ∈ ϒ
0(R,R3).

Now, we use induction. Suppose that the map

x→

xn

xn

qn

 ∈ ϒ
9,2(b−1)n(R,R3)

47

SIEGEL

has already been implemented. Then we use Lemmas 4 and 6 to apply gε to only the second
coordinate. This gives the map

x→

 xn

gε(xn)
qn

 ∈ ϒ
9,2(b−1)(n+1)(R,R3).

Finally, we compose with the affine mapx
y
z

→
2(x− y)

2(x− y)
2z+ y

 ∈ ϒ
0(R3,R3)

to complete the inductive step. After l steps of induction, we then compose with the affine map
which selects the last coordinate to get the network q1 ∈ ϒ9,2(b−1)l(R).

For higher dimensional cubes Ω= [0,1)d , we construct an indexing network qd ∈ϒ9d,2(b−1)l(Rd).
We use Lemma 5 to apply q1 to each coordinate of the input. Then, we compose with the affine map

x→
d

∑
j=1

bl(j−1)x j

to get qd ∈ ϒ9d,2(b−1)l(Rd) with

qd(Ω
l
i,ε) = ind(i) :=

d

∑
j=1

bl(j−1)i j.

References

El Mehdi Achour, Armand Foucault, Sébastien Gerchinovitz, and François Malgouyres. A general
approximation lower bound in Lp norm, with applications to feed-forward neural networks. arXiv
preprint arXiv:2206.04360, 2022.

Miklós Ajtai, János Komlós, and Endre Szemerédi. An O(n logn) sorting network. In Proceedings
of the Fifteenth Annual ACM Symposium on Theory of computing, pages 1–9, 1983.

Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee. Understanding deep neural
networks with rectified linear units. In International Conference on Learning Representations,
2018.

Francis Bach. Breaking the curse of dimensionality with convex neural networks. The Journal of
Machine Learning Research, 18(1):629–681, 2017.

Peter Bartlett, Vitaly Maiorov, and Ron Meir. Almost linear VC dimension bounds for piecewise
polynomial networks. Advances in Neural Information Processing Systems, 11, 1998.

48

APPROXIMATION RATES FOR RELU NETWORKS ON BESOV SPACES

Peter L Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight VC-dimension
and pseudodimension bounds for piecewise linear neural networks. The Journal of Machine
Learning Research, 20(1):2285–2301, 2019.

Kenneth E Batcher. Sorting networks and their applications. In Proceedings of the April 30–May 2,
1968, Spring Joint Computer Conference, pages 307–314, 1968.

Mikhail Shlemovich Birman and Mikhail Zakharovich Solomyak. Piecewise-polynomial approxima-
tions of functions of the classes W α

p . Matematicheskii Sbornik, 115(3):331–355, 1967.

James H Bramble and SR Hilbert. Estimation of linear functionals on Sobolev spaces with application
to Fourier transforms and spline interpolation. SIAM Journal on Numerical Analysis, 7(1):112–124,
1970.

James H Bramble, Joseph E Pasciak, and Jinchao Xu. Parallel multilevel preconditioners. Mathemat-
ics of Computation, 55(191):1–22, 1990.

Antonin Chambolle, Ronald A DeVore, Nam-Yong Lee, and Bradley J Lucier. Nonlinear wavelet im-
age processing: variational problems, compression, and noise removal through wavelet shrinkage.
IEEE Transactions on Image Processing, 7(3):319–335, 1998.

Ingrid Daubechies. Ten Lectures on Wavelets. SIAM, 1992.

Ingrid Daubechies, Ronald DeVore, Nadav Dym, Shira Faigenbaum-Golovin, Shahar Z Kovalsky,
Kung-Chin Lin, Josiah Park, Guergana Petrova, and Barak Sober. Neural network approximation
of refinable functions. IEEE Transactions on Information Theory, 2022a.

Ingrid Daubechies, Ronald DeVore, Simon Foucart, Boris Hanin, and Guergana Petrova. Nonlinear
approximation and (deep) ReLU networks. Constructive Approximation, 55(1):127–172, 2022b.

Françoise Demengel, Gilbert Demengel, and Reinie Erné. Functional Spaces for the Theory of
Elliptic Partial Differential Equations. Springer, 2012.

Ronald DeVore, Boris Hanin, and Guergana Petrova. Neural network approximation. Acta Numerica,
30:327–444, 2021.

Ronald A DeVore. Nonlinear approximation. Acta Numerica, 7:51–150, 1998.

Ronald A DeVore and George G Lorentz. Constructive Approximation, volume 303. Springer
Science & Business Media, 1993.

Ronald A DeVore and Vasil A Popov. Interpolation of besov spaces. Transactions of the American
Mathematical Society, 305(1):397–414, 1988.

Ronald A DeVore and Robert C Sharpley. Maximal functions measuring smoothness. Memoirs of
the American Mathematical Society, 47(293), 1984.

Ronald A DeVore and Robert C Sharpley. Besov spaces on domains in Rd . Transactions of the
American Mathematical Society, 335(2):843–864, 1993.

49

SIEGEL

Ronald A DeVore, Björn Jawerth, and Bradley J Lucier. Image compression through wavelet
transform coding. IEEE Transactions on Information Theory, 38(2):719–746, 1992.

Eleonora Di Nezza, Giampiero Palatucci, and Enrico Valdinoci. Hitchhikers guide to the fractional
Sobolev spaces. Bulletin des Sciences Mathématiques, 136(5):521–573, 2012.

David L Donoho and Iain M Johnstone. Adapting to unknown smoothness via wavelet shrinkage.
Journal of the American Statistical Association, 90(432):1200–1224, 1995.

David L Donoho and Iain M Johnstone. Minimax estimation via wavelet shrinkage. The Annals of
Statistics, 26(3):879–921, 1998.

David L. Donoho, Martin Vetterli, Ronald A. DeVore, and Ingrid Daubechies. Data compression and
harmonic analysis. IEEE Transactions on Information Theory, 44(6):2435–2476, 1998.

Lawrence C Evans. Partial Differential Equations, volume 19. American Mathematical Soc., 2010.

Paul Goldberg and Mark Jerrum. Bounding the Vapnik-Chervonenkis dimension of concept classes
parameterized by real numbers. In Proceedings of the Sixth Annual Conference on Computational
Learning Theory, pages 361–369, 1993.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT press, 2016.

Ingo Gühring, Gitta Kutyniok, and Philipp Petersen. Error bounds for approximations with deep
ReLU neural networks in W s,p norms. Analysis and Applications, 18(05):803–859, 2020.

Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial differential equations
using deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–8510, 2018.

Boris Hanin. Universal function approximation by deep neural nets with bounded width and ReLU
activations. Mathematics, 7(10):992, 2019.

Boris Hanin and David Rolnick. Complexity of linear regions in deep networks. In International
Conference on Machine Learning, pages 2596–2604. PMLR, 2019.

Juncai He, Lin Li, Jinchao Xu, and Chunyue Zheng. ReLU deep neural networks and linear finite
elements. Journal of Computational Mathematics, 38(3):502–527, 2020.

Jason M Klusowski and Andrew R Barron. Approximation by combinations of ReLU and squared
ReLU ridge functions with `1 and `0 controls. IEEE Transactions on Information Theory, 64(12):
7649–7656, 2018.

Alois Kufner, Oldrich John, and Svatopluk Fucik. Function Spaces, volume 3. Springer Science &
Business Media, 1977.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444,
2015.

John E Littlewood and Raymond EAC Paley. Theorems on Fourier series and power series. Journal
of the London Mathematical Society, 1(3):230–233, 1931.

50

APPROXIMATION RATES FOR RELU NETWORKS ON BESOV SPACES

George G Lorentz, Manfred v Golitschek, and Yuly Makovoz. Constructive Approximation: Ad-
vanced Problems, volume 304. Springer, 1996.

Jianfeng Lu, Zuowei Shen, Haizhao Yang, and Shijun Zhang. Deep network approximation for
smooth functions. SIAM Journal on Mathematical Analysis, 53(5):5465–5506, 2021.

Stéphane Mallat. A Wavelet Tour of Signal Processing. Elsevier, 1999.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
International Conference on Machine Learning, 2010.

Michael S Paterson. Improved sorting networks with O(logN) depth. Algorithmica, 5(1):75–92,
1990.

Philipp Petersen and Felix Voigtlaender. Optimal approximation of piecewise smooth functions using
deep ReLU neural networks. Neural Networks, 108:296–330, 2018.

Pencho P Petrushev. Direct and converse theorems for spline and rational approximation and Besov
spaces. In Function Spaces and Applications: Proceedings of the US-Swedish Seminar held in
Lund, Sweden, June 15–21, 1986, pages 363–377. Springer, 1988.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Norbert Sauer. On the density of families of sets. Journal of Combinatorial Theory, Series A, 13(1):
145–147, 1972.

Thiago Serra, Christian Tjandraatmadja, and Srikumar Ramalingam. Bounding and counting linear
regions of deep neural networks. In International Conference on Machine Learning, pages
4558–4566. PMLR, 2018.

Saharon Shelah. A combinatorial problem; stability and order for models and theories in infinitary
languages. Pacific Journal of Mathematics, 41(1):247–261, 1972.

Zuowei Shen, Haizhao Yang, and Shijun Zhang. Optimal approximation rate of ReLU networks in
terms of width and depth. Journal de Mathématiques Pures et Appliquées, 157:101–135, 2022.

Zhang Shijun. Deep neural network approximation via function compositions. PhD thesis, National
University of Singapore (Singapore), 2021.

Jonathan W Siegel and Jinchao Xu. Approximation rates for neural networks with general activation
functions. Neural Networks, 128:313–321, 2020.

Jonathan W Siegel and Jinchao Xu. High-order approximation rates for shallow neural networks
with cosine and ReLUk activation functions. Applied and Computational Harmonic Analysis, 58:
1–26, 2022a.

Jonathan W Siegel and Jinchao Xu. Sharp bounds on the approximation rates, metric entropy, and
n-widths of shallow neural networks. Foundations of Computational Mathematics, pages 1–57,
2022b.

51

SIEGEL

Matus Telgarsky. Benefits of depth in neural networks. In Conference on Learning Theory, pages
1517–1539. PMLR, 2016.

Vladimir N Vapnik and A Ya Chervonenkis. On the uniform convergence of relative frequencies of
events to their probabilities. In Measures of Complexity, pages 11–30. Springer, 2015.

Shuning Wang and Xusheng Sun. Generalization of hinging hyperplanes. IEEE Transactions on
Information Theory, 51(12):4425–4431, 2005.

Hugh E Warren. Lower bounds for approximation by nonlinear manifolds. Transactions of the
American Mathematical Society, 133(1):167–178, 1968.

Hassler Whitney. Analytic extensions of differentiable functions defined in closed sets. Transactions
of the American Mathematical Society, 36(1):63–89, 1934.

Dmitry Yarotsky. Error bounds for approximations with deep ReLU networks. Neural Networks, 94:
103–114, 2017.

Dmitry Yarotsky. Optimal approximation of continuous functions by very deep ReLU networks. In
Conference on Learning Theory, pages 639–649. PMLR, 2018.

Dmitry Yarotsky and Anton Zhevnerchuk. The phase diagram of approximation rates for deep neural
networks. Advances in Neural Information Processing Pystems, 33:13005–13015, 2020.

Wen Yuan, Winfried Sickel, and Dachun Yang. Morrey and Campanato Meet Besov, Lizorkin and
Triebel. Springer, 2010.

52

	Introduction
	Basic Neural Network Constructions
	Optimal Representation of Sparse Vectors using Deep ReLU Networks
	Optimal Approximation of Sobolev Functions Using Deep ReLU Networks
	Lower Bounds
	Elementary Constructions
	Product Network Construction
	Bit Extraction Network Construction

